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ABSTRACT The cryptography employed against user files makes the effect of crypto-ransomware attacks
irreversible even after detection and removal. Thus, detecting such attacks early, i.e. during pre-encryption
phase before the encryption takes place is necessary. Existing crypto-ransomware early detection solutions
use a fixed time-based thresholding approach to determine the pre-encryption phase boundaries. However,
the fixed time thresholding approach implies that all samples start the encryption at the same time. Such
assumption does not necessarily hold for all samples as the time for the main sabotage to start varies among
different crypto-ransomware families due to the obfuscation techniques employed by the malware to change
its attack strategies and evade detection, which generates different attack behaviors. Additionally, the lack of
sufficient data at the early phases of the attack adversely affects the ability of feature extraction techniques
in early detection models to perceive the characteristics of the attacks, which, consequently, decreases the
detection accuracy. Therefore, this paper proposes a Dynamic Pre-encryption Boundary Delineation and
Feature Extraction (DPBD-FE) scheme that determines the boundary of the pre-encryption phase, from
which the features are extracted and selected more accurately. Unlike the fixed thresholding employed by
the extant works, DPBD-FE tracks the pre-encryption phase for each instance individually based on the
first occurrence of any cryptography-related APIs. Then, an annotated Term Frequency-Inverse Document
Frequency (aTF-IDF) technique was utilized to extract the features from runtime data generated during the
pre-encryption phase of crypto-ransomware attacks. The aTF-IDF overcomes the challenge of insufficient
attack patterns during the early phases of the attack lifecycle. The experimental evaluation shows that
DPBD-FE was able to determine the pre-encryption boundaries and extract the features related to this phase
more accurately compared to related works.

INDEX TERMS Cybersecurity, early detection, malware, ransomware, TF-IDF.

I. INTRODUCTION
Crypto-ransomware is a malware category that employs
the encryption against personal files and business data in
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victim’s machine and deny the access to these resources. The
irreversible effect is what characterizes crypto-ransomware
attacks from malware attacks [1]. Therefore, it is imper-
ative to detect these attacks early at the pre-encryption
phase, during which the crypto-ransomware installs itself
in victim’s machine and conducts reconnaissance to
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discover the running environment and locate the targeted
files. Therefore, the effectiveness of any early detection
solution is governed by the accurate delineation of the pre-
encryption boundaries. Extant research [2]–[5] have applied
a fixed time-based thresholding approach, to determine the
pre-encryption phase boundaries, from which the attack
patterns have been acquired and used to build the detec-
tion models. However, the fixed time thresholding approach
implies that all instances start the encryption at the same time.
Such assumption does not necessarily hold for all samples
as the time for the main sabotage to start varies among
different crypto-ransomware instances due to the obfuscation
techniques employed to change the attack pattern and evade
detection, which generates different attack behavior for each
sample or family [6]–[8]. Therefore, fixed time thresholding
approach could miss the beginning of encryption process
and; consequently; the captured data would not accurately
represent the pre-encryption phase of crypto-ransomware
attacks.

Moreover, the insufficient behavioral data acquired dur-
ing the early phases of crypto-ransomware attacks adversely
affects the ability of features extraction techniques to
weighing the features accurately. During features extrac-
tion, the general-purpose APIs could be given weights
higher than what they should get in reality. Conse-
quently, the extracted features might not correctly repre-
sent the pre-encryption phase of crypto-ransomware attacks.
Although Term Frequency-Inverse Document Frequency
(TF-IDF) can calculate features values more accurately than
other techniques like TF [7], the issue with applying it on the
small portion of the data raises when calculating the IDF term.
That is, a particular API might have a small Document Fre-
quency (DF) value when only considering the pre-encryption
data while; in reality, holds high DF value when considering
the entire attack’s data. As such, the TF-IDF value of that API
will be high on pre-encryption data but low on the entire data.
Consequently, TF-IDF will erroneously give higher weight to
that API when relying only on the pre-encryption data while;
in reality; it is a general-purpose API with respect to the
entire data and should be penalized instead. Such calculation
obstructs the ability of TF-IDF to give accurate numerical
representation to the extracted features.

To this end, this paper proposes a Dynamic Pre-encryption
Boundary Delineation and Feature Extraction (DPBD-FE)
scheme that dynamically determines the boundaries of the
pre-encryption phase in crypto-ransomware lifecycle. Con-
trary to the fixed thresholding employed by the extant
works, the DPBD-FE tracks the pre-encryption phase for
each instance individually based on the first occurrence
of any cryptography-related APIs. The intuition is that,
the crypto-ransomware needs to call a cryptography-related
API and/or function to start the real sabotage [9], [10].
Therefore, the first call of any of those cryptography-related
APIs could be an indicator of an imminent encryption pro-
cess. Consequently, the first cryptography-related API is
located in the boarders between pre-encryption phase and the

encryption phase. As such, the pre-encryption data could be
easily and accurately identified and acquired regardless of
the time each sample takes before it starts the encryption.
Based on such data, pre-encryption attack patterns and fea-
tures can be extracted and used to train more effective and
accurate early detectionmodels. To extract the pre-encryption
features, the annotated Term Frequency-Inverse Document
Frequency (aTF-IDF) technique was proposed.

