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One Sentence Summary: Dissecting the immune architecture of AML and its influence on 

therapeutic response identifies patients for whom immunotherapy will be most beneficial. 

 



Abstract: Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous 

hematological malignancy. Although immunotherapy may be an attractive modality to exploit 

in patients with AML, the ability to predict the groups of patients and the types of cancer that 

will respond to immune targeting remains limited. This study dissected the complexity of the 

immune architecture of AML at high resolution and assessed its influence on therapeutic 

response. Using 442 primary bone marrow samples from three independent cohorts of 

children and adults with AML, we defined immune-infiltrated and immune-depleted disease 

classes and revealed critical differences in immune gene expression across age groups and 

molecular disease subtypes. Importantly, interferon (IFN)-g-related mRNA profiles were 

predictive for both chemotherapy resistance and response of primary refractory/relapsed AML 

to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein 

profiles provides insights into the immuno-biology of AML and could inform the delivery of 

personalized immunotherapies to IFN-g-dominant AML subtypes. 

 



Introduction 

Acute myeloid leukemia (AML) is a malignant disorder characterized by the accumulation of 

myeloblasts in the bone marrow (BM) and blood (1). The discovery of the genomic landscape 

of AML, including the identification of targetable mutations (2), has propelled the development 

of novel anti-leukemic agents and is enabling disease classification and patient stratification 

into risk groups (3). Despite success in many areas, AML is cured in only 35-40% of patients 

<60 years of age and in 5-15% of patients >60 years of age. While chemotherapy resistance 

is common, the majority of patients die of disease relapse. Investigation of new molecularly-

targeted and immuno-modulatory agents therefore remains a high priority for both children 

and adults (4). 

Tumor phenotypes are dictated not only by the neoplastic cell component, but also by the 

immunologic milieu within the tumor microenvironment (TME), which is equipped to subvert 

host immune responses and hamper effector T-cell function (5). In silico approaches have 

been instrumental for the identification of immunogenomic features with therapeutic and 

prognostic implications. In solid tumors, six immune subtypes have been described: wound 

healing, interferon (IFN)-g-dominant, inflammatory, lymphocyte-depleted, immunologically 

quiet, and transforming growth factor (TGF)-b-dominant (6). These are characterized by 

differences in macrophage or lymphocyte signatures, T helper type (Th)-1 to Th2 cell ratio, 

extent of intratumoral heterogeneity and neoantigen load, aneuploidy, cell proliferation, 

expression of immunomodulatory genes, and patient survival (6). 

Although immunotherapy may be an attractive modality to exploit in patients with AML (7), the 

ability to predict the groups of patients and the forms of leukemia that will respond to immune 

targeting remains limited (8-11). Clinical studies in patients with solid tumors have shown that 

responses to anti-programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1)-

targeted immunotherapy occur most often in individuals with immune-inflamed lesions that are 

characterized by pre-existing CD8+ T-cell responses, release of pro-inflammatory and effector 

cytokines (12-14), and an augmented T-cell receptor (TCR) clonal diversity pre-treatment (15, 



16). The T-cell inflamed gene expression profile (GEP) is a measure of IFN-g-responsive 

genes that are related to adaptive immune resistance (AIR) mechanisms of immune escape 

such as indoleamine 2,3-dioxygenase-1 (IDO1) and PD-L1 (17), and is predictive of clinical 

benefit with pembrolizumab immunotherapy (18, 19). Although IFN-g plays a critical role in 

eliciting anti-tumor T-cell activity and enabling tumor rejection, prolonged IFN-g signaling under 

conditions of persistent antigen exposure has been shown to activate a PD-L1-independent, 

STAT1-driven multigenic program which confers resistance to radiotherapy and anti-cytotoxic 

T-lymphocyte antigen 4 (CTLA-4) immunotherapy in mouse models of melanoma (20).  

Herein, we used targeted immune gene expression profiling (IGEP) and spatially resolved 

multiplexed digital spatial profiling (DSP) for the high-dimensional analysis of the 

immunological contexture of a broad collection of BM samples from patients with AML and for 

the identification of molecular determinants of immunotherapeutic benefit. We reveal unifying 

immune features and critical differences that define classes and subclasses of TMEs and 

deliver predictions of chemotherapy resistance, survival and immunotherapy response that 

are beyond the current capabilities of single molecular markers. 

 



Results  

Targeted immune gene expression profiling (IGEP) identifies immune subtypes of AML 

We first analyzed unfractionated, archival BM samples from treatment-naïve patients with non-

promyelocytic AML (PMCC discovery series; n=290 cases; Table 1) (21). We derived immune 

scores from mRNA expression, similar to those of previous publications, and devised an RNA-

based, quantitative metric of immune infiltration (22, 23). As shown in Fig. S1A-B, patients 

with adverse cytogenetic features exhibited a shorter relapse-free survival (RFS) and overall 

survival (OS) compared with patients with intermediate and favorable cytogenetic risk, thus 

confirming the overall performance of well-established European Leukemia-Net (ELN) 

categories (24). A Pearson correlation matrix of immune gene sets allowed us to identify co-

expression patterns of pre-defined immune cell types and immune biological activities. 

Immune signature modules in pre-treatment BM samples reflected the co-expression of genes 

associated with 1) type I and type II IFN biology, 2) adaptive immune responses, and 3) 

myeloid cell abundance (macrophages, neutrophils and dendritic cells [DCs]); Fig. 1A). We 

then computed the sum of the individual scores in each signature module in Fig. 1A and 

generated three immune scores (IFN-dominant, adaptive, and myeloid) which individually 

separated AML cases according to high and low expression values (Fig. S1C). Specifically, 

the IFN-dominant gene module was calculated as the sum of IFN-g signaling, IFN 

downstream, immunoproteasome, myeloid inflammation, inflammatory chemokine, IL-10, 

MAGEs, PD-L1 and PD-L2 scores. When considered in aggregate, IFN-dominant, adaptive, 

and myeloid scores dichotomized BM samples into two immune subtypes, herein termed 

immune-infiltrated and immune-depleted (Fig. 1B and Fig. S1D-E) (25), which expressed 

comparable amounts of leukemia-associated antigens CD34, CD123 (IL3RA) and CD117 

(KIT). This observation suggests that targeted IGEP of bulk BM specimens largely captured 

elements of the immunological TME rather than features of the tumor cell compartment (Fig. 

S1F). 

As shown in Fig. 1C, AML cases with immune-infiltrated profiles had higher expression of IFN-

stimulated genes and T-cell recruiting factors (STAT1, CXCL10, IRF1), T-cell markers and 



cytolytic effectors (CD8A, CD8B, GZMB, PRF1), counter-regulatory immune checkpoints and 

immunotherapy drug targets (IDO1, CTLA4, PD-L1 and BTLA), and molecules involved in 

antigen processing and presentation (TAP1, TAP2, HLA-A, HLA-B and HLA-C). Conceivably, 

high T-cell infiltration and expression of MHC and PD-L1 in the immune-infiltrated AML 

subtype reflected a pre-existing IFN-g-driven adaptive immune response. This type of 

response has previously been associated with suppressed anti-tumor immune reactivity (13, 

26), but also with immunotherapy responses in patients with solid tumors (9, 18, 27) and AML 

(11). STAT1, a central component of the IFN-g signaling pathway and predictor of response 

to immune checkpoint blockade (28), was more strongly correlated with the presence of T-cell 

inhibitory receptors TNFRSF14 (a ligand for the immunoglobulin superfamily members BTLA 

and CD160), PD-L1, HAVCR2 (Tim-3) and LAG-3, and with IFN-stimulated genes MX1, IFIT1 

and IRF1 in the immune-infiltrated relative to the immune-depleted subtype, consistent with 

their coordinated regulation in an inflamed TME (Fig. 1D). 

 

Highly multiplexed digital spatial profiling (DSP) reveals distinct T-cell neighbors in immune-

infiltrated and immune-depleted AML 

Transcriptomic data do not provide information on spatial relationships of tumor-infiltrating 

immune cells within the TME. Therefore, we used GeoMx DSP to characterize the expression 

of 31 immuno-oncology (IO) proteins in 10 randomly selected, fresh frozen paraffin embedded 

(FFPE) BM biopsies from treatment-naïve patients with AML (SAL cohort) with varying 

degrees of T-cell infiltration (Fig. S2 and Fig. S3). We selected 24 geometric regions of 

interest (ROIs) per BM sample using fluorescent anti-CD3 (visualization marker for T-cell-rich 

ROIs) and anti-CD123 antibodies (visualization marker for myeloid blast-rich ROIs; Fig. 2A) 

(29). T-cell gene expression scores (calculated as detailed in Fig. S4A) correlated with DSP 

CD3 protein status (Fig. S4B). Furthermore, mRNA and proteins for B cells (P = 0.0026), 

monocytes (P = 0.0156) and Bcl-2 (P = 0.0139) significantly and positively correlated, serving 

as a validation for the mRNA-based immune scores (Fig. S4C). 



We then asked whether CD3-rich and CD3-poor BM samples (defined by a median split of 

barcode counts) differed in terms of co-localization patterns of relevant IO proteins. As shown 

in Fig. S4D, CD3+ T-cells in immune-infiltrated biopsies co-localized with B cells, antigen 

processing and presentation-related proteins (b2-microglobulin), negative immune checkpoint 

B7-H3 and b-catenin. In contrast, CD3+ T-cells in immune-depleted biopsies co-localized with 

markers of immunological memory (CD45RO) and T-cell exhaustion (PD-1). We next 

assigned each ROI to either the T-cell-rich (CD3 “hotspot”) or the T-cell-poor category, using 

the top and bottom quartile of CD3 barcode counts (Fig. S5A). When compared to T-cell-poor 

ROIs, CD3 hotspots showed higher protein expression of CD8, b2-microglobulin, B7-H3, PD1, 

total and phosphorylated STAT3, CD14 and CD19 (Fig. S5B). As shown in Fig. 2B, PTEN 

positively correlated with CD8 and GZMB. Furthermore, baseline expression of PD-L1, Bcl-2, 

VISTA, Ki-67 and FoxP3 was significantly lower in patients who achieved remission in 

response to induction chemotherapy compared to patients with primary induction failure (Fig. 

S5C). 

When analyzing overall protein expression patterns (10 samples × 24 ROIs per sample × 31 

proteins = 7,440 data points), we identified four protein signatures (SIG), which were then 

further assessed in silico for correlations with clinical-biological disease characteristics and 

potential prognostic value in The Cancer Genome Atlas (TCGA)-AML cases (162 sequenced 

AML samples with putative copy-number alterations, mutations and mRNA expression z-

scores [threshold±2.0]). Abnormalities in SIG1, SIG2 and SIG4 genes (blue boxes in Fig. 2C) 

did not correlate with specific disease characteristics or clinical outcomes. In contrast, mRNA 

up-regulation, gene amplification, deep deletion and mis-sense mutations in SIG3 genes, 

which were detected in 26% of TCGA-AML cases as mutually exclusive genomic events (Fig. 

2D), significantly correlated with TP53 mutation status, an established adverse prognosticator 

in AML (P value from mutation enrichment analysis=0.0285). SIG3 were enriched for gene 

ontology (GO) biological processes related to T-cell lineage commitment, positive T-cell 

selection and T-cell homeostasis (Fig. 2E). De-regulation in SIG3 genes, which included PD-



L1, FoxP3, GZMB, PTEN and BCL2, were predominantly observed in patients with immune-

infiltrated mRNA profiles (Fig. 2F) and correlated with higher number of mutations (P = 0.021) 

and with adverse ELN cytogenetic features (c2=25.03; P < 0.001), but not with other disease 

characteristics at presentation, including white blood cell (WBC) count, and percentage of 

AML blasts in pre-treatment blood and BM samples. Finally, patients with abnormalities in 

SIG3 genes experienced poor clinical outcomes, as shown by the significantly lower RFS and 

OS rates (Fig. 2G). Although the mutually exclusive pattern of SIG3 genomic abnormalities 

would suggest that the altered genes are linked in a common biological process or pathway 

(30), GZMB and FoxP3 were the only SIG3 genes that individually predicted shorter OS (Fig. 

S6). Collectively, highly multiplexed in situ detection of IO proteins highlights critical 

differences in T-cell infiltrated versus T-cell depleted AML subtypes and identifies protein 

signatures with prognostic potential in T-cell infiltrated pre-treatment samples. 

 

Interactions between immune subgroups, common cytogenetic alterations and clinical factors 

We next correlated immune signature scores with clinical and demographic factors, including 

WBC count and blast cell count at diagnosis, ELN cytogenetic category (available in 249 cases 

from the PMCC discovery series) and patient age. Leukemia burden was significantly lower in 

the immune-infiltrated AML subtype (median WBC count at diagnosis P < 0.0001; median 

percentage of BM blasts P < 0.0001; and median number of AML blasts per µL of blood P < 

0.0001; Fig. S7A-C). Immune signature scores were not correlated with the ELN cytogenetic 

risk category when considered individually (Fig. S7D). Finally, patients with high immune 

infiltration tended to be of a more advanced age at diagnosis compared with patients with low 

immune infiltration (P < 0.0001; Fig. S7E). 

 

Immune subtypes improve survival prediction 

The activation of immune pathways has context-dependent prognostic impact that differs 

between tumor types (6). We next assessed the ability of the immune subtype to refine the 



accuracy of outcome prediction separately for each ELN cytogenetic risk category. Among 

patients with favorable risk, RFS and OS times were significantly longer in individuals with an 

immune-infiltrated TME (Fig. 3A). In contrast, clinical outcomes in ELN adverse risk cases 

were worse in individuals with an immune-infiltrated TME (Fig. 3A). Interestingly, CD8 

exhaustion scores and PD1 scores were significantly higher in patients with ELN adverse risk 

compared with ELN favorable risk (Fig. 3B), suggesting that leukemia progression may be 

sustained by tumor cell-extrinsic (immune) mechanisms in patients with more aggressive 

disease. We also observed that the ELN classifier assisted outcome prediction only in the 

immune-infiltrated subtype (Fig. 3C), allowing the identification of patient subgroups with 

excellent survival estimates (87.5% RFS and 77.8% OS) or with very unsatisfactory outcomes 

[10.4% RFS (log-rank c2=15.07; P < 0.0001) and 7.2% OS (log-rank c2=25.75; P < 0.0001)]. 

