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Abstract 

 

Bioelectrochemical removal of Cr(VI) and consequent renewable energy generation 

from wastewater is a promising technology. However, slow reaction kinetics, expensive 

catalysts, and hydrophobic binders remain a significant challenge for commercialization of this 

emerging technology. In the present study, for the first time graphite felt modified with 

FeS@rGO nanocomposites were used as a cathode in a dual chamber microbial fuel cell (MFC) 

for concurrent Cr(VI) reduction and power generation. The MFC with FeS@rGO 

nanocomposites (MFC-FeS@rGO) exhibited 100% Cr(VI) removal efficiency for the 

concentration of 15 mg/L and also acquired  high reduction rate of 1.43 mg/L/h, which was 

approximately 4.6 times higher than MFC-blank. MFC-FeS@rGO delivered the maximum 

power density of 90.4 mW/m2, and it was 150%  high as that of MFC-blank (36 mW/m2). High 

cathodic coulombic efficiency for MFC-FeS@rGO (61%) indicated the substantial amount of 

mailto:leiwang@rcees.ac.cn
mailto:gpan@rcees.ac.cn


 

2 
 

charge produced by exoelectrogens was consumed for Cr(VI) reduction. Overall improved 

electrochemical performance of MFC-FeS@rGO was attributed to the high conductivity, low 

internal resistance, and better reaction kinetics of FeS@rGO nanocomposites. This study has 

demonstrated the highest reduction rate and high power production compared with previous 

studies which have used very high concentration of Cr(VI).  Hence, it is expected that current 

findings will help to scale up the simultaneous Cr(VI) reduction and power generation from 

real wastewater. 

Keywords: Electrochemical; Microbial fuel cell; Chromium; Renewable energy; Wastewater 

treatment  

1. Introduction 

The presence of chromium in the aquatic environment poses a severe threat to human 

health and ecosystem due to non-degradability and high toxicity. Long-term exposure of Cr(VI) 

to human beings can cause dermatitis, tumours, liver and kidney damage, bronchogenic, and 

respiratory problems [1]. Cr(VI), owing to its high toxicity, has been classified as a class-I 

carcinogen by the International Agency Research on Cancer and U.S. Environmental 

Protection Agency (EPA) has declared 50 µg/L of Cr(VI)  as a permissible limit in drinking 

water [2, 3]. The release of Cr(VI) into the aquatic environment is mainly through wastewater 

effluents of electroplating, metallurgy, leather tanning, and dyes manufacturing industries [4].  

On the other hand, Cr(III) is more stable and less toxic than Cr(VI), which is relatively more 

corrosive, water-soluble, and mobile [5]. Therefore, the reduction/ transformation of Cr(VI) 

into Cr(III) is necessary before the discharge of industrial effluents in the environment. Current 

approaches for the reduction of Cr(VI) include solvent extraction, bioaccumulation, reverse 

osmosis, photoelectrochemical process, ion exchange, adsorption, and electrochemical 

precipitation [6-8].  

However, the practices mentioned above are less effective due to the high energy 

requirements, expensive and laborious nature, and excessive sludge production. Microbial fuel 

cell (MFC) mediated reduction of Cr(VI) holds great promise due to renewable energy, low 

cost, and high sustainability[9, 10]. Though substantial reduction rates of Cr(VI) have been 

achieved by MFC, slow reduction kinetics remains a significant bottleneck [10, 11]. In 

literature, usually high concentration (100-200 mg/L) of Cr(VI)  has been reportedly used to 

show the high removal efficiency with high power production by MFC. The high concentration 

of Cr(VI) is unrealistic and is far from practical applications. Furthermore, electrical repulsion 

between electronegative species of Cr (Cr2O7
2- or CrO4

-) and negatively charged cathode can 
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slow down the reaction kinetics. Passivation of Cr(III) on the cathode surface can also lower 

the conductivity [11]. Besides, biocathode toxicity is the major drawback of biological 

reduction of Cr(VI) [12]. Thus, electrode modifications through efficient catalytic materials are 

required for accelerated reduction of Cr(VI) in real wastewater.  

