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We present a modification of the integral length-scale approximation (ILSA) model
originally proposed by Piomelli et al. [Piomelli et al., J. Fluid Mech. 766, 499 (2015)] and
apply it to plane channel flow and a backward-facing step. In the ILSA models the length
scale is expressed in terms of the integral length scale of turbulence and is determined by
the flow characteristics, decoupled from the simulation grid. In the original formulation the
model coefficient was constant, determined by requiring a desired global contribution of the
unresolved subfilter scales (SFSs) to the dissipation rate, known as SFS activity; its value
was found by a set of coarse-grid calculations. Here we develop two modifications. We de-
fine a measure of SFS activity (based on turbulent stresses), which adds to the robustness
of the model, particularly at high Reynolds numbers, and removes the need for the prior
coarse-grid calculations: The model coefficient can be computed dynamically and adapt
to large-scale unsteadiness. Furthermore, the desired level of SFS activity is now enforced
locally (and not integrated over the entire volume, as in the original model), providing
better control over model activity and also improving the near-wall behavior of the model.
Application of the local ILSA to channel flow and a backward-facing step and comparison
with the original ILSA and with the dynamic model of Germano et al. [Germano et al., Phys.
Fluids A 3, 1760 (1991)] show better control over the model contribution in the local ILSA,
while the positive properties of the original formulation (including its higher accuracy
compared to the dynamic model on coarse grids) are maintained. The backward-facing step
also highlights the advantage of the decoupling of the model length scale from the mesh.

DOI: 10.1103/PhysRevFluids.1.044401

I. INTRODUCTION

Large-eddy simulation (LES) is based on resolving the large energy-carrying eddies and
parametrizing the unresolved ones. Filtering the governing equations of the fluid flow (conservation
of mass, momentum, scalar, etc.) yields the equations governing the dynamics of the resolved scales
[1]. The characteristic length of the filtering operation, the filter width � (also called turbulence
resolution length scale by Pope [2]), defines the size of the smallest eddies retained in the calculation.
The nonlinear interaction between different scales of turbulence does not allow the dynamics of the
unresolved (subfilter) field to be fully separated from the resolved one. Consequently, the filtered
momentum equation contains the contribution of unresolved eddies to the resolved field, which
acts as an additional stress term. These stresses are commonly known as subgrid-scale stresses,
but are called subfilter-scale (SFS) stresses here. The SFS stresses are usually modeled using
an eddy-viscosity hypothesis and the model length scale is related to the filter width (in most
commonly used models, the velocity scale also depends on � [3,4]). Therefore, the filter width
plays an important role in modeling the dynamics of the subfilter eddies, which in turn affect the
resolved field.
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It is common practice to relate � to the grid size h. Pope [2] points out two problems related to this
choice. First, when � ∝ h, the dynamics of the resolved field are linked to the numerical scheme,
altering the LES from a physical model to a numerical procedure; furthermore, convergence to the
solution of the LES equations is never reached. Second, the dependence of � on the grid topology
makes LES an incomplete model. Vanella et al. [5], for instance, observed that discontinuities appear
in the eddy viscosity when local refinement is used. These discontinuities may cause numerical
instabilities and do not always reflect the flow physics; a refined treatment would require explicit
accounting of commutator errors associated with strongly varying filter widths [6]. Piomelli et al.
[7] discuss these issues in depth.

An alternative definition of � decouples the filter width from the grid [7]. In this paper, the
authors propose a model length scale � that is instead related to the turbulence itself, by calculating
an approximation of the local integral length scale Lest and setting � ∝ Lest [integral length-scale
approximation (ILSA)]. In this way, the LES is turned into a physical model for turbulence and full
independent control is possible over numerical errors. Piomelli et al. [7] estimated Lest based on the
resolved turbulent kinetic energy and total dissipation; the single model constant Ck was determined
by requiring that the SFSs contribute a given amount to the total dissipation [8]. Decreasing Ck is
equivalent to decreasing the filter width and hence enhancing the physical resolution. More grid
points are then required to resolve the smallest scale in the flow, as the number of grid cells covering
the smallest resolved volume, which is proportional to �3, should be kept constant in this philosophy.
Increasing the grid resolution, however, does not result in significant changes in the filter size once
the local integral scale is reliably captured. In fact, a grid-converged solution can be achieved when
Lest/h is large [9]. Conversely, larger values of Ck correspond to a wider range of modeled scales;
grid convergence is achieved with coarser meshes, but the SFS model must give a more significant
contribution to the transport and modeling errors may become more significant. Seen from this
perspective, LES would be an act of balancing errors controlled fully by the user of the model [10].

