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Abstract—In partial diffusion-based least mean square

processed locally and simultaneously at all nodes across the

(PDLMS) scheme, each node shares a part of its intermediate network.

estimate vector with its neighbors at each iteration. In this paper,

besides being involved in more general PDLMS scheme, we figure

out how the noisy links affect deterioration of network perfor-

It is obvious that the weight estimates that are exchanged
among the nodes can be subject to different perturbations such

mance during the exchange of weight estimates. We investigate@S quantization errors, noisy input data, additive noise over the
the steady state mean square deviation (MSD) and derive a communication links and wireless link impairments. Studying

theoretical expression for it. We demonstrate that the PDLMS

the degradation in performance that results from the mentioned

algorithm is stable and convergent in both mean and mean-square perturbations can be found in [11]—[17].

sense under non-ideal links. However, unlike the established

statements on PDLMS scheme under ideal links, the trade-off

Due to the limited power and bandwidth resources for

between MSD performance and the number of selected entries COMMunication among nodes over a distributed networks (such
of the intermediate estimate vectors as a sign of communication as wireless sensor networks), the most expensive part of

cost is mitigated. Strictly speaking, considering non-ideal links
condition adds a new complexity to MSD relation that has a
noticeable effect on its performance. This term violates the trade-
off between communication cost and estimation performance
of the networks in comparison to noise-free condition on the
links. Our simulation results substantiate the effect of noisy links
on PDLMS algorithm and verify the theoretical findings. They

match well with theory.

Index Terms—Adaptive networks, distributed estimation, least
mean-square, noisy links, partial diffusion.

realizing a cooperative task is the data transmission through the
links. Generally speaking, although the benefits of diffusion
strategies achieved by increasing internode communications,
they compromised by the communication cost. As the conse-
guence, since different nodes can have different numbers of
neighbors, they may require disparate hardware or consume
power differently. Therefore, reducing the amount of internode
communications, while maintaining the benefits of cooperation
is of practical importance. There have been several efforts

to achieve the mentioned objective such as reducing the
dimension of the estimates [18]-[20], selecting a subset of
the entries of the intermediate estimate vectors [21], [22], set-
E consider the problem of distributed estimation imembership filtering [23]-[25] and partial updating [26].
the diffusion adaptive networks context, where the Among these methods, we focus on [21] where the LMS al-
spatially-scattered nodes have adaptation and learning capagiFithm for adaptive distribute estimation has been formulated
ities. In such networks, the nodes are linked together throughd analyzed by utilizing partial-diffusion. In [21], an adapt-

a topology and exchange information through localized ithen-combine (ATC) PDLMS algorithm has been reported

network processing to perform decentralized information préer distributed estimation over adaptive networks with ideal

cessing and optimization in a cooperative and online mannkémks. In the mentioned algorithm, at each iteration, each

The local interactions and diffusion of information across theode transmits a subset of the entries of intermediate estimate

network enable the nodes to respond in real-time to the driftsctor to its neighbors. However, as we mentioned earlier, in

in statistical properties of the data and to the changes practice the weight estimates that are exchanged among the
network topology [1]-[4]. Several strategies for distributedodes can be subject to additive noise over communication
estimation over adaptive networks have been reported in fiks. In this paper, besides being involved in more general
literature. Diffusion strategies [5]-[10] are among the mo&tDLMS scheme, we figure out how the noisy links affect
popular propositions, in the literature. They are scalable dsterioration of network performance during the exchange of
well as robust to link/node failure and have good adaptabilityeight estimates. Among other results, our analysis provides
and tracking performance with respect to other strategies [8hme useful insights on the communication cost and estimation

In adaptive diffusion implementations, the nodes communerformance trade-off for general PDLMS scheme under non-

cate with their immediate neighbors and the information igeal links. Our main contributions in this paper include:

() Focusing on [21] which involves transmission of a subset
of the entries of the internode estimate vectors named
partial diffusion, we provide a more general algorithmic
structure of which [21] is just a special case. To achieve
this, we consider the fact that weight estimates ex-
changed among the nodes can be subject to quantization
errors and additive noise over communication links. Like

I. INTRODUCTION

V. Vahidpour, A. Rastegarnia, and A. Khalili and are with the De-
partment of Electrical Engineering, Malayer University, Malayer 65719-
95863, Iran (email: v.vahidpour@gmail.com; rastegar@tabrizu.ac.ir; a-
khalili@tabrizu.ac.ir).

W. M. Bazzi is with the Department of Electrical Engineering, American
University in Dubai, Dubai, United Arab Emirates, (email: wbazzi@and.edu)

S. Sanei is with the Department of Computer Science, University of Surrey,
Surrey GU2 7XH, UK (email: s.sanei@surrey.ac.uk).