Iron-based materials such as pyrite, magnetite, and mackinawite have been frequently 

used for catalysing the Cr(VI) reduction from the wastewater and sediments [13-15]. However, 

a few studies are available which have targeted the Cr(VI) reduction by iron-based materials 

in MFCs. For example, Shi, Zhao, Liu, Jiang and Ding [16] employed the natural pyrrhotite-

coated cathode for understanding the Cr(VI) reduction under various conditions. In another 

study, Fe(III) was used as an electron-shuttle for enhanced Cr(VI) reduction in MFC by 

minimizing the diffusional resistance and overpotential [11]. Recently, α-Fe2O3/polyaniline 

nanocomposites were evaluated to catalyse performance of Cr(VI) reducing MFC [10]. 

Unfortunately, studies mentioned above still have some drawbacks such as very high 

concentration of Cr(VI), slow reaction kinetics, passivation of Cr(III) and low power 

production which limit their practical applications. Electrochemical reduction of Cr(VI) is 

limited by Fe (0) and Fe (II)-bearing oxides under neutral to basic pH. 

 Nonconductive and expensive binders could reduce the conductivity and block the 

active sites to reduce permeability at the electrode-electrolyte interface [17]. Poor durability of 

costly materials and harmful impacts due to their dissolution over time may limit these 

strategies for long term applications. Besides, externally added mediators might not be a cost-

effective and sustainable approach at all [11]. Thus, more efficient iron-based catalyst and less 

expensive binders with superior hydrophilic properties can be employed to enhance the 

reduction of Cr(VI) in MFC for practical applications. Intriguingly, FeS nanoparticles have 

been widely used in various fields like photo-catalysis and sodium and lithium-ion batteries 

due to low cost and eco-friendly nature [18, 19].A recent study has proposed that FeS 

nanoparticles can facilitate extracellular electron transport in MFC [20]. Hydrophilic 

conductive binders (BPSH-40) and graphene could be a better choice in cathode catalysts 

development to reduce the precipitation of Cr(III) and low conductivity [17]. There has also 

been an upsurge in the knowledge of graphene-based materials and their applications in 

electrochemistry due to excellent conductivity, large surface area, and good mechanical 

strength [21]. Inspired from the above studies, we propose FeS nanomaterials decorated with 

reduced graphene oxide (FeS@rGO) could be an ideal cathode modifier for simultaneously 

enhanced Cr(VI) reduction and electricity production in MFC. To the best of our knowledge, 

the utility of this material has not been evaluated for Cr(VI) reduction and power deneration 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pyrites
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by MFCs. Herein we report that cathode decorated with FeS@rGO nanocomposites can 

accelerate the Cr(VI) reduction in MFC. The enhanced bioelectrochemical reduction was 

attributed to the high conductivity and active catalytic surface of FeS@rGO. Detailed reduction 

kinetics and improved cathodic coulombic efficiency suggested that current findings could help 

to scale up the simultaneous Cr(VI) reduction and power generation from real wastewater.  

 

2. Materials and methods 

2.1. Electrolyte preparation and anodic inoculum  

  Annolyte was prepared by dissolving the (g/L) 4.4 KH2PO4, 3.4 K2HPO4, 1.0 KNO3, 

0.5 NaCl, 0.2 MgSO4, CaCl2 0.014 of distal water. One mL from trace elements media 

containing the (mg/L) 0.39 Na2MoO4·2H2O, 0.22 ZnSO4·7H2O, 1.81 MnCl2·4H2O, 0.08 

CuSO4·5H2O, and 2.86 H3BO3 was supplemented in the above solution. However, catholyte 

contained, (g/L) 0.31 NH4Cl, 0.13 KCl, 4.97 NaH2PO4, 2.75 Na2HPO4, and 15 mg/L of 

hexavalent chromium. The pH of catholyte was adjusted to 2.0 using 0.1 M HCl solution. 

Anodic effluent from the previously working MFC was used as an anodic inoculum source.    

