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Abstract

Left ventricular hypertrophy induced by systemic hyper-
tension is generally regarded a morphological precursor of
unfortunate cardiovascular events. Myocardial fiber disarray
has been long recognized as a prevalent hallmark of this
pathology. In this chapter, ex vivo diffusion tensor magnetic
resonance imaging is employed to delineate the regional
loss of myocardial organization that is present in the excised
heart of a spontaneously hypertensive rat, as opposed to a
control. Fiber tracking results are provided that illustrate in
great detail the alterations in the integrity of cardiac muscle
microstructure due to the disease. A quantitative analysis
is also performed. Another contribution of this chapter is
the model-based assessment of the role of the myofiber
disarray in modulating the mechanical properties of the
myocardium. The results of this study improve our under-
standing of the structural remodeling mechanisms that are
associated with hypetensive left ventricular hypertrophy
and their role.

Introduction

Myocardium microarchitecture
The myocardium is primarily (75%) composed of a heli-
cal network of muscle fibers that twist around the heart.

The muscle fibers (also known as myocytes) are shaped
like cylinders of radius 5–10 �m and length 80–100 �m. To
preserve the cardiac tissue architecture during the heart’s
large deformations due to contractile motion, the adjacent
fibers are embedded in an extracellular matrix (ECM) called
endomysium, that consists mainly (62%) of type III (highly
deformable) collagen. Another role of ECM is to connect the
myocytes to the myocardium’s supporting coronary vascu-
lature. In addition to fibers, another microstructural com-
ponent of myocardial tissue is the cardiac laminar sheets,
which are formed by stacking 3–4 fibers. This laminar struc-
ture is oriented transversly to the heart wall and is bounded
by cleavage planes. The voids between laminae are occupied
by a collagen network called perimysium. The principal con-
stituent (72%) of perimysium is type I collagen (high ten-
sile strength). A virtual representation of the cardiomyocyte
compartment and its surrounding collagen network is given
in Figure 53.1. For more details regarding the microarchitec-
ture of cardiac muscle, the interested reader is referred to [1]
and references therein.

Diffusion tensor magnetic resonance imaging
Within the hierarchical structure of the cardiac muscle
described above, water molecules are transported by random
thermal collisions. However, this drifting, which occurs even
in the complete absence of bulk flow, is not free. In partic-
ular, there is greater hindrance to water transport across a
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Figure 53.1 Schematic diagram of the two components of the cardiomyocyte compartment and the surrounding collagen network. (a) Cardiac myofibers,

represented by the long oval structures, and the surrounding endomysium. (b) The laminar sheets of the heart. The layers consist of tightly coupled myocytes

3–4 cells thick, and are separated by cleavage planes. Also given are the orthonormal bases used to represent the heart wall and the laminar sheets in a

Lagrangian coordinate system. (From Rohmer D, et al. Invest Radiol 2007;42:777–89, with permission.)

cardiac muscle fiber than along it. Consequently, the mobil-
ity of water becomes greatest along the long axis of the
fibers. In a similar manner, the cleavage planes that phys-
ically separate the cardiac sheets act like a barrier to water
diffusion. This causes the diffusion to be less in the normal
direction of the laminar sheets than within the sheets. From
the description above, it is obvious that by calculating the
anisotropic water diffusion, one may infer information about
(i) the microstructural organization of the myocardium,
and (ii) the derangement of the normal microstruc-
tural patterns that is associated with certain cardiac
diseases.

Diffusion tensor magnetic resonance imaging (DT-MRI)
[2,3] has emerged as a powerful tool that performs this cal-
culation. Unlike its predecessors (iontophoresis [4], photo-
bleaching [5], etc.), DT-MRI (i) does not require some inva-
sive labeling or monitoring procedure, (ii) does not require
exogenous contrast agents, and (iii) is an inherently three-
dimensional (3D) technique. DT-MRI characterizes the pref-
erential water diffusion by a tensor field. The diffusion ten-
sor is obtained voxel-by-voxel by fitting a set of N (N ≥ 6)
diffusion-weighted MRI acquisitions (each obtained with a
different orientation and/or magnitude of the diffusion sen-
sitizing gradient) and one diffusion-independent MRI read-
ing. An excellent review of cardiac DT-MRI is presented
in [6]. Apart from cardiac muscle, DT-MRI has also been
employed to measure the anisotropy of water diffusion in
other oriented tissues such as brain white matter [7], artic-
ular cartilage [8], spinal cord [9], tongue [10], breast [11],
prostate gland [12], pelvic floor [13], thigh muscle [14] and
calf muscle [15].

The in vivo DT-MRI imaging of myocardial microstructure
is currently hindered by the long acquisition times that are
necessary to tackle the inherently low signal-to-noise ratio

(SNR) of this imaging modality [6]. Great sensitivity to beat-
ing heart and other motion artifacts, eddy current artifacts,
partial volume effects and poor spatial resolution further
degrade the in vivo DT-MRI cardiac images [6]. As a result,
at present, the technique is mainly conducted ex vivo using
excised fixed hearts.