Unexpectedly, our immunological classifier was unable to stratify survival in patients with 

intermediate ELN risk. ELN intermediate patients with NPM1 mutation and FLT3-ITD 

information (available in 100 cases) were then subclassified into molecular low risk (NPM1 

mutations without FLT3-ITD), molecular intermediate risk (NPM1 wild-type without FLT3-ITD 

or with low FLT3-ITD allelic ratio) and molecular high risk cases (NPM1 wild-type with high 

FLT3-ITD allelic ratio) (31). As shown in Fig. 3D, the molecular classifier separated survival 

both in patients with immune-infiltrated AML and in those with an immune-depleted TME. The 

inclusion of immune gene signatures also improved the ability of NPM1 and FLT3-ITD 

mutation status to predict survival in multivariate logistic regression models relative to 

molecular risk alone (AUROC=0.938 versus 0.765; Fig. 3E). Specifically, the IFN downstream 

score (Wald c2=4.1; P = 0.043), CD8 score (Wald c2=4.2; P = 0.04), exhausted CD8+ T-cell 

score (Wald c2=4.4; P = 0.037), IDO1 score (Wald c2=4.01; P = 0.045) and CTLA4 score 

(Wald c2=5.2; P = 0.022) significantly contributed to the model. 

By performing Cox proportional hazards regression, we also discovered a set of 21 

differentially expressed (DE) immune genes [false discovery rate (FDR)<0.05] between the 

favorable and adverse-risk ELN category (Fig. 4A and Table S1). This gene set was highly 



expressed in immune-infiltrated AMLs (Fig. 4B) and separated ELN intermediate patients into 

subgroups with low and high gene expression values, with the former being closely similar to 

ELN favorable-risk patients while the latter resembled ELN adverse-risk patients. The 21-gene 

classifier exhibited enrichment of gene ontologies (GO) and pathways related to T-cell 

activation, TCR downstream signaling and regulation of cytokine production (Fig. 4C). 

Importantly, RFS and OS estimates were significantly worse for intermediate-risk patients with 

high versus low expression of the 21 DE genes (Fig. 4D). This finding was validated in silico 

using transcriptomic data from two independent AML cohorts (TCGA [Fig. 4E] and HOVON 

[Fig. 4F]). 

Finally, we used informative censoring to evaluate the impact of the immune subtypes on 

outcome whilst excluding potential clinical benefit from graft-versus-leukemia (GVL) effects 

after allogeneic HSCT. As shown in Fig. S8A and compared to all patients, survival differences 

remained evident when patients were censored on the date of allogeneic HSCT, suggesting 

that immune gene profiles largely predicted outcome after conventional chemotherapy. A 

competing risks regression analysis in which allogeneic HSCT was treated as a potential 

confounder (32, 33) confirmed that the IFN-dominant gene module, but not the adaptive and 

myeloid gene modules, predicted for shorter OS (Table S2). We also assessed the potential 

impact of the immune subtype on post-transplantation outcomes. Causes of death were not 

different in patients with immune-infiltrated and immune-depleted AML (Table S3). In contrast 

to patients with immune-depleted AML, individuals with immune-infiltrated AML benefited from 

a more profound GVL effect after allogeneic HSCT, as suggested by a significantly longer 

median OS time (31.9 months) compared with patients receiving chemotherapy only (18.9 

months, log-rank P = 0.018). Patients with immune-infiltrated AML and adverse ELN features 

derived the greatest benefit from allogeneic HSCT (28% versus 3% survival rate after 

chemotherapy with or without allogeneic HSCT, respectively; Fig. S8B-C). 

 

Immune landscapes stratify AML patients in independent validation sets and differ across age 

groups and disease stages 



AML is a disease with age-dependent biological specificities (34, 35). Furthermore, pediatric 

AML are inherently of low immunogenicity and are therefore less likely to respond to single-

agent checkpoint inhibition (36). To characterize the immunological landscape of AML across 

age groups and longitudinally in patients who initially achieve complete remission (CR) and 

then experience disease recurrence, we profiled BM samples from a pediatric (CHOP series, 

n=34 cases, 61 BM specimens in total) and an adult AML cohort (SAL series, n=46 cases, 91 

BM specimens in total). In line with findings in the PMCC discovery series, we identified IFN-

dominant, adaptive and myeloid mRNA profiles (Fig. S9A-D) which individually separated 

AML cases according to high and low expression values and, when considered in aggregate, 

dichotomized AML cases into an immune-infiltrated and immune-depleted subtype (Fig. S9E-

F). As summarized in Fig. 5A, comparison between children and adults with AML revealed a 

set of DE immune genes involved with cytokine and chemokine signaling, as indicated by GO 

(Fig. S10A and Table S4) and protein interaction network analysis (Fig. S10B). Specifically, 

genes encoding pro-inflammatory and pro-angiogenic cytokines and chemokines, including 

IL8, CCL3L1, CCL3 and CXCL2, were more expressed in adult AML relative to childhood AML 

(Fig. 5A). The tumor inflammation signature (TIS) score and the IFN-g score were significantly 

higher in elderly patients (>60 years of age) relative to younger adults (<60 years of age) and 

to children aged less that 18 years (Fig. S10C). 

When comparing matched BM samples from a subset of adult patients in the SAL series 

(n=21) at the time of diagnosis and achievement of CR after induction chemotherapy (Fig. 5B 

and Fig. S11), we identified a set of DE genes that were enriched for GO biological processes 

related to immune responses, apoptosis, drug resistance, transcriptional mis-regulation, and 

cell surface receptor/cytokine-mediated signaling (Table S5). As shown in Fig. 5B, FLT3, 

CD99, and milk-fat globule EGF-8 (MGFE8), which have previously been implicated in cancer 

stem cell self-renewal (37), were lower in AML cases with CR, serving as a data reliability 

check. In agreement with recently published observations (38), CTLA4 expression was higher 

in CR relative to disease onset, with concomitant down-regulation of CD244 coinhibitory 

molecule, suggesting the occurrence of T-cell activation after treatment (Fig. S10D). 



Furthermore, immune genes significantly associated with relapsed AML (SAL series) largely 

captured CD8+ T-cell infiltration, elements of T-cell biology, including TCR downstream 

signaling (CD8A, CD5, CD3z [CD247]), leukocyte differentiation and immune regulation (Fig. 

5C and Table S6). The increased expression of surrogate markers of terminal T-cell 

differentiation, senescence and exhaustion [TBX21 (T-bet) (39, 40), TIGIT, KLRD1 (38) and 

KLRF1] in relapsed AML suggests that BM-infiltrating cytotoxic T cells may fail to restrain 

leukemia growth (Fig. S10E). The DE genes between patient subgroups with newly 

diagnosed, CR and relapsed AML in the SAL cohort, and between childhood and adult cases, 

were largely non-overlapping, as shown in Fig. 5D. 

Upon activation with a polyclonal stimulus, intracellular cytokine staining of BM suspensions 

showed higher concomitant production of IFN-g and TNF-a by microenvironmental CD4+ and 

CD8+ T lymphocytes in the immune-infiltrated compared with the immune-depleted subgroup 

(P = 0.0273; Fig. S12A-D). Polyfunctional IFN-g+TNF-a+ T cells were significantly reduced in 

remissional BM samples compared with diagnostic and relapse BMs (P = 0.0257) and were 

particularly low in patients with documented minimal residual disease (MRD) negativity (Fig. 

S12E). 

 

IFN-related gene sets improve the prediction of therapy resistance 

We then asked whether the IFN-dominant gene module may assist the prediction of 

therapeutic resistance, which we empirically defined as failure to achieve CR in patients who 

survived at least 28 days (primary refractory AML) or as early relapse (<3 months) after 

achieving CR, as previously published by others (41). When patients in the PMCC cohort were 

dichotomized based on higher or lower than median IFN scores, a higher percentage of 

patients with primary refractory disease was observed in the IFN-scorehigh AML cases (65.4% 

versus 34.6%; P = 0.0022, Fisher’s exact test), suggesting that transcriptional programs 

orchestrated by microenvironmental IFN-g might render AML blasts resistant to 

chemotherapeutic agents (20, 42). In contrast, the frequency of primary refractory cases was 



not different when comparing patients with higher or lower than median adaptive module 

scores (29.6% versus 25.4%; P = NS) and myeloid module scores (26.7% versus 28.1%; P = 

NS). In multivariate logistic regression analysis, the IFN-related module scores improved the 

ability of the ELN category to predict therapeutic resistance, but not patient survival (Fig. 6A-

B; Table S7). Specifically, the myeloid inflammation score (P = 0.003), IFN-g signaling score 

(P = 0.014) and IFN downstream score (P = 0.034) significantly contributed to the model 

(Table S7). Gene sets defining gene modules 2 and 3 in Fig. 1, reflective of adaptive immune 

responses and BM infiltration with cells of the myeloid lineage, respectively, were not 

associated with either therapeutic resistance or patient survival. 

We next tested the predictive and prognostic power of immune scores in silico using a broad 

collection of public transcriptomic data. We initially devised binary logistic regression models 

utilizing RNA-sequencing data from 196 patients on the Beat AML Master Trial with clinical 

response information (43). When considering disease type (primary versus secondary), WBC 

count and patient age at diagnosis, the inclusion of genes capturing IFN-g-related biology 

significantly improved the predictive ability of the ELN risk category (AUROC=0.921 versus 

0.709 with ELN cytogenetic risk alone; model c2=106.4 versus 29.6; increased specificity=4%; 

increased sensitivity=17%; decreased false positive rate=39%; decreased false negative 

rate=18%; Fig. 6C). 

Confirming our findings in the PMCC and Beat AML cohorts, IFN-dominant, adaptive and 

myeloid mRNA profiles, when used in aggregate, stratified patients in the HOVON database 

(618 non-promyelocytic AML cases (44)) into subgroups with high and low immune infiltration 

(Fig. 6D-E). Individuals with immune-infiltrated AML had lower leukemia burden (median 

percentage of BM blasts=56% versus 71% in patients with immune-depleted AML; P < 0.0001) 

and tended to have more advanced age at diagnosis (median=51 years, range 15-74, versus 

46 years, range 15-77; P = 0.0067). A higher percentage of patients with IFN-dominant AML 

failed to achieve CR in response to induction chemotherapy when compared to non-IFN-

dominant AML cases (27.2% versus 15.2%; P = 0.0004, Fisher’s exact test). In contrast, the 



occurrence of primary induction failure was not different when patients were dichotomized 

based on higher or lower than median adaptive module scores (21.4% versus 21.0% IF rate; 

P = NS) or myeloid module scores (21.7% versus 20.7% IF rate; P = NS). Gene set enrichment 

analysis (GSEA) with all transcripts in the HOVON dataset provided as input and ranked by 

the log2 fold-change between non-responders and responders confirmed the over-expression 

of curated hallmark gene sets linked to IFN-g responses and inflammatory responses in 

chemotherapy-refractory patients (Fig. 6F). When tested in a multinomial logistic regression 

model incorporating patient age, leukemia burden and ELN cytogenetic risk (available in 615 

HOVON cases) (45), immune gene sets defining the IFN-dominant module significantly and 

independently predicted whether patients responded to induction chemotherapy and whether 

they experienced disease relapse (Table S8). In contrast, immune gene signatures were 

unable to assist the prediction of non-leukemic deaths (Table S8).  

Mutations in tumor suppressor genes and transcription factors are enriched in immune-

infiltrated AML cases 

It has recently been shown that genetic drivers of solid malignancies dictate neutrophil and T-

cell recruitment, thus affecting the immune milieu of the tumor and assisting patient 

stratification (46). We asked whether clonal driver mutations may correlate with the immune 

subtypes that we identified herein. We therefore retrieved TCGA AML RNA-sequencing data 

from cBioPortal (http://www.cbioportal.org/) and computed immune cell type-specific and 

biological activity scores (22). IFN-related gene sets, including the TIS score, were higher in 

TCGA-AML cases with TP53 and RUNX1 mutations relative to molecular lesions that confer 

favorable or intermediate risk (Fig. S13A). In contrast, the majority of TCGA-AML cases with 

NPM1 mutations with or without FLT3-ITD (intermediate-risk and favorable-risk cases, 

respectively) were classified as immune-depleted. Clonal hematopoiesis of indeterminate 

potential (CHIP) is a hematological malignancy precursor condition defined by somatic 

mutations in leukemia-associated driver genes, including DNMT3A, TET2 and ASXL1, and 

associated with increased risk for inflammatory diseases of aging (47). Interestingly, the TIS 



score, but not the IFN-g score, was significantly higher in TCGA AML cases with CHIP-defining 

mutations compared with patient subgroups with other molecular lesions (Fig. S13B). When 

extending our in-silico analysis to the Beat AML cohort (281 cases in total), 16 out of 17 (94%) 

TP53-mutated AMLs expressed higher amounts of genes implicated in downstream IFN 

signaling and higher CD8 transcripts and markers of cytotoxicity compared with TP53 wild-

type cases (Fig. S14A-B). 

