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Abstract: The disentanglement of different objective properties from the external world is the foundation of language
development for agents. The basic target of this process is to summarise the common natural properties and then to name it to
describe those properties in the future. To realise this purpose, a new learning model is introduced for the disentanglement of
several sensorimotor concepts (e.g. sizes, colours and shapes of objects) while the causal relationship is being learnt during
interaction without much a priori experience and external instructions. This learning model links predictive deep neural models
and the variational auto-encoder (VAE) and provides the possibility that the independent concepts can be extracted and
disentangled from both perception and action. Moreover, such extraction is further learnt by VAE to memorise their common
statistical features. The authors examine this model in the affordance learning setting, where the robot is trying to learn to
disentangle about shapes of the tools and objects. The results show that such a process can be found in the neural activities of
the β-VAE unit, which indicate that using similar VAE models is a promising way to learn the concepts, and thereby to learn the
causal relationship of the sensorimotor interaction.

1 Introduction
Concepts in cognitive processes are defined as the internal
representations, which is the foundation for the agent to understand
the external world and to proceed to do cognitive manipulation.
The preliminary step for a robot to do conceptualisation in an
embodied world is to do the categorisation of the rich data in the
continuous high-dimensional sensorimotor space by the following
procedures:

i. Learning the common structure of the data in the high-
dimensional space by their statistical regularities, in either
supervised or self-supervised way.

ii. Defining the hyperparameters to describe the common
structure, which can be seen as the ‘concepts’, which is the
abstract description on one of the dimensions of the
categorised space.

During the developmental steps of human, we seem to be good at
doing the conceptualisation learning, even without any a priori
knowledge about the set of representations of the categorisation
space or the hyperparameters in the statistical regularities. For
example, without any a priori knowledge about the spatial
representations or directional representations, humans construct the
navigation system primarily by the spatial learning of its own and
by their symbolic meanings of the environment [1]. There is a
more intriguing fact that humans can also associate the spatial
concepts of the four directions even without any words to describe
them. Such a priori knowledge exists cross-culturally and between
different languages, which may indicate that such basic concepts of
four different directions are already embedded in our brain and our
body. Most of the behavioural studies also reveal that there are
time differences in the learning processes of concrete and abstract
concepts, suggesting that the learning of abstract concepts may
depend on the concrete ones [2, 3]. Therefore, learning of such
concepts follows a hierarchical way: (i) the concrete concepts (e.g.
concepts of red and blue colours) which are the foundation of the

abstract concepts (e.g. the concept of ‘colour’ as a property of the
visual inputs) and (ii) the relationships between the concrete
grounded concepts and the abstract ones, validated by the further
cues perceived.

Furthermore, while we are doing the concept learning, our brain
is always attempting to categorise the sensorimotor data based on
its similarities from the cross-modal sensorimotor inputs: concepts
can be abstracted by the similarities existing in the visual inputs
(e.g. the categorisation of the concepts about ‘size’ or ‘colour’
from visual stimuli) or from the motor action together with the
external environment. In the example of learning the ‘numbers’,
the further cues may include the motor action (‘counting’ as a
motor action) or other innate mechanisms that facilitate to deal
with the basic visual perceptual information [4, 5]. The dependent
relation from the concrete concepts to the abstract concepts can
also be traced in the similarities in linguistic knowledge. With the
help of the multi-sensory cues, as well as the innate mechanism of
the basic knowledge, the human brain can learn the concept
without rich amount of data with a much faster rate than most of
the artificial learning methods. This is also much more advanced
than the state-of-the-art deep learning methods (e.g. [6]), in terms
of learning speed, as well as its ability to disentangle different
concepts which may further result in symbolic manipulation such
as logical deduction of causal relationship and event prediction
based on context. It indicates that there are much more
technologies to be explored to achieve human-level intelligence.
For instance, a few embodied models (see also [7]) have been
developed to learn the specific categories of the abstract concepts,
which are rooted in the concrete concepts. However, such
hierarchical architecture based mostly on recurrent neural network
assumes that the abstract concepts are rooted from single modal as
well as supervised learning, which is different from the
developmental stages of humans.
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1.1 Conceptualisation during sensorimotor interaction

Learning the concepts of the visual object by sensorimotor
interaction is one of the challenges for embodied agents. This is
done by the process of affordance learning. The original meaning
of ‘affordance’ in psychology denotes it as ‘the constant properties
of constant objects are perceived (the shape, size, colour, texture,
composition, motion, animation and position relative to other
objects) (for a detailed review, please see [8])’. It indicates that the
affordance is understood as general descriptions of the objects, and
they are the direct causal results of the properties of the objects,
most of which can be perceived by the visual inputs and
understood by the human brain.

