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Finite Element Analysis of Titanium Alloy-Graphene based mandible 

plate 

Titanium alloy based maxillofacial plates and implants are widely used in 

fracture treatment and reconstructions. Filler materials Graphene 

Nanoplatlets(GNPs) were used in Titanium alloy maxillofacial plate and a Finite 

Element Model (FEM) was designed to reconstruct a fractured human mandible. 

50N and 500N bite forces were applied on the mandible and stress distribution 

using Von mises failure theory across the plate sections was analyzed. A pure 

plate was critically stressed at a section near the mandible fracture region for a 

Von mises stress of nearly 27.5GPa while this stress got reduced by nearly 10%- 

22% with the presence of minor composition of GNPs in the plate. GNPs 

orientation in parallel (21.1 GPa) to the plate axis were more effective in 

comparison to other orientations(900,450 and 1350) and the location variation of 

these GNPs along the plate had no significant effect on the stress distribution. 

The fatigue analyses showed that, under these stresses and forces the plate with 

GNP was able to endure for nearly 7000 days, while pure Titanium plate could 

fail by fatigue in approximately 70 days. Hence, presence of minor compositions 

of GNPs could enhance endurance life of the Titanium plate by reducing stress 

concentrations at critical sections of the plate. 
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Introduction 

Exceptional mechanical properties with smaller mass density of graphene (Potenza et al. 

2017; Papageorgiou et al. 2017) material has attracted lot of interest among scientists 

for improving the properties of biomedical implant materials. Biomedical implants 

(Pacifici et al. 2016; Azevedo and Hippert 2002) made up of different types of metal 

alloys are being widely used for orthopaedic, dental, maxillofacial and craniofacial 

reconstruction applications. Size and weight reduction for implants has always been a 

major concern among surgeons and scientists, for which composite material 

development has widely been explored over the years. Composite filler material must 

possess high strength, lower mass and biocompatibility for its suitability as biomedical 



implant filler. Carbon materials (Mathur et al. 2008; Jindal et al, 2014; Papageorgiou et 

al. 2017) in the form of Carbon Nanotubes(CNTs) and Graphene possess high 

mechanical strength and smaller size. Graphene has shown tremendous potential for 

enhancing mechanical properties of polymer (Mathur et al. 2008; Jindal et al. 2015) and 

metal (Bakshi et al. 2010) composite materials without altering their mass significantly. 

Graphene can be used experimentally in multiple forms (Papageorgiou et al. 2017) such 

as microplates, nanoplates, oxides, nanosheets etc. On a bulk level, Graphene (Potenza 

et al. 2017; Liu et al. 2012, Azevedo and Hippert 2002) has a thermal conductivity of 

3000W/mK, elastic modulus nearly 1TPa, ultimate tensile strength 130GPa, shear 

modulus of 53 GPa, Poisson’s ratio of 0.19 and mass density of nearly 700kg/m3. These 

major properties of graphene play an important role for enhancement of mechanical 

properties of any composite material. All these properties of graphene are dependent 

upon chirality, layer thickness, orientation, direction of loading, forms etc. hence lot of 

variations (Sakhaee-Pour 2009; Zheng et al. 2014; Politano and Chiarello 2015;) based 

on these parameters have also been reported. Graphene and its various forms have 

shown biocompatibility (Reina et al. 2017) for different applications like drug delivery, 

tissue engineering, bio sensing and implants. The ability of graphene to improve the 

mechanical and biological (Gu et al. 2014) properties of implants or scaffold materials, 

by promoting adhesion, proliferation, and osteogenic differentiation have also been 

demonstrated in several studies. Graphene coated nitinol (Podila et al. 2013) has been 

proposed as a viable candidate for stents, however, numerous challenges remain due to 

exogenous material cytotoxicity, bio- and hemo-compatibility. The metallic nature of 

these alloys results in poor bio- and hemo-compatibility due to lack of cell adhesion, 

proliferation, and thrombosis.  