Tracking of the microstructural components
of myocardium
The diffusion tensor at each voxel contains information
about the amount of water diffused as well as the orien-
tations of the local fibers and laminar sheet surfaces. By
exploiting the fiber-related directional information at all
voxels, one may reconstruct and visualize the continuous
3D trajectories of fiber tracts throughout the myocardium
by using a process called DT-MRI cardiac fiber tractogra-
phy [16]. Likewise, by making use of the sheet inclination
information that is incorporated in the discrete set of diffu-
sion tensor data, the cardiac laminar sheet structure may be
imaged. To add to the above applications, DT-MRI tracking
of the myocardial microstructural components may be used
to also render visible the structural remodeling in the pres-
ence of cardiac pathology.

Streamline tracking [1,17] is a common method used to
reconstruct cardiac fibers and laminae. In this technique,
the recovered trajectories and surfaces evolve incrementally.
To minimize noise effects and achieve better smoothing, an
anisotropic filtering method [18] may be employed before
the tracking. Video clips 53.1 and 53.2 and Figure 53.2 show
DT-MRI fiber and sheet tracking results that were obtained
by applying the streamlining method [1] to the left ventri-
cle (LV) of an excised adult male Wistar-Kyoto (WKY) rat
heart.
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Figure 53.2 Fiber tracking results of a

transmural block cut from the left ventricular

wall of an excised adult male Wistar-Kyoto

(WKY) rat heart. The classic counterclockwise

epicardial-to-endocardial rotation of the

cardiac muscle fibers may also be seen. The

reconstruction results were obtained by using

the streamlining method described in [1].

Hypertension-induced left ventricular hypertrophy
as an ominous sign of heart failure
Left ventricular hypertrophy (LVH) [19,20] refers to the
structural remodeling of the heart when it is exposed to
sustained ventricular load. The increased afterload may be
caused by physiological stimuli such as athletic exercise, or
pathological stimuli such as hypertension, aortic stenosis or
aortic insufficiency [20]. The pathologic case we study in
this chapter is LVH induced by genetic systemic hyperten-
sion [21,22]. However, it is worth noting that not all hyper-
tensive subjects develop LVH [23].

Hypertensive LVH is a complex and multi-factorial pro-
cess. As well as the elevated blood pressure (hemodynamic
component), factors such as demographics (age, sex, race,
social class), concurrence of other pathological conditions
(increased body mass index, insulin resistance syndrome)
and genetics are among those that play a role in the devel-
opment of LVH in hypertensive subjects [21].

The most prevalent morphological characteristic of LVH
caused by arterial hypertension is the symmetric thicken-
ing of the LV muscle wall accompanied by an increase
in the respective mass [19]. The increased ratio of wall
thickness to cavity radius results in a concentric pattern
of hypertrophy. Apart from this distinct change in cardiac
wall geometry, an additional morphologic feature of the
myocyte compartment is the disorientation of microstruc-
tural components [24]. At the same time, an intrinsic prop-
erty of the cardiac muscle, the value of which has been
shown to grow significantly as hypertensive LVH progresses,

is myocardial stiffness [25]. In the non-myocyte connec-
tive network of the myocardium, structural changes asso-
ciated with hypertension-induced LVH include the elevated
collagen concentration (myocardial fibrosis or scar forma-
tion) [26]. Finally, extracellular alterations due to hyper-
tensive LVH have also been observed in the microcircula-
tion. These include decreased capillary density, peri-vascular
fibrosis and medial thickening of intramyocardial coronary
arteries [27,28].

There are molecular mechanisms that underlie the trans-
duction of the increased LV wall tension (mechanical infor-
mation) present in hypertensive subjects to the myocardial
enlargement described. The biomechanical transduction that
induces the structural remodeling is described briefly here
[20,29–31]. At first, signaling molecules such as calpain pro-
teases, growth factors, cytokines and neurohormones are
recruited as mediators. These signaling molecules bind to
specific receptors (such as kinases and integrins) that are
found on the surface of cardiomyocytes. Next, the recep-
tors activate intracellular signaling cascades (in this way
they communicate their signals to the nucleus of myocytes)
that promote (i) modifications in gene transcription and
(ii) increased synthesis of the protein contractile units (sar-
comeres). The parallel addition of sarcomeres produces an
increase in the size of the myocytes, which, in turn, leads
to cardiac wall thickening. Coordinated molecular changes
occur also at the surrounding collagen network, where the
increased activation (upregulation of genes) of the matrix
metalloproteinases (MMPs) appears to play a major role in
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controlling the remodeling (i.e., increased collagen content)
of ECM [29]. To sum up, the gross structural remodeling in
LVH that occurs in hypertensive subjects is a change collec-
tively brought about by molecular, cellular, and biochem-
ical events. In addition, the development of LVH is medi-
ated by neurohormones released by the sympathetic and
renin–angiotensin–aldosterone systems [32–34]. This is of
particular interest, since these neurohormonal systems are
amenable to pharmacological manipulation [21,34].