In Ref. [7] Ck is a global constant, calculated once, before the production simulation is performed.
A target value for the chosen measure of SFS activity [8], sε (the ratio of the SFS dissipation to the
total, viscous and SFS, one), was assigned and the corresponding Ck was obtained by performing
several coarse-grid calculations, using the successive inverse polynomial interpolation approach for
computational error reduction [11]. Successive inverse polynomial interpolation is based on the
definition of a cost function φ measuring the difference between a target value of a given quantity
(here the assigned sε) and the LES prediction of the same quantity. The method consists of three
LES simulations on a coarse mesh for values of Ck that are expected to bracket the optimum value
[one at Ck = 0 corresponding to the coarse direct numerical simulation (DNS), the second at a fairly
large Ck , and the third with an intermediate value]. An interpolating parabola is constructed using
the three predicted φ and the Ck that yields the minimum φ is found. A LES using the optimized
Ck is carried out and the corresponding φ is predicted. If the φ thus obtained is not small enough
(within a given tolerance), the interpolation is repeated using the newest Ck and the nearest points.
With this method the optimum Ck is usually found with less than six simulations. The optimal model
coefficient obtained in this way is subsequently used in production calculations. This formulation of
the model, in which the overall integrated contribution of the SFS to the transport is used to set the
constant, will be referred to as the global ILSA model. It was tested in channel flow and homogenous
isotropic turbulence, with excellent agreement with the data; furthermore, several positive features
of the model (such as the grid independence) were demonstrated.

Further key improvements are needed to make the ILSA model applicable to complex problems.
First, for instance, as Re → ∞, the relative contribution of the SFS to the dissipation asymptotically
approaches unity. Using sε to determine Ck would cause a loss of sensitivity to the SFS activity in
this limit. Second, setting the integral of the SFS contribution to a single prespecified value may
not be the best choice in flows with strong inhomogeneities: In those cases, the SFS contribution
may be excessive in some regions (for instance, in thin shear layers), while in other regions the
flow can be overresolved and correspondingly the SFS contribution would be low. Third, alternative
methods of determining Ck that do not require additional calculations would be beneficial; adjusting
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Ck to the local state of the flow may be particularly useful in cases in which large-scale unsteadiness
may change the state of the turbulence to first order (oscillating flows in the transitional state, for
instance).

In this study we modify the ILSA model to make it more universally applicable to complex
problems and address three key issues with the global ILSA formulation: (i) sensitivity at high
Re, (ii) suitability for nonhomogeneous flows, and (iii) computational efficiency. In particular, we
adopt an alternative measure of SFS activity based on the contribution of the SFS directly to the
turbulent stresses, instead of indirectly via dissipation. Furthermore, we enforce a desired level of
SFS activity on a local basis. This provides better control over model activity, more suitable for flows
that contain nonequilibrium effects. Finally, the model coefficient (which is not constant any longer)
is calculated dynamically during the simulation, removing the need for preliminary simulations and
better matching the SFS model to the local state of the flow. This model will be called the local
ILSA.

In the following, the governing equations and the numerical method used are described. Then
the local implementation of the ILSA model is introduced. The relationship between the chosen
measure of SFS activity and more intuitive quantities (such as the SFS contribution to the turbulent
kinetic energy or to the momentum transport) is discussed at some length. Then the proposed model
is applied to plane channel flow at Reτ = 1000 and 2000 and flow over a backward-facing step
(BFS). Final remarks and suggestions for future development will conclude the article.