Unlike traditional TF-IDF, the proposed aTF-IDF is aware
of the unobserved behavioral patterns that come after the pre-
encryption boundary. As such, it overcomes the issue of insuf-
ficient behavioral patterns. With that, the proposed technique
becomes able to distinguish and penalize the general-purpose
APIs. Those APIs are normally utilized by all programs,
whether benign or malicious, and add no information about a
particular set of programs. As such, aTF-IDF avoids the issue
of highlighting the APIs that seem to be ransomware-related
when looking to the pre-encryption data only, while they are
general purpose and useless given the full-length dataset. The
contribution of this paper is four-fold.

a) A Dynamic Pre-encryption Boundary Delineation
(DPBD) techniques was proposed to dynamically determine
the boundaries of pre-encryption phase in crypto-ransomware
lifecycle.

b) An annotated TF-IDF (aTF-IDF) techniques was pro-
posed to overcome data insufficiency when extracting the
attack features at the pre-encryption phase.

c) Both DPBD and aTF-IDF were incorporated to the pro-
posed DPBD-FE scheme for accurate pre-encryption bound-
ary definition and feature extraction in order to increase the
efficacy and accuracy of the crypto-ransomware early detec-
tion model.

d) An extensive experimental evaluation was conducted to
show the improvement that DPBD-EF scheme had achieved.

For the purpose of this study, crypto-ransomware and ran-
somware are used interchangeably unless stated otherwise.
The rest of this paper is organized as follows. Section II gives
an overview about the related work. Section III elaborates on
the crypto-ransomware attack model. The methodology fol-
lowed to design and develop the proposed techniques is dis-
cussed in Section VI. In Section V, the experimental results,
were explained while Section VI analyses and discuss those
evaluation results with the comparisonwith the related works.
The paper is concluded with Section VII by a summary of the
methods and results as well as suggestions for future work.

II. RELATED WORKS
Ransomware is a malware category that locks user data and
files and demands ransom to release them [11]–[14]. Since its
emergence on the late 1980s, ransomware becomes a major
threat that intimidate the accessibility to both personal and
business data [15]. As its name implies, the main purpose of
ransomware is to blackmail victims by holding their digital
assets to ransom [16], [17]. Attackers have developed many
variants of ransomware to achieve such a goal, which explains
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the dominance of ransomware attacks in the threat landscape
recently [4], [18]–[20].

In 2014, the total loss due to ransomware attacks reached
$3 million [4]. Moreover, it was reported that in 2015 the
attackers earned around $352 million from victims around
the world [21]. In Indiana county only, victims paid around
$220K in 2016 to recover from ransomware attacks [21].

Ransomware is categorized into two types, locking-
ransomware and crypto-ransomware [1]. Unlike locking-
ransomware whose damage could be easily circumvented,
the effect of crypto-ransomware is not reversible as it employs
the encryption against user files. Consequently, without the
decryption key, it becomes difficult, if not impossible, for the
victim to access his data again [22]. As such, it is imperative
to detect this type of malware as early as before it starts
encrypting user files and data.

Several studies have been devoted to address this prob-
lem and proposed solutions to detect ransomware attacks.
These solutions can be categorized into two types, data-
centric, and process-centric. Data-centric ransomware detec-
tion monitors the digital assets in victim’s machine and
raises an alarm when suspicious change is detected [17].
The decoy, entropy, and similarity techniques were employed
by these data-centric solutions to monitor the file structure
before and after it got accessed [8], [15], [23]–[25]. How-
ever, this approach is unable to differentiate between the
changes caused by the crypto-ransomware form those caused
by the benign programs, which lead to high rate of false
alarms [9], [26], [27]. More importantly, this approach does
not fully protect from ransomware attacks as it sacrifices part
of the files that might be more valuable than the remaining
data [26], [28]. Consequently, the data-centric approach is not
effective for the early detection of crypto-ransomware.

In the process-centric studies, on the other hand, moni-
toring the behavior of the running process is used to col-
lect different types of behavioral data, which were then
used for training different machine learning classifiers like
Random Forests and Naïve Bayes [21], [24], [29], [30].
However, these solutions rely on the entire runtime data;
which include pre-encryption and post-encryption data;
to train the detection model [3], [31]. This approach is
based on the premise that entire attack patterns are fully
available at the detection time, which does not hold for
crypto-ransomware early detection where the data about the
attack are not fully available [3]. Monitoring the differ-
ent resources in the local machine, like CPU, network, I/O
buffer and memory is another type of process-centric ran-
somware detection [8], [18], [23], [32], [33]. When some
events related to encryption were observed, the detection
system raises an alarm. However, the reliance on ad-hoc
events to detect crypto-ransomware attack increases the rate
of false alarms as those events are not mutually exclusive to
crypto-ransomware. Some normal programs also raise similar
events [9]. Furthermore, those ad-hoc events could be raised
after the encryption, which makes this approach ineffective
for the early detection [8]. As such, it is necessary for an

FIGURE 1. Ransomware attack model.

effective detection to take place during the early phases (pre-
encryption) before the ransomware starts its main sabotage,
i.e. the encryption.