DRAFT 2

[21], we also consider two different schemes for selecivherewv,, ; denotes the measurement or model noise. We are

ing the weight vector entries for transmission at eaatow interested in solving optimization problems of the type:

iteration. We allow for noisy exchange just during the N

two combination steps. It should be noted that since our o_ E ['d’ ; — g0 @)

objective is to minimize the internode communication, w n}inz ki ki

the nodes only exchange their intermediate estimates h=t

with their neighbors; The nodes in the network would like to cooperate with
(i) Using the energy conservation argument [27] we analyg@ch other in order to estimate® by solving the equation

the stability of algorithms in mean and mean squambove in an adaptive manner. Putting an accurate interpretation

senses under certain statistical conditions. on solution vectorw® from (2) depends on application under
(i) We illustrate the comparable convergence performanceasfnsideration. One possible interpretation is that the entries of

PDLMS algorithm with noisy links in different numerical w® represent the location coordinates of a flying object (such

examples. as tracking a projectile) that agents are trying to find. In other

The main aim of this paper is that the noisy links are thgpplicqtion& the entries o” descr_ib_es an underlying tapped-
main factor in performance degradation of a partial diffusio elay-line model also known as finite-impulse-response (FIR)
least mean squares (PLMS) algorithm running in a netwogiat agents are interested in estlmatmg thg parameters of an
with noisy links. In other words, considering noisy links add R model, such as taps of.a commumcaﬂqn chanqel or the
an extra term to MSD relation. This term seriously ups ra_meters of some (a_\pproxma_te) model of mtgrest n fma_mce
the balance of the trading off between communication codt blolqu [.2]' We review the diffusion adaptation strategies
and the estimation performance, in comparison with the ide‘%\th naisy links below.
case. Because, the more entries are communicated at each
iteration, the more perturbed weight estimates are interred An pitfusion Adaptation with Noisy Information Exchange

the consultation phase. . i . e .
This work is organized as follows. In Section II, we for- Consider the following general adaptive diffusion strategies

mulate the PDLMS under noisy information exchange. Thc&r_responding to the case in which the nodes only share weight
performance analyses are examined in Section Ill. We proviaﬁt'mates for > 0:

simulation results in Section IV and draw the conclusions in
= C W7 5 3
Section V. ui = D CLrwLio ®)
1EN
Vi = Prio1 + e, [di — uk,i(bk,ifl} 4)
A. Notation wii = Y oty (5)
lENk

We use the lowercase letters to denote vectors, uppercase ]

letter for matrices, plain letter for deterministic variables, angocal estimators ofw?, that nodek computes based on
the boldface letters for random variables. We also (seto  OPbservations{dy(j), s ;|j < i} in addition to intermediate
denote conjugate transpositiony-) for the trace of matrix, €Stimators up to and including time are denoted by x 1

% for Kronecker product, andec {-} for a vector formed by Vectors {¢y ;. % ;,wyi}. The physical meanings of these
stacking the columns of its matrix argument. We further u€ctors andv® are exactly the same. The scalgrs iz, ¢, }
diag{-} to denote a (block) diagonal matrix formed from itfr€ non-negative real coefficients corresponding to(the)
argument, andol{-} to denote a column vector formed byentries of N x N combination matrice$C1, Cs}, respectively.
stacking its arguments on top of each other. All vectors in odf'€Y are zero whenever nodet Nk, where;, denotes the

treatment are column vectors, with the exception of regressi@ﬁighbothOd of nodk. These matrices are assumed to satisfy
vectors,uy, ;. the conditions:

Cl =1y, CJ =1y (6)
INFORMATION EXCHANGE all its entries equal to one.

We model the noisy data received by nodlefrom its
Consider a connected network consisting\dhodes. Each neighbor! as follows:
nodek collects scalar measurememlig; and1x M regression

. : . _ (w)
data vectorsuy ; over successive time instanis> 0. Note Wik,i-1 = Wii-1 + ”u:j,iq )
that we use parenthesis to refer to the time-dependence of
scalar variables, as iy, ;, and subscripts to refer to the time- Vi =i+ vﬁfl (8)

dependence of vector variables, aiip;. The measurements
across all nodes are assumed to be related to an unknowmrere 7)1(12271 (M x 1) and v?}fl (M x 1) are the noise
M x 1 vectorw? via linear regression model of the form [27]:0bservations. It should be noted that the subsc¢fiphdicates
that! is the source and is the sink and the flow of information
di; = up ;w° + v, (1) isfroml to k.
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Using the perturbed data (7) and (8), the adaptive strategyBased on this approach, we formulate general PDLMS

(3)-(5) becomes

Gri= D CLIKWIKi1 9)
1ENY,

Ypi = Gpi1 + g (A — kb ) (10)

Wi = Y oty (11)

IEN,

B. Partial Diffusion with Noisy Links

under noisy information exchange as follows:

Qi = CLEE Wk i—1 + E 11K i 1Wigi—1

leN\{k}
+ (I = Kpio1) wii—1]
Vi = i1 + kUL, [di; — Uk,i¢k,¢71]
Wi = Co kWP, + Z co,1k[IC1ivu 4
leNL\{k}
+ (I — Ko)WYy 1]

(19)
(20)

(21)

In this paper, we adopt a similar approach proposed in [Zﬁ]emark.Th'e probability of transmission for all the entries at
and build up our algorithm upon it. Selecting and scatterirR:ch node is equal and expressed as

