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Abstract—Hierarchical fuzzy systems (HFSs) have been shown
to have the potential to improve the interpretability of fuzzy
logic systems (FLSs). However, challenges remain, such as: “How
can we measure their interpretability?”, “How can we make
an informed assessment of how HFSs should be designed to
enhance interpretability?”. The challenges of measuring the
interpretability of HFSs include issues such as their topological
structure, the number of layers, the meaning of intermediate
variables, and so on. In this paper, an initial framework to
measure the interpretability of HFSs is proposed, combined with
a participatory user design process to create a specific instance
of the framework for an application context. This approach
enables the subjective views of a range of practitioners, experts
in the design and creation of FLSs, to be taken into account
in shaping the design of a generic framework for measuring
interpretability in HFSs. This design process and framework are
demonstrated through two classification application examples,
showing the ability of the resulting index to appropriately capture
interpretability as perceived by system design experts.

Index Terms—Fuzzy Logic Systems, Hierarchical Fuzzy Sys-
tems, Interpretability assessments, Participatory design.

I. INTRODUCTION

INTERPRETABILITY is related to the capability of ex-
pressing something in an understandable way [1]. That is,

people may say that something is interpretable if they can
easily understand it. One of the strengths of Fuzzy Logic
Systems (FLSs) is claimed to be their interpretability [2],
particularly in applications such as knowledge extraction and
decision support [3], [4]. However, key challenges remain in
the design of FLSs, such as the fact that the number of rules
required commonly increases exponentially with the number
of input variables [5]. This challenge also known as rule ex-
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plosion, sometimes referred to as the curse of dimensionality,
can reduce the transparency and interpretability of FLSs [6].

Hierarchical Fuzzy Systems (HFSs) could be a practical
approach to overcome rule explosion arising in conventional
FLSs [7], [8]. In HFSs, the original FLSs are decomposed into
a series of low-dimensional subsystems (see Section II-B).
As a result, the rules in HFSs commonly have antecedents
with fewer variables than the rules in ‘flat’ FLSs with equiv-
alent function, since the number of input variables of each
subsystem is lower [9], [10]. HFSs can thereby address rule
explosion and thus provide a potentially valuable pathway to
interpretability in FLSs [6], [11]–[15], [16]. However, whilst
the number of rules can be reduced, it is an open question as to
how interpretability is affected when systems are hierarchical,
featuring various subsystems, layers and topologies. A wide
range of basic interpretability indices have been proposed to
measure the interpretability of standard FLSs [17]–[33].

However, the determination of which of these possible
interpretability measurements is best used in practice remains
an open discussion. The problem is that interpretability is a
very difficult concept, because of its subjective nature in the
sense that it is challenging to know how people perceive inter-
pretability. Whilst an index can be relatively easily calculated,
it is extremely difficult to validate any such index even for
FLSs. This makes the creation of a measure for HFSs even
more difficult. Perhaps as a consequence of this, to date very
little (if any) work has been carried out in exploring how
interpretability can be measured in HFSs.

Participatory design is an approach that involves the par-
ticipation of users in the design development process to help
ensure that the result meets their needs and is usable in practice
[34]. Participatory design has been used to develop solutions to
complex problems, especially when dealing with people, such
as in control systems [35], educational [36] and medical [37]
fields. It provides a methodology towards making the design
process co-operative and efficient. Hence, it may provide a
method of assessing the interpretability of HFSs.

This paper introduces a framework for an index to measure
the interpretability of HFSs. A participatory design approach
is then used to guide the development of this framework for
capturing the interpretability of HFSs, building on initial work
to measure the interpretability of HFSs previously proposed
by the authors [38]. Naturally, a variety of aspects should
be considered in capturing interpretability of HFSs, such as
semantic interpretability in the sense of the meaningfulness
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of the constituent fuzzy sets and intermediate variables. For
example as also discussed by Magdelena in [39], if the
hierarchical decomposition in the fuzzy system reflects a well-
understood hierarchical decomposition in the real world, then
this is conducive to interpretability. However, in this paper,
the framework focuses on addressing key challenges arising
from the structure of HFSs. Specifically, it incorporates an
elementary index for assessing the interpretability of each
subsystem, an aggregation strategy for combining the indices
of the various subsystems within a single layer, and a layer-
weighting strategy that combines layers while capturing the
topology of the HFS. Initial demonstration and evaluation us-
ing the participatory design approach is presented to compare
and configure the framework so as to allow its implementation
in practice.

The rest of this paper is organised as follows: Section II
discusses relevant background on the interpretability of FLSs,
HFSs and the use of user studies. The framework for inter-
pretability of HFSs is discussed in Section III, followed by
an outline of how the framework is demonstrated in principle
in Section IV. Section V introduces the participatory design
process, consisting of two key experiments: (i) comparing H
measure with other aggregation strategies in order to capture
overall interpretability of HFSs; and (ii) refinement of the
H framework around, particularly, the aggregation strategy
for combining the sub-system indices within a single layer
and the strategy for assigning weights to the layers. Finally,
discussions and conclusions are presented in Sections VI and
VII respectively.

II. BACKGROUND

A. Interpretability of FLSs
In recent years, the interest of researchers in obtaining

interpretable FLSs has increased. Substantial research on in-
terpretability measures has proposed a range of alternative
interpretability indices for FLSs [17]–[33]. The most common
interpretability indices are the Nauck [17] and the Fuzzy
index [19].

1) Nauck Index: This is a numerical index introduced by
Nauck [17] to measure the interpretability of fuzzy rule-based
classification systems. It is computed as the product of three
terms (for details of these, see [38]):

Nauck index = comp× cov × part (1)

where:
• comp represents the complexity of FLSs measured as the

number membership functions (MFs) of output variables
divided by the number of input variables in FLSs rules;

• cov is the average normalized coverage degree of the
fuzzy partition. It is equal to one for strong fuzzy parti-
tions that satisfy all constraints (coverage, distinguisha-
bility, normality, etc.); and

• part stands for the average normalized partition index.
The partition index which is computed as the inverse of
the number of MFs minus one for each input variable.

An FLS model is said to be less interpretable when its Nauck
index is closer to 0 and more interpretable when its Nauck
index is closer to 1.

