
1

Constrained Interval Type-2 Fuzzy Sets
Pasquale D’Alterio, Student Member, IEEE, Jonathan M. Garibaldi, Senior Member, IEEE,

Robert I. John, Senior Member, IEEE, and Amir Pourabdollah, Member, IEEE

Abstract—In many contexts, type-2 fuzzy sets are obtained
from a type-1 fuzzy set to which we wish to add uncertainty.
However, in the current type-2 representation there is no re-
striction on the shape of the footprint of uncertainty and the
embedded sets that can be considered acceptable. This leads,
usually, to the loss of the semantic relationship between the
type-2 fuzzy set and the concept it models. As a consequence,
the interpretability of some of the embedded sets and the
explainability of the uncertainty measures obtained from them
can decrease. To overcome these issues, constrained type-2 fuzzy
sets have been proposed. However, no formal definitions for some
of their key components (e.g. acceptable embedded sets) and
constrained operations have been given. The goal of this paper
is to provide some theoretical underpinning for the definition
of constrained type-2 sets, their inferencing and defuzzification
method. To conclude, the constrained inference framework is
presented, applied to two real world cases and briefly compared
to the standard interval type-2 inference and defuzzification
method.

Index Terms—Type-2 fuzzy logic, embedded sets, constrained
type-2 fuzzy sets, xai

I. INTRODUCTION

Type-2 fuzzy sets (T2 FS) were introduced by Zadeh [1] in
1975 as an extension of type-1 (T1) FSs so that it would be
possible to model the uncertainty of membership functions.
However, their use remained rare due to the significant in-
crease in complexity of algorithms, until Mendel introduced
many advances that made their practical use possible. Type-
2, and particularly interval type-2 (IT2) sets, have been
successfully applied in many areas such as control [2], [3],
classification and regression [4], and many other contexts.

Type-2 fuzzy systems have required the creation of addi-
tional representations, definitions and algorithms, including to
allow the creation of complete rule-based inferencing systems.
One of these is the concept of the Footprint of Uncertainty
(FOU), introduced by Mendel [5], which represents the ex-
istence of non-zero secondary membership values as a two-
dimensional shaded area. Other novel methodologies have
been suggested for type-reduction and defuzzification, largely
based on algorithms for centroid defuzzification of type-2 sets
initially by Karnik and Mendel [6], and subsequently enhanced
by Wu and Mendel [7], and others. The original KM, modern
EKM, and other similar recent algorithms, are based on the
concept of the embedded set (ES). Intuitively, an ES is a
path along the surface of a T2 set and it has been proven
[8] that any T2 FS can be represented as the union of all
its ESs (representation theorem). The process of finding the
centroid of a type-2 set then depends on finding the ES with
the leftmost centroid, and that with the rightmost centroid.

Whilst the current T2 and IT2 framework has shown to
have many advantages over T1 approaches, particularly in their

ability to exhibit greater performance in most situations, we
believe there are drawbacks. Two properties which we believe
decrease the overall interpretability of T2 systems are: (i)
there is currently no agreed mechanism to derive the FOU,
particularly in the situation in which a concept being modelled
by a T1 set has uncertainty added to form a T2 set representing
the same concept; and (ii) ESs may have any shape, including
ones which bear no relationship to the concept being modelled.

To overcome these issues, Constrained Type-2 (CT2) fuzzy
sets have been proposed [9], [10]. The idea behind them
is to address the two limitations above by: (i) providing an
explicit method for generating the boundaries of the footprint
of uncertainty that keeps a shape coherency [9] throughout
the generation of the type-2 set, based on an underlying
concept modelled by a type-1 set; and (ii) restricting the
acceptable embedded sets that may be used to only a subset
of all the ESs, in order to process only shapes that may be
considered meaningful in that specific context. Even though
the concept of CT2 FS has already been formulated [9], [10],
some key components are currently lacking formal definitions
such as the acceptable embedded sets, constrained inference
and centroid defuzzification.

In this paper, we will provide some theoretical underpinning
for this new constrained representation, focusing specifically
on constrained interval type-2 (CIT2) fuzzy sets. In addition
to formal definitions, a full inferencing and defuzzification
framework is then proposed for the creation of CIT2 Mamdani-
style fuzzy inference systems. Next, we compare and contrast
the CIT2 approach with the recent framework introduced by
Wu et al [11], [12] for creating ‘well-shaped’ type-2 sets. Fi-
nally, a practical application will be shown and compared with
the conventional IT2 representation in terms of interpretability
and explainability of the outputs, performances and running
times. Specifically, a genetic architecture will be described for
the automatic generation of CIT2 fuzzy systems which will
be tested on two real world data-sets. Whilst interpretability
is itself a difficult and complex concept to define, and is
somewhat subjective in nature, nevertheless we use worked
examples and the practical applications to illustrate ways in
which interpretability is enhanced. Throughout, we stress that
the proposed CIT2 approach, which may be used in contexts
in which explainability and interpretability are considered
important, is an alternative to other approaches including the
conventional type-2 approach.

II. PRELIMINARY DEFINITIONS

In this section we will provide some formal definition
of fuzzy concepts that will be used throughout the paper
(definitions taken or rephrased from [8], [9], [13], [14]).
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Definition 1. A type-1 fuzzy set (T1 FS), denoted A, is char-
acterized by a T1 membership function (MF) µA : X 7→ [0, 1],
i.e.,

A = {(x, µA(x)) |x ∈ X} (1)

with X being the universe of discourse (UOD).

Definition 2. A type-2 fuzzy set (T2 FS), denoted Ã, is
characterized by a T2 MF µÃ : X × [0, 1] 7→ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u)) |x ∈ X,u ∈ [0, 1]} (2)

in which X is the UOD.

Definition 3. An interval type-2 fuzzy set (IT2 FS), denoted
Ã, is characterized by an IT2 MF µÃ : X × [0, 1] 7→ {0, 1}
(i.e. µÃ(x, u) is either 0 or 1):

Ã = {((x, u), µÃ(x, u)) |x ∈ X,u ∈ [0, 1]} (3)

in which X is the UOD.

Definition 4. Given a T2 FS Ã, its footprint of uncertainty
(FOU) is the set of points (x,u) for which µÃ(x, u) > 0:

FOU(Ã) = {(x, u) | (x, u) ∈ X × [0, 1], µÃ(x, u) > 0} (4)

Definition 5. Given a T2 FS Ã and a value x ∈ X , we define
the set of pairs Jx as:

Jx = {(x, u) |u ∈ [0, 1] , µÃ(x, u) > 0} (5)

Definition 6. Given a T2 FS Ã and a value x ∈ X , a
secondary MF is a function µÃ(x) such that:

µÃ(x) : [0, 1] 7→ [0, 1]; µÃ(x)(u) = µÃ(x, u),∀x ∈ X (6)

The domain of a secondary MF is called the primary
membership of x.