L outof M, 0 < L < M, entries of the intermediate estimate
vector of each nodé at time instant;, make the realization

p=L/M

of reducing internode communication possible. According to

this scheme, the selection of to be scattered elements could be ) .
Moreover, the entry selection matricés;, ;, do not depend
of {wzk,z;h 1/’1;@71‘} by KCy.; that haveL ones and\/ — L zeros on any data/parameter qther tharand M. . .
on its diagonal replaces its non-selected entries with zero. Thé oM (7), (8), expression (19)-(21) can be written as:

realized by a diagonal selection matrik,, ;. Multiplication

positions of the ones on diagonal &f; ; determine the entries
of nodek that are selected to diffused at timeNote that, the
integerL is fixed and pre-specified [21]. According to (9) and

(11)

Qi = CLEE Wk i—1 + E 1,16 i—1wiki—1
leNK\{k}

Qri—1 = C1EEWEi—1 + E c1,k K im1wi o1

leNK\{k}

+ (I — I im1) W i—1]

(22)

+ Z C1,zk7Cl,i—1vl(Z2,1(23)

leN\{k}

+ Um = Kpic) wiei—1]  (12) VYpi = bri1 + s (A — uridy ;] (24)
Vi = Prio1 T HEUL,; [dk,i - uk,iﬁbk,z‘q] (13)
Wi = Co kWP + Z c2,1k It 4 Wi = CokkWPy; + Z c2,1k It 4
leNK\{k} leNK\{k}
+ (I — Kii) ¥y 1] (14) + (I — Kii) ¥y 4
+ Z CQ,lel,ivl(& (25)

wherel,, is the identity matrix of size\l x M.

The most fundamental problem, we are faced with, hinges
on ambiguities in non-diffused elements of nodes in comditroducing the following aggregat®/ x 1 zero mean noise
nation phase. When intermediate estimate are partially trastgnals:
mitted, the non-communicated entries are not available to take

leN\{k}

part in this phase. However, each node requires all entries of Uz(;,vi)q = Z Cl,lel,i—lvz(Ziq (26)
intermediate estimate vectors of its neighbors for combination. leN\{k}

To avoid this ambiguity, nodes can replace the entries of

their own intermediate estimates instead of the ones from the v,(fﬁ) = Z czlklcl,ivl(,@ (27)

neighbors that are not available. substitute leNE\{k}

(Ing — Kpjic1) wiim1, Ve N\ {k} (15) where{v,(c’f;)l, v,(fl)} represent the aggregate effect on node
k of all selected exchange noises from its neighbors while
for exchanging the estimateav; ;1,1 ;} during the two com-
(Int — Kio) winior, Vi€ N\ {k} (16) bination steps. Th&/ x M covariance matrices of these noises
A ’ are given by:
and D SR (28)
(U = Kii) ¥y VL€ N\ {k} (17) IENT\{k}
for R%«? = Z C%,lkf&%% (29)
(Inr = Koi) i V1€ N\ {K} (18) LENK\{k}



DRAFT 4

C. Entry Selection Methods (iv) The step-sizesyx ,Vk, are small enough such that their

To select L-subset of a set o/ elements containing squared values are negligible.
exactly L elements, we employ a similar approach proposedWe are interested in examining the evolution of the weight-
in [21]. Doing so, there exist two different scheme nameetror vectors. To do so, we introduce the error vectors:
sequential and stochastic partial-diffusion. These methods

are analogous to the selection processes in sequential and (Z‘;k,i 2w — D (31)
stochastic partial-update schemes [26], [28]-[30]. In sequential _
partial-diffusion the entry selection matrice§;, ;, is diagonal P = w’ — Yy, (32)
matrix: '
Wi, = W’ — Wy, (33)
’il,l o O .
Kei= | : - : = 1 if € J;moap)+1  Substituting the linear model (1) into adaptation step (24) and
"’ 0 : et 0 otherwise subtraction of both sides from® give:
DR KM,Z B B
(30) Y = (IM - Nkuz,iuk.,i> Pri1 — Mkuz,z'vk,i (34)

with B = [M/L]. The number of selection entries at each

iteration is limited by L. The coefficient subsets; are not Using conditions (6), we can rewrite (23) and (25) as
unique as long as they meet the following requirements [26]:

1) Cardinality of 7; is betweenl and L;

2) UL, = S whereS = {1,2,..., M}; Prim1 = | v — Z CLiwkorio1 | Wi
3) J-NTy=0,¥r,ne{l,...,B} andt # 1. LENK\{k}
The description of entry selection matric&s, ;, in stochas- + Z e, i— 1w i—1
tic partial-diffusion approach is similar to that of sequential LENK\{k}
one. The only difference is as follows. At a given iteration (w)
i - +v,.., (35)
i, the sequential case one of the sgt, + = {1,...,B} ’

is chosen in a predetermined fashion, whereas for stochas-
tic case, one of the setg, is sampled at random from

{N, T2, ..., Tz} One might ask why these methods are con- wri = | In — Z 2l | Y,
sidered to organize mentioned selection matrices. To answer LEN\{k}
this question, it is worth mentioning that the nodes need to i Z o b ICLith,
know which entries of their neighbors’ intermediate estimates ler k) ' AL
have been transmitted at each iteration. These schemes are not § )
subject to such requirements. +vy (36)
[1l. PERFORMANCEANALYSIS Subtracting (35) from
We now move on to examine the behavior of the general
PDLMS implementations (23)-(25), and the influence of the w® = | Iy — Z ki1 | w®
mentioned perturbations on convergence and steady-state per- IEN\{k}

formance. For this reason, we shall study the convergence of
the weight estimates both in the mean and mean-square senses.
Assumptions.In order to make the analysis tractable, we
consider the following assumptions on statistical properties ahd (36) from
the measurement data and noise signals.
0] The regression datay, ; are te.mporallyl white and spa- w’ = | Iy — Z o anICrs | we
tially independent random variables with zero mean and LN (k)
.
covariance matrixR,, j ) {u};’iuk’i} > 0 where P 38
k: {1,,N} + Z 627”6 lﬂw ( )

