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Abstract

Tactile sensing has recently been used in robotics for object identification, grasp-
ing, and material identification. Although human tactile sensing is multimodal,
existing material recognition approaches use vibration information only. More-
over, material identification through tactile sensing can be solved as an continu-
ous process, yet state of the art approaches use a batch approach where readings
are taken for at least one second. This work proposes a recursive multimodal
(vibration and thermal) tactile material identification approach. Using the fre-
quency response of the vibration induced by the material and a set of thermal
features, we show that it is possible to accurately identify materials in less than
half a second. We conducted an exhaustive comparison of our approach with
commonly used vibration descriptors and machine learning algorithms for ma-
terial identification such as k -Nearest Neighbour, Artificial Neural Network and
Support Vector Machines. Experimental results show that our approach iden-
tifies materials faster than existing techniques and increase the classification
accuracy when multiple sensor modalities are used.

Keywords: Recursive Material Classification, multimodal classification,
Robotic Tactile Sensing, supervised learning

1. Introduction

Touch lies at the core of many human skills like grasping, temperature de-
tection, and material identification, among others. While substantial research
in robotics has focused on object identification through vision, human visual
perception is often complemented with tactile sensing. In fact, experimental
analysis of human visual and tactile representations show that they are closely
linked, since the same brain regions are activated during visual and tactile ex-
ploration of objects [1]. Efforts to endow robots with a sense of touch have
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recently attracted significant research interest [2] [3] leading to successful appli-
cations in object classification from grasping [4] and palpation [5], object state
identification [6], grasping improvement and adaptation [7] [8] [9], and material
identification. Until recent times, tactile sensing research was performed with
ad hoc hardware making it impossible to perform a comparison between the
different approaches to material recognition found in the literature. This paper
proposes a novel multimodal approach to material identification and presents a
comparison with state of the art approaches.

Existing research on material identification rely on batch surface recognition
approaches, i.e. a whole sliding movement of the sensor over the material sur-
face has to be performed for the identification to occur. Although this limits
the identification speed, several excellent works provided unimodal (vibration
only) batch approaches to material identification using different types of tac-
tile sensors and techniques. In a pioneering work in tactile sensing for surface
recognition [10] a finger with a microphone was used to detect the vibration
induced by 3D printed textured surfaces. The authors defined a set of features
to characterise the vibration signal captured by the microphone such as the
modal frequency and power, and the average vibration amplitude. Using these
features and the Fast Fourier Transform (FFT) of the raw signal projected,
through Principal Component Analysis (PCA), as classification inputs the au-
thors compare the classification performance of the k-Nearest Neighbour (kNN)
algorithm. Although this work focuses on texture identification, not real mate-
rial identification, it established the methodological approach of using features
for tactile material recognition, which was followed by later works. The work
presented in [11] uses a three-axial force sensor to classify 10 different paper
types through two different techniques. In one approach, the most likely tex-
ture was selected by finding the minimum euclidean distance between the mean
frequency spectrum of the evaluation set and training examples. A second ap-
proach used a set of five distinctive features (friction coefficient, mean, variance,
kurtosis and spectrum slope of the vibration signal) as inputs to an Artificial
Neural Network (ANN). The paper shows that both methods were proven to be
equally accurate indicating the usefulness of the defined features. An accelerom-
eter based vibrotactile sensor attached to a fingertip was used in [12] to measure
the changes in the norm of the acceleration vector and to create spectrotemporal
histograms as features for classification. A set of five exploratory movements
were performed to gather data from the material surfaces, and Support Vector
Machines (SVM) and kNN were used to successfully identify 20 materials.

A tactile sensor measuring the strain applied on the finger surface is pre-
sented in [13]. After segmenting the input signal, removing the average and
band-pass filtering, the authors extract a set of features consisting of five peaks
identified on the smoothed FFT profile. Combining these features with the
average strain readings, the authors compare different machine learning ap-
proaches, which successfully differentiate between nine materials with high ac-
curacy. Another comparison of machine learning algorithms for material identi-
fication based on tactile sensing is presented in [14], where two kernel methods
(SVM and Regularised Least Square), and one neural network were used to
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classify pairs of materials based on the raw strain measurements of the sensor.
Although the authors concluded that SVM showed the best trade-off between
classification accuracy and computational complexity, they observed that the
raw sensor signals did not provide a good discrimination performance compared
with other works. [15] presents a tactile micro-sensor able to differentiate sur-
faces with spatial periods within a 40 µm difference. This sensor was used to
classify textiles through a robotic finger that slid across the materials for two sec-
onds. Using wavelet transforms, the evolution over time of features like the peak
power were obtained and fed into a kNN classifier. The work in [16] presents
a texture based material classification through SVMs, with a set of temporal
domain features obtained from one second time windows as input. Specifically,
the components of the feature vector were obtained from the accelerometer in
the finger, and whitened individually before feeding the classifier. This work
splits the whole set of readings into short time intervals to obtain more train-
ing data, but the approach is still batch based since the authors do not exploit
sequential information for classification. Another accelerometer based fingertip
texture recognition approach is presented in [17], where seven different fabrics
are classified based on a mixture of temporal (acceleration variance) and fre-
quency (power spectra) features. Since these features do not provide enough
discriminative power on their own, the authors use a neural network with the
FFT coefficients over a given frequency range as the input. Recently, [18] ex-
plored real time classification of eight materials using a soft three axis tactile
sensor with a new set of features. Specifically, the mean value of the three di-
mensional vibration signal, and the Frobenius norm of the covariance matrix
were used to train and classify a cascade of binary SVM classifiers, grouping
materials together in each classification step. Although their approach is fast
and accurate, it becomes computationally expensive for large number of ma-
terials, since the depth of the cascade, and the number of classifiers to train
grows quickly. A flexible tactile skin attached to the fingers of a DLR Hand-II
was used in [19] to discriminate 6 tubes made of different materials by stroking
at them with the thumb and index fingers. The authors present a comparative
study of different classification techniques and conclude that a convolutional
deep learning network outperforms other classifiers such as kNN and SVM,
especially when repositioning the tactile skin. In another recent work [20] a
custom made tactile sensor was used for material identification using only the
heat transfer from the sensor to an object. The authors showed that, although
changes on the experiment set-up (initial conditions, ambient temperature and
contact duration) have an impact on the performance, a multi-class SVM can
classify eleven materials with high accuracy.