2.2. FeS@rGO nanocomposite synthesis and characterization 

  Fabrication of FeS wrapped reduced graphene (FeS@rGO) nanocomposites was carried 

out by a slightly modified method described elsewhere in the literature [18]. Briefly, graphene 

oxide suspension in DI (6 mg/mL) was prepared by sonication to disperse the GO nanosheets 

thoroughly. For the typical fabrication of FeS@rGO 4.0 g of iron nitrate [Fe(NO3)3·9H2O ] 

was dissolved in 40 mL of deionized water,  and 12 mL of GO suspension was mixed under 

vigorous stirring and sonicated for one h. Subsequently, dropwise adding the freshly prepared 

sodium sulfide nonahydrate (Na2S·9H2O) solution (3.6 g in 20 mL) under vigorous stirring. 

Black precipitate appeared immediately, and the mixture was stirred and sonicated each for 1h 

(Fig.1). Finally, the precipitate was collected by centrifugation and washed thrice with the 

deionized water. Vacuum incubator was used to dry the precipitate which was then transferred 

to a quartz tube furnace and annealed at 400 °C in a nitrogen atmosphere for 2 h to reduce GO 

and increase the FeS crystallinity. 

 However, FeS without GO was also prepared under the similar condition to be used as 

a control. The structural morphology of nanocomposites was characterized by scanning 

electron microscopy (SEM, S4800, HITACHI) and HR-TEM (JEM-2100 plus transmission 

electron microscope, JEOL, Tokyo, Japan). Chemical and structural characterization was done 

by X-ray diffraction analysis (XRD, PANalytical Empyrean, diffractometer equipped with a 
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Cu Kα1 radiation) and Fourier transform infrared spectroscopy (FTIR 200-VT, Perkin-Elmer, 

Shelton, CT). The elemental composition and chemical state of nanocomposites were analysed 

by X-ray photoelectron spectroscopy (XPS, ESCALAB-250). 

 

 

 

Fig. 1. Schematic illustration of the facile synthesis of FeS wrapped reduced graphene 

(FeS@rGO) nanocomposites 

2.3. Electrode construction  

Graphite felt (4 × 2.5 cm) was purchased from Shanghai Hesen Electrical Co., Ltd. and 

used in anode and cathode materials. Pre-treatment of electrodes was done by overnight 

incubation in acetone solution followed by heating in a muffle furnace at 450 °C about 30 min 

as already described in the literature [22, 23]. Catalytic ink was prepared using the 5 mg/cm2 

of FeS@rGO nanocomposites into a mixture containing a hydrophilic binder (BPSH-40) and 

N, N- dimethylformamide followed by ultrasonication as described previously [17]. 

Subsequently, the cathode was decorated in such a way that a uniform catalyst layer was coated 

on graphite felt. Similarly, one control electrode was also prepared with FeS nanocomposites, 

and one blank electrode was used without any modification. Modified cathodes were dried in 

the incubator at 60 °C for 24 h and kept for further use. However, anode was used without any 

modification after pre-treatment.  

2.3. MFC construction and operation 

In this study, three identical dual chamber microbial fuel cells (MFCs) made of 

Plexiglass were designed. Each chamber had an effective working volume of 140 mL. MFCs 
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were named with respect to the cathode modified material e.g., MFC-FeS@rGO, MFC-FeS, 

and MFC-blank (without any modification). Proton exchange membrane (PEM, Nafion™ 117, 

Dupont Co.) with an active surface area 12.56 cm2 was used to separate the anode and cathode. 

Pre-treatment of PEM was done by consecutively boiling it in H2O2 (30% v/v) and H2SO4 (0.5 

M), each for 1 h and then stored in deionized water until further use. After MFC construction 

annolyte and catholyte were filled in respective chambers. Nitrogen purging was performed to 

remove dissolved oxygen from each chamber. Annolyte from another MFC reactor was used 

as anodic inoculum. The distance between two electrodes was 4 cm, and the copper wire was 

used to connect the electrodes via external load (1000 Ω). All MFCs were incubated at room 

temperature and allowed to run in open circuit mode. When a stable open circuit potential was 

achieved, the MFCs were ready for electrochemical analysis. Annolyte and catholyte were 

replaced from time to time when open circuit potential (OCP) was below the 0.3 V.  