. | . w ) N
ii) The noise signaley, ;, v )_ andv\*¥) are temporall FENAE)
g i Vg i1 ki porally

white and spatially independent random variables witives
zero mean and co(variancea%k, RS’Q and Rf)w,g , re-

spectively. In addition, The quantitie{sRif”lgc, RS@C} are
all zero if I € N}, or whenl = k.

+ Z eI i— 1w’ (37)
leNK\{k}

Gri1= | I — Z cilri—1 | Wit

: _ _ 1N\ {k}
(i) The regression datdu,,,, }, the model noise signal * _
v, (i), and the link noise signals!") = andv") D ki@
1R1,J1 2R2,72 leNk\{k}

are mutually independent random variables for all in-
dexes{i17i27jlvj27k17k27llvl27m7n}' _Iv}ggu;)—l (39)
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_ 7 Z K 7 where
Wk, = M — SRR ki .
ARDS! I =2 en\ gpy CranKii ffp =q
+ Y Ky, Apai =4 CrapKas it e N\ {p} (58)
lEN\{k} 7 Om otherwise
_op® (40) So that the network weight error vectas,, evolves accord-
k,i

) ) . ing to the following stochastic recursion:
To describe these relations in more closed form, we collect

the information from across the network into block vectors and Wi = Agi Iy — MRuyi) Avi1Wia
matrices. Stacking the error vectors from across all nodes into ~ Ay (Iny — MR vgf)l
the following V x 1 block vectors, whose individual entries ()

are of sizeM x 1 each we have: —AziMsi —v; (59)

é; £ col {<Z~51,m . -quN,i} (41) A. Convergence in Mean
55 ol - 49 Taking expectation of both sides of (59) undeéemark
P; = co {¢1»i’ T ’1/’1\7’1} (42) and Assumptionswe find that the mean error vector evolves
@i £ col {1 @i} (43) according to the following recursion:
i — 1y WN
Also, collecting the noise signal (26) and (27), and their E[@i] = Q2 (Tvar = MRu) 1 [;1] (60)
covariances from across the network iffox 1 block vectors where
and N x N block diagonal matrices as follows:
? Qi1 =E[A;;] (61)
o™ £ col {vgj‘;), o v%’i} (44) Q2 = E[ Ay (62)
@) 2 o] {p®) () 45 Like [21], Q,,r € {1,2} can be obtained for both stochas-
Yi ©0 {v“ T ’UN’Z} (45) tic and sequential partial-diffusion using the definition of
(w) a (w) (w) A, .,r e {1,2}, see (61) and (62). What is most noteworthy
R = COl{R’“vl T "R“vN} (46) here is to find the value of eadl,,r € {1,2} entries after
, b b applying expectation operator. Therefore, we can write
R 2 col {R(),.. R} 47) ( e
. L—p+pcrp) I ifp=q
Subsequently, we can verify that ' .
quently, w v E[Apail = § peraplnn ifge N\ {p} (63)
bi 1 = Ari1i1 — v\ (48) Om otherwise
Jzi =({Inm — MR,,;) — Ms; (49) All the entries ofQ,., r € {1,2} are real and non-negative and
_ - ) all the rows of@,,r € {1,2} add up to unity. This property
w; = Az, 4 —v; (50) [21] can be established for both stochastic and sequential
where partial-diffusion schemes and for any value Iof
M & diag {1 Ins, .- punIar} (51) Theoreml (Convergence in Mean)Consider the problem of
A ; . optimizing the global cost (2), Pick, and Q- with are real
Rui = diag {u ju1, ... uly un, | (52) non-negative entries and all their rows add up to unity. Assume
with each node in the network measures data that satisfy conditions

E[R.: = R, = diag {Ru1,..., Run} (53) described irAssumptionsand run adaptive diffusion algorithm
A’ _ . ’ ’ (23)-(25). Assume further that the exchange of the variables
s; £ diag{uj v1(i), ..., uy VN, } (54 {wii_1,%,;} is subject to additive noise as (7) and (8).
Here. s. denotesN x 1 block column vector. whose entriesMOreover, the regressors and desired signals are assumed not
are of sizeM x 1 each. Following Assumption (i), we have '© €¥chang among the nodes. Then, all estimies; } across
the network converge in the mean to optimal solutioh if
Els;]=0 (55) the step-size parametefg; } satisfy

The covariance matrix o§; is N x N block diagonal with 0 <y <
blocks of sizeM x M: Amaz {Ruk}

= s = di 2 2
§ =Elsis]] = ding {0y Run, oy v Run}  (56) Proof: The weight error vector§w,} converge to zero
Iy is also the identity matrix of siz&/ N x M N. Moreover, if, and only if, the matrixQs (Ixy — MR,) Q1 in (60) is
A A a stable matrix. Matrix stability means that all its eigenvalues
1,16 " 1,N,i