Nearly all the works mentioned so far rely on vibration signals obtained from
ad hoc sensors. However the appearance of the SynTouch BioTAC commercial
fingertip has made tactile sensing widely accessible and provided the opportu-
nity of performing multimodal sensing. Using this new tactile sensor, a series
of works [21] [22] [23] implement Bayesian exploratory movements to classify
materials using vibration and temperature signals. Bayesian inference was used
to implement different exploratory movements in order to increase the classifica-
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tion certainty. The classification itself was based on features extracted from the
sequences and the external force needed to slide the fingertip across the material,
i.e. information about the friction coefficient of the material and the BioTAC’s
rubber skin was included. The combination of several exploratory movements
enables a high material identification rate with a large range of materials. One
of the first multimodal approaches to material identification is presented in [24]
where raw temperature and vibration signals were projected through PCA and
used as inputs to an ANN. The authors show that this classifier outperforms
humans in similar experimental conditions. The approach presented in [25]
identifies among 49 objects with high accuracy using multimodal data from 5
different object explorations. The authors performed a thorough analysis of tac-
tile features found in the literature and concluded that simple descriptors, such
as average values of the filtered signal, outperforms more sophisticated feature
extraction techniques.

All these works achieve good material recognition ratios using one or several
batch readings and combinations of exploratory movements. However, some
materials might have a characteristic texture or special thermal properties and
might therefore be identified faster than others, i.e. using shorter readings.
Moreover, combining these two modalities might improve the identification ac-
curacy, for instance, for materials with similar textures but different thermal
properties. This paper extends our previous works [26, 27] presenting a multi-
modal recursive identification approach to material identification through tactile
sensing. The contribution of this paper is threefold. First, we present an ap-
proach that allows fast and very accurate material identification using vibration
signals, and can be extended to other sensing modalities. Second, we show
that including temperature information significantly reduces the time needed
to identify the correct material. Finally, we perform a comparative study of
the proposed approach with state of the art tactile material identification tech-
niques such as kNN, ANN and SVM, comparing also the standard features to
characterise the vibration signal with the selected feature vector. the rest of
the paper is organised as follows. Section 2 presents the methodology used for
the proposed continuous material identification approach, including the pro-
cessing of the raw data, probabilistic modelling of the readings of each material,
and the recursive classification technique. This section also introduces a brief
description of the state of the art selected features to compare with the pro-
posed approach. Experimental results and a comparison with state-of-the-art
approaches are presented in Section 3. Section 4 concludes the paper and high-
lights future research.

2. Tactile signal processing and material identification

We use the SynTouch BioTAC finger tip [28] as our experimental platform; it
provides different types of sensing modalities with different sampling frequencies
integrated in a single sensing unit. The sensor is composed of a conductive fluid
that separates the wrinkle rubber skin and the rigidcore in which the sensing
elements are located. An array of impedance sensors provides information about
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Figure 1: Scheme of the pipeline followed during the experiments. Green coloured boxes
represent the proposed approach, while plain boxes represent the features and classifiers used
for comparison.

the deformation of the rubber skin upon contact with a surface. A small heating
system, jointly with a thermistor, constitutes the thermal sensing subsystem,
to generate temperature and heat flow measurements. The BioTAC measures
the temperature of the core and thermal flux from the device to the surface.
Finally, a pressure sensor in the core provides pressure and vibration measures
from the finger when it touches and slides over a surface. The interaction of the
object surface and the rubber wrinkles produces a vibration in the skin which
is transferred to the fluid, and measured by the pressure sensor. The pressure
signal is then low pass filtered to obtain a pressure measurement, and band pass
filtered to generate the vibration signal.

Figure 1 shows at a glance the classification pipeline of the proposed ap-
proach including the comparisons we performed with state of the art techniques.
While the coloured boxes represent the proposed approach, the plain boxes show
features and classifiers commonly found in the literature. Moreover, we added
our thermal features to standard approaches to perform a fair comparison. In
a nutshell, we propose using the PCA projected Fast Fourier Transform (FFT)
of the vibration signal, and the thermal power transferred to the material in a
recursive Bayesian estimation algorithm to classify the materials. The rest of
this section will provide details on how signals are processed and classified, both
in the proposed approach and for the comparison performed.

2.1. Signal Processing

This section presents the processing conducted on the BioTAC vibration and
thermal signals, shown in the first column of Figure 1. Standard approaches
to vibration based material identification rely on features extracted from the
signal in temporal or frequency domains. As these features typically discard
frequency information, which is highly relevant to identify a surface material,
our approach uses a combination of the Fourier coefficients of the vibration
signal to classify the surfaces. To perform multimodal identification we present
novel thermal features, one of them grounded in the physical process of heat
transfer (i.e. using thermal power loss in the BioTAC) computed from the heat
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flux and impedance readings. In our comparison, we test a set of six features
found in the literature, extracted from the temporal and frequency domains (see
Section 2.1.1).

2.1.1. Signal processing and vibration features

The vibration signal induced in the liquid gel by the interaction of the fin-
gertip and the material is a combination of oscillatory signals with a frequency
spectrum dependent on the material. Therefore, the Fourier Transforms (FT)
of the vibration signal can be used to characterise the material texture. Specifi-
cally, we use the Fast Fourier Transform (FFT) algorithm to convert the vibra-
tion signal, ν(t) into the frequency domain ρ(ω). We compute the FFT for small
non-overlapping windows of duration ∆t although overlapping windows could
also be used. The existing literature [10] points out that good discrimination
results are obtained by using the frequency response in the range between 2 Hz
and 500 Hz, so we use this range for consistency.