Among the bio-medical implants, Titanium alloy(Ti-6Al-4V) (Niinomi 1998; 

Pacifici et al. 2016) based maxillofacial plates are widely used for jaw fracture 

treatment and reconstructions. Based on the method of manufacturing of these Titanium 

alloy plates their elastic moduli and fatigue strength vary between 110-114 GPa and 

600-816 MPa respectively. Apart from the basic Ti-6Al-4V, various other alloys like 

Ti-5Al-2.5Fe, Ti-6Al-7Nb etc. have also been developed to improve other properties 

like corrosion resistance, fatigue strength etc. Plates of variable thickness and lengths 

are used, based on the type of fractures. Plates need to be evaluated for strength under 

various jaw movement conditions for which various FEM techniques are adopted. FEM 

is also used to design different shapes, combinations and thickness of these plates to 

evaluate their effects on strength enhancement for withstanding higher mandible 

stresses. Gutwald et al (2017) evaluated customized mandibular reconstruction plate 

strengths using mechanical testing and FEM. He reported that maximum stress was 

significantly reduced by nearly 31% by increasing the bar width from 5.5mm to 6.5mm. 

Goulart et al (2015) used FEM by applying Von Mises yielding criteria for evaluating 

the effectiveness of using 2 plates instead of single for recovery of bone fractures and 

observed that two locking plates promoted a better mechanical resistance for complex 

mandible fractures. Atilgan et al (2010) used ANSYS software for FEM analysis by 

applying Von Mises yielding criteria to evaluate mechanical stresses in the plate by 

simulating masticatory forces in the human jaw. This analysis provided an insight into 

the location of stress intensifiers and breaking points on the plate, helping to improve 

the design of the plates.  

These methods can also assist in designing customized and individualized plates 

of different geometry and shapes. Chen et al (2010) observed the influence of number of 

screws on the fatigue life of locking compression plates using SolidWorks software by 



evaluating principal stresses. Biomechanical analyses provided an estimate on plate and 

screw combinations to provide rigid and flexible fixations, where flexible fixations 

enhanced the fatigue life of the plate. Papakyriacou et al (2000) reported the effects of 

corrosive environment for Titanium alloys (Ti–6Al–7Nb) used for dental implant 

materials by observing fatigue properties. There was a decrease in endurance limit by 

nearly 20% when implants were exposed to corrosive environments and a beneficial 

influence of surface structuring by blasting and shot peening on the fatigue properties 

was also found. Mahathi et al (2013) used Von Mises theory using ANSYS software to 

evaluate the stress on a fractured mandible bone for different types of plate designs by 

applying bite force. An improvised 3D modified plate was designed for minimal stress 

in the plate, screw and bone.  Hence, the reported work by various scientists clearly 

indicates rising interest on improving the mechanical strength of biomedical implants. 

FEM techniques have been widely used for characterisation to save on manufacturing 

costs. Various software, failure theories, plate types, geometries etc. have been the 

preferred methods to explore these properties and accordingly produced satisfactory 

results in several cases.  Along with the plate designs, FEM can also be used to evaluate 

the influence of a composite filler material on the mechanical properties of plates.  

Graphene, despite of being a mechanically strong material, has not been exhaustively 

explored for maxillofacial plate applications.  

For this paper a basic Titanium alloy based thin maxillofacial plate (Mandible 

fractured model) with a minimal quantity of Graphene Nanoplatlets (GNPs) using 

SolidWorks software has been modelled and analysed. The influence of GNPs in 

different orientations and locations in the plate for stress and endurance has been 

analysed under the application of compressive bite force on the mandible. 



Materials and Methods 

Finite Element Model 

A mandible bone model with a 1 mm fracture was used and a Titanium alloy (Ti-6Al-

4V) based 1 mm thick plate was used for its fracture osteosynthesis. As shown in Figure 

1, the plate was placed at the suitable location for fracture osteosynthesis and a 

compressive bite force (Raabe et al, 2009 ; Gutwald et al. 2017)  50N and 500N was 

applied at the mandible with fixed supports at the opposing end. 