Yk (64)

should lie inside the unit circle. From the established statement
A= : Vre{l,2}  (57) on [21], all the entries of); and Q. are real non-negative
Anii - AnNi and all the rows of); and@, add up to unity, we know that
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Q2 (Iny — MR,,) Qq is stable if the matriXIyy — MR,). we have

or
[Amaz {Inmr — MR} < 1 (65) o' =E [AlT,iﬂ ® AlT,z‘A] [(INM - MR,:) ®
It is know simple and easy to understand confirm that condi- Inn — MR T]E T T )
tion (65) ensures the stability ¢fyy — MR.,) (Inas i) (AQ’Z © AQ’Z) vee {3}
u =D [(INM — M'Rfu,i)* Q (Inyp — M'R,UJ')T} Doo
(75)

B. Mean-Square Stability h
where
It is not sufficient to ensure the stability of the weight-error

vectors in the mean sense. We need to examine how small the o =vec{X} (76)
error vectors become. Doing so, we perform a mean-square o' =vec{X'} (77)
error analysis. The purpose of the analysis is to evaluate how T .
the variancesE [||@;;||*] evolve with time and what their Dy =E {Al,i—l ®A1,i—1} (78)
steady-state values are, for each nddeHere, we use the T T
: ' i : : D, =E|AL, , 7
notation ||z||3, to denote the weighted square quantitisz, 2 {Aﬂﬂ © 'Agﬂ} (79)
for any column vector: and matrix3. In Appendix B, we calculat®; and D, for both stochastic
From recursion (59), we introduce and sequential partial-diffusion schemes. That is,
Bi £ Ay (Inny — MRy;) Avica (66) o' =Fo (80)
A , _ , . _ - . .
Hi = Azi (Iny = MRui) (67) where2we are 2mtroducmg the coefficient matrix of size
So, we can rewrite (59) as (NM)™ x (NM)™
’lIJi = Bﬂf)i_l — ’Hlvgf)l — A27i./\/18i — ’Ul(-w) (68) F = Dl |:E ([NJV[ - MRu,z)* & (INM - M’Rﬂu,i)T} DQ
81
Taking the squared weighted Euclidean norm of both SideSSecond term on RHS of (69) (81)
of (68) and apply the expectation operator together with
using Remarkand Assumptiongield the following weighted E (s;‘MAQT,ZEAQJMsi) = vec'{G}Dyo (82)
variance relation:
o ~ i ~ . . here
E [sz”z} =E [@]_,B;EBw;_1] + E [SiMAQ,iEAZiMSiTV G = ME([s;s;| M (83)
+E [v:g)’l-thHivgi’)l} +E [fvf("/’)EvEd’)] By consideringAssumptionsg is evaluated as
(69) G= {mag’lRuJ, e ,,uNUfJ’NRu,N} (84)
Let us evaluate each of the expectations on the right—hand.l.hird term on RHS of (69)
side. The first expectation is given by
~ % * ~ ~ % * ~ ~ E *(w) *Z 7 (w)
E [wi—lBi ZBiwi_l] =K [E [wi—lBi EBiwi—1|wi—1H |:'l)2_71 HZ H '0171:|
—E[@] , (E[B{SB)))] = E[02 ) Iy — RusM) AL x
=E [w;_,%'w; 1] .
= [|la]3 ] (70) S Az (Inn = MRy) vﬁi’)l}
where we introduce the nonnegative-definite weighting matrix_ g _tr <E.A2 (Inag — MRu)
> SE[BEB] _ (w) . (w) T
= ]E[Afi,l (Inp — MRy)" AQT,Z-E 0,101 (Inm — Ry, iM) A‘Z@):|
As i (I —MRyi) AL 71 [
24 (I ) A, 1] (1) =FE vecT{Az,i (INnm — MRy;) X

It is convenient to introduce the alternative notati|4)1f1|3 .
. 2 w
to refer to the weighted square quar!tltyH_Z, whereo = v,(»ﬂvfiul) (Inns — RuzM)Ang vec {2}
vec {2}. We shall use these two notations interchangeably.
Using the following equalities for arbitrary matrices

T _ (w)
{U,W, %, Z} of compatible dimensions: vee { (Inar = MRy) By %

UeW)(Xe2)=UxeWZ (72) (IUnyp — MRY) }E [A£i®A£i]U
vec (USW} = (WT @ U) vec {E} (73) - (w)
tr (W) = [vec (W7 vee{z}  (74) 7 {UR” u }DQJ 55
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where which amounts to averaging the MSDs of the individual nodes.
Therefore,
UEE[Iyy — MRy;]) = (Inyu — MRy) (86)

1
network __ 7: ~42 T ~.2
Last term on RHS of (69): MSD = Jfim, NE szll } = lim E [”wZHI/N}