II. PROBLEM FORMULATION

A. Governing equations

In this paper, the filtered equations of conservation of mass and momentum are solved:

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ ∂(uiuj )

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj ∂xj

− ∂τij

∂xj

+ fi, (2)

where x1, x2, and x3 (also referred to as x, y, and z) are the streamwise, wall-normal, and spanwise
directions, which correspond to the velocity components u1, u2, and u3 (or u, v, and w), respectively.
The unresolved SFS stresses τij = uiuj − uiuj constitute the central closure problem in LES. They
are modeled using an eddy-viscosity approach

τ a
ij = τij − δij

3
τkk = −2νSFSSij , (3)

where Sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the resolved strain-rate tensor and νSFS is the eddy viscosity.
Finally, fi is a body force. In forced homogeneous isotropic turbulence, the linear forcing fi = Aui

was used to sustain turbulence following Rosales and Meneveau [12] (where A is a proportionality
constant). For the channel flow, fi = δi1fp, where δi1 is the Kronecker delta and fp is the pressure
gradient imposed to achieve a desired mass flow rate. For the backward-facing step, fi = 0.

The governing equations (1) and (2) are discretized using second-order accurate central differences
on a staggered grid and integrated with the fractional step method [13,14]. The time marching
scheme for homogeneous isotropic turbulence is the third-order Runge-Kutta method for all terms,
while for channel flow and a backward-facing step the third-order Runge-Kutta method is used for
all the terms except the diffusion term in the wall-normal direction, for which the second-order
Crank-Nicolson scheme is used. The Poisson solver for channel flow and homogeneous isotropic
turbulence uses Fourier expansions in the streamwise and spanwise directions; for each wave-number
pair the resulting tridiagonal matrix is inverted. For the backward-facing step a Fourier expansion
is performed in the spanwise direction only and for each wave number a pentadiagonal matrix
is inverted directly using cyclic reduction [15]. The code is parallelized using a message-passage
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interface and has been validated extensively for a variety of turbulent flows [16–18]. To represent
the step in the backward-facing step simulation, an immersed boundary method with direct forcing
was used [19].

B. Subfilter-scale model

In the ILSA model, the eddy viscosity is given by

νSFS = (CkLest)
2|S|, (4)

where the integral length scale is estimated from

Lest = 〈Kres〉3/2

〈εtot〉 ; (5)

here Kres = u′
iu

′
i/2 (where u′

i are the fluctuations of the resolved field) is the turbulent kinetic
energy of the resolved scales and εtot = 2(ν + νSFS)s ′

ij s
′
ij (s ′

ij is the fluctuating part of the resolved
strain-rate tensor) is the total dissipation rate by the resolved (εν = 2νs ′

ij s
′
ij ) and subfilter eddies

(εSFS = 2νSFSs
′
ij s

′
ij ). Both Kres and εtot are calculated locally and instantaneously. However, since

Lest is an integral quantity representing the average size of an ensemble of eddies, an averaging
operation 〈· · · 〉 has been used in Eq. (5) to define it. In flows where directions of homogeneity
exist, averaging can be performed over those directions; this results in an Lest that varies in the
nonhomogeneous directions (and time) only. Time averaging can also be used, and its application
will be discussed in the next section.

Using (5) to define Lest, the filter width is

� = C�Lest; (6)

the exact value of the filter width, in practice, is not necessary, as the constant C� is subsumed under
Ck . Note that substituting (5) in Eq. (4) results in an implicit equation for νSFS:

νSFS = C2
k

〈Kres〉3

〈2(ν + νSFS)s ′
ij s

′
ij 〉2

|S|. (7)