 

IFN-g-related gene expression and protein profiles correlate with anti-leukemia responses 

after flotetuzumab immunotherapy 

Finally, we hypothesized that higher expression of IFN-g-related genes in immune-infiltrated 

AML cases, while underpinning chemotherapy resistance, might identify patients with AML 

who derive benefit from immunotherapy with flotetuzumab (48), a CD3×CD123 dual affinity 

re-targeting (DART) molecule. BM samples collected prior to flotetuzumab treatment from 30 

adult patients with chemotherapy-refractory or relapsed AML enrolled in the CP-MGD006-01 

clinical trial (NCT#02152956) were profiled using the PanCancer IO360 gene expression 

assay. Patients’ characteristics are summarized in Table S9 and flotetuzumab anti-leukemic 

activity was defined as either CR, CR with partial hematologic recovery (CRh), CR with 

incomplete hematologic recovery (CRi), partial response or overall benefit (>30% reduction in 

BM and/or blood blasts). BM samples from 92% of patients with evidence of flotetuzumab anti-

leukemic activity (11 out of 12) had an immune-infiltrated TME relative to non-responders (Fig. 

7A). The IFN-dominant module score was significantly higher in patients with chemotherapy-

refractory AML compared with relapsed AML at time of flotetuzumab treatment, and in 

individuals with evidence of anti-leukemic activity compared to non-responders (Fig. 7B). 

Notably, the TIS score was a strong predictor of anti-leukemic responses to flotetuzumab, with 

an AUROC value of 0.847 (Fig. 7C). On-treatment BM samples (available in 19 patients at 

the end of cycle 1) displayed increased antigen presentation and immune activation relative 

to baseline samples, as reflected by higher TIS scores (6.47±0.22 versus 5.93±0.15, P = 



0.0006), antigen processing machinery scores (5.67±0.16 versus 5.31±0.12, P = 0.002), IFN-

g signaling scores (3.58±0.27 versus 2.81±0.24, P = 0.0004) and PD-L1 expression (3.43±0.28 

versus 2.73±0.21, P = 0.0062; Fig. 7D). GeoMx DSP of BM FFPE biopsies from a subgroup 

of 11 patients identified protein profiles at baseline that distinguish responders from non-

responders (Fig. 7E-F and Fig. S15). The IFN-g-inducible molecule STING was upregulated 

post-cycle 1 of flotetuzumab in two patients who achieved CR (Fig. 7G). In these individuals, 

T-cell activation markers (CD27, CD45RO, CD44), Bcl-2, immune checkpoints (ICOS, PD-L2, 

CTLA4 and 4-1BB [CD137]) and CD4 were highly expressed in ROIs with T-cell clustering 

(CD3 hotspots) around CD123+ AML blasts (Fig. 7H), supporting a local immune-modulatory 

effect of flotetuzumab. Overall, these data suggest a clinical benefit for AML patients with an 

immune-infiltrated TME and validate the translational relevance of our findings. 

 



Discussion  

Using large cohorts of subjects, the current study reveals underlying transcriptomic features 

that stratify the TME of AML into immune subtypes and may assist therapeutic predictions by 

defining patients who will potentially derive the greatest benefit from immunotherapies. We 

identified two subtypes of differentially immune-infiltrated tumors, an observation that was 

validated in independent childhood and adult AML series, reinforcing the notion that unique 

molecular features can distinguish AML across age groups (35). The IFN-related gene sets 

identified in our study improved the prediction of therapeutic resistance following conventional 

‘3+7’ cytarabine and anthracycline chemotherapy beyond that provided by the ELN 

cytogenetic risk category (AUC=0.815 in PMCC cases [discovery series] and 0.870 in Beat 

AML cases [in silico validation series]) (49). In recent Southwestern Oncology Group (SWOG) 

and MD Anderson Cancer Center clinical trials, pretreatment covariates such as cytogenetic 

risk and age only yielded AUROCs of 0.65 and 0.59 for therapeutic resistance, respectively 

(41). Models that were established in the present study by incorporating IFN-related mRNA 

profiles also outperform a recently developed 29-gene and cytogenetic risk predictor of 

chemotherapy resistance (AUROC=0.76) (50). Our observation that CD8 exhaustion scores 

and PD1 scores are significantly higher in patients with ELN adverse risk compared with ELN 

favorable risk is congruent with a previous report showing unique transcriptional programs 

associated with ELN cytogenetic risk groups in CD8+ T cells from patients with AML (51). 

Intriguingly, an IFN-related DNA damage resistance signature (IRDS) correlates with 

resistance to adjuvant chemotherapy and with recurrence after radiotherapy in patients with 

breast cancer (42), suggesting that tumor cells over-expressing IRDS genes, including 

STAT1, ISG15 and IFIT1, as a result of chronic activation of the IFN signaling pathway might 

receive pro-survival rather than cytotoxic signals in response to DNA damage (52).  

The immune-infiltrated AML cases were highly immune-suppressed, as indicated by elevated 

expression of IFN-inducible negative immune checkpoints and immunotherapy targets IDO1 

and PD-L1, and simultaneously secreted high amounts of IFN-g and TNF-a, a measure of 

polyfunctional Th1 responses (53). Furthermore, adults with relapsed AML in the SAL series 



expressed a higher magnitude of T-cell exhaustion molecules relative to matched pre-

treatment samples, suggesting the occurrence of escape from immune surveillance at the time 

of disease relapse (54). In general, solid tumors with a substantial T-cell component and 

displaying a type I immune response are associated with better OS and progression-free 

survival estimates (6). However, the highly proliferative IFN-g-dominant solid tumors may 

correlate with a less favorable survival, despite being infiltrated with CD8+ T cells and 

harboring the highest type 1 macrophage signature scores (6). By utilizing targeted IGEP, our 

study highlights that the activation of IFN-related pathways and the relative abundance of 

immune cell types, including the over-expression of T-cell markers and TCR signaling 

intermediates in relapsed AML relative to disease onset, have negative prognostic implications 

in AML. This is conceivably the result of a non-productive anti-leukemia immune response 

and/or IFN-driven resistance to DNA damage induced by chemotherapeutic agents (20). 

Patients with immune-infiltrated AML at baseline had better OS estimates when treated with 

allogeneic HSCT compared with chemotherapy alone, suggesting that GVL effects were more 

profound in this patient subgroup. In contrast, no survival advantage from allogeneic HSCT 

was evident in patients with immune-depleted AML. 

The heterogeneity of immune infiltration can also be determined by tumor cell-intrinsic factors, 

including chemokine secretion (55) and expression of cancer driver genes, all of which affect 

response to immunotherapies (46, 56, 57). Interestingly, we detected associations between 

mutations in tumor suppressor and cancer driver genes and immune subtypes of AML and we 

identified TP53 mutations as being strongly correlated with an IFN-g-dominant TME and with 

prognostic protein signatures, including the expression of PD-L1, FOXP3, PTEN and GZMB, 

that were revealed by spatially-resolved, highly multiplexed protein profiling. Notably, GZMB 

expression has recently been associated with features of exhaustion and senescence in AML 

CD8+ T cells (38). A recent study showed higher proportions of PD-L1-expressing CD8+ T 

cells, activation of IFN-g-associated genes and favorable responses to pembrolizumab 

immunotherapy in TP53-mutated lung cancers (58). It is tempting to speculate that immune-



infiltrated, TP53-mutated AML cases, which have very low response rates when treated with 

standard anthracycline-based and cytarabine-based induction chemotherapy, could benefit 

from T cell-targeting approaches and/or hypomethylating agents that potentially alter the 

immune surveillance of AML (59). PTEN loss has been correlated with reduced CD8+ T-cell 

infiltration, with lower expression of IFNG and GZMB transcripts and with resistance to 

immune checkpoint blockade in metastatic melanoma and in primary sarcoma (60, 61). The 

higher expression of CD8 and GZMB that we observed in ROIs with higher PTEN suggests 

that PTEN may represent a novel molecular driver of T-cell infiltration in AML. In addition, 

higher expression of GZMB correlated with worse clinical outcomes and individually separated 

AML patients into subgroups with different survival probabilities. In this respect, signatures of 

dysfunctional T cells, including high expression of GZMB and other transcripts associated with 

effector CD8+ T-cell differentiation such as IFNG, may be increased in AML patients at 

diagnosis and persist with higher frequency only in chemotherapy non-responders (38). 

Finally, IFN-g-related gene expression programs in the AML TME, including the TIS score, 

correlated with response to flotetuzumab immunotherapy in 30 heavily pre-treated patients 

with relapsed/refractory AML on clinical trial CP-MGD006-01. Flotetuzumab treatment was 

associated with increased expression of antigen processing machinery components, IFN-g 

signaling molecules such as STING, negative immune checkpoints and lymphocyte activation 

markers, including heightened PD-L1 mRNA and protein, in BM ROIs with CD3 hotspots. This 

finding provides a biological rationale for designing clinical studies with sequential 

flotetuzumab and immune checkpoint blockade in AML patients in remission with minimal 

residual disease. 

The use of bulk BM aspirates is a potential limitation of our analysis. Future studies should 

use single-cell RNA sequencing of purified CD8+ T cells to further dissect individual variation 

in response to T-cell engagers (62). We also acknowledge that the detailed phenotypes, 

antigen specificities and intratumoral TCR repertoires of T cells in patients with immune-

infiltrated AML remain to be established (63). 



In conclusion, our work unveils the heterogeneity of the immune landscape of AML and 

provides a novel precision medicine-based conceptual framework for delivering T cell-

targeting immunotherapy to subgroups of patients with IFN-g-dominant AML, who may be 

refractory to conventional cytotoxic chemotherapy but responsive to T-cell engagers. The 

immunological stratification of pre-treatment BM samples may therefore enable rapid risk 

prediction and selection of frontline therapeutic modalities (11), in conjunction with cytogenetic 

and mutational information. 



Materials and Methods 

Study design 

The CP-MGD006-01 clinical trial (NCT#02152956) is a multicenter, open-label, phase 1/2 

dose escalation and dose expansion study. Thirty patients with primary refractory (n=23) and 

relapsed AML (n=7) treated with flotetuzumab at the recommended phase 2 dose (500 

ng/kg/day) were included in the current analysis. Patients received a lead-in dose of 

flotetuzumab during week 1, followed by 500 ng/kg/day during weeks 2-4 of cycle 1, and a 4-

day on/3-day off schedule for cycle 2 and beyond. Eligible patients were 18 years of age or 

older, with relapsed or refractory AML (according to WHO criteria) unlikely to benefit from 

cytotoxic chemotherapy defined as a) refractory to ≥ 2 induction attempts (primary induction 

failure); b) first relapse with an initial complete remission (CR) duration < 6 months (early 

relapse) or relapse in patients that achieve a CR lasting ≥ 6 months following prior therapy 

(late relapse), or d) prior failure of hypomethylating agents. All participants were required to 

have Eastern Cooperative Oncology Group performance status of ≤ 2, a peripheral blast count 

of < 20,000/mm3 at the time of first treatment, and adequate organ function. Patients with a 

prior history of allogeneic HSCT, active untreated autoimmune disorders, or active central 

nervous system leukemia were excluded. The trial was approved by the Institutional Review 

Boards of participating centers and was conducted according to the current International 

Conference on Harmonization (ICH) Guideline for Good Clinical Practice (ICH E6), and all 

applicable local and national regulations and ethical principles in accordance with the Helsinki 

Declaration. All participants provided written informed consent prior to enrollment. 

BM aspirates were collected at baseline (n=30) and after cycle 1 of flotetuzumab (n=19) to 

evaluate the temporal immunological effects associated with therapeutic response. Disease 

status was assessed by modified IWG criteria. Anti-leukemic response was defined as either 

CR, CR with incomplete hematologic recovery (CRi), CR with partial hematologic recovery 

(CRh), partial remission (PR) or “other benefit” (OB; >30% decrease in BM blasts). Non-

responders were individuals with either treatment failure (TF), stable disease (SD) or 

progressive disease (PD). Patient and disease characteristics are detailed in Table S8. 



 

Patients’ demographics (discovery cohorts) 

Patient and disease characteristics are detailed in Table 1. Primary patient specimens (non-

promyelocytic AML) and associated clinical data were obtained on research protocols 

approved by the Investigational Review Boards of the Children’s Hospital of Philadelphia 

(CHOP), USA and Princess Margaret Cancer Centre (PMCC), Canada and by the Ethics 

Committee of TU Dresden and Studienallianz Leukämie (SAL), Germany. 

 

RNA isolation and processing 

Messenger RNA was isolated and processed as previously described (45). For the PMCC, 

SAL and CHOP patient cohorts, 100-150 ng per sample of RNA extracted from 442 bulk BM 

aspirates from patients with AML treated with curative intent were analyzed on the NanoString 

nCounter FLEX analysis system using the PanCancer Immune [PCI] profiling panel (for 

research use only and not for use in diagnostic procedures), which measures mRNA 

expression of 770 genes representing 14 immune cell types, common checkpoint inhibitors, 

cancer testis antigens and genes covering both the innate and adaptive immune response 

without the need for amplification (25, 64, 65). BM samples from patients receiving 

flotetuzumab immunotherapy were analyzed using the PanCancer IO 360 panel (for research 

use only and not for use in diagnostic procedures). 

 

nCounter data quality control, data normalization and signature calculation 

The reporter probe counts, i.e., the number of times the color-coded barcode for that gene is 

detected, were tabulated in a comma separated value (CSV) format for data analysis with the 

nSolver software package (version 4.0.62) and nSolver Advanced Analysis module (version 

2.0.115; NanoString Technologies). The captured transcript counts were normalized to the 

geometric mean of the housekeeping reference genes included in the assay and the code 

set’s internal positive controls. The relative abundance of immune cell types and immuno-

oncology biological signatures were computed as previously published (22, 23). For samples 



run on the PCI profiling panel, we also calculated an approximation of the TIS using 16 of the 

18 functional genes and 5 of the 10 housekeeper genes that are present in the PanCancer 

IO360 mRNA panel (18). 

 

Gene ontology (GO) and gene set enrichment analysis (GSEA) 

Metascape.org was used to enrich genes for GO biological processes and pathways. GSEA 

was performed using the GSEA software v.3.0 (Broad Institute, Cambridge, USA) (66). The 

hallmark IFN-g response (M5911) and inflammatory response gene sets (M5913) were 

downloaded from the Molecular Signature Database (MSigDB) (22, 23). 