Note that though the affordance is independent to the agent
itself, the configuration could also affect the understanding of the
affordance. For instance, a robot has only one gripper with 1-
degree of freedom cannot understand the affordance of the piano.
Therefore, the common setting for affordance learning for robots is
putting it in an exposed environment and following the end-to-end
learning scheme with the interactions [9]. Therefore, in the
embodied point of view, the term ‘affordance’ should be
understood with the agent, in the context of execution or
observation of motor actions. In such scenarios, the agent should
be able to learn the ‘affordance’ with relation to the environment/
object and the actions. Instead, the key factors that constitute the
abstract concept of ‘affordance’ are some of the concrete concepts
obtained from the ‘users by the integration of perception and
action’. When the agent observes the object from visual perception
and thus learns the causality relation between the visual features,
the voluntary motor action and movements, and then conceptualise
them as different perspectives of the affordances.

The conceptualisation during sensorimotor interaction is closely
associated with the language components for language acquisition.
In [10], the robot learns the relation between the object affordances
and verbal interaction with a human caregiver. Similar models are
proposed in [11, 12], where the relations between words (nouns,
adjectives and verbs) and objects properties (including their
affordances) are represented using a set of support vector machine
classifiers. Nevertheless, on the other hand, the learning of word
components is not necessary for learning concepts, since the
toddlers know such concepts even earlier than their early word
acquisition. While they are playing with objects and attempting to
do object manipulation, they are already well aware of the
affordance in the causal results of different properties in the
sensorimotor inputs such as the shape and the size of the objects
[13]. In this way, it implies another way to develop the learning
model of different concepts, especially the concepts related to
embodied interaction with the objects’ affordance. During
interaction, it shapes the knowledge about the object from the
understanding affordances in the conceptual space. Although the
conceptualisation can be also regarded as the grounding of abstract
concepts, which associates between the visual feature of the tools
and its effect while it is interacting with an object, a few literatures
have been proposed to explain the grounding of visual concepts by
interpreting the ‘affordance’ of objects and other entities in the
sensorimotor interaction.

1.2 Using generative models to conceptualise data

In the context of machine learning, to accomplish the task of doing
conceptualisation, the low-dimensional conceptualised
representation should be extracted from the high-dimensional data.
Among various kinds of methods to do such an extraction,
generative models are unsupervised learning methods to
understand the data distribution by building the joint probability
distribution of data P(X, Y) between the observed data X and target
data distribution P(Y). Specifically, as one of the generative
models, the deep generative models (DGMs) have recently widely
used in various domains such as data compression, data denoising
etc., since it provides the joint distribution which can be further
used to reconstruct random instances, either by estimating the joint
distribution of (X, Y) or constructing the observable data X by the
given target Y, i.e. P(X Y = y). The DGMs are generally
constructed by multiple-layer neural networks and learnt by

stochastic or deterministic learning mechanisms, which encode the
statistical information of input data in a hierarchical way. Some of
the layer parameters are learnt with stochastic functions, for
instance, the sigmoid belief networks [14] and various types of
Helmholtz machines [15, 16]. Alternatively, recent architectures
such as generative adversarial networks (GANs) and variational
auto-encoder (VAE) use deterministic functions to do the
optimisation. The major advantage of using stochastic functions is
that it has more expressive power to learn the data with more
stochastic noise, and is easier to avoid the local minima. In both
cases, the DGM models use the hierarchy of layers to define the
conditional densities as the directed graphical models. Therefore,
due to these conditional densities and the given input data, while
the generative models are regarded as the directed graphs to learn
and compress the input data or vice versa, the DGMs learn to
model a joint distribution P(X, Y). Such compression is done in the
latent space, where each unit represents the most informative bit in
the DGM. In extreme cases, these most informative units in the
latent space may play a similar role of categorisation. While the
latent units are used to encode the images, further details of the
images, which may be interpreted as the concepts the common
properties of the visual field, can be encoded in the latent space. In
the rest of this paper, we call this kind the representation in the
latent space ‘conceptual compression’ or ‘conceptualisation’
because it exhibits the higher levels of representation to describe
the properties of the sensorimotor space.

Using the concept compression units in machine learning
models has been used in many applications, most of which employ
the encoder–decoder framework. The basic principle is that the
pre-trained generator (in GAN) or the decoder (in VAE)
approximately captures the regularities of the reconstructed vectors
being ‘identical’ in the input data [17]: both of them define a
probability distribution over vectors in sample space and try to
assign higher probability of the joint distribution to more likely
vectors, for the data-set it has been trained on. The reconstructed
vectors are expected to be identical to the input data or at least they
will be close to some points in the support of this distribution, i.e.
in the range of input data space. In the VAE model, for instance, it
is done by creating probability density functions with Gaussian
distributions, with which the stochastic regularities can be learnt as
the common features of the data. For instance, to recover the
noised information, where we can observe the same representation
in the latent vectors as the perfect source while only parts of the
images are presented [18, 19], and even connect the temporal
information of the input data [20] or when the text and the image
representation share the same latent vector when the network has
been well-trained for the modality translation [21].