This issue is resolved by calculating the dissipation on the right-hand side at the previous time step.
To determine the parameter Ck we use the following measure of SFS activity:

sτ =
[ 〈

τ a
ij τ

a
ij

〉〈(
τ a
mn + Ra

mn

)(
τ a
mn + Ra

mn

)〉]1/2

, (8)

where τ a
ij was defined in Eq. (3) and

Ra
ij = u′

iu
′
j − δij

3
u′

ku
′
k (9)

is the anisotropic parts of the resolved stresses.
A more intuitive measure of the SFS activity would be the SFS contribution to the turbulent

kinetic energy

sk = 〈KSFS〉
〈Ktot〉 , Ktot = 1

2
u′

ku
′
k =

Kres︷ ︸︸ ︷
u′

ku
′
k

2
+

KSFS︷︸︸︷
τkk

2
(10)

this choice is however unfeasible within the present modeling assumption, due to the fact that the
SFS turbulent kinetic energy (TKE) KSFS is unknown, since only the anisotropic part of the SFS
stresses is modeled. In models in which this quantity is known (scale-similar or one-equation models,
for instance), using sk might be more desirable.
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FIG. 1. Ratio sτ /sk against C� at different Reynolds numbers for homogeneous isotropic turbulence:
ReL = 250 (black dashed line), ReL = 4490 (red solid line), and ReL = 1010 (blue dash-dotted line) obtained
from the model spectrum.

The relationship between sτ and sk can be estimated, under the assumptions of high Reynolds
number, eddy-viscosity hypothesis, and Gaussian behavior of fourth-order moments of the velocity
field, by using a model spectrum [20]. The analysis is reported in the Appendix and its results
are shown in Fig. 1. For large Reynolds numbers, both sτ and sk become independent of the
Reynolds number and vary with C� only and the ratio sτ /sk has a value of the order of 0.25–0.35
for 0.025 < C� < 0.12 (a realistic range, corresponding to a filter width that is 1/40 to 1/8 of
the integral length scale). This value is only an indication, since in more complex applications
the Reynolds number is finite and other effects (shear, for instance) are important, and sτ /sk takes
different values, as will be shown.

We also carried out two DNSs of forced homogeneous isotropic turbulence at ReL = 250 and 4490
(based on 〈Ktot〉1/2 and L = 〈Ktot〉3/2/〈εtot〉). The DNS data were obtained using 256 × 256 × 256
and 512 × 512 × 512 grid points (at the low and high Reynolds numbers, respectively) to discretize
a triply periodic box with dimensions 2π in each direction. The results compared well with data
in the literature [12] (not shown). The cutoff wave number was defined as Kc = π/C�L, the DNS
data were filtered using a three-dimensional box filter of width � = C�L, and the ratio sτ /sk

was computed. The lower bound for C� is restricted by the grid resolution, with a filter width
encompassing three cells (�min = 3h), and its upper bound is assigned based on a filter width
that yields sk � 0.2–0.25, the limit for a well-resolved LES. The results are also shown in Fig. 1.
At low Reynolds number (ReL = 250), sτ and sk are close to each other and sτ /sk � 1.0. As the
Reynolds number is increased to ReL = 4490, sτ becomes a fraction of sk with sτ /sk � 0.5 at large
enough C�.

We also calculated the ratio sτ /sk for DNS of channel flow at Reτ = 395 (based on channel
half height δ and friction velocity uτ ). We performed a DNS using 512 × 256 × 512 grid points to
discretize a domain of size 8δ × 2δ × 4δ and first- and second-order statistics compared well with
the data in the literature [21]. Filtering was carried out at each y level using a two-dimensional square
filter of width � = n�x, where n = 3,5,7 and �x is the streamwise grid size. Since the integral
scale varies across the channel, so does ReL = L〈Ktot〉1/2/ν (where 〈Ktot〉 is the plane-averaged
TKE across the channel); ReL [Fig. 2(a)] is comparable to the low-Reynolds-number homogeneous
isotropic turbulence simulation. Also C� = �/L changes [Fig. 2(b)]; near the wall, in the shear-
dominated region, it reaches values close to one, indicating that even the integral scale of turbulence
is only marginally resolved. In this situation, the role of the SFS model becomes critical, although
many of the assumptions on which SFS models rest (the filter width is in the inertial range and the
unresolved scales carry most of the energy) are not strictly satisfied. Figure 2(c) shows the profiles
of the ratio sτ /sk . Away from the wall (y � 0.2) where shear is small, the results are consistent
with those of the low-Reynolds-number homogeneous isotropic turbulence simulation, while near
the wall, where the shear stress becomes large, this ratio exceeds one.