III. ATTACK MODEL
Ransomware’s lifecycle starts from the moment when the
malicious code is disseminated and lasts until the finan-
cial claim is shown to the victim. During this lifecy-
cle several actions are conducted in order to success-
fully hijack the user’s files and resources. According
to [8], [18], [21], [34]–[39], ransomware attacks go through
several essential phases as illustrated in Figure 1 and summa-
rized below.

a) DISTRIBUTION: During this phase, the ransomware
is packed and delivered into the victim’s system using
different exploitation techniques such as email attach-
ment or drive-by download.

b) INSTALLATION: In this phase, crypto-ransomware
installs itself in the victim’s machine. Such installation
also involves exploring the running environment and
collecting information about the victim’s device, such
as platform type, OS version, and already-installed pro-
grams.

c) ENCRYPTIONKEYGENERATION: Crypto-ransom-
ware retrieves the encryption key from the C&C server
or generates it locally.

d) FILES SEARCH: Ransomware starts looking for tar-
geted files.

e) ENCRYPTION: Based on the attack approach,
Crypto-ransomware starts encrypting the targeted files
either one by one concurrently with the files search
process or waits until listing all the files then encrypting
them all at once.

f) POST ENCRYPTION: Once the encryption process is
finished, the original files are either deleted or moved
to another location with new names.

g) EXTORTION: After encrypting and deleting/moving
all files, the extortion message is shown to the vic-
tim asking for a ransom accompanied by payment
instructions.
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Among the stages enlisted above, the pre-encryption phase of
crypto-ransomware attacks lifecycle involves the (b) installa-
tion, (c) encryption key generation and (d) file search.

IV. METHODOLOGY
In this section, we describe the design of proposed Dynamic
Pre-encryption Boundary Delineation and Feature Extraction
scheme (DPBD-FE) technique that accurately determines the
pre-encryption boundaries of crypto-ransomware lifecycle
and extract the discriminative feature that represent the attack
patterns during this phase. We start by elaborating about the
design and implementation of the proposed DPBD for the
pre-encryption boundary delineation. Likewise, the design
and implementation of the proposed aTF-IDF technique for
pre-encryption features extraction is detailed. In this study,
the dynamic analysis was employed as it is the effective
approach that overcome the polymorphic and packing tech-
niques that crypto-ransomware attacks use to resist and evade
detection. In addition, the early detection evokes the dynamic
analysis as it intends to detect the attacks during the early
phases of the runtime.

A. ATTACK PATTERNS ACQUISITION
To collect the attack’s patterns from runtime data of the
samples in the dataset, each sample was submitted to the
analyzing machine and underwent the dynamic analysis as
elaborated in sub section A under Section II. Once the
instance was submitted, the sandbox agent in guest machine
hooks the process created by that sample and captures the
runtime data including the API calls and dumps them into
a respective trace file specified for that sample. Those files
constitute the corpus, from which the dataset was built, and
the features were extracted and selected before they were
used to train the detection model. Figure 2 shows the archi-
tecture of crypto-ransomware dynamic analysis. After each
run, the guest machine was reverted to its original, clean state
to ensure that the next sample will not be affected by the
previous infection. From the runtime data in each trace file,
only the API calls along with the parameters were kept and all
other data were discarded. These APIs constitute the input for
the DPBD-FE scheme as will be elaborated in the subsequent
sections.

B. DYNAMIC PRE-ENCRYPTION BOUNDARY DELINEATION
TECHNIQUE FOR PRE-ENCRYPTION DATA EXTRACTION
To accurately delineate the boundary of the pre-encryption
phase, the vector space model along with Rocchio rel-
evance feedback were utilized to design and implement
the Dynamic Pre-encryption Boundary Delineation (DPBD)
technique, by which the pre-encryption boundary vector
was built. This vector contains all cryptography related
APIs that crypto-ransomware instances have called during
the attacks. The vector constitutes the boundary of pre-
encryption phase of the crypto-ransomware attacks such that
the first occurrence of any of the vector’s entries represents
the boundary between the end of pre-encryption phase and the

FIGURE 2. The dynamic crypto-ransomware analysis and detection
process.