Even though the early stage of the myocardial struc-
tural remodeling in the presence of hypertension is gen-
erally regarded as a useful compensatory mechanism that
allows a normal LV stroke volume and minimizes stress,
these structural alterations have also been held responsi-
ble for the impaired physiological function that comes along
with this pathological remodeling, and are generally con-
sidered a morphological precursor of adverse cardiovascular
outcomes [21,35]. In the following, we outline the physio-
logical alterations that have been interpreted by the struc-
tural remodeling in hypertensive LVH, and also elaborate
why these functional changes represent clinical manifesta-
tions of certain associated diseases.

Electrical remodeling is closely related to structural
remodeling, whereby a substrate for triggering and main-
tenance of arrhythmias is created [36]. The presence
of arrhythmias in hypertensive LVH is associated with
increased incidence of sudden death [37,38]. Similarly, the
structural changes have a direct bearing on the mechanical
function of the heart where an impairment of the diastolic
[39–43] and systolic [44,45] functions and the synchronicity
[46] of these two has been observed in subjects with hyper-
tensive LVH. This abnormal mechanical function of the LV
has been documented [29] to be a major cause of congestive
heart failure (CHF). That being said, epidemiological studies
have indicated [47] that in 75% of patients who developed
CHF arterial hypertension with definite signs of LVH had
been diagnosed. We have already mentioned that a common
structural alteration in subjects with hypertensive LVH is the
medial thickening of the intramyocardial coronary arteries.
This characteristic predisposes such patients to the devel-
opment of coronary artery disease (CAD) or atherosclero-
sis [30,48]. However, CAD brings about obstruction in blood
flow [41] which is another example of forthcoming com-
plications. This physiological alteration, when coupled with
the decreased capillary density, lead to decreased myocar-
dial oxygen supply that facilitates the formation of microis-
chemic regions [49,50]. Also, it has been shown [21,49] that
apart from the abnormalities in coronary blood flow (vas-
cular component), the increased wall thickness (myocardial
component) further aggravates the development of ischemia
in hypertensive subjects. Meanwhile, the reduced oxygen
supply in the remodeled myocardium fails sooner rather
than later to meet the increased myocardial demand of oxy-
gen that the hypertensive LVH imposes (oxygen demand is

proportional to the wall stress) [48,51]. This imbalance has
been reported [52] to incite angina pectoris (chest pain),
which, in turn, heralds myocardial infarction (MI) [50].
Both ischemia and MI cause a decline in cardiac pumping
ability, and heart failure ensues naturally.

Currently, hypertensive LVH contributes significantly to
the growing healthcare costs of cardiovascular diseases. An
earlier diagnosis (before the overt transition to CHF), fol-
lowed by treatment that aims at reversing this pathol-
ogy, would help to improve wellbeing and stem increasing
healthcare costs.

The role of mechanical modeling in cardiology
Finite element (FE) computational models of the heart pro-
vide an ideal hosting environment to observe the mechan-
ical function of the heart, mainly due to their versatility.
Apart from simulations of the normal cardiac function, they
can also be used to study the alterations caused by car-
diac disease. More importantly, by studying the progression
of one disease, mechanical models may provide a way to
better understand mechanical aspects that play a role in
the development of that specific disease. Another advan-
tage of computational modeling is the capability to evalu-
ate some mechanical properties of the heart, such as the
cardiac wall stress field, that cannot be experimentally mea-
sured by the currently available methods. This information
could then be used, for example, to estimate material param-
eters by matching FE deformation or strain predictions with
the measured values. A comprehensive overview of compu-
tational modeling from the solid mechanics perspective may
be found in [53].

Contribution of this chapter
Myocardial disarray has been long recognized [24,54–58] as
a prevalent pathological hallmark of LVH induced by arte-
rial hypertension. It refers to the irregular arrangement in
every level of myocardial organization, from the myofibrils
and myofilaments to the fibers and fascicles. In this chapter
we focus on the fiber level. The well-ordered and smoothly
varying spatial alignment of myocardial fibers that charac-
terizes the normal myocardium no longer exists in the areas
of myofiber disarray.

However, until now, there have been no DT-MRI stud-
ies on delineating the spatial misalignment of myocardial
fibers that is associated with hypertensive LVH. Instead, all
previous related attempts [24,54–58] were made using light
microscopy, a technique that is much more laborious, inva-
sive, and time-consuming than DT-MRI. To our knowledge,
this chapter is the first report of DT-MRI being employed to
assess the geometric rearrangement of the cardiomyocytes,
following hypertensive LVH.

By performing ex vivo studies in two excised hearts
taken from a rat with hypertensive LVH and its normoten-
sive equivalent, we first provide fiber tracking images that
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pinpoint and illustrate in great detail the regionally dis-
ordered fiber orientation that is present in the pathologic
case, as opposed to the normal case. Having identified the
loss of the microstructural organization that is associated
with hypertensive LVH, we take a further step by quan-
tifying this myofiber disarray. The maps of fiber regular-
ity in the myocardium are produced by relying on a novel
scatter matrix-based approach. Another contribution of this
chapter is the model-based assessment of the role of the
myofiber disarray in modulating the mechanical properties
of the myocardium with hypertensive LVH and the ascer-
tainment of their relation.