Definition 7. A type-2 embedded set (T2 ES), denoted ÃE ,
is a path along the T2 set it belongs to. It contains only one
primary degree ux for each x, with its associated secondary
grade vx:

µÃE
(x, ux) = vx x ∈ X, (x, ux) ∈ Jx (7)

Definition 8. A type-1 embedded set (T1 ES), denoted AE
represents a projection of a T2 ES, i.e. its secondary degree
has been dropped. Therefore it contains one primary degree
ux for each x:

µAE
(x) = ux x ∈ X, (x, ux) ∈ Jx (8)

III. MOTIVATION

In the literature, there are three main approaches to deter-
mine the upper and lower bounds of the FOUs of T2 FSs
when starting from already existing T1 MFs modeling the
same concept. The first one identifies the two boundary MFs
by taking the parameters of the existing T1 MFs and adding
some uncertainty to them [15]–[20]. For example, in the case
of a T1 Gaussian with mean m and variance v, the upper and
lower bounds of the FOU could be the Gaussians with mean
m and variances v− k and v+ k respectively, with k being a
positive real number.

Fig. 1. In red, one of the embedded sets of the interval type-2 fuzzy set in
grey (picture from [9])

Fig. 2. T1 Gaussian MF (picture from [9])

A different method defines the FOU as the area covered by
the translation along the x-axis of the starting T1 MF by a
factor c and −c, c ∈ R [21]–[23]. The result is a symmetrical
blurring around the starting T1 MF. An example of an FOU
obtained with this approach with a T1 Gaussian can be seen
in Fig. 1.

Another approach has also been proposed. It models the
FOU so that it embeds all the T1 MFs obtainable from
observations [24] or from the modeling of the same concept
under different circumstances [25].

All those methods have in common the fact that they
identify some T1 shapes as “meaningful” in their context and
then use them to build the FOUs. However, when some fuzzy
operators such as the Karnik-Mendel (KM) type-reduction
algorithm [6] are used, all the ESs are processed, regardless
of their shape. As a consequence of that, ESs that could
hardly represent the concept they are modelling, will likely
determine the end-point of the defuzzified centroid. Since
those ESs have a low interpretability due to their shape,
the explainability of the output and, consequently, of the
fuzzy system or set that generates it, decreases. However, in
the recent years building explainable intelligent systems has
become increasingly important [26], [27]. We will now use
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Fig. 3. Possible result of the thought experiment described above (picture
from [9])

the following examples to support our claims. Suppose that
we decide to model the concept of medium height using a
T1 Gaussian MF, as shown in Fig. 2. We will call this set
the T1 generator set (GS). If we want to build an IT2 FS
from that, one of the possible approaches would be to ask
different people to place the mean of the Gaussian on the x-
axis, after its variance value had been previously determined
(similar approaches can be found in [28], [29]).

It is likely that we would obtain something similar to what
is shown in Fig. 3, since the concept of medium height would
vary slightly from person to person. Now we can use this
collection of T1 MFs to determine the FOU of our IT2 FS.

Fig. 4. FOU of a possible IT2 FS modelling medium height (picture from
[9])

As in [25], we will embed those sets in our FOU. To do
so, we will use the translation method mentioned above, i.e.
we will define our FOU as the area covered by the shifting of
the GS from the leftmost to the rightmost Gaussian to embed.
The result of this operation is shown in Fig. 4.

If we use the standard IT2 representation, the ESs within
the FOU will have arbitrary shapes. That makes even the
ES shown in Fig. 5 acceptable. In this particular context, it
is clear that a T1 ES like that has very little relation with
the concept of medium height. In fact, no observation of the

participants’ opinion during the experiment led to such shape.
Furthermore, this representation affects the centroid value and
its explainability. The set shown in Fig. 6 has been obtained
with the process described in our thought experiment above.

Fig. 5. One of the embedded set of the FOU shown (picture from [9])

Fig. 6. Possible FOU generated from a Gaussian T1 MF

If one uses the KM procedure [6] to type-reduce it, the
algorithm will find the two ESs that give us the left and right
endpoints of the centroid. For the IT2 FS in Fig. 6, the results
are show in in Fig. 7.

Fig. 7. ESs used by the KM procedure to obtain the centroid of the IT2 FS
in Fig. 6

These sets do not seem to fit our case very well. That
is because, to obtain the type-reduced value, the algorithm
chose two ESs that did not represent any of the observations
made during the experiment; additionally, those shapes could
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hardly represent the concept of medium height that is being
considered.

System output defuzzification represents another useful ex-
ample to see how the standard IT2 representation affects the
interpretability and explainability of fuzzy systems. Consider,
for example, the fuzzy output set shown in Fig. 8, and its
associated left and right endpoints shown in Figs. 9 and 10,
respectively. In Fig. 9, the embedded sets of the left endpoint
derived using the constrained centroid (Fig. 9(a)), and the
KM procedure (Fig. 9(b)) are compared. Similarly, Fig. 10
compares those of the right endpoint. The ES used for the
constrained centroid preserve the same level of interpretability
of T1 system outputs in that the shapes of the generator sets
are clearly identifiable and so are the firing strengths that
generated them. As a consequence of this, it is possible to
get an intuitive idea of the sets that lead to the end-points. In
addition to that, knowing which rules (and therefore which
inputs and antecedents) generated the ES from which the
endpoints are obtained, gives an explanation to how and why
the final output of the system has been obtained. In the KM
case, on the other hand, the shape coherency with the original
shape is partly lost and the firing strengths are not as clear as
in the CIT2 case.

Fig. 8. Fuzzy output of a CIT2 fuzzy system

Intuitively, the standard T2 definition gives too much “math-
ematical freedom” in some contexts, posing no restrictions
on the shape of the FOU and of the ESs, especially when
modeling T2 MFs from an underlying concept represented as
a T1 FS with uncertainty. For these reasons, CIT2 FSs were
proposed, in which both the FOU and the ESs considered as
acceptable have a shape that is “meaningful” for the context
in which they are used.

The specific sense of “meaningfulness” can vary. The intu-
itive idea is that the shape of the MFs should be reasonable for
the semantic meaning they carry. For example, in the case of
the concept of medium height, only a MF that monotonically
increases up to a plateau and then monotonically decreases
would be “meaningful”. That is simply because any MF
without these properties would result in a counter-intuitive set
for the representation of the medium height concept.

In other contexts, meaningful shapes can be obtained as a
result of experimental observations, data analysis or experts’
knowledge. The topic has been discussed in detail in [30], in

which a possible mathematical definition for the concept of
meaningfulness in the context of fuzzy sets has been given.

IV. CONSTRAINED INTERVAL TYPE-2 FUZZY SETS

Although we assert the main concepts of CT2 FSs can be
extended to all T2 FSs, the rest of the paper will only focus on
interval type-2 fuzzy sets and their constrained representation
(CIT2). The motivations behind this decision will be discussed
later in the paper. Also, we assume that the universe of
discourse (UOD) we are working with is a connected subset
of R.