E [v;‘(wsz”’)] =E [tr (Evgd))’v:w))} This means that in order to recover the network Mész)Z)from
_ VeCT{ng)}U 87) (90), we should select the weighting vectoisuch that
The variance relation becomes (In2pz — F)o = %Vec {Ina} (93)
E [||1I;i||(27} =K |:H’J]i||2]-'g:| Solving for o and substituting back into (90) we arrive at

the following expression for the network MSD
+ (VecT{g}Dg + vecT{URS)w)U*}DQ

noisy

1
MSDnetwork _ N (VeCT{g}'DQ + VeCT {URSU)U* }'Dg

vecT{R(¥) )O’ 88
" R (69) +vecT{R§,¢)}) X (In2pr2 —f)_lvec {Inn}
Theorem?2 (Mean-Square Stability)Consider the same setting (94)
of Theoreml. Assume sufficiently small step-sized to justify ) )
ignoring terms that depend on higher power of the step-sizesYWhen links are ideal, the last two terms of (90) do not
The perturbed adaptive partial diffusion algorithm (23)-(25) jarise. So, we can conclude that the network MSD deteriorates
mean-square stable if, and only if, the matsx defined by @as follows:
(81),.cl)r it; app_ro_ximate defines further (89), i; stable. Thi%\/ISDEggvork _ MSDin;Ct;\iork +
condition is satisfied small for step-sizé€g;} as is (64). Y

1 w *
Proof: A resonable approximate expression t@r for N(VGCT{URgJ UID, +vecT{R7(Jw)}> X
sufficiently small step-sizes is .
(INzMz — .7:) vec {INJ\l} (95)

F ~ D, |:(INM — MRu)T ® (IN]VI - MRU)T} D, (89)
IV. DETAILED DISCUSSION ON THENETWORK MSD

. Recall that, in the Kronecker product ¢ é.i =B®4), So far we have mentioned based on Theorems 1 on 2 that the
eigenvalues are the outer product of the eigenvalues of the =~ ~ .~ . . )
tial diffusion LMS strategy does not diverge due to noisy

two matrices. Therefore, using expression (89), we have &

. .~ _links. But, it is the main factor on performance degradation
F)=[C(Inym — MR,)], where( (A) is the spectral radius
il( It)follc[)glv(s]m;tf % sta)l}ale i ancd(or)ﬂy if(INJFCI " MR, of steady-state network MSD. Moreover, focus on (95) and

: . : ompare it with that stated at [21], there exist an additional
is stable. we already mentioned in (1) that (65) ensures the . .
stability of (Inar — MR erm, denoted as channel noise term, that plays a crucial rule
wr on the performance degradation of network MSD performance.
_ ) _ It is abundantly clear that this term has been arose from
Corollary (Steady-State Variance Relatiojonsider the same channel noise condition. Here we concentrate on (95) to
setting of Theorem 2. The weight-error vectad; , of the explicitly highlight characterization of how convergence and

state: channels. We analyze steady-state network MSD under the
~ followin mptions:
E [[[@ill (1252 7)o = :0 gt.assu ptions
ssumptions.

vec" {G} Dy + vec" {URU } Dy (v) Nodes run ATC PDLMS at each iteration, i.€} = Iy.
For the sake of simplicity of notation we considél =
+ VGCT{Rq(Jw)}>0 (90) C andD, = D.
i) The step size, noise variance, input covariance matrix
for any Hermitian nonnegative-definite matéixwhich follows and channel noise covariance matrix all are the same in

(76). the network, i.e.yx = p, 02, = 02, Ry = Ry, and
RY) =R\, Wkel,... N.
C. Mean-Square Performance (vii) During any M consecutive iterations, the intermediate
Expression (90) prove a very useful relation; it allows us ~ €stimate vector does not differ considerably at each node

to evaluate the network MSD through appropriate selection of & [21].
the weighting matrix. The network MSD is defined as the ConsideringAssumptiongv), (vii), and using the results of

average value: analysis mentioned in [21], we have
N —
MSDnctwork A hm — ZE |:||1I7k,t||2:| (91)
i—oo N £ where,C = C ® Iy.
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To specify the network performance in steady-state, weln view of Assumptionv), we have

consider the global MSD describe at (95) and denote it by
M = ply ® Iy,

nr. We have
1 00 Z/[:IN®(IM—,URU)7
=g (VecT {G}D+ VecT{ng)}) <Z f”) vec {Inn} G = p%0?Iy @ Ry,
n=0
LS (yec? TR and
- N;(vec {G} D + vec' {R}, }) R® B,
T T n
< [(U" @U") D] vec {Ivn} (97)  calculating the trace terms at (100), we get

Substituting (96) into (97 Its i
dbsiuing (96) ino (97 resuls i {07 a7 )"} = Ny

1 - n+1 n nT
=y 2 (1= e GG © ) st {[(Iy — )" R (I — nB)""}
X vec {INM}

1S n n wd|c@me)" g ure)"|} = 2ot { (cT)" T ot
oy o (g} [ere) e e i Xt {}(EM - MRu)n{Ru (Ins — MRu)}lL

X vec {INM}

e LS et (RO (@0 o @) tr{ [W (re) <“>”]T} -
X vecTi{ij} N x tr { [(IN — uR,)" (Ry)" (In — uRu)"}T} ;
N % > ptvee” (RO} [c@Te) s )] g
s vee (s} ©8) u{lc@rc)" RWe )]} =
Utilizing vec{ } property, (98) can be rewrite as tr{(CT)nH C"*l} x tr{(Ins — pRy)" Ry (Ing — pRu)"™}
= Z p)"vee {[(u)” g" (U)”]T} where
< vee Unar) w{(cT)" et = 2 lensinl®sn >0

