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Abstract: Venomous snakes often display extensive variation in venom composition both between and
within species. However, the mechanisms underlying the distribution of different toxins and venom
types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus)
display extreme inter- and intraspecific variation in venom composition, centered particularly on the
presence or absence of presynaptically neurotoxic phospholipases A2 such as Mojave toxin (MTX).
Interspecific hybridization has been invoked as a mechanism to explain the distribution of these
toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here,
we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the
distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone
between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico,
USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive
admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly
linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the
hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin
in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is
not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization
may not lead to introgression of these genes into another species.

Keywords: adaptation; Crotalus; evolution; hybridization; introgression; Mojave toxin; molecular
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1. Introduction

Variation in venom composition is a ubiquitous phenomenon in venomous snakes at all taxonomic
levels, from temporal variation within individuals to higher levels. [1,2]. The often extensive
compositional variation between conspecific populations or between closely related species has been
of particular interest, partly due to its medical consequences [3–5] and partly due to its potential
as a model system for understanding adaptive evolution at the molecular level (e.g., [6–8]): many
species display extreme intraspecific geographic variation in venom composition, and this variation
may bear little relationship to population genetic structure or organismal phylogeny [9,10]. Natural
selection for optimization of venom to the diet of snakes has been identified as a likely key driver of
venom evolution in several groups [9,11–13]. However, these examples consist primarily of snakes
with extreme dietary variation and/or disjunct distributions (e.g., Calloselasma rhodostoma), or groups
of well-differentiated species (e.g., Micrurus, Echis), and the forces underlying venom variation in other
cases remain poorly understood [10,14,15]. Moreover, the genetic mechanisms underlying variation in
snake venom composition, and the distribution of individual toxins among populations and species,
remain largely unknown.

Rattlesnakes (genera Crotalus and Sistrurus) constitute an excellent group of model organisms for
the study of venom variation, as they display extensive inter- and intraspecific variation in venom
composition [16]. An underlying theme in Crotalus appears to be the presence of alternative and
often largely mutually exclusive envenoming strategies: type I venoms [16] contain large amounts of
snake venom metalloproteinases (SVMPs), whereas type II venoms contain a high concentration of
presynaptically neurotoxic, heterodimeric PLA2 toxins such as crotoxin and Mojave toxin (MTX) [17,18],
and are typically considerably more lethal in the mouse model than their type I counterparts.

Remarkably, the distribution of these different strategies among rattlesnakes shows little
congruence with phylogeny or even species limits. Both strategies can be found across the full
phylogenetic breadth of rattlesnakes. Species showing intraspecific variation, with different conspecific
snakes secreting either type I and type II venoms [5,14,19–24], can be found in all major rattlesnake
clades [16]. This intraspecific variation can be ontogenetic, such as in C. simus, where the venom
changes from type II to type I during ontogeny [25,26], or geographic, in species such as C. scutulatus
and C. horridus, where both venom types occur in different parts of their distributional range [14,21,27].
In at least some cases, such as C. scutulatus, this variation appears to be related to the presence or
absence of the genes encoding these toxins rather than gene expression [22,28–30].

Mapping these apparently homologous toxins onto the phylogeny of rattlesnakes would require
remarkable numbers of gene loss events, or, even less plausibly, astonishingly numerous instances of
convergent evolution. An alternative explanation for these patterns, which bypasses this difficulty,
is adaptive hybridization. Hybridization has long been flagged as a potential source of adaptive
variation and innovations [31,32]. Extensive studies of hybrid zones between closely related species or
differentiated conspecific populations have demonstrated that selectively advantageous genes are able
to cross hybrid zones and spread into the other species, provided they are not linked to deleterious
alleles at other loci [33–35]. This applies even with slight reductions in hybrid fitness, which cause
these zones to act as sinks for selectively neutral alleles [33,36].

The hypothesis of a hybridogenic origin of the startling parallel patterns of intraspecific venom
variation in several rattlesnakes holds considerable intuitive appeal: by effectively providing a shortcut
for gene transfer between the branches of rattlesnake phylogeny, introgressive hybridization would
explain geographic variation in the presence of particular gene orthologs in multiple unrelated species
more parsimoniously than any hypothesis based solely on phylogenetic relationships. Glenn and
Straight [37] suggested that the presence of MTX-like toxins in some individuals of Crotalus viridis
(Prairie rattlesnake) from southwestern New Mexico was due to hybridization with nearby populations
of type II venom C. scutulatus. Aird et al. [38] noted the resemblance between the venoms of C. atrox
and type I venom C. scutulatus, and suggested that the type I venoms of some C. scutulatus populations
may be due to past hybridization between the two species. More recently, the presence of neurotoxic
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PLA2 toxins in some populations of C. horridus has been variously attributed to past hybridization with
Crotalus scutulatus [39] and Sisturus catenatus [30]. Similar arguments have been made to explain the
presence of neurotoxic PLA2 toxins in some European vipers [40,41]. However, none of these studies
provided any independent evidence of interspecific hybridization having taken place. Moreover,
despite this interest in hybridization as a possible mechanism for venom variation, we are not aware
of any published study rigorously examining venom composition across a well characterized hybrid
zone in any venomous animal.