Materials and methods

Research animal model
The spontaneously hypertensive rat (SHR) [59] is a well-
established model of genetic hypertension. The development
of this homozygous hypertensive rat strain was achieved
by repeated selective breeding of WKY rats displaying the
desired phenotype (high blood pressure) over several gen-
erations. Once the trait was fixed, sib mating was main-
tained for about 20 generations to achieve genetic homo-
geneity. In this particular strain of rat sustained, systemic
hypertension invariably occurs accompanied by marked LVH
[24]. Because the SHR provides a wide variety of genes
to be inherited together, it is regarded [24] as a reliable
experimental model for studying essential hypertension in
humans.

In this work, we performed ex vivo studies of one SHR
fixed heart and one normotensive WKY fixed rat heart. The
rats were bought from the Charles River Laboratories Inter-
national, Inc., Wilmington, MA, USA. The age of both rats
at the time of the heart excision was 22 months. The time
period between excision and imaging was 25 days. All ani-
mal procedures conformed to the guidelines set forth by
the Animal Welfare and Research Committee of Lawrence
Berkeley National Laboratory.

Heart preparation
We induced anesthesia in the two rats by using isoflurane
inhalation. When physical sensation was lost, the thorax was
opened. Next, the intact heart was rapidly removed from the
chest and flushed with warmed isotonic saline. Both hearts
were arrested in end diastole. Once the hearts were rinsed,
they were weighed and placed in 60 ml of 10% buffered for-
malin for fixation (i.e., prevention of tissue decay and main-
tenance of the diastolic shape). The myocardial mass nor-
malized to the entire body weight was 0.38% for the WKY
and 0.86% for the SHR rat. These parameter values served
as confirmation of the presence of LVH in the SHR rat, as
opposed to the WKY rat.

Table 53.1 Imaging parameters used for each heart.

Scan of Fourier space A 3D spin echo sequence was used

Field of view 27 × 15:5 × 15:5 (mm)

Voxel size 0.160 mm (isotropic)

Repetition time (TR) 500 ms

Echo time (TE) 19.224 ms

Number of averages 1

Slice thickness 0.160 mm (0 mm gap)

Number of slices 169

Matrix size 97 × 97

Gradient duration (δ) 4 ms

Gradient separation (�) 10 ms

Maximum strength of the

gradient pulse (G)

30 G/cm

Diffusion-weighting factor (b) 1000 s/mm2

Overall scan time 16 h 59 m 18 s 500 ms

Diffusion imaging
Scans of the whole hearts were carried out at the Small
Animal MRI Imaging Facility of the University of Utah,
using a Bruker BioSpec 7T horizontal bore MRI scanner.
The optimized scheme of 12 gradient directions, proposed in
[60], was used. One non-weighted image and 12 diffusion-
weighted data sets were acquired for each heart. For the
imaging, the specimens were placed in a susceptibility-
matching solution called Fomblin which does not give a
nuclear magnetic resonance (NMR) signal to increase con-
trast and eliminate susceptibility artifacts near the boundary
of the heart. The long axis of each heart was aligned with
the x-axis of the scanner. The imaging parameters are listed
in Table 53.1.

Tensor data set reconstruction
The cardiac diffusion tensor field estimation was an overde-
termined problem, since the measurements outnumbered
the unknowns (i.e., we had 13 measurements for 6
unknowns). The solution was obtained by applying a non-
linear least-squares fitting algorithm [61].

Visualization of the myocardial fiber
disarray using DT-MRI fiber tractography

First, recall that the DT-MRI measurement output is given
as a volumetric discrete data set where each voxel contains
the diffusion information along three global axes. For each
voxel, the diffusion tensor can be expressed as a symmet-
ric positive-definite matrix, and therefore decomposed into
eigen-components, such that the eigenvectors give the main
directions of diffusion while the eigenvalues are related to
the magnitude of diffusion along the directions of the related
eigenvectors. As the diffusion acts mainly along the fiber
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Figure 53.3 Illustration of the fiber tracking algorithm. Starting from an

initial seed position, integration is carried out in both directions.

direction, it has been demonstrated [62] and validated [62]
that the eigenvector associated with the greatest eigenvalue
coincides with the local fiber orientation. Moreover, the
smallest eigen-component may be considered as normal to
the sheet structure, as it is related to the direction where the
diffusion is minimal [1]. Therefore, sorting the three eigen-
components with respect to their eigenvalues enables one to
access the direction of the local fibers and sheets. In this sec-
tion, we deal only with the tracking of cardiac muscle fiber
tracts.

The algorithm we used is shown in Figure 53.3. First, an
intensity-based automatic segmentation of the heart wall
was performed based on the standard MRI acquisition. Next,
3D positions were evenly distributed within the heart wall
to act as starting seeds of the fiber trajectory. For each seed

position, the trajectory was computed as a streamline inte-
gration along the primary eigenvector. The integration was
performed in both forward and backward directions of the
fibers and continued as long as the trajectory stayed within
the heart wall.

