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1. Introduction 

Upland areas contain a number of fragile soil types that include immature Lithosols and Regosols 

(Pearsall, 1950; Bibby, 1984; Gordon et al., 2001), Folic Histosols (Fox and Tarnocai, 2011) and carbon-

rich peats (Fibric Histosols (FAO, 1988); Bragg and Tallis, 2001). The landscapes overlying these soils 

also support a range of ecologically sensitive habitats of both national and global importance 

(Ratcliffe and Thompson, 1988; Thompson et al., 1995; EEA, 2010). Together these provide other 

ecosystem services including: water provision and regulation (Viviroli and Weingartner, 2004); field 

sports (Simmons, 2003); tourism (Fredman and Heberlein, 2005); renewable energy production 

(Thompson et al., 2005); agriculture (Mansfield, 2011); and commercial forestry (Bunce et al., 2014). 

Mountains cover 25% of the Earth’s land surface but the ecological value and importance of upland 

ecosystems are often disproportionate to their extent. In the UK, for example, despite covering <30% 

of the land by area, uplands contain almost 60% of the national designated Natura 2000 sites (EEA, 

2010).  

 

Upland environments are vulnerable to anthropogenic threats encompassing multiple spatial scales. 

The global and regional impacts of climate change (Gallego-Sala and Prentice, 2013) and atmospheric 

pollution (Caporn and Emmett, 2009) interact with more localised threats such as land management 

(Clutterbuck and Yallop, 2010), domestic livestock production (Chico et al., 2019), and recreation 

(Kincey and Challis, 2010; Pickering et al., 2011). Changes in agricultural practices and upland 

utilisation create a requirement for increased vehicular access, often in areas well beyond the official 

road networks, which increases the potential for damage and degradation of upland ecosystems 

(Lindsay et al., 2016).  
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Both surfaced and unsurfaced vehicle tracks can have significant adverse environmental impacts 

including: soil disturbance (Bayfield et al., 1984); soil compaction (Sack and da Luz, 2003); peat 

subsidence (Wawrzyczek et al., 2018); reduced soil moisture (Charman and Pollard, 1995); and 

increased surface runoff (Ziegler and Giambelluca, 1997), erosion (Gager and Conacher, 2001; 

McHugh, 2007) and sediment delivery (Fahey and Coker, 1989; Ziegler et al., 2004). The latter can 

alter downstream flow regimes, water quality and aquatic habitats (Arp and Simmons, 2012). Vehicle 

use has also been linked to the spread of invasive species (Rooney, 2005), reduced soil microfauna 

(Kevan et al., 1995; Niwranski et al., 2002), elevated risk to the establishment and movement of 

vulnerable animal species (Mammides et al., 2016), and persistent loss of vegetation cover (Bayfield et 

al., 1984). Even limited use in some habitats may have measurable consequences. In upland tundra, 

for example, the single passage of a tracked vehicle in summer can impact plant community structure 

for decades (Forbes, 1988). Even where unsurfaced tracks are later abandoned, the rapidity and extent 

of vegetation recovery is dependent on the communities affected. Heathland and grassland 

vegetation in the uplands may respond rapidly, whereas more sensitive communities such as on 

blanket bog frequently fail to show recovery 24 years after abandonment (Charman and Pollard, 1995). 

 

Given the extent of these environmental impacts, and existing concerns for upland biodiversity and 

habitat condition (Amar et al., 2012; Ohlemüller et al., 2008; Thirgood and Redpath., 2009), it is 

perhaps not surprising that vehicle tracks in the uplands have been a contentious issue for several 

decades (Prior and Raemakers, 2006). Conservationists and recreational users are generally opposed 

to the development of tracks, particularly expressing concern over their development in designated 

areas (e.g. Watson, 2011; Brown, 2013). It might be reasonably expected, therefore, that vehicle use in 

upland areas would be controlled by legislation. In the United States off-road vehicle (ORV) use is 

commonly permitted in restricted upland zones, but only on designated trails within specific time 

periods (e.g. Sack and da Luz, 2003). ORV users are also required to obtain permits to use designated 
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trails (e.g. National Park Service, 2014). However, in countries such as Great Britain there are 

currently no controls on ad hoc ORV travel across upland areas. 

 

In the case of surfaced tracks in Great Britain, the situation is more complex. The provision, 

rearrangement or replacement of a private way associated with some activities, such as renewable 

energy production (Wawrzyczek et al., 2018), are regarded as developments requiring planning 

permission from the Local Planning Authority (LPA). However, this does not apply if the purpose of 

the track is for agriculture or forestry in non-protected areas. Planning legislation covering Great 

Britain considers surfaced tracks for agriculture or forestry as permitted developments (UK 

Government, 1990; 2014). Under this legislation, developers are only required to seek prior 

notification from the LPA to determine whether prior approval is needed in respect of the design, 

manner of construction or route of the private way. Where new surfaced tracks or historical routes 

requiring significant alteration are proposed in areas protected by conservation legislation, the 

position is different and consent by the relevant national Statutory Nature Conservation Body (SNCB) 

is required.  

 

Given the sensitivity of the upland soil/habitat matrix, it might be expected that SNCBs would use 

legislation to keep the extent of vehicle tracks in areas of conservation importance to a minimum. 

While generic land cover within upland areas is routinely reported through land cover mapping (e.g. 

