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Abstract 24 

The duration, intensity and frequency of hydrological droughts are predicted to increase significantly 25 

over the 21st century globally, threatening the long-term stability of lotic communities. In this paper 26 

we examine the recovery and recolonization of macroinvertebrate taxa in ephemeral and near 27 

perennial reaches of the River Lathkill (UK) after a supra-seasonal drought event. Following flow 28 

resumption, species accumulation (recolonization) occurred rapidly over a four-month period, with a 29 

steady increase observed thereafter. Taxonomic richness was significantly higher in the section with 30 

near perennial flow after the first month of the study  than the naturally ephemeral reach. Serial 31 

correlation was observed in the near perennial section but not in the upstream ephemeral reach. Serial 32 

correlation in the near perennial section may reflect: (1) the ongoing process of recovery or (2) the 33 

macroinvertebrate community following a new ecological trajectory. Our results suggest that supra-34 

seasonal droughts may cause initial reductions in lotic diversity during stream desiccation events but 35 

may re-set ecological succession and / or temporarily provide new ecological niches, thereby 36 

supporting increased taxonomic diversity when the full range of hydrological conditions are 37 

considered. Quantifying the recovery of ecological communities following supra-seasonal drought can 38 

provide information to help develop ecologically effective conservation and management strategies. 39 

Key words: aquatic conservation, biodiversity, community composition, disturbance, ephemeral 40 

streams, lotic habitat. 41 
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Introduction 42 

Global climate models predict that the duration, intensity and frequency of drought events are likely 43 

to increase significantly over the 21st century (Prudhomme et al. 2014). Climatic variability combined 44 

with increasing abstraction pressures and the construction of artificial impoundments to supply 45 

increasing human populations globally, is likely to increase the number of waterbodies that 46 

experience channel drying (Larned et al. 2010), extend the duration of drying events in waterbodies 47 

that already experience dewatering (Benejam et al. 2010; Rahiz and New 2013; Skoulikidis et al. 48 

2017) and lead to significant changes to biological communities, such as the loss of taxa poorly 49 

adapted to drying events (Datry et al. 2014).  50 

 51 

Supraseasonal drought is defined here as an extended duration of reduced rainfall and surface water 52 

availability over multiple seasons or years (Lake 2011). This differs from seasonal drought which is 53 

characterised by seasonal reductions in rainfall and water availability, such as those regularly 54 

experienced in semi-arid or Mediterranean ecosystems (Gasith and Resh 1999). Extreme, high 55 

magnitude but low frequency supra-seasonal events may significantly increase the spatial and 56 

temporal extent of stream drying (Boulton 2003; Wood and Armitage 2004) and in some instances 57 

affect historically perennially flowing sites (Stubbington et al. 2015).  58 

 59 

Surface water drying is a primary determinant of aquatic floral and faunal diversity and community 60 

structure in intermittent lotic ecosystems (Lake 2003; Stubbington et al. 2011; Aspin et al. 2018), with 61 

streambed drying events commonly being associated with reductions in aquatic diversity (Soria et al. 62 

2017). Following streambed drying, harsh environmental conditions selectively remove taxa which 63 

are dependent on surface flow and good water quality (Wood and Petts 1999; Datry et al. 2013) and 64 

may cause an increase in faunal densities and competition as habitat availability is reduced (James et 65 

al. 2008). However, recovery of flow and the recolonization of aquatic flora and fauna following 66 

channel drying in intermittent streams can be rapid, reflecting the range of traits / adaptations which 67 
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promote resilience and resistance in temporary waterbodies (Fritz and Dodds 2004; Stubbington and 68 

Datry 2013; Vander Vorste et al. 2015; Sarremejane et al. 2017). Resistance can be enhanced due to 69 

strong dispersal capacity with taxa being able to migrate from the stream as it dries and rapidly 70 

recolonize when flow resumes (Leigh et al. 2016). Resilience can be facilitated by physiological and 71 

morphological traits that enable drought survival in situ (e.g., short life cycles, desiccation resistant 72 

eggs or adult life stages able to persist in moist sediments; Williams 2006; Vander Vorste et al. 2015). 73 

Resilience strategies may be strongly influenced by the presence of refuges, such as nearby perennial 74 

pools, the hyporheic zone, perennial downstream reaches or patches of moist leaf litter, proximal to 75 

intermittent streams (Chester and Robson 2011; Hill and Milner 2018). 76 

 77 

In streams that experience regular or predictable drying, the effect of seasonal drought on aquatic 78 

communities may be compared to those of perennially flowing systems (Côté and Darling 2010; 79 

Vander Vorste et al. 2015; Chessman 2015). Typically, perennial streams have high ecosystem 80 

stability and may be dominated by a limited number of highly abundant flora and fauna (Fisher 1983; 81 