2) Fuzzy Index: As discussed in [19] and [21], the Fuzzy
index, which is inspired by Nauck’s index, has been proposed
in interpretability assessment, particularly for fuzzy rule-based
classification systems. Six variables are taken as the input of
a HFS and combined into a single index. The six variables
are: (i) the total number of rules (NR); (ii) the total number
of premises in all the rules (NP) — in a complete rule-set,
this equals the number of rules multiplied by the number of
input variables; (iii) the number of rules which use one input
variable (NRi=1); (iv) the number of rules which use two input
variables (NRi=2); (v) the number of rules which use three or
more input variables (NRi≥3); and (vi) the average number
of linguistic terms defined for each input variable (terms).
The index also depends on the number of classes (NC), also
referred to as number of output terms. It should be noted that
although the Fuzzy Index is generated using an HFS, it is only
designed to measure the interpretability of standard FLSs, and
has not previously been applied to HFSs. A Fuzzy index closer
to 0 implies that a given FLS is less interpretable, while values
closer to 1 imply higher interpretability.

B. Hierarchical Fuzzy Systems

HFSs are characterized by structuring the input variables
into a collection of low-dimensional fuzzy logic subsystems,
in which the output of each layer is an input to the following
layer [7], [8]. Consider a standard FLS consisting of a single
layer as shown in Fig. 1. This can be transformed into one of
several alternative HFSs, two of which are shown in Figs. 2
and 3.

An FLS that is transformed from a one layer FLS into a
multi-layer HFS has a smaller number of rules when consid-
ering a fully specified rule base. The most extreme reduction of
rules occurs if the structure of the HFS has two input variables
for each layer.

In conventional FLSs, the number of rules increases expo-
nentially with the increase in the number of input variables [7],
[40]. Suppose there are n input variables and m fuzzy sets for
each input variable, then the number of rules (RFLS) needed to
construct a complete fuzzy system with a fully specified rule
base (using the ‘AND’ logical connective) is:

RFLS = mn. (2)

In contrast, in an HFS which is fully decomposed into
subsystems consisting of two inputs and one output, if we
define m fuzzy sets for each input variable and each of the
intermediate output variables y1, ..., yn−2, the total number
of rules (RHFS) is a linear function of the number of input
variables n [41], and can be expressed as:

RHFS = (n− 1)m2. (3)

From (2) and (3), it is clear that the total number of rules
in the FLSs (RFLS) is always higher than or equal to the
number in the HFSs (RHFS). For example, Fig. 1 and Fig. 3
show an FLS and HFS with n = 4 input variables and,
assuming that three fuzzy sets are defined for each input
variable (i.e. m = 3), the total number of rules for this FLS
is RFLS = mn = 34 = 81, whereas for the HFS the total
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Fig. 1. Iris topology: A conventional 4-input 1-output FLS.

number of rules is RHFS = (n − 1)m2 = (4 − 1)32 = 27.
Previous research has shown that HFSs can be used to reduce
the number of rules in this manner, and claiming to thus
improve interpretability [6], [11]–[14]. However, indices for
actually measuring interpretability of HFSs were not discussed
by any of these authors.

As mentioned in [38], there are several challenges in creat-
ing methodologies for measuring the interpretability of HFSs:

1) Multiple individual subsystems: As mentioned above,
HFSs are produced by structuring the input variables in FLSs
into multiple subsystems. Each subsystem commonly has a
small number of inputs and outputs and a small rule base, and
serves commonly a single purpose [42]. The first challenge
may be expressed as “How can the interpretability of each
subsystem in an HFS be measured using an index?”. This
challenge is akin to the principal challenge of capturing
standard FLS interpretability using an index.

2) Aggregation: The second challenge is the choice of
aggregation strategy to combine the indices of the various
subsystems in an HFS. Several aggregation strategies may
be suitable, such as mean, min, max and Order Weighted
Average (OWA) [43], [44]. An OWA is calculated by reordered
subsystems in descending order before multiplying them by
the weights. In [45], Yager introduces the linguistic quantifier
to calculate weights (w) in which he defines certain values of
alpha (α) to capture labels such as “At least one” (α = 0.0),
“At least a few” (α = 0.1), “A few” (α = 0.5), “Half”
(α = 1.0), “Most” (α = 2.0), “Almost all” (α = 10.0) and
“All” (α = ∞). This is done by assigning weights according
to:

wi =
( i
s

)α
−
( i− 1

s

)α
, i = 1, ..., s, (4)

where s is the total number of subsystems.
The specific attractiveness of the OWA is that it enables

dynamic weighting of the individual interpretability of sub-
systems (based on the individual interpretability of subsys-
tems such as established by the traditional FLS indices). For
example, choosing α = 0.1 results in a weighting strategy
closely resembling the max, in which the most interpretable
subsystem in the layer is given the highest weight, the second-
most interpretable a substantially lower weight, and so on.

3) Topology and Layering: Based on the same input vari-
ables, HFSs with different topologies may be produced, such
as the serial and parallel HFSs shown in [9]. A Parallel HFS
can have more than one subsystem per layer (e.g.; Fig. 2),
while Serial HFSs use strictly one subsystem per layer (e.g.;

Fig. 2. Iris topology: Parallel HFS.

Fig. 3. Iris topology: Serial HFS.

Fig. 3). Thus, these topologies commonly have a different
number of layers. For example, Fig. 2 and Fig. 3 show two
different topologies of HFSs using the same four input vari-
ables. Both topologies use the same number of subsystems, but
with different numbers of layers in their structure. Thus, this
challenge can be expressed as “How can the interpretability
of HFSs with different topologies and number of layers be
measured systematically?”.

C. Assessing Interpretability: User studies

A user study allows researchers to identify specific variables
that are interesting and observe the impact of varying the val-
ues of those variables [46]. Examples of user studies include
that of Balazs and Koczy [47] who conducted interviews to
ask users to define fuzzy sets, i.e., to get to know what a user
meant by ‘hot’. Based on the user-defined linguistic terms,
fuzzy rules and rule bases can be constructed easily. This
was claimed to lead to complexity reduction and improved
interpretability.

Mencar and Fanelli [48] conducted a survey with the aim to:
(i) give a homogeneous description of all interpretability con-
straints; (ii) provide a critical review of such constraints; and
(iii) identify potentially different meanings of interpretability.
Alonso et al. [23] evaluated the most common interpretability
indices with a user study (in the form of a web poll) to extract
useful information regarding interpretability assessment. The
results showed that the Fuzzy index was more easily adapted
to the context of each problem as well as the quality criteria
of the users.
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Here, we conduct a user study, inspired by Alonso et al.
[23], asking users how the interpretability of given FLSs and
HFSs is perceived. However, rather than using the results of
the user study to directly evaluate the framework, this paper
describes how the data obtained from the user study has been
used to guide the development of our framework through a
participatory design approach.