Feranec et al., 2007; EEA, 2017; Rowland et al., 2017), the extent to which sensitive upland habitats 

and soils are impacted by vehicle tracks is currently not known or monitored. As such, there is 

currently no quantitative reporting of the extent or location of tracks in upland areas with which to 

judge either the real importance of this issue or the success of current controls.  
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The aim of this study was to address this deficiency by providing, for the first time, quantitative 

estimates of the current extent of vehicular tracks across a sample of the uplands of Great Britain and 

to judge their impact by land cover, soil type (specifically blanket peat) and protective habitat 

designation. Land cover classes included grass/sedge dominated, heather dominated (managed and 

unmanaged), heather-grass vegetation, broadleaf woodland and ‘other’ (exposed rock and 

mining/quarries). We also used an information theory approach (Burnham and Anderson 2002) to 

formulate a set of a priori models to predict the presence and extent of surfaced vehicular tracks as a 

function of land cover, protected status, extent of blanket peat, proximity to areas of human 

population and altitude to identify drivers most strongly influencing vehicular track development in 

upland Britain. 

  

2. Methods  

2.1. GB upland area and study sample  

Digital vector data providing land classification of Great Britain were obtained from Countryside 

Survey (CS) mapping (Wood, 2013). Environmental Zones designated as ‘Uplands’ for England and 

Wales, and ‘True Uplands’ for Scotland were selected as representative of upland habitat across 

mainland Great Britain (Fig. 1; 58,045 km2). National Grid Reference mapping data were obtained 

from Ordnance Survey (OS) and 10 km x 10 km grid squares (‘OS grid squares’ hereafter) were used 

as primary study sample units. Using ArcGIS, OS grid squares were intersected with the CS upland 

zones and the mean upland coverage by OS grid square determined. A sample area of 2% has been 

shown to produce good results for estimating the extent of management burning in upland areas 

(Yallop et al., 2006). For this study, the number of grid squares required to provide a 5% sample of CS 

upland for each country were randomly selected using the Geospatial Modelling Environment (GME) 

package in R (version 3.5.2; R Development Core Team 2018). This procedure identified 10-27 sample 
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OS grid squares for each country that contained a sample of 5.4 - 5.7% of CS upland for each country 

(Table 1). 

 

Sample OS grid squares and the extent of CS upland within each grid square were assessed using 

imagery and OS mapping overlays in Google Earth (GE). Environmental Zones in CS data are 

classified by environmental variables, including climate, altitude and slope (Bunce et al., 1996) and 

created at a resolution of 1 km. For consistent assessment, the upland extent in all sample squares was 

revised at finer-scale to only include areas of land above the limit of agricultural enclosure or, for 

remote areas where no enclosure was present, only land above the OS 250 m contour marked on 

1:50000 scale mapping (Ratcliffe and Thompson, 1988; Backshall et al., 2001; Table 1). Reservoirs 

covering areas larger than 1 km2 that fell within the upland sample areas were excluded, and the 

coverage of imagery for all sample squares (ranging from 2007 to 2016) was digitised and attributed 

by year (Supplemental Table 1).  

 

2.2. Identification and mapping of vehicle tracks 

Vehicle tracks were digitised as linear features visible in the most recent imagery available in GE and 

recorded as either surfaced or unsurfaced in appearance. The primary identifying feature of 

unsurfaced tracks was the presence of parallel lines/tyre marks extending for distances greater than 

100 m, with reduced or altered plant growth (Fig. 2a) and erosion of soil/substrate (Fig. 2b) visible 

along their length. Surfaced tracks were identified from the uniform, bright appearance that contrasts 

with the surrounding landscape and arises from the application of surfacing material (Fig. 2b). All 

footpaths and roads marked on OS mapping were additionally mapped and used to avoid false 

identification of these features, particularly surfaced or paved footpaths (Buckley, 2018). However, 

some sections of unsurfaced track were coincident with the location of footpaths recorded on OS 
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mapping and where these extended for distances greater than 100 m, these sections of footpath were 

additionally assigned as a vehicle track.  

 

Mapping of tracks was not undertaken in areas of coniferous plantation due to tracks being obscured 

by the tree canopy. Tyre tracks within mowing lines associated with vegetation cutting in heather-

dominated areas (see Fig. 2b) were considered single use and were also excluded from mapping and 

statistical reporting. 

 

2.3. Classification of land cover 

Areas of major upland vegetation type (coniferous plantation, broadleaf woodland, ericaceous 

(predominantly Calluna vulgaris L.) and grass/sedge dominated vegetation (Yallop and Clutterbuck, 

2009)) were digitised for the upland extent in each sample square using imagery in GE. In addition, 

Calluna dominated vegetation was separated into areas with and without visible evidence of 

prescribed fire management (Yallop et al., 2006; see Fig. 2b), areas where no dominant community of 

Calluna or grass/sedge could be visually determined were mapped as heather-grass vegetation, and 

further classes of exposed rock (such as mountain crags (Ellis et al., 1996) and limestone pavement 

(Goldie, 1993)), and areas of quarry/mining activity were recorded as 'other'.  

 

The length of each mapped track was examined in GE, even where this led outside the sample grid 

square, and it was noted where these led to, or continued past, a building (e.g. house, sheep pen), 

plantation, quarry, pylon/radio mast, wind farm or reservoir. It was not possible to determine 

whether these tracks were created for these features or if the tracks were already present and had 

since been adopted for additional use. These tracks were, therefore, attributed as multi-use tracks 
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(Prior and Raemakers, 2006) and included in analysis. Track and land cover data were exported to 

ArcGIS for spatial analysis. 