The idea behind CIT2 FSs is to generate a T2 FS starting
from a T1 FS modeling the same semantic concept. This T1
FS is called type-1 generator set (T1 GS) (e.g. the T1 FS in
Fig. 2 is the T1 GS for our thought experiment in Sec. III).
To obtain the CIT2 FS, we add uncertainty on the location of
the T1 GS on the x-axis. We do that by using a set of offsets,
that intuitively represent all the possible valid locations of our
T1 GS. We call this set of offsets the displacement set:

Definition 9. A displacement set (DS), denoted D, is a closed
set of real numbers such that:

D ⊆ R, 0 ∈ D (9)

When the DS is a continuous interval, it can be expressed as
D=[a,b], where a, b ∈ R, a ≤ 0, b ≥ 0

With a DS plus a T1 GS, we can define the T1 FSs that will
represent the acceptable embedded sets (AES) of the CIT2 FS
we are modeling.

Definition 10. A collection of T1 acceptable embedded sets
(CAES), is a set of T1 FSs obtained from the shifting of a T1
GS G. Formally, each of the acceptable embedded sets (AES)
S in a CAES can be expressed as:

S = {(x, µS(x)) |x ∈ X} (10)

where

µS : X 7→ [0, 1], ∃c ∈ D : µS(x) = µG(x−c),∀x ∈ X (11)

given a UOD X, a DS D, a T1 GS G.

Given a CAES, we can generate a CIT2 FS:

Definition 11. A constrained interval type-2 fuzzy set (CIT2
FS) Ă, is defined as follows:

Ă = {((x, u), 1) |x ∈ X, u ∈
⋃

S∈CAESĂ

µS(x)} (12)

with CAESĂ being the CAES from which we obtain Ă. In this
case, Jx can be rewritten as follows:

Jx =
⋃

S∈CAESĂ

(x, µS(x)), µS(x) > 0 (13)
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Fig. 9. ESs that determine the left value of the CIT2 (a) and KM (b) centroid of the set in Fig. 8.

Fig. 10. ESs that determine the right value of the CIT2 (a) and KM (b) centroid of the set in Fig. 8.

Ă can also be written as:

Ă =

∫
x∈X

∫
u:(x,u)∈Jx

1

/
(x, u)

=

∫
x∈X

∫
u∈

⋃
S∈CAES

Ă

µS(x)

1

/
(x, u)

(14)

It is important to note that CIT2 FSs represent a subset
of IT2 FSs since they impose additional constraints on their
mathematical definition, just like IT2 FSs represent a subset
of the more general T2 FSs.

In order to prove an important property, we need to build a
three-dimensional version of the sets in our CAES. Since they
are T1 FSs, building their three-dimensional representation
is straightforward. Given a T1 set A, its three-dimensional
representation Ã (i.e. its representation as a T2 FS) is defined
as follows:

Ã = {(x, µA(x), 1) |x ∈ X} (15)

By applying (15) to all the sets in a given CAES, we obtain
a collection of IT2 acceptable embedded sets.

Definition 12. A collection of acceptable IT2 embedded sets
(C̃AES) of a CIT2 set Ă, denoted C̃AESĂ, is a set of CIT2
embedded sets described as follows:

C̃AESĂ = {S̃ |S ∈ CAESĂ} (16)

with
S̃ = {((x, µS(x)), 1 |x ∈ X} (17)

Each of the sets S̃, can also be described as:

S̃ =

∫
x∈X

∫
µS(x)

1

/
x =

∫
x∈X

(µS(x), 1) /x (18)

The sets in the C̃AESĂ are actual T2 ESs of Ă, since they
satisfy Definition 7.

While all the definitions up to this point could be easily
extended to the general CT2 case, the conversion of T1
MFs to AESs of a general T2 FS would not be so trivial.
That is because the membership degree of each of the pairs
((x, µS(x)) could not be easily determined since it could
be any value between 0 and 1. The conversion to AES of
IT2 FS, instead, is straightforward and shown in Def. 12. A
possible solution to this has been proposed in [9], in which a
similarity function is used on each AES S and the GS to
determine µS̃(x, µS(x)), ∀x. However, the use of this and
other possible approaches, together with the interpretability of
three-dimensional embedded sets will be analyzed in future
work. Definition 12 is very important since it allows us to
introduce the CIT2 representation theorem:

Theorem 1. Given a CIT2 set Ă and its C̃AESĂ, Ă can be
expressed as the crisp set union of all the IT2 sets S̃ in C̃AESĂ:

Proof. To do that, we simply show that it is possible to write
the union of all the S̃ ∈ C̃AESĂ as (14), by rewriting S̃ as in
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(18):∫
S̃∈C̃AESĂ

S̃ =

∫
S̃∈C̃AESĂ

(∫
x∈X

∫
u=µS(x)

1

/
(x, u)

)
=

∫
x∈X

∫
u∈

⋃
S∈CAES

Ă

µS(x)

1

/
(x, u)

(19)

Theorem 1 allows us to define CIT2 operations by only
working with AESs. For example, the union of two sets Ă
and B̆ is defined as follows.

Corollary 1. Given two CIT2 sets Ă and B̆, their union is
the union of the T2 embedded sets S̃ in C̃AESĂ and C̃AESB̆

1:

Ă ∪ B̆ =

∫
Ã′∈C̃AESĂ

Ã′ ∪
∫
B̃′∈C̃AESB̆

B̃′

Ă ∪ B̆ =

∫
Ã′∈C̃AESĂ

∫
B̃′∈C̃AESB̆

Ã′ ∪ B̃′
(20)

Intuitively, we are considering all the combinations of all
the AES of the two CIT2 sets involved in the operation. The
unions between the AESs of Ă and B̆ generate the AESs of
the FS generated from the union of B̆ and B̆.

Analogously, we can derive the CIT2 intersection and
complement:

Ă ∩ B̆ =

∫
Ã′∈C̃AESĂ

∫
B̃′∈C̃AESB̆

Ã′ ∩ B̃′ (21)

Ă =

∫
Ã′∈C̃AESĂ

Ã′ (22)

Also the upper and lower MFs of the FOU of a CT2 FS
can be expressed in terms of the AES:

Definition 13. Given an CIT2 FS Ă, we define its upper MF
µĂ and lower MF µ

Ă
as follows:

µĂ(x) = sup
S∈CAESĂ

µS(x) (23)

µ
Ă

(x) = inf
S∈CAESĂ

µS(x) (24)

Even though IT2 and CIT2 operations may seem similar,
they are conceptually different. In the IT2 case, the only goal
of operations such as the union and intersection is to generate
the new upper and lower-bound MFs and therefore the FOU.
In the CIT2 case that is not enough. In fact, they key point
of CIT2 operators is the generation of a new CAES, that
determines which ES are considered acceptable and therefore
which ES will be considered by other CIT2 fuzzy operators
(such as the centroid). This property is necessary to maintain
the concept of interpretability (as semantic relation) described
so far in the paper.