III. A FRAMEWORK FOR INTERPRETABILITY OF
HIERARCHICAL FUZZY SYSTEMS

A key aspect towards a framework for interpretability of hi-
erarchical fuzzy systems is the need to assess the interpretabil-
ity of each of its constituent subsystems, present across its
layers (as illustrated in Figs. 2 and 3), and then combine these
together into a single overall measure of interpretability of the
whole system. Clearly, there are many alternative operators
that could be selected. For example, it is reasonable to use
an aggregation operator that selects something between min
and max values [49]. Alternatively, operators which generate
results beyond the min and max, such as t-norms or t-conorms,
may be applicable. In this paper, our aim is not to identify the
best (set of) operator(s); but to put forward one viable strategy
towards a flexible framework modelling interpretability in
HFSs.

A. The Overall Framework

Following the discussion above, we propose the following
high level structure for the framework. Consider H, the inter-
pretability of an HFS, as follows:

H =

q∑
j=1

(
lj

sj⊕
k=1

Ejk

)
, (5)

where:

• Ejk is the underlying (standard) FLS index associated
with the subsystem k at layer j;

•
⊕

represents a general aggregation operator;
• lj is the weight associated with layer j of the HFS (see

below);
• sj is the number of subsystems located in layer j, s is

the total number of subsystems;
• q is the number of layers of the HFS.

Note that Ejk could be any index used for measuring the
interpretability of a non-hierarchical fuzzy system. In this
paper, we neither evaluate or advocate any specific index.
However, to illustrate the framework, we use the Nauck (N)
and Fuzzy (F) indices on the basis that they are commonly
used. Note that (5) returns the original FLS index when applied
to a standard FLS because it has only one subsystem and one
layer. Further, a linear weighted aggregation strategy is used
in (5) to combine layers as the simplest strategy to model
varying degrees of importance in respect to interpretability
across layers. In future, of course, more complex and non-
linear operators could be explored.

Layer-weights, lj , are associated with each subsystem ac-
cording to their layer, such that the sum of all layer-weights
lj is equal to one regardless of the number of layers q, i.e.:

q∑
j=1

lj = 1, lj ∈ [0, 1]. (6)

Based on the above, an HFS model is less interpretable when
the H is close to 0 and more interpretable when the H is close
to 1.

B. Layer-Weighting Strategy

A variety of weighting strategies for the individual layers
within HFSs is possible. Here, we briefly introduce a key set
of alternatives.

1) Layer Weights Decreasing with Depth: The lj are ar-
ranged in descending order. This is intended to reflect the fact
that the structure of most HFSs is formed by having the most
influential input variables in the first layer of the hierarchy, the
next most important inputs in the second layer, as for example
in [7], [8]. Hence:

l1 > l2 > ... > lq, j = 1, ..., q.

In order to achieve this and satisfy (6), lj can be given by:

lj =
2
(
q − j + 1

)
q
(
q + 1

) , j = 1, ..., q. (7)

2) Increasing with Depth: The same principle as above,
but with the layer-weights increasing with layer depth. This
is indicated that the input variables in the last layer of the
hierarchy are most important, as given by:

lj =
2j

q(q + 1)
, j = 1, .., q (8)

3) Equal Weighting: Assigning an equal weight for all
layers, as given by:

lj =
1

q
(9)

IV. FRAMEWORK DEMONSTRATION IN PRINCIPLE

Following the principle of least commitment, it is intuitive to
initially explore the mean as an aggregation operator, to both
demonstrate the functionality of the H framework generally
and to explore the behavior of the resulting ‘mean-based’ H
in principle. We initially explored this approach in [38], and
summarise the approach and results here.

Considering the mean as aggregation operator, (5) becomes:

Hmean =

q∑
j=1

(
lj

sj∑
k=1

Ejk/sj

)
(10)

To demonstrate the behaviour of the resulting Hmean,
we consider both the Nauck and the Fuzzy indices (as the
underlying indices applied to each subsystem) using the well-
known Iris flower classification problem [50]. Note that the
Iris classification example is used in this paper because it
is simple and well understood. It is used only to illustrate
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Fig. 4. Membership functions of input Sepal Length with two MFs.

Fig. 5. Membership functions of input Sepal Length with three MFs.

the proposed framework and not to show any benefits of a
hierarchical approach over a non-hierarchical one. The Iris
dataset has four attributes as input features, namely: sepal
length, sepal width, petal length and petal width; and three
classes of iris flowers as output, namely: Setosa, Versicolor
and Virginica.

We design three individual systems to capture the variety of
HFSs’ architectures, namely a (standard) FLS (F), a Parallel
HFS (P) and Serial HFS (S). The three systems were each
designed in two configurations, where all variables have either
two or three membership functions — termed F-2, P-2, S-2
(collectively referred to as MF-2) and F-3, P-3, S-3 (MF-3),
respectively. The various systems are characterised by seven
attributes as follows:

1) Model Type: Type of fuzzy model, namely F, P and S
as shown in Figs. 1, 2 and 3, respectively.

2) NI: Number of input variables.
3) NMF: Number of membership functions used for all the

variables of each model, as shown in Fig. 4 and 5.
4) NR: Total number of rules.
5) NS: Number of subsystems in the model.
6) NL: Number of layers in the model.
7) NRSk: Number of rules in subsystem k.

The attributes for the six systems are summarised in Table I.
The complete rule set for each of the six variations of the
systems are given Tables S-I to S-VI in Supplemental material.

A. Methods

In this section, the application of the Hmean framework
to the six variations of the Iris system described above is
shown in detail. Both the Nauck and Fuzzy indices are used
within the Hmean framework to enable their comparison. The
six systems are then also used in the participatory design
experiments described later.

The application of the Hmean framework to measure the
interpretability of each of the six systems is carried out in the
following steps:

1) Calculate interpretability for each subsystem: First, the
interpretability of each subsystem is calculated using both the
Nauck and the Fuzzy indices. For example, the values of the
Nauck index for the three subsystems in P-2 (Parallel HFS
with 2 MFs) are N1 = 0.250, N2 = 0.250 and N3 = 0.375
(the details of the calculations are shown in Table II).

2) Identify the layer-weights: Next, the values of the layer-
weights are computed using (7). For instance, for P-2 and P-3
which consists of two layers, the values of the layer weights at
each layer are l1 = 0.667 and l2 = 0.333; where for S-2 and
S-3 which consist of three layers, the values of layer weights
at each layer are l1 = 0.500, l2 = 0.333 and l3 = 0.167.

