Effects of situational variables on the physical activity profiles of elite soccer players in

different score line states.

Athalie J. Redwood-Brown¹, Peter G. O'Donoghue², Alan M. Nevill³ Chris Saward¹ Nicholas Dyer⁴ and Caroline Sunderland¹

¹Sport, Health and Performance Enhancement Research Centre, Department of Sports Science, Nottingham Trent University, UK. ²Cardiff Metropolitan University, UK, ³Wolverhampton University, UK, ⁴Teqnick Ltd, UK,

Correspondence concerning this article should be addressed to <u>Athalie.Redwoodbrown@ntu.ac.uk</u>

ABSTRACT

The aims of this study were to investigate the effects of playing position, pitch location, team ability and opposition ability on the physical activity profiles of English premier league soccer players in difference score line states. A validated automatic tracking system (Venatrack Ltd.) was used to track players in real time (at 25Hz) for total distance covered, high speed running distance and sprint distance. This is the first study to include every team from an entire season in the English premier league, resulting in 376 games, 570 players and 35'000 rows of data from the 2011-12 season being analysed using multi-level modelling. Multi-level regression revealed an inverted "u" shaped association between total distance covered and goal difference (GD), with greater distances covered when GD was zero and reduced distances when GD was either positive or negative. A similar "u" shaped association was found with high speed distance covered at home. In addition distance covered (both at home and away) were predicted by playing position. All activity profiles (with the exception of sprint distance at home) were predicted by pitch location and time scored. Lastly, distance away from home and high speed running at home were predicted by opposition ability. Score line appears to effect player activity profiles across a number of temporal factors and thus should be considered by managers when preparing and selecting teams in order to maximise performance. The current study also highlighted the need for more sensitive score line definitions in which to consider score line effects.

Key Words: Multi-level modelling, Playing position, Pitch location, Opposition ability, Team ability. Goal difference.

1 1. INTRODUCTION

Determining what constitutes successful performance (defined as winning) has been one of the 2 main points of focus for football performance research in order to provide objective 3 performance evaluations, comparisons and predictions^{1,2,3}. A large portion of football game 4 research has investigated situational variables related to successful performance, such as game 5 location (i.e. home or away) or quality of opposition (defined as either finishing position in the 6 league table or progress in knock out competition) as well as key performance indicators (e.g. 7 action related variables such as high speed distance completed or accuracy of passing)^{2,4,5,6,7,8,9}. 8 Advancements in technology (such as computerised tracking systems) have enabled 9 10 researchers to analyse match performance in a more detailed manner helping professionals to identify these key attributes of success more readily,^{8,10,11,12,13,14}. 11

In order to win a match, the successful team must score more goals than their opponent. 12 Commonly, comparisons between successful and unsuccessful teams are made through the 13 14 investigation of playing patterns and success of performance variables such as shots on goal, crosses, corners, ball possession etc. 12. Although some studies^{11,13} have investigated the 15 activity profiles of various playing positions of elite soccer players, only a few to date have 16 17 considered how successful and unsuccessful teams differ when in different score lines states (e.g. 1-0, 2-0, 1-1 etc.). Those that have investigated specific score line effects^{11,13} have 18 generally excluded key temporal factors (opposition ability, team ability, score lines and match 19 location), which have been shown to effect player performance^{5,6,7,8}. 20

The main methodological criticism of previous research has been the failure to consider normal performance, e.g. how teams perform when no goals are scored and the standard of the opposition (e.g. whether the team were considered top, middle or bottom of the league). For example, much of the difference in work rate observed between different score line states may

25 be due to the opposition's ability or simply fatigue rather than score line. Although studies have shown that the percentage of time spent performing high intensity activity is lower during the 26 second half of soccer matches than during the first half¹⁵ it is possible that differences in the 27 percentage of time spent performing high intensity activity may result from score line effects 28 rather than fatigue. Especially as more recent research has suggested that teams pace 29 themselves injecting periods of sub-maximal or maximal bursts late on in matches^{5,16} therefore 30 dismissing the previous thoughts that teams fatigue towards the latter stages of a match. 31 Redwood-Brown et al.¹⁷ recently highlighted the impact of psychological factors on the 32 performance of players during a match, suggesting players reduce their effort if the outcome 33 of a match becomes obvious during the second half (e.g., the opposition are of a higher 34 standard)¹⁸. Although fatigue and normalised performance has been considered in recent 35 studies^{5,8,16} the sample size and subjective nature of the data collection methods has limited the 36 application of the findings. 37

A secondary issue has been the technological barriers in data collection methods that 38 39 have limited the ability to generalise findings for both physical and technical performance 40 investigated. Categorising players by position (defenders, midfielders, attackers) in relation to score line effects has been considered for activity profiles but only using very small data sets^{5,19} 41 or single clubs²⁰ using overall match status (winning, drawing, losing) rather than by how much 42 the team were winning or losing by. There is however, a need to investigate score line effects 43 on performance using a greater volume of data as well as objective and reliable methods. Semi-44 automatic player tracking systems are a useful tool providing large volumes of objective and 45 reliable movement data to professional soccer clubs^{15,21}. The volume of player movement data 46 available from semi-automatic player tracking would allow further investigation of how 47 different playing positions react to score line changes. Access to data can also be problematic 48

leading to many studies using a case study approach, with only one team analysed limiting theapplication of findings to wider populations.

The third issue with previous studies into score line is the lack of a gold standard for 51 defining activity profiles that occur during the match (such as high speed running and 52 sprinting). The use of computerised systems have been more apparent when investigating 53 player movement, although with a number of different definitions, this has led to a difficulty 54 in comparing findings. It has also been suggested that using a running speed as a high intensity 55 value does not consider the energy cost of moving at a full range of speeds, for example, when 56 a player is in possession of the ball²² or moving in backwards and sideways directions at much 57 lower speeds. In 2012 Redwood-Brown et al.²³ validated the first fully automated tracking 58 system (measuring at 25Hz) which was found to have good validity over a range of soccer 59 specific movements and speeds. In addition this system is highlighted in its ability to produce 60 61 and store data on a much larger scale and to a greater accuracy than seen in previous studies. The aim of the present study was to investigate the interaction of a number of situational factors 62 63 (playing position, pitch location, opposition ability, team ability) which have independently 64 been found to impact on player performance, specifically activity profiles in different score line states. The use of the automated tracking system validated by Redwood-Brown et al.²⁵ can 65 also allow the aggregated data of several teams to be analysed rather than a single team, thus 66 creating more normative data to improve team performance in a collective way. We 67 hypothesise that performance, specifically high speed running and sprint distance will be 68 highest when the score is close. We also hypothesise that performance will differ between 69 70 different playing position and pitch location in different score line states.

- 71 2. MATERIALS AND METHODS
- 72 **2.1 Data Set**

73 In total 376 of the 380 games played during the 2011-2012 English Premier League season 74 were used in the current study which included 570 independent players and 35'000 rows of data. The omission of four games was due to a number of technological incidents outside of 75 76 the operators' control, which disabled the system and resulted in the tracking data becoming unusable. This resulted in 20 teams who played against each other at both their own ground 77 and that of their opponent's, with the exception of the teams affected by the excluded games. 78 The ability of each team and their respective opponents was calculated using their final league 79 position (ranked 1-20, i.e., 1st in the league to 20th in the league) at the end of the season once 80 all games had been played. This was in line with previous research²⁴ which has highlighted the 81 need for greater sensitively when using ability as a situational factor relating to team 82 performance. For accuracy, player position (striker, midfielder, defender) was determined at 83 84 the start of each game using the official team's sheets provided to the press association. This 85 ensured players who may change positional role depending on the tactical strategy adopted by the team were accurately defined for each game. In line with previous research²⁵ the pitch was 86 87 split evenly into three sections (attacking third, middle third and defensive third) using a theodolite and calibrated pitch dimensions (specific to each individual stadium). Consent to 88 use the data for research purposes was given by both Venatrack Ltd and the English Premier 89 League. Ethical approval was granted by the University's Ethics Committee. 90

91 2.2 Data Gathering

92 Visual-AI (Venatrack Ltd, UK) technology was used to track the players in the current study.
93 This allowed players to be monitored in real time (at 25 Hz) providing identification through
94 recognition algorithms (based on x,y,z coordinates for hands, feet, head and the pelvis &
95 shoulder lines; Venatrack Ltd, UK). The video capture system used 28 HD colour cameras
96 positioned at specific locations around the respective soccer stadium. Twenty Eight HD
97 cameras were used to ensure maximum positional accuracy (visual acuity) was provided to the