2.4. Electrochemical characterization and calculations  

Electrochemical characterization was started with the polarization curves drawn by 

varying the external resistance (1000, 700, 500, 300, 100 to 50 Ω) at 20 min intervals after the 

stabilized OCP was obtained.  The potential drop across the external resistance was recorded 

for 20 min interval by digital multimeter data acquisition system (M2700, Keithley instrument, 

Cleveland, USA) connected with the computer. Ohms law was used to calculate current and 

power from voltage data as (V= IRext) or Power (Pmax= V x I), where Rext is the external 

resistance. Current densities (I) and power densities were normalized to the exposed surface 

area of the cathode (10 cm2). Electrochemical performance of modified cathode was evaluated 

in dual-chamber MFCs by Linear sweep voltammetry (LSV), electrochemical impedance 

spectroscopy (EIS)  using the electrochemical work station CHI660A system (CH Instruments, 

Inc.) in three-electrode mode. The cathode was working electrode, while anode and Ag/AgCl 

served as a counter and reference electrode, respectively.  

The LSV was carried out by scanning the potential from zero to OCP of the cathode at 

the scan rate of 0.1 mV/s. The EIS analysis was performed over a frequency range from 100 

kHz to 10 mHz with an AC signal of 10mV amplitude at OCP of the cathode. Electrolyte 

resistance, polarization /charge transfer resistance (Rct), and diffusion resistance (W) were 

estimated by Nyquist plot. Moreover, electrochemical fitting of impedance spectra was done 

to the equivalent circuit using the Z view software. However, electrochemical reduction of  

Cr(VI) on various cathodes were evaluated by cyclic voltammetry using the electrochemical 

work station CHI660A system (CH Instruments, Inc.) in three-electrode mode, where cathode 
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was working electrode  in the presence of platinum sheet (1 cm x 1 cm) and Ag/AgCl as counter 

and  reference electrode respectively. The potential was scanned from - 1.2 V to + 1.2 V with 

the scan rate of 10 mV/s. The Cr(VI) concentration in catholyte samples was determined by 

standard 1,5-diphenyl carbazide-colorimetric method and the UV–vis spectrophotometer 

(Carry 100, Varian, USA) as described in the literature [3].  

Sampling aliquots were collected using the 1 mL syringe and were filtered through 0.45 µm 

membrane filters before the Cr(VI) determination. Each test was performed thrice, and results 

are presented as mean value with standard deviation. Equation 1 was used to determine the 

removal of Cr(VI) efficiency. Cathodic coulombic efficiency (C.Eca) represents the ratio of 

charges used for Cr(VI) reduction to Cr(III) charges flowing across the MFC.  Thus C.Eca was 

calculated by equation.2 as described in previous studies [11]. Where, 𝛼  is the number of 

electrons to reduce the Cr(VI), ΔC is the change in concentration during the operation time t, 

Vca is the volume of cathode chamber, MCr (52 g/mol) the molecular weight of Cr, F the 

Faraday’s constant (96,485 C/mole), 103 the conversion unit (mg/g), I is the circuital current 

and T is the operation time of MFC. Effect of initial dosage is not only necessary to evaluate 

the performance of catalytic material but also for implementation of MFC mediated Cr(VI) 

reduction in real wastewater. Therefore, Cr(VI) reduction efficiency was evaluated with low 

concentrations. Five MFC-FeS@rGO with various concentrations (i.e, 5, 10, 15, 20, 25, 50 

mg/L) and pH 2 were run. MFC performance for Cr(VI) reduction can be influenced by pH of 

electrolytes. Overall pH change in catholyte can alter the ionic concentration, membrane 

potential for proton shuttling and Cr(VI) reduction. Therefore, Cr(VI) reduction efficiency was 

also studied under different pH values. To study the effect of pH, ten parallel MFCs were run 

with different catholyte pH (1-10) and the same initial concentration (15 mg/L) of Cr(VI). 