In this paper, we present a neural architecture that does not use
any hard-coded a priori knowledge in the latent space to
disentangle the conceptual information by using the β-VAE model
as the highest-level part of the generative model. The β-VAE has
recently proved to be an efficient and useful model to learn the
conceptual information from images. We applied the β-VAE model
together with the predictive model in the framework of perception–
action theory [22], which suggests that the perceptual information
and the expected perceptual information from the actions are
encoded in a common representation. On the basis of this, the
learning model employs sensorimotor learning as a mechanism for
finding the relationship between the motor execution and the
perception of the objects. Such common representation between
perception and action can closely relate to the higher-level
understanding of the concepts of visual objects. We will apply this
model to learn such concepts in the robot–object interaction task, to
find out the visual concepts that contribute to the affordances in
tool use. The contributions of this work, therefore, lie in the
introduction of a novel cognitive learning model, which links the
following two requirements inspired from the grounding of visual
concepts while the agent is interacting with objects and learning its
affordance:

• It is able to disentangle the visual concepts of the objects and
tools in the robot–tool–object interaction setting.
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• It is able to predict the next possible visual information based on
the understanding of perception and action.

2 Model
2.1 Generative hierarchical architecture

The proposed variational action feedback augmented predictive
network (VAFA-PredNet) is a hierarchical architecture. It is an
extension of the previous versions of AFA-PredNet [23] and
multiple time-scale action feedback augmented predictive network
(MT-AFA)-PredNet [24, 25]. Inspired by the predictive coding
framework, all of these hierarchical neural networks integrate the
perception and action in the predictive common-coding framework
[22]: the predicted perception is part of the results of the internal
visual memory and the voluntary motor actions. In these
hierarchical architectures, the higher levels of the network capture
the statistical regularities happening on the lower one, whereas the
action-modulated prediction is in the process. Specifically, to

effectively predict different features from the visual perception, a
series of repeating generative models (e.g. convLSTM) are stacked
in a hierarchical way. They act as the lower part of the generative
model, whereas the VAEs are employed at the topmost part of the
generative model.

Modelling the likelihood representation on top of the generative
units, the VAE extracts the representation of the memory of the
topmost convLSTM unit. Since in the MT-AFA-PredNet [24, 25],
the slower-changing neural updates on the topmost of the
convLSTM unit only adapts very small differences, whereas the
time elapse, the input and reconstruct images in the VAE model can
exist very small differences. The detailed introduction of the VAE
unit please is shown in Section 2.2. These generative models GU
(green in Fig. 1) model the predictions of perception stimuli given
the error from the corresponding level of the discriminative unit
and the top-down prediction from the upper layer. This
computational process is similar to the top-down stream in the
predictive coding framework. Furthermore, the bottom-up stream

Fig. 1  2-layer VAFA-PredNet
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shapes the internal representation of the GU models on each layer
by giving the error between the predicted one and the real one
realised by convolutional networks (discriminative unit (DU),
blue). These error signals are computed by the error representation
layer (error layer (EL), red) and are calculated from the positive
and negative errors between the prediction and the target signals.

To summarise all the aforementioned properties of the
architecture, we visualise the model in the case of a 2-layer VAFA-
PredNet (Fig. 1)

Xl(t) =
i(t), if l = 0,

MAXPOOL( f (Conv(El − 1(t)))), if l > 0 (1)

X^
l(t) = f (Conv(Rl(t))) (2)

El(t) = [ f (Xl(t) − X^
l(t)); f (X^

l(t) − Xl(t))] (3)

Rl
d(t) = 1 − 1

τ Rl
d(t − 1) + 1

τ ConvLSTM(El(t − 1), Rl(t − 1

), DevConv(Rl + 1(t)))
(4)

Rl(t) = attention(a(t)) × Rl
d(t) (5)

z(t) = encode(concatenate(RL(t))) (6)

RL(t + 1) = split(decode(z(t))) (7)

where the concatenate( ⋅ ) is the concatenation operation to all the
internal memory of convLSTM and the split( ⋅ ) is the reverse
function. Here, f ( ⋅ ) is the rectified linear unit or other
differentiable activation functions of the neurones and X( ⋅ )l

t is the
neural representation of the level l at time t in the discriminate part.
The representation of the EL layer l is E( ⋅ )l. The MAXPOOL,
Conv, ConvLSTM and multi-layer perceptron (MLP) are the
corresponding neural algorithms.