For a ∆t window, the FFT is a high dimensional vector of complex numbers
ρ(w) ∈ Cd∆t , where the dimension d∆t depends on the selected time interval ∆t
and the sampling period. We used Principal Component Analysis (PCA) over
ρ(ω) to obtain a lower dimensional feature vector ρ̄ ∈ <d, where ρ̄ is the result
of projecting ρ(ω) and d � d∆t. The complex nature of ρ(ω) requires special
care when processing the FFT through PCA. Although PCA can be used with
complex vectors, we found that the module of the FFT carries the discriminative
information for material identification. However, we performed the centring
process over the complex vectors, i.e. the complex mean was subtracted before
obtaining the projection matrix of the FFT modulus. Applying PCA to the
centred vectors ρ−µρ, with mean complex values of the FFTs µρ ∈ Cd∆t , helps
to cancel the random noise in the FFT, as white noise’s phase is random while
its amplitude is fixed.

Many existing works in vibration based tactile material identification use
features obtained from the temporal signal instead of the FFT. These features
encode general properties of the vibration readings like its total energy, or sta-
tistical properties (central moments of the signal), and reduce the dimension of
the vector used to characterise the material. This process eliminates relevant in-
formation of the surface and, in some cases, is not very efficient computationally,
e.g. obtaining frequency domain features requires the computation of the FFT
anyway. For comparison purposes we defined a vector x of six features, x ∈ <6,
found in the related literature as discussed below, that combine independent
information in the frequency and temporal domains.

• The filtered average energy [21] is computed from the band pass filtered
FFT as:

x1 =
1

n

n∑
i=1

|ρi|2, (1)

where ρi = ρ(ωi) is the Discrete Fourier Transform (DFT) of the vibration,
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and ω1 = ωm, ωn = ωM are the limit frequencies of the band pass filter,
and n is the number of samples within the frequency range [ωm, ωM ].

• The high frequency to low frequency energy ratio [17] is another frequential
feature computed as:

x2 =

k∑
i=1

|ρi|2

n∑
i=k+1

|ρi|2
(2)

where ρi = ρ(ωi), ωk <= ωth, ωk+1 > ωth and ωth is a threshold that
defines what low and high frequencies are (as in [17] we set ωth = 100Hz).

• The spectral centroid [21] is computed from the FFT as the weighted
frequency as follows:

x3 =

n∑
i=1

|ρi|2ωi
n∑
i=1

|ρi|2
(3)

where ρi is defined as above for the corresponding frequency ωi.

• The signal temporal variance, used as a feature in [16] and [17], can be
computed as:

x4 =
1

n

n∑
i=1

(νi − µν)2 (4)

where νi = ν(ti) is the temporal signal of the vibration, µν is its average
value, and n is the number of vibration samples considered, which are
also used to compute the temporal Skewness and Kurtosis of the vibration
signal.

• The temporal Skewness of the signal [16], a statistic of the distribution of
vibration values, is computed as:

x5 =

1
n

n∑
i=1

(νi − µν)3

[
1

n−1

n∑
i=1

(νi − µν)2

] 3
2

(5)

• The temporal Kurtosis of the signal, used in [16], is a higher central mo-
ment of the vibration computed as:

x6 =

1
n

n∑
i=1

(νi − µν)4

[
1
n

n∑
i=1

(νi − µν)2

]2 − 3 (6)
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For simplicity, the rest of this section will refer to the vibration signal ρ̄, the
PCA projected FFT, as the proposed vibration feature vector. Nevertheless,
when we perform the comparison ρ̄ is substituted by x as an input for the
classifiers.

2.1.2. Temperature

The BioTAC thermal system has a heating device that maintains the core
temperature typically higher than room temperature. It then measures the
temperature at the core, which when in contact with a material decreases due
to the heat flux leaving the BioTAC finger through the contact surface. The
thermal energy lost depends on the temperature difference between the finger
and the external material, the contact area, and the thermal conductivity of
the material. The thermal power lost (thermal energy per unit of time ∂E

∂t ) is
defined as the integral of the heat flux over the contact surface:

∂E

∂t
=

∮
S

~φ · ~dS (7)

where ~φ is the heat flux, and the integral is computed on the contact area
S between the two materials. We can assume the flux ~φ always leaves the
finger, and its modulus – measured by the BioTAC sensor – increases with the
temperature difference and the thermal conductivity of the material (although
the thermal conductivity of the finger might play a role). Furthermore, assuming
friction is too weak to generate thermal energy, and the thermal conductivity
of the air compared with the material is small, the thermal flux will be directed
towards the surface normal. Since the contact area is typically small, we can
approximate the power loss as the product of the average flux modulus φ̄ by
the contact area. Since all objects to be identified are at room temperature,
the temperature difference depends only on the temperature of the core, and

therefore φ̄A
T is a measure of the thermal conductivity of the material, where

A is the contact area, and T is the finger core temperature. To estimate this
conductivity we need to compute the contact area, which can be estimated
from the readings of the 19 electrodes placed in the core under the BioTAC’s
skin. The electrodes measure of impedance is related to the thickness of the
fluid between the core and the skin at their corresponding locations. The skin
deformation, upon contact, makes the readings in the surrounding electrodes
decrease, and, therefore, electrodes with a negative value w.r.t. their resting
level indicate contact. We approximate the contact area for each electrode i
as a circle of radius ri equal to half the distance between the electrode and its
nearest neighbour. Hence, the contact area of the fingertip and the material is
approximated as a weighted average of small circular areas as:

A =
∑
i

λiπr
2
i (8)

where λi ∈ [0, 1] is a scale factor that depends on the value returned by electrode
i. This scaling factor λi is a piece wise linear function of the average impedance
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value ēi of each electrode during the time interval ∆t. At the resting level (or
above) λi is zero, and it increases to 1 for decreasing impedances down to a fixed
minimum threshold em (in our case em = −400), and is 1 for values below that
threshold. Besides using the power loss per unit of temperature we experimen-
tally found that two other thermal features improved the material identification
accuracy. For each sequence of ∆t readings we performed a linear regression
of the thermal flux as a function of time and used the slope and the regression
error as additional features. Therefore, we obtained a three dimensional heat
based feature vector θ for each ∆t time window.