 

Chromium removal efficiency (%) = 𝐸𝑅𝑒𝑚 =    
𝐶0 − 𝐶𝑡

𝐶0
  × 100          (1) 

                                      𝐶. 𝐸𝑐𝑎 =
𝑎𝐹 ∆𝐶𝑐𝑟(𝐼𝑉) 𝑉𝐶𝑎

103 𝑀𝐶𝑟 ∑ 𝑙𝑖∆𝑡𝑖𝑛
𝑖=1

                                            (2) 

 

3. Results and discussion  

3.1 FeS@rGO nanocomposite synthesis and characterization 
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The synthesis procedure of FeS@rGO nanocomposites is shown in Fig. 1. Graphene 

oxide (GO) suspension was completely dispersed in Fe(NO3)3 solution under ultrasonication. 

Fe3+  ions were adsorbed on defects and functional groups (e.g., -OH, -COOH) present on the 

surface of GO [24]. A black precipitate of FeS was formed when iron nitrate was introduced in 

the above reaction mixture. Vigorous shaking and ultrasonication ensured the FeS 

nanoparticles were wrapped in graphene oxide nanosheets [25]. Subsequently, annealing leads 

to the formation of crystallized FeS wrapped by rGO due to the removal of carboxylic groups 

and vaporization of intercalated water molecules [26]. The surface morphologies of FeS and 

FeS@rGO nanocomposites is presented in Fig. 2. The SEM images of FeS and FeS@rGO 

indicate spherical morphology of nanocomposites (Fig. 2a-b). Moreover, elemental mapping 

of FeS@rGO nanocomposites confirmed the equal distribution of Fe, S, and C, which depict 

the wrapping of FeS nanoparticles by rGO nanosheets (Fig. 2c-f). The HR-TEM images also 

indicate that clear lattice fringes for rGO layers wrapped around the FeS (Fig. 3g-i). Thus, 

spherical FeS@rGO nanocomposites were prepared with a diameter of 10-35 nm.  
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Fig. 2. SEM images of FeS (a) and FeS@rGO (b), elemental mapping of FeS@rGO 

(c-f), HR-TEM images of Fes@rGO (g-i) 

 

The XRD pattern of synthesised nanocomposite indicated the presence of pure FeS 

crystals (Fig. 3a). All the diffraction peaks in both samples can be attributed to the FeS (JCPDS 

01-075-0600). No iron oxide was detected, which implies that rGO wrapping has prevented 

the decomposition of FeS to Fe [27]. FTIR spectra of GO showed a short stretching peak of C-

O from the carboxyl group at 1725 cm−1 (Fig. 3b). The broad hydroxyl stretching peak was 

observed at 3200 cm−1. The intense peaks around 1635 cm−1, 1420 cm−1 and 1060 cm−1  

represent the C-C vibration of aromatic hydrocarbons (SP2 characteristic of graphene), C-O 

(carboxy) and alkoxy peaks of graphene oxide respectively (Fig. 3b). Intriguingly, hydroxyl 

peak shift toward higher wavenumber and complete disappearance of peak 1725 cm−1 for 

FeS@rGO indicate the removal of oxygen-containing function groups from GO [28]. Also, a 

short peak representing the aromatic C=O of at 1625 cm−1 indicates the reduction of GO after 

pyrolysis. A clear shift at peaks 1109 and 1153 in FeS@rGO spectra may be assigned to steric 

hindrance after combining the rGO with FeS nanoparticles [29]. 

XPS analysis was used to characterize the chemical states of FeS@rGO composites. 

XPS survey spectra of nanocomposites confirmed the presence of Fe, S, and C (Fig. 3c). 

Binding energies of 708.7 eV and 722.4 eV for Fe 2p3/2 and Fe 2p1/2 can be ascribed to Fe2+ 

state in Fe 2p spectrum of FeS@rGO respectively (Fig. 3d). In S 2p spectra of FeS@rGO the 

core level band of the S 2p area can be spotted with the peaks around 160.5 eV and 162 eV 

corresponding to the S 2p1/2 and S 2p3/2 as a characteristic of FeS (Fig. 3e). The C 1s features 

of GO in XPS spectra showed the peaks compatible to the sp2 bonded carbon (C-C) and 

carboxylic/carbonyl (C=O) components at 283.8, 286 and 287.9 eV respectively (Fig. 3f). The 

relatively intense peak of C-C compared with  C-O and C=O showed the reduction of GO after 

annealing step [25, 30]. XPS results reinforced the findings of XRD and TEM. Overall 

characterization revealed that FeS@rGO nanocomposites were successfully synthesized for the 

application of chromate reduction.    
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Fig. 3. XRD spectra of FeS and FeS@rGO (a), FITR Spectra (b), XPS spectra of FeS@rGO, 

survey spectrum(c), Fe 2p (d), S 2p (e), C 1s(f) 