2.2 Variational auto-encoder

In the VAFA-PredNet architecture, the latent vectors in VAE are
used to have a conceptual compression from the internal memory
of the topmost convLSTM units. In the meanwhile, on the other
hand, in the temporal domain, it gives rise to the values of the
internal memory of the next time step with the reconstruction.

The first version of VAE was proposed by Kingma and Welling
[26]. It is a directed graphical model but is distributed calculated as
an auto-encoder. However, being different from the auto-encoders,
the VAE learns to construct the latent space z ∈ ℝn to encode the
statistical regularities in the continuous data, by selecting the best
parameters of the Gaussian distribution in the latent space.
Therefore, the common features of the data can be observed from
the forms of variational inference, in the latent space.

To accomplish this process, rather than constructing a direct
modelling of the prior data distribution p(x) in the reconstruction,
the VAE first models the posterior of the joint distribution of the
data p(z x) as the approximate Gaussian probability density qθ(z x)
with the parameter θ. Then, with the assumption that the
variational posterior qθ(z x) approximates the true posterior p(z x),
which follows the Gaussian distribution, the p(z) should also be an
isotropic unit of the Gaussian distribution:

p(Z) = ∑
x

p(Z X)p(X)

= ∑
x

N(0, I)p(X)

= N(0, I)∑
x

p(X)

= N(0, I)

(8)

Moreover, the generative process can be written as X′ ≃ p(X′ Z),
depends on which distribution of data X′ can be reconstructed. So,
the generative process defines a joint distribution over data and
latent variables p(X, Z). From the neural network point of view,
the decoder outputs the parameters to the conditional probability
distribution. Thus, we denote it as pϕ(X Z). Additionally, though
the variational inference of the latent space can be trained by the
usual back-propagation, these two parameters θ and ϕ allow the
network to be learnt by back-propagation, which is called
‘reparameterised’. Different values of the two parameters allow us
to adjust the Gaussian distribution by maximising the likelihood of
the reconstruction of the data. On the basis of this Gaussian
distributions, we can sample from any point of the latent space z
and still generate valid and diverse outputs in the reconstruction
p(x z)

encode(x) = qθ(z x) (9)

decode(z) = pϕ(x z) (10)

The above two equations indicate that:

i. The latent units z are often referred to as informative units
because they should be efficient compressions of the data into
this lower-dimensional space. In our case, the VAE unit on top
of the perception and action input provides a compressed latent
representation of both modalities.

ii. Both the encoder and decoder are stochastic: they output
Gaussian probability densities.

To endow an efficient training in both ends, the variational Bayes
approach simultaneously learns both the parameters of pθ(x, z) as
well as those of a posterior approximation qϕ(z x). To accomplish
this, the posterior qθ(z x) is regularised with its Kullback-Leibler
divergence (KL divergence) from a priori distribution p(z). That is
why the prior is typically chosen to be also a Gaussian with zero
mean and unit variance (8), such that the KL term between
posterior and this prior can be computed in the closed form. The
loss function to optimise the stochastic construction VAE can be
defined as

ℒ(ϕ, θ; x) = Eq(z x)[logpθ(x, z)] − DKL(qϕ(z x) p(z)) (11)

This loss function is called the evidence lower bound (ELBO).
There also exists an improved version of VAE which is able to
disentangle the concepts of the input data by putting a constraint β
on the regularised term so that the learning of the separate concepts
in the properties of the input data such as the size and angle can be
further disentangled in the latent vector. So in the case of β-VAE,
the ELBO loss function was added with a regularised term

ℒ(ϕ, θ; x) = Eq(z x)[logpθ(x, z)] − βDKL(qϕ(z x) p(z)) (12)

From the perspective of the neural networks, while being
implemented in the graphical model (i.e. auto-encoder), where the
representation of the highest layer z is treated as the latent variable
where the generative process starts. Since p(z) represents the prior
distribution of the latent variable z, the data generation resulting in
the reconstruction of the data x^.

Therefore, the VAE units on top of the VAFA-PredNet model,
the inputs and outputs of the encoder and decoder are

Fig. 2  Before/after images in the interaction using a ‘hook’ to push a
‘lemon’ (captured from the left camera)
(a) Before, (b) After
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z(t) = encoder(concatenate(R(t)); ϕ) (13)

R^
l(t + 1) = split(decoder(z(t); θ)) (14)

where the Rl(t) denotes the internal value (memory) of the
convLSTM on the lth layer. Since the size of the memory is
known, it is easy to do the concatenate or the split operations. The
R( ⋅ ) in the generative model stores the interaction information
between the visual images and the action inputs. As such, when the
motor action is modulating the generative part of the architecture,
the correlation between the perception and action (e.g. the common
coding [22]) can be captured in an compressed way in the latent
space. Such representation can be further used by the VAE part,
which results in more interpretable learning models.