The Titanium plate was modelled as shown in Figure 2 with customized screws 

represented by a cylinder (7 mm length) and a rigidly connected head (2.6mm diameter) 

to the bone and plate respectively (Chen et al. 2010). Four unicortical screws were used 

with plate of thickness 1 mm, length 16.5mm, diameter 3 mm and volume 22.02 mm3. 

The plate and screws were Ti-6Al-4V alloy based, hence their mechanical properties 

were considered as- Elastic modulus 105 GPa, Poisson ratio 0.31, yield strength 827 

MPa and mass density 4429 kg/m3. 

 

Figure 1. Fractured mandible with a Titanium plate 



 

 

Figure 2. Maxillofacial plate with screws 

 

Based on this model, other plate models (Figure 3(a-d)) were designed with 

GNP embedded on the surface and centre plate near the exact fracture location, as this 

was the expected breaking (Gutwald et al., 2017) or most vulnerable section of the plate 

during mandible movement. To evaluate the effect of angular orientation of GNPs, four 

different orientations were modelled for analysis. GNP (Papageorgiou et al., 2017) 

dimensions were taken as a thin multilayer cuboid sheet of 105 x 104 x 102 nm with an 

equivalent bulk density of 700kg/m3, Young’s modulus 1TPa and Poisson’s ratio 0.2. 

Mandible bone elastic modulus was taken as 18GPa, Poisson’s ratio 0.394 and mass 

density 1.8gm/cm3. Based on the densities and volumes, the given mass of the plate was 

97.4mg and GNPs weight nearly 7x10-5µgm. The bulk density for GNP can vary up to 



2000kg/m3 which would result in its weighing mass up to nearly 21x10-5µgm, which 

would still remain insignificant to the overall weight of the titanium plate. 

  
(a) GNP aligned perpendicular to the 

plate axis 

(b) GNP aligned 450 to the plate 

axis 

 
 

(c) GNP aligned parallel to the plate 

axis 

(d) GNP aligned 1350 to the plate 

axis 

Figure 3. Different angular orientations of GNP with plate. 

 

In addition to the angular orientation variations, models with distributed GNPs 

at other locations were also designed as shown in Figure 4(a, b) where the placement of 

GNPs was offset from both the left and right side of the centre.  

 

 

  



(a) GNP displaced 0.23mm towards 

right side 

(b) GNP displaced 0.23mm towards 

left side 

Figure 4. Offset locations of GNPs on the plate. 

 

Fixed compressive forces were applied on all these models for 50N and 500N to 

evaluate the critical stress point on the plates. 

Finite Element Analysis 

A pure Titanium Alloy plate model was fine meshed (number of mesh elements 

for the plate was 8924, screws was 1598 and mandible 52526) and a static simulation 

study for compression was conducted on the mandible with specified (50N and 500N) 

bite forces. Figures 5(a-b) indicate the maximum stress elements near the middle section 

and upper surface of the plate at the actual fracture location. The stresses placed on the 

plate, obtained through Von Mises theory are shown in Table1. To compare the effects 

of various orientations of GNPs the same study under finer mesh (specifically for GNP) 

was repeated as shown in Figures 5(c-d). These figures demonstrate, that the stresses 

were significantly reduced in the same sections of the plate which were identified as 

vulnerable to failure. Presence of GNPs on the surface itself, reduced the stresses in 

those plate sections which were earlier most vulnerable for failure. Table 1, gives a 

comparison of stresses experienced by the plate at the same section for different 

orientations of GNPs. In addition, stress distribution was also obtained by 

offsetting(0.23mm, 0.46mm, .69mm and 0.92mm)  GNP to various locations along the 

same section as shown in Figures 5(d-e). 