 

GeoMx Digital Spatial Profiling (DSP) 

Ten FFPE BM biopsies from patients with newly diagnosed AML (SAL series) and 19 FFPE 

BM biopsies from patients receiving flotetuzumab immunotherapy (n=11 at baseline and n=8 

post-cycle 1) were profiled using the prototype or commercial GeoMx DSP platform, 

respectively (Fig. S15). Samples were stained using 3 fluorescent visualization markers, CD3 

(T cell), CD123 (myeloid blast), SYTO 83 or 13 (nuclei), and UV-cleavable oligo-labeled 

antibodies (panels are shown in Table S10). Stained slides were loaded on the DSP 

instrument and digitally scanned. Fluorescent scans were used to select 24 geometric regions 

of interest (ROIs) for molecular profiling (27, 67). The DSP instrument then UV-illuminated 

selected ROIs to release conjugated oligos and the micro-capillary fluidics system collected 

released oligos, which were counted on the nCounter system. Data were normalized to 

technical controls and area. 

Intracellular cytokine staining 

Cells were aliquoted into 12×75mm tubes (0.5×106 cells per tube) in 500 µL RPMI1640 

(Lonza) + 10% fetal bovine serum (FBS) (v/v). Two tubes were set up per sample, the first as 

an unstimulated control and the second stimulated with 50 ng/mL PMA and 1 µg/mL ionomycin 

(both from Sigma Aldrich). Samples also received 10 µg/mL brefeldin A (BioLegend), then 

were vortexed gently and incubated at 37oC for 5 hours. Following incubation, cells were 



washed in PBS then incubated in 100 µL PBS containing 5 µL Human FcR Blocking Reagent 

(Miltenyi Biotec), fluorescently labeled mAbs for surface markers of interest (CD3, CD4, CD8; 

BioLegend) and fixable LIVE/DEAD viability stain (Molecular Probes) for 30 minutes at 4oC 

protected from light. Unbound antibody was washed off using PBS, then cells were fixed by 

incubating in 200 µL 1×True-Nuclear Fix Buffer (True-Nuclear Transcription Factor Buffer Set, 

BioLegend) for 20 minutes. Cells were washed in 1×Perm Buffer (True-Nuclear Transcription 

Factor Buffer Set, BioLegend) then resuspended in 100 µL 1×Perm Buffer and fluorescently-

labeled mAbs for intracellular cytokines of interest (IL-2, IL-4, IL-10, IL-17, IFN-g and TNF-a; 

antibody clones are provided in Table S11) and incubated for 20 minutes at room temperature 

protected from light. Unbound antibody was washed off using 1×Perm Buffer, cells were 

resuspended in 400 µL PBS and immediately analyzed on a 3-laser, 10-color Gallios flow 

cytometer (Beckman Coulter). 

 

Data sources for in silico analyses 

The first data series (E-MTAB-3444), hereafter referred to as the HOVON series (44), was 

retrieved from Array Express and encompassed three independent cohorts of adults (≤60 

years) with de novo AML (last accessed on March 4, 2019). BM and blood samples were 

collected at diagnosis and were analyzed on the Affymetrix Human Genome U133 Plus 2.0 

Microarray (44, 68). Patients were treated with curative intent according to the Dutch-Belgian 

Hematology-Oncology Cooperative Group and the Swiss Group for Clinical Cancer Research 

(HOVON/SAKK) AML-04, -04A, -29, -32, -42, -42A, -43 or -92 protocols (available 

at http://www.hovon.nl). Clinical annotations were provided by the authors. The second data 

series, hereafter referred to as The Cancer Genome Atlas (TCGA) series, consisted of RNA-

sequencing data (Illumina HiSeq2000) from 162 adult AML patients with complete cytogenetic, 

immunophenotypic and clinical annotation who were enrolled on Cancer and Leukemia Group 

B (CALGB) treatment protocols 8525, 8923, 9621, 9720, 10201 and 19808  (69). RNA and 

clinical data were retrieved from the TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/tcgaDownload.jsp). The third data series (Beat AML) was retrieved using 



the VIZOME user interface (http://www.vizome.org/aml/) and consisted of RNA-sequencing 

data from primary specimens from 281 AML patients with detailed clinical annotations, 

including diagnostic information, treatments, responses and outcomes treated on the Beat 

AML Master Trial (43). Patient and disease characteristics for in silico data sources are 

summarized in Data File S1. 

 

Statistical analyses 

Descriptive statistics included calculation of mean, median, SD, and proportions to summarize 

study outcomes. Comparisons were performed with the Mann-Whitney U test for paired or 

unpaired data (two-sided), as appropriate, or with the ANOVA with correction for multiple 

comparisons. IBM SPSS Statistics (version 24) and GraphPad Prism (version 8) were used 

for statistical analyses. A two-sided P value < 0.05 was considered to reflect statistically 

significant differences. The log-rank (Mantel-Cox) test was used to compare survival 

distributions. 

Therapeutic resistance was defined as failure to achieve complete remission (CR) despite not 

experiencing early treatment-related mortality (within 28 days of chemotherapy initiation; 

primary refractory cases) or as early relapse (<3 months) after achieving CR (41). Overall 

survival (OS) was computed from the date of diagnosis to the date of death. Relapse-free 

survival (RFS) was measured from the date of first CR to the date of relapse or death. Subjects 

lost to follow-up were censored at their date of last known contact.  

Binary logistic regression and multinomial logistic regression were used to ascertain the 

relative contribution of immune subtypes and other pretreatment covariates selected a priori 

based on known clinical relevance (ELN risk group, FLT3-ITD status, NPM1 mutational status, 

patient age at diagnosis and primary versus secondary AML) toward the predicted likelihood 

of response to induction chemotherapy, AML relapse and patient death (45). Competing risks 

regression analyses by the method of Fine and Gray were performed using STATA/IC (version 

16.0) (32). Allogeneic HSCT, a potential confounder, was treated as an event whose 

occurrence precluded the occurrence of the primary clinical endpoint (death) (32). 



Supplementary Materials 

Fig. S1. Immune gene signatures and survival in the AML discovery series (PMCC cohort; 

n=290 cases). 

Fig. S2: GeoMx digital spatial profiling (DSP) and region of interest (ROI) selection in a 

representative pre-treatment BM trephine biopsy (SAL series) with high T-cell infiltration. 

Fig. S3: GeoMx digital spatial profiling (DSP) and region of interest (ROI) selection in a 

representative pre-treatment BM trephine biopsy (SAL series) with low T-cell infiltration. 

Fig. S4: Highly multiplexed protein profiling in the SAL patient cohort.  

Fig. S5: Correlation between CD3 infiltration and expression of immuno-oncology (IO)-related 

proteins as revealed by GeoMx digital spatial profiling (DSP) of BM trephine biopsies (SAL 

series). 

Fig. S6: Expression of SIG3 genes in TCGA-AML cases and in healthy tissues. 

Fig. S7: Association between immune gene signatures and patients’ characteristics in the AML 

discovery series (PMCC cohort; n=290 cases). 

Fig. S8: Clinical outcomes of patients with immune-infiltrated and immune-depleted AML 

treated with allogeneic HSCT (PMCC cohort). 

Fig. S9: Immune gene signatures in the CHOP and SAL cohorts. 

Fig. S10: Gene ontology and pathway analyses. 

Fig. S11: Immune scores in AML patients (SAL cohort) at time of diagnosis and achievement 

of complete remission (paired samples). 

Fig. S12: Intracellular cytokine staining of BM samples from patients with immune-infiltrated 

and immune-depleted AML. 

Fig. S13: Immune subtypes associate with cancer driver gene mutations in The Cancer 

Genome Atlas (TCGA)-AML and Beat AML trial specimens. 

Fig. S14: Immune signature scores and cancer driver gene mutations in The Cancer Genome 

Atlas (TCGA)-AML and Beat AML trial specimens. 

Fig. S15: Selection of regions of interest in BM biopsies from patients receiving flotetuzumab 

immunotherapy. 



 

Table S1: Differentially expressed (DE) genes (false discovery rate<0.05) between ELN 

favorable-risk and adverse-risk AML (HOVON discovery cohort). 

Table S2: Competing risks analysis for overall survival (OS) prediction (PMCC discovery 

cohort). 

Table S3: Causes of death in patients receiving allogeneic hematopoietic stem cell 

transplantation (HSCT; PMCC cohort). 

Table S4: Gene ontologies (GO) of and KEGG pathways captured by DE genes between adult 

(SAL cohort) and childhood AML (CHOP cohort). 

Table S5: GO of and KEGG pathways captured by DE genes between adult AML patients at 

the time of diagnosis and achievement of complete remission (SAL cohort). 

Table S6: GO of and KEGG pathways captured by DE genes between adult AML patients at 

the time of relapse and achievement of complete remission (SAL cohort). 

Table S7: Binary logistic regression predicting therapeutic resistance (PMCC cohort). 

Table S8: Multinomial logistic regression predicting therapeutic response (HOVON cohort). 

Table S9: Study participants in the CP-MGD006-01 clinical trial (NCT#02152956) of 

flotetuzumab immunotherapy. 

Table S10: Protein panels used for GeoMx Digital Spatial Profiling (DSP) of FFPE bone 

marrow biopsies (SAL cohort [A] and flotetuzumab cohort [B]). 

Table S11: Antibody panel used for intracellular cytokine staining of bone marrow cell 

suspensions. 

Data File S1: Patient and disease characteristics (in silico data sources). 
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Figure Legends 

Fig. 1: Immune gene sets stratify bone marrow samples from patients with newly 

diagnosed AML. A) Unsupervised hierarchical clustering (Euclidean distance, complete 

linkage) of the correlation matrix of immune and biological activity signatures identifies co-

expression patterns (grey boxes) of immune gene sets (correlation value color-coded per the 

legend, where blue denotes a Pearson correlation coefficient of -1.0 and red indicates a 

Pearson correlation coefficient of 1.0) in the bone marrow (BM) microenvironment of patients 

with AML (PMCC cohort; n=290), namely, IFN-dominant, adaptive and myeloid gene modules. 

Immune cell type (23) and signature scores (22) were calculated from mRNA expression as 

pre-defined linear combinations (weighted averages) of biologically relevant gene sets. 

Morpheus, an online tool developed at the Broad Institute (MA, USA) was used for data 

analysis and visualization. B) IFN-dominant, adaptive and myeloid scores in aggregate stratify 

patients with newly diagnosed AML into two distinct clusters, which are referred in this study 

as immune-infiltrated and immune-depleted (25). ClustVis, an online tool for clustering of 

multivariate data, was used for data analysis and visualization (71). C) Violin plots 

summarizing the expression of IFN-stimulated genes (ISGs), T-cell and cytotoxicity markers, 

negative immune checkpoints, genes implicated in antigen processing and presentation, and 

immunotherapy targets in AML cases with an immune-infiltrated and immune-depleted tumor 

microenvironment (TME). Data were compared using the Mann-Whitney U test for unpaired 

data (two-sided). *P < 0.05; ***P < 0.0001. D) Spearman correlation coefficients between 

STAT1, ISGs [IRF1, MX1, IFIT1, TNFRSF14, PD-L1 (CD274)], surrogate markers for cytotoxic 

T cells (CD8A, GZMA) and negative immune checkpoints [LAG3, HAVCR2 (Tim-3)] under 

conditions of high and low immune infiltration. 

 

Fig. 2: Multiplexed protein detection with GeoMx DSP identifies prognostic signatures 

in immune-infiltrated AML. A) CD3 hotspots (green fluorescence) in representative regions 

of interest (ROIs) from a bone marrow (BM) trephine biopsy obtained at time of AML diagnosis 

(SAL series). B) Association between PTEN and CD8/GZMB expression in geometric ROIs 



(n=240) from 10 BM FFPE sections (median split of PTEN barcode counts). Comparisons of 

CD8 and GZMB expression between PTENhigh and PTENlow ROIs were performed using the 

Mann-Whitney U test for unpaired data (two-sided). C) Correlation matrix of protein expression 

in BM biopsies from 10 patients with newly diagnosed AML (SAL series). Protein expression 

data was subjected to unsupervised hierarchical clustering. Heatmaps were built using 

Morpheus with blue boxes denoting four distinct protein co-expression patterns (Pearson 

correlation coefficient >0.45) or signatures (SIG). D) Abnormalities in SIG3 genes (mRNA 

upregulation, gene amplification, deep deletion and mis-sense mutations, relative to the 

gene's expression distribution in all profiled AML samples) in TCGA cases. Data were 

retrieved, analyzed and visualized using cBioPortal. Abnormalities in only one gene utilized in 

the query (by default, non-synonymous mutations, fusions, amplifications and deep deletions) 

were sufficient to define that particular patient sample as “altered”. E) GO enrichment analysis. 

For the gene list submitted to metascape.org, pathway and process enrichment analyses were 

carried out using all genes in the genome as the enrichment background. Terms with a P value 

< 0.01, a minimum count of 3, and an enrichment factor >1.5 (defined as the ratio between 

the observed counts and the counts expected by chance) were collected and grouped into 

clusters based on their membership similarities. F) Heatmap of immune cell type-specific 

scores and biological activity scores in TCGA-AML cases with and without abnormalities (Alt.) 

of SIG3 genes. ClustVis was used for data analysis and visualization (71). G) Kaplan-Meier 

estimates of relapse-free survival (RFS) and overall survival (OS) in TCGA-AML patients with 

(red line) and without (blue line) abnormalities of SIG3 genes. HR = hazard ratio. Survival 

curves were compared using a log-rank (Mantel-Cox) test. 