2.2. Classification

Because our aim is to classify materials in a continuous manner we imple-
mented a Recursive Bayesian Estimation algorithm to maintain over time a
probability of the materials to identify. Although recursive estimation algo-
rithms are widely used in robotics they have not been used for material identifi-
cation, a problem treated as batch classification in the literature. Let us denote
by M the discrete random variable encoding the N materials to be identified, i.e.
{m1,m2, · · · ,mN}, P ∈ <d is the random vector characterising the vibration
signal (FFT projected through PCA, or the six dimensional vector of selected
vibration features), and Θ ∈ <3 the vector of thermal features defined in Sec-
tion 2.1. We first estimate the likelihood functions of the feature vectors for
each material and sensing modality, p(P = ρ̄|M = mj) and p(Θ = θ|M = mj),
using mixtures of Gaussian distributions. Therefore Gaussian Mixture Models

(GMM) of the form
∑Kj

i=1 α
j
iN
(
µji ,Σ

j
i

)
are obtained for each material, where

Kj is the number of Gaussians in the mixture for material mj , αji is the weight
of the i-th Gaussian, and N (µ,Σ) denotes a normal distribution with mean µ
and covariance Σ. These GMMs are obtained independently from the vibration
and thermal feature vectors. The parameters of the GMMs are obtained using
the Expectation-Maximisation (EM) algorithm, where the number of Gaussians
was chosen individually for each material and modality based on the decrease
of the likelihood of the training data, i.e. increasing the number of Gaussian
components to find the point at which the growth in the likelihood started to
slow down.

Having models of the likelihood functions p(ρ̄|mj) and p(θ|mj) for the mate-
rials would already allow to identify the materials using a maximum likelihood
(ML) classifier. However, given a set of prior material probabilities p(mj), one
could also estimate, using the Bayes rule, the posterior probabilities of each ma-
terial given the current vibration and thermal readings p(mj |ρ̄, θ), and classify
according to that probability (maximum a posteriori, MAP). For uninformative
priors, p(mj) = 1

N for all j, the classification result of ML and MAP approaches
are identical. However, if we take the posterior probability as the prior for the
next set of readings, i.e. the material prior p(mj

k+1) at time step k+1 will be the

posterior from the previous iteration p(mj
k|ρ̄k, θk), we can expect to get a more

accurate estimate of the probability of all materials given the current sequence
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of readings. Therefore, when a material is presented to the robot for identifica-
tion, the initial prior probabilities are distributed evenly among all materials.
Then we obtain from the BioTAC data stream the vibration and thermal feature
vectors, ρ̄k and θk, at time intervals ∆t, and update the material probabilities
using:

p(mj
k|ρ̄k, θk) =

p(ρ̄k, θk|mj
k)p(mj

k−1|ρ̄k−1, θk−1)

p(ρ̄k, θk)
(9)

where the normalisation constant p(ρ̄k, θk) is:

p(ρ̄k, θk) =

N∑
i=1

p(ρ̄k, θk|mi
k)p(mi

k−1|ρ̄k−1, θk−1) (10)

and, we assume the vibration and thermal features are conditionally indepen-
dent, therefore p(ρ̄k, θk|mj

k) = p(ρ̄k|mj
k)p(θk|mj

k), with each individual likeli-
hood function given by the corresponding GMM model for material mj . It
is worth noting that, although the proposed approach relies on vibration and
thermal information, it could be easily extended to more sensing modalities
assuming they are conditionally independent.

In each iteration the algorithm generates an updated probability p(mj
k|ρ̄k, θk)

for all materials, j = 1, · · · , N , and the one with the highest posterior can be
considered the one presented to the robot. Alternatively, one could define a
confidence threshold to decide for a material only if the posterior probability is
high enough. Instead of classifying the perceived texture from a batch reading,
the proposed algorithm generates increasingly confident updates of the material
probability.

Besides comparing our proposed input vector, FFT-PCA, to state of the art
features, we also performed a comparison with commonly used machine learn-
ing algorithms for material identification, specifically kNN, ANN, and SVM. Be-
cause these learning techniques are used with batch readings, while our approach
is recursive, performing a fair comparison, is not straight forward. Moreover,
once the classifiers are trained, in the case of our approach the core computa-
tional load is obtaining the FFT-PCA vector (which can be done in real time).
In contrast, some classification mechanisms (e.g. kNN or SVM) can hardly be
applied in real time because of the extensive computation required for large
training datasets.

2.3. A note on sensor fusion

The combination of vibration and thermal information in our recursive Bayesian
estimation framework is straightforward assuming both modalities are condi-
tionally independent. The likelihood function of the combined data is simply
the product of the individual likelihood functions. In the case of the compared
classifiers (SVM, ANN, and kNN) we have several ways in which we can combine
the data. We could, for instance, classify each modality independently and then
use another classification level to make a final decision on the material. Our
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approach was instead to define a single feature vector X joining together the
vibration and thermal features X = [ρ̄ θ] (alternatively X = [x θ]), i.e. perform-
ing the sensor fusion at the feature level. This is simpler than a combination
of classifiers as there is no need to evaluate several classifiers to make the final
decision. However, when using signals from several sources we face the problem
of the different numerical scales in each component of the vector provided as
an input to the classifier. To avoid this issue, we implemented data whitening
as a pre-processing step for the learning techniques used, i.e. the training and
testing datasets were transformed to have zero mean and covariance equal to
the identity matrix.

3. Results of the Recursive material identification and comparison

Our experimental setup, shown in Figure 2, consists of a turntable moved
by a step motor through a set of reduction gears. The motor is controlled by an
Arduino board, running code to set the turning speed of the motor to rotate at
4 seconds per lap. The fingertip is attached to a worm drive bar, that can be
moved up and down by a second motor also controlled by the Arduino board.
When the bar is driven down, the BioTAC touches the material on the turn
table. To collect the training and testing datasets, we first wait until the thermal
system has reached a stable temperature, then set the speed of the turntable
and move the fingertip down until it touches the material surface. After a few
seconds we collect readings continuously storing all the information provided
by the BioTAC sensor running at 4.4 KHz, the maximum communication rate.
This means that the sampling frequency of the vibration signal is 2.2 KHz,
while the absolute temperature, impedance and thermal flux have frequencies

Figure 2: Experimental setup consisting of a BioTAC tactile sensor attached to a worm drive
bar and a turntable that rotates a disk with the material attached.
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Figure 3: Materials used in the experiments

of 100 Hz. It is worth noting that the temperature of the finger takes time to
reach a steady state. We allowed the finger to warm up until the temperature
was stable before to gathered any of the data-sets.