Milner et al. 2008). However, supra-seasonal droughts and the subsequent recolonization and 82 

recovery period may encourage the development of distinct faunal assemblages (Boulton 2003; Chadd 83 

et al. 2017), and may help maintain, and in some instances, enhance habitat and faunal diversity at the 84 

landscape scale. Supra-seasonal droughts potentially open new ecological niches for some organisms 85 

following the removal or reduction in abundance of numerically dominant and highly competitive 86 

taxa or through the disturbance and re-setting of ecological succession trajectories. For example, the 87 

gradual drying and ponding of surface water in a river channel as it dries may provide suitable 88 

conditions for colonization by a wide range of taxa associated with lentic conditions (Sheldon et al. 89 

2010; Hill and Milner 2018).  90 

 91 

While the process of recolonization and recovery following stream drying and drought events within 92 

seasonally intermittent waterbodies has been widely studied (Boulton 2003), there is a paucity of 93 

research examining aquatic biodiversity following supra-seasonal drought events (Lake 2003). This is 94 
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particularly apparent in temperate regions due to the difficulties associated with collecting long-term 95 

data and predicting the onset and termination of supra-seasonal drought events. In arid landscapes, 96 

Bogan et al. (2015) found that robust recovery after a supra-seasonal drought occurred in streams with 97 

historically predictable intermittency, with these communities demonstrating both resistance and 98 

resilience mechanisms. In the same study, the response of perennial macroinvertebrate communities 99 

to supra-seasonal drought differed due to a lack of resistance traits in the pre-drought community; 100 

long lived (>1 year) weak dispersing macroinvertebrates were replaced by short lived (<1 year) strong 101 

dispersers that were able to rapidly recolonize. 102 

 103 

A supra-seasonal drought in the UK between December 2010 and April 2012 (Parry et al. 2013), 104 

which caused channel drying in both historically perennial and ephemeral reaches of the River 105 

Lathkill, provided a unique opportunity to examine the response of macroinvertebrate communities to 106 

flow recovery. As a result, this is one of the first studies to examine ecological responses to supra-107 

seasonal drought from communities in ephemeral and historically perennial flow sites in temperate 108 

regions. This study aimed to characterise the recolonization of aquatic macroinvertebrate communities 109 

of naturally ephemeral and near perennial sites (flowing except under extreme drought conditions) in 110 

the River Lathkill (UK) following a high magnitude supra-season drought.  111 

 112 

Materials and Methods 113 

Study sites 114 

The River Lathkill (Derbyshire, UK) is a groundwater-fed river in the White Peak area of the Peak 115 

District National Park. Land-use in the catchment is predominantly low intensity grazing on 116 

unimproved grassland (Stubbington et al. 2016). The perennial source originates at Bubble Springs (SK 117 

2049 6612, 159m AOD; Figure 1) and the entire catchment of the river above the springs is underlain 118 

by Carboniferous limestone. 119 

 120 
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A total of 11 sites within two sections upstream of the perennial source (Bubble Springs), based on 121 

their historic flow permanence (after Wood et al. 2005), were studied. Naturally ephemeral sites 122 

comprised the headwater sites (Sites 1-6; Figure 1) which typically experience surface water drying 123 

for at least six-months per-annum, although flows can occur in response to high rainfall events (two to 124 

four times per year; Stubbington et al. 2016). Exposed limestone bedrock with boulder to gravel size 125 

clasts dominated headwater sites. Finer organic rich sediments with patches of semi-aquatic and 126 

terrestrial flora were also present. The second downstream section comprised five near perennial sites; 127 

three sites which dry most years for a short period (typically around 2 weeks but up to 2 months) 128 

depending on meteorological conditions, and two sites that have dried only once in the last 30 years 129 

(Sites 7-11; Figure 1). The substratum at sites with near perennial flow consisted predominately of 130 

mixed alluvial deposits (sand to cobble sized angular clasts) with instream vegetation dominated by 131 

mosses and liverworts (Stubbington et al. 2011). All study sites were upstream of the confluence 132 

between the R. Lathkill and the River Bradford (Figure 1). 133 

 134 

Hydroclimatic conditions 135 

The 2010-2012 supra-seasonal drought affected large parts of England, particularly southern and 136 

midland areas (Parry et al. 2013). By the end of March 2012, 14 of the previous 24 months had 137 

recorded <70% of average rainfall across lowland England (10 of those recorded <55% of average 138 

rainfall: Marsh et al. 2013). As a result, the channel was dry upstream of the perennial source (Bubble 139 