98 computer algorithm. By using a greater number of cameras, a greater number of pixels with which to quantify the pitch area and thus provide a greater accuracy for measuring each point 99 was achieved. The estimated visual acuity for the current system was in the range 5 - 25mm 100 101 compared to previous systems, which have been estimated at between 500mm - 1500m depending on the region of the pitch. The cameras position, orientation and field of vision were 102 determined and fixed using a Theodolite (Nikon NPL 362, Japan) during installation. The 103 cameras were positioned to give a full view of the pitch using the systems unique configuration 104 co-ordinates (unique to each ground), which allowed each position on the pitch to be covered 105 106 by at least five cameras at any one time (Venatrack Ltd, UK). Calibration of the automatic tracking system was completed by a team of technical experts who had collectively over 107 108 eighteen years of experience of visual AI technology, such as that used by the system in 109 question. The system was also found to be valid and reliable for tracking player movement at both high speed and sprinting distances²³ 110

111

112 2.3 Performance Indicators (Activity Profiles)

For each player, the total playing time was used to calculate how much relative time the player 113 spent in each activity zone. Initially the zones were presented as incremental categories from 114 0-1 m·s⁻¹, 1-2 m·s⁻¹ etc. and then further categorised into high speed running and sprinting 115 based on previous literature ^{5,7}. High speed running was defined as "the total distance spent 116 moving at $4 \text{ m} \cdot s^{-1}$ or faster" (to include movements such as shuffling, running backwards etc. 117 118 which have been shown to increase work rate but are not included when higher speeds are used) ²². Sprinting was defined as *"the total distance spent* moving at 8 m \cdot s⁻¹ or *faster"*. This resulted 119 in three values for each player; total distance covered, total distance covered in the high speed 120 zone ($\leq 4 \text{ m} \cdot \text{s}^{-1}$) and total distance covered in sprinting zone ($\leq 8 \text{ m} \cdot \text{s}^{-1}$). 121

122 **2.4 Data Analysis**

123 Firstly, due to the hierarchical structure of the data, multi-level modelling was used to predict the activity profiles across goal differences with each of the match related and performance 124 125 related variables using MLwiN software package (v 2.22, Bristol University, Bristol, UK). For each variable, a two-level hierarchical structure was defined with repeated measures (level 1) 126 grouped with match ID (level 2). The benefit of this hierarchical structure means that, unlike 127 traditional longitudinal data analysis techniques such as repeated measures ANOVA, the same 128 number of measurement points per individual are not required. Therefore, due to the variation 129 that occurs between matches in the current data set, this statistical technique is well suited to 130 131 the current data structure. A multi-level model of this nature is also able to describe the underlying trends of a particular component in the population (the fixed part of the model), as 132 well as modelling the unexplained variation around the mean trend for that component due to 133 individual differences (the random part of the model)²⁶ or in this case differences both within 134 (repeated measures) and between matches (match ID). 135

136 The first stage in this multi-level modelling statistical analysis approach was to create a model that explained changes in distance covered, high speed distance covered and sprint 137 138 distance covered. Each activity profile (total distance covered, high speed distance covered, sprint distance covered) performance characteristic was modelled in turn. Firstly, to investigate 139 the variance between players the intercept was allowed to vary randomly between players. The 140 effect of score line defined by GD (centered at 0 goals) on each of the three activity profiles of 141 players was modelled. GD was introduced to the model as a quadratic term to establish whether 142 the data would be better explained by a curve. Subsequently, the effect of playing position, the 143 zone on the pitch the activity took place; the time the goal was scored; the opposition's ability 144 and the team's ability were added to the model (fixed components). These fixed components 145 146 were accepted or rejected on the basis of firstly, changes in the model fit; as indicated by a difference in log likelihood between models, and the effect of the variable on the activity profiles of players, indicated by z-scores. Following each analysis, the assumption that variations in intercepts were normally distributed with an average of zero was assessed visually using normality probability plots²⁶. Statistical significance was accepted at the 95% confidence level (P < 0.05). Mean \pm SD were used to describe the average and variability of the activity profile data.

153 **3. RESULTS**

A total of 570 players across 376 games were analysed, with the maximum number of appearances from one player being 38 games and the minimum 1 game. Table 1 presents the activity profiles for each of the teams included in the analysis across the three match statuses (winning, drawing, losing). The average distance covered per player per game (Mean \pm SD) was 10020.2m \pm 141.7m, with players covering on average 395.6 \pm 33.9m of high speed running per game and 107.0 \pm 21.3m sprinting distance (a full break down of each teams activity profiles can be seen in the supplementary Table 1).

Tables 2 and 3 present the final multi-level models for the development of the match-161 running performance characteristics of total distance covered, high speed distance covered and 162 sprint distance covered for players of different playing positions, in different pitch zones, across 163 different abilities and against different standards of opposition of players in the 376 English 164 Premier League games analysed. The random part of the multi-level models predicted that the 165 fit of all models was improved when the intercept was allowed to vary randomly (P < 0.05), as 166 167 indicated by the between game standard error displayed in Tables 2 and 3. Only variables that were significant when added to the model are presented in the tables. 168

169 **3.1 Distance Covered**

170 Modelling indicated that the distances covered at both home and away in relation to GD were non-linear and best described with a quadratic term. The estimated models of distance cover 171 for home and away teams that included GD as an independent factor can also be seen in Table 172 2. The table shows that for distance covered at home; GD, GD², playing position, time scored 173 and pitch zone significantly improved the model fit. For distance covered away from home, the 174 same was true, with the addition of opposition ability. It is possible to calculate the performance 175 of players, playing either, at home or away using the coefficients from Table 2. For example, 176 the prediction equation for distance covered at home for a midfielder in the middle 3rd of the 177 pitch, who are in a +2 GD at half time (45 minutes) is: Constant + ($\beta_1 *$ GD centered at 0) + (β_2 178 * GD centered at 0^2) + (β_3 * midfielder) + (β_4 * middle 3^{rd}) + (β_5 * time scored) which is: 179 $118.53 + (-0.601 * 2) + (-0.462 * 2^2) + (7.275) + (-12.082) + (-0.069 * 45) = 107.6 \text{ m} \cdot \text{min}^{-1}$ 180 181 (9681.1m per 90 min. game).

182 **3.2 High Speed Running**

183 Modelling indicated that high speed running distance covered away from home in relation to 184 GD was non-linear and best described with a quadratic term. Goal difference was not found to significantly influence distance covered whilst playing at home. The estimated models of high 185 186 speed distance covered for home and away teams can be seen in Table 3. The table shows that for high speed distance covered at home, pitch zone, opposition ability and time scored 187 significantly improved the model fit. For high speed running distance covered away from 188 home, GD, GD², the time goals were scored and pitch zone significantly improved the model. 189 The prediction equation for high speed distance covered away from home for all players in the 190 middle 3rd of the pitch, who are in a +2 GD at half time (45 minutes) is: Constant + ($\beta_1 *$ GD 191 centered at 0) + (β_2 * GD centered at 0²) + (β_3 * middle 3rd) + (β_4 * time scored) which is: = 192 $7.376 + (0.21 * 2) + (-0.112 * 2^2) + (-4.904) + (0.001 * 45) = 2.9 \text{ m} \cdot \text{min}^{-1}$ (260.5m per 90 min. 193 194 game).

195 **3.3** Sprint Distance

Modelling indicated that sprint distance covered at both home and away was not affected by GD. In fact the only parameter that was found to explain this activity was pitch zone and only when playing away from home. The prediction equation for sprint distance covered away from home for all players in the middle 3^{rd} of the pitch, who score at half time (45 minutes) is: Constant + (β_3 * middle 3^{rd}) + (β_4 * time scored) which is: 2.742 + (-2.002) + (0.015 * 45) = 1.42 m·min⁻¹ (127.4m per 90 min. game).

202 **3.4 Goal Difference Effects**

Figures 1-3 display the predicted goal difference related changes in significant activity (per player per 90 minutes) for each playing position, pitch zone and opposition ability (ranked 1^{st} , 10^{th} and 20^{th}) respectively. Supplementary Tables 2, 3, 4 and 5 display the mean \pm SD of match-running performance for each of the categories (playing position, pitch location, team ability rank and opposition ability rank).