3) Calculate the overall interpretability: Then, the overall
interpretability can be calculated using the Hmean as given
in (10). For example, the interpretability of model P-2 is
computed as follows:

Hmean =

q∑
j=1

(lj

sj∑
k=1

Ejk/sj)

= l1(N1 + N2)/2 + l2(N3/1)

= 0.667(0.250 + 0.250)/2 + 0.333(0.375)

= 0.292

B. Results

The overall interpretability measurements of the six Iris
classification systems calculated using the Hmean are shown
in Table II. In general, it can be seen that the computed Hmean
interpretability indices in the various hierarchical models are
always larger (i.e. more interpretable) as compared to the
interpretability of the flat FLSs, regardless of whether the
hierarchical topology is parallel or serial, and regardless of
the number of membership functions.

As shown in Table II, considering the Nauck index for the
two membership function case, the resultant Hmean value
(i.e. the calculated overall interpretability) is greatest for the
parallel HFS model (P-2 = 0.292), followed by the serial HFS
model (S-2 = 0.271), and finally the flat FLS (F-2 = 0.047).
The same pattern is observed for the Fuzzy index, although
the absolute values of interpretability obtained are higher.

Further, as seen in Table II, considering the Nauck index
for the three membership function case, the computed inter-
pretabilities are higher for both the hierarchical models (P-3 =
S-3 = 0.083) compared to the flat FLS (F-3 = 0.005). How-
ever, in this case, the interpretability of both the hierachical
models are the same — i.e. the interpretability of the parallel
and serial models featuring three membership functions is the
same. The same pattern is obtained with the Fuzzy index,
albeit with higher absolute values of interpretability.

The results generated for the Hmean follow intuition in
the sense that the HFSs do have better interpretability than
FLS for all systems. Further, the parallel topology, P-2, is
seen to have a better interpretability than the serial topology,
S-2. This feature is actually due to a combination of three
factors: (i) both the Nauck and the Fuzzy indices rate the
interpretability of a (sub-)system consisting of two inputs each
with two MFs and an output with three MFs (2×2→ 3) higher
than that of a (sub-)system consisting of two inputs each with
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TABLE I
DESCRIPTION OF THE PARAMETERS OF THE SIX IRIS CLASSIFICATION SYSTEMS

Iris systems Model Type NI NMF NR NS NL NRS1 NRS2 NRS3

F-2 FLS 4 2 16 1 1 16 - -
P-2 Parallel HFS 4 2 12 3 2 4 4 4
S-2 Serial HFS 4 2 12 3 3 4 4 4

F-3 FLS 4 3 81 1 1 81 - -
P-3 Parallel HFS 4 3 27 3 2 9 9 9
S-3 Serial HFS 4 3 27 3 3 9 9 9

TABLE II
INTERPRETABILITY OF THE IRIS SYSTEMS; SET MF-2 (F-2, P-2, S-2) AND SET MF-3 (F-3, P-3, S-3) USING THE HMEAN

Iris models Nauck Index Fuzzy Index

comp cov part Index NR NP NRi=1 NRi=2 NRi≥3 terms NC Index

F-2 0.047 1 1 0.047 16 64 0 0 16 2 3 0.500

P-2:
FLS1 0.250 1 1 0.250 4 8 0 4 0 2 2 0.611
FLS2 0.250 1 1 0.250 4 8 0 4 0 2 2 0.611
FLS3 0.375 1 1 0.375 4 8 0 4 0 2 3 0.663
Hmean 0.292 0.628

S-2:
FLS1 0.250 1 1 0.250 4 8 0 4 0 2 2 0.611
FLS2 0.250 1 1 0.250 4 8 0 4 0 2 2 0.611
FLS3 0.375 1 1 0.375 4 8 0 4 0 2 3 0.663
Hmean 0.271 0.620

F-3 0.009 1 0.5 0.005 81 324 0 0 81 3 3 0.194

P-3:
FLS1 0.167 1 0.5 0.083 9 18 0 9 0 3 3 0.493
FLS2 0.167 1 0.5 0.083 9 18 0 9 0 3 3 0.493
FLS3 0.167 1 0.5 0.083 9 18 0 9 0 3 3 0.493
Hmean 0.083 0.493

S-3:
FLS1 0.167 1 0.5 0.083 9 18 0 9 0 3 3 0.493
FLS2 0.167 1 0.5 0.083 9 18 0 9 0 3 3 0.493
FLS3 0.167 1 0.5 0.083 9 18 0 9 0 3 3 0.493
Hmean 0.083 0.493

2 MFs and an output with two MFs (2 × 2 → 2); (ii) the
proposed Hmean gives higher interpretability to sub-systems
in earlier layers; and (iii) P-2 features the (2 × 2 → 3) sub-
system in layer 2, whereas S-2 features it in layer 3. This is
not repeated in the case of P-3 and S-3, as in these cases all
sub-systems are of form (3 × 3 → 3) and so all have equal
interpretability; hence, the parallel and serial HFS topologies
result in the same interpretability.

The Fuzzy index is designed to provide a measurement of
interpretability which is closer to the user’s point of view than
the Nauck or other indices [23]. Given this and our finding that
both produce similar results in our Hmean experiments, only
the Fuzzy index will be used for the remainder of this paper
in comparing and refining the H framework.

V. A PARTICIPATORY DESIGN APPROACH

We propose a participatory design approach to compare and
derive parameters of H within the framework. As mentioned
earlier, participatory design is an approach that involves users
in the design development process to ensure the result satisfies

their needs [34]. In this section, a participatory design process
consists of two main experiments:

1) to assess whether the approach of the H framework,
taking into account the topology of connected layers,
better matches users perceptions of interpretability, rather
than a non-layered approach;

2) to guide the refinement of the H framework through:
(i) the aggregation strategy for combining the sub-system
indices within a single layer; and (ii) the strategy for
assigning weights to the layers.

These two experiments are now described in detail using the
examples of the Iris classification application and Rotary crane
system (as used in [51]), respectively.