1(20) involves integral and union signs, where the integral sign is shorthand
for lots of union signs. The union sign indicates the union between members
of a set, whereas the integral sign represents the union of the sets themselves.

Since every CIT2 set can be expressed as the union of the
AES in its C̃AES, we can use this property to define the
constrained centroid, denoted as C(Ă):

C(Ă) =

∫
Ã′∈C̃AESĂ

C(Ã′) (25)

That is, the union of all the centroids of the sets in C̃AESĂ.
The constrained centroid is analogous to the IT2 one, in which
the centroid is the union of the centroids of all its embedded
sets [13]. The difference is that in the CIT2 case we only take
into account the set of the AESs. They represent a subset of all
the ESs examined in the standard IT2 approach. In addition,
since the CAES is a subset of all the ES embedded in a given
FOU, the constrained centroid will always be contained (or
will be equal to) the standard IT2 centroid.

When a CIT2 FS is not the result of a CIT2 fuzzy operator
but is generated from a T1 GS with a continuous DS, the
CIT2 centroid has an interesting mathematical property. In
fact, in that case, the centroid can be rewritten as the following
interval:

C(Ă) = [C(ÃL), C(ÃR)], ÃL, ÃR ∈ C̃AESĂ (26)

with ÃL, ÃR being the left-most and right-most AES of Ă.
The proof for that equation is straightforward: since all the
AES of a CIT2 generated from a GS share the same shape,
the AES obtained from the leftmost shift will trivially have
the lowest centroid value and will therefore determine the left
endpoint of the centroid; analogously, the right endpoint is
generated by the rightmost AES.

However, (26) may not hold anymore after the application
of a set theory operation. Intuitively, that is because (26) can
be used when all the sets in C̃AES have the same shape. An
example of a case in which (26) can not be used is given
by the CIT2 FS in Fig. 12. Its AES (e.g. Fig. 9 (a), 10
(a)) are obtained as the aggregation of three triangular MFs
“truncated” (i.e. inferred) at different heights. In that case,
determining which “truncation values” generate the AES with
the lowest and highest centroid value is non-trivial, as will be
also discussed in Sec. V-A.

Lastly, the FOU (see (4)) of a CIT2 FS Ă can be rewritten
using only the AESs:

Definition 14. The FOU of a CIT2 FS Ă can be defined as:

FOU(Ă) = {(x, u) | ((x, u), 1) ∈
∫
S̃∈C̃AESĂ

S̃} (27)

V. INFERENCING WITH CIT2 SETS

Now that we have a formal definition of CIT2 FSs and all
their components, we can use them to build fuzzy rules and
fuzzy systems. For CIT2 fuzzy systems to be usable, however,
we need to define the procedure to carry out the Mamdani
inference with singleton fuzzification.

Consider the following constrained interval-type-2 fuzzy
rule (CIT2 fuzzy rule), i.e. a fuzzy rule in which all the sets
involved are CIT2 FSs:

IF x1 IS Ă AND x2 IS B̆ THEN y IS C̆ (28)
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Using Theorem 1, we can rewrite this as:

IF x1 IS
∫
Ã′∈C̃AESĂ

Ã′ AND x2 IS
∫
B̃′∈C̃AESB̆

B̃′ THEN

y IS
∫
C̃′∈C̃AESC̆

C̃ ′

(29)

Since all the sets in the C̃AES are a three-dimensional repre-
sentation of T1 sets (see (15)), we can use T1 mathematics to
operate with them.

After the singleton fuzzification of the input, the antecedent
operation is straightforward. For example, for the fuzzified
input x1 in the rule mentioned above, we obtain:∫

A′∈CAESĂ

µA′(x
′
1) (30)

where x′1 is a specific value of x1.
The antecedent composition is therefore given by the fol-

lowing formula:∫
A′∈CAESĂ

µA′(x
′
1) ?

∫
B′∈CAESB̆

µB′(x
′
2) =

∫
A′∈CAESĂ

∫
B′∈CAESB̆

µA′(x
′
1) ? µB′(x

′
2)

(31)

with ? being a T-norm. The antecedent composition as de-
scribed so far, returns a set of real numbers. Each of these
values can be then used to apply the implication method (i.e.
any T-norm) to each of the AES C ′ ∈ CAESC̆ , producing
the CAESC̆∗ of the fuzzy CIT2 output C̆∗. In the rest of the
paper, we assume that the minimum operator is used for the
implication method and informally refer to this operation as
truncation. To defuzzify C̆∗, we implemented a procedure that
is based on the result shown in (25). Our CIT2 centroid is a
pair (l, u), where:

l = inf (C(C̆∗)) (32)

u = sup (C(C̆∗)) (33)

remembering from (25) that:

C(C̆∗) =

∫
C̃′∈C̃AESC̆∗

C(C̃ ′) (34)

Since each of the IT2 set in the C̃AESC̆∗ is just a three-
dimensional representation of a T1 set, we can defuzzify the
equivalent T1 sets in CAESC̆∗ instead, by using the standard
T1 centroid defuzzification method. Therefore, the pair (l, u)
provides us a lower (l) and an upper (u) bound for the set
of centroids in (25). This approach is conceptually similar to
the Karnik-Mendel (KM) [6] procedure, in the sense that both
return a pair composed of the upper and the lower bound of
a set of centroids (that in the case of the KM approach, is the
set of the centroids of all the ES of the IT2 FS).

The whole inference process where the CIT2 FSs involved
have a finite number of AES, is described in pseudo-code in
Algorithm 1.

A. Result of CIT2 operators

It is interesting to see how the result of CIT2 operators on
CIT2 FSs, may result in a FS in which it may not be possible
to identify a T1 GS G in the CAES from which we can obtain
the remaining AESs by shifting G. That is because there is no
guarantee that all the sets obtained as the result the implication
operator, for example, will have the same shape.

Fig. 11. Consequent CIT2 in the rule generating the output set shown in Fig.
12

Fig. 12. Some AES of the CIT2 output from the inference of a CIT2 rule in
which all the sets involved are CIT2 sets

However, the shape of the T1 GS is not totally lost after
the application of CIT2 fuzzy operators. Fig. 12 shows some
of the AES of the inference output of a CIT2 fuzzy rule of
the form IF x1 IS Ă THEN y IS C̆ where all the CIT2 FSs
involved have a discrete DS (i.e. a finite number of AES). It
is possible to see that even though the sets forming the CAES
of the output do not share exactly the same shape, they all
come from the same generator set (i.e. a triangular T1 FS)
truncated at different heights during the inference process (the
consequent CIT2 FS C̆ before the inference can be found in
picture Fig. 11).