Models predicted that for all playing positions and across all pitch zones, the total 208 distance covered both at home and away from home was greatest when GD was close (-1 to 209 +1) decreasing towards the extremes of GD (+5 or -5). Players also tended to decrease their 210 activity more when losing heavily as opposed to winning, this was more prominent when 211 playing away from home. Goal difference was only found to predict high speed running when 212 playing away from home showing a similar pattern to total distance covered. Teams covered 213 less distance (both total distance covered away and high speed distance at home) when playing 214 215 lower ranked teams (e.g. rank 20), whereas in comparison a team's own ability was not found to predict any physical performance across GDs. Although time scored appeared in the majority 216 of predictive models, its impact was small. Across all performance parameters (except sprint 217

distance at home) models predicted that the later into the game a goal was scored the less totaldistance, high speed distance and sprint distance away from home that was covered.

220 4. **DISCUSSION**

The aim of the present study was to investigate the effect of playing position, pitch location, 221 team ability and opposition ability on the activity profiles of English premier league players 222 across various goal differences (GD). The multi-level model suggested that activity profiles 223 changed with changes in GD in a non-linear manner and there was significant variation 224 between matches, specifically teams covered more distance and more high speed distance (at 225 home) when the score was close (e.g., +/- 2 goals). Modelling also suggested that activity 226 profiles were influenced by playing position, pitch location and opposition ability, as well as 227 the time at which goals were scored. 228

229 4.1 Goal Difference/Score line

In general, predictive modelling suggested that distance covered decreased as GD increased 230 either positively (scoring team) or negatively (conceding team), across all playing positions 231 and all pitch locations. Playing away from home this decrease was greater when teams 232 conceded goals than when teams scored (e.g. less distance was covered at -3 compared to +3233 GD), whereas at home the decrease was even for both the scoring and conceding teams. 234 Research ^{3,6,27} suggests that teams who are winning may relax their work rate, potentially 235 allowing opponents back in the game. Alternatively, although losing teams may initially 236 increase their work rate^{4,28} to get back in the game, they may quickly lose motivation to 237 238 maintain a sufficient work rate which maybe especially true when teams play away from home as shown in the findings here. From a psychological perspective, it has been suggested²⁹ that 239 240 teams move through a period of building momentum as they work towards scoring through 241 positive play to cruising (where teams try and economise effort). This often results in a decrease

in effort^{27, 29 30} once the goal has been achieved as shown in the current study. The reverse 242 maybe true when teams are losing and experiencing negative momentum, i.e., although an 243 initial surge in effort is sometimes seen to overcome this deficit (as teams search for a goal to 244 get back in the game), if the negative momentum persists, teams tend to abandon the activity 245 and reduce their effort dramatically 29,30 as seen when teams conceded more goals in the current 246 study. The current findings further support the misconception that physical activity profiles are 247 related to purely fatigue, rather than the psychological effects of the score line. This is 248 especially pertinent as recent research^{5,16} has found little support for decreases in physical 249 250 activity as a function of fatigue.

High speed running also decreased as GD increased either positively (scoring team) or 251 negatively (conceding team). Away from home, this decrease was more rapid for the conceding 252 team, whereas when playing at home the decrease was similar for both conceding and scoring 253 254 teams. As previous research considering GD as opposed to match status has been limited, it is difficult to compare results from this current study, however in general, high speed running 255 256 was at its highest when the GD was small (e.g. -1-+1) supporting previous studies which have shown that players spend a greater percentage of time performing high speed activity when 257 level, than when behind or ahead^{18,29}. In support of previous research¹⁸ the current findings 258 suggest that players may maintain their efforts to overcome negative momentum (e.g., losing 259 or conceding) whilst they perceive the goal to still be in reach (e.g., conceding only 1-2 goals). 260 However, once this goal is perceived out of reach (e.g., -3 and beyond in the current study) 261 findings suggest teams decrease their effort, especially when playing away from home. This 262 therefore suggests that although GD is a major factor in influencing player activity, the 'size' 263 of the GD and the environment (playing at home or away) may also play a role in predicting 264 player movement activity and thus should be considered by managers and coaches. 265

266 4.2 Playing Position

267 According to the predictive models, playing position influenced total distance covered both at home and away from home across all GD's. Midfielders covered more meters per minute when 268 playing both at home and away from home than either strikers (1.1 m·min⁻¹ less at home and 269 0.43 m·min⁻¹ less away from home than midfielders) or defenders (7.3 m·min⁻¹ less at home 270 and 6.8 m·min⁻¹ less away from home than midfielders). This was consistent across all GD's. 271 No significant differences were found between playing positions for either high speed running 272 or sprint distance. Indeed, it is commonplace for midfielders to cover more distance due to their 273 interlinking role between attack and defence within a team¹⁵. Strikers, on the other hand have 274 275 generally been found to cover more high speed running and sprint distance than defenders and in some cases midfielders in an attempt to capitalise on goal scoring opportunities³¹. The lack 276 277 of significant differences between players in the current study is most likely related to the 278 higher frequency of the automated tracking system used ensuring more accurate estimates of both high speed running and sprint distance, which has previously been problematic. 279

In relation to score line Redwood-Brown et al.⁸ found midfielders covered more high 280 speed running when level, defenders more when losing and attackers more when winning. A 281 similar pattern was reported by Bradley and Noakes¹¹ who found central defenders covered 282 17% less and attackers 15% more high speed running during matches that were heavily won 283 versus heavily lost (score differential ≥ 3 goals). The lack of sensitivity to the playing positions 284 maybe the reason for no significant effect of high speed running or sprint distance in the current 285 study. Thus suggesting that individual player comparisons maybe more relevant when 286 investigating the effect of score line in relation to physical activity profiles. 287

288 **4.3** Pitch Zone

All playing positions were found to cover more distance per minute in the attacking 3^{rd} both at home and away from home than either the middle 3^{rd} (12.1 m·min⁻¹ less at home and 14.1

m·min⁻¹ less away from home than attacking 3rd) or defending 3rd (7.9 m·min⁻¹ less at home 291 and 11.4 m·min⁻¹ less away from home) across all GDs. High speed running followed a similar 292 pattern with more covered in the attacking 3rd both at home and away than either the middle 293 3^{rd} (4.0 m·min⁻¹ less at home and 4.9 m·min⁻¹ less away from home than attacking 3^{rd}) or 294 defending 3rd (2.0 m·min⁻¹ less at home and 3.2 m·min⁻¹ less away from home) across all GDs. 295 296 No significant differences were found between pitch location for sprint distance covered at home, however when playing away from home, more distance was covered in the attacking 3rd 297 than either the middle 3rd (2.0m less away from home than attacking 3rd) or defending 3rd 298 $(2.01 \text{ m less away from home than attacking } 3^{\text{rd}})$ across all GDs. 299

Although research considering the interactional effect of pitch position and score line 300 is scarce, Lago⁶ did find when teams were behind they spent more time in the attacking third 301 than when in the lead potentially in search of a consolation goal if the opportunity arises. 302 Similarly, García-Rubio et al.³² found that when teams are winning they tend to play less risky 303 options, and with a more structured defence strategy placing more players between the ball and 304 305 their own goal thus reducing the amount of time, and thus distance covered in the defending 306 and middle thirds. This supports the idea that winning teams are more likely to adopt a counterattack style of play^{6,10} and therefore helps to explain why the middle 3rd had the lowest 307 values for distance covered in the current study as the majority of games end with one dominant 308 309 team.

The strategy (e.g., time spent in each pitch location) teams employ when either winning or losing maybe somewhat determined by the ability of that team. For example, winning teams have been found to maintain 'control' of the game by keeping possession especially if higher in ability^{2,9}, which contradicts the idea that teams adopt a direct style of play when winning^{2,9}. This therefore suggests that there is a need to investigate activity profiles and technical performance together especially, when considering the pitch location during different score line states as higher ability teams may be able to maintain their style of play despite other
variables (e.g., match location or evolving score)²⁸.