Interspecific hybridization, potentially as a result of anthropogenic disturbance, has also been
invoked in the popular literature to explain a claimed increase in the clinical severity of rattlesnake
bites in the USA [42]. The evidence for this hypothesized increase was robustly deconstructed by Hayes
and Mackessy [43]. However, the intriguing question remains whether occasional hybridization events
could result in the rapid spread of novel, selectively advantageous toxin genes through the gene pool
of a different species. Given their radical effect on venom function and lethality, one could hypothesize
that highly lethal toxins such as MTX might be especially prone to this form of introgression and
subsequent selective sweeps.

It is an implicit assumption of any hypothesis of hybridogenic introgression of venom toxin genes
that the introgressing genes confer a selective advantage to the receiving gene pool [33,35]. By the same
token, any true hybrid zone between rattlesnake species with different venom compositions would
thus provide a test of the hypothesis that particular toxins could be highly selectively advantageous
and could spread rapidly across species limits after hybridization. Since individual variation in venom
composition can lead to differential venom effectiveness against different prey species [44], and thus
to potential differences in individual fitness, this scenario seems potentially feasible.

Although numerous individual hybrids between different species and even genera of rattlesnakes
have been documented [45–50], the frequency and importance of hybridization have been disputed [51].
The present study was prompted by the discovery of multiple specimens phenotypically intermediate
between the Mohave rattlesnake (Crotalus scutulatus) and the Prairie rattlesnake (C. viridis) in a contact
zone along the eastern slope of the Peloncillo Mountains, Hidalgo County, New Mexico, where the two
species are largely parapatric [52]. This region corresponds approximately to the location from which
Glenn and Straight [37] reported MTX-secreting specimens of Crotalus viridis, which they interpreted
as evidence of hybridization with neighboring populations of type II venom C. scutulatus.

A third large rattlesnake species, the western diamondback (C. atrox), occurs sympatrically with
both species in Arizona and New Mexico, and also across the hybrid zone. Hybridization between
C. scutulatus and C. atrox has been suspected of shaping venom composition in the former [37].
Moreover, a few individuals in the putative C. scutulatus ˆ viridis hybrid zone were visually
intermediate between C. scutulatus and C. atrox rather than C. scutulatus and C. viridis. We therefore
included all three large, sympatric rattlesnake species from the area in this assessment of hybridization
and its effects on venom composition.

Here, we use this apparent hybrid zone to test the hypothesis that highly lethal neurotoxic PLA2

toxins are likely to introgress into the gene pool of species lacking them. We analyze morphological
data, mitochondrial DNA and single-copy nuclear gene sequences to test for evidence of hybridization
between C. scutulatus and C. viridis or C. atrox. We then test for the presence of the genes encoding the
acidic and basic subunits of the Mojave toxin using a PCR-based assay and sequencing, and relate the
presence or absence of the toxin to the hybrid status of the snakes. Finally, we verified the presence of
MTX in the venom by reverse-phase high performance liquid chromatography (RP-HPLC) to establish
a link between hybrid status, toxin genotype and venom phenotype.
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2. Results

2.1. Morphology

Principal coordinates analysis of nine characters of head scalation and tail coloration revealed
clearly distinct clusters representing the three species C. atrox, C. scutulatus and C. viridis, with a
number of phenotypically intermediate specimens originating from the C. scutulatus—C. viridis contact
zone in Hidalgo County, New Mexico. The analysis revealed both specimens intermediate between
C. scutulatus and C. atrox, and between C. scutulatus and C. viridis, but not between C. atrox and
C. viridis (Figure 1).
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Figure 1. Ordination of specimens of C. scutulatus, C. atrox, C. viridis and putative hybrids along the
first two axes of a principal components analysis of nine morphological characters. All specimens
from the eastern slope of the Peloncillo Mountains in southwestern New Mexico are labeled as hybrids
irrespective of morphological or genetic profile. The first and second principal components represent
41.5% and 23.7% of the total variance, respectively.