We selected a total of 34 materials for our identification experiments, which
were purposely selected to include different material groups and several materi-
als in each group. Table 1 lists all the materials we used, also shown in Figure 3.
The selection contains materials with very different textures such as cork and
glass from a mirror, but also some fabrics and materials which are alike. More-
over, for some of the fabrics we used both sides of the cloth, like materials 2
and 3, and materials 30 and 31, which have different textures and this increases
the number of materials. We also include genuine and synthetic leather, mate-
rials 16 and 18 respectively, while materials 13 and 14 were obtained using both
sides of a padded envelope, material 13 being the side of the bubbles, i.e. plas-
tic, and material 14 the paper side. Other pairs correspond to both sides of the
same object such as materials 6-7, 22-23 and 28-29, although their surfaces were
clearly different. We collected continuous sequences of 10 minutes of data for
each material, which were used for all the experiments presented in this paper
to compare the different classification techniques with the two defined feature
inputs. A main advantage of our algorithm is that it minimises the time needed
to identify a material, as the classification is performed over several small data
windows, while batch approaches decide on a single, typically larger window.
Therefore, we cannot compare the time interval required for successful mate-
rial identification for the proposed approach and the assessed machine learning
techniques. We measured first the average number of iterations the recursive
Bayesian estimation takes to successfully classify a material as a performance
measure. As we will see, this time measurement was used to perform a fair
comparison between the recursive identification and kNN, ANN, and SVMs.
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Table 1: List of materials used in all our classification experiments

Idx Material Idx Material
1 Synthetic Green fabric 18 Genuine leather
2 Synthetic Pink fabric 1 19 Linen
3 Synthetic Pink fabric 2 20 Mirror
4 Cardboard box 21 Normal paper
5 Cardboard disk 22 Ping pong paddle 1
6 Carpet 23 Ping pong paddle 2
7 Rubber 24 Plastic
8 Baize 25 Plastic dish
9 Can of drink 26 Rough fabric

10 Copper 27 Slate stone
11 Cork 28 Sponge 1
12 100% Cotton 29 Sponge 2
13 Padded envelope 1 30 Leopard fabric 1
14 Padded envelope 2 31 Leopard fabric 2
15 Aluminium 32 Watercolour paper
16 Synthetic leather 33 Wood
17 Floor tiles 34 Peach skin fabric

3.1. RBE approach to material identification using vibration

To illustrate the advantage of a multimodal approach to tactile material
identification we first performed the task using vibration information only. As
explained in Section 2, we compute the FFT of the vibration signal, band pass
filter it and project it into a lower dimensional space. The time domain sig-
nal was split into non-overlapping windows of ∆t = 0.25 seconds, which sets
the frame rate for the continuous material classification to 4 Hz. This window
corresponds to a sequence of 550 pressure samples, which, after selecting only
the 2 − 500 Hz frequency range, became 124 FFT spectral components. It is
worth noting that, given the short time interval selected, the frequency interval
between spectral components is around 4 Hz, that is our actual minimum fre-
quency in the band pass filter. As stated in Section 2.1.1 we projected the 124
spectral components to a 16 dimensional space, computing the complex average
with the training dataset for all 34 materials, while projecting their amplitude
vectors, therefore the input to the recursive classification will be ρ̄ ∈ <16. The
number of reduced dimension was chosen to keep 97% of the total variance of
the original vectors.

The FFT-PCA vectors were then used to model the likelihood functions
of the data for each material as GMMs (trained using EM algorithm), and
used in our RBE approach. Obviously, in the case of vibration only material
identification, the thermal part of the likelihood function is not considered.
To evaluate the proposed approach we performed a 10-fold cross validation on
the 10 minutes of data sequences recorded for each material. We split the
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dataset into 10 groups of 60 seconds sequential readings using alternatively 9
of the groups for training and one for testing. Our experiments showed that
once a material is correctly identified by the RBE approach, the rest of the
sequence is properly classified. The evaluation procedure used 60 seconds of
test time series of every material starting from the first sample and stopping
once the recognition was successful, storing the number of required iterations.
The first sample was then discarded (creating a shorter test sequence) and the
process was repeated until the sequence was too short for the algorithm to
identify the material (typically sequences of 0.25 seconds). This process was
repeated for each testing sequence in the 10-fold cross validation, and the average
number of iterations, as well as its standard deviation, taken to identify each
material was computed. Because the RBE algorithm always correctly identifies
the material, the ratio of successful material classification cannot be considered
as a performance measure. Therefore, as a first step to compare our approach
to other state of the art classifiers we evaluated how long it takes our approach
to detect a material based on the maximum posterior probability p(mj

k|ρ̄k) (or

alternatively using the feature vector p(mj
k|xk)). We computed the average

number of iterations and its standard deviation, and translated into seconds
multiplying by ∆t (0.25). These time values will be used in the next section to
compare the proposed RBE approach with the rest of the learning techniques.

Table 2 shows the average time (in seconds) required to correctly identify
each material over the 10 trials of the 10-fold crossvalidation. The results illus-
trate that, when using the FFT-PCA components to model the material vibra-
tions, most of the time the algorithm identifies the materials within less than
0.5 seconds, the average time (0.36 seconds) is just above one iteration, while
the standard deviation (0.2 seconds) is just below one iteration. Although, obvi-
ously the recognition time is a discrete random variable with positive skewness,
if we attend to the probabilities of a normal distribution, we can conclude that,
with nearly 99% probability, the time required for a successful identification is
less than one second, i.e. average time plus three times its standard deviation.
The table also shows the average time taken for identification and corresponding
standard deviations when the six dimensional feature vector x is used instead.
The 10-fold cross-validation results show that the time needed to recognise the
correct material is on average 0.67 seconds (more than two iterations), while the
standard deviation is also just above two iterations (0.51 seconds). Following
the same reasoning high probability of successful material identification is above
2 seconds, i.e. µ+ 3σ, when modelling the vibration response through the fea-
ture vector x. Therefore, Table 2 quantifies the (expected) benefit of using the
whole frequency spectrum instead of a set of features. Moreover, it shows why
previous material identification works require over one second long vibration
readings. As it can be seen from the table, using the PCA-FFT features not
only reduces the average identification time, but also the standard deviation,
making this input vector less sensitive to variations in the signal. The improve-
ment in the average detection time when using PCA-FFT is above 45%, with
improvement of 81% for material 10, and over 60% for materials 17, 23, 24, and
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Table 2: Average time (in seconds) needed for material classification using the FFT of the
vibration signals and 10-fold cross validation. First number is the average time and second is
the standard deviation.