A. Experiment 1: The H framework itself

First, an experiment was conducted to examine the measure-
ments of the interpretability of HFSs using the H framework
and without the framework, from the point of view of users’
interpretability within a participatory design approach.
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TABLE III
FREQUENCY OF THE INTERPRETABILITY RANKINGS FOR IRIS SYSTEMS IN

SET MF-2, AS EXTRACTED FROM USER STUDY

Set MF-2

Rank

Average Rank1 2 3

Count (%) Count (%) Count (%)

F-2 5 20 8 32 12 48 2.3
P-2 19 76 4 16 2 8 1.3
S-2 2 8 9 36 14 56 2.5

TABLE IV
FREQUENCY OF THE INTERPRETABILITY RANKINGS FOR IRIS SYSTEMS IN

SET MF-3, AS EXTRACTED FROM USER STUDY

Set MF-3

Rank

Average Rank1 2 3

Count (%) Count (%) Count (%)

F-3 5 20 5 20 15 60 2.4
P-3 18 72 4 16 3 12 1.4
S-3 4 16 11 44 10 40 2.2

1) Participatory User Study: Six of the Iris systems were
classified into two groups. The first group was named Set
MF-2 which consists of three Iris systems (‘flat’, ‘parallel’
and ‘serial’, with two MFs per variable), termed F-2, P-
2, and S-2; the second group was named Set MF-3 which
consists of three corresponding systems each with three MFs
per variable, termed F-3, P-3, and S-3. Each of the Iris systems
in Set MF-2 and MF-3 was printed on an A4 card. The
topology, membership functions and rule set of each system
was summarised on these cards. For example, card F-2 (as
shown in Fig. S-1 of the Supplemental material) contained
the topology of FLS as shown in Fig. 1, the two membership
functions used in all input variables as shown in Fig. 4, and
the complete 16 rules of the FLS.

We carried out this paper-based survey at the Fuzz-IEEE
2017 Conference held in Naples, Italy, during which we asked
a sample of participants at the conference to answer a set
of questions concerning interpretability. The sample of 25
participants was selected from a range of academics (from
doctoral students to full professor), with a range of expertise in
fuzzy system design and creation, recruited during the session
“Interpretable Fuzzy Systems” and also from other sessions
at the conference. The participants were asked to separately
rank order the three Iris systems in MF-2 and those in MF-
3 based on the perceived interpretability. Users were asked to
indicate a rank of 1, 2 or 3, for each of the three systems; with
the refinement that they were free to indicate equal ranks for
one or more system if they wished — that is, responses such
as 1, 1, 1 indicated that all three systems were ranked equally
interpretable, or 1, 3, 3 indicated that two of the systems were
viewed as being equally less interpretable. Due to this, there
may be more or fewer observations of each rank than the
number of participants in the study.

The individual responses are shown in Table S-VII (in the
Supplemental material), in which the first column indicates the
25 users (referred to as U-1 to U-25), while the second and

TABLE V
THE SUMMARY OF THE INTERPRETABILITY FOR IRIS SYSTEMS USING THE

HMEAN AND Mean. THE INTERPRETABILITY SCORE (AND RANK) IS
SHOWN FOR EACH SET MF-2 AND MF-3

Set MF-2 F-2 P-2 S-2

Hmean 0.500 (3) 0.628 (1) 0.620 (2)
Mean 0.500 (3) 0.628 (1) 0.628 (1)

Set MF-3 F-3 P-3 S-3

Hmean 0.194 (3) 0.493 (1) 0.493 (1)
Mean 0.194 (3) 0.493 (1) 0.493 (1)

third columns show the interpretability rankings for Set MF-
2 and Set MF-3, respectively. These results are summarised
in Tables III and IV, showing the frequency (count and
percentage) of each ranking, together with the average rank,
of each system. It can be seen that most of the users found
the Parallel HFS to be more interpretable than the flat FLS
and Serial HFS, in both Set MF-2 and Set MF-3, with 76% of
the users selecting P-2 as the most interpretable of the systems
with two MFs, and 72% selecting P-3 as the most interpretable
of the systems with three MFs. In both cases of two and three
MFs, the ranking of the Flat and Serial systems are less clear-
cut; in the cae of MF-2, it appears that F-2 may be slightly
more interpretable than S-2, whereas S-3 may be slightly more
interpretable than F-3.

2) Hmean vs ‘Mean’: This experiment explores measuring
interpretability using the proposed H framework (Hmean)
compared to not using a framework at all and instead just
taking the mean of all the subsystems, regardless of topology
(termed simply Mean). Note that our H framework performs
averaging of individual interpretability of subsystem at each
layer and then layer weighted at each layer, to obtain overall
interpretability of HFSs. In contrast, without the framework,
the Mean simply treats the interpretability of all subsystems
with equal weight regardless of which layer each appears in,
the number of layers, etc. That is, the Mean simply averages
the interpretability of all subsystems to obtain the overall
interpretability of an HFS.

Table V shows the interpretability values obtained using
the Hmean and Mean (i.e. just averaging the subsystems)
of the various Iris systems, Set MF-2 and Set MF-3. The
resulting rank order of each of the systems is also shown.
In general, as can be seen from Table V, the Mean measure
produced the same interpretability result for P-2 and S-2; in
contrast, the Hmean produced different values for P-2 and
S-2, indicating that P-2 is more interpretable than S-2, in
agreement with the results obtained from users. In the case
of Set MF-3, both measures produced the same results in P-
3 and S-3. This is because all the subsystems have similar
structural characteristics, and hence the same Fuzzy index
score (of 0.493, as can be seen in Table II). Thus, any
aggregation operators and layer-weighting schemes will also
result in the same overall result of 0.493. Whilst these results
are insufficient to draw strong conclusions from, this is perhaps
a reflection of the fact that the Iris system is too simple, with
insufficient degrees of freedom to allow for much variation in
alternative hierarchical systems. For this reason, we undertook
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a further set of experiments on a more complex system.

B. Experiment 2: Beyond the Mean
While aggregating the subsystems using the mean and

decreasing weight layer-weight can be used as a default
strategy, in order to capture the interpretability of HFSs as
perceived by actual users, we propose another participatory
design approach to derive H parameters within the framework.
In this experiment, we use a more complex set of alternative
HFSs, based on the Rotary crane system as in [51].

1) Participatory User Study: Twelve Rotary crane systems
were constructed, termed A . . . L. Each system has a different
configuration such as the number of rules, number of subsys-
tems, number of layers. Illustrations of the topology of each
can be seen in Figs. S-2 to S-13.