 

Fig. 3: Clinical correlates of immune profiles in patients with newly diagnosed AML. A) 

Stratification of patient survival (PMCC cohort; n=290) within each ELN cytogenetic risk 

category by immune subtype (immune-infiltrated and immune-depleted). Kaplan-Meier 

estimates of RFS and OS are shown. Survival curves were compared using a log-rank 

(Mantel-Cox) test. *P < 0.05; **P < 0.01. HR=hazard ratio; CI=confidence interval. B) 



Expression of PD1 and markers of CD8+ T-cell exhaustion across cytogenetically defined 

patient categories. Data were compared using the Kruskal-Wallis test for unpaired 

determinations. FAV=favorable ELN risk; INT=intermediate ELN risk; ADV=adverse ELN risk. 

C) Cytogenetically defined categories stratify survival in patients with immune-infiltrated AML. 

Kaplan-Meier estimates of RFS and OS are shown. Survival curves were compared using a 

log-rank (Mantel-Cox) test. ***P < 0.001. D) Molecularly defined categories stratify survival in 

ELN intermediate AML cases (n=100) with immune-infiltrated and immune-depleted mRNA 

profiles. Patients were subclassified into molecular low risk (NPM1 mutations without FLT3-

ITD), molecular intermediate risk (NPM1 wild-type without FLT3-ITD or with low FLT3-ITD 

allelic ratio) and molecular high risk (NPM1 wild-type with FLT3-ITD), as previously reported 

(31). Kaplan-Meier estimates of OS are shown. Survival curves were compared using a log-

rank (Mantel-Cox) test. ***P < 0.001. E) AUROC curve measuring the predictive ability of 

molecular risk (blue curve) and immune subtype (red curve) for OS. SE=standard error; 

CI=confidence interval. AUROC=1.0 would denote perfect prediction and AUROC=0.5 would 

denote no predictive ability. 

 

Fig. 4: A 21-gene classifier stratifies survival in ELN-intermediate risk AML (n=100). A) 

Expression of the 21 differentially expressed (DE) genes across the PMCC discovery cohort 

(unsupervised hierarchical clustering; Euclidean distance; complete linkage). FDR=false 

discovery rate. Morpheus was used for data analysis and visualization. B) Expression of the 

21 DE genes in patients with immune-infiltrated and immune-depleted AML. Data were 

compared using the Mann-Whitney U test for unpaired determinations. Red bars indicate 

median values. C) DE genes between favorable and adverse-risk AML were mapped to gene 

ontology (GO) biological processes and pathways using Metascape.org. D) Kaplan-Meier 

estimate of RFS and OS in patients with ELN intermediate-risk AML stratified by the 21-gene 

classifier. Survival curves were compared using a log-rank (Mantel-Cox) test. HR=hazard 

ratio; CI=confidence interval. **P < 0.01; ***P < 0.001. E) Kaplan-Meier estimate of OS in 

TCGA AML cases (first independent validation cohort) stratified by the 21-gene classifier 



(median split of gene expression values). Data were accessed, analyzed and visualized 

through the Gene Expression Profiling Interactive Analysis (GEPIA) portal 

(http://gepia2.cancer-pku.cn/#survival) (72). Survival curves were compared using a log-rank 

(Mantel-Cox) test. F) Kaplan-Meier estimate of OS in HOVON AML cases (second 

independent validation cohort) stratified by the 21-gene classifier (median split of gene 

expression values). Survival curves were compared using a log-rank (Mantel-Cox) test. ****P 

< 0.0001. 

 

Fig. 5: Differentially expressed immune genes across age groups and disease stages. 

A) Top 20 differentially expressed (DE) immune genes between childhood (n=34) and adult 

AML cases (n=46). ClustVis was used for data analysis and visualization. Violin plots 

summarize the expression of relevant chemokine genes. Data were compared using the 

Mann-Whitney U test for paired determinations. Volcano plots of DE genes were generated 

using the nSolver software package. ****P < 0.0001. B) Top 20 DE immune genes between 

matched BM samples from 22 adult patients (SAL cohort) at diagnosis and achievement of 

complete remission (CR). Data were compared using the Mann-Whitney U test for paired 

determinations. Volcano plots of DE genes were generated using the nSolver software 

package. ***P < 0.001; ****P < 0.0001. Data were compared using the Mann-Whitney U test 

for paired determinations. C) Top 20 DE immune genes between matched BM samples from 

22 adult patients (SAL cohort) at diagnosis and disease relapse. Data were compared using 

the Mann-Whitney U test for paired determinations. Volcano plots of DE genes were 

generated using the nSolver software package. **P < 0.01; ***P < 0.001. D) Venn diagram 

showing overlap in DE genes between children and adults with AML, and patients at disease 

onset, achievement of CR and relapse. 

 

Fig. 6: IFN-related mRNA profiles predict therapeutic resistance. A) Binary logistic 

regression predicting therapeutic response from IFN-related scores and conventional 

prognosticators, i.e., ELN cytogenetic risk category, WBC count at diagnosis, disease type 



(primary versus secondary AML), and patient age at diagnosis (PMCC discovery cohort). 

AUROC=area under receiver operating characteristic. The dotted line indicates currently 

accepted thresholds (>0.80) of AUROC with good predictive ability in AML (49). B) AUROC 

curves measuring the predictive ability of ELN cytogenetic risk and IFN-related scores for 

therapeutic response (PMCC discovery cohort; n=290). SE=standard error; CI=confidence 

interval. AUROC=1.0 would denote perfect prediction and AUROC=0.5 would denote no 

predictive ability. C) AUROC curves measuring the predictive ability of ELN cytogenetic risk 

and IFN-related scores for therapeutic response in Beat AML trial specimens (validation 

cohort). SE=standard error; CI=confidence interval. D) Unsupervised hierarchical clustering 

(Euclidean distance, complete linkage) of the correlation matrix of immune and biological 

activity signatures identifies co-expression patterns of immune gene sets (correlation value 

color-coded per the legend; Pearson correlation coefficient >0.45; blue boxes) in the bone 

marrow (BM) microenvironment of AML patients in the HOVON series (n=618 cases with 

therapy response and ELN cytogenetic risk information). E) IFN-dominant, adaptive and 

myeloid scores in patients in the HOVON series. The Venn diagram shows the overlap 

between curated hallmark gene sets linked to IFN-g responses (n=186) and inflammatory 

responses (n=189). MSigDB=Molecular Signature Database. F) Gene set enrichment analysis 

(GSEA) plots representing the normalized enrichment score (NES) of hallmark IFN-g-

response genes, inflammatory response genes and a subset of overlapping genes (n=36) 

between IFN-g and inflammatory gene sets in AML patients in the HOVON series who failed 

to respond to induction chemotherapy. Gene sets were downloaded from the MSigDB. Each 

run was performed with 1,000 permutations. FDR=false discovery rate. 

 

Fig. 7: Immune subtypes associate with response to flotetuzumab immunotherapy. A) 

Unsupervised hierarchical clustering (Euclidean distance, complete linkage) of immune and 

biological activity signatures in the BM microenvironment of patients with relapsed/refractory 

AML (n=30) receiving flotetuzumab immunotherapy in the CP-MGD006-01 clinical trial 



(NCT#02152956). Anti-leukemic response was defined as detailed in Materials and Methods. 

B) IFN-module and tumor inflammation signature (TIS) scores in baseline BM samples from 

patients with primary refractory and relapsed AML. Red dots denote patients with evidence of 

anti-leukemic activity of flotetuzumab. Horizontal lines indicate median values. Comparisons 

were performed using the Mann-Whitney U test for unpaired data (two-sided). **P < 0.01. C) 

Area under receiver operating characteristic (AUROC) curves measuring the predictive ability 

of the IFN-module score and TIS scores for therapeutic response to flotetuzumab. 

CI=confidence interval. D) Immune activation in the TME during flotetuzumab treatment 

(matched BM samples from 19 patients). Red dots denote patients with evidence of 

flotetuzumab anti-leukemic activity. Horizontal lines indicate median values. Comparisons 

were performed with the Mann-Whitney U test for paired data (two-sided). Pre=baseline. 

C1=cycle 1. **P < 0.01. ***P < 0.001. E) Principal component analysis (PCA) of GeoMx DSP 

housekeeping-normalized barcode counts for 52 proteins from 11 pre-treatment and 8 

matched post-cycle 1 (C1) BM samples with 5-35 regions of interest (ROIs) profiling the entire 

FFPE biopsy (Fig. S12). Points are colored by no response (NR; pink) or complete response 

(CR; green). F) Identification of CD3 hotspots in ROIs from a BM biopsy of a representative 

patient who achieved CR after flotetuzumab immunotherapy. CD3+ T cells are shown in 

yellow. G) Differential expression of immuno-oncology (IO)-related proteins between baseline 

and post-C1 FFPE BM biopsies from two patients achieving CR after flotetuzumab 

immunotherapy. Analysis was performed using a linear mixed effect model. Vertical dotted 

lines represent ±0.5 log2 fold change (FC) and the horizontal dotted line indicates a P value 

of 0.05. NS=not significant. H) Differential expression of IO-related proteins between ROIs 

with or without CD3 hotspots in two patient samples after 1 cycle of flotetuzumab who 

achieved CR. Analysis was performed using a linear mixed effect model. Vertical dotted lines 

represent ±0.5 log2 fold-change and the horizontal dotted line indicates a P value of 0.05. 

 

 
 



Table 1. AML cohorts selected for targeted immune gene expression profiling 
 
Patient series PMCC CHOP SAL 
# of patients 290 34 46 
Age (0-39), n 76 34 13 
Age (40-59), n 126 0 19 
Age (≥ 60), n 88 0 14 
Median age (years, range) 52 (18-81) 10 (0.1-20) 53.5 (23-75) 

WBC count at presentation 19.15 × 103/µL 
(0.7-399) N.A. 56. 45 × 103/µL 

(0.84-320.2) 
Cytogenetic risk group, n 

ELN favorable 
ELN intermediate 

ELN adverse 
N.A. 

 
35 
155 
59 
41 

 
8 
20 
6 
- 

 
10 
27 
4 
5 

Disease status at time of BM 
sampling, n 

Diagnosis 
Complete remission 

Relapse 

 
 

290 
0 
0 

 
 

34 
16 
11 

 
 

46 
21 
24 

# of BM samples analyzed 290 61 91 
# of BM samples analyzed using 
the GeoMx DSP platform 0 0 10 

De novo/secondary/therapy-
related 244/46/0 36/4/0 39/5/2 

Response to induction 
chemotherapy 

Yes 
No 

Primary induction failure 
N.A. 

 
 

210 
80 
39 
- 

 
 

26 (M1*) 
3 (M2*) 

2 
5 

 
 

33 
4 
2 
3 

Relapse 
Yes 
No 

N.A. 

 
132 
118 
1 

 
18 
15 
1 

 
31 
15 
0 

Median follow-up time (months) 101.23 70.2 55.54 
Median RFS (months) 19.1 25.6 13.64 
Median OS (months) 21.37 66.8 50.58 

 

Legend: N.A. = Not available; PMCC = Princess Margaret Cancer Centre; CHOP = Children’s 
Hospital of Philadelphia; SAL = Studienallianz Leukämie; ELN = European Leukemia-Net; BM 
= bone marrow; DSP = digital spatial profiling; N.A. = not available. Median follow-up time was 
calculated using the reverse Kaplan-Meier method, with the event indicator reversed so that 
the outcome of interest becomes censored. *M1, M2 and M3 BM remission status was defined 
as <5%, 5% to 24% and >25% AML blasts after induction chemotherapy, respectively (73). 
RFS = relapse-free survival; OS = overall survival. 
  



Supplementary Figures 

 
Fig. S1: Immune gene signatures and survival in the AML discovery series. A) Pie chart 

showing patient distribution by European Leukemia Net (ELN) cytogenetic risk category in the 

PMCC cohort (n=290 cases). NA = not available. B) Cohort-wide relapse-free survival (RFS) 

and overall survival (OS); disease and patient characteristics are detailed in Table 1. The 

Kaplan-Meier method was used to generate survival curves, which were compared using a 

log-rank test (*p<0.05; ***p<0.001). Tick marks indicate censored observations. C) Interferon 

(IFN), adaptive, and myeloid signature scores individually separate AML cases according to 

high and low expression values. ClustVis, an online tool for clustering of multivariate data, was 

used for data analysis and visualization. D) Immune scores in the immune-depleted and 

immune-infiltrated subgroups. Data were compared using the Mann-Whitney U test for 

unpaired determinations. Red bars indicate median values. E) Distribution of the aggregate 

immune score in patients with immune-infiltrated and immune-depleted AML. F) Violin plots 

summarizing the expression of leukemia-associated markers (CD33, CD34, CD123, CD117) 

in immune-infiltrated and immune-depleted AML cases from the PMCC cohort. Data were 

compared using the Mann-Whitney U test for unpaired determinations (*p<0.05; ***p<0.001; 

ns=not significant). E) Kaplan-Meier estimate of RFS in patients with AML separated by 

immune gene score quartiles (highest [n=78] and lowest [n=79]). Survival curves were 

compared using the log-rank test (*p<0.05; **p<0.01). 
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Fig. S2: GeoMx digital spatial profiling (DSP) and region of interest (ROI) selection in a 
representative pre-treatment BM trephine biopsy (SAL series) with high T-cell 
infiltration. CD3 staining is shown in green. The median CD3 barcode count (24 ROIs) is 

indicated. 
 

 
 
 
 
 
 
 
 
 
 



 
 
Fig. S3: GeoMx digital spatial profiling (DSP) and region of interest (ROI) selection in a 
representative pre-treatment BM trephine biopsy (SAL series) with low T-cell 
infiltration. CD3 staining is shown in green. The median CD3 barcode count (24 ROIs) is 

indicated. 