318 4.4 Team Ability

Models predicted that the ability of the team did not predict activity profiles of players across 319 GDs. Even though research has found teams higher in ability covered more distance than lower 320 ranked teams, especially in higher speed zones¹⁹. A possible explanation for this maybe that 321 teams are more capable than previously thought at adapting their strategy based on the evolving 322 score. A more plausible explanation is that there may not be much difference between the top 323 and bottom ranked teams in the English Premier League in terms of physical activity profiles 324 and 'ability' is better explained by a team's technical performance³³ This provides additional 325 326 support for the need to investigate both physical and technical performance together in line with individual teams, playing formations and strategies in order for managers and coaches to 327 maximum team performance. 328

329 **4.5 Opposition Ability**

Models predicted that when playing away from home, teams covered 0.09m per minute, less 330 total distance and when playing at home 0.04m less high speed distance for every decrease in 331 rank position of their opposition. For example when playing against opposition who finished 332 second in the league, teams would cover 0.09m total distance and 0.04m high speed distance 333 per minute less than when playing the top ranked team. Whereas when playing opposition 334 ranked 10th in the league teams covered 0.81m total distance and 0.36m high speed distance 335 less per minute. This was in support of previous research^{5,19} which has found players cover 336 more ground when their opposing team is higher in ability compared to medium or bottom 337 ranked teams⁴. No significant differences were found for total distance covered at home, high 338 speed running away from home or sprint distance either home or away. Lago and Dellal⁹ 339

suggested when playing against higher or lower ranked opposition, teams may bunch together at either end of the pitch reducing the total distance covered, but increasing sub-maximal and maximal activity profiles. Lago-Penas and Lago-Ballesteros³⁴ suggested that match location and quality of opposition have equal importance, for example if a lower rank teams plays at home against higher ranked opposition the influence of both these variables maybe compromised accounting for the small effect shown in the current findings.

Teams consistently reported the highest distance covered and high speed distance when 346 the game was close (e.g., -1 to +1). Although it is not always the case that these games will end 347 in a close final score, previous research has found teams cover more high speed running when 348 they play opposition of similar ability compared to lower ranked or higher ranked teams⁵. These 349 findings also support the idea that the technical performance of a team maybe more indicative 350 of their overall ability (final league position) than how far they run during a match^{4,33,35}. This 351 352 is especially true, as recent research has shown teams are able to inject sub-maximal and maximal runs towards the end of the match, showing no signs of physical fatigue⁹. 353

354 4.6 Limitations

Although the current study included playing position in the multi-level modelling, unlike more 355 recent studies only 3 categories were used. Splitting these categories further (e.g., into wide 356 and central midfielder) would further highlight any variation between playing position. It 357 would however, be interesting to investigate the extent that individual differences contribute to 358 the overall team, or in this case, the overall mean of their playing position given the amount of 359 research^{20,36} that suggests variability between players with regards performance 360 accomplishments and success and failure. Another consideration/limitation of the current 361 362 study was the definition used for score line, although the current study used a more sensitive score line definition to the traditional win, loss, draw it did not give an indication to the actual 363

evolving score line; e.g. 2-0 could be perceived by players differently to 4-2 but would havethe same GD. This should therefore be investigated in future research.

366 4.7 Perspectives and Future Directions

Goal difference was found to have a large and varied impact on the activity profiles of premier 367 league soccer players where total distance both at home and away and high speed distance 368 covered at home were greatest when the goal difference was close. Pitch zone was found to 369 have the biggest effect on activity profiles across GD being present in all but one model, this 370 was followed by playing position. Opposition ability was found to effect teams but on a much 371 smaller scale – supporting the findings that the difference in ability maybe negated when teams 372 are on their own territory³⁷. The absence of team ability in all models suggests that the physical 373 374 movement of players is less of a predictor of overall team performance than technical performance and thus both aspects should be considered when modelling player and team 375 performance. 376

One area that should be considered in future research is the impact of individual player 377 performance. The current study was not able to present individual players data with regards to 378 the impact of score line however previous work using a case study approach of one team has 379 found that players differ in their approach to different score line states²⁰. In order to achieve 380 maximum success, it may therefore be more appropriate, that in order to maximise team 381 performance, the starting eleven should be picked based on the external factors highlighted to 382 influence player performance, for example, if playing against top opposition it may be more 383 384 appropriate to select players who perform better against higher abilities, or in a negative score line states. Similarly, if some players prefer to defend a lead it may be more appropriate to sub 385 386 them on, once a lead has been established. In summary players' individual perceptions of the score line have been shown to alter players' motivation, confidence and effort¹⁷ and thus the 387

388	effect they have on their physical activity profiles. Due to the variety of results found in the
389	current study, future research should consider adopting a case study approach in order to
390	maximise player and ultimately team performance in relation to temporal factors.
391	4.8 Acknowledgments
392	We gratefully acknowledge Venatrack Ltd. for allowing access to their database and for
393	granting permission to use the data for the purposes of this research. The authors declare no
394	conflict of interest. The results of the study are presented clearly, honestly, and without
395	fabrication, falsification, or inappropriate data manipulation and do not constitute
396	endorsement by the American College of Sports Medicine.
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	

408 **<u>References</u>**

409	1.	Clemente FM, Couceiro MS, Martins FM, Mendes RS. Using network metrics in
410		soccer: A macro-analysis. J Hum Kinet. 2015;45(1):123-34.
411	2.	Jones PD, James N, Mellalieu SD. Possession as a performance indicator in soccer.
412		Int J Perform Anal Sport. 2004;4(1):98-102.
413	3.	Paul DJ, Bradley PS, Nassis GP. Factors affecting match running performance of elite
414		soccer players: Shedding some light on the complexity. Int J Sports Physiol Perform.
415		2015;10(4):516-9.
416	4.	Castellano J, Blanco-Villaseñor A, Alvarez D. Contextual variables and time-motion
417		analysis in soccer. Int J Sports Med. 2011;32(06):415-21.
418	5.	Hewitt A, Norton K, Lyons K. Movement profiles of elite women soccer players
419		during international matches and the effect of opposition's team ranking. J Sports Sci.
420		2014;32(20):1874-80.
421	6.	Lago C. The influence of match location, quality of opposition, and match status on
422		possession strategies in professional association football. J Sports Sci.
423		2009;27(13):1463-9.
424	7.	O'Donoghue P, Robinson G. Score-line effect on work-rate in English FA Premier
425		League soccer. Int J Perform Anal Sport. 2016;16(3):910-23.
426	8.	Redwood-Brown A, O'Donoghue P, Robinson G, Neilson P. The effect of score-line
427		on work-rate in English FA Premier League soccer. Int J Perform Anal Sport.
428		2012;12(2):258-71.
429	9.	Taylor BJ, Mellalieu DS, James N. A comparison of individual and unit tactical
430		behaviour and team strategy in professional soccer. Int J Perform Anal Sport.
431		2005;5(2):87-101.

432	10. Andrzejewski M, Konefał M, Chmura P, Kowalczuk E, Chmura J. Match outcome
433	and distances covered at various speeds in match play by elite German soccer players.
434	Int J Perform Anal Sport. 2016;16(3):817-28.
435	11. Bradley PS, Noakes TD. Match running performance fluctuations in elite soccer:
436	indicative of fatigue, pacing or situational influences?. J Sports Sci.
437	2013;31(15):1627-38.
438	12. Lago-Peñas C, Rey E, Lago-Ballesteros J. The influence of effective playing time on
439	physical demands of elite soccer players. Open Sports Sci J. 2012;5:188-92.
440	13. Lago-Peñas C, Gómez-López M. How important is it to score a goal? The influence
441	of the scoreline on match performance in elite soccer. Percept Mot Skills.
442	2014;119(3):774-84.
443	14. O'Donoghue P, Robinson G. Validity of the Prozone3 R Player Tracking System: A
444	Preliminary Report. Int J Comput Sci Sport. 2009;8(1):37-53.
445	15. Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity
446	activity in Premier League soccer. Int J Perform Anal Sport. 2009;30(03):205-12.
447	16. Sparks M, Coetzee B, Gabbett JT. Variations in high-intensity running and fatigue
448	during semi-professional soccer matches. Int J Perform Anal Sport. 2016;16(1):122-
449	32.
450	17. Redwood-Brown AJ, Sunderland CA, Minniti AM, O'Donoghue PG. Perceptions of
451	psychological momentum of elite soccer players. Int J Sport Exerc Psychol.
452	2017;13:1-7.
453	18. Shaw J, O'Donoghue PG. The effect of scoreline on work rate in amateur soccer. In
454	O'Donoghue, PG and Hughes, MD, editors. Notational analysis of sport VI. Cardiff:
455	CPA Press, UWIC; 2004:84-91.