FIGURE 3. Examples of cryptoAPIs.

beginning of the encryption phase of the attacks. The intu-
ition is that, the calling of any of cryptography-related APIs
indicates an imminent encryption process which could be
the beginning of actual attack against user files and data.
Unlike the fixed time-based thresholding employed by exist-
ing works, DPBD tracks the encryption starting point for
each instance and accurately determines the boundary of
the pre-encryption phase based on the cryptography-related
APIs that crypto-ransomware instance used to encrypt user
files. To build the boundary vector, DPBD started by defin-
ing an initial boundary vector, by which the data of each
instance were divided into three subsets, namely initPre,
initAt and initPost. Based on those subsets, the final bound-
ary vector was built using the Pseudo Rocchio Relevance
Feedback.

1) BUILDING THE INITIAL SUBSETS
At the outset, an exploration process was carried out to build
an initial boundary vector called Vinit out of the explicit
CryptoAPI calls, i.e. the cryptography-specific APIs, accord-
ing to [40]. These cryptoAPIs were used as seeds for the
pre-encryption boundary vector. Figure 3 shows a snippet
of these cryptoAPIs. In this process, the explicit CryptoAPI
calls were determined and gathered into Vinit . Then, Vinit was
utilized to divide the raw data in each trace file into three
parts, initPre, initAt, and initPost. The initPre is composed
of the API entries starting from the first API in the trace
file until the first occurrence of any entry of Vinit . Similarly,
initAt is composed of the APIs that are contained between
the first and last occurrence of any entry of Vinit . Likewise,
the initPost contains the APIs that are collected right after the
last occurrence of any Vinit entries until the end of the trace
file. The purpose of such division is to extract the APIs that
were called during the encryption phase, i.e. the API calls
contained within initAt, and determine the API calls associ-
ated with the encryption process. By adding these APIs into
the boundary vector, the technique becomes able to determine
the pre-encryption boundary even before the attack starts
using the explicit CryptoAPIs and/or encryption functions.
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2) PSEUDO ROCCHIO RELEVANCE FEEDBACK
As mentioned previously, pre-encryption boundary is the
point whereby crypto-ransomware starts using cryptography-
related APIs and/or functions. Cryptography-related APIs
include the explicit cryptoAPIs as well as other APIs that use
any of explicit cryptoAPIs and/or functions as a parameter.
Those APIs are contained within the initAt subset. Thus,
the initAt subset is the area of interest whereby the entries
of the pre-encryption boundary vector can be found. How-
ever, not all APIs in initAt are cryptography-related, so it
is not suitable to include all of them in the final boundary
vector as they could be found at the very beginning of the
trace file which leads to exclude many pre-encryption data
and deprives the model from useful pre-encryption patterns.
To filter out the unrelated APIs, Pseudo Rocchio Relevance
Feedback (PRRF) technique was proposed to calculate the
weight for each API in initAt subset and keep only the ones
with weights higher than the threshold. The original Rocchio
relevance feedback calculates the relevancy of query terms
according to Eq. 1.

Vf =
1
n

∑
relevant

dj −
1

N − n

∑
irrelevant

dj (1)

where Vf denotes the feedback vector; N denotes the corpus
size; n denotes number of relevant trace files;

∑
relevant dj is

the relevant set and
∑

irrelevant dj is the irrelevant set.
The PRRF technique utilized the Term Frequency-Inverse

Document Frequency (TF-IDF) to build two vectors, namely
relevant and irrelevant vectors. The relevant vector was built
by applying TF-IDF on the initAt subset. This vector is called
relevant because it was built based on the data contained
within initAt which consists of all APIs that were collected
during the encryption period, i.e. between the first and last
occurrence of the cryptoAPIs in Vinit . Similarly, the irrelevant
vector was built by applying TF-IDF on both initPre and
initPost together. Once the vectors were built, the enhanced
Rocchio technique proposed by Salton and Buckley [41] was
applied as shown by Eq. 2.

Vf = Vinit +
1
n1

∑
relevant

dj −
1
n2

∑
irrelevant

dj (2)

where Vf denotes the feedback vector; Vinit is the original
(initial) vector;

∑
relevant dj is the relevant set (the iniAt in our

case) and
∑

irrelevant dj is the irrelevant set (initPre and init-
Post). As irrelevant set was composed of initPre and initPost
while the relevant subset was composed of the initAt subset of
the same crypto-ransomware instances, n2 = 2× n1. There-
fore, equation (2), can be rewritten as in Eq. 3.

Vf = Vinit +
1
n
(
∑

relevant

dj −
1
2

∑
irrelevant

dj) (3)

The pre-encryption boundary vector was derived from Vf
based on a predefined threshold such that, the APIs whose
TF-IDF values were greater than or equal to the threshold
were included in the selected vector Vs. This threshold was

FIGURE 4. The Dynamic Pre-encryption Boundary Definition (DPBD)
technique.

determined by calculating the average of TF-IDF values of
Vinit entries. To preserve all cryptoAPIs in the pre-encryption
boundary vector, Vinit and Vs were fused into Vb [41].
Therefore, the vector Vb is the pre-encryption boundary vec-
tor. Figure 4 shows the design of DPBD technique while
Figure 5 shows its pseudo code.