To summarize, we find that sτ is a legitimate surrogate for sk , the fraction of TKE provided by
the unresolved scales. In the absence of shear, in the limit of large Reynolds number, and with the
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FIG. 2. Channel flow at Reτ = 395 for (a) ReL = L〈Ktot〉1/2/ν, (b) C�, and (c) sτ /sk with � = 3�x (black
solid line), � = 5�x (red dashed line), and � = 7�x (blue dash-dotted line).

filter width in the inertial region of the spectrum, sk � 4sτ , whereas in high-shear regions sk � sτ .
If we require that the resolved scales contribute more than 80% of the TKE (a reasonable value for
a well-resolved LES), we should expect sτ < 0.05. This value is consistent with the results of our
numerical tests, as will be shown later.

The second modification made to the ILSA model consists in the localization of the model
coefficient. As discussed above, appropriate LES resolution is satisfied by maintaining sτ below a
threshold value. However, proper quantification of SFS activity relies on scale homogeneity and thus
consistency in the shape of the energy spectrum. In a channel flow, for instance, scale homogeneity
exists in each plane parallel to the wall, while in a complex flow problem, time in a Lagrangian
fashion [22] can be considered as the scale-homogeneous dimension. In the original formulation, the
SFS activity was averaged over the entire computational domain and time and the model coefficient
Ck derived from this procedure was everywhere constant. Due to the global assignment of SFS
activity, the original formulation was called the global ILSA. When the global ILSA is applied to
channel flow, since the enforced SFS activity is an integral quantity, the SFS activity values that
result from each wall-parallel plane differ from each other and are either smaller or larger than
the global enforced value [7]. A more general target of SFS activity could be averaged locally,
over homogeneous directions only, and/or over time. This formulation is named the local ILSA;
local enforcement of the desired SFS activity requires Ck to be computed locally as well. The local
attribute changes its implication depending on the choice of averaging; if averaging is carried out
over xz planes, for instance, then Ck is local with respect to the y coordinate and time, whereas for
averaging over time the model yields local Ck as a function of x,y,z, within certain limits.

Note that calculating Ck instantaneously and thus removing the averaging operation from (8) and
(5) is not consistent with the model assumptions that require the estimation of the integral length
scale, which is an average quantity; it will be shown in Sec. III that instantaneous calculation of
Ck leads to an error in the integral scale. Performing integration over the homogeneous directions
of the flow (if any) and over time appears sensible. In the flows examined in this paper, the plane
channel and backward-facing step, homogeneous directions exist: x and z for the channel and z

only for the backward-facing step. Averaging can also be performed in time, over a window whose
length should be proportional to the integral time scale, either at a fixed point in Eulerian space or
following a Lagrangian approach similar to that of Meneveau et al. [23]. Most of the results shown in
the following were obtained using spatial averaging over homogeneous directions. In Sec. III C we
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FIG. 3. Model coefficient and SFS activity with local and global averaging: (a) model coefficient Ck and
(b) SFS activity measure sτ for global averaging (black solid line) and local averaging (red dashed line) with
channel flow at Reτ = 1000 with 48 × 64 × 48 grid points.

discuss temporal averaging and demonstrate the insensitivity of the model to the type of averaging
(spatial or temporal).