During learning, together with VAE and deep architecture, the
complete optimisation function of the whole VAFA-PredNet can be
written as the summation of the ELBO (12) and the mean squared
error (MSE) loss between the generated image and the original
image

ℒTotal = ℒ(ϕ, θ; x) + MSE(x, x^) (15)

where ℒ is the ELBO loss and the MSE is the MSE loss of the
images.

3 Experiments
In the section, we focus on the examination of VAFA-PredNet to
understand and disentangle the factors that contribute to the
affordances in humanoid robot setting. We apply the VAFA-
PredNet to extract the visual and tool information during the
embodied interaction.

3.1 Experimental Setting

We use the data-set from the tool-use experiment of the iCub
interaction [27]. The data-set was captured as the visual images

when the robot executes 4 actions with 3 tools on 11 objects.
Particularly, some of the objects have the same shape but different
colours, which result in not much different movements in the robot
interactions. This is also beneficial to examine whether the model
can conceptualise the shape of the objects, which contribute to the
understanding of object affordances. Furthermore, each of the
configuration contains ten repetitions, so there are totally
11 × 4 × 3 × 10 = 1320 sets of tool-use interaction. At each
interaction, as a visual feedback, images are captured from both
cameras as the snapshots of the starting and the ending points.
Examples of the starting and ending images that captured from the
iCub cameras are shown in Fig. 2.

For training the generative model, we need a temporal sequence
of the visual data for the model training. So, rather than using only
the starting and ending images, we further interpolate ten images
between the starting and ending images given by the data-set.

3.2 Reconstruction of visual inputs

At the first experiments, we will examine the predictive ability of
the VAE within the predictive framework of the AFA-PredNet.
Similarly, as we did in AFA-PredNet [23] and MT-AFA-PredNet
[24, 25], the first results from the generative models to be
examined are the generated images. The training was done using
Adam optimisation [28] and other hyperparameters were defined as
the table follows (Tables 1 and 2). 

After training, with the evaluation data-set, we tried different
methods to generate the predicted images. Using original inputs as
shown in Fig. 1 and the ten interpolated images, Figs. 3 and 4 show
some of the generated examples with the comparison of the
original ones (in two scenarios), in which we can clearly see that
there exist some blurriness in the generated images when using the
VAE (compare Figs. 3d and 4d), which are probably resulting from
the Gaussian distribution that brings uncertainties in the
reconstruction. The quantitative comparisons about the root-mean-
square (RMS) error between the ground truth and the predicted
images are also shown in Fig. 5. Since we only use the

Fig. 3  Generated images in case 1
(a) Generated image at 0.2 s, (b) Generated image at 0.4 s, (c) Generated image at 0.6 s, (d) Generated image at 0.8s

 

Table 1 Different Combinations of input data and methods
Case VAE methods Prediction methods inputs Estimated factors
1 Vanilla VAE MT-AFA-PredNet images, action objects, tools
2 β-VAE MT-AFA-PredNet images, action objects, tools
At the cases 1 and 2, the Vanilla version of VAE [26] and β-VAE are used to connect with MT-AFA-PredNet. We use one-hot representation with four units to indicate different
actions.
 

Table 2 Parameters of the model
Parameters Value
τ0 1.0
τ1 1.1
τ2 1.3
kernel 3 × 3 (CNN)
padding 1 (CNN)
pooling 2 × 2 (CNN)
number of latent units (VAE) 10
number of hidden layer 1 (VAE) 256
number of hidden layer 2 (VAE) 128
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interpolation images for training, the RMSs of the predicted images
are not really the ground truth in reality. However, we focus on the
shifting of locations of the objects with respect to the motor action
and its own affordance, so the interpolation method provides
reasonable estimations for the training and comparison. Although
the reconstruction results are reasonably good to be recognised,
case 2 (Vanilla VAE + PredNet) provides the best results from the
quantitative results (Table 3). Nevertheless, the advantage of β-

VAE is its ability of extracting basic concepts from the input data,
which we will be shown in the next section.

3.3 Extracting concepts

Using the same experimental setting, we examine the
representation of the VAE units and compare them with different
physical settings in the experiments. The aim of the experiment is
to find out whether the VAE and the β-VAE are able to disentangle
the basic concepts that could contribute to the tool-use learning
process. Therefore, we assume some of the variables are the known
(e.g. the motor commands and the visual inputs) and some are not
(e.g. which concepts of the sensorimotor interaction contribute to
visual feedback in this particular setting), as shown in the fourth
column of Table 1. In both cases, the motor commands are known
as a priori for the robot. Moreover, the agent (e.g. robot) attempts
to learn different concepts of the objects and tools.