C. ANNOTATED TERM FREQUENCY-INVERSE DOCUMENT
FREQUENCY TECHNIQUE FOR PRE-ENCRYPTION
FEATURES EXTRACTION
In this section, the annotated Term Frequency-Inverse Docu-
ment Frequency (aTF-IDF) technique is proposed to extract
the features related to pre-encryption phase of the crypto-
ransomware lifecycle. The problem with applying the tradi-
tional TF-IDF on pre-encryption data raises when calculating
the IDF term. That is, a particular API might have a small
Document Frequency (DF) value when only considering the
pre-encryption data but high DF value when considering
the entire data. In this case, the TF-IDF value of that API
will be high only on pre-encryption data while low on the
entire data. Consequently, the API will be given a more
importance (weight) when relying only on the pre-encryption
data which indicates that it is an attack-specific API while;
in reality; it is a general-purpose API with respect to the
entire data and should be given lower TF-IDF value instead.
Such general-purpose APIs have low prediction meaning and
might be utilized by the malicious program for obfusca-
tion purposes. As such, they should be penalized [42]. The
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aTF-IDF addresses this issue by employing the annotation
to highlight the APIs that are more related to pre-encryption
phase without counting the general-purpose APIs.

The general formula used to calculate Term Frequency-
Invers Document Frequency (TF-IDF) is shown in Eq. 4

w
(
apijk

)
= tf

(
apijk

)
· log

N
idf (apik )

(4)

where apik denotes the k
th API; tf (apijk ) is the term frequency

that calculates how many times the apik was called by the
ransomware instance rj in the subset. Similarly, idf (apik ) is
the inverse document frequency that calculates how many
ransomware instances rj in the subset called apik at least
ones, while N denotes the total number of ransomware
instances in the subset. Before calculating w(apijk ), each
tf (apijk ) was normalized to prevent TF-IDF from favouring
the non-informative APIs in long trace files over the infor-
mative ones in shorter trace files. The normalization was
carried out according to Eq. 5 by dividing the tf

(
apijk

)
of

each instance by length(tr j); where trj denotes the trace file
of crypto-ransomware instance rj. As such, the normalized
TF-IDF was calculated according to Eq. 6.

tf ′
(
x jk
)
=

tf (x jk )

length(tr j)
(5)

w′
(
x jk
)
= tf ′

(
x jk
)
· log

N
idf (xk)

(6)

Unlike traditional TF-IDF used by extant crypto-
ransomware like [2], [30], [42]–[46], the annotated TF-IDF
(aTF-IDF) distinguishes the APIs that are called during the
pre-encryption phase from those who are called during and
after the encryption. Therefore, aTF-IDF can distinguish
whether a particular API is a general-purpose even if it got
high DF weight in the pre-encryption data. The aTF-IDF
started by labelling (annotating) each API in the original
dataset according to the location in the trace file from the
pre-encryption boundary Vb. That is, with the help of the
boundary vector Vb, each API was observed against Vb to see
whether it is located before or after the boundary. Namely,
APIs in the original dataset were observed one by one and
annotated as ‘pre’ until encountering any of Vb entries. After
encountering the Vb entry, the annotation is changed into
‘enc’ for all subsequent APIs. Given the annotated APIs in
each trace file, the features vector for the ‘pre’ subset was
built and the aTF-IDF weight was calculated according to
Eq. 7. The aTF-IDF is composed of two terms, namely aTF
and IDF. The aTF term is calculated according to Eq. 8.

w
(
apijk

)
= atf

(
apijk

)
· log

N
idf (apik )

(7)

atf
(
apijk

)
= C

(
ϕ × apijk

)
(8)

where C(ϕ × apijk ) is the term frequency of the apik in
crypto-ransomware instance rj; ϕ = {0, 1} is determined

based on the apijk ’s annotation, according to Eq. 9.

ϕ =

{
1 if annotation is pre
0 otherwise

(9)

As shown by Eq. 6, aTF-IDF, penalizes the common APIs
that are called bymost or all instances. TheseAPIs are consid-
ered general-purpose APIs that do not add information about
the target type. Therefore, the denominator of the equation
increases according to the number of instances that contain
that feature apik which decrease the value of w(apikj ). The
pre-encryption aTF-IDF weights were stored in a vector that
represents the pre-encryption phase of ransomware lifecycle.
Figure 5 shows the pseudo code of the feature’s extraction
using aTF-IDF technique.

V. THE EXPERIMENTAL RESULTS
This section describes the setup of experimental environment
in which, the implementation of the proposed scheme and
techniqueswas conducted. Then the dataset used by this study
was detailed explaining the different instances and the type of
data that have been acquired. The experimental results of each
technique were presented including the comparison with the
previous studies.