Similar to experiment 1 (see Section V-B1), each system
was represented on an A4 card. However, this time, we only
presented the topology and rule structures. Users were asked to
choose which system they favoured in terms of interpretability
in a set of pairwise comparisons drawn from the total set of
possible pairs. The combination of the pairwise comparisons
(labelled PW-1 to PW-20) are as follows: (PW-1: A, B), (PW-
2: A,C), (PW-3: B,C), (PW-4: B,D), (PW-5: B,E), (PW-6:
C,D), (PW-7: C,E), (PW-8: D,E), (PW-9: D,F), (PW-10: E,F),
(PW-11: F,G), (PW-12: F,H), (PW-13: G,H), (PW-14: H,I),
(PW-15: I,J), (PW-16: I,K), (PW-17: I,L), (PW-18: J,K), (PW-
19: J,L) and (PW-20: K,L). It should be noted that only 20
pairwise comparisons (out of a total of 132 possible pairs)
were selected, as it was deemed impractical to ask users to
provide a preference for all 132 pairs, due to the time and
effort this would require. The selection of pairs to be used
was based on consideration of whether they were felt to be
‘not obviously different from each other’ and hence interesting
and informative to gather preference opinion on. For instance,
system A may be paired with all other systems B, . . . , L.
However, only the pairs (A,B) and (A,C) were chosen, because
they are not obviously different to each other in terms of their
structure and number of rules. For instance, for PW-1, the
participants were asked to choose between system A and B,
based on their perceived interpretability preference (see in Fig.
S-14 for a mock-up of PW-1). If both systems seem equally
interpretable, they could indicate ‘Equal’ (EQ) as their answer.
This experiment was carried out through an online-survey with
40 participants from a wide range of expertise.

Table VI presents frequency of the users interpretability
ratings for 20 pairwise comparisons. The detail of answers
given by each participant to each of the pairwise comparisons
are shown in Table S-VIII. From an initial observation, there
is appreciable diversity of opinion in the 40 participants as to
the interpretability of the various systems. This also shows that
interpretability is very subjective because of each participant
may perceive the interpretability differently.

2) Exploration of Alternatives Configurations of H: This
section was conducted to explore various alternative aggrega-
tions and layer-weighting strategies as described in Section III.
Firstly, the Fuzzy index for each of the subsystems present in
the twelve different Rotary crane system configurations was
calculated, as shown in Table VII.

TABLE VI
FREQUENCY OF THE USERS INTERPRETABILITY RATING FOR PAIRWISE
COMPARISONS OF ROTARY CRANE, AS EXTRACTED FROM USER STUDY

Pairwise
comparisons

Users Interpretability Rating

A B C D E F G H I J K L EQ

PW-1 21 11 - - - - - - - - - - 8
PW-2 20 - 12 - - - - - - - - - 8
PW-3 - 17 8 - - - - - - - - - 15
PW-4 - 16 - 14 - - - - - - - - 10
PW-5 - 16 - - 13 - - - - - - - 11
PW-6 - - 8 21 - - - - - - - - 11
PW-7 - - 10 - 19 - - - - - - - 11
PW-8 - - - 9 13 - - - - - - - 18
PW-9 - - - 13 - 25 - - - - - - 2
PW-10 - - - - 13 22 - - - - - - 5
PW-11 - - - - - 26 11 - - - - - 3
PW-12 - - - - - 3 - 17 - - - - 20
PW-13 - - - - - - 6 26 - - - - 8
PW-14 - - - - - - - 25 11 - - - 4
PW-15 - - - - - - - - 18 5 - - 17
PW-16 - - - - - - - - 17 - 16 - 7
PW-17 - - - - - - - - 20 - - 14 6
PW-18 - - - - - - - - - 16 14 - 10
PW-19 - - - - - - - - - 15 - 19 6
PW-20 - - - - - - - - - - 7 17 16

TABLE VII
BASE INTERPRETABILITY OF EACH OF THE ROTARY CRANE SYSTEMS

MEASURED USING THE FUZZY INTERPRETABILITY INDEX

Rotary Crane
Systems

Fuzzy Index for each HFS subsystem
FLS1 FLS2 FLS3 FLS4 FLS5

System A 0.0216 - - - -
System B 0.0647 0.4932 - - -
System C 0.4932 0.0647 - - -
System D 0.2408 0.1941 - - -
System E 0.1941 0.2408 - - -
System F 0.4932 0.1941 0.4932 - -
System G 0.2408 0.4932 0.2408 - -
System H 0.2408 0.2408 0.4932 - -
System I 0.2408 0.4932 0.4932 0.4932 -
System J 0.4932 0.4932 0.2408 0.4932 -
System K 0.4932 0.4932 0.4932 0.2408 -
System L 0.4932 0.4932 0.4932 0.4932 0.4932

Five different aggregation strategies, mean, min, max, and
two linguistic OWAs (using alpha (α) of 0.1 and 2) were
explored. Each was used as a general aggregation operator⊕

in the H framework presented in (5) — note that only the
decreasing weight layer-weighting strategy was used in con-
junction with the various aggregation strategies. For example,
for the case of Linguistic OWAα=0.1, the values of α = 0.1
will be used in (4) to obtain its weights (w) before multiplying
them by the reordered subsystems in descending order. Given
that three Fuzzy index values for each sub-system in System
F are F1 = 0.4932, F2 = 0.1941 and F3 = 0.4932, the overall
interpretability of Rotary crane system F was computed using
H with OWAα=0.1 and a decreasing weight layer-weighting,
as follows:

Hα=0.1 =

q∑
j=1

(
lj

sj∑
k=1

Ejkwk

)
= l1(F1w1 + F2w2) + l2(F3)

= 0.667(0.4932)(0.933) + (0.1941)(0.067)) + 0.333(0.4931)

= 0.4798

Meanwhile, in the layer-weighting experiment, the afore-
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mentioned three layer-weighting strategies, decreasing weight,
increasing weight and equal weight as described in Section
III-B were investigated. All these strategies were used as
the layer-weight lj in the H framework presented in (5) —
note that only the mean aggregation strategy was used in
conjunction with these layer-weighting strategies. For instance,
for the case of increasing weight, the values of layer-weight
can be computed using (8). For the Parallel models which
consists of two layers, the values of layer weights at each
layer are l1 = 0.333 and l2 = 0.667. Meanwhile, for the
Serial models which consists of three layers, the values of
layer weights at each layer are l1 = 0.167, l2 = 0.333 and
l3 = 0.500. Given that three Fuzzy index values for each
sub-system in System F are F1 = 0.4932, F2 = 0.1941
and F3 = 0.4932, the overall interpretability of system F is
computed using H with layer-weighting, increasing weight and
aggregation strategy, mean can be expressed as follows:

Hmean =

q∑
j=1

(
lj

sj∑
k=1

Ejk/sj

)
= l1(F1 + F2)/2 + l2(F3/1)

= 0.333((0.4932 + 0.0.1941)/2) + 0.667(0.4932/1)

= 0.4434

The results obtained are shown in Table VIII. From these
results, we can see that H framework produced a diversity of
answers for various systems, aggregations and layer-weighting
strategies. These results were then transformed to obtain the
H scores for the 20 pairwise comparisons. For the case of the
Hmean example in aggregation strategies, the first pairwise
comparison is between System A and B. In this example,
System B was chosen as it scores higher than System A
based on the overall interpretability, indicating that the H
framework suggests that System B is more interpretable than
System A. The complete results of pairwise comparison for the
interpretability of the Rotary crane systems obtained from the
H with different aggregation and layer weighted strategies can
be seen in Table IX. Whilst the interpretability index is a real
number, nevertheless sometimes it produces identical indices
for two different systems — in this case, it is labelled in the
Table as ‘EQ’ (equal). In general, systems might be considered
equal if the difference were below a certain threshold.