 

 

3.2 Electrochemical performance of FeS@rGO decorated electrode.  

Electrochemical reduction of Cr(VI) using modified electrodes in MFC was 

investigated by CV method using the three-electrode system, where cathode was working 

electrode in the presence of Ag/AgCl reference electrode and Pt as a counter electrode. Distal 

water was filled in FeS@rGO containing MFC as a negative control. Cyclic voltammogram 

from all MFCs showed reduction peaks except negative control (Fig. 4a). The reduction peak 

from MFC-blank was weak (-0.82 V), which indicate the slow reduction of Cr(VI) at the 

surface of the unmodified cathode. Graphite felt modified with FeS@rGO exhibited the wide 

reduction peak at - 0.17 V (vs Ag/AgCl) and high catalytic current (I = - 7.7 e-3 A) compared 

with MFC-FeS which displayed the lower reduction peaks around the -0.54 V and catalytic 

current of -3.2 e-2 A (Fig. 4a). Previous studies have evinced the Cr(VI) reduction within the 
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range of 0.6 V to -0.8 V. A positive shift in the reduction peak for MFC-FeS@rGO depict the 

low overpotential and enhanced electrocatalytic reduction of Cr(VI). Similar positive shifts for 

Cr(VI) reduction potential have been observed after electrode modification with efficient 

catalytic materials [10, 31]. Enhanced electrocatalytic performance of MFC-FeS@rGO 

compared with controls can be attributed to the FeS@rGO nanocomposites, which signify that 

rGO in FeS@rGO have improved electron transfer kinetics due to excellent conductivity and 

large surface area. 

 The LSV analysis also confirmed the electrocatalytic reduction of Cr(VI), and the 

resulting current was highest for MFC-FeS@rGO compared with controls (Fig. 4b). The high 

current generation can be linked with a high flux of Cr(VI) species on the surface of FeS@rGO 

containing cathode [3]. Thus, fast Cr(VI) reduction will be achieved for modified cathode by 

FeS@rGO nanocomposites. Further electrochemical performance of modified electrodes was 

evaluated by EIS analysis. The EIS analysis is useful to measure the internal resistance or 

reasons for voltage losses for various electrodes. Generally, internal resistance comprised of 

ohmic resistance (Rohm), Charge transfer resistance (Rct) and Warburg/diffusional resistance 

(W) of the electrode. One-time constant model (OTCM) was selected to calculate all above 

parameters of EIS. The Nyquist plots and equivalent circuit diagram are shown in Fig. 4c. The 

ohmic resistance and charge transfer resistance are estimated from the diameter of first and 

second intercept, respectively at the real impedance axis [32]. The ohmic resistance for MFC-

FeS@rGO (3.12 Ω) was slightly lower than the MFC-FeS (4.26 Ω) and MFC-blank (4.9 Ω) 

(Table 1 & Fig. 4c). The low ohmic resistance of electrolyte is effective for superior 

conductivity and accelerated electron mobility [23].  

Lowest Rct for MFC-FeS@rGO (2.86 Ω) compared with MFC-FeS (6.15 Ω) and MFC-

blank (11.26 Ω) can be ascribed to the evident conductivity due to FeS@rGO nanocomposites 

attached on graphite felt. Moreover, FeS@rGO nanocomposite network has provided more 

electroactive surface area to improve the electron transfer by reducing the interfacial contact 

resistance between cathode and catholyte [33]. Charge transfer resistance is referred to as the 

activation energy of cathode; therefore, a better Cr(VI) reduction kinetics for MFC-FeS@rGO 

are observed. Similarly, diffusional resistance (W) was also reduced in modified cathodes, 

which implies that FeS@rGO combination was useful for low activation energy, enhanced 

Cr(VI) reduction and overall better performance of MFC (Fig. 4c). These findings are 

consistent with the CV, LSV results, and reduction efficiencies, which have demonstrated that 

FeS@rGO nanocomposites as a potential cathode modifier for simultaneous Cr(VI) reduction 
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and electricity generation. The maximum output performance of MFCs was analysed by 

polarization curves obtained by varying the external resistance method.  