2.2. Molecular Evidence of Hybridization

We obtained sequences of the mitochondrial NADH subunit 4 (ND4) gene and four single-copy
nuclear genes (NT3, R35, SELT, ETS) from 156 specimens (40 C. atrox, 56 C. scutulatus, 34 C. viridis
and 26 specimens from the putative C. scutulatus ˆ viridis hybrid zone). Information on our sequence
alignments is shown in Table 1. A neighbor-joining tree obtained from the mitochondrial ND4
sequences (Figure 2) grouped all specimens into three clusters corresponding to the three species
under study, with 99% bootstrap support for the monophyly of the haplotypes of each species. The
vast majority of specimens from the putative hybrid zone carried C. scutulatus haplotypes, and a few
C. viridis haplotypes. No putative hybrid haplotypes clustered as C. atrox. Mitochondrial sequences
and phased haplotype sequences of all nuclear genes are available under GenBank accession numbers
KX256288-KX257025.
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Table 1. Sequence characteristics of ND4 and single copy nuclear gene sequence alignments used in
this study.

Sequence parameters ND4 NT3 R35 SELT ETS

Length (bp) 635 538 531 346 653
# haplotypes 57 39 18 20 26

# variable positions 139 31 15 17 29

Toxins 2016, 8, 188  5 of 15 

 

 

Figure 2. Neighbor‐joining  tree of  individual ND4  sequences. Tip  labels with yellow background 

indicate specimens from the putative hybrid zone in SW New Mexico. 

Bayesian clustering analysis of all three species using Structure 2.3.4 and K = 3 showed extensive 

evidence of admixture between C. scutulatus and C. viridis, but virtually no evidence of hybridization 

between  C.  atrox  and  C.  scutulatus  or  C.  viridis  (Figure  3A). Only  one  predominantly  C.  viridis 

specimen  from  the hybrid  zone  showed  some  evidence  of  admixture  from  both C.  atrox  and C. 

scutulatus.  Specimens  morphologically  intermediate  between  C.  scutulatus  and  C.  atrox  were 

identified  genetically  as  being  C.  scutulatus  ×  viridis  or  pure  C.  viridis,  but  in  any  case without 

admixture from C. atrox (Figure 3A). 

Structure analysis of C. scutulatus and C. viridis individuals only, and K = 2, showed a continuum 

of levels of admixture (Figure 3B). Virtually all specimens from outside the immediate vicinity of the 

hybrid zone showed less than 5% admixture from the other species, although the demarcation was 

sharper  in  C.  viridis  than  C.  scutulatus.  Among  admixed  specimens,  14  displayed  species   

membership (Qi) values between 0.7 and 0.95, and seven Qi values between 0.5 and 0.7, indicating 

4375 Hwy 80 N Rodeo NM
4442 Benson AZ 
4305 Hwy 181 AZ
4279 Road Forks
4254 Road Forks NM 
3987 Rodeo NM 
4252 Road Forks NM
4267 Hwy 80 N Rodeo NM
4301 Hwy 80 AZ

4309 Willcox AZ
4436 Sonoita AZ 
3988n Portal Road AZ
4001 Hwy 80 NM
4264 Road Forks NM
4300 State Line Rd AZ
4377 Rodeo NM
4588 Granite Gap NM 

4278 Antelope Pass NM 
4303 Road Forks NM 

3991n Rodeo NM
4000 Road Forks NM
4258 Road Forks NM 
4298 Hwy 80 N Rodeo NM 
4306 Hwy 181 AZ
4445 Benson AZ 

4311 State Line Rd NM 
4687 Goat Camp Rd NM 
3999 Road Forks NM
4255 Sulphur Springs V AZ
4289 Road Forks NM
4251 Road Forks NM
3998 Road Forks NM
4287 Road Forks NM 
4374 Granite Gap NM
4483 Road Forks NM 
4688 Cotton City Rd NM 
4835 Antelope Pass NM 
4832 Hwy9 W Animas NM 

3994n Hwy80AZ
3995n Hwy80AZ
3996n Hwy80 AZ
4307 Hwy181 AZ
4571 RoadForks NM 
4582 RoadForks NM 

4002 GraniteGap NM
4434 California 

4462 Wickenburg AZ 
4821 Mesa AZ 

4380 Hat Mtn N Ajo AZ
4383 E YumaCo AZ
4384 Hope AZ
4386 Florence AZ 
4461 Sasabe Rd AZ 

4282 Tonopah AZ 
4381 N Ajo AZ
4382 Gila Bend AZ

4283 Tonopah AZ 
3992 Red Rock AZ

4603 Eloy AZ 
4830 Madera Canyon Rd AZ 
3993n Red Rock AZ
4263 Red Rock AZ
4446 Benson AZ 
4460Sasabe Rd AZ 
4602 Eloy AZ 