Springs) and both study reaches (ephemeral and near perennial sites) remained dry for the longest 140 

duration since the start of monitoring in 1998. After a nine-month dry period, flow resumed in the 141 

ephemeral headwaters but dried again in mid-March 2012 for ca. 28 days (Stubbington et al. 2016). 142 

The supra-seasonal drought ended abruptly in April 2012 which experienced double the monthly 143 

average rainfall (Parry et al. 2013). As a result, surface flow resumed throughout the near perennial 144 

reach in April 2012 and the channel experienced flowing conditions throughout the remainder of the 145 

study. Overall, 2012 was the wettest year in England since 1910 (Parry et al. 2013). Flow remained 146 

ephemeral in the ephemeral reach and streambed drying occurred on three additional occasions; (1) 147 
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ca. 28 days from mid-March 2012, (2) ca. 39 days from mid-May 2012; and (3) ca. 46 days from early 148 

August 2012 (Stubbington et al. 2016). Regional monthly mean temperatures for 2012 were within 149 

0.5 oC of the long-term average (1961-1990; Met Office 2015).  150 

 151 

Macroinvertebrate sampling 152 

Aquatic macroinvertebrate samples were collected from 11 sites along the R. Lathkill at monthly 153 

intervals where possible (some samples could not be taken during high flow events or dry periods) 154 

between December 2011 and September 2012. A total of 138 samples were collected; 72 from the 155 

ephemeral and 66 from the near perennial reach (Figure 1b). Two additional macroinvertebrate 156 

sampling events were undertaken in November 2012 and February 2013. Samples comprised a three-157 

minute kick sample (using a pond net fitted with l mm mesh) divided equally between mesohabitats 158 

present. Aquatic macroinvertebrate samples were preserved in the field with 4% formaldehyde 159 

solution prior to processing and identification in the laboratory. The majority of macroinvertebrate 160 

taxa were identified to species level but Diptera, Leuctridae, Baetidae, Sphaeriidae and Planariidae 161 

were resolved to family level and Oligochaeta, Tricladida (non-Planariidae) and Collembola were 162 

recorded as such.  163 

 164 

Statistical analysis 165 

To examine temporal changes in diversity and the relative abundance of individual taxa over time 166 

mixed-effects models were fitted to selected taxon and community metrics. Prior to statistical 167 

analysis, data were examined to ensure they met the assumptions of statistical tests (e.g., normal 168 

distribution). The following taxa; Asellus aquaticus, Gammarus pulex, Isoperla grammatica, 169 

Serratella ignita, Baetidae and Perlodes mortoni were selected for further investigation as they 170 

typically occurred in greater abundances and in multiple samples throughout the study period. The 171 

month of sample collection and sample sites were fitted as random effects to account for potential 172 

spatial and temporal dependence, and month and intermittence (ephemeral and near perennial) were 173 
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fitted as fixed interacting factors. Taxonomic richness was tested via a Generalised Linear Mixed 174 

Effects Model (GLMM) fitted using a Poisson distribution and log link structure via the ‘glmer’ 175 

function in the lme4 package (Bates et al. 2018). Community abundance and abundances of individual 176 

taxa were tested via a Linear Mixed Effects Model (LMM) using the ‘lmer’ function in the lme4 177 

package with the restricted maximum likelihood (REML) estimation function. Abundances were 178 

log10(x+1) transformed to normalise residuals prior to model fitting. Conditional R2 (proportion of 179 

variance explained by the fixed and random factors; r2 c) values were extracted using 180 

‘rsquared.glmm’ function in the MuMIn package (Bartoń 2018). To account for the non-linear 181 

association of I. grammatica with time, a third order polynomial model was fitted. This technique has 182 

been shown to reliably model nonlinear associations without model overfitting (Kennen et al. 2014). 183 

Species accumulation plots were constructed to examine the rate of recolonization over time for 184 

ephemeral and near perennial sites and a linear model fitted to assess the rate of invertebrate 185 

colonisation differed over time between ephemeral and near perennial sites. All univariate analyses 186 

were conducted using R version 3.2.3 (R Development Core Team 2015). 187 

 188 

Heterogeneity of macroinvertebrate communities between the ephemeral and near perennial reaches 189 

was assessed using Analysis of Similarity (ANOSIM) and visualised using Non-metric 190 

Multidimensional Scaling (NMDS) ordination plots (using Bray Curtis dissimilarity). To identify 191 

changes in community composition among months in ephemeral and near perennial sites, spearman 192 

rank correlations (RELATE) and centroid NMDS ordination plots were examined. A monthly 193 

similarity matrix (Bray-Curtis) for each site was compared to a linear sequence (the sampling months 194 

in this study) to examine if similarity among macroinvertebrate assemblages was higher in adjacent 195 

sampling months than in more distant sampling months (Serial RELATE; Clarke and Gorley 2006). 196 