1 & n n
+ 7§ " Thvec” |C (UTC)" ge (uTe
N~ {{ ey e e ]} In equation abovec,.; is the k-th column of C"*1,

x vec {Inn} Considering a connected network holds that,

Z (1= p)" vee {[(m" (R5¢>)T<u)"]T} lewsial? < 1on > 0.k,

This fact yields
X vec {INIVI}

s wr{[c @’e)" gc we)"|} < w{[@" " w)""}
1 Mo T TA™ ) e (1T )" {[
+ = cuc) rRycuuc .
N ;0’) vee” {[c (") o] <trf{fe @re)" gc (') ]}+tr{[ cc)" Ve rc)"|}
x vec {Inn} (101)
(99) Moreover, for the case of non-cooperative, Le= 0 andp =
Using trace properties we have 0,, full diffusion case with ideal links, i.elL. = M, p =1, and
1 T R, = Oy, full diffusion case with noisy links, i.eL = M,
=% Z )" tr{ @"g" )" } p=1andR, # O, WhereO,, is andM x M zero matrix,
we have
s n+1 T\ T\ 1 oo
* N;p u{le @re)"ge ey’ w= S uflerd @'}, o2
n=0
1 — n . r 17
+ 5 Z (1-p) tr{ [(U) (R) @) } } ) .
= NZtr{[ @ e)"gewc)"|} o)
Zp"tr{[ c(ure)" RWe (ure) ]} (100) n=0

and
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Fig. 1. Variance of the noise (top) and Covariance matrix trace of the ing
signal (bottom) at each node. = —a0l |
1 TN Toan % 5 10 15 20 25 30 35 40 45 50
v = v Z tl"{ [C (u C) Gc (Z,[ C) }} Node index, k
n=0
+ tr{ {C (UTC)n R(w)c (Z/{TC)H}} (104) Fig. 2. The variance profiles for various sources of link noises in dB,
v including {oi’lk,aﬁ“lk}, U%b,lk' (top) andofu’lk (bottom).
respectively. Accordingly, it follows from (97)-(104)
5 T
nm <"I7]y171<...<fl7L<...<771‘<7]0 ‘ ‘-‘-iihn;g:?/t,iinélﬁzo—
Tn01S? Mnots? TN 01S? nois i i ,L=
<y <<t <<yt <yt B __?Ln;g:)a,tlﬁnzll |
. . . . . M Simulation, L =2
This indicates that under ideal channels the more entri = ‘== Theory,L=2 |
are transmitted at each iteration, the better the steady-si £ iL’:;‘:;f‘ﬁ”;'f“ |
network MSD performance occurred. In other words, pa = iL";g:y‘ﬁ";;ﬂ
tial diffusion settles a communication performance trade-o ¢ '
However, considering noisy channels the more entries ¢ =
communicated at each iteration, the worse the steady-st
network MSD performance occurred. This means that part
diffusion seriously upset the balance of mentioned trade-of ;

V. SIMULATION RESULTS

diagonal covariance matrices?, . The additive noises at
the nodes are zero mean Gaussian with variamces and

independent of the regression data. The traces of the cov:
ance matrix regressors and the noise variances at all noc
tr (R, ) and o, ., are shown in Fig. 1. We also use white

Gaussian link noise signals such trﬂij”l)k = 02, Iy and

Rff‘fk = o, I All link noise variances{o?, .07, .} are
randomly generated and illustrated in Fig. 2.

In order to illustrate the PLDMS performance under nois - hemio N
information exchange, we consider an adaptive network wi Simulation, L = 1
a random topology andv = 10 where each node is, on & — gr;ﬂg{itnflfzz |
average, connected to two other nodes. The measurems § T el 4l
were generated according to model (1), and regressqrs, 2 grnelﬂgﬁt:f:s i
were chosen Gaussian i.i.d with randomly generated differe £ Theory, L = 8

Ei

400 600 800
i (iteration)

1000

400 600 800
i (iteration)

1000

Fig. 3. Simulated network MSD curves and theoretical results (95) for partial
diffusion ATC algorithms using sequential (top) and stochastic (bottom) with

We assign the link number by the following procedure. Waiterent number of entries communicated under noisy links.

denote the link from nodé to nodek as/; ;, wherel # k.
Then, we sort the linkg¢; 1,1 € N\ {k}} in an ascending

order of! in the list £;, (which is a set with ordered elements) In the first simulation, we evaluate the theoretical deriva-
for each node. We concatendté } in an ascending order of tions. To this end we consider the experimental network MSD
k to obtain the overall lisC = {£4, Lo, ..., Lx}. Eventually, learning curves (ATC strategy) of PDLMS algorithm and
themth link in the network is given by theith element in the theoretical results using both sequential and stochastic partial
list £. We adopt different step-sizes;, randomly generated, diffusion schemes under noisy links for different numbers of
but within the limits in (65) for all agents. It is noteworthyentries, L. We use uniform weights fofcy ix, 2,1} at the