4385 Aguila AZ 
4416 Elgin AZ 

4604 Eloy AZ 
4573 Road Forks NM 

4807 Green Valley AZ 
4447 Davis Rd AZ 

4302 Sasabe Rd AZ
4459 Sasabe Rd AZ 

4387 Florence AZ
4441 Eloy AZ F

4398 UK captive
4461 Sasabe Rd AZ 

4440 Eloy AZ 
4601 Eloy AZ 

4609 RedRock AZ 
4308 SulphurSpringsV AZ

4584 RoadForks NM 
4392 NDeming NM 
4393 Hwy27 NM 
4391 NDeming NM

4389 Socorro Co NM
4579 Animas NM 

4390 Socorro CO NM
4397 Cloverdale Rd NM

4686 Virden NM 
4806 Red Rock Lordsburg NM 
4292 Hwy 9 E Animas

4597 Cloverdale Rd NM 
4286 Cloverdale Rd NM 

4388 Hobbs NM
4780 Marathon TX 

4269 Edgewood NM
4781 Marathon TX 

4605 Antelope Wells NM 
4294 Hwy146 NM

4003 Animas NM 
4270 Hwy 81 NM
4271 Hwy9 E Animas
4293 Hwy 146
4394 Hwy 9 NM 
4395 Hwy 9 EHachita NM
4396 Hwy 9 W Columbus NM
4590 Cloverdale Rd NM 
4591 Cloverdale Rd NM 
4592 Cloverdale Rd NM 
4596 Cloverdale Rd NM 
4690 CottonCity Rd NM 
4800 Hwy9 E Hachita NM 
4801 Hwy9 E Animas NM 
4802 Hwy9 E Hachita NM 
4803 Hwy9 E Hachita NM 

4765 Red Rock Lordsburg NM 
4804 Hwy 9 E Animas NM 

4428 Wickenburg AZ  
4469 Wickenburg AZ  
4465 Wickenburg AZ  
4431 Wickenburg AZ  
4430 Wickenburg AZ  
4429 Wickenburg AZ  
4423 Wickenburg AZ 

4608 Suizos AZ  
4594 Benson AZ  
4443 Benson AZ

4458 SasabeRd AZ  
4421 Tonopah  

4491 Hwy 9 NM  
4598 Hwy80 N Rodeo NM  
4411 Haekel Rd AZ 
4413 Hwy 181 AZ  
4414 Willcox AZ 

4371 UK captive
4372 UK captive

4492 Hwy 9 NM  
4490 Hwy 9 NM  
4400  San Simon V NM

4488 Hwy 9 NM  
4401  San Simon V NM 
4402  San Simon V NM
4406 Portal AZ 
4415 Willcox AZ 
4485 Columbus NM  
4486 Columbus NM  
4487 Hwy 9 NM  
4489 Hwy 9 NM  
4493 Portal AZ  
4577 Cotton City Rd NM  
4585 Granite Gap NM  

4587 Goat Camp Rd NM  
4581 Road Forks NM  

4589 Hwy9 NM  

99

99

99

64

0.005

s
c
u
tu

la
tu

s
v
irid

is
a
tro

x

Figure 2. Neighbor-joining tree of individual ND4 sequences. Tip labels with yellow background
indicate specimens from the putative hybrid zone in SW New Mexico.



Toxins 2016, 8, 188 6 of 16

Bayesian clustering analysis of all three species using Structure 2.3.4 and K = 3 showed extensive
evidence of admixture between C. scutulatus and C. viridis, but virtually no evidence of hybridization
between C. atrox and C. scutulatus or C. viridis (Figure 3A). Only one predominantly C. viridis specimen
from the hybrid zone showed some evidence of admixture from both C. atrox and C. scutulatus.
Specimens morphologically intermediate between C. scutulatus and C. atrox were identified genetically
as being C. scutulatus ˆ viridis or pure C. viridis, but in any case without admixture from C. atrox
(Figure 3A).
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Figure 3. (A) Bayesian population clustering of individuals of C. atrox, C. scutulatus, C. viridis and
putative hybrids based on allele frequencies of four single copy nuclear genes. Above the Structure
clustering, rows of boxes indicate mtDNA haplotype affinities (same colors as nuclear structuring), and
the presence (black) or absence (grey) of the genes coding for the basic and acidic subunits of Mojave
toxin (MTX), and above the confirmed presence or absence of the corresponding proteins in the venom.
White spaces indicate absence of data. Black arrows indicate specimens morphologically intermediate
between C. scutulatus and C. atrox. (B) Equivalent analysis excluding C. atrox to emphasize hybrid zone
between C. scutulatus and C. viridis.