 

2.4. Areas of designated protection and blanket peat 

Conservation legislation covering the British uplands includes both European-wide and national 

protective designations. Natura 2000 is the largest coordinated network of protected sites in the 

World protecting over 1000 rare and threatened animal and plant species and 200 habitat types 

(European Commission, 2008). Founded on two key pieces of European Union legislation – the 1979 

Birds Directive 2009/147/EC (formerly 79/409/EEC) and the 1992 Habitats Directive 92/43/EEC – 

Natura 2000 designates Special Protection Areas (SPA) and Special Areas of Conservation (SAC) 

respectively. Under the UK’s Wildlife and Countryside Act 1981 (JNCC, 2015), sites with features of 

special interest such as wildlife, geology and landforms are designated and protected as Sites of 

Specific Scientific Interest (SSSI). Digital vector data containing the extent of all SPA, SAC and SSSI 

were obtained from respective SNCB’s and merged to create an extent of combined ‘designated 

protected area’.  

 

Digital vector soil data for England and Wales were obtained from the National Soil Resources 

Institute (NSRI, 2001) and for Scotland from the James Hutton Institute (JHI, 2013). Soil units 

identified as blanket peat were extracted for each country (1011a-b and 1013a-b for England and 

Wales; 4, 124, 215 and 604-606 for Scotland; Table 1). Blanket peat soils were selected as they account 

for around 50% of the UK total soil carbon (Milne and Brown, 1997) and can support globally 

important blanket bog habitat (Lindsay et al., 1988). Only half (54%) of blanket peat in the sample lies 

within areas of protective designation (Table 1). 
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2.5. Data summary  

Surfaced and unsurfaced track data were intersected with land cover, area of designation and area of 

blanket peat to determine track length (km) and density of tracks (km km-2) for all combinations. 

Mapped footpath data were intersected with areas of designation and areas of blanket peat. As the 

squares contained different amounts of upland, the weighted arithmetic mean and weighted sample 

variance of track density for all squares were calculated to report statistics on track type and density. 

 

2.6. Determination of covariates 

Information on geographical location, proximity to human habitation and altitude were included in 

models to identify the most important predictors of the presence and density of surfaced tracks. To 

improve the resolution of geographical information for analysis, a grid comprising 1 x 1 km squares 

was created for the extent of the sample area using ArcGIS.  

 

The geographical location of the centroid of each 1 km square was determined in latitude and 

longitude (decimal degrees in WGS84). Postcodes covering mainland Great Britain were obtained 

from OS Code-Point OpenData, and the distance from the centroid of each 1 km square to the nearest 

postcode determined. Mean altitude for the area of upland contained in each 1 km square was 

determined from OS Land-Form PANORAMA elevation data (50 m resolution). The 1 km grid 

squares were subsequently intersected with surfaced track data, land cover, areas of designation and 

areas of blanket peat. 

 

2.6.1. Statistical analysis 
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Data were modelled using R (version 3.5.2; R Development Core Team 2018) with models fitted in a 

Bayesian framework using Integrated Nested Laplace Approximation (R-INLA; Rue et al. 2017). We 

used an information theory approach (Burnham and Anderson 2002), formulating 18 ecologically 

plausible alternative models (Table 2), with the best-fitting models identified based on Watanabe-

Akaike Information Criterion (WAIC) (Vehtari et al. 2017). This was not an exhaustive list of models 

but was considered a coherent list of competing hypotheses. For the variable ‘country’, data for 

England and Wales were pooled due to imbalance (deviation from orthogonality). 

 

Bayesian inference is robust in dealing with relatively complex datasets like the one in the present 

study, specifically unbalanced data, an inherent lack of dependency due to repeated measures at 

sampling sites, and a highly varied non-normal response variable. Bayesian models are flexible in 

allowing the estimation of a posterior distribution of differences between parameters and across 

levels of factors. These are relatively straightforward procedures using Bayesian inference, but 

extremely problematic in a frequentist framework (Zuur et al. 2014; Kruschke 2015), notwithstanding 

more general reservations in using frequentist analyses (Burnham and Anderson 2014). Integrated 

Nested Laplace Approximation (INLA) is an increasingly popular package in R for Bayesian inference. 

INLA is a deterministic Bayesian method, which means results are repeatable, in contrast to 

probabilistic methods. It permits a wide range of functions to be fitted, is relatively simple to use and 

is computationally efficient. 

 

Data for density of tracks were zero inflated. To accommodate this data structure, we used a hurdle 

model. Hurdle models are partitioned into two parts, with a binary process modelling probability of 

an event, and a second process modelling the magnitude of an event (Hilbe 2014). In the case of track 

data, we compared each 1 km square without surfaced tracks to those with surfaced tracks using a 

binary (Bernoulli) process, while for zero-truncated data we used a gamma distribution to 
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accommodate a continuous and strictly positive data distribution (Zuur et al. 2014). This modeling 

approach enabled us to separately identify which models best explained: 1. the probability of 

surfaced vehicle tracks in 1 km squares; 2. the density of surfaced tracks in 1 km squares where tracks 

occurred. Standard error of the regression (S), the standard distance between observations and the 

fitted model, was used as a measure of model goodness-of-fit. 