Material 1 2 3 4 5
FFT+PCA 0.39+0.21 0.35+0.19 0.35+0.19 0.43+0.28 0.39+0.25
Features 0.74+0.62 0.64+0.56 0.56+0.42 0.68+0.41 0.72+0.64

Material 6 7 8 9 10
FFT+PCA 0.3+0.12 0.33+0.14 0.44+0.26 0.34+0.16 0.3+0.2
Features 0.34+0.20 0.64+0.51 0.90+0.46 0.79+0.59 1.58+1.29

Material 11 12 13 14 15
FFT+PCA 0.3+0.11 0.35+0.18 0.33+0.16 0.34+0.17 0.3+0.16
Features 0.48+0.34 0.54+0.53 0.76+0.60 0.49+0.28 0.56+0.48

Material 16 17 18 19 20
FFT+PCA 0.44+0.25 0.46+0.34 0.32+0.14 0.49+0.35 0.29+0.11
Features 0.74+0.59 1.24+1.29 0.41+0.28 0.77+0.63 0.41+0.28

Material 21 22 23 24 25
FFT+PCA 0.39+0.25 0.38+0.22 0.36+0.19 0.38+0.22 0.38+0.21
Features 0.42+0.28 0.55+0.41 1.06+0.70 1.01+0.83 1.15+0.79

Material 26 27 28 29 30
FFT+PCA 0.27+0.07 0.42+0.25 0.29+0.13 0.32+0.14 0.27+0.08
Features 0.55+0.41 1.06+0.70 1.01+0.83 0.60+0.44 0.30+0.16

Material 31 32 33 34 Avg.
FFT+PCA 0.27+0.08 0.46+0.3 0.52+0.34 0.4+0.26 0.36+0.2
Features 0.35+0.25 0.29+0.12 0.98+0.70 0.65+0.63 0.67+0.51

25. That in turn means that using the whole frequency spectrum information
(from 2Hz to 500Hz) makes material identification more than twice as fast for
these materials. Interestingly, the watercolour paper (material 32) seems to be
the only one identified faster using the state of the art features than using the
FFT.

3.1.1. Evaluating the classification accuracy against standard Machine Learning
methods

In order to perform a comparison between our proposed RBE classification
mechanism and the most used algorithms in the material identification literature
(kNN, ANN, and SVM) we provided the same amount of information to each
classification technique. To do so we used the results from the classification
time already presented for both the FFT-PCA vector ρ̄ and the feature vector
x. Our results indicate that the RBE algorithm typically takes approximately
one second to achieve successful identification of a material when using the
vibration model based on ρ̄, and more than two seconds when using the vibration
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feature vector x (µ+ 3σ seconds). Therefore, from the same datasets of the 34
materials, we generated new FFT-PCA vectors from one second length data
streams, and new feature vectors from 2.25 seconds length data streams to
train and evaluate the kNN, ANN and SVM classifiers. In the case of the RBE
approach to material identification this means that when the algorithm takes
more than four iterations, i.e. 1 second (nine iterations, i.e. 2.25 seconds,
in the case of the feature vector) to identify the material we consider it as a
classification failure. This provides a fair comparison between the two methods
as they are all required to classify the surfaces in the same amount of time with
the same amount of information (although in the case of the RBE it is seen
in shorter time windows). As taking a longer temporal sequence of vibration
readings changes the dimension of the FFT vector ρ(ω), although we kept the
same amount of variance (97% of the original signal), the training vectors for
these algorithms have a higher dimension, specifically the ρ̄ used to train and
evaluate the kNN, ANN, and SVM have dimension 49, after band pass filtering
(between 2Hz and 500Hz) and PCA projection.

For the KNN algorithm, a systematic search procedure using Euclidean dis-
tance and 10-fold cross-validation was implemented to identify the optimal value
of k (from k = 1 to k = 21), which was found to be k = 5 for both the FFT-
PCA vector and the state of the art vibration feature vector. Similarly, the
topology of the ANNs was found running 10-fold cross-validation tests with two
hidden layer networks and different numbers of units on each layer. The num-
ber of outputs corresponds to the number of materials to be identified, i.e. 34
outputs encoding the materials as a binary output vector, while the number of
inputs was 49 for the FFT-PCA input vectors and 6 for the feature vector. We
experimentally found that the best trade-off between the network size and the
identification accuracy was achieved for networks with 65 units in both hidden
layers for the FFT-PCA vector input, and 34 units in both hidden layers for the
feature vector x, a reflection of the higher dimensionality of the former input
vector. The input vectors of the training and testing datasets were pre-processed
through whitening (i.e. scaled to have zero mean and identity covariance ma-
trix), and the networks were trained using the Levenberg-Marquardt algorithm.
Finally, we designed a One-Vs-One strategy multiclass approach for the clas-
sification using SVMs, as we found experimentally to perform better than the
One-Vs-All alternative. Although it provided better identification accuracy, the
One-Vs-One approach needs to perform N(N − 1)/2 binary classifications for
each input pattern, which in our case (i.e. 34 materials) corresponds to 561
binary classifications. Therefore, this classification approach is the most com-
putationally expensive one.We used the standard Radial Basis Function (RBF)
kernel for all the SVMs, while its scale parameter was chosen through a grid
search.