Fig. 4  Generated images in case 2
(a) Generated image at 0.2 s, (b) Generated image using case 4, (c) Window width w = 1.0 s, (d) Window width w = 1.2 s

 

Fig. 5  Original images
(a) Original images 1, (b) Original images 2, (c) Original images 3, (d) Original images 4

 
Table 3 RMS and variance

RMS Variance
case 1 8.332 0.5133
case 2 9.834 1.4123
Averaged RMS error of the two cases. The variance is collected with different
interactions.

 

Fig. 6  Latent units in case 1 – draw
(a) Latent unit 6, (b) Latent unit 3, (c) Latent unit 5

 

Fig. 7  Latent units in case 1 – push
(a) Latent unit 6, (b) Latent unit 3, (c) Latent unit 5
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Figs. 6–9 show the representations of the particular latent units,
whereas the corresponding tool–object–action setting is given with
case 1. Since the changes along time are subtle on the top layer in
the MT-AFA-PredNet, we have the averaged value for the ten
images. Moreover, the latent units with highest variances are
shown in these figures. Using the same method, we show the latent
units in Figs. 10–13 in case 2. 

In general, comparing with these two cases, we can observe that
the β-VAE has a better ability to disentangle the information in the
objects and tools than the Vanilla version of VAE. From Figs. 10a–
12a, for instance, the values along the same column are similar,
suggesting that the concept about different objects is encoded in
this latent unit. Also, we can tell the shapes of ‘bball’, ‘wball’, and
‘yball’ are similar (actually the only differences are their colours)
which can be learnt by this interaction since they have similar
activations of the neurones. Also, representations of ‘ball’(s) and
‘lemon’ have similar values, which probably results from the fact
that both of these objects have similar ‘shape’, so their affordances
are similar with these actions. Thus, these three figures (Figs. 10a–
13a) indicate that the tenth unit of the latent space mainly tells the
shapes of the objects after the learning.

Similarly, the disentanglement about the concept of tools can
also be found in the fifth unit, as we can see that the values along
the same row are similar in Figs. 10b–13b. Specifically, as we can
see, the object of ‘stick’ has larger differences than the ‘hook’ with
the ‘rake’. The assumption is that the hook and the rake have much
similar affordances with doing interactions with the objects than
the stick. We will discuss the relation of the used tools with the
affordance learning in Section 4.

From Figs. 10c–13c, we cannot distinguish pattern but we can
see the overall values corresponding to four different actions in the
setting of case 2. Actually, the difference of overall values can also
be found in all the representations obtained from case 1.

Relatively, while the Vanilla VAE is used in case 1 (Figs. 6–9),
no obvious disentanglement can be discovered in the latent space.

3.4 Generalisation of understanding the affordance

In this experiment, based on the previous results about the
representation in the latent units, we select two units in the latent
space whose variances are larger than 0.4 during the changes of
inputs that obtained from the previous Section 3.3. Then, we
manually change the activations of corresponding units and
observe the changing of the predictive images. We compare the
generated images under case 1 and case 2, whereas the values in
certain latent units are being changed from [0.1, 1.0], with the
increasing steps of every 0.2. The generated images are shown in
Figs. 14 and 15 (case 1) and Figs. 16 and 17 (case 2). 

As we can see, it seems that case 2, which adopts the β-VAE,
has a better generation result than case 1: the objects generated
from case 1 often duplicated or are blurry, which may suggest that
the latent units are not disentangled but the represented concepts
are mixed. On the other hand, the objects that generated from case
2 move regularly, suggesting that the sensorimotor memory
resulting from the latent value controls the predictive perception.

4 Discussion
4.1 Learning concepts by affordance learning

The grounding theory in psychology suggests that the usage of
natural language relies on situational context. To understand the
language dependent on the physical environment and capture such

Fig. 8  Latent units in case 1 – tap from left
(a) Latent unit 6, (b) Latent unit 3, (c) Latent unit 5

 

Fig. 9  Latent units in case 1 – tap from right
(a) Latent unit 6, (b) Latent unit 3, (c) Latent unit 5

 

Fig. 10  Latent units in case 2 – draw
(a) Latent unit 10, (b) Latent unit 8, (c) Latent unit 5
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possible common abstract values, concepts that ground linguistic
meaning are neither internal nor external to language users but
instead it spans the objective–subjective boundary. As reviewed in
[7], the higher level of concepts is rooted from the low level of

grounded meaning such as motor actions, perception and the
integration of both.