Structure analysis of C. scutulatus and C. viridis individuals only, and K = 2, showed a continuum
of levels of admixture (Figure 3B). Virtually all specimens from outside the immediate vicinity of the
hybrid zone showed less than 5% admixture from the other species, although the demarcation was
sharper in C. viridis than C. scutulatus. Among admixed specimens, 14 displayed species membership
(Qi) values between 0.7 and 0.95, and seven Qi values between 0.5 and 0.7, indicating the presence
of backcrosses as well as F1 hybrids. Most of the admixed individuals had C. scutulatus mtDNA
haplotypes, as did two specimens of C. viridis without evidence of admixture from near the main
hybrid zone.

In all Structure analyses, independent and correlated frequency models generated functionally
identical results. Only the former are presented here.
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2.3. Detection of Mojave Toxin

Newly designed primers for the acidic and basic subunits of MTX (MTXa and MTXb, respectively)
produced fragments of 1246 b.p. of MTXa and 1266 b.p. of MTXb, including exon 3 and introns 2
and 3, as well as small stretches of exons 2 and 4. The two MTX subunits were strictly linked: all
specimens provided evidence of the genes for either both or neither of the subunits. We did not find
any individuals with only one subunit. All partial sequences of the acidic and basic subunits were
identical to or differed by no more than three (MTXa) and seven (MTXb) base pairs from the published
sequence [53] (GenBank accession numbers U01026-7). Individuals of C. scutulatus lacking the MTX
subunit genes were all from the documented zone of type I venom snakes in Central Arizona [21,54]
(Figure 4). Within the hybrid zone, all MTX-positive individuals were either genetically pure
C. scutulatus or showed evidence of admixture, either through their scnDNA profiles or possession of
C. scutulatus mitochondrial haplotypes (Figure 3). The sole exception was an MTX-positive specimen
of C. viridis without evidence of admixture from approximately 5 km east of a large number of
MTX-positive admixed specimens. We did not find any MTX-positive C. viridis from locations more
distant from the contact zone (Figure 4). None of the included C. atrox tested positive for either
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and their hybrids. Diamonds indicate MTX+ve, circles MTX´ve individuals, the degree of shading of
the symbols indicates the proportion of the genome attributed to C. scutulatus in the Structure analysis.

We obtained RP-HPLC profiles of the venoms of 41 snakes (two C. atrox, 20 C. scutulatus, 11
C. viridis, and eight putative hybrids). The characteristic peaks of the two MTX subunits [5] were
unequivocally recognizable (Figure 5). Consistent with the genomic data, all examined venoms
contained either both MTX subunits or neither. No venom showed evidence of only a single peak.
Combining proteomic and genomic results revealed a strict linkage between genotype and phenotype:
all available venoms from snakes with the MTX subunit genes displayed the two characteristic peaks
corresponding to the basic and acidic subunits of MTX, whereas no individual lacking the genes
produced them in the venom (Figure 3).



Toxins 2016, 8, 188 8 of 16

Figure 5. Examples of reverse-phase high performance liquid chromatography (RP-HPLC) chromatograms from different venoms included in the study. A. Crotalus
scutulatus type II venom with MTX but lacking snake venom metalloproteinases (SVMPs); sample 4311, nr. Rodeo, Hidalgo Co., NM. B. Crotalus scutulatus ˆ viridis,
hybrid containing MTX and SVMPs; sample 4687, nr. Cotton City, Hidalgo Co., NM. C. Crotalus viridis, typical venom lacking MTX but containing SVMPs; sample
4590, nr. Animas, Hidalgo Co., NM. D. Crotalus atrox, typical venom lacking MTX but containing SVMPs; sample 4594, nr. Benson, Cochise Co., AZ.
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3. Discussion

In this study, we set out to test the hypothesis that interspecific hybridization would facilitate
introgression by highly lethal presynaptic neurotoxin genes such as Mojave toxin, and thus lead to
evolutionary changes in the venom composition of the receiving species. Our results do not support
this hypothesis in this instance.