3) Matching H to the Participatory Study: This step was
conducted to determine the level of agreement between the
interpretability ratings provided by the participatory user study
(as in Subsection V-B1) and various alternative configurations
of the H framework (as shown in Subsection V-B2).

Specifically, we computed the agreement scores between the
results in Table IX with those in Table VI. For example, for
pairwise comparison PW-1, the user preferences are A= 20,
B= 11 and EQ= 8, as shown in Table VI. Accordingly, from
the fact that Hmean produces a higher interpretability score for
B than A, we deduce that Hmean prefers B, and consequently
the level agreement score obtained is 11 agreements (as B was
preferred by 11 users). Full details of the agreement score
are provided in Table X. The last two rows summarise the
agreements, providing the mean and standard deviation (SD)
for each column.

From Table X, it can be seen that the Hmin aggregation
strategy and increasing weight layer weight strategy achieve
the highest average agreement scores. That is, most of the
answers given by users are closer to the ratings obtained using
H with Hmin aggregation strategy and increasing weight layer
weight strategy.

VI. DISCUSSION

We studied the newly proposed generic H framework
through a participatory design process consisting of experi-
ments of which the main aims are; (i) to explore and compare
the proposed H measure with other approaches to determining
the overall interpretability of hierarchical systems; and (ii) to
refine the parameters of the proposed H measure.

In the first experiment, for the first step, a participatory
user study was conducted to assess how users perceived the
interpretability of the Iris systems. From the interpretability
rankings provided by users, we found that the majority in-
dicated that the Parallel HFS was more interpretable than
the flat FLS and Serial HFS in Set MF-2 and Set MF-3
with a percentage of 76% and 72% respectively (as shown
in Tables III and IV). However, it was less clear cut as to
whether the flat FLS was more interpretable than the Serial
HFS in Set MF-2 and Set MF-3.

Whilst, for the illustrative example, there is an absence of
a clear relationship between the numerical results obtained
for Parallel and Serial HFS systems, the comments of users
(which can be seen in Supplemental material available with
the digital copy of this paper) indicate that the Parallel form
is more suited to the example of the Iris system. According
to several users, it is more intuitive when sepal and petal
are classified separately with the resulting outputs driving the
classification of the Iris flowers. Similarly the participants
expressed that fewer rules in each subsystem improved their
readability. We do not believe that this preference is intrinsic
to the Parallel or Serial form of decomposition, but is related
to the natural structure (petals and sepals of flowers) inherent
in this particular example.1

In the second step, we explored the interpretability of HFSs
using the proposed H framework (Hmean) in comparison to
that obtained without the framework, i.e. just using a plain
average of subsystems (Mean). The results showed that while
the Mean produced the same result for Parallel and Serial HFS
(as it takes no account of the number of layers and topology),
our framework produces results that are different depending on
the topology of systems. The result obtained for the Hmean on
the Iris system, particularly in configuration MF-2, produces
a ranking that is closer to that given by users. Therefore,
these observations and current evidence indicate that our H
framework (Hmean) is better than a measure without the
framework in capturing a natural concept of interpretability
of HFSs.

1An alternative approach to the one taken in this paper would be to follow
a data-driven design process for an interpretability index. This would require
the acquisition of a large annotated data set from a well-balanced sample of
people (where the annotation may be fine-grained and complex) together with
the use of statistical optimisation techniques.
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TABLE VIII
INTERPRETABILITY OF THE ROTARY CRANE SYSTEMS USING H WITH DIFFERENT AGGREGATION STRATEGIES AND LAYER WEIGHTING STRATEGIES

Rotary Crane
Systems

H (using decreasing weight layer strategy) H (using Hmean aggregation)

Hmean Hmin Hmax Hα=0.1 Hα=2 decreasing weight increasing weight equal weight

System A 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216
System B 0.2075 0.2075 0.2075 0.2075 0.2075 0.2075 0.3504 0.2789
System C 0.3504 0.3504 0.3504 0.3504 0.3504 0.3504 0.2075 0.2789
System D 0.2253 0.2253 0.2253 0.2253 0.2253 0.2252 0.2097 0.2175
System E 0.2097 0.2097 0.2097 0.2097 0.2097 0.2097 0.2252 0.2175
System F 0.3935 0.2938 0.4932 0.4798 0.3437 0.3935 0.4434 0.4184
System G 0.3249 0.2408 0.4091 0.2521 0.3670 0.3249 0.2829 0.3039
System H 0.3249 0.3249 0.3249 0.3249 0.3249 0.3249 0.4091 0.3670
System I 0.4301 0.3670 0.4932 0.3755 0.4617 0.4301 0.4722 0.4511
System J 0.4301 0.3670 0.4932 0.4847 0.3986 0.4301 0.4722 0.4511
System K 0.4679 0.4679 0.4679 0.4679 0.4679 0.4680 0.3922 0.4301
System L 0.4932 0.4932 0.4932 0.4932 0.4932 0.4932 0.4932 0.4932

TABLE IX
PAIRWISE COMPARISON FOR THE INTERPRETABILITY OF THE ROTARY CRANE SYSTEMS OBTAINED FROM THE H WITH DIFFERENT AGGREGATION AND

LAYER-WEIGHTED STRATEGIES

Pairwise
Comparision

H aggregation strategy H layer-weighted strategy

Hmean Hmin Hmax Hα=0.1 Hα=2 decreasing weight increasing weight equal weight

PW-1 B B B B B B B B
PW-2 C C C C C C C C
PW-3 C C C C C C B EQ
PW-4 D D D D D D B B
PW-5 E E E E E E B B
PW-6 C C C C C C D C
PW-7 C C C C C C E C
PW-8 D D D D D D E EQ
PW-9 F F F F F F F F
PW-10 F F F F F F F F
PW-11 F F F F G F F F
PW-12 F H F F F F F F
PW-13 EQ H G H G EQ H H
PW-14 I I I I I I I I
PW-15 EQ EQ EQ J I EQ EQ EQ
PW-16 K K I K K K I I
PW-17 L L L L L L L L
PW-18 K K J J K K J J
PW-19 L L L L L L L L
PW-20 L L L L L L L L