In our case, the disentanglement of concepts relies on
interaction with the environment. So, it contains the factors of
motor action, the tool and the objects. Therefore, the

Fig. 11  Latent units in case 2 – push
(a) Latent unit 10, (b) Latent unit 8, (c) Latent unit 5

 

Fig. 12  Latent units in case 2 – tap from left
(a) Latent unit 10, (b) Latent unit 8, (c) Latent unit 5

 

Fig. 13  Latent units in case 2 – tap from right
(a) Latent unit 10, (b) Latent unit 8, (c) Latent unit 5

 

Fig. 14  Generalisation by changing values in latent unit 6 (case 1)
(a) Latent unit 0.1, (b) Latent unit 0.3, (c) Latent unit 0.24, (d) Latent unit 0.7, (e) Latent unit 0.9

 

Fig. 15  Generalisation by changing values in latent unit 3 (case 1)
(a) Latent unit 0.1, (b) Latent unit 0.3, (c) Latent unit 0.24, (d) Latent unit 0.7, (e) Latent unit 0.9

 

Fig. 16  Generalisation by changing values in latent unit 10 (case 2)
(a) Latent unit 0.1, (b) Latent unit 0.3, (c) Latent unit 0.24, (d) Latent unit 0.7, (e) Latent unit 0.9
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disentanglement is the notation of the perceived affordances: how
the interaction and its effect can be abstracted as the structured
units, which can be further used for prediction at the future
interaction. Specifically, in our case, the concepts such as ‘shapes’
and ‘colours’ of ‘tools’ and ‘objects’ are the common properties
that contribute to the affordance learning during the tool-use
experiment. Such abstract concepts are first rooted from the low
level of grounded meaning of both motor action and the visual
perception. It is similar as the abstract grounding problem but not
totally the same: the abstract examples rooted directly from the
sensorimotor interaction (such as ‘give’ and ‘accept’ or numerical
concepts shown in [7]) but the conceptualisation depends heavily
on the abstraction of the common physical properties of the
sensory inputs. Besides that, it needs additional ‘meta-learning’
procedure which mathematically attempts to align the axis of the
‘concept’ of the visual information while the affordance is being
learnt. Importantly, such meta-learning procedure can be bridged
by affordance learning. Since it was first introduced to understand
better one of the basic properties of the objects independent to the
specific actions that depend on individuals, it links the learning
agent and its subjective understanding of the world through its
motor action and sensing to the world.

In the next step, our work can be extended in extracting the pre-
symbolic representation about ‘concepts’ of the objects while the
robot is situated in a robot–object interactive scenario. In the
robotics community, though there are several existing works on
obtaining and using object–action relation, not so much work has
successfully incorporated different aspects of ‘concepts’ from the
visual inputs and motor outputs in the process of affordance
learning. On the basis of this interaction setting, we argue that
while humans are doing the conceptualisation of the world, they
are not only doing it based on the geometry appearance features of
the objects but also its integration to the voluntary motor actions.
On the other hand, though we have witnessed the state-of-the-art
deep learning method perform well in the object categorisation, we
need more earning methods to understand the concepts by using
their tool functions and observing the visual effects, and connecting
the objective world and the subjective prediction. We believe
similar learning models (deep learning, together with probabilistic
learning) could be useful in the future development in terms of its
function in linking the concepts in the low-dimensional attention
space with the peripheral signals in the high-dimensional
representation space.

4.2 From conceptualisation to language development

The approaches to language acquisition can be coarsely divided
into nativism or empiricism. Presently, most of the evidence (e.g.
[29, 30]) believe that the environmental factors contribute to the
majority of the process of children acquiring their language skills
from an early age learning of language is embedded in the
behaviour within the child's social context. This mechanism can be
observed, for instance, when children gradually acquire the rules of
grammar and the complexities of word comprehension that
eventually lead to the production of words and sentences. This is
contradicted with the views from the nativists such as Chomsky
and Pinker, who consider the lexical rules are passed down through
the child's environment [31]. The basic mechanism of learning a
language such as the grammar and syntax is already rooted at birth
and development of the biological organism which contains that
language instinct.

In our experiment, the concepts are disentangled with the tool-
use data in an unsupervised manner. Specifically, the recent
development of β-VAE seems to provide an example about
disentangling different concepts without any a priori knowledge or
supervised learning. As the analysis is shown in [32], the additional
constraint parameter provides an additional representation capacity
of the latent units Z. This is done by adjusting the relative
weighting of the KL divergence of independent concepts in the
latent space Z while constructing the estimated posterior q(z x) to
the true a priori distribution for p(z x). In the case of β-VAE, since
this distribution components of z are independent (e.g.
disentangled) concepts with independent physical properties, we
can emphasise different concepts. Nevertheless, from the
comparison between the VAE and the β-VAE methods, we can
conclude that such disentanglement is sensitive to relative
weighting (i.e. the parameter of β) of the effect features that are
encoded in different units and channels.