A. THE EXPERIMENTAL ENVIRONMENT SETUP
The experiments were conducted on a controlled environment
built on a machine with Intel(R) Core (TM) i7-4790 CPU @
3.60 GHZ and 16 GB RAM. The analysis environment was
built according to [47]. The Cuckoo Sandbox; a well-known
and widely used malware analysis platform; was used as
analysis environment [43], [48], [49]. The VMware Tech-
nology was utilized to build the sandbox. Within this sand-
box, the host machine was created using Linux Ubuntu
4.4.0-59-generic. Then, the VirtualBox was utilized to create
the Windows 32-bit based guest machine. To create a real-
istic testing environment, several programs and applications
like MS Office, Adobe Acrobat Reader, Google Chrome
and Mozilla Firefox were installed in the guest machine. In
addition, user-alike folders were created in different loca-
tions in the local storage of the guest machine. Around 925
files, including MS Word documents, Excel, PPT, Visio,
PDF, JPG and short video files were stored in these fold-
ers. These files were attacked during the dynamic analysis
when crypto-ransomware samples were executed within the
Sandbox environment. Those files include, but not limited
to word documents, excel sheets, power point, pdf, jpeg and
gif files. Crypto-ransomware and benign programs were run
one by one. For each program, the data were dumped into an
independent trace file. Those trace files contain the API calls
used by the program under analysis during the runtime. After
each run, the guest machine was restored into the original,
clean state. Extracted data was gathered and the features were
extracted and selected during the pre-processing phase. Once
ready, the dataset was used to build the detection model.
The proposed techniques as well as results and analysis were
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TABLE 1. Crypto-ransomware families used by this study technique.

implemented using Python libraries including Sklearn, Pan-
das and Numpy.

B. THE DATASET
Table 1 shows the list of crypto-ransomware families used by
this study. The corpus of crypto-ransomware binaries used in
this study were downloaded from http://www.virusshare.com
public repository [5], [29], [50], [51]. The corpus con-
sists of 39,378 samples. Those samples represent different
fam ilies such as Cerber, TeslaCrypt, CryptoWall, Petya
and WannaCry.. In addition, 16057 benign programs were
downloaded from informer.com, the well-known Windows
software repository. informer.com [5], [29], [52], [53],
a popularWindows-based applications repository. Then, both
ransomware and benign programs were run in the sandbox
and dynamically analyzed [54], [55].

C. EXPERIMENTAL RESULTS
The pre-encryption boundary vector is shown in Table 2. Each
API represents an entry in the boundary vector. The weight
of each entry is shown also in the table as calculated by
the equation (3). The average of API weights was calculated
according to Eq. 10 to determine the threshold by which,
the APIs whose weights are higher than the threshold were
included into the vector.

Wavg =
1
M

i=m−1∑
i=0

wi (10)

where wavg denotes the average of vector’s weights;
wi denotes the weight of the ith API; and M =

{0, 1, 2, . . . .,m−1,m is the entire API calls.
To measure the accuracy of the DPBD technique

in specifying the pre-encryption boundary, event-based
procedure proposed by [4] was employed to moni-
tor cryptography-related events (calls) raised by crypto-
ransomware samples during the attack. The fraction of
crypto-ransomware samples that trigger the cryptography-
related events during the pre-encryption phase has been

TABLE 2. The pre-encryption boundary vector.

determined. The fraction of crypto-ransomware instances,
Rd , that starts any cryptography-related activity before the
proposed DPBD model detects them was determined accord-
ing to equation (11).

Rd = 1−
β

N

i=N∑
i=1

ri (11)

where ri denotes the ith crypto-ransomware sample, N is the
total number of crypto-ransomware samples in the dataset,
β denotes whether the sample was detected before the ran-
somware called any of cryptography-related API for the
first time and is determined according to Eq. 12. The same
procedure was also applied on the datasets built using the
time-based thresholding employed by existing works [3]–[5].

β =

{
1 if detected before calling the 1st crypto API
0 otherwise

(12)
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FIGURE 5. The pseudo code of the proposed Dynamic Pre-encryption
Boundary Definition (DPBD) technique.

The same procedure was applied on the datasets built
using the fixed time-based thresholding of [3]–[5]. To eval-
uate the efficacy of the DPBD technique, the results were
compared with [3]–[5] as shown in Figure 7. The threshold-
ing methods were represented on x-axis while the missed
instances (instances that exceeded the boundary) is repre-
sented on y-axis. The comparison result suggests that DPBD
technique was able to specify the pre-encryption boundaries
more accurate than the related works and missed only 8% of
crypto-ransomware samples while the related works missed
18% and 29% and 35% of the samples respectively.

To determine the efficacy of the pre-encryption
data (DSpre) built using DPBD to build accurate detection
models, the comparison was carried out against the datasets
built by the related works. The related datasets include DS1,
DS2 and DS3 by [3]–[5] respectively. All datasets were
used to train same classifiers. The comparison was carried
out using accuracy, F1, and precision. Figures 8, 9, and
10 show that the Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF), K-Nearest Neighbour (KNN),
AdaBoost, Support VectorMachines (SVM) andMulti-Layer

FIGURE 6. The Pseudo code of the proposed a TF-IDF technique.