456	19.	Andersen LJ, Randers MB, Westh K., et al. Football as a treatment for hypertension
457		in untrained 30–55-year-old men: a prospective randomized study. Scand J Med
458		Sci Sports. 2010;20(s1):98-102.
459	20.	Redwood-Brown A, Bussell C, Singh Bharaj HA. The impact of different standards of
460		opponents on observed player performance in the English Premier League. J. Hum.
461		Sports Exerc. 2012;7(2).
462	21.	Carling C, Bloomfield J, Nelsen L, Reilly T. The role of motion analysis in elite
463		soccer. Sports Med. 2008;38(10):839-62.
464	22.	Bloomfield J, Polman R, O'Donoghue P. The 'Bloomfield Movement Classification':
465		motion analysis of individual players in dynamic movement sports. Int J Perform
466		Anal Sport. 2004;4(2):20-31.
467	23.	Redwood-Brown A, Cranton W, Sunderland C. Validation of a real-time video
468		analysis system for soccer. Int J Sports Med. 2012;33(08):635-40.
469	24.	Taylor JB, Mellalieu SD, James N, Shearer DA. The influence of match location,
470		quality of opposition, and match status on technical performance in professional
471		association football. J Sports Sci. 2008;26(9):885-95.
472	25.	Ridgewell A. Passing patterns before and after scoring in the 2010 FIFA World Cup.
473		Int J Perform Anal Sport. 2011;11(3):562-74.
474	26.	Twisk JW. Applied longitudinal data analysis for epidemiology: a practical guide.
475		Cambridge University Press; 2013. 336 p.
476	27.	O'Donoghue P, Tenga A. The effect of score-line on work rate in elite soccer.
477		J Sports Sci. 2001;19(1):25-6.
478	28.	Lago-Peñas C, Dellal A. Ball possession strategies in elite soccer according to the
479		evolution of the match-score: the influence of situational variables. J Hum Kinet.
480		2010;25:93-100.

481	29.	Briki W, Den Hartigh RJ, Gernigon C. Psychological momentum in sport: towards a
482		complex and dynamic perspective. French Psych. 2016;61(4):291-302.
483	30.	Carver C. Pleasure as a sign you can attend to something else: Placing positive
484		feelings within a general model of affect. Cogn Emot. 2003;17(2):241-61.
485	31.	Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal
486		situations in professional football. J Sports Sci. 2012;30(7):625-31.
487	32.	García-Rubio J, Gómez MÁ, Lago-Peñas C, Ibáñez JS. Effect of match venue,
488		scoring first and quality of opposition on match outcome in the UEFA Champions
489		League. Int J Perform Anal Sport. 2015;15(2):527-39.
490	33.	Rampinini E, Impellizzeri FM, Castagna C, Azzalin A, Ferrari BD, Wisløff UL.
491		Effect of match-related fatigue on short-passing ability in young soccer players. Med.
492		Sci. Sports Exerc. 2008;40(5):934-42.
493	34.	Lago-Peñas C, Lago-Ballesteros J. Game location and team quality effects on
494		performance profiles in professional soccer. J Sports Sci Med. 2011 Sep;10(3):465.
495	35.	Bush M, Barnes C, Archer DT, Hogg B, Bradley PS. Evolution of match performance
496		parameters for various playing positions in the English Premier League. Hum Mov
497		Sci. 2015;39:1-1.
498	36.	Iso-Ahola SE, Dotson CO. Psychological momentum: Why success breeds success.
499		Rev. Gen. Psych. 2014;18(1):19.
500	37.	Pollard R, Gómez MA. Home advantage in football in South-West Europe: Long-
501		term trends, regional variation, and team differences. Eur J Sport Sci. 2009;9(6):341-
502		52.

38. TABLE 1. Mean activity profiles per player for each club included in the analysis in a
winning, drawing and losing score line state.

	Number Games Played				W	INNING		DR	AWING			LOSING	
Team		Number of Players Included	Total DC (m)	Total HSR (m)	Total Sprint Dist. (m)	Total DC (m)	Total HSR (m)	Total Sprint Dist. (m)	Total DC (m)	Total HSR (m)	Total Sprin Dist. (m)		
1	38	32	9885	422	169	10332	397	97	9896	372	118		
2	38	27	9822	403	135	10294	386	87	9827	386	126		
3	38	31	9776	423	137	10077	371	114	9889	468	161		
4	38	30	9600	439	156	10153	402	114	9685	387	147		
5	35	29	9801	395	94	10338	396	77	9693	430	90		
6	38	30	10265	439	126	10539	399	93	10007	416	124		
7	37	29	9796	381	84	10217	355	85	9929	371	91		
8	37	25	9555	379	120	10198	404	99	9927	403	139		
9	38	26	9919	354	97	10425	316	92	9684	335	109		
10	38	32	10073	423	143	10385	383	78	10238	429	168		
11	37	27	9806	324	100	10530	569	105	9981	369	118		
12	38	28	10056	382	106	10504	435	106	10198	444	94		
13	38	36	9796	412	130	10005	346	68	9807	370	134		
14	38	23	9887	348	74	10365	338	69	9905	307	74		
15	38	28	9690	393	102	10339	449	184	9869	541	150		
16	38	25	9929	413	105	10179	386	102	10118	428	147		
17	38	31	9790	321	103	10187	434	59	9646	339	65		
18	37	25	9652	361	112	10266	399	77	9892	399	101		
19	38	24	9854	377	80	9966	317	63	9729	342	84		
20	37	32	10109	350	79	10482	404	87	10077	452	134		
TOTAL	376	570	9853.5	387.6	117.2	10289.6	394.9	98.6	9900.2	399.8	123.7		
SD		3	174.7	35.6	32.6	166.8	54.9	36.8	169.6	54.2	36.9		

40.

TABLE 2. Estimated models for total distance covered per minute both home and away.

Distance Cover	ed – Home		Distance Cover	Distance Covered – Away					
Fixed Effects	Coefficient (m)	SE (m)	Fixed Effects	Coefficient (m)	SE (m)				
Constant	118.527	0.646	Constant	123.625	1.088				
Goal Difference	0.601	0.189	Goal Difference	1.388	0.217				
Goal Difference ²	-0.462	0.072	Goal Difference ²	-0.362	0.083				
Midfielder	7.275	0.554	Midfielder	6.75	0.601				
Striker	1.116	0.557	Striker	0.433	0.605				
Time Scored	-0.069	0.01	Time Scored	-0.087	0.011				
Defending 3 rd	-7.884	0.558	Defending 3 rd	-11.436	0.606				
Middle 3 rd	-12.082	0.553	Middle 3 rd	-14.081	0.602				
			Opposition Ability	-0.204	0.078				
Random Effects	Variance	SE	Random Effects	Variance	SE				
Between Game (Repeat)	349.365	6.146	Between Game (Repeat)	407.802	7.215				
Within Game (Match ID)	27.199	3.589	Within Game (Match ID)	44.289	5.217				

Notes. Intercept estimates at (Goal Difference 0) for each playing position (reference defender), pitch location (reference attacking 3rd), team ability (rank 1), opposition ability (rank 1) and time scored (minute 1).

TABLE 3. Estimated models for total high speed distance covered per minute both home and

away.

High Speed Run	ning – Home		High Speed Runn	ing – Away	
Fixed Effects	Coefficient (m)	SE (m)	Fixed Effects	Coefficient (m)	SE (m)
Constant	6.654	0.238	Constant	7.376	0.289
Defending 3rd	-1.971	0.174	Goal Difference	0.21	0.103
Middle 3 rd	-4.011	0.168	Goal Difference ²	-0.112	0.042
Opposition Ability	-0.035	0.017	Defending 3 rd	-3.221	0.302
Time Scored	0.011	0.003	Middle 3 rd	-4.904	0.294
			Time Scored	0.01	0.005
Random Effects	Variance	SE	Random Effects	Variance	SE
Between Game (Repeat)	29.707	0.554	Between Game (Repeat)	88.651	1.664
Within Game (Match ID)	1.279	0.232	Within Game (Match ID)	6.298	0.904

Notes. Intercept estimates at (Goal Difference 0) for each playing position (reference defender), pitch location (reference attacking 3rd), team ability (rank 1), opposition ability (rank 1) and time scored (minute 1).