 

 
 
 
 
  



Fig. S4: Highly multiplexed protein profiling in the SAL patient cohort. A) Unsupervised 

hierarchical clustering (Euclidean distance, complete linkage) of immune cell type-specific and 

biological activity scores (mRNA measurements using the PanCancer Immune Profiling panel) 

in 10 pre-treatment BM trephine biopsies used for GeoMx DSP. ClustVis, an online tool for 

clustering of multivariate data, was used for data analysis and visualization. B) Association 

between CD3 protein expression, as determined by GeoMx DSP, and mRNA immune gene 

signatures (T-cell score, CD8 score, exhausted CD8 score, NK score, cytotoxicity score and 

macrophage score) as measured with the nCounter platform. Data were compared using the 

Mann-Whitney U test for unpaired determinations. C) Correlation between mRNA and protein 

expression, as determined by GeoMx DSP. Spearman rank correlation coefficients are shown 

in green; p values are shown in blue. D) Unsupervised hierarchical clustering (Euclidean 

distance, complete linkage) of the correlation matrix of immuno-oncology proteins detected 

with GeoMx Digital Spatial Profiling (DSP) allows the identification of CD3 neighbors in 10 pre-

treatment BM trephine biopsies from adult patients with high and low T-cell infiltration (median 

split). b2M=b2-microglobulin. Morpheus, an online tool developed at the Broad Institute (MA, 

USA) was used for data analysis and visualization. 
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Fig. S5: Correlation between CD3 infiltration and expression of immuno-oncology (IO)-
related proteins as revealed by GeoMx digital spatial profiling (DSP) of BM trephine 
biopsies (SAL series). A) CD3 staining is shown in green. ROIs (n=24) were assigned to 

either the T-cell-rich (CD3 “hotspot”; top 25% quartile of CD3 barcode counts) or the T-cell-

poor category (bottom 25% quartile of CD3 barcode counts). B) Violin plots showing 

expression of CD8, b2-microglobulin, activation marker CD45RO, B7-H3, PD1, total and 

phosphorylated STAT3, CD14 and CD19 in relation to CD3 infiltration. Data were compared 

using the Mann-Whitney U test for unpaired determinations (*P<0.05; **P<0.01; ****P<0.0001; 

ns=not significant). C) Violin plots showing the association between protein expression and 

response to induction chemotherapy, which was defined as either morphologic complete 

remission (CR) or early blast clearance (<10% blasts on day 16, i.e., one week after the end 

of induction chemotherapy), as previously published (45, 74). Data were compared using the 

Mann-Whitney U test for unpaired determinations (***P<0.001). 
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Fig. S6: Expression of SIG3 genes in TCGA-AML cases and in healthy tissues. A) 

Comparison of SIG3 gene expression in TCGA-AML cases (n=173) and in normal blood 

(n=70; Genotype Tissue Expression [GTEx] samples). Data were accessed and analyzed 

using GEPIA2 (http://gepia2.cancer-pku.cn/#index). B) GZMB and FoxP3 survival predictions. 

A median split and/or quartile split of gene expression scores was used to compute Kaplan-

Meier curves. 
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Fig. S7: Association between immune gene signatures and patients’ characteristics in 

the AML discovery series. Violin plots summarizing white blood cell (WBC) count (A), 

percentage of bone marrow (BM) blasts (B) and peripheral blood (PB) blasts (C), ELN 

cytogenetic risk category (D) and age at diagnosis (E) in immune-infiltrated and immune-

depleted patients (PMCC cohort; n=290 cases). Immune gene signatures were derived as 

detailed in Fig. 1. Comparisons were performed using the Mann-Whitney U test for unpaired 

determinations. *P<0.05; ***P<0.001. 
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Fig. S8: Clinical outcomes of patients with immune-infiltrated and immune-depleted 
AML treated with allogeneic HSCT (PMCC cohort). A) Kaplan-Meier estimate of overall 

PMCC series
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survival (OS) in patients with immune-infiltrated and immune-depleted AML censored on the 

date of allogeneic HSCT. Survival curves were compared using a log-rank (Mantel-Cox) test. 

B) Kaplan-Meier estimate of overall survival (OS) in patients with immune-infiltrated AML 

treated with chemotherapy either alone or in combination with allogeneic HSCT. Patients were 

stratified based on ELN risk. Survival curves were compared using a log-rank (Mantel-Cox) 

test. C) Kaplan-Meier estimate of overall survival in patients with immune-depleted AML 

treated with chemotherapy either alone or in combination with allogeneic HSCT. Patients were 

stratified based on ELN risk. Survival curves were compared using a log-rank (Mantel-Cox) 

test. 

 

 
 
 
 
  



Fig. S9: Immune gene signatures in the CHOP and SAL cohorts. A-B) Unsupervised 

hierarchical clustering (Euclidean distance, complete linkage) of the correlation matrix of 

immune and biological activity signatures highlights co-expression patterns of immune gene 

sets (Pearson correlation coefficient >0.45; blue boxes) in diagnostic bone marrow (BM) 

samples from children (CHOP cohort; n=34) and adults with AML (SAL cohort; n=46), namely, 

IFN-dominant signatures, adaptive immunity signatures and myeloid signatures. Morpheus 

was used for data analysis and visualization. C-D) Gene signatures in the IFN, adaptive, and 

myeloid scores stratify children and adults with AML (CHOP and SAL series) into subgroups 

with high and low expression. ClustVis was used for data analysis and visualization. E-F) IFN, 

adaptive, and myeloid scores in aggregate stratify children and adults with AML (CHOP and 

SAL series) into immune-infiltrated and immune-depleted subgroups. ClustVis was used for 

data analysis and visualization. ELN = 2017 European Leukemia-Net. Criteria for response to 

induction chemotherapy (M1 through M3 in the top panel and early blast clearance 

[EBC]/complete remission [CR] in the bottom panel) are detailed in Table 1. ADV=adverse; 

INT=intermediate; FAV=favorable; NA=not available; NR=no response. 
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Fig. S10: Gene ontology and pathway analyses. A) Gene Ontology (GO) enrichment 

analysis. For each given gene list submitted to metascape.org, pathway and process 

enrichment analyses were carried out using all genes in the genome as the enrichment 

background. Terms with a p value <0.01, a minimum count of 3, and an enrichment factor 

>1.5 (defined as the ratio between the observed counts and the counts expected by chance) 

were collected and grouped into clusters based on their membership similarities. B) The 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (http://string-

db.org) was used to critically assess and integrate protein-protein interactions between the 

top 20 genes differentially expressed in adults and children with AML, as well as across 

disease stages (diagnosis, achievement of complete remission [CR], relapse). A detailed list 

of significantly enriched  GO processes and KEGG pathways ranked by false discovery rate 

(<1×10-7) is provided as tables S4-S6. Protein network analysis and predicted functional 

partners of differentially expressed (DE) genes with the highest-confidence interaction scores 

(>0.900) are shown. Network nodes (query proteins) represent proteins produced by a single, 

protein-coding gene locus. White nodes represent second shells of interactors. Empty and 

filled nodes indicate proteins of unknown or partly known 3D structure, respectively. Edges 

represent protein-protein associations. Line shapes denote predicted modes of action. C) 
Tumor inflammation signature (TIS) and IFN-g scores across age groups. Data were 

compared using the Kruskal-Wallis test for unpaired determinations. D) Expression of select 

immune checkpoints and co-inhibitory molecules between matched BM samples from adult 
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patients (SAL series) at disease onset and complete remission (CR; n=22). E) Expression of 

genes associated with T-cell senescence/terminal differentiation/exhaustion (TIGIT, TBX21 or 

T-bet, KLRD1 and KLRF1) in matched BM samples from adult patients (SAL series) at disease 

onset and relapse (n=22). Data were compared using the Mann-Whitney U test for paired 

determinations. **P<0.01. ns=not significant. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Fig. S11: Immune scores in AML patients (SAL cohort) at time of diagnosis and 
achievement of complete remission (paired samples). A) Immune cell type-specific scores 

in BM samples from 21 patients with AML at time of diagnosis and achievement of complete 

remission (CR; SAL cohort). B) Biological activity scores in BM samples from 21 patients with 

AML at time of diagnosis and achievement of complete remission (CR; SAL cohort). Data were 

compared using the Mann-Whitney U test for paired determinations. 
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Fig. S12: Intracellular cytokine staining of BM samples from patients with immune-
infiltrated and immune-depleted AML. Frequency of polyfunctional IFN-g+TNF-a+ T cells 

(A), single-positive IFN-g+ T cells (B) and single-positive TNF-a+ T cells (C) in diagnostic BM 

samples from patients with immune-infiltrated (n=16) and immune-depleted AML (n=7). 

Comparisons were performed using the Mann-Whitney U test for unpaired data. D) Flow 

cytometric analysis of intracellular cytokine production in representative BM samples from 

patients with immune-infiltrated (INFIL) and immune-depleted (DEPL) AML. E) Frequency of 

polyfunctional IFN-g+TNF-a+ T cells and IFN-g+-producing CD4+ and CD8+ T cells in diagnostic 

BM samples from AML patients at time of disease onset, achievement of complete remission 

(CR) and relapse. Data were compared using the Kruskal-Wallis test for unpaired 

determinations. Cases with documented minimal residual disease (MRD) negativity are shown 

as blue dots (immune-infiltrated subgroup). 
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Fig. S13: Immune subtypes associate with cancer driver gene mutations in The Cancer 
Genome Atlas (TCGA)-AML specimens. A) Unsupervised hierarchical clustering (Euclidean 

distance, complete linkage) of immune cell type signatures and biological activity signatures in 
TCGA-AML cases stratified by prognostic molecular lesions. ClustVis was used for data analysis 

and visualization. B) Expression of IFN-related gene sets (as defined in Fig. 1) in TCGA cases 
with TP53 mutations (adverse molecular risk), NPM1 mutations without FLT3-ITD (ELN favorable 
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risk), FLT3-ITD without NPM1 mutations (ELN adverse risk), RUNX1 mutations (adverse 
molecular risk). Other = clonal hematopoiesis of indeterminate potential (CHIP)-defining mutations 

(TET2, DNMT3A, ASXL1). Comparisons were performed using the Kruskal-Wallis test for unpaired 
determinations. 

 
 

 
 

  



 
Fig. S14: Genes implicated in IFN downstream signaling in Beat AML trial specimens with 
TP53 mutations. A) Expression of IFN-downstream genes in Beat AML cases with (n=21) or 
without TP53 mutations (n=128). ClustVis was used for data analysis and visualization. B) Violin 

plots summarizing the expression of surrogate markers of T-cell infiltration and cytotoxicity in Beat 
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AML cases with or without TP53 mutations. Comparisons were performed with the Mann-Whitney 
U test for unpaired data. *P<0.05; **P<0.01. 
 
  



Fig. S15: Identification of regions of interest in BM biopsies from patients receiving 
flotetuzumab immunotherapy. Regions of interest (ROIs) covering the entire FFPE BM 

biopsy were selected for highly multiplexed protein profiling on the GeoMx DSP platform. Two 

representative patients are shown in panels A and B. 
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Supplementary Tables 
 
Supplemental Table 1. Differentially expressed (DE) genes (false discovery rate<0.05) between 
ELN favorable-risk and adverse-risk AML (HOVON discovery cohort). 
 
Official 
symbol 

Official full name Location NanoString probe ID Synonyms; previous 
symbols 

APP Amyloid beta 
precursor protein 

21q21.3 NM_000484.3:1725 AD1 

ARG2 Arginase 2 14q24.1 NM_001172.3:1150 
 

CARD11 Caspase 
recruitment domain 
family member 11 

7p22.2 NM_032415.2:1075 CARMA1, BIMP3 

CCL23 C-C motif 
chemokine ligand 
23 

17q12 NM_145898.1:336 SCYA23, Ckb-8, 
MPIF-1, MIP-3, CKb8 

CD34 CD34 molecule 1q32.2 NM_001025109.1:1580 
 

CD55 CD55 molecule 1q32.2 NM_000574.3:101 DAF, CR, TC, CROM 
CT45A1 Cancer/testis 

antigen family 45 
member A1 

Xq26.3 NM_001017417.1:866 CT45-1, CT45.1 

CYFIP2 Cytoplasmic FMR1 
interacting protein 2 

5q33.3 NM_001037332.2:4043 PIR121 

DPP4 Dipeptidyl 
peptidase 4 

2q24.2 NM_001935.3:2700 CD26, ADCP2, 
DPPIV 

F2RL1 F2R like trypsin 
receptor 1 

5q13.3 NM_005242.3:940 GPR11, PAR2 

IL15 Interleukin 15 4q31.21 NM_172174.1:1685 IL-15, MGC9721 
IL2RA Interleukin 2 

receptor subunit 
alpha 

10p15.1 NM_000417.1:1000 IL2R, IDDM10, CD25 

LILRA4 Leukocyte 
immunoglobulin like 
receptor A4 

19q13.42 NM_012276.3:1577 
 

MAF MAF bZIP 
transcription factor 

16q23.2 NM_005360.4:888 c-MAF 

MRC1 Mannose receptor 
C-type 1 

10p12.33 NM_002438.2:525 MRC1L1, CLEC13D, 
CD206, bA541I19.1, 
CLEC13DL 

NFATC1 Nuclear factor of 
activated T cells 1 

18q23 NM_172389.1:1984 NF-ATC, NFATc, 
NFAT2 

PNMA1 PNMA family 
member 1 

14q24.3 NM_006029.4:1565 MA1 

PRM1 Protamine 1 16p13.13 NM_002761.2:319 CT94.1 
RAG1 Recombination 

activating 1 
11p12 NM_000448.2:2300 RNF74, MGC43321 

STAT4 Signal transducer 
and activator of 
transcription 4 

2q32.2-
q32.3 

NM_003151.2:789 ILT7, CD85g 
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TNFRSF18 TNF receptor 
superfamily 
member 18 

1p36.33 NM_004195.2:445 AITR, GITR, CD357 
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Table S2. Competing risks analysis for overall survival (OS) prediction (PMCC discovery cohort). 
 