Unfortunately, the first experiments undertaken on the Iris
system did not have sufficient discriminatory power to help
identify the most appropriate parameters (aggregation and
layer-weighting strategies) of our framework. A second ex-
periment was therefore carried out to derive the configuration
of H framework using a more complex system, the Rotary
crane example. Note that this example has lower semantic
meaning of its variables compared to the Iris classification
used in the first experiment. Nevertheless, due to its inherently
higher complexity (featuring six inputs) which means there
are more possible hierarchical topologies, the second example
has a higher discriminatory power to help identify the most
appropriate parameters of H framework. In the first step, we
carried out another user study to assess how people perceive
the interpretability of twelve different configurations of the
system through 20 pairwise system comparisons. Based on
the opinions of 40 participants with a range of expertise, a
diversity of perception regarding interpretability was found.
The results imply that interpretability is very subjective and

challenging to understand as views may vary greatly as to the
interpretability of different system topologies. In the second
step, alternative configurations of the H framework with
various aggregation and layer-weighting strategies were used
to measure interpretability. It can be seen from Table VIII that
this more complex system produces different interpretability
scores for almost all the different configurations of the system.

The final step is to examine the level of agreement in terms
of interpretability between the pairwise comparison produced
from aggregation and layer-weighting strategies as in Step
2, with the pairwise comparison obtained from participatory
user study as in Step 1. The number of agreements between
the users’ views in Step 1 and H results in Step 2 show
that the Hmin aggregation strategy and increasing weight
layer-weighted strategy produced the highest agreement score
with a score of 15 and 17, respectively, when compared with
the others. While the differences are relatively small, these
results suggest that the H framework with configuration Hmin
aggregation strategy and increasing weight layer-weighted
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TABLE X
THE AGREEMENT SCORE BETWEEN THE PREFERENCES GIVEN BY EACH OF THE USERS (IN TABLE VI) AND THE PREFERENCE INDICATED BY H

FRAMEWORK (USING DIFFERENT AGGREGATION AND LAYER-WEIGHTED STRATEGIES AS SHOWN IN TABLE IX)

H aggregation strategies H layer-weighted strategies

Hmean Hmin Hmax Hα=0.1 Hα=2 decreasing weight increasing weight equal weight

PW-1 11 11 11 11 11 11 11 11
PW-2 12 12 12 12 12 12 12 12
PW-3 8 8 8 8 8 8 17 15
PW-4 14 14 14 14 14 14 16 16
PW-5 13 13 13 13 13 13 16 16
PW-6 8 8 8 8 8 8 21 8
PW-7 10 10 10 10 10 10 19 10
PW-8 9 9 9 9 9 9 13 18
PW-9 25 25 25 25 25 25 25 25
PW-10 22 22 22 22 22 22 22 22
PW-11 26 26 26 26 11 26 26 26
PW-12 3 17 3 3 3 3 3 3
PW-13 8 26 6 26 6 8 26 26
PW-14 11 11 11 11 11 11 11 11
PW-15 17 17 17 5 18 17 17 17
PW-16 16 16 17 16 16 16 17 17
PW-17 14 14 14 14 14 14 14 14
PW-18 14 14 16 16 14 14 16 16
PW-19 19 19 19 19 19 19 19 19
PW-20 17 17 17 17 17 17 17 17

Mean 14 15 14 14 13 14 17 16
SD 6 6 6 7 5 6 6 6

strategy as it produced the highest agreement with the users.

The proposed framework and user study raises some inter-
esting issues which are worthy of further and more detailed
study. One issue is “How is the experience of the participants
measured?”, and the associated question “Does it affect the
results?”. In our studies, we recruited a range of people from
early stage PhD students to Full Professors with many years
experience of fuzzy systems. However, we did not formally
assess their expertise. For obvious reasons, this might be a
difficult matter to assess, as individuals may be reluctant to
have their ‘expertise’ measured! Nevertheless, it would surely
be interesting to both attempt to measure actual expertise of
fuzzy systems (rather than just self-reported expertise) and to
explore whether this affects opinion of interpretability in any
way. A second issue is “Is there a correlation between inter-
pretability and the classification results?” It has been previ-
ously reported that there is a trade-off between interpretability
and accuracy [52], [53]. That is, the higher the interpretability
of a given system, the lower its accuracy. Since accuracy
concerns the ability of a model to make correct predictions,
the same correlation may exist between interpretability and the
classification results. For instance, if the classification results
produce a higher accuracy, the classification result may have
lessened their interpretability model. However, in this paper,
we are not showing any correlation between interpretability
and classification results. We are focusing on introducing a
general framework to capture interpretability of HFS.

The study of interpretability, particularly in the context of
hierarchical fuzzy systems is an important area, which is likely
to gain interest as it has clear relevance to explainable AI
(XAI). The studies presented here show that there are sizeable
differences in opinion between users as to the interpretability

of various configurations of hierarchical systems, including
with differing topologies and a range of sizes of rulebase.

VII. CONCLUSION

In conclusion, we have contributed a new generic framework
for the measurement of the interpretability of hierarchical
fuzzy systems, namely the H framework. This framework
allows the use of any index for measuring the interpretability
of a flat fuzzy system to be combined in any configuration
of hierarchical systems with different numbers of subsystems,
organised in differing topologies. We have then presented
a participatory design process, consisting of two main ex-
periments which were aiming (i) to measure and compare
the proposed H framework measure with others; and (ii) to
determine the selection of the best strategies for combining
subsystems into an overall index of interpretability. Based on
the current evidence, we tentatively suggest the use of the
min operator to aggregate subsystems within a layer, together
with the weighted mean operator using a increasing weight
strategy to combine layers, within the generic H framework
for capturing the interpretability of HFSs.

Clearly, further work is also needed to explore the more
general question of the wider meaning of interpretability of
HFSs. Thus, in future, we expect further development of the H
framework exploring other aspects of interpretability of HFSs,
including the semantic interpretability of fuzzy sets, that of
intermediate outputs and the logical complexity of the rules.
For other future work, we will focus on conducting more ex-
periments with different setting involving several case studies
with more complex and varied hierarchical systems, including
recruiting broader sets of participants from both within and
outside the fuzzy community. Moreover, in future, we will
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also improve the agreement score, e.g. using the Spearman
rank-order correlation with real numbers that may explore
the difference between the HFS structure and considering the
preferences indicated by the framework. In doing so, we would
hope to gain further insight into different configurations of the
framework, in order to ultimately gain a deeper understanding
of the interpretability of hierarchical fuzzy systems, captured
in a general index.
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