The results of this model also suggest that the importance of the
role of intentionality for embodied learning. We have seen that the
disentanglement of concepts emerges from the agent's sensorimotor
exploration. It guides the agent to select the regions that are in the
intermediate level of difficulty. Furthermore, during the process of
finding disentangled categories of concepts, we observed that
different concepts sometimes still have the same values using the
β-VAE. It is related to the facts that those concepts have similar
values in the effect space (e.g. the movements of the ball and the
lemon are similar, given the same motor action and the tool). It also
indicates that the naive clustering using simple motor action is not
enough while the agent is learning the affordance. In that case,
applying further exploratory actions is necessary for the interaction
of the objects handling this complexity. For example, in the case of
tool-use experiment, after the action of pushing, the robot can poke
both of the objects one by one, so that the effects of categories can
be distinguished when the observations obtained from the action of
poking can be taken into account, without any extrinsic reward.
This can be driven by the intrinsic motivation mechanism [33, 34].

4.3 Consciousness prior

The idea of building an abstract representation with a low-
dimensional representation of the features for the tasks with a high-
dimensional representation is an essential bridge between the state-
of-the-art deep learning methods and the higher cognitive abilities
and the artificial general intelligence (AGI). To accomplish this
task, a new prior [35] should be used in the conscious state, which
allows a low-dimensional calculation such as unconsciousness
attention to change different cognitive statuses. Such a priori is an
abstract of the high-dimensional observed representation such as
specific kinds of motor action output or sensory inputs. The
cognitive function of such a priori is the clustering of them as a
concept (or a ‘vector of thoughts’), so that the higher level of
cognitive thought can be computed by the attention mechanism on
the unconscious level. Such a vector can be physically
conceptualised by the different dimensions of multi-modalities
inputs, a control signal for motor actions or an inference result
from the higher level of manipulation. Moreover, another
advantage of such a priori is that it can also connect with the
language and symbolic representation.

In terms of machine learning, one of the key advantages of
using the latent unit, which has a small-dimensional but rich
representation, is to allow for improved generalisation results with
novel data and unexpected noise. Our proposed model covers the

Fig. 17  Generalisation by changing values in latent unit 8 (case 2)
(a) Latent unit 0.1, (b) Latent unit 0.3, (c) Latent unit 0.24, (d) Latent unit 0.7, (e) Latent unit 0.9
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topic about how the learning of association between the
representation space and the attention space occurs. Specifically,
such a consciousness a priori lies in the concepts of the
sensorimotor space. On the basis of the PredNet, we propose the
learning happens in the framework of predictive coding
framework, in which the movement of the objects can be predicted
by both the voluntary motor actions as well as the object features.
Moreover, the internal model of such prediction is abstracted and
disentangled in the VAE model. To our best knowledge, our
approach is the first model to apply a hierarchical learning network
to learn the affordance factors from the observations for the motor
signals. The abstraction of the generative model is further learnt in
a slower context with the VAE. The learned representation can, in
some contexts, greatly help for generalisation as it provides a more
succinct representation that is less prone to be overfitting.
Furthermore, the β-VAE learns the important features (e.g. the
concept in the visual appearance in our case) in the abstract
representation because they are important to distinguish the
observed values, while they are otherwise irrelevant for the task at
hand (e.g. the colour of the objects).

In the future, an extended approach can be designed to build
relevant motor action with a common set of visual features. Such a
common representation can be useful for solving a set of goal-
directed tasks with visual stimuli. We also believe that the low-
level features can emerge in the hierarchical architecture, in which
the inductive bias can be introduced in the related tasks. In
neuroscience, the idea of an abstract representation can be found as
well where the phenomenon of access consciousness can be seen as
the formation of a low-dimensional combination of a few concepts
which condition planning, communication and the interpretation of
upcoming observations. In machine learning, for instance, a
common reinforcement learning (RL) framework can be utilised to
realise such a goal. Therefore, based on this, the abstract state
could be formed using an attention mechanism able to select
specific relevant variables in a context-dependent manner.

5 Conclusion
We presented a new learning model for the disentanglement of the
sensorimotor concepts. This model, based on deep learning as well
as the generative model, provides a promising way of how the
independent concepts can be extracted and disentangled from both
perception and action. Specifically, the hierarchical part follows the
predictive framework of common coding. It consists different time
scales of prediction representation, in which the slower scale is the
related categorisation of the sensorimotor events and is learnt by
the β variational encoder (β-VAE) model. In this β-VAE model,
with the constraint given in the ELBO loss function, the latent
space separates the disentanglement of different concepts of both
perception and action, while the agent is learning with the
affordance data-set. The experiments show that the emerged
disentanglement representation also owns the generalisation ability
while the model is doing the generative process.
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