Distances among centroid matrices were constructed by calculating the averages (e.g., the centroid - 197 

the centre-point of all replicates for each month in multi-dimensional space) in the ‘Bray-Curtis 198 

space’ of macroinvertebrate compositions from the replicate samples for each month (Anderson et al. 199 

2008). Centroid NMDS ordinations were generated using the distance among centroid matrices. 200 
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Similarity Percentage analysis (SIMPER) was used to determine which species were driving the 201 

differences in community composition between ephemeral and near perennial sites. Faunal abundance 202 

data was log transformed prior to ANOSIM, NMDS, centroid NMDS, SIMPER and RELATE 203 

analysis, which was undertaken in PRIMER V7 (PRIMER-E Ltd, Plymouth, UK). 204 

 205 

Results 206 

Spatial macroinvertebrate diversity and variability in community composition in ephemeral and near 207 

perennial reaches  208 

Following the supra-seasonal drought (2011-2013), a total of 101 taxa were recorded from the 209 

ephemeral (total: 65 taxa, mean: 7.1, range: 3-13) and near perennial sites (total: 85 taxa, mean: 14.6, 210 

range: 5-25) during the 12 surveys from the 11 sample sites. Of the 101 taxa recorded between 2011-211 

2013, the most widely distributed taxa were: Chironomidae, Tipulidae, Simuliidae, Oligochaeta, A. 212 

aquaticus, G. pulex (recorded at all 11 sites) and, Baetidae, G. truncatula and Nemurella picteti 213 

(recorded at 10 sites). The most diverse orders were Trichoptera (23 taxa), Coleoptera (21 taxa), 214 

Plecoptera (14 taxa) and Diptera (14 taxa). 215 

 216 

Taxonomic richness (df=9, t=3.905, p=0.004) and total relative abundance (df=9, t=3.615, p=0.006) 217 

were significantly higher in near perennial than ephemeral sites (Figure 2). No significant differences 218 

in the abundance of A. aquaticus, I. grammatica, S. ignita, Baetidae and P. mortoni between near 219 

perennial and ephemeral sites were recorded; however, G. pulex had significantly greater abundances 220 

in near perennial than ephemeral sites (df=9, t=2.425 p=0.038). Significant differences were observed 221 

in macroinvertebrate community composition between ephemeral and near perennial sites (ANOSIM 222 

r=0.457 p=0.01; Figure 3a). The top four macroinvertebrate taxa identified by SIMPER to be driving 223 

the differences in macroinvertebrate community composition between ephemeral and near perennial 224 

sites were A. aquaticus (contributing 6% to the dissimilarity) which were recorded in greater 225 

abundances in ephemeral sites and Baetidae (8.4% dissimilarity), Chironomidae (7.3% dissimilarity) 226 
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and I. grammatica (6% dissimilarity) which were recorded in greater abundances from near perennial 227 

sites. A total of 16 taxa were unique to ephemeral and 35 taxa to near perennial sites (see 228 

Supplementary Material Part 1). 229 

 230 

Temporal diversity and variability in community composition in ephemeral and near perennial 231 

reaches  232 

At a regional scale, a steep increase in taxonomic richness was recorded in ephemeral and near 233 

perennial sites over the first three months after flow resumed (December 2011 to March 2012), with a 234 

more gradual increase in taxa richness in ephemeral and near perennial sites from month 4 (April 235 

2012) to the end of the study (Figure 4). Species accumulation was determined to be significantly 236 

greater in near perennial sites (t3,23=2.604, p=0.017), although the rate of colonisation over time did 237 

not differ between ephemeral and near perennial sites (t3,23=0.390, p=0.7; Figure 4). At an alpha scale, 238 

both taxonomic richness (GLMM) and total abundance (LMM) were significantly greater (p<0.001) 239 

in the near perennial sites and demonstrated little variation over time (Figure 2, Table 1). When 240 

examining individual reaches, mean taxonomic richness in the ephemeral sites was similar (between 241 

5-10 taxa) among all sampling months, whilst in the near perennial sites taxonomic richness was 242 

highest 2-3 months after flow resumed (February 2012 and March 2012), but was similar (between 243 

10-15 taxa) for the other sampling periods (Figure 2a). Mean macroinvertebrate abundance increased 244 

rapidly up to 3-months after flow resumed in near perennial flow sites (March 2012) and subsequently 245 

declined gradually thereafter to the end of the survey period (Figure 2b). Similarly, mean abundance 246 

increased rapidly up to 3 months after flow resumed in ephemeral sites, but was more variable in the 247 

proceeding months, decreasing at month 4 (April 2012 - reflecting spate conditions) and month 6-9 248 