 

3. Results 

3.1. Sample area  

The total area sampled comprised 5.5% (3195 km2) of the area identified as upland in CS data for 

mainland Great Britain. This provided a revised 2332 km2 of the British uplands delimited to land 

above the limit of agricultural enclosure or above the OS 250 m contour. 18% of this area was found to 

be coniferous plantation (Table 1), resulting in the upland sample assessed here totalling 1910 km2. 

Within this sample, 36% comprised areas with protective habitat designation (679 km2) and 16% areas 

of blanket peat (301 km2). These represent between 4.1-6.4% and 3.2-5.9% of the total area of protected 

habitat and blanket peat in CS upland data respectively (Table 1).  

 

3.2. Track distribution and type 

A total length of 2104 km of vehicular track visible in imagery dating from 2007 to 2016 was identified 

in the sampled area (Table 3), which equates to a mean (± SE) track density of 1.10 ± 0.15 km km-2 

across the British uplands. The majority (1538 km) were classified as unsurfaced and 27% (566 km) 

surfaced (Table 3). The mean density of all tracks mapped in both England (2.17 ± 0.14 km km-2) and 

Wales (2.19 ± 0.42 km km-2) is four times greater than the mean density of all tracks mapped in 

Scotland (0.56 ± 0.12 km km-2).  
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The density of surfaced tracks mapped in Scotland (0.22 ± 0.05 km km-2) was lower than those 

mapped in both England (0.40 ± 0.07 km km-2) and Wales (0.50 ± 0.05 km km-2). However, as a 

proportion of all tracks mapped, twice the amount of tracks in Scotland (40%) were surfaced 

compared to 19% and 23% of tracks for England and Wales respectively (Table 3). 

 

3.3. Tracks by land cover, designation and blanket peat 

Assessment of land cover across the whole sample shows that the highest mean density of tracks (1.76 

± 0.18 km km-2) exists within areas of managed heather (Table 4), 65% greater than the density of 

tracks identified in unmanaged heather (1.07 ± 0.18 km km-2) and grass-dominated areas (1.07 ± 0.17 

km km-2). The density of tracks in heather-grass vegetation, broadleaf woodland and other land cover 

(rock outcrops and quarries) were all at least 25% lower than the mean density across the entire 

upland sample, with the lowest density recorded on ‘other’ land cover (0.32 ± 0.16 km km-2; Table 4). 

Split by track type, the highest mean density of both unsurfaced (1.23 ± 0.17 km km-2) and surfaced 

tracks (0.52 ± 0.06 km km-2) were found within areas of managed heather (Table 4). Country level 

statistics are presented in Supplemental Table 2. 

 

Comparison of the extent of tracks within and outside of designated areas are presented in 

Supplemental Table 3. The highest density of surfaced tracks in designated areas was identified in 

areas of managed heather (0.39-0.52 km km-2; Supplemental Table 4). This surfaced track density is 

higher than the mean surfaced track density across the whole sample in each country (Table 3) and in 

Scotland the density of surfaced tracks in managed heather (0.39 ± 0.05 km km-2) is almost twice the 

density of surfaced tracks in non-designated areas (0.26 ± 0.07 km km-2; Supplemental Table 4).  
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The extent of tracks by soil type are presented in Supplemental Table 5. In Scotland and Wales, the 

highest density of surfaced tracks on blanket peat was identified in areas of managed heather (0.69-

1.24 km km-2; Supplemental Table 6). This surfaced track density is 2-3 times greater than the mean 

surfaced track density on other soils in both countries (0.23-0.55 km km-2). 

 

3.4. Models 

3.4.1. Probability of surfaced tracks 

The best-fitting model, determined by WAIC, to predict the probability of the presence or absence of 

surfaced tracks in each 1 km square grid square was model M18 (Table 2), which took the form:  

 

                   (   ) 

                  where                                

                 

                                                                      

                   
   

 

Where Ptrackij is the probability π of 1 km square i showing visible evidence of tracks in 10 km square 

(block) j. The variable distij is a continuous covariate representing distance to postcode (km), altij is a 

continuous covariate representing altitude (m), grassij is a continuous covariate equating with area of 

grass-dominated areas (km2), and mheathij is a continuous covariate equating with area of managed 

heather (km2). Exploratory analyses demonstrated dependency in the data among 1 km squares from 

the same 10 km squares. To accommodate this dependency in the data, the random intercept blockj 

was included to introduce a correlation structure between observations for different 1 km squares 
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from the same 10 km square, with variance block distributed normally and equal to 0.  

 

The model predicted statistically important positive relationships between the probability of surfaced 

tracks and the area of grass-dominated vegetation and managed heather (Table 5; Figs 3A-B). There 

was a statistically important negative interaction between the effects of distance to postcode and 

altitude on the probability of tracks; with a negative effect of altitude on the probability of tracks 

limited by proximity to areas of population (Table 6; Fig. 4). The standard error of the regression (S) 

was estimated to be 0.62 (95% credible intervals 0.35-1.00). Thus, 95% of model predictions for the 

probability of an average 1 km2 block being surfaced was estimated to lie between 0.35-1.00. 