The maximum power density of MFC-FeS@rGO was 90.4 mW/m2, which was 60% 

and 150% higher as that of MFC-FeS (56 mW/m2) and MFC-blank (36 mW/m2) respectively 

(Fig. 4d). The results indicated that the electrodes modified with FeS@rGO nanocomposites 

had exhibited the favourable electrochemical performance; thus, they can be used as a potential 

modifier for cathodes. Similarly, maximum extracted current density from MFC-FeS@rGO 

(488mA/m2) was 84% and 140 % higher than MFC-FeS (264 mA/m2) and MFC-blank (200 

mA/m2) respectively (Fig. 4d). The improved electrochemical performance of FeS@rGO  can 

be linked with  low internal resistance and efficient charge transfer ability of rGO [29]. 

Noticeably, the maximum power density extracted in this study was higher than the previous 

studies used for simultaneous electricity generation and Cr(VI) reduction from concentrated 

wastewater [3, 34, 35]. Briefly, our electrode has demonstrated a better performance compared 

with previous studies in terms of   high reduction peak and catalytic current and internal 

resistance [3, 10, 31] . 
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Fig. 4. Cyclic voltammetry (a), Linear sweep voltammetry (b), Electrochemical impendence 

spectroscopy (c), Polarization curves (d) 

 

Table. 1 Detailed parameters and components of EIS  

MFC     Rohm (Ω)  RCT (Ω) Warburg  Capacitance 

MFC-

FeS@rGO 3.12 2.86 0.0117 1.10E-05 

MFC-FeS 4.26 6.515 0.1922 4.80E-05 

MFC-blank  4.916 11.26 0.01862 6.02E-07   
 

3.3 Cr(VI) reduction performance of MFC 

Electrochemical Cr(VI) reduction performance of MFCs was evaluated using the 

different modified electrodes. Three MFCs, having different cathodes, were filled with 15 mg/L 

of Cr(VI). The MFC-FeS@rGO exhibited a rapid reduction in the Cr(VI) concentration and 

100% removal after 10.5 h (Fig. 5a). Meanwhile, Cr(VI) removal efficiency was 57% and 81% 

for MFC-FeS and MFC-blank, respectively. Remarkably, FeS@rGO nanocomposites have 

accelerated the Cr(VI) reduction in MFC (Fig. 5a). Reduction kinetics of Cr(VI) provided a 

detailed insight of improved MFC performance, which indicated the complete reduction of 

Cr(VI) required additional time in control MFCs (Fig. 5b). Cr(VI) reduction data was 

approximately fitted to the first order of reaction with R2 = 0.95. The rate constant was 

calculated from the slope of ln C0/C vs. time graph, where C0 and C are initial concentration 

and concentration at time t (Fig. 5b). Enhanced reduction kinetics for MFC-FeS@rGO was 

also apparent from the reduction rate. The reduction rate for MFC-FeS@rGO (1.43 mg/L/h) 

was approximately 2.0 and 4.6 times higher than MFC-FeS and MFC-blank, respectively. 

 Interestingly, the Cr(VI) reduction rate in this study was highest among the previously 

reported studies using a high concentration of catholytes [10, 36-38]. Accelerated reduction 

from Cr(VI) to Cr(III) can also be linked with the enhanced electrogenic activity of anodic 

microbes [34]. Relatively, a stabilized and high current density was generated from MFC-

FeS@rGO compared with control MFCs (Fig. 5c). Cathodic coulombic efficiency (C.Eca) 

depicted the number of electrons consumed for Cr(VI) reduction.  MFC-FeS@rGO exhibited 

the highest C.Eca (61%) compared with MFC-FeS (31%) and MFC-blank (17%), respectively 