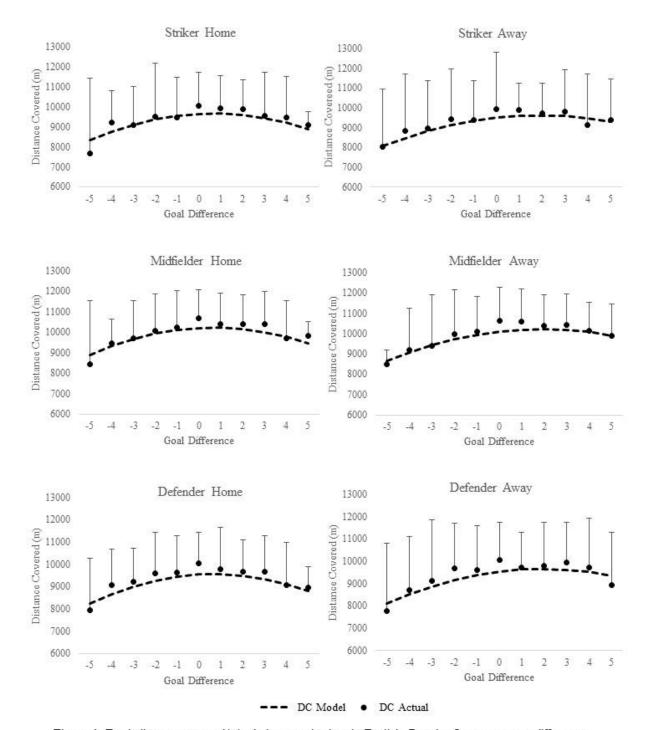


Figure 1: Total distance covered(m) during match-play in English Premier League across difference goal differences. Curves are based on predicted distances covered from multi-level models of longitudinal data. Points are based on the 'raw' distance covered data (mean \pm SD). Data are presented by playing position both at home and away during match-play.

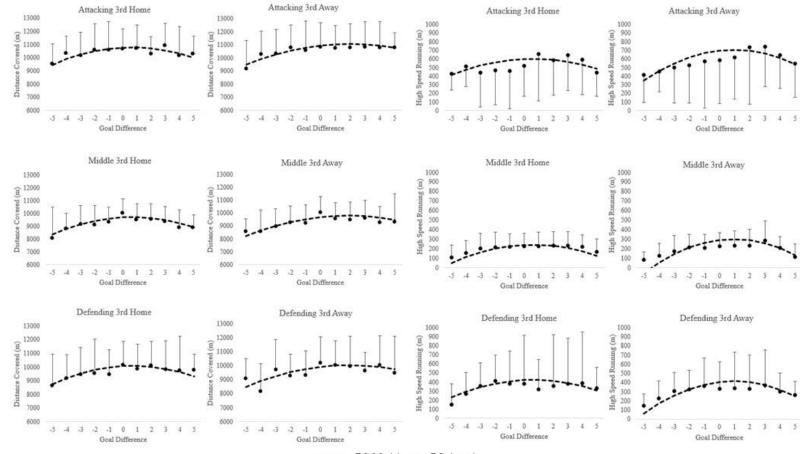


Figure 2: Total distance covered (m) and total high speed distance covered (m) during match-play in English Premier League across difference goal differences. Curves are based on predicted distances covered from multi-level models of longitudinal data. Points are based on the 'raw' distance covered data (mean \pm SD). Data are presented by pitch location during match-play.

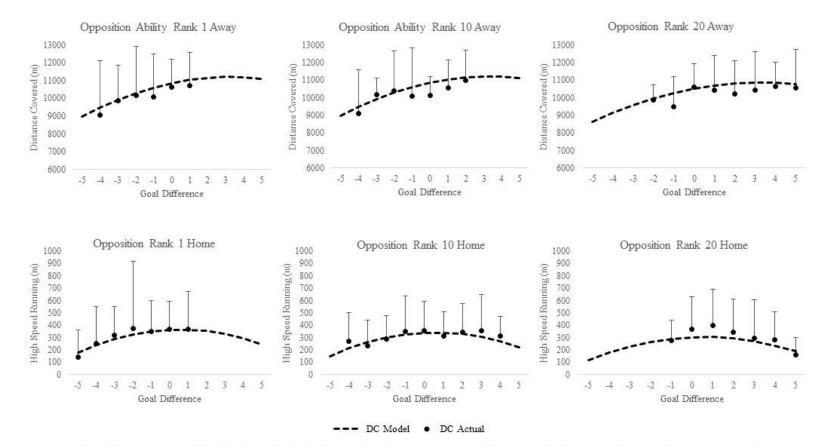


Figure 3: Total distance covered (m) during match-play in English Premier League across difference goal differences. Curves are based on predicted distances covered from multi-level models of longitudinal data. Points are based on the 'raw' distance covered data (mean \pm SD). Data are presented for opposition ability rank that were significant predictors of performance variables during match play within the model.

Team Ranked	Number Games Played	Number of Players Included	DC/90 mins (m)	DC/ min (m)	HSR/90 mins (m)	HSR /Min (m)	Sprint Distance/ 90 mins (m)	Sprint Distance /Min (m)	TOTAL HIA/90 mins (m)	HIA/ Min (m)
1	38	32	10030	111.5	399	4.4	127	1.4	527	5.9
2	38	27	9965	110.7	393	4.4	117	1.3	511	5.7
3	38	31	9907	110.1	414	4.6	133	1.5	548	6.1
4	38	30	9813	109.0	413	4.6	138	1.5	552	6.1
5	35	29	9966	110.7	403	4.5	87	1.0	490	5.5
6	38	30	10298	114.4	418	4.7	111	1.2	530	5.9
7	37	29	9983	110.9	369	4.1	86	1.0	455	5.1
8	37	25	9915	110.2	396	4.4	116	1.3	513	5.7
9	38	26	10031	111.5	336	3.7	99	1.1	435	4.8
10	38	32	10238	113.8	409	4.5	120	1.3	529	5.8
11	37	27	10098	112.1	465	5.2	109	1.3	574	6.5
12	38	28	10260	114.0	419	4.7	103	1.1	522	5.8
13	38	36	9880	109.8	376	4.2	104	1.2	481	5.4
14	38	23	10071	111.9	336	3.7	71	0.8	408	4.5
15	38	28	9976	110.9	451	5.0	150	1.7	601	6.7
16	38	25	10070	111.9	405	4.5	113	1.3	518	5.8
17	38	31	9895	110.0	364	4.0	79	0.9	444	4.9
18	37	25	9923	110.3	386	4.3	96	1.1	482	5.4
19	38	24	9854	109.5	345	3.8	74	0.8	419	4.7
20	37	32	10219	113.6	403	4.5	99	1.1	503	5.6
TOTAL	376	570	10020	111.3	395	4.4	107.0	1.2	502.6	5.6
SD	0.8	3.3	141.7	1.6	33.9	0.4	21.3	0.2	51.0	0.6

TABLE 1: Mean activity profiles for each club included in the analysis.