Our genetic analyses unequivocally demonstrate the existence of a narrow hybrid zone between
Crotalus scutulatus and C. viridis along the eastern slope of the Peloncillo Mountains in Hidalgo County,
southwestern New Mexico. Many, but not all, the specimens in the main hybrid area (Highway 80,
within 18 km South of Road Forks, Hidalgo Co.) are recovered as genetically admixed in Structure
analyses. Equally, many are morphologically intermediate between C. scutulatus and C. viridis. Our
single copy nuclear gene data show a continuum of levels of admixture between C. scutulatus and
C. viridis, indicating that many of the specimens are the result of backcrosses with either parental
species. F1 hybrids between the two species are thus fertile and able to breed with either parent
stock. Despite some morphological indications to the contrary, we found little genetic evidence
of hybridization between C. atrox and either C. scutulatus or C. viridis. Individual specimens that
were morphologically intermediate between C. scutulatus and C. atrox showed no genetic evidence of
admixture from C. atrox, but appear to be C. scutulatus ˆ viridis hybrids or backcrosses. Their phenetic
resemblance to C. atrox is due to a tail pattern involving bands of greater width than found in C. viridis
and equal width of dark and light bands, as found in C. atrox. So far, this is only the second genetically
characterized hybrid zone between two venomous snake species (after the Vipera aspis ˆ latastei hybrid
zone in northern Spain, [55]).

Our results shed new light on the genetics of the MTX subunits. Contrary to Wooldridge et al. [28],
we invariably found the genes encoding the basic and acidic subunits of MTX to be either both
detectable or both absent in all specimens. Wooldridge et al. [28] reported that type I venom snakes lack
only the gene encoding the acidic subunit, but retain the gene for the basic subunit. We were unable to
replicate that result in our much larger sample. We suspect that their detection of the basic subunit
gene in type I venom specimens may have been due to non-specific cross-amplification of other PLA2

toxins by their primer set: we obtained sequences of PLA2-like genes differing from the MTX basic
subunit when using Wooldridge et al.’s basic subunit primers in specimens from the type I venom
zone. Our redesigned primers (see methods) did not incur this problem, and all sequence-confirmed
positive PCRs were identical to within a few base pairs with the published MTX sequences [53]. These
data suggest that the two subunits are tightly linked in the genome of C. scutulatus, presumably due to
close proximity on the same chromosome.

Furthermore, our results demonstrate an absolute genotype-phenotype link for the two MTX
subunit genes: every single tested specimen with positive PCR results for the MTX subunits yielded
HPLC profiles with the two characteristic peaks corresponding to the MTX subunits [5], whereas no
specimen without the genes yielded those peaks. This applied independently of genetic profile or
hybrid status, and demonstrates that genotypic differences are reflected in the phenotype, and thus
provide potential targets for natural selection. This situation contrasts with that found in other viperids,
e.g., Echis, in which selective transcription and translation as well as post-translational modifications
play a prominent part in shaping venom composition [56].

Both subunits of MTX were present in most C. scutulatus (except from the previously documented
area of type I venom snakes in central Arizona, [21]), but absent from most C. viridis. In southwestern
New Mexico, only genetically “pure” C. scutulatus or individuals with clearly admixed genotypes
were positive for both MTX subunits, with the exception of three specimens identified as genetically
pure C. viridis based on scnDNA markers that were positive for the MTX subunits. Two showed
evidence of admixture in the shape of C. scutulatus ND4 haplotypes, and all three were from the
immediate vicinity of the hybrid zone and surrounded by other admixed specimens. Overall, there
is no evidence of introgression of MTX genes into the genome of C. viridis beyond the hybrid zone
and its immediate vicinity. We suspect that the snakes identified as Mojave toxin-bearing C. viridis by
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Glenn and Straight [37] were in reality hybrids from the zone documented here, although this cannot
be verified in the absence of precise locality information in that paper.

The absence of either subunit of MTX in any of our C. atrox is consistent with the lack of admixture
between this species and the others, as well as most of the literature on the species, although Minton
and Weinstein [57] did report low concentrations of MTX from a few specimens of C. atrox. The lack of
admixture between C. atrox and C. scutulatus in our data also argues against a role for hybridization
between these two species in generating the type I venom population of C. scutulatus in Central
Arizona, as hypothesized by Aird et al. [38]. None of our MTX-negative C. scutulatus showed evidence
of admixture from C. atrox, and neither did any other C. scutulatus in our sample, a result consistent
with previous analyses [51].