 

3.4.2. Extent of surfaced tracks 

For zero-truncated data, the best-fitting model to predict the density tracks in each 1 km square grid 

square was model M14 (Table 2). The fitted model took the form: 

 

                       

 (        )        and     (        )  
   
 

 
 

   (   )       

                                          

                   
   

 

Where Dtrackij is the density of tracks in 1 km square i in 10 km square (block) j, assuming a gamma 

distribution with mean μ and precision . The variables grassij and mheathij were continuous covariates 
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representing area (km2) of grass-dominated vegetation and managed heather, respectively. Blockj was 

included as a random intercept in the model. The model predicted statistically important positive 

effects of both area of grass-dominated vegetation and managed heather (Table 6; Figs 5A-B). S was 

1.4 km (CrI 1.3-1.5); 95% of model predictions lay between 1.3-1.5 km of surfaced track for an average 

1 km2 block. 

 

4. Discussion 

This is the first study to make a national assessment of the extent of vehicular tracks in upland areas. 

By examining an approximately 5% sample of the uplands of Great Britain we provide an estimate of 

the length of tracks in current use broken down by track type, land cover, soil type and protective 

designation. Using an information theory approach, we formulated a set of a priori alternative models 

to enable inclusion of geographical and topographical variables to compare alternative predictors of 

track presence and length.  

 

4.1. Presence and extent of upland tracks 

The length of all vehicular tracks mapped (2104 km) was six times greater than the length of footpath 

marked on OS mapping (355 km; Supplemental Table 7), indicating that the British uplands may 

currently be accessed to a far higher degree by motorised vehicles than walkers. Although footpath 

erosion can be significant in creating gullies (Kincey and Challis, 2010), erosion caused by vehicles is 

five times greater (McHugh, 2007) and it is concerning to note that 25% of the length of footpaths 

marked on OS mapping showed evidence of being used by vehicles (Supplemental Table 7). The 

extent of track mapped in the sample equates to a mean density of vehicle track in the British uplands 

of 1.10 ± 0.15 km km-2, and although environmental impacts of tracks are widely reported (Bayfield et 

al., 1984; Forbes, 1988; Charman and Pollard, 1995; Sack and da Luz, 2003; Wawrzyczek et al., 2018) 

there is little published information on the extent of upland tracks elsewhere with which to compare 
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the density estimated here. However, this mean density of vehicle tracks is over seven times greater 

than the density of ORV tracks mapped in the area surrounding Lake Johnstone, Western Australia 

(0.15 km km-2; Westcott and Andrew, 2015). Given that this comparatively low level of track density 

has raised concerns over damage to features of conservation value at this location (Westcott and 

Andrew, 2015), it is concerning to note that the mean density of tracks in the uplands of England (2.17 

± 0.14 km km-2) and Wales (2.19 ± 0.42 km km-2) is over 14 times greater. The density of vehicle tracks 

in the British uplands is equally striking when compared to the density of the public road network, 

which in the UK equates to 0.17 km km-2 (Knoema, 2011). 

 

Ecological and environmental damage resulting from vehicle tracks has been noted in upland areas 

worldwide including in other parts of Europe (Heras and Infante, 2018), Canada (Kevan et al., 1995), 

North America (Arp and Simmons, 2012; Sack and Da Luz, 2003), Thailand (Ziegler et al., 2004) and 

New Zealand (Fahey & Coker, 1989). In the absence of data on the actual extent of vehicle tracks it is 

not possible to assess whether upland areas are accessed by vehicles at these levels globally. It is 

worth noting that the ecological impacts of vehicle traffic, such as the effect of dust on vegetation and 

the blockage of wildlife corridors, typically extend for distances >100 m from roads (Forman, 2000). 

Assessments of road networks globally indicate that around 80% of the Earth’s land surface is 

roadless (i.e. >1 km from a road; Ibisch et al., 2016). However, the roadless area is fragmented into 

600,000 patches of which more than half are <1 km2 in size (Ibisch et al., 2016), but it is not clear which 

habitats are impacted most. Given that mountainous areas cover 25% of the Earth’s surface 

(Thompson et al., 2005), this highlights an urgent need for wider quantification of track extent to 

understand if globally important upland habitats and soils are experiencing higher pressure of 

vehicles than other areas. 

  

The lower density of tracks mapped in Scotland in this study (0.56 ± 0.12 km km-2) most likely reflects 

the more remote nature of the Scottish uplands, with 85% of the population of mainland GB located in 
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England and Wales (ONS, 2018). The inference that more remote areas are less accessible and are less 

likely to have tracks is supported by the identification of a negative interaction between the effects of 

distance to postcode and altitude on the probability of surfaced track in the best-fitting Bernoulli 

model (Fig. 4). However, none of the models predicting track presence based solely on remoteness 

(M01-M05) were identified as the best-fitting model, and land cover proved a better predictor of the 

presence and extent of tracks (Table 6). 

 

4.2. Extent of tracks by land cover 

The highest density of tracks was associated with areas of heather-dominated vegetation managed by 

burning or cutting, an activity undertaken for grouse shooting (Table 3). This effect was positive, with 

a greater extent of surfaced tracks associated with a larger area of managed heather (Fig. 3A). A 

comparable effect was seen with the area of grass-dominated vegetation typically associated with 

sheep farming (Table 3; Fig. 3B). However, these overall statistics are slightly biased by the proportion 

of upland in GB that lie within Scotland (67% of the sample), although country (model M03) and 

geographic location (model M06) were not identified as important covariates predicting track 

presence or extent. While the mean density of both surfaced and unsurfaced tracks in managed 

heather in Scotland is more than twice the density of tracks mapped in any other land cover, in 

England and Wales high densities of tracks were identified in several land covers, particularly grass-

dominated vegetation and areas of heather-dominated vegetation (with and without signs of 

management; Supplemental Table 2). 