Intuitively, these AESs are meaningful even if they have
different shapes because they represent actual T1 inference
results that are obtainable from T1 inference by picking one of
the AES from each of the antecedent and consequent CIT2 FSs
in our fuzzy rule. The fact that each of the AESs is obtained
from a shifted GS truncated at a given height is extremely
important to build interpretable and explainable CIT2 systems.
In fact, when one of those acceptable embedded sets is
selected, its interpretability is guaranteed by the semantic
connection with the concept it is modeling, since it has the
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Algorithm 1 Inference and Type-Reduction Algorithm
1: procedure CIT2 MAMDANI INFERENCE AND TYPE-REDUCTION (CIT2-FUZZY SYSTEM S, INPUT [x1, ..., xn])
2: for each rule Ri ∈ S do
3: for each permutation P of the AES of the CIT2 antecedents in Ri do
4: firing_strengths.add(P.evaluateAntecedents()); . the FSs in P are T1 AES
5: end for
6: for each consequent C ∈ Ri do
7: for each AES E ∈ C do
8: for each c ∈ firing_strengths do
9: CIT2_result_Ri.add_AES(implicate(E, c)); . add a new AES to the rule i output

10: end for
11: end for
12: end for
13: end for
14: CIT2_output={∅} . CIT2 FS representing the output of the system
15: for each rule Ri ∈ fuzzy system S do
16: CIT2_output=CIT2_union(CIT2_output, CIT2_result_Ri); . union of rule outputs
17: end for
18: left_value= inf

E∈CIT2_rb_output
(centroid(E)); . lowest AES centroid value

19: right_value= sup
E∈CIT2_rb_output

(centroid(E)); . highest AES centroid value

20: return (left_value, right_value);
21: end procedure

same shape as the GS, while its truncation height is directly
related to the firing strength of the rule(s) that generated it.
Therefore, it is possible to give an explanation for how this
AES has been generated by showing the rules (and therefore,
the inputs) that contributed to its creation.

The theoretical issue of having AES with different shapes
was already pointed out in [10] and has now been addressed in
[30], where the CIT2 fuzzy output has been formally defined
as a CIT2 FS thanks to a different definition of the CAES
(Def. 10) based on the concept of mathematical constraint
satisfaction.

The analysis of this new definition, however, goes beyond
the scope of this paper since, as already stated in [30], it does
not affect any of the CIT2 operations but, in this context, just
fills a theory gap.

B. On the interpretability and explainability of CIT2 sets and
systems

As shown In Sec. IV, the CIT2 FOU is a set of points,
exactly like the FOU of a standard IT2 FS. If one considers
the shape of a CIT2 FS alone, it is clear that its interpretability
depends only on the shape of its FOU (and its boundaries)
and not on the specific set of ES that are embedded into it.
However, some T2 uncertainty measures do make use of these
embedded sets and it is in these cases that CIT2 are able
to provide a clear advantage over IT2 FS, allowing for the
creation of explainable CIT2 FS and systems. Specifically,
each of the AES that that can be selected by the above
mentioned fuzzy operators in the CIT2 case, has been created
so that it is able to carry meaningful information. This is done
both by keeping a semantic relation with the concept it is
modeling (i.e. by keeping the same shape as the generator
set) and by conveying, in the case of rule-base systems,

information on the rule that generated it and its firing strength.
In other words, it is possible to build CIT2 fuzzy systems
that not only are able to solve, for example, classification
problems, but that are also able to explain, in terms of the
input space, how each endpoint of the interval centroid has
been obtained. With a standard IT2 system this property is
lost simply because in the defuzzification process, the ES
that produce the endpoints don not carry any meaningful
information on which rules played a role in their generation
and why. Therefore, in IT2 systems an explanation in terms
of the input space can not be provided for the centroid but
only for the boundaries of the FOU of the fuzzy output of the
system. The ability of CIT2 fuzzy systems to explain also the
endpoints of the centroid, on the other hand, clearly represents
a novelty and a progress for T2 FSs in the increasingly popular
explainable artificial intelligence (XAI, [26]) field.

C. Efficiency
The main goal of Algorithm 1, is to provide a procedure

to compute the inferencing and defuzzification processes de-
scribed in this section. For now, the optimization of com-
putational complexity has not been our focus. It is clear
that the proposed algorithm is slower than the current IT2
inferencing and defuzzification methods. That is because after
the evaluation of the whole rule-base, the output is a set of
AESs (line 16, in Algorithm 1) that can be quite big in size:
each rule can produce (line 9) a number of implication sets
that, in the worst case, is equal to the size of the permutations
of the AESs of the antecedents, multiplied by the cardinality of
the DS of the consequent. Additionally, at line 16 we generate
the unions of all the possible permutations of the AESs of the
CIT2 resulting from the single rules. This union, generates
a number of AES that grows as a double exponential, being
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Fig. 13. ESs that determine the end-point values of the KM (a), W-CIT2 (b) and CIT2 centroid (c). In (a), the area where the 2 ESs overlap is coloured in
purple.

O(kn+1)
m where m is the number of rules, n the number of

antecedents per rule and k the number of AES of each of the
CIT2 involved.

Since this approach enumerates all the AESs to find the
final defuzzified output, it is the analogous of the exhaustive
defuzzification method rather than the KM one. In fact, the
strength of the KM procedure is that it quickly identifies the
ESs to be used for the left and right centroid values. On the
contrary, in Algorithm 1 the AESs that give the left and right
centroid value are found using a brute force approach, first
building all the AESs of the total rule-base evaluation (line
16) and then finding among them the two that will give us
the left and right centroid values (lines 18 and 19). For use
in real-world problems, this approach is impractical because
of its prohibitive computational complexity. For this reason,
the alternative, much faster and practical defuzzification Al-
gorithm 2 is proposed in Sec. VII. This algorithm is then
used within the genetic framework described in Sec. VIII, in
which it is applied on two well known real-world datasets and
compared to the KM procedure.

VI. COMPARISON WITH A DIFFERENT CONSTRAINED
APPROACH

In this section, the constrained representation presented in
this paper will be compared to a different approach (that here
will be called W-CIT2) proposed by Wu et al. in [11], [12].
They start from the observation that ESs have been used to
obtain theoretical results such as the definition of uncertainty
measures and are processed regardless of their shape.

However, the authors point out that in many fuzzy logic
applications the MFs that are used are convex and normal.
Consequently, they propose a constrained representation theo-
rem that allows the definition of the FOU of well-shaped (see
[12] for details) IT2 FSs by using only convex and normal
ESs. They claim that this definition is more general than the
one that only considers ES with the same shape and doesn’t
require any expert knowledge or data analysis to determine
which shapes are meaningful in a given context. Using this
new theorem, many constrained uncertainty measures (such as
centroid, entropy and cardinality) are defined mathematically.
In addition to that, the authors show how the convexity
and normality constraints can be simply added to the KM
algorithm to find the constrained centroid value of a well-
shaped IT2 FS. Finally, the authors also state that this approach

can’t be used in Mamdani systems since their outputs can be
non-well-shaped.