The failure of the MTX genes to spread into the range of C. viridis argues against the hypothesis
that highly lethal neurotoxins necessarily represent a strong adaptive advantage for rattlesnakes. The
parapatry between these two closely related species of rattlesnakes represents a best-case scenario
for adaptive introgression of toxin-encoding genes: other things being equal, closely related species
are more likely to be reproductively compatible than distantly related species, hybrids are likely to
incur a lower loss of fitness than hybrids between more distantly related species, and it is less likely
that linked, selectively disadvantageous loci will slow the spread of advantageous toxin genes [34,35].
The imperviousness of the gene pool of C. viridis to penetration by the MTX genes thus suggests
that possession of these highly lethal neurotoxins is not necessarily a strong selective advantage.
Clearly, we cannot exclude the possibility of a different outcome under other circumstances, such as
different selective regimes or different constellations of linked genes. Moreover, since we do not know
the age of this contact zone, we cannot reject the possibility that, given sufficient time, a degree of
introgression of MTX genes may occur. However, given the results presented here, we conclude that
the C. scutulatus ˆ viridis hybrid zone does not provide evidence favoring the hypothesis that limited
hybridization may be enough to facilitate the wider and relatively rapid spread of toxin genes in a
species in which they were previously missing.

Hybridization has been invoked as a cause of venom variation in multiple groups of
snakes [30,38,39], but with little evidence beyond incongruence between phylogeny and venom
composition. The rigorous genetic identification of additional hybrid zones between venomous
snake species could make a significant contribution to our understanding of venom evolution and
the role of adaptive hybridization therein. Until then, based on the results presented herein, we
suggest that hybridization should not be invoked as an explanation for unexpected patterns of
inter- and intraspecific variation in snake venom composition or for unusual cases of clinical snakebite
envenoming without compelling evidence.

4. Materials and Methods

4.1. Morphological Methods

From digital photos of 245 field-captured specimens, we recorded nine characters of head scalation
and tail pattern (Table 2). We used the software MVSP 3.2 (Kovach Computing Services, Pentraeth,
UK, 2007) to perform a Principal Components Analysis after data standardization to zero mean and
unit standard deviation.
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Table 2. Morphological characters used for assessment of hybridization. Terminology for head scales
follows [45].

1. Number of internasals contacting rostral scale

2. Minimum number of scales separating posteriormost canthals

3. Minimum number of scales separating supraoculars

4. Number of scales contacting the inner edge of the supraoculars

5. Number of dark (defined as noticeably darker than body markings) bands on tail

6. Number of light (defined as noticeably lighter than body ground colour) bands on tail

7. Maximum width in dorsal scale lengths along a single scale row (excluding the vertebral row) of the
posteriormost black band not contacting the rattle fringe.

8. Maximum width in dorsal scale lengths along a single scale row (excluding the vertebral row) of the light
band anterior to 7.

9. Basal rattle segment entirely light (0), black (1) or partly light, partly black (0.5).

4.2. Molecular Analysis of Hybridization

We obtained tissue samples (ventral scale clippings or shed skin) from 156 rattlesnakes, including
field-caught specimens of C. scutulatus, C. viridis and C. atrox from throughout southern Arizona and
New Mexico, and additional samples from colleagues and collaborators in the institutional and private
sector. All field-collected specimens were released unharmed at the precise locality of capture within
72 h. Total genomic DNA was extracted using the DNeasy Blood and Tissue kit (Qiagen, Düsseldorf,
Germany) following the manufacturer’s instructions.

For the assessment of hybridization, we PCR-amplified one mitochondrial gene fragment (NADH
dehydrogenase subunit 4—hereafter ND4), and four single-copy nuclear loci: neurotrophin 3 (NT3,
S. Cremer, unpublished), R35 [58], ETS oncogene [59], and SELT [60]. PCR was carried out in final
volumes of 15 µL containing 1ˆ ReddyMix PCR Master Mix (Thermo Scientific, Waltham, MA USA),
0.3 µM forward and reverse primers, and 1 µL of genomic DNA (approximate concentration 20 ng/µL).
Primers and cycling conditions are given in Appendix A. Sanger chain termination direct sequencing
was carried out at Macrogen, Seoul, South Korea. Nuclear loci were sequenced using both sense and
antisense primers.

Sequence traces were checked for quality and aligned in CodonCode Aligner version 3.7.1
(CodonCode Corporation, Centerville, MA, USA). All coding sequences were translated to check
that no frameshift mutations or unexpected stop codons were present. Heterozygous positions in
nuclear sequences were identified by a combination of visual inspection for double peaks and typically
low quality Phred scores [61] for the bases surrounding a heterozygous position. The individual alleles
of length heterozygotes (in SELT only) were reconstructed using the online utility Indelligent v. 1.2 [62].
Individual allele sequences (haplotypes) were estimated from diploid nuclear loci using the software
PHASE v. 2.1.1 [63,64] over 10,000 iterations with a burn-in of 5000 and a thinning interval of 100
for ETS, R35 and SELT, and 30,000, 15,000 and 300, respectively, for NT3, after preparation of the
sequence data using SEQPHASE [65]. PHASE was run three times to confirm burn-in and convergence
across multiple runs, and the highest probability haplotype pair for each specimen was retained for
further analysis.