 

 SHR Std. Err. z P> /z/ 95% CI 

IFN score 1.053864 0.0266407 2.08 0.038 1.002922-
1.107394 

Innate score 0.9683486 0.0264452 -1.18 0.239 0.9178796-
1.021593 

Adaptive 
score 

0.9996771 0.0090025 -0.04 0.971 0.9821873-
1.017478 

 
Number of observations = 249 
Number failed = 125 
Number competing = 75 
Number censored = 49 
Wald c2 = 6.15 
 

Legend: SHR = Estimated subhazard ratio; Std. Err. = standard error; CI = Confidence interval; 
IFN = interferon. 
Competing risk analyses were performed using STATA/IC (version 16.0). 
HSCT, a potential confounder, was treated as an event whose occurrence precluded the 
occurrence of the primary clinical endpoint (death). 
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Table S3. Causes of death in patients receiving allogeneic hematopoietic stem cell 
transplantation (HSCT; PMCC cohort). 
 

Cause of death Immune-infiltrated (n=36) Immune-depleted (n= 52) 

Treatment-related toxicity*  3 (8%) 1 (2%) 

Graft-versus-host disease 8 (22%) 8 (15%) 

Leukemia recurrence 9 (25%) 11 (21%) 

Infections 3 (8%) 9 (17%) 

Other ; not known 0 ; 13 (36%) 4 ; 19 (44%) 

 
*Including sinusoidal obstruction syndrome.  
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Table S4. Gene ontologies (GO) of and KEGG pathways captured by DE genes between adult 
(SAL cohort) and childhood AML (CHOP cohort). 
 
GO term Description Count in 

gene set 
FDR 

GO:0002376 Immune system process 26 4.03×10-17 
GO:0006955 Immune response 22 1.79×10-15 
GO:0016579 Protein deubiquitination 13 5.31×10-14 
GO:0071347 Cellular response to interleukin 1 10 1.24×10-12 

GO:0070423 Nucleotide-binding oligomerization domain 
containing signaling pathway 7 1.01×10-11 

GO:0006508 Proteolysis 17 2.30×10-11 
GO:0045321 Leukocyte activation 15 9.49×10-11 
GO:0006950 Response to stress 23 1.03×10-10 
GO:0050896 Response to stimulus 30 1.33×10-10 
GO:0070498 Interleukin 1-mediated signaling pathway 7 2.76×10-10 
GO:0006954 Inflammatory response 12 3.22×10-10 

GO:0002758 Innate immune response-activating signal 
transduction 9 3.62×10-10 

GO:0002221 Pattern recognition receptor signaling pathway 8 7.58×10-10 

GO:0051603 Proteolysis involved in cellular protein catabolic 
process 12 7.58×10-10 

GO:0070647 Protein modification by small protein 
conjugation or removal 14 1.91×10-9 

GO:0006511 Ubiquitin-dependent protein catabolic process 11 3.24×10-9 
GO:0034097 Response to cytokine 14 5.12×10-9 
GO:0010033 Response to organic substance 20 5.49×10-9 
GO:0019221 Cytokine-mediated signaling pathway 12 6.08×10-9 
    
Pathway ID Description Count in 

gene set 
FDR 

hsa05169 Epstein-Barr virus infection 17 1.92×10-24 
hsa03050 Proteasome 10 1.21×10-17 
hsa04620 Toll-like receptor signaling pathway 10 2.03×10-14 
hsa05142 Chagas disease (American trypanosomiasis) 10 2.03×10-14 
hsa04657 IL-17 signaling pathway 9 4.62×10-13 
hsa04621 NOD-like receptor signaling pathway 10 1.12×10-12 
hsa04668 TNF signaling pathway 9 1.28×10-12 
hsa04062 Chemokine signaling pathway 10 1.92×10-12 

hsa05167 Kaposi's sarcoma-associated herpesvirus 
infection 10 1.92×10-12 

hsa04064 NF-kappa B signaling pathway 8 1.98×10-11 
hsa04622 RIG-I-like receptor signaling pathway 7 1.86×10-10 
hsa05161 Hepatitis B 8 4.09×10-10 
hsa05134 Legionellosis 6 2.72×10-9 
hsa05131 Shigellosis 6 5.99×10-9 

hsa05120 Epithelial cell signaling in Helicobacter pylori 
infection 6 7.27×10-9 

hsa05132 Salmonella infection 6 2.66×10-8 
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hsa05168 Herpes simplex infection 7 6.58×10-8 
hsa05145 Toxoplasmosis 6 1.04×10-7 
hsa04380 Osteoclast differentiation 6 2.06×10-7 
hsa05160 Hepatitis C 6 2.68×10-7 
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Table S5. GO of and KEGG pathways captured by DE genes between adult AML patients at the 
time of diagnosis and achievement of complete remission (SAL cohort). 
 
GO term Description Count in 

gene set 
FDR 

GO:0002376 Immune system process 20 7.85×10-9 

GO:0046902 Regulation of mitochondrial membrane 
permeability 7 2.04×10-8 

GO:0052150 Modulation by symbiont of host apoptotic 
process 4 2.49×10-7 

GO:1902533 Positive regulation of intracellular signal 
transduction 13 2.49×10-7 

GO:0006955 Immune response 15 2.58×10-7 
GO:0007166 Cell surface receptor signaling pathway 17 2.58×10-7 
GO:0019221 Cytokine-mediated signaling pathway 11 2.58×10-7 
GO:0031341 Regulation of cell killing 6 2.58×10-7 
GO:0034097 Response to cytokine 13 2.58×10-7 
GO:0071310 Cellular response to organic substance 17 2.60×10-7 
GO:0010821 Regulation of mitochondrion organization 7 2.95×10-7 

GO:1901030 
Positive regulation of mitochondrial outer 
membrane permeabilization involved in 
apoptotic signaling pathway 

5 3.11×10-7 

GO:0048583 Regulation of response to stimulus 21 3.59×10-7 
GO:0070887 Cellular response to chemical stimulus 18 4.02×10-7 
GO:0044419 Interspecies interaction between organisms 11 4.46×10-7 

GO:0010822 Positive regulation of mitochondrion 
organization 6 4.67×10-7 

GO:0071345 Cellular response to cytokine stimulus 12 5.40×10-7 
GO:0048584 Positive regulation of response to stimulus 16 5.56×10-7 

GO:2001235 Positive regulation of apoptotic signaling 
pathway 7 5.56×10-7 

    
Pathway ID Description Count in 

gene set 
FDR 

hsa04210 Apoptosis 8 3.58×10-9 
hsa04215 Apoptosis - multiple species 5 1.14×10-7 
hsa05200 Pathways in cancer 10 1.15×10-7 
hsa01524 Platinum drug resistance 5 2.51×10-6 
hsa05202 Transcriptional mis-regulation in cancer 6 4.90×10-6 
hsa04151 PI3K-Akt signaling pathway 7 1.52×10-5 
hsa05014 Amyotrophic lateral sclerosis (ALS) 4 2.03×10-5 
hsa05166 HTLV-I infection 6 2.84×10-5 
hsa04060 Cytokine-cytokine receptor interaction 6 3.36×10-5 
hsa05212 Pancreatic cancer 4 6.24×10-5 
hsa05220 Chronic myeloid leukemia 4 6.27×10-5 
hsa01521 EGFR tyrosine kinase inhibitor resistance 4 6.35×10-5 
hsa05210 Colorectal cancer 4 8.12×10-5 
hsa05340 Primary immunodeficiency 3 0.00023 
hsa05161 Hepatitis B 4 0.00049 
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hsa04630 JAK-STAT signaling pathway 4 0.00072 
hsa05213 Endometrial cancer 3 0.00072 
hsa05225 Hepatocellular carcinoma 4 0.00072 
hsa04137 Mitophagy - animal 3 0.00077 
hsa05223 Non-small cell lung cancer 3 0.00084 
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Table S6. GO of and KEGG pathways captured by DE genes between adult AML patients at the 
time of relapse and achievement of complete remission (SAL cohort). 
 
GO term Description Count in 

gene set 
FDR 

GO:0007166 Cell surface receptor signaling pathway 23 1.96×10-13 
GO:0002376 Immune system process 21 1.90×10-10 
GO:0034097 Response to cytokine 16 1.90×10-10 
GO:0006955 Immune response 18 2.07×10-10 
GO:0007165 Signal transduction 26 2.56×10-10 
GO:0051716 Cellular response to stimulus 28 5.39×10-10 
GO:0071345 Cellular response to cytokine stimulus 14 4.73×10-9 
GO:0050896 Response to stimulus 29 7.20×10-9 
GO:0010033 Response to organic substance 20 1.27×10-9 
GO:0019221 Cytokine-mediated signaling pathway 12 1.27×10-9 
GO:0071310 Cellular response to organic substance 18 2.31×10-9 
GO:0010941 Regulation of cell death 16 2.72×10-9 
GO:0002521 Leukocyte differentiation 9 7.30×10-9 
GO:0009612 Response to mechanical stimulus 8 8.11×10-9 
GO:0030217 T cell differentiation 7 1.02×10-7 
GO:0010942 Positive regulation of cell death 11 1.63×10-7 
GO:0050776 Regulation of immune response 12 1.90×10-7 
GO:0002682 Regulation of immune system process 14 2.88×10-7 

GO:0002768 Immune response-regulating cell surface 
receptor signaling pathway 8 3.57×10-7 

    
Pathway ID Description Count in 

gene set 
FDR 

hsa04659 Th17 cell differentiation 9 5.81×10-12 
hsa04658 Th1 and Th2 cell differentiation 8 6.86×10-11 
hsa04660 T cell receptor signaling pathway 8 1.11×10-10 
hsa04210 Apoptosis 8 8.77×10-10 
hsa04060 Cytokine-cytokine receptor interaction 9 3.86×10-9 
hsa04380 Osteoclast differentiation 7 1.58×10-8 
hsa04650 Natural killer cell mediated cytotoxicity 7 1.58×10-8 
hsa05164 Influenza A 7 8.94×10-8 
hsa04217 Necroptosis 6 1.63×10-6 
hsa05210 Colorectal cancer 5 2.47×10-6 
hsa04657 IL-17 signaling pathway 5 3.27×10-6 
hsa05142 Chagas disease (American trypanosomiasis) 5 4.67×10-6 
hsa04668 TNF signaling pathway 5 5.93×10-6 
hsa05162 Measles 5 1.48×10-5 
hsa05166 HTLV-I infection 6 1.48×10-5 

hsa05120 Epithelial cell signaling in Helicobacter pylori 
infection 4 2.48×10-5 

hsa04010 MAPK signaling pathway 6 3.20×10-5 
hsa05133 Pertussis 4 3.40×10-5 
hsa05132 Salmonella infection 4 5.21×10-5 
hsa01522 Endocrine resistance 4 7.90×10-5 
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Table S7: Binary logistic regression predicting therapeutic resistance (PMCC cohort). 
 
Model 1     B  Wald c2 p OR 
ELN risk category      28.64  0 
Favorable vs. adverse   -2.97  14.77  0 0.05 
Intermediate vs. adverse   -1.52  21.36  0 0.22 

Model c2     33.43 
P value     0 
-2LL      254.6 
Nagelkerke (pseudo R2)   0.183 
Sensitivity     48.0% 
Specificity     85.2% 
False positive rate    45.8% 
False negative rate    17.9% 
AUROC     0.702 
 
Model 2     B  Wald c2 p OR 
ELN risk category      29.63  0  
Favorable vs. adverse   -3.001  15.1  0 0.05 
Intermediate vs. adverse   -1.613  22.37  0 0.2 
WBC      0.003  1.44  0.23 1.003 

Model c2     34.82 
P value     0 
-2LL      253.2 
Nagelkerke (pseudo R2)   0.190 
Sensitivity     50.0% 
Specificity     85.2% 
False positive rate    45.0% 
False negative rate    17.5% 
AUROC     0.731 
 
Model 3     B  Wald c2 p OR 
ELN risk category      28.51  0   
Favorable vs. adverse   -3.005  14.88  0 0.05 
Intermediate vs. adverse   -1.583  21.29  0 0.22 
WBC      0.004  1.84  0.175 1.004 
AML type (primary versus secondary) -0.65  2.59  0.108 0.52 

Model c2     37.33 
P value     0 
-2LL      250.6 
Nagelkerke (pseudo R2)   0.203 
Sensitivity     50.0% 
Specificity     85.2% 
False positive rate    45.0% 
False negative rate    17.5% 
AUROC     0.731 
 
Model 4     B  Wald c2 p OR 
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ELN risk category      28.35  0 
Favorable vs. adverse   -3.07  15.37  0 0.05 
Intermediate vs. adverse   -1.56  20.57  0 0.21 
WBC      0.003  1.54  0.215 1.003 
AML type (primary versus secondary) -0.78  3.371  0.066 0.457 
Age      -0.012  1.111  0.292 0.989 

Model c2     38.45 
P value     0 
-2LL      249.5 
Nagelkerke (pseudo R2)   0.318 
Sensitivity     50.0% 
Specificity     85.2% 
False positive rate    46.0% 
False negative rate    17.5% 
AUROC     0.775 
 
Model 5     B  Wald c2 p OR 
ELN risk category      27.38  0 
Favorable vs. adverse   -3.63  18.83  0 0.03 
Intermediate vs. adverse   -1.65  16.9  0 6 
WBC      0.006  3.83  0.05 1.003 
AML type (primary versus secondary) -0.49  0.84  0.36 0.65 
Age      -0.02  1.36  0.244 0.985 
Myeloid inflammation    0.6  9.06  0.003 1.822 
Inflammatory chemokines   -0.37  1.99  0.16 0.69 
IFN-g      -0.82  6.07  0.014 0.439 
IFN downstream    0.87  4.49  0.034 2.4 
Immunoproteasome    0.62  1.29  0.256 1.86 
IL-10      -0.17  0.58  0.45 0.85 
PD-L1      -0.09  0.07  0.79 0.914 
PD-L2      0.397  1.92  0.166 1.49 
MAGEs     0.16  0.11  0.74 1.18 

Model c2     65.87 
P value     0 
-2LL      222.1 
Nagelkerke (pseudo R2)   0.339 
Sensitivity     63.6% 
Specificity     88.0% 
False positive rate    34.3% 
False negative rate    13.0% 
AUROC     0.815 
 
 
Legend: Predicted likelihood of response to induction chemotherapy in AML patients from the 
PMCC cohort (n=249 cases). 2017 ELN cytogenetic risk, white blood cell count at diagnosis, 
disease type (primary versus secondary AML), patient age at diagnosis and immune gene 
signatures were selected as pre-treatment covariates.  
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Table S8: Multinomial logistic regression predicting therapeutic response (HOVON cohort).  
 