The main difference between the representation theorem
proposed in this paper and the W-CIT2 one is in the definition
of the ESs that are considered acceptable. Even though it is
true that the W-CIT2 theorem allows the presence of multiple
shapes among the ESs, normality and convexity can be not suf-
ficient and not necessary to obtain shapes that are meaningful,
as also discussed in [30]. Those two properties alone, still do
not guarantee there will be a meaningful connection between
an ES and the concept it models. To support this claim,
a comparison is provided between the ESs that determine
the end-points of the W-CIT2, CIT2 and IT2 centroid with
the KM procedure (Fig. 13). The set to defuzzify has been
obtained starting from a triangular T1 MF as a generator set,
using the approach described in this paper to build the FOU
around it. The comparison shows how the ES used by the KM
approach (Fig. 13 (a)) are both non-normal and non-convex.
In addition to that, they could hardly represent any word or
label. As a result, the meaningfulness and interpretability of
the centroid value returned as an output decreases. On the
other hand though, the KM algorithm can be applied to any
IT2 FS, regardless of the approach used to obtain its FOU.
The ESs used by the W-CIT2 approach, instead, are both
normal and convex. However, also in this case the relation
between the original T1 triangular shape (i.e. the one that
has been used as a generator set) and the ESs is lost. Again,
these sets would hardly model the same concept (e.g. medium
height) from which we obtained the generator set. The ESs
used by the CIT2 approach, instead, keep the same level of
the interpretability as the generator set as they share its shape.
The only difference between them is their location on the x-
axis. From this experiment, we can conclude that normality
and convexity alone may not be sufficient to guarantee the
meaningfulness of a FS.

In addition to that, the fact that W-CIT2 FSs are not usable
in Mamdani systems represents a significant limitation that can
be overcome by the CIT2 definition provided in this paper, as
shown in Sec. V.

VII. SAMPLING APPROACH FOR THE CIT2 CENTROID

As already discussed in Sec. V, the evaluation of the CIT2
centroid as described in Algorithm 1 is prohibitive due to the
astronomical number of AESs that are examined to determine
the defuzzified value. Therefore, even though the algorithm
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Algorithm 2 CIT2 Sampling Algorithm
1: procedure CIT2 SAMPLING ALGORITHM (CIT2-FUZZY SYSTEM S, INT TOTAL SAMPLES, INPUT [x1, ..., xn])
2: Set centroids=new Set(); . This set will contain the centroids of the sampled AES
3: HashMap<CIT2, T1MF> cit2_to_aes; . Mapping each CIT2 into one of its AES
4: for int index=0;index<total_samples; index++ do . Each iteration generates 1 sample
5: T1_Rulebase t1_rulebase=new T1_Rulebase();
6: cit2_to_aes=new HashMap<>(); . For each sample, new AESs are chosen
7: for each CIT2_Rule Ri ∈ S do
8: T1_Antecedents antecedents=new T1_Antecedents();
9: T1_Consequents consequents=new T1_Consequents();

10: for each CIT2_Antecedent curr_ant ∈ Ri do
11: T1MF current_random_aes;
12: . If a random AES for this set has never been generated before in this iteration...
13: if cit2_to_aes.get(curr_ant)==null then
14: . ...generate it and add it to the Map
15: cit2_to_aes.put(curr_ant, curr_ant.randomAES();
16: . By doing this, if a set appears multiple times as an antecedent in different rules, the same AES will
17: be used to replace it in the current iteration
18: end if
19: antecedents.add(cit2_to_aes.get(curr_ant); . Add the AES to the rule
20: end for
21: for each CIT2_Consequent curr_cons ∈ Ri do
22: T1MF current_random_aes;
23: . If a random AES for this set has never been generated before in this iteration...
24: if cit2_to_aes.get(curr_cons)==null then
25: . ...generate it and add it to the Map
26: cit2_to_aes.put(curr_cons, curr_cons.randomAES();
27: end if
28: consequents.add(curr_cons.randomAES());
29: end for
30: t1_rulebase.addRule(new T1_Rule(T1_Antecedents, T1_Consequents));
31: end for
32: for each Input inputi ∈ t1_rulebase do
33: inputi.setValue(xi);
34: end for
35: .The rulebase produces the sampled AES and we need its centroid value
36: centroids.add(t1_rulebase.run().getCentroid());
37: end for
38: return (centroids.minValue(), centroids.maxValue());
39: end procedure

proposed earlier in this paper is theoretically correct for the
computation of the CIT2 centroid, it is not usable in practice
for real world problems. Conceptually, the problem is very
similar to the one that is faced when exhaustive defuzzification
is applied to T2 FSs. In that context, many approximation
algorithms have been proposed to overcome the computational
complexity of the exhaustive defuzzification. One of them is
the sampling method [31]. The intuitive idea is that each of
the ESs in a T2 FS only has a minimal contribution to the
final result, therefore generating a random sample of the ESs
is a good and efficient way to obtain an approximation of
the actual centroid value, as showed in [32]. In this case, we
apply the same concept to sample a fixed number of AESs to
determine the constrained centroid. A sample, is obtained by
replacing each CIT2 FS in the rulebase with one of its AES

chosen at random (rather than replacing each set with all its
AES, as in Algorithm 1).

The fuzzy output of the T1 system obtained by carrying out
all the substitutions will produce a single sampled AES. As
a consequence of that, only a subset of all the AES and is
generated, making this approach an approximation algorithm.
Once the number of desired samples has been obtained, the
AES are defuzzified and the lowest and highest centroid values
among them will determine respectively the left and right end-
point of the constrained centroid.

Conceptually, the following steps are used to produce a
single sampled AES of the CIT2 fuzzy output:

• For each set Ă involved in the FLS:

– Generate a random number k within its DS
– Use k to shift the generator set of Ă along the x-axis,
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obtaining E, an AES of Ă; remembering that given
a function f(x) its translated version by a factor k
along the x-axis can be written as f ′(x) = f(x)−k,
this step can be done in constant time without the
need to store all the AES to choose one randomly

– Loop through all the rules and replace Ă with E
• Once all the CIT2 FS have been replaced with a random

AES, a T1 rulebase is generated
• The fuzzy inferenced result of the rule-base represents a

sampled AES
The output interpretability offered by CIT2 FLS is given
by the process used to produce the AES. In fact, each of
them represents a T1 fuzzy output and as such keeps all the
interpretability properties that belong to the outputs of T1
FLSs: the shapes of the consequent set involved in the rules are
clearly identifiable together with the firing strengths used for
the inference operator (e.g. see Fig. 9(a), 10(a), 13(a)). These
properties, also make possible a direct connection between the
endpoints of the interval centroid and the rules that were used
in its generation.

The pseudo-code (mainly written following OOP conven-
tions) of the sampling method is described in Algorithm 2.