In practise, we used a step size of 90 �m on a grid of 169
× 97 × 97 voxels, where each voxel was a cube of 160 �m
edge length. When about 3000 fiber trajectories were com-
puted as polylines, we generated a sweep surface using cylin-
ders of constant radius of 32 �m, wrapping each fiber tra-
jectory to improve depth perception. The resulting cylinders
are color encoded by the local fiber helix (inclination) angle,
defined (according to the convention described in [63]) as
the angle between the local circumferential direction and the
projection of the fiber direction on the plane perpendicular
to the local transmural direction (see Figure 53.1). The final
rendering was performed using an offline ray-tracing algo-
rithm. For the implementation of the algorithm, the open
source software Sunflow (http://sunflow.sourceforge.net/)
was employed. For more details regarding the fiber tracking
method, see [1].

We performed qualitative comparison between the fiber
tractography results obtained from the SHR and those
obtained from the WKY. The presence of extensive fiber dis-
array in the lateral wall of the SHR, as opposed to the WKY,
was revealed (see Figures 53.4 and 53.5 and Video clip 53.3).

Having recognized the spatial malalignment of myocardial
fibers that is associated with hypertensive LVH, we now go
on to quantify this myofiber disarray.

DT-MRI quantitative study of the
myocardial fiber disarray

Regions of interest
We analyzed the inferolateral wall of the largest equatorial
(mid-ventricle) short-axis slice (Figure 53.6) of the two rat

Figure 53.4 Fiber tractography results from the normal WKY (top) and the diseased SHR (bottom) rats. First column: The MRI-based segmented

myocardia, where the hypertrophied cardiac wall of the SHR may be seen. Second and third columns: Two different views of the fiber tracking results of the

entire wall. Seen from the top, there is marked myofiber disarray in the lateral region of the SHR, as opposed to the WKY. Last column: A close-up, focusing

on the free wall region where the disarray in the SHR is more noticeable (see also Video clip 53.3).
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Figure 53.5 Left two columns: Two views (taken from two different angles) of the endolateral region of the normal (WKY) and the diseased (SHR) rats that

demonstrate the presence of extensive disarray in the SHR, as opposed to the WKY. Right two columns: Fiber tracking results in slices located in the basal

and apical region. Note that the disarray in the SHR is more prominent in the apical slice (see also Video clip 53.3).

hearts. The papillary muscles of the hearts were excluded
from our analysis. In addition, diffusion tensors which had
negative eigenvalues were considered to be noise and those
voxels were excluded from our analysis. To obtain the binary
masks of the regions of interest (ROIs), we partitioned the
myocardium by using a spline-based segmentation. Close up
views of the qualitative fiber tracking results on the chosen
ROI are shown in Figure 53.7 for the two rat hearts.

Quantitative analysis of myocardial fiber disarray
To spatially map the disarray of the myocardial fibers, we
relied on the intervoxel diffusion coherence (IVDC) index
[64]. The IVDC is an anisotropy measure of the scatter
matrix [65] with respect to the primary diffusion eigenvec-
tors. This index has also been used in the past [64] to char-
acterize brain tissue organization. To the best of our knowl-

edge, this is the first time that the IVDC has been used to
quantify the derangement of cardiac myofibers.

When compared with other diffusion anisotropy indices,
such as the fractional anisotropy (FA) or the relative
anisotropy (RA), IVDC provides more explicit information
about fiber regularity. In addition, IVDC is not restricted to
studying intravoxel effects caused by biophysical tissue prop-
erties. Instead, for a given arbitrary voxel that lies on the car-
diac wall, IVDC contains [65] information about the angu-
lar uniformity of the cardiac fibers within the neighborhood
that consists of the voxel itself and its 26 nearest neighbors
(spanning the same short-axis slice and the slices directly
above and below). Moreover, unlike the visually appealing
red–green–blue (RGB) color maps and cardiac fiber tractog-
raphy methods, the IVDC lends itself to quantitative analy-
sis of the cardiac fiber organization. In addition, it has the

1. Basal anterior
2. Basal anteroseptal
3. Basal inferoseptal
4. Basal inferior
5. Basal inferolateral
6. Basal anterolateral

13. Apical anterior
14. Apical septal
15. Apical inferior
16. Apical lateral
17. Apex

  7. Mid anterior
  8. Mid anteroseptal
  9. Mid inferoseptal
10. Mid inferior
11. Mid inferolateral
12. Mid anterolateral
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Left ventricular segmentation
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Figure 53.6 The region of interest (ROI) for

this quantitative study.

580



P1: SFK/UKS P2: SFK Color: 4C

BLBK431-c53 BLBK431-Shenasa August 14, 2012 19:50 Trim: 276mm X 219mm Printer Name: Yet to Come

CHAPTER 53 Myocardial Fiber Disarray in Hypertensive LV Hypertrophy

(a) (b)

Figure 53.7 Close up views of the qualitative fiber tracking results on the region of interest shown in Figure 53.6: SHR (a) and WKY (b). The results are

color encoded by the local fiber helix (inclination) angle.

further favorable property of being insensitive to the sign of
the eigenvectors.