FIGURE 7. Comparison between the accuracy of proposed DPBD with
related techniques in determining the pre-encryption boundary.

FIGURE 8. The comparison of the classification accuracy between the
dataset extracted using proposed DPBD (DSPre) and datasets of the
related works DS1, DS2 and DS3.

Perceptron (MLP) trained by the DSpre dataset achieved bet-
ter classification performance in terms of accuracy, precision
and F1.

To evaluate the performance of the proposed annotated
Term Frequency-Inverse Document Frequency (aTF-IDF)
technique, it was applied on the pre-encryption dataset to
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extract the features vector for each instance in the corpus.
Then, the dataset was divided into training set and testing set
using 10-fold cross-validation. Then, the extracted features
were used to train several machine learning classifiers includ-
ing Support Vector Machine (SVM), Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), AdaBoost and Multi-layer Perceptron
(MLP). The testing set was used to measure the classifica-
tion performance of each classifier based on the extracted
features.

Table 3 shows the accuracy results of the classifier trained
by dataset extracted using the proposed aTF-IDF method.
In terms of classification accuracy, the accuracy level of the
classifiers ranged between 0.8648 of SVM and 0.9395 of DT
and RF. Similarly, the F1 values were between 0.9275 of
SVM and 0.9661 of RF. The results show that precision
ranged between 0.8648 of SVM and 0.9414 of DT. For recall,
the lowest value was 0.9671 by AdaBoost while the highest
value was 1 by SVM. For ROC_AUC, the values ranged
between 0.7964 of KNN and 0.889 of adaBoost.

Figures 11, 12 13, 14 and 15 show the comparison
results between the proposed aTF-IDF and TF-IDF. It can be
observed that the classification accuracy, F1, precision, recall
and roc_auc of the proposed aTF-IDF were higher than the
traditional TF-IDF for all classifiers.

VI. ANALYSIS AND DISCUSSION
In this paper, the concept of crypto-ransomware early detec-
tion based on the dynamic boundaries of the pre-encryption
phase was introduced. The DPBD-FE scheme was proposed
and implemented to dynamically define the boundaries of
pre-encryption phase in the crypto-ransomware lifecycle and
extract the pre-encryption data and features based on which,
the detection model was trained. The scheme is composed of
two components, the Dynamic Pre-encryption BoundaryDef-
inition (DPBD) technique and the Features Extraction (FE)
technique. The aTF-IDF was proposed as the FE technique.
This section discusses and analyses the results of experimen-
tal evaluation of the proposed scheme.

As part of DPBD-FE scheme, in this paper, the
pre-encryption boundary definition (DPBD) for crypto-
ransomware attacks was proposed. Unlike existing solu-
tions that rely on fixed thresholding, the proposed tech-
nique adapts a dynamic thresholding approach by building
a pre-encryption boundary vector that contains the cryptog-
raphy related APIs. The entries of this vector were chosen
based on their weights calculated using the proposed DPBD.
According to comparison results in Figure 7, the DPBD
was able to identify the pre-encryption boundary more accu-
rately than the fixed-time thresholding approach employed
by the related works. This is attributed to the reliance on the
cryptography related APIs to track and identify the starting
point of the encryption of each crypto-ransomware sample
regardless of the time that sample takes before the encryption.
The experimental results in Table 2 and Figure 7 show
that, the explicit cryptoAPIs were given scores higher than

FIGURE 9. The comparison of the classification precision between the
dataset extracted using proposed DPBD (DSPre) and datasets of the
related works DS1, DS2 and DS3.

FIGURE 10. The comparison of the classification F1 between the dataset
extracted using proposed DPBD (DSPre) and datasets of the related
works DS1, DS2 and DS.

other cryptography-related APIs. This indicates that; among
all APIs contained within the initAt subset; the proposed
DPBD was able to identify the APIs that are more related
to cryptography more accurately.

Moreover, figures 8, 9 and 10 show that the classification
performance (accuracy, precision and F1) of the algorithms
that were trained using the pre-encryption dataset was higher
than those of other datasets of related works, i.e. DS1, DS2,
and DS3. This implies that the dynamic thresholding of
DPBD was able to represent the behavioral aspect of the
crypto-ransomware attacks at early phases better than other
thresholding techniques. This is attributed to the ability of
the DPBD to include more data than other techniques as it
tracks the starting point of the encryption process for each
instance individually. Therefore, the proposed DPBD makes
use of the complementary nature that different ransomware
samples might show in the dataset, which gives the proposed
DPBD the chance to capture more pre-encryption data. That
is, although some ransomware samples start the encryption
very early, there are other instances that start the encryption
late. Therefore, the dynamic thresholding compensates the
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TABLE 3. Experimental results of the aTF-IDF on pre-encryption dataset (extracted using the proposed DPBD technique in the previous section) with
different classifiers.