Parameter estimates 
 
    b SE Wald c2 P value HR 95% CI for HR 
           Lower Upper 
EFS Intercept  -2.345 5.881 0.159  0.69       
 BM blasts  0 0.006 0.002  0.966  1 0.988 1.011 
 Age   -0.006 0.009 0.498  0.48  0.994 0.977 1.011 
 Lymphoid cells  1.487 1.48 1.01  0.315  4.425 0.243 80.533 
 Myeloid cells  -0.309 0.441 0.492  0.483  0.734 0.309 1.742 
 APM   -0.148 0.585 0.064  0.801  0.863 0.274 2.717 
 MHC2   -0.24 0.132 3.323  0.068  0.787 0.608 1.018 
 IFN-g   0.271 0.483 0.314  0.575  1.311 0.509 3.38 
 Cytotoxicity  -0.358 0.65 0.303  0.582  0.699 0.195 2.5 
 Immunoproteasome 0.326 0.325 1.011  0.315  1.386 0.733 2.619 
 Apoptosis  -0.132 0.261 0.254  0.614  0.877 0.525 1.463 
 Inflamm. chemokines 0.246 0.319 0.596  0.44  1.279 0.685 2.389 
 MAGEs  -3.168 1.014 9.76  0.002  0.042 0.006 0.307 
 IFN downstream -1.159 0.362 10.255  0.001  0.314 0.154 0.638 
 Myeloid inflammation -0.047 0.183 0.067  0.795  0.954 0.667 1.364 
 B cells   0.114 0.389 0.085  0.77  1.12 0.522 2.403 
 CD45   -0.068 0.293 0.054  0.817  0.934 0.526 1.659 
 CD8+ cells  -0.295 0.437 0.454  0.501  0.745 0.316 1.755 
 CTLs   0.505 0.852 0.351  0.554  1.657 0.312 8.805 
 DCs   1.574 0.831 3.589  0.058  4.827 0.947 24.601 
 Exhausted CD8+ cells -0.487 0.497 0.96  0.327  0.614 0.232 1.628 
 Macrophages  0.222 0.295 0.57  0.45  1.249 0.701 2.225 
 Mast cells  0.066 0.123 0.292  0.589  1.069 0.84 1.359 
 PMN   0.004 0.176 0  0.984  1.004 0.711 1.417 
 NK cells  -0.462 0.523 0.782  0.377  0.63 0.226 1.755 
 T cells   -0.279 0.471 0.352  0.553  0.756 0.301 1.902 
 Th1   -0.004 0.478 0  0.993  0.996 0.39 2.541 
 TIS   1.728 0.982 3.1  0.078  5.63 0.822 38.548 
 [ELN=ADV]  0.039 0.365 0.012  0.914  1.04 0.509 2.127 
 [ELN=FAV]  1.492 0.287 26.969  0  4.445 2.531 7.804 
 [ELN=INT]  0^ . .  .  . . . 
 
NR Intercept  -18.35 6.566 7.808  0.005       
 BM blasts  0.001 0.006 0.05  0.823  1.001 0.989 1.014 
 Age   0.02 0.01 4.354  0.037  1.02 1.001 1.04 
 Lymphoid cells  1.185 1.557 0.579  0.447  3.271 0.155 69.157 
 Myeloid cells  0.262 0.481 0.297  0.586  1.3 0.506 3.338 
 APM   0.129 0.629 0.042  0.838  1.138 0.331 3.905 
 MHC2   -0.158 0.139 1.286  0.257  0.854 0.65 1.122 
 IFN-g   -0.562 0.553 1.034  0.309  0.57 0.193 1.685 
 Cytotoxicity  -0.4 0.715 0.313  0.576  0.67 0.165 2.721 
 Immunoproteasome 0.764 0.358 4.55  0.033  2.148 1.064 4.335 
 Apoptosis  0.135 0.289 0.219  0.64  1.145 0.65 2.016 
 Inflamm. chemokines 0.053 0.336 0.025  0.874  1.055 0.546 2.036 
 MAGEs  -2.088 1.022 4.172  0.041  0.124 0.017 0.919 
 IFN downstream -0.437 0.368 1.414  0.234  0.646 0.314 1.328 
 Myeloid inflammation 0.337 0.183 3.417  0.065  1.401 0.98 2.004 
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 B cells   0.081 0.41 0.039  0.844  1.084 0.485 2.422 
 CD45   0.121 0.312 0.149  0.699  1.128 0.612 2.081 
 CD8+ cells  -0.522 0.47 1.234  0.267  0.593 0.236 1.491 
 CTLs   0.439 0.919 0.228  0.633  1.551 0.256 9.384 
 DCs   1.651 0.873 3.579  0.059  5.215 0.942 28.861 
 Exhausted CD8+ cells 0.456 0.528 0.744  0.388  1.578 0.56 4.443 
 Macrophages  -0.176 0.335 0.277  0.599  0.838 0.435 1.616 
 Mast cells  0.328 0.131 6.279  0.012  1.389 1.074 1.795 
 PMN   -0.156 0.197 0.623  0.43  0.856 0.581 1.26 
 NK cells  -0.164 0.532 0.096  0.757  0.848 0.299 2.406 
 T cells   -0.275 0.497 0.308  0.579  0.759 0.287 2.009 
 Th1   0.018 0.476 0.001  0.97  1.018 0.401 2.587 
 TIS   0.331 1.034 0.102  0.749  1.392 0.183 10.563 
 [ELN=ADV]  1.168 0.3 15.151  0  3.217 1.786 5.794 
 [ELN=FAV]  -0.619 0.362 2.917  0.088  0.539 0.265 1.096 
 [ELN=INT]  0^ . .  .  . . . 
 
NRM Intercept  11.659 7.472 2.435 1 0.119       
 BM blasts  -0.009 0.008 1.303 1 0.254  0.991 0.977 1.006 
 Age   0.019 0.011 2.811 1 0.094  1.019 0.997 1.042 
 Lymphoid cells  0.937 1.812 0.267 1 0.605  2.551 0.073 88.87 
 Myeloid cells  -0.233 0.561 0.173 1 0.677  0.792 0.264 2.377 
 APM   -1.241 0.726 2.922 1 0.087  0.289 0.07 1.199 
 MHC2   0.118 0.179 0.435 1 0.509  1.126 0.792 1.6 
 IFN-g   -1.154 0.808 2.039 1 0.153  0.315 0.065 1.537 
 Cytotoxicity  0.192 0.817 0.055 1 0.814  1.211 0.244 6.003 
 Immunoproteasome 0.216 0.412 0.276 1 0.6  1.241 0.554 2.782 
 Apoptosis  -0.176 0.327 0.291 1 0.589  0.838 0.442 1.59 
 Inflamm. chemokines 0.401 0.407 0.972 1 0.324  1.493 0.673 3.313 
 MAGEs  -1.897 1.283 2.186 1 0.139  0.15 0.012 1.855 
 IFN downstream -0.852 0.482 3.123 1 0.077  0.426 0.166 1.097 
 Myeloid inflammation 0.051 0.228 0.05 1 0.823  1.052 0.673 1.644 
 B cells   0.102 0.481 0.045 1 0.833  1.107 0.431 2.843 
 CD45   0.141 0.387 0.132 1 0.716  1.151 0.539 2.458 
 CD8+ cells  -0.791 0.541 2.142 1 0.143  0.453 0.157 1.308 
 CTLs   -0.324 1.061 0.093 1 0.76  0.723 0.09 5.792 
 DCs   -0.484 1.101 0.193 1 0.66  0.616 0.071 5.336 
 Exhausted CD8+ cells -0.03 0.617 0.002 1 0.961  0.97 0.289 3.254 
 Macrophages  0.21 0.384 0.298 1 0.585  1.233 0.581 2.617 
 Mast cells  -0.149 0.167 0.803 1 0.37  0.861 0.621 1.194 
 PMN   0.13 0.221 0.348 1 0.555  1.139 0.739 1.755 
 NK cells  -0.334 0.652 0.262 1 0.609  0.716 0.199 2.571 
 T cells   0.562 0.562 1.001 1 0.317  1.755 0.583 5.28 
 Th1   0.154 0.586 0.069 1 0.793  1.166 0.37 3.675 
 TIS   2.164 1.301 2.769 1 0.096  8.707 0.681 111.402 
 [ELN=ADV]  0.209 0.414 0.255 1 0.614  1.232 0.548 2.773 
 [ELN=FAV]  0.661 0.36 3.366 1 0.067  1.937 0.956 3.924 
 [ELN=INT]  0^ . . 0 .  . . . 
 
* The reference category is: Relapse. 
^ This parameter is set to 0 because it is redundant. 
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Legend: ELN cytogenetic risk, patient age, leukemia burden at diagnosis and immune gene signatures were 
selected as covariates (HOVON validation cohort; n=618 cases). HR = hazard ratio; DF = degrees of freedom; 
EFS = event-free survival; NR = no response to induction chemotherapy; NRM = non-relapse mortality; BM = 
bone marrow; TIS = tumor inflammation signature; MAGE = melanoma-associated antigen; IFN = interferon; 
PMN = polymorphonuclear cells; DC = dendritic cell; CTL = cytotoxic T lymphocyte; APM = antigen processing 
machinery; ELN = European Leukemia-Net; ADV = adverse cytogenetic risk; FAV = favorable cytogenetic 
risk; INT = intermediate cytogenetic risk.  
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Table S9: Study participants in the CP-MGD006-01 clinical trial (NCT#02152956) of flotetuzumab 
immunotherapy. 
 
 

Number of patients 30 
Number of BM samples 49 

Baseline 30 
End of cycle 1 19 

Males/females (n) 14/16 
Median age (range) 57 (27-74) 
Age (years)   

18-65 23 
66-75 7 

Disease status at time of enrollment   
Relapsed AML 7 

Chemotherapy-refractory AML 23 
Secondary AML 12 
Cytogenetic risk group (ELN; n)   

Favorable 6 
Intermediate 6 

Adverse 17 
Unknown 1 

Prior lines of therapy (n and range) 4 (1-9) 
Response   

CR/CRh/CRi 8 
PR 1 
OB 3 

TF/SD/PD 18 

  
 
Legend: ELN = European Leukemia Net; CR = complete remission; CRi= CR with incomplete 
hematologic recovery; CRh = CR with partial hematologic recovery; OB = other benefit; TF = 
treatment failure; SD = stable disease; PD = progressive disease; BM = bone marrow; N.A. = not 
available. 
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Table S10: Protein panel used for GeoMx Digital Spatial Profiling (DSP) of 
FFPE bone marrow biopsies (SAL cohort [A] and flotetuzumab cohort [B]). 

 
 

Panel A  
Housekeeping proteins RPS6 
 Histone H3 
Signal-to-noise ratio Mouse IgG control 
 IgG rabbit isotype control 
NK cells CD56 
 GZMB 
T cells CD3 
 CD4 
 CD8A 
 CD45RO 
 FoxP3 
B cells CD19 
 CD20 
Monocytes/macrophages CD14 
 CD68 
Immune checkpoints B7-H3 (CD276) 
 VISTA (PD-1H) 
 PD1 (CD279) 
 PD-L1 (CD274) 
Signaling pathways STAT3 
 P-STAT3 
 AKT 
 P-AKT 
Cancer drivers Bcl-2 
 PTEN 
 b-catenin 
Other molecules Ki-67 
 CD44 
 CD45 
 Pan-cytokeratin 
 b2-microglobulin 

 
Panel B  
Housekeeping proteins RPS6 
 Histone H3 
 GAPDH 
Isotype controls Mouse IgG1 
 Rabbit IgG1 
 Mouse IgG2A 
Immune cell profiling core b2-microglobulin 
 CD11c 
 CD20 
 CD3 
 CD4 
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 CD45 
 CD56 
 CD68 
 CD8 
 CTLA4 
 GZMB 
 Ki-67 
 PD1 (CD279) 
 PD-L1 (CD274) 
 Pan-cytokeratin 
 HLA-DR 
 SMA 
 Fibronectin 
IO drug target module 4-1BB (CD137) 
 LAG3 
 OX40L 
 Tim-3 
 VISTA (PD-1H) 
 ARG1 
 B7-H3 (CD276) 
 IDO1 
 STING 
 GITR 
 4-1BB (CD137) 
Immune activation status module CD127 
 CD25 
 CD80 
 ICOS 
 PD-L2 
 CD40 
 CD27 
 CD44 
 CD127 
Immune cell typing module CD45RO 
 FoxP3 
 CD34 
 CD66b 
 CD14 
 FAP-a 
 CD163 
 CD45RO 
Pan-tumor module MART1 
 NY-ESO-1 
 S100B 
 Bcl-2 
 EpCAM 
 Her2/ErbB2 
 PTEN 
 PR 
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Table S11: Antibody panel used for intracellular cytokine staining of bone 
marrow cell suspensions. 
 
 
Antigen Clone Fluorochrome 
Surface staining 
CD3 UCHT1 PE-Dazzle 594 
CD4 RPA-T4 Brilliant Violet 421 
CD8 RPA-T8 APC-Fire 750 
Intracellular staining 
IL-2 MQ1-17H12 FITC 
IL-4 8D4-8 PE 
IL-10 JES3-9D7 Alexa Fluor 647 
IL-17 BL168 Per-CP-Cy5.5 
TNF-� MAb11 PE-Cy7 
IFN-� B27 Alexa Fluor 700 

 
 
 
  

 