(Fig. 5d). Therefore, an adequate number of electrons were produced and transferred to the 

mailto:MFC-FeS@rGO
mailto:MFC-FeS@rGO
mailto:MFC-FeS@rGO
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cathodes as a result of superior reaction kinetics in MFC-FeS@rGO. The favourable 

electrochemical reaction kinetics at the cathode and better electrogenic activity, in turn, affect 

the consumption of anodic substrate [39]. Therefore COD removal efficiency of all MFCs was 

also analysed along with Cr(VI) reduction. MFC-FeS@rGO revealed the highest COD removal 

efficiency (72%) compared with MFC-FeS (48%) and MFC-blank (23%) respectively control 

MFCs (Fig. 5d). Frequent replenishment of annolyte will substantially improve the wastewater 

treatment efficiency of MFCs. It implies that cathode modification with efficient catalysts does 

not only accelerate the Cr(VI) reduction but also improve the electrogenic activity which may 

lead to the enhanced consumption of anodic substrate and high power generation from 

wastewater. 

 

Fig. 5. 

Cr (IV) reduction profile (a), Reaction kinetics (b), Current density profile(c), Cathodic 

coulombic and COD removal efficiency (d) 

3.4 Effect of initial concentration and pH on Cr(VI) reduction performance  
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Effect of initial Cr(VI) concentrations on the reduction and catalytic performance of 

MFCs was also evaluated here. Reduction efficiency was increased with the initial 

concentration of Cr(VI) up to 15 mg/L. However, later on, reduction efficiency was decreased 

(Fig. 6a). Results indicated that 15 mg/L concentration has delivered the highest Cr(IV) 

removal efficiency (99.9 %). The decrease in Cr(VI) reduction efficiency at high concentration 

can be specified with a high number of electron acceptors compared with electrons produced 

through metabolism [31]. Negative impacts of high concentration on Cr(VI) reduction 

efficiency and MFC performance have already been reported [40]. In literature, usually, a high 

concentration (100-300 mg/L) of Cr(VI) is used to show the high power production and 

removal efficiency in MFC [41-43]. This high concentration of Cr(VI) is unrealistic and is far 

from real wastewater. Therefore, Cr(VI) reduction efficiency at low concentration is necessary 

to investigate and to apply this lucrative technology for real wastewater. 

 Furthermore, effect of different pH values on reduction efficiencies was studied to 

explore further insights of reaction kinetics. Fig. 6b revealed that complete Cr(VI) reduction 

was achieved for pH two after 10.5 h. For other pH values, the removal efficiency was lower 

and would require more reaction time for complete reduction. Generally, the reduction rate was 

increased with the decrease of pH 2-10. Under acidic conditions, Cr(VI) reduction is 

thermodynamically favourable due to increase in standard reduction potential by hydrogen ions 

[44]. However, the reduction rate was not further increased for pH 1, which can be ascribed to 

the hydrogen ions movement from cathode to anode to shatter the essential pH gradient for 

microbial growth. So current study has showed the high Cr(VI) reduction efficiency for low 

concentrated wastewater, thus it aims to fill the gaps for practical applications of MFC 

mediated Cr(VI) reduction. 
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Fig. 6. Effect of the initial concentration of Cr (VI) (a), Effect of pH on the reduction 

efficiency of Cr (VI) (b). 

 

4. Conclusion 

 

In this study, FeS@rGO nanocomposites synthesized by facile precipitation method were used 

to decorate the graphite felt cathode. The modified cathode in dual-chamber MFC was found 

to be superior for synergistic Cr(VI) reduction and electricity generation. Electrochemical 

characterisation revealed the enhanced performance was due to excellent conductivity, low 

internal resistance, and improved electrochemical performance of FeS@rGO. Detailed 

reduction kinetics depicted that rapid Cr(VI) reduction has positive influence on the COD 

removal efficiency and electrogenic activity in the anode. High power production and cathodic 

coulombic efficiency evinced the significant charge consumption was due to Cr(VI) reduction. 

Overall our findings suggest this method has potential implications for scaling up MFC 

technology in real wastewater treatment. Thus, despite the high Cr(VI) removal efficiency in 

lab experiment, further studies are needed to evaluate this material for real wastewater.  
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