 

4.3. Tracks by protective designation 

Given the national and global importance of designated upland habitats, our findings suggest that the 

density of surfaced and unsurfaced tracks is lower in areas of conservation importance than outside 

(Supplemental Table 3). However, our analysis reveals this pattern to be more complex. The 

prediction of model M10 (Table 2) supports the value of designation in protecting these sites, with a 
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negative relationship between the probability of encountering surfaced tracks and the extent of 

protection for a given 1 km2; mean (credible intervals) -0.13 (-0.25 to -0.01). However, where surfaced 

tracks occur, the area protected is unrelated to the extent of surfaced tracks; mean (credible intervals) 

-0.03 (-0.10 to 0.04). The implication of this finding is that protected status is effective in limiting the 

establishment of surfaced tracks in a given location, but once surfaced tracks are constructed, their 

further development appears not to be constrained by its protected status. 

 

Examining designated areas by land cover revealed that the highest densities of surfaced tracks in all 

three countries (0.39-0.52 km km-2) occur in areas of managed heather. In Scotland this figure is higher 

than the mean density of surfaced tracks outside of designated areas. We recognise that some tracks 

may pass through one land cover to access other land cover beyond. However, the proportion of 

surfaced tracks that were classified as multi-use showed that in England the majority (76%) of 

surfaced tracks in designated areas of managed heather were constructed solely for access to that 

habitat. In both Scotland and Wales this figure was 100% (Supplemental Table 8). These data indicate 

significant pressure, as a result of land use or management that is not for ecological or conservation 

activities, is being imposed on ‘protected’ areas. Notably, if only sites with some degree of protection 

are examined, our overall finding that the area of managed heather and grass-dominated vegetation 

predict the probability and extent of surfaced tracks is still supported (results not shown). 

 

Overall then, designation of protected status may not be the most efficient tool for managing track 

development in upland areas. Protection is not a component of any of the best-fitting models we 

examined, with both the presence and extent of surfaced tracks driven primarily by the extent of 

managed heather and grass-dominated vegetation. While protection may be efficient in constraining 

the development of new surfaced tracks, we found no evidence that it limits their extent once 

established in an area. By extrapolation, based on the 14,046 km2 of protected habitats located in 
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upland Britain (Table 1), we estimate that 13,864 ± 3,827 km of vehicular track (2,572 ± 200 km 

surfaced) currently exists in areas of conservation interest (Supplemental Table 9).  

 

4.4. Tracks on blanket peat 

For the areas of blanket peat mapped that do not fall under protective designation (46%), there is 

currently no conservation legislation for tracks with which to assess the success of protection. This 

shortcoming may explain why the area of blanket peat (M11) was not identified as an important 

covariate predicting track presence or extent (Table 5). However, restoration of peatlands is now 

widely recognised as a key initiative to mitigate the impacts of climate change and help countries 

meet zero net carbon targets (CCC, 2020). Understanding the level of vehicular activity on blanket 

peat is, therefore, key to planning restoration strategies. We estimate that 6,820 ± 1,118 km of 

vehicular track exist on the 6,855 km2 of blanket peat in upland Britain (Table 1; Supplemental Table 

10) and found that 36% of unsurfaced footpaths on blanket peat show evidence of vehicular use 

(Supplemental Table 7). 

 

4.5. Policy implications 

Despite presumptions that protected habitats and sensitive soils would see little surfaced track usage, 

we show that land cover, regardless of protection, is a key driver of track presence and extent in the 

British uplands. The length of surfaced track constructed over areas of conservation interest and on 

blanket peat is concerning. Current legislation implies that all the tracks mapped in areas of 

designated habitat constructed since 1981 received consent from the relevant SNCB. This legislation 

also implies that all these constructed tracks would also have received either full planning permission 

or have been approved as a permitted development by the LPA. It is worth noting that tracks for 

purposes other than farming or forestry, such as access to game sport, have never been permitted 

developments (Prior and Raemakers, 2006). Unfortunately, we have no way of confirming whether 
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the tracks identified in our study are legally permissive, but enforcement actions for unconsented 

surfaced tracks in designated upland sites have been undertaken in both England (Natural England, 

2020) and Scotland (Cairngorms NPA, 2019).  

 

On the assumption that full planning permission was granted for the surfaced tracks mapped in 

designated areas of managed heather in this study, these data raise questions as to whether 

consideration of the potential impacts of tracks on designated areas by LPAs and SNCBs are 

appropriate. Many unsurfaced tracks are transient features that if left unused may allow recovery of 

the habitat (Charman and Pollard, 1995), but constructed/surfaced tracks are now physical 

components of the upland landscape. There is a clear requirement for vehicular access for ecological 

improvement of upland areas and for hill farming activities, but we suggest that legislation for 

surfaced tracks, at the least, is reviewed. As vehicle damage to blanket bog has also resulted in several 

enforcement actions requiring habitat restoration (Natural England, 2020), the ad hoc use of vehicles 

on blanket peat may also need inclusion in upland track legislation. Both these measures are urgently 

required to protect and preserve the sensitive soils and habitats in upland Britain. 