Other than the reduction in the computational cost, the other
main advantage of this approach is its applicability to systems
in which the CIT2 FSs involved have a continuous DS, i.e. the
number of AESs per CIT2 FS is infinite. In fact, Algorithm 1
only works with a discrete number of AESs and may therefore
require an additional discretization step. With the sampling
approach each CIT2 FS involved in the rule can be easily
substituted with one of its AES by shifting its generator set
by a random value in the DS during the conversion step
(mentioned above) of the CIT2 rule into a T1 one.

VIII. PRACTICAL APPLICATION

In this section, a framework for the automatic learning of
CIT2 fuzzy systems will be described and applied to two real-
world classification problems. The aim is not to compare this
learning method to other approaches proposed in literature in
terms of performances, but rather to present a possible way
of generating CIT2 fuzzy systems and show a practical appli-
cation of these new fuzzy sets and their inference framework
described so far.

Classification problems have been chosen because they
represent one of the contexts in which interpretability and
especially explainability play a crucial role. In many applica-
tions, in fact, knowing both the output (the interval centroid)
and how it has been obtained (i.e. which rules and which inputs
determined the ES that produced the endpoints) is of great
value and it is the main reason for the emergence of the new
XAI field.

A. Genetic CIT2 fuzzy systems

Genetic algorithms have been widely used for the automatic
generation and optimization of fuzzy systems [33] since they
allow for the creation of both the rule-base and the MFs
without the need of any expert knowledge. Even though these
systems are obtained through machine learning techniques,

they can maintain the typical interpretability of fuzzy logic
systems as long as they contain a reasonably small number
of rules and it is possible to give a linguistic label to the
MFs involved [34]. The genetic approach proposed for the
generation of CIT2 fuzzy systems, is based on the architecture
described in [35]. Each of the input variables of the system is
partitioned in 3 triangular MFs. The center of each triangular
generator set for the antecedent CIT2 FSs is determined using
the well known fuzzy C-Means clustering algorithm (FCM)
[36] on each input variable. The end-points of the triangles
are the center of the previous and next clusters, if they exist,
or the closest end-point of the UOD increased by 10% of the
UOD size, so that every point in the UOD belongs to at least
one of the MFs with a membership value greater than 0. The
continuous DS is an interval [−c, c], c > 0 with 2c = 5% of the
distance between the starting and end point of each triangular
generator set. The output variable is partitioned with a number
of CIT2 FS equal of the number of classes in the problem.
Each of them is given an integer index from 0 to the number
of classes involved. The index represents the peak of their
triangular generator set while the start and end point of the
triangles are obtained respectively subtracting and adding 1 to
their peak points. The DS for all the CIT2 MF partitioning the
output is an interval [−c, c], c > 0 with 2c = 10% of the UOD.
Once the MFs are determined, there is a first evolutionary stage
to generate the rule-base of the system. During this process, the
MFs are not changed. The number of rules is fixed (as shown
in [35], redundant rules can be eliminated with an additional
stage) and each chromosome codes an entire rule-base. With n
input variables, each rule is coded with a set of n+1 integers.
Each gene pi represents the index of the MF to use for the
i− th antecedent or for the consequent, if i = n+ 1. A value
of -1 for pi, i ≤ n, indicates that the i − th input must not
be included in the rule pi belongs to. A sequence of encoded
rules represents a rule-base.

TABLE I
PARAMETERS USED FOR THE LEARNING ARCHITECTURE

Parameters Values
Population size 100
Iteration limit 100 per stage
Crossover Single-Point
Crossover rate 0.7
Elitism 5%
Fuzziness in FCM 2.0
Mutation rate 1/chromosome size
Fitness function Accuracy value
Memberships per variable 3
Fuzzy Rules per chromosome Fixed, 10
Number of samples in CIT2 centroid 50
Random distribution for the random sampling Uniform
Discretization points for AES defuzzification 100

At the end of the first stage, the fittest chromosome is
returned. The rule-base encoded by this chromosome is passed
to the second stage of the learning process, with the goal of
optimizing the MFs involved in the system. Each triangular
CIT2 MF is encoded with 4 real numbers: 3 modelling
the generator set (starting point, center and ending point of
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the triangle) and one representing the size of the DS as a
percentage of the UOD. Thanks to the way CIT2 MFs are
built starting from a T1 generator set, the encoding of CIT2
MFs only requires 1 additional parameter with respect to their
T1 counterpart. That is because the upper and lower MFs
bounding the FOU of the set, are determined from the T1
generator shape and the DS. Standard IT2 representations,
instead, may require up to twice the number of parameters
of their T1 counterpart to fully represent the FOU and its
bounds. The optimized rule-base obtained at the end of the
second stage is then returned as the final output of the learning
process. The architecture is summarised in Fig. 14. For more
information on the tuning and learning process, please refer
to [35].

TABLE II
RESULTS OF THE GENETIC CIT2 FUZZY SYSTEM WITH TWO DIFFERENT

DEFUZZIFICATION APPROACHES

CIT2 IT2(KM) CIT2 Time IT2 Time

Iris 96.0% 94.667% 4h5m 1h11m
New-Thyroid 91.167% 91.667% 6h19m 1h31m

Fig. 14. The learning architecture used in this paper. Adapted from [35]

B. Application on real data-sets

The genetic architecture described above has been tested on
two real world classification problems using two well known
data-sets: iris [37] and new-thyroid [38]. The 10-fold cross
validation method has been used to evaluate the CIT2 fuzzy
systems; both data-sets, including the train and test partitions
of each cross validation iteration, are publicly available on the
KEEL website [39]. In both stages a single-point crossover
has been used and the fitness function has been defined as the
accuracy value of the rule-base encoded in the chromosome.
A more detailed list of the parameters used in the optimization
can be found in Table I. The optimization has been carried out
twice, once using the CIT2 sampling method with 50 samples
to defuzzify the output and once using the implementation of
the KM iterative procedure implemented in the Java library
Juzzy [40]. The architecture has been implemented in Java
using multi-thread computation on an i7-7600U CPU. The
average results of both approaches and their running times
for the 10 runs are reported in Table II. It can be seen that the
execution time of the CIT2 systems, featuring Algorithm 2, are
higher than the IT2 systems. However, these execution times
represent approximately 107 individual defuzzification opera-
tions throughout the optimization process — i.e. each individ-
ual CIT2 defuzzification using Algorithm 2 takes around 1.5
millisecs using multi-threading to generate the samples. Whilst
not as efficient as current IT2 defuzzification algorithms, this is

clearly usable in real world applications, particularly decision
problems.