The IVDC takes values from 0 to 1. Taking into account
that the concept of “orientation coherence” is inversely pro-
portional to the concept of “disarray,” a large value of IVDC
at a given voxel indicates that the disarray is insignificant

in this voxel’s neighborhood, whereas smaller values of
IVDC denote a great loss of myocardial fiber organization.
By calculating the IVDC at each voxel, maps of the whole
myocardium may be obtained. The quantitative maps of
myofiber orientation coherence for the ROI are shown in
Figure 53.8. It is easy to see that there is a highly coherent

(b)(a)

Figure 53.8 Quantitative myofiber

orientation coherence maps in the region of

interest shown in Figure 53.6: SHR (a) and

WKY (b). The lighter the color at a voxel, the

better fiber regularity (microstructural

organization) in the neighborhood of the

specific voxel. The darker areas denote the

presence of extensive myofiber disarray.
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Table 53.2 Statistical analysis of the quantitative results.

Mean Standard deviation

WKY 0.9742 0.0189

SHR 0.8432 0.1431

cardiomyocyte organization throughout the ROI of the WKY
(witnessed by the white color in the whole respective map),
while at the same time in the ROI of the SHR there are
extensive areas with non-collinear myofiber distribution
(denoted by the darker regions in the respective map).
Values derived from statistical analysis of the quantitative
results are summarized in Table 53.2. The interpretation of
these statistics is that the difference in the DT-MRI-derived
average fiber regularity between SHR and WKY is consid-
ered to be of extremely significant (P � 0.0001).

The myocardial fiber disarray, a hallmark of LVH induced
by systemic hypertension, was thus identified and quanti-
fied in our animals. In the next section, we provide evi-
dence regarding the cause-and-effect relationship between
the myofiber disarray in hypertensive LVH and the mechan-
ical function of the LV.

Mechanical effects of myocardial fiber
disarray: a model-based study

As previously mentioned, one of the primary manifestations
of LVH due to systemic arterial hypertension is impaired
mechanical function. This decline in the LV ventricular
wall performance was also witnessed in the diseased animal
(SHR) of this study where the significant decrease in first
principal strain seen in Figure 53.9 is also attributed to the
progression of hypertrophy (as well as to aging).

The critical factors that account for mechanical dysfunc-
tion in the hypertensive LVH are primarily related to the
structural remodeling. They include fibrotic stiffening [25,
30], myocardial scarring [21,30], myocardial fiber disarray
[24], cardiomyocyte hypertrophy [30,41] and configuration
of collagen with respect to the muscle cells [26,41]. The topic
of investigation in this section is how myocardial fiber disar-
ray contributes to abnormalities in mechanical function.

The mechanical effects associated with the fiber disarray
alone may be illustrated by making use of an existing FE
model of the left ventricular wall [66,67]. This LV model
has been shown [66,67] to be able to reproduce the gross
geometric changes of the normal heart as well as the strain
distributions found in the literature for normal function. To
incorporate the fiber disarray in the FE model, we altered
[68] the normal fiber orientation distribution through the
addition of randomly generated offsets to the two angles

1st principal
strain
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Figure 53.9 Plot of first principal strain for the SHR studied in the

previous two sections.

used to specify the myofiber orientation: (i) the inclination
angle defined earlier, and (ii) the transverse angle, defined
as the angle between the local circumferential direction and
the projection of the fiber direction on the plane perpendic-
ular to the local longitudinal direction (see Figure 53.1).

The amount of randomness of the fiber orientation dis-
tribution was controlled by specifying the range over which
random numbers were generated. For example, specifying
a randomness of values in the range of 4 would produce
randomly generated numbers −2, −1, 0, 1 and 2. These ran-
domly generated numbers were then added to the original
fiber inclination and transverse angles specified for the nor-
mal model. Given an inclination or transverse angle of 45◦

and a randomness range of 4, the fibers may have orienta-
tions from 43◦ to 47◦. FE models having the following incli-
nation/transverse ranges of randomness were analyzed: 3◦,
4◦, 10◦, 20◦ and 30◦. The end-diastolic volumes (EDVs), ejec-
tion fractions (EFs), stroke volumes (SVs) and end-systolic
fiber strains were compared to the normal case. The models
were loaded to an end-systolic pressure of 120 mmHg. Com-
plete details of the models may be found in [66,67].

The results of this model study are summarized in Table
53.3. These results suggest that the effects of disarray
upon systolic function are pronounced whereas the dias-
tolic function remains largely unchanged. Fiber disarray up
to values of 4◦ exhibited no compromise in the hemody-
namic systolic parameters. Disarray values of 10◦ or greater
show ever-increasing degradation of systolic function, lower
SVs and lower EFs. The fiber strain results serve as evi-
dence that the loading on the fibers remains unchanged
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Table 53.3 Effect of myofiber disarray on cardiac function.