As already mentioned we compared the classification accuracy of these three
techniques, typically used in tactile material identification, with the proposed
RBE approach “with a recognition timeout”. As expected, all techniques worked
better when the PCA projected Fourier transform was used as an input (kNN
98%, ANN 85.5%, SVM 92.2%, and RBE 96.7%), instead of the feature vector
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(kNN 73.2%, ANN 64.9%, SVM 75.2%, and RBE 93.8%). It is worth noting that
besides the performance decrease, the feature vectors were collected over more
than twice the time, i.e. worse identification rate and much slower identification
time. Interestingly, the recursive material identification is the best performing
classifier when the state of the art feature vector is used (93.8%), since it ac-
tually performs nine different classifications with much lower certainties, but
combines the material probabilities in an optimal way. All in all, the kNN
algorithm outperforms the rest with a 98% average accuracy over the 10-fold
cross-validation, followed by the RBE 96.7%, although the latter can typically
identify the materials faster, meaning that the material is often identified in less
than one second.

3.2. Multimodal Material Identification.

This section presents the experimental results of the multimodal approach to
material identification using vibration information and the thermal features (θk)
described in Section 2.1. We again classify the 34 materials listed in Table 1
and compare the recursive identification against the commonly used machine
learning techniques. Similarly to the vibration only approach, we found that,
if enough time is given, our recursive approach always identifies the materials
correctly, in a variable number of iterations. This occurs for both multimodal
approaches FFT-PCA and thermal features, and vibration and thermal fea-
tures. It is worth mentioning that processing, training, and testing procedures
are identical to those presented in the vibration only section, i.e. ∆t = 0.25
seconds, the vibration is band pass filtered, likelihood models are mixtures of
Gaussians, and the priors are uninformative. Moreover, the thermal features
were computed with the same time window, but because of the differences in
sampling frequencies, a 0.25 seconds time window corresponds to 25 impedance
and heat flux readings. To estimate the thermal power loss we averaged the heat
flux and impedance readings during the measuring interval, while the heat flux
slope and error are computed with all the samples. The number of Gaussian
functions in the mixture model for the thermal features was typically 2, except
for materials 4, 8, 12 and 23 which we estimated as 3 using the change in the
training data likelihood. Like in the case presented in Section 3.1, we performed
10-fold cross-validation on 10 minutes of data sequences to identify the average
time required by the RBE to successfully identify the materials.

Table 3 shows the average identification time results across the ten itera-
tions for both sets of input vectors (FFT-PCA vs. features both enhanced with
thermal information). Just like in the case of the vibration only identification,
using the PCA projected Fourier coefficients results in faster material classifi-
cation, although in this case the time difference is not as large as before, i.e.
the improvement of the classification using features is much bigger when ther-
mal information is included. Indeed, including thermal information results in a
40% reduction in the average identification time when combined with the fea-
ture vector x (0.4 seconds vs. 0.67 seconds in table 2), and 22% improvement
when combined with the FFT-PCA vector ρ̄ (0.28 seconds vs. 0.36 seconds
in table 2). This brings the multimodal average identification time (and the
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Table 3: Temperature for recognition improvement. Average time needed using 10-fold cross
validation. First number is the average time and second is the standard deviation.

Material 1 2 3 4 5
FFT+PCA 0.28+0.08 0.28+0.1 0.29+0.11 0.28+0.1 0.31+0.14
Features 0.32+0.16 0.39+0.29 0.39+0.28 0.29+0.11 0.59+0.54

Material 6 7 8 9 10
FFT+PCA 0.26+0.06 0.27+0.08 0.33+0.18 0.32+0.17 0.26+0.03
Features 0.29+0.12 0.30+0.14 0.50+0.31 0.64+0.50 0.41+0.35

Material 11 12 13 14 15
FFT+PCA 0.25+0.02 0.28+0.09 0.29+0.13 0.26+0.06 0.25+0.01
Features 0.26+0.04 0.31+0.15 0.71+0.60 0.35+0.17 0.39+0.34

Material 16 17 18 19 20
FFT+PCA 0.38+0.25 0.32+0.17 0.30+0.14 0.30+0.14 0.26+0.5
Features 1.11+1.55 0.50+0.48 0.39+0.17 0.53+0.47 0.31+0.15

Material 21 22 23 24 25
FFT+PCA 0.26+0.04 0.27+0.07 0.29+0.11 0.27+0.07 0.31+0.14
Features 0.27+0.09 0.31+0.17 0.41+0.27 0.34+0.19 0.53+0.44

Material 26 27 28 29 30
FFT+PCA 0.25+0.01 0.32+0.17 0.25+0.01 0.27+0.07 0.26+0.06
Features 0.25+0.01 0.48+0.43 0.27+0.07 0.32+0.18 0.29+0.12

Material 31 32 33 34 Avg.
FFT+PCA 0.25+0.01 0.29+0.13 0.30+0.12 0.26+0.06 0.28+0.09
Features 0.25+0.01 0.26+0.05 0.50+0.40 0.27+0.08 0.40+0.28

standard deviation) for the features commonly used in the state of the art close
to the time of the vibration only case when using FFT-PCA. However, using
the Fourier coefficients to characterise vibration generates a faster identification
on average, 0.28 seconds slightly above one single iteration. Attending to the
standard deviations of the identification times, one could say that, if combined
with thermal features, to have good identification accuracies (µ+3σ) the multi-
modal approaches need to see data for around 0.5 seconds (two iterations) in the
case of the Fourier coefficients, and 1 second (four iterations) for the vector x.
These values will be used as the baseline for our comparison with other learning
approaches in the following section.