As it is possible to see, the two approaches give similar
results and perform well on both the data-sets analyzed.
Therefore, to determine if and under what conditions one of
the two defuzzification methods gives superior results more ex-
periments are required, with a bigger number of data-sets and
a statistical evaluation of their performances. To demonstrate
the superior interpretability and explainability of the CIT2
approach, in Fig. 15 are shown the ES used to determine the
right end-point of the constrained (a) and “standard IT2” (b)
centroid generated by the KM procedure. Those ES have been
obtained as the result of the defuzzification of the output of a
CIT2 FLS generated through the learning framework described
in this section. As discussed in Sec. III, the AES selected by
the CIT2 approach, provides a clearer understanding of the
final system output, giving an intuitive idea of how the centroid
value is obtained since, just like any T1 fuzzy output, it is still
possible to identify the shapes of the consequent MFs and see
the respective firing levels. Additionally, the firing strengths
can be traced back to the rules and the inputs that generated
the endpoints. The ability to produce explanations for each of
the system outputs, together with the interpretable rule-based
structure (characteristic of any FLS) make CIT2 FLS a valid
alternative to IT2 for the development of FLS in the XAI field.

Currently running times seem to be the main drawback of
this approach. In fact, in both the tests the IT2 approach with
the KM procedure has proven to be roughly 3.5-4 times faster
than the CIT2 one. In future works, we plan on developing
new and faster defuzzification methods to address this issue.

IX. CONCLUSION

In this paper, we have fully formalized constrained interval
type-2 (CIT2), showing how they can be obtained starting from
a T1 FS with uncertainty on its exact location on the x-axis.
The main idea behind CIT2 FSs is to produce a representation
that considers only the ESs that have meaningful shape for a
given concept; these embedded sets, called acceptable (AES),
can then be used to define the FOU of our CIT2 FS and
CIT2 fuzzy operators. The use of AESs rather than their un-
constrained version, guarantees that CIT2 operators will only
process embedded sets with a meaningful shape, increasing
the interpretability of their output (as discussed in Sec. III,
VIII.B).

Formal definitions of CIT2 FSs and AESs have been pro-
vided, together with the formulation of a new constrained
representation theorem (Theorem 1). This allowed us to define
all the main CIT2 operators, including the centroid defuzzi-
fication, by working only with “meaningful” ESs. Finally, a
full inference framework has been presented for a CIT2 fuzzy
system together with a defuzzification procedure. As a test
case, a genetic architecture for the generation of CIT2 fuzzy
systems has been described and applied to two real world
datasets. The preliminary results, presented here, show how
the performances of the CIT2 approach are comparable to the
ones obtained from the IT2 one, with the CIT2 system outputs
presenting a higher level of interpretability. On the other hand,
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Fig. 15. ESs that determine the right end-point value of the CIT2 (a) and KM (b) centroid in a CIT2 system obtained through the genetic architecture
described in this paper.

CIT2 have been shown to be slower, requiring approximately
4 times more time than their IT2 counterpart to complete the
learning process.

X. FUTURE WORK

Now that formal definitions have been given for CIT2
inferencing and defuzzification procedures, a considerable
amount of research work needs to be done to fully understand
their potential for practical applications. We speculate that the
properties of CIT2 FSs, such as the fact that all the AES share
the same shape, can be exploited for deploying a faster infer-
ence and defuzzification process. Also understanding how the
number of AES used in Algorithm 1 and Algorithm 2 affect the
centroid value and its convergence is of significant importance
and will be examined in future works. Additionally, it would be
useful to have a more thorough comparison between IT2 and
CIT2, using more real world cases from different scenarios.
Understanding in which cases and why the results of IT2 and
CT2 systems differ, would help designers choose between the
two approaches in their context. That is one of the main things
we plan on working on in the near future. We also expect that
the differences in the interpretability of the ES of the CIT2
and IT2 representation require a more formal comparison as
this is a subject that is present in many research works but has
never been deeply studied and formalized. While this paper is
only focused on CIT2 rule-based systems, it is necessary to
evaluate the meaningfulness and interpretability of these new
sets more thoroughly, in different applications. For example,
we believe that the use of CIT2 FSs would be very suitable for
the fuzzy linguistic and the computing with words approaches
[41]. However, to be applied in those contexts, similarity
measures for CIT2 FSs need to be defined. Finally, the CIT2
definitions can be extended to include general T2 FSs, in order
to have general constrained T2 FSs, overcoming the problems
discussed in Sec. IV.

REFERENCES

[1] L. Zadeh, “The concept of a linguistic variable and its application to
approximate reasoning,” Information Sciences, vol. 8, no. 3, pp. 199 –
249, 1975.

[2] O. Castillo, L. Amador-Angulo, J. R. Castro, and M. Garcia-Valdez, “A
comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy
logic systems and generalized type-2 fuzzy logic systems in control
problems,” Information Sciences, vol. 354, pp. 257 – 274, 2016.

[3] L. Cervantes and O. Castillo, “Type-2 fuzzy logic aggregation of
multiple fuzzy controllers for airplane flight control,” Inf. Sci., vol. 324,
no. C, pp. 247–256, Dec. 2015.

[4] A. H. M. Pimenta and H. d. A. Camargo, “Genetic interval type-2
fuzzy classifier generation: A comparative approach,” in 2010 Eleventh
Brazilian Symposium on Neural Networks, Oct 2010, pp. 194–199.

[5] J. M. Mendel and R. John, “Footprint of uncertainty and its importance
to type-2 fuzzy sets,” in Proceedings 6th IASTED Int‘l. Conf. on
Artificial Intelligence and Soft Computing (ASC 2002), July 2002, pp.
587 – 592.

[6] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,”
Information Sciences, vol. 132, no. 1-4, pp. 195–220, 2001.

[7] D. Wu and J. M. Mendel, “Enhanced karnik–mendel algorithms,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 923–934, 2009.

[8] J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple,” IEEE
Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 117–127, Apr 2002.

[9] J. M. Garibaldi and S. Guadarrama, “Constrained type-2 fuzzy sets,”
in Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), 2011 IEEE
Symposium on. IEEE, 2011, pp. 66–73.

[10] P. D’Alterio, J. M. Garibaldi, and A. Pourabdollah, “Exploring con-
strained type-2 fuzzy sets,” in 2018 IEEE World Congress on Compu-
tational Intelligence (WCCI 2018), July 2018.

[11] D. Wu, “A constrained representation theorem for interval type-2 fuzzy
sets using convex and normal embedded type-1 fuzzy sets, and its
application to centroid computation,” Proceedings of World Conference
on Soft Computing, 2011.

[12] D. Wu, H. Zhang, and J. Huang, “A constrained representation theorem
for well-shaped interval type-2 fuzzy sets, and the corresponding con-
strained uncertainty measures,” IEEE Transactions on Fuzzy Systems,
pp. 1–1, 2018.

[13] J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic systems
made simple,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp.
808–821, Dec 2006.

[14] J. M. Mendel, M. R. Rajati, and P. Sussner, “On clarifying some
definitions and notations used for type-2 fuzzy sets as well as some
recommended changes,” Information Sciences, vol. 340-341, pp. 337 –
345, 2016.

[15] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,”
IEEE transactions on Fuzzy Systems, vol. 7, no. 6, pp. 643–658, 1999.

[16] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory
and design,” IEEE Transactions on Fuzzy systems, vol. 8, no. 5, pp. 535–
550, 2000.
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