We determined the matrilineal line of descent of each specimen through a neighbor-joining tree
of mitochondrial ND4 sequences. The analysis was run in MEGA 6.0.6 [66], using the maximum
composite likelihood distance model, pairwise deletion of sites with missing base pairs, and 1000
bootstrap replicates. To visualize patterns of hybridization between species, we analyzed the nuclear
genes with the Bayesian clustering method implemented in the software Structure 2.3.4 [67,68]. The
analysis was run using an admixture model and both independent and correlated allele frequency
models [69]. In the initial analyses run under inclusion of C. atrox, K was set to 3, reflecting the presence
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of three species in the dataset. After exclusion of C. atrox, the analysis was rerun solely on samples of
C. scutulatus and C. viridis and likely hybrids between them, with K set to 2. All analyses were run
over 100,000 iterations after a burn-in of 100,000 iterations, and in triplicate to check the consistency
of results.

4.3. Determination of Mojave Toxin Presence

We used PCR amplification to test for the presence of the genes encoding the basic and acidic
subunits of Mojave toxin in all specimens. Since the basic subunit primers from Wooldridge et al. [28]
resulted in the amplification of PLA2s other than Mojave toxin in some MTX-negative individuals,
we designed novel primers extending from exon 2 to exon 4 of the published MTX sequences of
John et al. [53] (Genbank—acidic: U01026; basic: U01027). We verified the identity of all positive
PCR products by Sanger sequencing (Macrogen, Seoul, South Korea). Primers and PCR conditions
are given in Appendix A. Verification and alignment of the sequences against the published MTX
sequences followed the procedures outlined for single copy nuclear genes above. Since even minimal
contamination across samples can lead to false positive PCR results, anomalous or inconsistent results
were checked by PCR amplification from fresh DNA extracts.

4.4. Determination of Mojave Toxin in the Venom

Approximately 0.7 mg of crude venoms from 41 specimens were separated by reverse-phase HPLC
using a Teknokroma Europa 300 C18 column (250 ˆ 4 mm, 5 µm particle size, Teknokroma, Barcelona,
Spain) eluting at 1 mL/min with a linear gradient of 0.1% TFA in water and acetonitrile. Presence
of the two MTX subunits was determined by comparing our chromatograms to those published in
Massey et al. [5].
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Appendix A

Primer sequences (Table A1, references in main text) and PCR conditions (Table A2).
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Table A1. Primer names and sequences for each locus.

Locus Forward Reverse

ND4 ND4:
CACCTATGACTACCAAAAGCTCATGTAGAAGC

Leu: CATTACTTTTACTTGGATTTGCACCA
H12763V: TTCTATCACTTGGATTTGCACCA

NT3 NTF3_SC_F: CGAGGTTTTGCACTGGGAAT NTF3_SC_R: GCATTTCTGTGTGGCATCCA
R35 R35_F: GACTGTGGAYGAYCTGATCAGTGTGGTGCC R35_R: GCCAAAATGAGSGAGAARCGCTTCTGAGC
SELT SELT_F: GTTATYAGCCAGCGGTACCCAGACATCCG SELT_R: GCCTATTAAYACTAGTTTGAAGACTGACAG
ETS ETS_F: CCATCAACAGACACACAGG ETS_R: GTCTGCTTTTTACTTTGCG
MTXa MTXa2_F: TGCGGGGAGAAGTGGTATTT MTXa4_R: GCAATTTTCGGGCGAGAACC
MTXb MTXb2_F: ACCTGCTGCAATTCAACAAGA MTXb4_R: CGAGAGTCCGGGTAAAACAT

Table A2. PCR conditions for each locus.

PCR Parameter ND4 NT3/R35 SELT/ETS MTXa/MTXb

1. Initial denaturation 94˝-2 m 94˝-2 m 94˝-2 m 94˝-2 m
2. Denaturation 94˝-30 s 94˝-30 s 94˝-30 s 94˝-30 s

3. Annealing 57˝-30 s 55˝-1 m 47˝-1 m 59˝-30 s
4. Extension 72˝-1 m 72˝-1 m 72˝-1 m 72˝-1.5 m

5. No. Cycles (2–4) 40 35 35 35
6. Final extension 72˝-5 m 72˝-5 m 72˝-5 m 72˝-5 m
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