 

(a) Stressed Titanium plate under 50N bite force 

 

 

(b) Stressed Titanium plate under 500N bite force 



 

 

(c) Stressed Titanium plate with GNP embedded perpendicular to the axis under 

500N bite force 

 

 

 

(d) Stressed Titanium plate with GNP embedded parallel to the axis under 500N 

bite force 



 

(e) Stressed Titanium plate with GNP embedded perpendicular to the axis and 

offset under 500N bite force 

 

Figure 5. Stresses across the plate for various GNP combinations 

Results 

Finite Element Analysis (FEA) results of the various models shown in Table 1 indicate 

that parallel orientation of GNP to the plate centre line was highly effective in reducing 

the stress on the plate. 

 

 

 

 

 



Table 1- Von Mises stresses for pure Titanium alloy plate and embedded GNPs at 

different angular orientations of GNPs under 50N and 500N bite forces 

S.No Plate 

material 

Angular 

orientation 

of GNP 

with Plate 

Axis(0) 

Von Mises 

stress(GPa) 

at failure 

section of 

plate(50N) 

% 

reduction 

in stress  

Von Mises 

stress(GPa) 

at failure 

section of 

plate(500N) 

% 

reduction 

in stress 

1 Pure 

Titanium 

alloy 

- 2.74 - 27.5 - 

2 Titanium-

GNP 

90 2.45 

10.91 

24.1 

12.04 

3 Titanium-

GNP 

45 2.37 

13.82 

23.4 

14.60 

4 Titanium-

GNP 

0 2.13 

22.55 

21.1 

22.99 

5 Titanium-

GNP 

135 2.33 

15.27 

23.1 

15.69 

 

 

In addition to a change in orientation of GNP, the location of GNP was changed 

along the same axis by offsetting distance by sets of 0.23mm from the centre along both 

sides. This process was repeated for all the geometries and it was observed that stress 

values at the breaking point of the plate were not affected by the GNP position along the 

plane. This emphasised the phenomenon that the presence of minor compositions of 

GNP was sufficient to impart higher strength to the plate and nearby location changes 

have no significant effect on the overall plate strength. 



Based on the Von mises stresses obtained, endurance limits and life of the plate 

were obtained referring to the relation (Chen et al. 2010) below: 

𝑆𝑒 = 𝑆𝑎 (1 −
𝑆𝑚

𝑆𝑦
) 

Equivalent stress amplitude/Endurance limit stress(𝑆𝑒) of the plate was 

calculated based on elastic modulus(𝑆𝑦) of the plate material only. Mean stress 

(𝑆𝑚) and stress amplitude(𝑆𝑎) were obtained based on the stress experienced by the 

plate at the critical stress(𝑆𝑚𝑎𝑥 = 2𝑆𝑚 = 2𝑆𝑎)  section rather than maximum stress 

experienced by the plate. For a bite force for 50N,  endurance life(cycles) and number 

of days were calculated using S-N diagram (Papakyriacou et al, 2000)  for a survival 

rate of 50%  probability and 1400 chewing cycles per day (Raabe et al, 2009).  Since the 

comparison was between a Titanium plate and minor GNP composition in the plate, 

only the elastic modulus of the Titanium alloy was considered. Table 2 shows enhanced 

endurance life of the plate composed of GNP. 

Table 2- Endurance cycles and life for the plates with and without GNP for a 

force of 50N  

S.No Plate 

material 

𝑆𝑒(GPa) 𝑆𝑚(GPa) 𝑆𝑦(GPa) Endurance 

Life(~Cycles) 

Endurance 

Life(~Days) 

1 Pure Ti 

alloy 

0.696 1.38 105 105 70 

2 Titanium-

GNP 

0.534 1.07 105 107 7000 

 