Disarray range

0◦

(normal) 3◦ 4◦ 10◦ 20◦ 30◦

EDV (ml) 117.5 117.5 117.6 117.6 117.6 117.6

SV (ml) 67 67 67 57 13 0

EF 57 57 57 49 10 0

Fiber strain 0.11 0.11 0.11 0.10 0.10 0.01

First principal strain 0.33 0.30 0.33 0.60 0.72 0.62

EDV, end-diastolic volume; EF, ejection fraction; SV, stroke volume.

with ever-increasing disarray up to 4◦. The models above
10◦ did not contract sufficiently to produce the necessary
fiber strains. In contrast, the first principal strain results
show that the wall strain values increase with decreasing
systolic function. The mechanics of the LV demonstrated
altered mechanical behavior that is due to the disarray even
with nearly constant loading. In summary, fiber disarray
alone, without the other factors associated with mechanical
dysfunction in hypertensive LVH, has a large negative effect
upon systolic function, while diastolic function remains
largely unchanged.

The global effect of disarray on the mechanics of the LV
can be seen in reduced wall thickening, longitudinal short-
ening and twist. Figure 53.10 shows these effects for the nor-

mal case, and the cases of myofiber disarray equal to 10◦

and 20◦. These results agree with changes in LV function
reported in the literature [69] for non-hypertensive hyper-
trophic cardiomyopathy (HCM) which may also be indica-
tive of changes for hypertensive LVH.

As an additional task, the 10◦ model was iteratively run
with increasing contractility in order to determine how
much more contraction force was necessary to achieve
a normal end-systolic volume. The results of this study
showed that a 26% increase in contraction stress was nec-
essary in order for the 10◦ model to produce a normal end-
systolic LV volume. This suggests that even this moderate
amount of fiber disarray has a profound effect on cardiac
performance.

Discussion and future directions

In this chapter, we have looked at LVH due to systemic
hypertension from the aspect of myocardial fiber disarray.
By employing ex vivo DT-MRI, we visualized in great detail
and quantified the regional loss of myocardial fiber orga-
nization that was present in hypertrophied rat hearts, as
opposed to controls. The results of this chapter correlate with
results obtained three decades ago by using painstaking his-
tology [24]. These histological results had also demonstrated
the derangement of the normal pattern of the myocar-
dial fibers in the lateral wall of adult SHRs. The outcomes
of this study improve our understanding of the structural

(b) (c)(a)

Normal 10° disarray 20° disarray

Figure 53.10 The models demonstrate the

effects of fiber disarray on the wall mechanics

of the left ventricle. There is a reduction in

apical twist, wall thickening and wall

shortening in the 10◦ (b) and the 20◦ (c)

models compared with the normal model (a).
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remodeling mechanisms that are associated with hyperten-
sive LVH. Also, they open up possibilities in diagnosing this
cardiac disorder. Future work will investigate the structural
alterations that are associated with hypertensive LVH in
younger rats.

Following our DT-MRI analysis, regional myofiber disar-
ray was also observed in the posterior and anterior junction
areas of the LV free wall and right ventricle (RV) free wall for
both rats. This observation also correlates with previous his-
tology findings [70]. In addition, it is a common practice in
cardiology to avoid taking these junction areas into account
when performing studies to establish a morphologic diag-
nosis of heart diseases [71]. Hence, with this in mind, we
excluded this area from our analysis to avoid interpretation
pitfalls.

In this study, DT-MRI was employed to elucidate changes
in the microstructural organization that are associated with
hypertensive LVH. However, other diffusion MRI proto-
cols exist that further enhance the potential of DT-MRI for
cardiac applications. Notably, Q-ball imaging [72] is one
of them. Within a 100 �m3 voxel, there can be approxi-
mately 100 fibers that potentially have differing orientations.
Unlike DT-MRI, Q-ball imaging can resolve this intravoxel
tissue orientation heterogeneity [73,74]. The laminar sheet
characterization could also benefit from this technique
[75]. Another high angular resolution technique, which is
hypothesis-free and may infer intravoxel diffusion hetero-
geneity, is diffusion spectrum imaging (DSI) [76]. Finally,
there are some other quite promising diffusion MRI methods
that combine hindered and restricted modeling of water dif-
fusion by using double-pulsed field gradient [77] or both low
and high b-values [78] and might also allow a more detailed
delineation of cardiac tissue. For an excellent review of dif-
fusion modeling and protocols, see [79].

DT-MRI cardiac fiber tractography is a technique inher-
ited from the study of fluids. Using this imaging technique,
cardiac clinicians can determine the muscular tissue con-
nectivity and its remodeling during the progression of cer-
tain diseases. DT-MRI cardiac fiber tractography was used
to depict the alterations in the integrity of cardiac muscle
microstructure due to hypertensive LVH. Myocardial fiber
tracking results were provided by employing the stream-
line tracking method. Other more advanced techniques have
been introduced with a view to overcoming some inher-
ent noise limitations of the streamlining methods. One such
example is the probabilistic tractography methods that treat
the fiber orientation as a random variable, the distribu-
tion of which is predicted by either simulations or Bayesian
inference or Monte Carlo Markov chain methods. Further-
more, global approaches that use global criteria and are
markedly less sensitive to noise have been applied. For a
thorough review of the cardiac tractography methods, see
[80] and references therein. All enhanced imaging protocols

described in the previous paragraph lend themselves well
for conducting enhanced heart tractography. Currently DSI
has been shown to generate some interesting visualizations
[81–83].