(June-September 2012- reflecting the periods of desiccation in ephemeral sites headwaters: Figure 249 

2b).  250 

 251 
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Abundances of A. aquaticus increased monthly in ephemeral and near perennial sites (p<0.001 in both 252 

instances; Table 1), reaching their greatest abundance in the final survey month (Feb 2013; Figure 5a) 253 

but demonstrated no differences by intermittence (p>0.05; Table 1). G. pulex abundances were 254 

consistently and significantly greater in near perennial sites than ephemeral sites (Table 1). G. pulex 255 

abundance was broadly similar over the 12-months after flow resumed in ephemeral sites before 256 

rising to a peak in the final sampling month. In near perennial sites, G. pulex abundance was stable for 257 

5-months after flow resumed (Dec 2011- April 2012) but was markedly reduced during month 6-7 258 

(May and June 2012) as flow declined (Figure 5b). I. grammatica was more abundant in near 259 

perennial sites than ephemeral sites (Table 1) and was initially recorded 4 months after flow resumed 260 

in ephemeral sites, and 3 months after flow resumed in near perennial sites (Figure 5c). Abundances 261 

of I. grammatica peaked 3 months after flow resumed (March 2012) in ephemeral sites and 5 months 262 

after flow resumed (May 2012) in near perennial sites. However, its abundance declined throughout 263 

the summer months and only increased again 11 months after flow resumed (Nov 2012; Figure 5c). S. 264 

ignita was not recorded from ephemeral sites during the 2011-2013 study and was first sampled in 265 

near perennial sites three months after flow resumed (Feb 2012), reaching its greatest abundance 5 266 

months after flow resumed (May 2012) and declining thereafter (Figure 5d). In ephemeral and near 267 

perennial sites, Baetidae demonstrated highly variable abundances throughout the survey period. 268 

Baetidae, first recorded 2 months after flow resumed (Feb 2012) in near perennial sites and three 269 

months after flow resumed (March 2012) in ephemeral sites, reached highest abundance 7-8 months 270 

after flow resumed in the two study sections (Figure 5e). Temporal changes in Baetidae populations 271 

were determined to be significantly different (Table 1) with near perennial abundances increasing at a 272 

faster rate compared to ephemeral sites. P. mortoni was initially recorded 4 months after flow 273 

resumed (April 2012) in ephemeral sites and remained consistent throughout the remainder of the 274 

study (Figure 5f). In near perennial sites, P. mortoni was first recorded 6 months after flow resumed 275 

(June 2012) with abundances increasing rapidly and peaking 8 months after flow resumption (August 276 

2012; Figure 5f). Abundances of P. mortoni were significantly greater in near perennial sites and 277 

varied between sections over time (Table 1). Across ephemeral sites, A. aquaticus, G. pulex, I. 278 

grammatica and Baetidae all demonstrated a reduction in abundance from the 3rd to 4th month after 279 
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flow resumed (March 2012 to April 2012), although abundance of P. mortoni increased in this period. 280 

In addition, A. aquaticus, Beatidae, P. mortoni and I. grammatica demonstrated reduced abundances 281 

from the 8th to 9th month after flow resumed (August 2012 to September 2012) in ephemeral sites 282 

(Figure 5a, b, c, e, f).  283 

 284 

Spearman’s rank correlations comparing the similarity matrices of monthly macroinvertebrate 285 

communities were statistically significant for near perennial sites (Table 1) demonstrating a strong 286 

serial correlation (Figure 3c). In ephemeral sites, 5 of the 6 sites displayed low and non-significant ρ 287 

values demonstrating a weak serial correlation (Table 2) and did not follow serially in the centroid 288 

NMDS biplot (Figure 3b – particularly 3-5 months after flow resumed, March-April 2012); only site 3 289 

recorded a significant Spearman’s rank correlation (Table 2).  290 

 291 

Discussion 292 

Macroinvertebrate recolonization of ephemeral and near perennial reaches following a supra-293 

seasonal drought 294 

Following the resumption of surface flow after the supra-seasonal drought, we found rapid 295 

macroinvertebrate recolonization (species accumulation) on the R. Lathkill with the cumulative 296 

number of taxa plateauing after approximately 6 months. Similar findings have been recorded from 297 

streams in Georgia, USA and Berkshire, UK (Wright et al. 2004; Churchel and Batzer 2006) where 298 

rapid recolonization of streams was observed immediately following the onset of flow after drought, 299 

and species accumulation also beginning to plateaux after 5 to 6 months.  300 

 301 

Different recolonization processes, however, probably operated in the ephemeral and near perennial 302 

sites of the R. Lathkill examined. Ephemeral sites in the headwaters and are hydrologically more 303 