TABLE 2: Mean \pm SD match-running performance characteristics by goal difference related

			HOME			AWAY	
Goal Difference	Playing Position	Total Distance/ 90 minutes (m)	High-Speed Distance / 90 minutes (m)	Sprint Distance/ 90 minutes (m)	Total Distance/ 90 minutes (m)	High-Speed Distance / 90 minutes (m)	Sprint Distance/ 90 minutes (m)
	Striker	7658 ± 3786	561 ± 454	106 ± 116	8047 ± 2897	248 ± 220	76 ± 95
-5	Midfielder	8430 ± 3111	400 ± 242	97 ± 70	8485 ± 720	380 ± 281	77 ± 73
	Defender	7948 ± 2313	414 ± 279	80 ± 73	7761 ± 3059	279 ± 256	57 ± 67
	Striker	9232 ± 1576	545 ± 577	283 ± 280	8813 ± 2912	357 ± 217	162 ± 364
-4	Midfielder	9461 ± 1159	367 ± 255	92 ± 56	9177 ± 2052	389 ± 358	71 ± 77
	Defender	9059 ± 1626	414 ± 361	108 ± 186	8689 ± 2411	438 ± 597	95 ± 128
	Striker	9089 ± 1924	346 ± 401	233 ± 501	8973 ± 2387	351 ± 304	107 ± 164
-3	Midfielder	9712 ± 1809	473 ± 524	194 ± 301	9395 ± 2533	384 ± 342	102 ± 175
	Defender	9222 ± 1502	414 ± 330	114 ± 160	9120 ± 2735	386 ± 523	128 ± 176
	Striker	9486 ± 2680	343 ± 419	97 ± 124	9440 ± 2530	376 ± 662	185 ± 943
-2	Midfielder	10076 ± 1766	395 ± 368	108 ± 166	9973 ± 2167	359 ± 330	134 ± 360
	Defender	9585 ± 1831	407 ± 359	106 ± 133	9684 ± 2027	396 ± 475	456 ± 1328
	Striker	9475 ± 1982	367 ± 511	118 ± 371	9372 ± 2004	352 ± 498	138 ± 422
-1	Midfielder	10212 ± 1824	363 ± 384	147 ± 683	10080 ± 1749	360 ± 285	96 ± 195
	Defender	9633 ± 1641	345 ± 334	107 ± 133	9601 ± 2007	389 ± 616	151 ± 928
	Striker	10058 ± 1665	393 ± 532	104 ± 293	9928 ± 2858	473 ± 700	116 ± 254
0	Midfielder	10682 ± 1375	389 ± 317	134 ± 686	10640 ± 1632	398 ± 397	118 ± 844
	Defender	10055 ± 1383	352 ± 289	153 ± 485	10060 ± 1691	371 ± 659	128 ± 627
	Striker	9926 ± 1626	426 ± 439	145 ± 249	9898 ± 1333	414 ± 563	128 ± 166
1	Midfielder	10383 ± 1536	414 ± 728	253 ± 269	10594 ± 1621	438 ± 583	130 ± 315
	Defender	9774 ± 1870	398 ± 512	133 ± 170	9708 ± 1586	335 ± 393	112 ± 200
	Striker	9866 ± 1492	426 ± 520	146 ± 194	9724 ± 1521	508 ± 552	191 ± 299
2	Midfielder	10380 ± 1445	387 ± 337	87 ± 97	10396 ± 1525	438 ± 464	323 ± 1208
	Defender	9653 ± 1440	416 ± 366	112 ± 170	9780 ± 1971	422 ± 745	159 ± 336
	Striker	9541 ± 2166	507 ± 548	157 ± 225	9791 ± 2135	652 ± 647	228 ± 214
3	Midfielder	10387 ± 1607	482 ± 504	189 ± 368	10433 ± 1506	520 ± 630	200 ± 331
	Defender	9661 ± 1626	390 ± 384	163 ± 286	9946 ± 1788	414 ± 507	279 ± 638
	Striker	9464 ± 2057	474 ± 535	137 ± 161	9126 ± 2589	519 ± 561	255 ± 472
4	Midfielder	9687 ± 1835	389 ± 358	71 ± 77	10150 ± 1386	469 ± 435	165 ± 254
	Defender	9083 ± 1879	345 ± 360	125 ± 180	9730 ± 2207	348 ± 343	237 ± 280
	Striker	9087 ± 661	330 ± 249	68 ± 79	9380 ± 2073	409 ± 232	179 ± 141
5	Midfielder	9814 ± 696	480 ± 369	$149.\pm 161$	9902 ± 1535	404 ± 381	89 ± 100
	Defender	8970 ± 903	337 ± 305	97 ± 156	8941 ± 2350	310 ± 298	46 ± 28

to position and match location (home or away).

			HOME			AWAY	
Goal Difference	Pitch Position	Total Distance/ 90 minutes (m)	High-Speed Distance / 90 minutes (m)	Sprint Distance/ 90 minutes (m)	Total Distance/ 90 minutes (m)	High-Speed Distance / 90 minutes (m)	Sprint Distance/ 90 minutes (m)
	Attacking	9531 ± 1521	425 ± 186	132 ± 79	9132 ± 2200.4	417 ± 323	110 ± 157
-5	Middle	8027 ± 2471	106 ± 133	45 ± 42	8603 ± 975.6	81 ± 83	43 ± 35
	Defending	8647 ± 2276	149 ± 231	89 ± 70	9065 ± 1444.6	146 ± 125	43 ± 28
	Attacking	10313 ± 1322	511 ± 234	161 ± 173	10263 ± 1790.8	452 ± 235	130 ± 130
-4	Middle	8771 ± 1243	157 ± 130	46 ± 64	8574 ± 1690.3	128 ± 127	35 ± 60
	Defending	9186 ± 1702	268 ± 237	173 ± 186	8149 ± 2010.6	223 ± 192	68 ± 57
	Attacking	10159 ± 1759	443 ± 401	157 ± 145	10338 ± 1817.0	498 ± 412	161 ± 226
-3	Middle	9146 ± 1459	201 ± 160	114 ± 281	8993 ± 1343.2	174 ± 164	54 ± 80
	Defending	9454 ± 1955	355 ± 254	231 ± 400	9692 ± 2159.9	309 ± 201	122 ± 142
	Attacking	10554 ± 2025	469 ± 404	111 ± 139	10755 ± 1780.0	528 ± 439	207 ± 423
-2	Middle	9075 ± 1521	215 ± 155	57 ± 92	9285 ± 1266.8	216 ± 135	54 ± 80
	Defending	9540 ± 2510	413 ± 285	152 ± 177	9236 ± 1573.6	326 ± 210	120 ± 297
	Attacking	10575 ± 2149	459.± 435	117 ± 211	10586 ± 2228.1	568 ± 539	158 ± 252
-1	Middle	9300 ± 1203	219 ± 134	50 ± 74	9221 ± 1410.12	206 ± 142	51 ± 155
	Defending	9455 ± 1798	378 ± 363	124 ± 166	9259 ± 1794.5	360 ± 309	85 ± 289
	Attacking	10655 ± 1539	522 ± 354	163 ± 362	10798 ± 1907.8	587 ± 508	196 ± 358
0	Middle	9983 ± 1160	228 ± 134	45 ± 67	10023 ± 1258.7	228 ± 141	49 ± 154
	Defending	10157 ± 1699	383 ± 529	103 ± 318	10142 ± 1896.8	329 ± 295	67 ± 103
	Attacking	10679 ± 1814	658 ± 547	210 ± 273	10742 ± 1734.4	616 ± 485	219 ± 249
1	Middle	9517 ± 1244	223 ± 147	54 ± 70	9557 ± 1236.9	228 ± 157	60 ± 148
	Defending	9881 ± 1780	318 ± 331	85 ± 179	10036 ± 1746.2	334 ± 398	136 ± 382
	Attacking	10267 ± 1322	583 ± 404	182 ± 176	10769 ± 1839.4	736 ± 660	320 ± 333
2	Middle	9527 ±1219	233 ± 146	55 ± 66	9488 ± 1384.4	234 ± 171	78 ± 137
	Defending	10110 ± 1778	355 ± 564	91 ± 179	9917 ± 2176.2	333 ± 367	114 ± 214
	Attacking	10894 ± 1710	640 ± 408	222 ± 195	10819 ± 1970.1	739 ± 462	383 ± 419
3	Middle	9367 ± 1160	233 ± 145	79 ± 101	9627 ± 1348.5	286 ± 202	86 ± 96
	Defending	9832 ± 2098	380 ± 504	151 ± 343	9590 ± 1361.8	369 ± 390	121 ± 159
	Attacking	10163 ± 2211	594 ± 406	197 ± 183	10771 ± 1992.6	641 ± 382	380 ± 423
4	Middle	8874 ± 1376	219 ± 127	51 ± 49	9293 ± 1200.8	207 ± 119	69 ± 44
	Defending	9753 ± 2470	388 ± 563	71 ± 151	10034 ± 2109.5	301 ± 203	149 ± 369
	Attacking	10282 ± 1364	443 ± 279	185 ± 177	10784 ± 1126.6	501 ± 200 544 ± 394	218 ± 130
5	Middle	8882 ± 1007	163 ± 139	39 ± 37	9341 ± 2166.0	110 ± 136	58 ± 49
2	Defending	9795 ± 1135	330 ± 228	153 ± 164	9477 ± 2596.5	110 ± 130 262 ± 146	69 ± 84

to pitch location and match location (home and away).