that we adopt the network MSD learning curves of all figurasombination phase at this stage. The plots are given in Fig.
by averaging over 50 experiments and the unknown parame3ewhere we can see that there is a good match between our
w® of length M = 8 is randomly generated. theoretical derivations with simulation results. Similar plots
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Simulation, L =1 —————— T T T T T
1= = Theory,L=1 1 T
m Simulation, L =2 —~ —10f / cﬁ( =1072 1
= ‘== Theory,L=2 H 8 / v
=) Simulation, L = 4 a [/ e——
@ Theory,L=4 [ z 20/ / o> =107 i
= Simulation, L = 8 = /) I S S
+ Theory, L=8 al = / / e T T T T
g 3 // —
£ . E 301/~ 1
o %] -
“ — Z,
] < .
—40} \\h“ Ik,wo 1
=40 L L L L L L i i i _50 i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 4 5 6 7 )

i (iteration) Number of communicated entries

Fig. 4. Simulated network MSD curves and theoretical results (95) for partigg. 5. Theoretical and experimental steady-state network MSDs versus the

diffusion CTA algorithms using sequential (top) and stochastic (bottom) witfumber of entries communicated at each iteration for different valueg ¢f

different number of entries communicated under noisy links. using sequential (top) and stochastic (bottom). Note that solid line and dashed
line represent the theoretical and experimental results respectively.

for CTA strategy are given in Fig. 4.
To further examine our theoretical findings, both theoretica{ the presence of noisy links, it is still able to provide to

and experimental steady-state network MSD of the AT@gliver better performance in comparison with some similar
PDLMS algorithm as a function of communicated entries, methods, such as a consensus based algorithm. To show this,
for different values of{o7 ;. }, for stochastic and sequentiakhe MSD performance for different algorithms including non-
schemes are plotted in Fig. 5. This figure not only suppoiégoperative, consensus, full diffusion and partial-diffusion (for
our analysis, but it also reveals that when channel betwegn— 2 and L = 4) under noisy links is illustrated in Fig.

agents is assumed ideal(,, = 0 in the figure), an increase 8. We can observe that the DLMS algorithm exhibits better
in communicated entries results in the network performanggarformance than the consensus algorithm.

It must be noted that this in not the case when links amongeom the results above, we can make the following obser-

the nodes are noisy and the performance of network \jstions:

deeply affected by variance of channel noise. This particular

behaviour of the PDLMS algorithm in the presence of noisy « The PDLMS algorithm delivers a trade-off between com-

links is better understood from Fig. 6 where the steady-state Mmunications cost and estimation performance under ideal

MSDs of all nodek for different values ofL and different link. This statement is the main aim of [21].

link conditions are plotted in Fig. 6. « Unlike the statement above that labels a communication-
It is also notable that in the presence of noisy links, the Performance trade-off to PDLMS algorithm, there is no

PDLMS algorithm exhibits different behaviour as the step direct relation between MSD performance and number

size changes. To show this behaviour, the steady-state MSD ©Of selected entries under noisy information exchange.

as a function ofy for different values ofgfp)lk is shown in In oth_er Wprds, the more entries are _commu_nlcated at

Fig. 7. As it is obvious from Fig. 7, for the case of ideal ~ €ach iteration, the more perturbed weight estimates are

links o3, ,,, = 0 the MSD curve is a monotonically increasing interred in consultant phase that leads to worse steady-

function of x [14], whereas, for noisy links, decreasing the  State network MSD.

step size increases the steady-state MSD value. Also, we cam The sequential partial-diffusion schemes outperform the

see from Fig. 7 that as}, ;, increases, the effect of noisy stochastic partial-diffusion for noisy and ideal I|n_ks.

links increases as expected. Finally, it must be noted thatr The ATC PDLMS strategy outperforms the adaptive CTA

although the performance of PDLMS algorithm deteriorates PDLMS strategy for both noisy and ideal cases.
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Fig. 8. Comparison of network MSDs for: non-cooperative, consensus, full
diffusion, and partial diffusion strategies.

with non-ideal links. We derived analytical expressions for

network learning curve MSD. Furthermore, we established that
there is not a direct relation between the MSD performance
and the number of selected entries under imperfect information
exchange. In other words, the more entries are communicated
at each iteration, the more perturbed weight estimates are

interred in consultant phase. The simulation results verify the

Fig. 6. Theoretical and experimental steady-state MSDs at each node

different numbers of entries communicated at each iteration under ideal lin

(top) and noisy links (bottom). Note that solid line and dashed line represent

the theoretical and experimental results respectively.

Steady state MSD (dB)

0.03 0.06

0.01 0.02 0.04 0.05 0.07 0.08
22
Fig. 7. The MSD of ATC-PDLMS as a function ¢f for different values
of 62 ..
b1k

VI. CONCLUSION

[1

In this work, we present a general form of PDLMS al-
gorithms, formulate the ATC and CTA version of PDLMS

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
El

0]

under noisy links condition, and investigate the performan[:lel]
of partial-diffusion algorithms under several sources of noise

during information exchange for both sequential and stochagfiél
cases. We also illustrate that the PDLMS strategy can still sta-
bilize the mean and mean-square convergence of the network tional Conference on IEEE, 2011, pp. 1-6.

t?jséoretical findings and how well they match with theory.
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