isolated from perennial water sources. The lack of lateral or longitudinal connectivity and frequent 304 

channel drying in ephemeral sites suggests that resilience strategies may have been an important 305 
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mechanism for the rapid recolonization in this section of the river. Many taxa have developed 306 

adaptations to survive in-situ in dry river beds such as producing diapause eggs (e.g., the 307 

macroinvertebrate seedbank; Stubbington and Datry, 2013), having short development times (Lytle 308 

and Poff 2004; Bogan and Lytle 2011) or persisting in damp leaf patches and sub-surface water in the 309 

hyporheic zone (Stubbington et al. 2009a, 2011, although this is not the case for all rivers; Datry 310 

2012). In this study, A. aquaticus recolonized quickly after flow resumed in the ephemeral sites, 311 

potentially surviving the period of flow desiccation as small individuals in damp sediments and 312 

organic matter in the hyporheic zone (Leberfinger and Herrmann 2010; Vadher et al. 2017).  313 

 314 

Near perennial flow sites were located between the ephemeral headwaters and the fully perennial river 315 

further downstream. The return of lateral and longitudinal aquatic connectivity between the perennial 316 

zone and near perennial sites is likely to have been an important factor influencing the recolonization 317 

of this section of the river. Previous studies have demonstrated that perennial reaches may act as a 318 

refuge for taxa capable of dispersal (Chester and Robson 2011; Bogan et al. 2015), with rapid 319 

recolonization after the drought event being possible in this study from the proximal perennial zone 320 

via resistant mechanisms (life stages) such as aerial dispersal, or through upstream migration 321 

(Williams and Hynes 1976; Verberk et al. 2008; Chester et al. 2015). The coleopteran, Agabus 322 

guttatus was recorded as early as two months after flow resumed in near perennial sites and previous 323 

studies have indicated them to be one of the first predators to aerially colonise intermittent reaches 324 

(Davy-Bowker et al. 2002; Stubbington et al. 2016). Further, the significantly greater abundances of 325 

G. pulex in near perennial sites may reflect this species rapid ability to recolonize from perennial 326 

reaches downstream (White et al. 2018) and through vertical connectivity with the hyporheic zone 327 

(Stubbington et al. 2009) and subterranean caves (Wood et al. 2005). Based on the results of this 328 

study, the effective recolonization of biological communities to drought in ephemeral and near 329 

perennial reaches is likely to be the result of a combination of resistance and resilience strategies 330 

(Bogan et al. 2015). 331 

 332 



14 
 

The mean number of taxa remained consistent throughout the sampling months in ephemeral sites but 333 

a peak in richness was recorded in near perennial sites during February 2012. A significant rainfall 334 

event prior to sampling in February 2012 increased the discharge in the R. Lathkill and may have 335 

provided connectivity to facilitate upstream migration of taxa from the perennial reaches downstream. 336 

The loss of surface flow in ephemeral sites on three separate occasions during the sampling period 337 

may explain the reductions in abundance of A. aquaticus, G. pulex, P. mortoni, I. grammatica and 338 

Baetidae at months 3 and 4, and months 8 and 9, as it is likely many of the taxa were unable to 339 

complete their life-cycle and those that did may have had to disperse as flow receded (Dobrin and 340 

Giberson 2003). 341 

 342 

Macroinvertebrate communities within ephemeral sites did not display a serial correlation, with 343 

adjacent sampling months being heterogeneous. This may be the result of the loss of surface flow on a 344 

number of occasions during the study period (March, May and August 2012) continually re-setting 345 

succession and re-starting the community recolonisation process (Sponsellor et al. 2010). This 346 

suggests that ephemeral stream reaches are in a constant state of resetting of community succession, 347 

with recovery and recolonization only partially occurring until they are re-set by the next drying 348 

event. In contrast, after the first month of the study, flow was continuous throughout the near 349 

perennial section following the supra-seasonal drought and as such macroinvertebrate assemblages in 350 

these sites demonstrated serial correlation, with adjacent sampling months being most similar, and the 351 

first and last sample recording the greatest heterogeneity in community composition. In perennial 352 

rivers, macroinvertebrate assemblages typically follow a seasonal cycle (e.g., successive winter 353 

communities record similar community assemblages: Giller and Twomey 1993; Leunda et al. 2009) 354 

and therefore, the significant serial correlation recorded in near perennial sites indicates that two 355 

possible ecological processes may be occurring in the R. Lathkill: (i) recolonization and ecological 356 

recovery are ongoing. Despite the rapid recolonization by many taxa, the full recovery of 357 

macroinvertebrate communities had not occurred during the study period, as communities from 358 