Discussion 

The fabrication process of a graphene and titanium alloy composite material can 

be a complex and costly process, or alternative melt processing or modern additive 

manufacturing processes can be explored. With reports on successful biocompatible 

applications of Graphene on biosensors, drug delivery, tissue engineering etc., it can be 

used as a suitable filler material for improving mechanical properties of biomedical 

plates also. Random dispersion of any filler is most effective in enhancing mechanical 

strength (Jindal et al. 2013; Jindal et al. 2016) especially when its related to nano-

composites. Hence, controlling the orientations (Wang et al. 2008) and locations has 

always been a prime focus in order to save on material cost. During manufacturing, it 

requires additional methods to control the orientation of fillers and fibres and their 

effectiveness can only be explored post manufacturing, therefore, finite element studies 

can provide encouraging data for scientists for making decisions related to 

manufacturing.  Models indicated that if GNPs locations were altered without changing 

their mass and volume, they produced insignificant changes in stress distributions. 

Reinforcement of a polymer with random nanoplatelets is expected to have a Young's 

modulus of around 8/15 of that for a nanocomposite with aligned nanoplatelets 

deformed parallel (Liu and Brinson 2008)  to the axis of alignment, thereby indicating 

superior effectiveness in mechanical strength of aligned (Li et al. 2016) nanoplatlets. In 

the analysis of this study, the effectiveness of parallel aligned GNP was also observed to 

be the highest. The maxillofacial plate with parallel aligned GNP, was accordingly 

expected to undergo minimal mechanical stress at the breaking point in comparison to 

all other orientations. The GNP direction which was parallel to the plate axis, was 

normal to the compressive loading direction which may have acted as a fixed beam 

support between the two mandibles separated by fracture whereas all other orientations 

provided a partial support. The fatigue analyses showed that, under these stresses and 



forces the plate with GNP was able to endure for nearly 7000 days, while pure Titanium 

plate could fail by fatigue fracture in approximately 70 days. 

It is suggested that a successful 3D model of Titanium alloy-graphene 

maxillofacial plate has been designed for treating a mandible fracture with insignificant 

mass factor of GNPs in the titanium alloy. Forces of the magnitude of 50N and 500N, 

equivalent to bite forces were applied on the mandible with the plate attached. The 

breaking point section in the pure plate was observed near the fracture location and 

GNPs were placed nearby that location at various angular positions. Presence of GNPs, 

reduced the stress concentration between 10 to 22% at the breaking section of the plate 

depending upon the angular orientations with respect to the plate axis. Parallel direction 

of GNPs showed encouraging results by reducing the stresses by 22% while normal 

direction GNPs showed only 10% reduction. The suggested reasons for these reduced 

stresses are mainly the exceptional mechanical properties of Graphene and its 

derivatives with lower mass densities, which enables them to be embedded in 

composites without changing the overall mass. Parallel direction of GNPs showed 

improved results, which could be due to the existing geometrical arrangement of the 

applied forces and fracture location. It is suggested that, GNPs in parallel direction 

acted as fixed beam support between the mandibles and thereby reducing the stress 

distribution in the plate and absorbing major part of the stress along their own layers. 

Since, GNPs exhibit higher Young’s modulus and tensile strength in comparison to 

Titanium alloy, therefore, lower stresses are transferred to the plate increasing its 

resistance to failure.  

Further, wider studies could be undertaken based on this geometrical 

arrangement by varying the depth, size and weight of GNPs. Since, it has been observed 

that mechanical properties of the plate remain unaffected by the location of GNPs, it can 



assist manufacturing of plate materials whereas add on methods to manipulate filler 

locations are complex. In addition, since the mass alteration due to GNPs remained 

insignificant while stresses on the plate varied significantly, more designs and 

simulations could be conducted with an additional reduction of the size and weight of 

the plates. Presence of GNPs at the front surface of the plate can facilitate fabrication of 

the composite plate material, so extensive dispersed embedment of fillers across 

multiple layers may not be required for strength improvements. Surface interactions and 

functionalization during plate fabrication with GNPs can produce similar plates with 

improved mechanical properties. Ultimately the reduced weight and thickness of such 

plates would benefit both patients and surgeons during surgery and recovery. 
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