 

The accessibility of open source aerial photography enabled mapping of vehicle tracks across a range 

of land cover and also enabled the upland envelope to be refined. This approach allowed 

geographical variation in the upland limit across Great Britain to be accounted. The identification of 

vehicular activity in designated areas that is not facilitating ecological improvement highlights a clear 

need for wider quantification of the extent of tracks in uplands globally. Such assessment will 

determine how protective habitat designation is working more widely. The approach adopted in this 

study could be applied to any upland landscape. 
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Figure 1. Location of study sample squares and Countryside Survey upland areas. 

Figure 2. Appearance of tracks (surfaced and unsurfaced) and mow lines in imagery on Google Earth. 

Figure 3. (A) Posterior mean fitted probability of surfaced tracks as a function of area of grassland 

(km-2); (B) Area of managed heather (km-2). Shaded area is the 95% credible intervals. Points are 

observed data for individual 1 km2 blocks. 

Figure 4. Posterior mean fitted probability of surfaced tracks as a function of altitude for upland sites 

10 km, 2.5 km and 0.5 km from the centroid of each 1 km square to the nearest postcode. Shaded area 

is the 95% credible intervals. Points are observed data for individual 1 km2 blocks. 

Figure 5. (A) Posterior mean length of surfaced tracks as a function of area of managed heather (km-2); 

(B) Area of grassland (km-2). Shaded area is the 95% credible intervals. Points are observed data for 

individual 1 km2 blocks. 
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Tables 

 

Table 1. Upland areas in Great Britain (* excluding Northern Ireland) from Countryside Survey (CS) 

data and proportions sampled for mapping of extent of tracks.  

 

 England Scotland Wales Great 

Britain* 

CS Data     

Total CS upland (km2) 15739 32034 10272 58045 

Sample OS grid squares 15 27 10 52 

CS upland in sample (km2) 860 1749 586 3195 

Proportion of CS upland sampled (%) 5.4 5.5 5.7 5.5 

CS upland with SSSI/SAC/SPA designation (km2) 4196 8187 1663 14046 

Proportion CS upland designated (%) 27 26 16 24 

CS upland blanket peat (km2) 2738 3472 644 6855 

Proportion CS upland blanket peat (%) 17 11 6 12 

     

Revised sample above agricultural enclosure or 250 m      

Revised upland sample extent (km²) 505 1555 272 2332 

Area with protective habitat designation (km²) 270 340 75 685 

Proportion of upland sample with designation (%) 53 22 27 24 

Revised sample excluding plantation     

Revised upland sample squares excluding plantation 13 26 9 48 

Revised upland sample excluding plantation (km²) 423 1272 215 1910 

Proportion of upland sample that is plantation (%) 16 18 21 18 

     

Protected habitat designation     

Protected area designation (km2) 270 335 74 679 

Proportion of upland sample with designation (%) 64 26 35 36 

Proportion of designation mapped (%) 6.4 4.1 4.5 4.8 

Soil     
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Blanket peat (km2) 161 112 28 301 

Proportion of upland sample that is blanket peat (%) 38 9 13 16 

Proportion of blanket peat in designated areas (%) 71 21 93 54 

Proportion of upland blanket peat mapped (%) 5.9 3.2 4.3 4.4 

Land Cover     

Grass/sedge dominated 171 708 173 1052 

Unmanaged heather (Heather U) 28 96 9 134 

Managed heather (Heather M) 124 194 7 325 

Heather/grass vegetation 77 171 16 264 

Broadleaf woodland 6 36 9 51 

Other 16 67 <1 84 
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Table 2. A priori models to predict probability and extent of vehicle tracks in upland areas of Great 

Britain. 

 

Model Model formulation Model description/justification 

M01 distance to postcode 
Proximity to human population positively associated with 

tracks 

M02 altitude Altitude negatively associated with tracks 

M03 country 
Differences in land use, altitude and human population 

density between countries 

M04 distance x altitude 
Shorter distances to population coupled with low altitude 

positively associated with tracks 

M05 distance x altitude x country 

Shorter distances to population coupled with low altitude 

positively associated with tracks and varies among 

countries 

M06 latitude x longitude Geographic location positively associated with tracks 

M07 area of grassland Grazing positively associated with tracks 

M08 area of managed heather Heather management positively associated with tracks 

M09 area of unmanaged heather Heather habitat positively associated with tracks 

M10 area of protected habitat 
Lack of protective designation positively associated with 

tracks 

M11 area of blanket peat Blanket peat negatively associated with tracks 

M12 
area of protected habitat + area 

of managed heather 

Lack of protective designation and heather management 

positively associated with tracks 

M13 
area of protected habitat + area 

of unmanaged heather 

Lack of protective designation and heather habitat 

positively associated with tracks 

M14 
area of grassland + area of 

managed heather 

Grazing and heather management positively associated 

with tracks 

M15 

area of grassland x country + 

area of managed heather x 

country 

Grazing and heather habitat positively associated with 

tracks and the effects of each vary between counties 

M16 
area of grassland + distance x 

altitude 

Grazing and shorter distances to population coupled with 

low altitude positively associated with tracks 

M17 
area managed heather + 

distance x altitude 

Managed heather and shorter distances to population 

coupled with low altitude positively associated with 

tracks 

M18 area of grassland + area of 

managed heather + distance x 

Grazing, managed heather and shorter distances to 

population coupled with low altitude positively 
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altitude associated with tracks 

 

 

 

 

 

 

Table 3. Extent of tracks (total length and density) across sample of upland areas in mainland Great 

Britain. 