January 2012 and February 2013 were most heterogeneous. This suggests that the ecological effect of 359 
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the supra-seasonal drought on macroinvertebrate communities was evident for multiple seasons 360 

following the event (Churchel and Batzer 2006; Bogan and Lytle 2011), with ecological recovery 361 

being a long-term process (Wood and Petts 1999; Churchel and Batzer 2006) that typically takes 362 

significantly longer than hydrological recovery; and (ii) the supra-seasonal drought may have reset the 363 

ecological trajectory of the macroinvertebrate community which is possibly now heading towards a 364 

new ecological equilibrium (Bogan and Lytle 2011), reflecting the high heterogeneity between 365 

samples. Supra-seasonal drought may cause macroinvertebrate assemblages to permanently differ 366 

from pre-drought assemblages. For example, research by Bogan and Lytle (2011) on intermittent 367 

streams in Arizona has shown that supra-seasonal drought can cause regime shifts in invertebrate 368 

community composition from long-lived sedentary taxa to smaller short-lived and highly vagile taxa. 369 

 370 

If taken in isolation, supra-seasonal droughts appear to have a negative effect on ecosystems, causing 371 

an initial decline in taxonomic diversity during the period of stream desiccation (Lake 2003; Boulton 372 

and Lake 2008; Aspin et al. 2019). However, when recolonization is examined over longer timescales, 373 

supra-seasonal droughts may actually facilitate the development of environmental conditions to 374 

support a higher diversity through; (1) a reduction in competition and predation pressure (supra-375 

seasonal drought removed key predators and dominant taxa such as G. pulex); (2) an increase in the 376 

availability and number of habitats (environmental niches: Ricklef & Schluter, 1993), as succession is 377 

re-set and dominant environmental / ecological pressure are reduced and; (3) enabling new taxa (that 378 

may be outcompeted in later succession lotic habitats) to utilise the increased spatio-temporal 379 

environmental and biotic niches. However, it is unclear whether the macroinvertebrate communities 380 

in the R. Lathkill will maintain this high diversity, whether successional processes are ongoing, or if 381 

the community will be reset to follow another new ecological trajectory following the next flow 382 

cessation event.  383 

 384 

Climate change and the increase in water abstraction from growing human populations is likely to 385 

increase the number of rivers that experience drying (Larned et al. 2010), the severity / duration of 386 
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drying events (Rahiz and New 2013) and could lead to irrevocable changes to biological communities 387 

and a loss of taxa that are ill adapted to drying (Datry et al. 2014). Currently, consideration of supra-388 

seasonal drought and management in lotic freshwaters is impeded by the lack of knowledge and 389 

information available (Arscott et al. 2010). Future research should be directed towards the long-term 390 

monitoring of macroinvertebrate communities before, during and after supra-seasonal droughts to 391 

provide the information needed to fully quantify the ecological impacts of these disturbances, 392 

understand the mechanisms and strategies macroinvertebrates use to persist / recolonise rivers 393 

following an extreme drying event, identify possible regime shifts in intermittent freshwater 394 

communities and identify strategies to manage drought impacts. For example, ensuring newly 395 

intermittent streams are connected with drought refuge sites may facilitate a rapid recovery post-396 

disturbance (Robson et al. 2011).  397 

 398 

 399 

Spatial variability of macroinvertebrate communities between ephemeral and near perennial sites 400 

Taxonomic richness was consistently greater within near perennial sites than the headwater ephemeral 401 

sites and significant differences in macroinvertebrate assemblages were observed between the two 402 

study sections, following the 2011 supra-seasonal drought. Ephemeral sites were subject to multiple 403 

drying events during 2012 and increasing flow intermittence has been shown to significantly reduce 404 

taxonomic diversity across most biogeographic regions (Datry et al. 2013). Further, flow desiccation 405 

in ephemeral sites (which continually re-sets communities) may remove taxa sensitive to drying, 406 

while near perennial sites remained wet throughout the study and recolonization could progress 407 

providing variable physicochemical and biological conditions for a wide range of taxa to exploit. 408 