DT-MRI cardiac fiber tractography has great potential to
improve the non-invasive diagnosis and treatment of cardiac
disease. However, for the moment there is a lot of uncer-
tainty associated with this technique (due to noise, motion
artifacts, imaging artifacts and partial volume effects). In
addition, many different DT-MRI imaging protocols are
available. While useful qualitative conclusions can be drawn
from DT-MRI cardiac fiber tractography, it would perhaps
be prudent to defer exclusive reliance on this imaging tech-
nique for fine operations (such as surgical planning) until a
gold standard regarding imaging protocols is established and
all related uncertainties are clarified.

In this chapter we have also addressed cardiac function
issues. In particular, by using FE modeling, we showed that
the irregular arrangement of myofibers in the hypertensive
LVH has a profound effect on the mechanical properties
of the heart. Notwithstanding these attractive results, addi-
tional studies need to be conducted to definitely establish the
exact relationship between the myocardial fiber disarray in
hypertensive LVH and the alterations in cardiac mechanical
behavior during systole or diastole.

By focusing only on factors that are related to the struc-
tural remodeling, this chapter has neglected a number of
other interesting issues that also contribute to the degrada-
tion of the mechanical function in the hypertensive LVH.
Myocardial energy metabolism is notably one of them.
In particular, changes in myocardial energy metabolism
(e.g., in high-energy phosphate metabolism or fatty acid
�-oxidation) have been shown [84,85] to have an impact
on the functional abnormalities in the hypertensive LVH.
The energy metabolism effects are beyond the scope of this
chapter, but how to incorporate these effects accurately
into the problem formulation could be a research area in
itself.

In this chapter, ex vivo DT-MRI and FE mechanical mod-
eling were employed independently of each other. How-
ever, the advent of DT-MRI has revived the interest in the
muscular compartment and the role it may play in alter-
ing the ventricular function. In other words, the joint use
of DT-MRI imaging and modeling has great potential. For
example, we may build a more realistic model of the heart
by directly using ex vivo DT-MRI data (usually combined
with some interpolation method) to incorporate the prefer-
ential arrangement of the cardiac cells [86–88]. This is easily
achievable because both the anatomical inputs (i.e., geome-
try and myocardium fiber architecture) are obtained from
the same heart. As a result, the DT-MRI analysis frame-
work does not rely to a great extent on image processing.
Subsequently, this DT-MRI-based anatomic model might be
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combined with in vivo tagged MRI deformation data and con-
current pressure recordings into a computational model that
studies ventricular mechanics [89–95]. However, due to dif-
ferences in myocardial geometry between in vivo and ex vivo

imaging, some registration method (e.g., host mesh fitting
[89]) should be used to ensure the accurate embedding of
the DT-MRI-derived myofiber architecture. In general, DT-
MRI, by providing a more detailed and realistic description
of the microscopic cardiac tissue morphology, may boost our
confidence in a more reliable model-based prediction of its
mechanical function. Moreover, it may shed light on the
underlying structural basis of heart progressive dysfunction
under the hypertensive LVH. In any case, in the long run
a benefit of the joint use of modeling and imaging is better
understanding, diagnosis and treatment.

Conclusion

A large percentage of hypertensive subjects will present with

LVH as a result of the prolonged exposure to increased

ventricular load. The presence of LVH in this patient population

heralds many feared cardiovascular complications. A prevalent

morphological characteristic of LVH caused by arterial

hypertension is myocardial fiber disarray. The well-ordered and

smoothly varying spatial alignment of myocardial fibers that

characterizes the normal myocardium no longer exists in the

areas of myofiber disarray.

In recent years, DT-MRI has emerged as a powerful tool to

delineate the alterations in complex cardiac tissue connectivity

that certain diseases brings forth. FE computational models of

the heart have also evolved as ideal hosting environments to

observe the mechanical function of the heart.

We used ex vivo DT-MRI to delineate the regional

disorientation of myocardial fibers that is present in the excised

heart of a SHR, as opposed to a control. Our aim was to provide

fiber tracking results enabling a precise and detailed

visualization of the microstructural alterations after

hypertensive LVH. We also attempted to quantify the degree of

spatial malalignment of cardiomyocytes by using a scatter

matrix-based approach. Then, we examined the mechanical

aspects of the myocardial fiber disarray. Although the etiology

of the mechanical dysfunction in hypertensive LVH is

multi-factorial, we performed a model-based study to

investigate whether myofiber disarray alone has an impact on

the decline of the mechanical function associated with

hypertensive LVH.

We conclude that DT-MRI allows a unique insight into the

microstructural alterations after hypertensive LVH. It improves

our understanding of the structural remodeling mechanisms

that are associated with this cardiac disorder. Also, it opens up

possibilities in the diagnosis of hypertensive LVH. In addition,

our FE simulation results show that the irregular configuration

of myocardial fibers has a profound effect on the cardiac

mechanics.

Chapter video clips

Video clip 53.1 The helix-like fiber structure of a healthy adult

rodent heart as inferred by DT-MRI.

Video clip 53.2 The laminar structure of a healthy adult rodent

heart as inferred by DT-MRI.

Video clip 53.3 The hypertensive LVH-induced extensive

disarray is detectable by DT-MRI.
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