TABLE 4: Mean \pm SD match-running performance characteristics by goal difference and

Goal Difference			HOME	AWAY			
	Rank Opposition Ability	Total Distance/ 90 minutes (m)	High-Speed Distance / 90 minutes (m)	Sprint Distance/ 90 minutes (m)	Total Distance/ 90 minutes (m)	High-Speed Distance / 90 minutes (m)	Sprint Distance/ 90 minutes (m)
	Rank 1	6788 ± 3196	145.±216	234 ± 0			
-5	Rank 10	0,00 _ 01,0	1.01_210				
5	Rank 20						
	Rank 1	9579 ± 2269	249 ± 299	213 ± 265	9065 ± 3059	346 ± 219	138 ± 161
-4	Rank 10	9643 ± 2700	272 ± 229	130 ± 155	9112 ± 2461	303 ± 0	0 ± 0
	Rank 20						
	Rank 1	9586 ± 1434	321 ± 231	106 ± 139	9848 ± 2033	466 ± 591	148 ± 269
-3	Rank 10	9563 ± 2233	235 ± 203	253 ± 359	10158 ± 956	426 ± 259	63 ± 58
	Rank 20						
	Rank 1	9946 ± 1417	374 ± 543	83 ± 70	10145 ± 2787	435 ± 332	128 ± 188
-2	Rank 10	10398 ± 1678	288 ± 187	165 ± 359	10396 ± 2277	334 ± 364	85 ± 89
	Rank 20				9874 ± 877	350 ± 216	99 ± 149
	Rank 1	9845 ± 1595	349 ± 350	101 ± 166	10067 ± 2442	415 ± 502	97 ± 139
-1	Rank 10	9684 ± 1317	351 ± 286	99.±154	10102 ± 2738	277 ± 230	70 ± 73
	Rank 20	9625 ± 2287	274 ± 164	75 ± 104	9471 ± 1757	337 ± 355	62 ± 51
	Rank 1	10320 ± 1039	368 ± 224	91 ± 102	10637 ± 1562	481 ± 683	104 ± 158
0	Rank 10	10381 ± 1443	353 ± 242	75 ± 108	10153 ± 1073	340 ± 193	88 ± 123
	Rank 20	10149 ± 1359	370 ± 258	107 ± 157	10627 ± 1307	421 ± 285	120 ± 235
	Rank 1	9848 ± 2473	368 ± 306	224 ± 221	10726 ± 1862	368 ± 352	121 ± 158
1	Rank 10	10015 ± 927	314 ± 192	160 186	10557 ± 1606	482 ± 538	160 ± 186
	Rank 20	10304 ± 1542	396 ± 293	128 ± 151	10420 ± 1991	462 ± 574	186 ± 449
	Rank 1						
2	Rank 10	10039 ± 1130	346 ± 228	93 ± 81	11009 ± 1687	321 ± 233	122 ± 121
	Rank 20	10254 ± 1511	343 ± 271	174 ± 199	10224 ± 1871	436 ± 397	170 ± 254
	Rank 1						
3	Rank 10	10379 ± 1986	357 ± 293	225 ± 246			
	Rank 20	11104 ± 1749	294 ± 310	273 ± 213	10444 ± 2189	394 ± 382	258 ± 378
	Rank 1						
4	Rank 10	10600 ± 2542	315 ± 153	57 ± 26			
	Rank 20	10520 ± 1344	284 ± 225	122 ± 153	10646 ± 1369	295 ± 307	45 ± 0
	Rank 1						
5	Rank 10						
	Rank 20	10390 ± 1793	161 ± 136	61 ± 83	10574 ± 2163	332 ± 148	108 ± 99

opposition ability (finish position in the EPL).

TABLE 5: Mean \pm SD match-running performance characteristics by goal difference and

team ability (finish position in the EPL).

			HOME		AWAY			
Goal Difference	Rank Team Ability	Total Distance/ 90 minutes	High-Speed Distance / 90 minutes	Sprint Distance/ 90 minutes	Total Distance/ 90 minutes	High-Speed Distance / 90 minutes	Sprint Distance/ 90 minutes	
	Rank 1							
-5	Rank 10							
	Rank 20	10408.6 ± 1512.8	409.6 ± 219.3	73.6 ± 52.3	9826.8 ± 1509.8	136.9 ± 71.7	15.8 ± 10.3	
	Rank 1							
-4	Rank 10				9928.8 ± 1023.1	401.8 ± 210.9	104.6 ± 147.5	
	Rank 20	10071.4 ± 2442.6	460.1 ± 525.9	57.5 ± 26.4	9856.7 ± 971.8	406.2 ± 167.6	48.5 ± 29.4	
	Rank 1							
-3	Rank 10				9878.9 ± 1142.2	416.4 ± 336.0	145.9 ± 192.2	
	Rank 20	9732.8 ± 1483.1	409.6 ± 368.1	155.1 ± 188.9	11285.7 ± 2345.9	359.9 ± 269.9	119.1 ± 150.1	
	Rank 1							
-2	Rank 10	8586.4 ± 3251.2	329.5 ± 146.9	97.9 ± 75.3	10265.3 ± 2404.0	313.3 ± 211.9	110.8 ± 156.4	
	Rank 20	10164.7 ± 2181.5	493.5 ± 602.1	124.6 ± 188.9	10309.9 ± 1607.4	335.7 ± 231.3	70.9 ± 81.7	
	Rank 1	9517.9 ± 1043.2	343.3 ± 315.9		8886.7 ± 1650.6	303.5 ± 231.0	158.6 ± 138.5	
-1	Rank 10	10237.5 ± 2078.4	379.1 ± 282.1	121.7 ± 173.4	9962.6 ± 1332.3	321.6 ± 260.6	71.1 ± 74.8	
	Rank 20	10082.4 ± 2353.9	405.6 ± 330.3	90.5 ± 83.3	9914.2 ± 1956.1	362.5 ± 238.2	86.4 ± 89.6	
	Rank 1	10418.1 ± 1334.4	424.7 ± 308.4		10250.5 ± 1116.9	371.9 ± 261.6	98.9 ± 167.7	
0	Rank 10	10271.1 ± 1260.1	363.1 ± 276.3	75.9 ± 91.1	10487.7 1516.9	359.5 ± 277.0	80.8 ± 137.9	
	Rank 20	10513.7 ± 1144.9	411.7 ± 265.1	79.2 ± 80.7	10448.9 ± 1373.3	397.7 ± 312.2	96.4 ± 160.6	
	Rank 1	10126.8 ± 1533.4	418.8 ± 318.6		10015.7 ± 1324.3	359.1 ± 252.9	83.3 ± 96.4	
1	Rank 10	10321.2 ± 2163.3	346.2 ± 431.4	97.8 ± 192.3	10144.7 1390.4	393.1 ± 338.8	109.1 ± 148.3	
	Rank 20	9897.0 ± 1659.4	358.6 ± 403.7	63.5 ± 68.1	10122.6 ± 1725.0	412.1 ± 414.8	135.3 ± 218.9	
	Rank 1	9979.8 ± 1565.9	426.4 ± 317.8		10040.4 ± 1505.3	350.3 ± 252.3	93.1 ± 86.8	
2	Rank 10	9814.2 ± 1274.5	185.5 ± 147.8	93.8 ± 86.4	10747.9 1268.8	327.5 ± 242.6	82.5 ± 101.9	
	Rank 20	10039.2 ± 1279.9	360.2 ± 240.6	74.6 ± 130.4				
	Rank 1	10133.8 ± 1913.1	358.2 ± 313.9		9977.1 ± 1137.8	416.2 ± 424.9	142.5 ± 163.1	
3	Rank 10	10384.3 ± 650.2	379.7 ± 208.8	128.9 ± 76.6	11165.7 2165.4	396.3 ± 371.0	283.1 ± 155.	
	Rank 20							
	Rank 1	9909.9 ± 2186.7	351.5 ± 322.3		10078.9 ± 2007.5	431.3 ± 368.3	$160.1 \pm 142.$	
4	Rank 10	9161.8 ± 1529.2	230.0 ± 204.9	191.9 ± 0.0	10585.8 ± 1729.5	180.1 ± 234.2	0.0 ± 0.0	
	Rank 20							
	Rank 1				9001.9 ± 2121.3	304.2 ± 426.3	26.1 ± 0.0	
5	Rank 10							
	Rank 20							