 

  All tracks Unsurfaced Surfaced 

Sample 

area 

Upland 

area 

(km2) 

Length 

(km) 

Mean (± SE) 

density (km 

km-2) 

Length 

(km) 

Mean (± SE) 

density (km 

km-2) 

Length 

(km) 

Mean (± SE) 

density (km 

km-2) 

England 423 920 2.17 (± 0.14) 748 1.77 (± 0.13) 171 0.40 (± 0.07) 

Scotland 1272 712 0.56 (± 0.12) 426 0.33 (± 0.30) 286 0.22 (± 0.05) 

Wales 215 472 2.19 (± 0.42) 364 1.69 (± 0.38) 108 0.50 (± 0.14) 

GB 1910 2104 1.10 (± 0.15) 1538 0.81 (± 0.13) 566 0.29 (± 0.04) 
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Table 4. Extent of tracks (total length and density) by land cover across sample of upland areas in 

mainland Great Britain. 

 

  All tracks Unsurfaced Surfaced 

Sample area Upland 

area 

(km2) 

Length 

(km) 

Mean (± SE) 

density (km 

km-2) 

Length 

(km) 

Mean (± SE) 

density (km 

km-2) 

Length 

(km) 

Mean (± SE) 

density (km 

km-2) 

Grass 1052 1130 1.07 (± 0.17) 833 0.79 (± 0.15) 296 0.28 (± 0.04) 

Heather U  134 143 1.07 (± 0.18) 112 0.84 (± 0.17) 30 0.22 (± 0.04) 

Heather M 325 573 1.76 (± 0.18) 401 1.23 (± 0.17) 172 0.52 (± 0.06) 

Heather/grass  264 197 0.75 (± 0.16) 150 0.57 (± 0.14) 47 0.18 (± 0.04) 

Broadleaf  51 35 0.68 (± 0.19) 19 0.38 (± 0.13) 15 0.31 (± 0.12) 

Other 84 27 0.32 (± 0.16) 22 0.26 (± 0.14) 5 0.06 (± 0.06) 
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Table 5. Fit of a priori models to predict the presence and extent of upland surfaced tracks. WAIC is 

Watanabe-Akaike Information Criterion score, i is delta WAIC,  is WAIC weighting. 

Presence of surfaced tracks  Extent of surfaced tracks 

model WAIC i   model WAIC i  

M18 2673 0 1.00  M14 980 0.0 0.63 

M05 2729 56.1 0.00  M18 982 2.0 0.23 

M16 2730 57.7 0.00  M15 983 3.1 0.14 

M17 2731 58.5 0.00  M12 1014 33.9 0.00 

M04 2759 86.6 0.00  M08 1015 35.2 0.00 

M15 2771 97.9 0.00  M17 1015 35.2 0.00 

M14 2783 110.3 0.00  M16 1020 40.0 0.00 

M12 2810 137.4 0.00  M07 1022 42.4 0.00 

M02 2817 144.4 0.00  M02 1027 47.1 0.00 

M08 2822 149.1 0.00  M04 1027 47.4 0.00 

M07 2829 156.1 0.00  M05 1028 48.2 0.00 

M10 2847 174.7 0.00  M01 1029 49.3 0.00 

M03 2851 178.1 0.00  M13 1031 51.2 0.00 

M13 2851 178.1 0.00  M03 1032 52.4 0.00 

M11 2852 179.0 0.00  M09 1033 53.1 0.00 

M09 2853 180.2 0.00  M10 1034 53.9 0.00 

M01 2853 180.5 0.00  M11 1034 54.4 0.00 

M06 2853 180.5 0.00  M06 1035 55.5 0.00 
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Table 6. Posterior mean estimates of surfaced tracks for the best-fitting hurdle model using INLA with 

sampling block fitted as a random intercept. Occurrence data were fitted to a Bernoulli distribution, 

frequency data were fitted to a gamma distribution. CrI are the Bayesian credible intervals. Credible 

intervals that do not encompass zero in bold to indicate statistical importance. 

 

 Occurrence model (M18)  Frequency model (M14) 

Parameter Posterior  

mean 

Lower  

CrI 

Upper  

CrI 

 Posterior  

mean 

Lower  

CrI 

Upper  

CrI 

Intercept -1.10 -1.53 -0.68  -0.39 -0.45 -0.33 

Grassland 0.52 0.38 0.66  0.23 0.16 0.30 

Managed heather 0.50 0.38 0.62  0.20 0.15 0.26 

Distance 0.10 -0.09 0.29  - - - 

Altitude -0.61 -0.77 -0.46  - - - 

Distance x altitude -0.30 -0.44 -0.16  - - - 
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Highlights 

 First assessment of the extent of vehicle tracks in sensitive upland habitats 

 Wide-ranging vehicular track networks exist in the British uplands  

 Land use appears to be driving the presence of surfaced tracks in protected areas 

 We recommend a review of upland track legislation in GB to protect these habitats 

 Wider assessment of upland tracks is required globally 
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