3.2.1. Comparison of the multimodal recognition against commonly used ma-
chine learning approaches

We compared the multimodal RBE approach with three machine learning
techniques (kNN, ANN and SVM) measuring the identification accuracy for the
34 material dataset. We performed 10-fold cross validation using 10 minutes of
data sequences for each of the four algorithms, finding the optimal parameters
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Table 4: Summary of material identification results

KNN ANN SVM RBE
Vibration - Features 73.2% 54.2% 53.7% 81.7%
Vibration - FFT+PCA 98.0% 85.5% 92.0% 96.6%
Multimodal - Features 76.6% 82.9% 82.4% 93.8%
Multimodal - FFT+PCA 89.4% 94.6% 97.5% 98.6%

for the kNN, ANN and SVM as described in Section 3.1.1, and, as stated in
Section 2.3, the datasets were whitened to have zero mean and identity covari-
ance. The kNN algorithm achieved the optimal accuracy for k = 5 using the two
tested multimodal combinations (FFT-PCA and feature vector combined with
thermal features). The topology of the ANN were selected to have two hidden
layers with 65 units on each layer for the Fourier coefficients combined with
the thermal features, and 30 hidden units for the combined vibration-thermal
feature vector. Finally, all the One-Vs-One SVM classifiers had RBF kernels
with a parameter tuned through a grid search. The input data streams for all
classifiers were chosen to have a length according to the same principle used in
Section 3.1.1, i.e. three iterations long for the Fourier coefficients, and five for
the vibration features (see Table 2). This was the same number of iterations
(deadline) in which the RBE algorithm was required to successful identify the
material.

Table 4 presents, in the last two rows, the classification accuracy results for
the multimodal case, while, for comparison purposes, the first two rows sum-
marise the results for the vibration only material identification presented in
Section 3.1.1. Although the length of the perceived time series used as input
for each row is different, they all follow our selected criteria of the average time
taken by the RBE to identify the materials. This means that the amount of in-
formation fed into all the classification techniques is the same for each row when
evaluating the performance. As the table shows, including thermal information
improves the identification accuracy regardless of the technique used and the
way of characterising the vibration (Fourier coefficients or vibration features).
This points out that the thermal feature vector we propose is an excellent mea-
sure of the thermal properties of the material. The only exception is the kNN
classifier, as the performance decreases from 98% to 89.4% when the Fourier
coefficients are used in combination with the thermal features. Moreover, the
performance increase in the case of the vibration features for the kNN classifier
(from 73.2% to 76.6%) is relatively low compared with the other approaches
evaluated. This is due to the data whitening preprocessing step necessary to
perform the combination, as the distances between clusters are changed during
the whitening. Another conclusion that can be drawn from Table 4, something
already mentioned in Section 3.1.1, is that using the full spectral range always
results in better classification. This points out the difficultly of identifying ma-
terials using the vibration features found in the literature, as they typically
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Table 5: Iterative estimation of material 17 using vibration only approach with FFT-PCA.
Iteration 0 1 2 3 4 5 6 7 8
P (m17) 0.03 0.03 0.01 0.01 0.05 0.61 0.98 0.99 1.00
1− P (m17) 0.97 0.97 0.99 0.99 0.95 0.39 0.02 0.01 0.00
maxP (mi), i 6= 17 0.03 0.88 0.95 0.99 0.95 0.39 0.02 0.01 0.00

Table 6: Iterative estimation of material 17 using Multi-modal iterative estimation.
Iteration 0 1 2 3 4
P (m17) 0.03 0.98 0.99 0.99 1.00
1− P (m17) 0.97 0.02 0.01 0.01 0.00
maxP (mi), i 6= 17 0.03 0.01 0.01 0.01 0.00

extract only statistical measures of the vibration signal, completely ignoring
the spectral components which actually characterise the interaction between
the BioTAC fingertip and the material. All in all, the best identification results
are obtained when the multimodal recursive Bayesian estimation algorithm is
used (98.6%). This is the result of setting a classification deadline to this ap-
proach, yet when longer time sequences are used, the RBE algorithm always
identifies the material correctly.

To further illustrate the improvement of the RBE algorithm when multi-
modal information is provided, Tables 5 and 6 show the evolution of the poste-
rior probabilities for the recognition of material 17 for the same test sequence
using only vibration and multimodal approaches. In both sequences the FFT-
PCA was used to characterise the vibration and the initial prior probabilities
(i.e. iteration 0) were uninformative. Both tables show the probability of the
correct material P (m17), the combined probability of all the wrong materials
1−P (m17), and the highest probability of a wrong material maxP (mi), i 6= 17.
While Table 5 shows that it takes 5 iterations to classify material 17 with a
probability of 0.61 using vibration only approach, Table 6 shows the correct
material is identified in the first iteration with a probability of 0.98. As it can
be clearly seen, including thermal information makes the identification correct
from the first iteration on, reducing in this case the identification time from 1.25
seconds to 0.25 seconds i.e. from 5 to 1 iteration. It is worth mentioning that
once the algorithm has detected the correct material with probability 1.00 it
maintains that probability value as the prior for any other material in the next
iteration will be zero.

4. Conclusions and Future Work

This paper presents a multimodal tactile based continuous material identi-
fication approach. While state of the art approaches to material identification
mostly rely on vibration information, we show that including thermal features
enhances the recognition accuracy and the time required for successful identifi-
cation. Moreover, standard tactile identification techniques typically require a
sequence of at least one second to classify materials. Using recursive Bayesian
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estimation a system endowed with tactile sensors can identify materials in an
average of 0.28 seconds with a very small deviation from that time lapse. This
high detection speed is again due to the use of multimodal information. Hence
thermal sensing enables a faster identification than a vibration only approach.
We also eliminated the need of several long exploratory movements for surface
identification found in the related literature.

Including thermal information brings the average material identification time
very close to the used window size. Faster identification could be achieved by
reducing the size of the window, yet the selection of ∆t = 0.25 was empirically
found to provide an excellent time-recognition trade-off. We showed that in
comparison with other techniques used in the existing literature, our approach
performs better than kNN, ANN and SVM when using the same data set and,
despite needing more evidence to achieve perfect identification accuracy, a 1 sec-
ond exploratory movement was enough to correctly classify 34 materials with
high accuracy. Therefore, shorter time will possibly imply worse accuracy. Ad-
ditionally, the system can be easily extended to other sensing modalities as
shown in Section 2.2, and it is scalable to a greater number of materials as the
computational burden of the RBE is low compared with the computation of the
FFT. Our aim in the future is to include other sensing modalities, specifically
vision, to enhance material recognition, for instance, generating visual texture
based priors.
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