FIGURE 11. The comparison of the F-Measure between the proposed
aTF-IDF and the related techniques.

lack of information in the samples that start the encryption
early by the information collected by the samples that start
the encryption late.

The high the classification performance of all machine
learning classifiers shown in Table 3 emphasizes the effi-
cacy of the proposed aTF-IDF technique in identifying the
APIs that were closely related to the pre-encryption phase
of crypto-ransomware attacks and distinguishing between the
informative (attack-specific) APIs and general-purpose ones.
This indicates that aTF-IDF was able to highlight the APIs
related to crypto-ransomware attacks and down-weights the
general-purpose APIs even with the absence of the full obser-
vations of attack patterns during the pre-encryption phase.
This is attributed to the annotation that aTF-IDF employs,
such that it can distinguish the API when it comes before
the pre-encryption boundary from the same API when it
comes after that. Therefore, the proposed aTF-IDF can easily
calculate the TF term according to the pre-encryption data
and IDF term according to the full-length data. Consequently,
the proposed technique was able to decide whether an API is
a general-purpose or attack-specific, given the pre-encryption
data only.

The comparison results in figures 11, 12, 13, 14 and
15 show that the proposed aTF-IDF outperformed the tra-
ditional TF-IDF in terms of accuracy, F1, precision, recall
and roc_auc. This suggests that the proposed technique
was able to extract the pre-encryption features more accu-
rately and avoid overweighting the general-purpose APIs.
It also emphasizes the importance of calculating the TF term

FIGURE 12. The comparison of the Precision between the proposed
aTF-IDF and the related techniques.

FIGURE 13. The comparison of the Detection Accuracy between the
proposed aTF-IDF and the related techniques.

locally based on the pre-encryption data while considering
the full-length data when calculating the IDF globally, thanks
to the annotation that make it possible for the technique to
carry out such calculation.

The time complexity of the proposed aTF-IDF is similar
to that of TF-IDF which can be perceived as follows. If N
is the number of trace files in the pre-encryption dataset,
T is the total APIs in the pre-encryption dataset, then the
worst-case time complexity of this algorithm will be O(TN).
However, in practice, the number of trace files in which a
particular API appears is much less and hence the time taken
will be much lower. Therefore, the proposed aTF-IDF can
be used efficiently to extract the pre-encryption features in
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FIGURE 14. The comparison of the Recall between the proposed aTF-IDF
and the related techniques.

FIGURE 15. The comparison of the ROC-AUC between the proposed
aTF-IDF and the related techniques.

real-time, which makes it feasible to be used in real-world
deployments. The proposed scheme could either be applied
as a full-fledge security measure to protect from malicious
software like ransomware or as a part of intrusion detection
systems on network and host levels. The scheme will help to
early detect the attacks before they start the actual sabotage.

VII. CONCLUSION
In this study, the Dynamic Pre-encryption Boundary Def-
inition and Features Extraction scheme (DPBD-FE) was
proposed for crypto-ransomware early detection. The
scheme constitutes two components, namely Dynamic
Pre-encryption Boundary Definition (DPBD) and Features
Extraction (FE). The DPBD builds the pre-encryption
boundary vector that contains all cryptography-related APIs
by which the boundary of pre-encryption phase in the
crypto-ransomware lifecycle was defined. The proposed
DPBD technique was able to define the boundary of
pre-encryption phase of the crypto-ransomware attacks with
accuracy higher than the existing works. The pre-encryption
features were extracted from within the pre-encryption using
the proposed aTF-IDF technique. With the employment of

aTF-IDF, the proposed DPBD-FE scheme was able to iden-
tify the features related to the attack patterns at pre-encryption
phase and filter out the general-purpose ones. Seven clas-
sifiers including Support Vector Machine (SVM), Logistic
Regression (LR), Decision Tree (DT), Random Forest (RF),
AdaBoost, K-Nearest Neighbours (KNN) and Multilayer
Perceptron (MLP) were used to evaluate the classification
ability of the pre-encryption data extracted using the proposed
scheme. The comparison was also conducted between the
proposed techniques in the scheme and the techniques used
by exiting works. The results show that the proposed scheme
outperformed the techniques used by existing work. Such
improvement shows the efficacy of the proposed scheme
and techniques in defining the pre-encryption phase more
accurately compared to the related works and extract the
features that are more related to that phase as well without
including general-purpose APIs. The improvement ratio that
proposed DPBD achieved in determining the pre-encryption
boundary of the attacks was 55%. The results obtained by
applying the proposed aTF-IDF show 1%, 0.6%, 0.8%, 0.1%
and 4% improvement for precision, accuracy, F1, recall and
roc_auc respectively. The proposed scheme could be applied
for early detection of other attacks such as malware and
intrusion detection.
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