Taxonomic richness and community assemblage differences may also be the result of spatial 409 

organisation of colonist sources (connectivity). The hydrological isolation of ephemeral sites from the 410 

perennial reaches reduces the potential for colonisation (Bogan et al. 2015) while hydrological 411 

connectivity to the downstream perennial zone provides near perennial sites with a readily available 412 
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and diverse source of colonists to enhance taxonomic richness and develop a heterogeneous 413 

community composition.  414 

 415 

 416 

Conclusion 417 

This study has demonstrated that aquatic macroinvertebrate taxa can rapidly recolonise lotic habitats 418 

after supra-seasonal drought episodes. The impact of supra-seasonal drought on macroinvertebrate 419 

communities may persist for multiple seasons after the event, as the communities may not have 420 

reached the end-point of recovery during the study period. The results of this study also suggest that 421 

supra-seasonal droughts may cause some communities to head towards a new ecological equilibrium 422 

rather than recover to their pre-disturbance composition; making the assessment of the end point of 423 

recovery more difficult. Supra-seasonal droughts may therefore effectively re-set ecological 424 

succession and during the initial recovery / recolonisation phase, and provide ecological and 425 

environmental space for new taxa to colonise. Quantifying the recolonisation and recovery of 426 

biological communities to extreme disturbances such as supra-seasonal drought is vital to provide the 427 

information required to ensure the persistence of biodiversity through the implementation of 428 

ecologically effective conservation and management strategies. 429 

 430 
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Tables 604 

Table 1 - Univariate analysis for differences in taxonomic richness, total abundance and abundance of 605 

individual taxon associated with intermittence (ephemeral and near perennial, n=2), month (n =12) 606 

and the interaction of these factors. 607 

  608 

Metric 
Intermittence Month Month x Intermittence 

R2c  
Stat value p value Stat value p value Stat value p value 

Taxonomic richness 4.34 <0.001 -0.77 0.443 0.15 0.880 62.56 

Abundance 3.80 <0.001 0.75 0.450 -0.62 0.619 62.11 

Baetidae 1.63 0.103 -1.24 0.214 3.56 <0.001 70.48 

Asellus aquaticus -1.61 0.106 3.40 <0.001 -0.41 0.682 67.02 

Seretella ignita N/A N/A N/A N/A N/A N/A N/A 

Gammarus pulex 2.50 0.012 1.59 0.110 -0.63 0.530 57.06 

Isoperla grammatica 5.04 <0.001 6.70, -6.52, 6.39 <0.001 -0.564 0.574 42.76 

Perlodes mortoni 2.57 0.026 -2.45 0.025 4.79 <0.001 46.01 
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Table 2 - Spearman’s rank correlation coefficients calculated among temporal macroinvertebrate 609 

communities (serial RELATE analyses) at each site.  610 

 Site Spearman’s correlation (ρ) 

 1 0.013 

 2 0.255 

Ephemeral 

sites 
3 0.572*** 

 4 0.079 

 5 0.178 

 6 0.055 

 7 0.626*** 

 8 0.593*** 

Near 

perennial 

sites 

9 0.635*** 

 10 0.609*** 

 11 0.539*** 

*** p<0.01   

  611 
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Figure captions 612 

Figure 1 – Location of study river (a) and sampling reach and sites (b): ephemeral sites comprises 613 

sites 1- 6 and near perennial comprises sites 7-11.  614 

Figure 2 - Number of taxa (a) and log10 macroinvertebrate abundance (b) across the sampling period 615 

in ephemeral (E) and near perennial (NP) river reaches on R. Lathkill (UK). Surface flow was 616 

maintained in near perennial sites throughout the study period. Flow remained ephemeral in 617 

ephemeral sites and streambed drying occurred for; (1) ca. 28 days from mid-March 2012, (2) ca. 39 618 

days from mid-May 2012; and (3) ca. 46 days from early Aug 2012.  619 

Figure 3 – NMDS ordination of macroinvertebrate assemblages from near perennial and ephemeral 620 

study sites (a) and; centroid NMDS plots of macroinvertebrate communities from the 12 sampling 621 

periods in ephemeral (b) and near perennial sites (c). 622 

Figure 4 - Species accumulation plot for the months sampled from the ephemeral and near perennial 623 

sites) river reaches on R. Lathkill (UK). Surface flow was maintained in near perennial sites 624 

throughout the study period. Flow remained ephemeral in ephemeral sites and streambed drying 625 

occurred for; (1) ca. 28 days from mid-March 2012, (2) ca. 39 days from mid-May 2012; and (3) ca. 626 

46 days from early Aug 2012.  627 

Figure 5 - Mean Asellus aquaticus (a) Gammarus pulex (b) Isoperla grammatica (c) Serratella ignita 628 

(d) Baetidae (e) and Perlodes mortoni (f) abundance from each sampling month from ephemeral 629 

(ephemeral sites: E) and near perennial (near perennial sites: NP) study sites on the R. Lathkill (UK). 630 

Surface flow was maintained in near perennial sites throughout the study period. Flow remained 631 

ephemeral in ephemeral sites and streambed drying occurred for; (1) ca. 28 days from mid-March 632 

2012, (2) ca. 39 days from mid-May 2012; and (3) ca. 46 days from early Aug 2012.  633 
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Figure 3 683 
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Figure 4 715 
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Figure 5 717 
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