Figure 3 shows the difference between the global and local ILSA approaches observed from the
calculation of a plane channel flow at Reτ = 1000 to be discussed in the next section. With the
global formulation, the use of a constant Ck over the entire channel resulted in a significantly larger
contribution of the SFS to the transport in the near-wall region. A constant Ck also implies that the
ratio of the filter width to the local integral scale is constant throughout the channel; the size of
the turbulent eddies and the shape of the spectrum, however, are significantly different between the
near-wall and the outer regions of the flow and one would expect that the filter width would need to
account for this. Using a local formulation (averaging is only performed in the xz plane, in this case)
forces the SFS activity to have the assigned value at each y level, resulting in a uniform distribution
of sτ , and a nonuniform distribution of Ck across the channel. This results in a physically consistent
behavior of Ck , which becomes smaller as the wall is approached. In the viscous sublayer (y+ < 10)
the coefficient increases: This is due to the fact that the grid is not fine enough to resolve the smaller
eddies present in that region, so all the transport becomes due to unresolved eddies; this issue will
be discussed in more detail later.

The present approach has an additional benefit: the fact that Ck can be calculated directly, without
the a priori calculations used in Ref. [7]. If (3) and (4) are used in Eq. (8), a quadratic equation
results for Ck:

X1[1 − (1/sτ )2]C4
k − X2C

2
k + X3 = 0, (11)

where

X1 = 〈
2L4

est

∣∣S|4〉, X2 = 〈
4L2

est

∣∣S∣∣SijR
a
ij

〉
, X3 = 〈

Ra
mnR

a
mn

〉
. (12)

Equation (11) can be solved, at each time step, for each y = const plane (for the channel) or at each
point in the xy plane (for the backward-facing step). The only positive root is used in the model.

III. RESULTS

The localized ILSA model was applied to plane channel flow at fairly high Reynolds numbers
(Reτ = 1000 and 2000, where the Reynolds number is based on the friction velocity uτ and the
channel half height δ) and to a BFS at Rec = 28 000 (based on the mean centerline velocity of the
inflow channel Uc and the step height hs). In addition to the comparison with DNS and experimental
data, we will stress the response of the model to grid refinement and its behavior in the near-wall
region. We will also carry out a comparison between local and global ILSAs and the dynamic
eddy-viscosity model [24].

A. Plane channel flow

The local ILSA was applied to study channel flow at Reτ = 1000 and 2000. The domain size is
6δ × 2δ × 3δ with a periodic boundary condition applied in the streamwise and spanwise directions
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TABLE I. Summary of plane-channel flow simulations.

Grid Model

Reτ = 1000
48 × 65 × 48 local ILSA, sτ = 0.020
48 × 65 × 48 local ILSA, sτ = 0.022
64 × 97 × 64 local ILSA, sτ = 0.020
64 × 97 × 64 local ILSA, sτ = 0.022
128 × 129 × 128 local ILSA, sτ = 0.020
128 × 129 × 128 local ILSA, sτ = 0.022
192 × 193 × 192 local ILSA, sτ = 0.022
128 × 129 × 128 local ILSA, sτ = 0.010
128 × 129 × 128 local ILSA, sτ = 0.030

48 × 65 × 48 global ILSA, sτ = 0.020
64 × 97 × 64 global ILSA, sτ = 0.020
128 × 129 × 128 global ILSA, sτ = 0.020

48 × 65 × 48 dynamic model
64 × 97 × 64 dynamic model
128 × 129 × 128 dynamic model

Reτ = 2000
64 × 97 × 64 local ILSA, sτ = 0.022
128 × 129 × 128 local ILSA, sτ = 0.022
192 × 193 × 192 local ILSA, sτ = 0.022
256 × 257 × 256 local ILSA, sτ = 0.022
192 × 193 × 192 local ILSA, sτ = 0.010
192 × 193 × 192 local ILSA, sτ = 0.030

192 × 193 × 192 dynamic model

and a no-slip condition at the top and bottom boundaries. Simulations were carried out with both the
local and the global ILSA models (with various target values for the SFS activity measure) as well
as with the plane-averaged dynamic model to create a well-known point of comparison (see Table I).

Now we examine the effect of the SFS activity threshold. In Fig. 4 we compare the results obtained
with sτ = 0.01, 0.022, and 0.03. The grid was chosen based on the grid convergence study to be
discussed momentarily. Given the expected relationship between sτ and sk , the percentage of TKE
in the unresolved scales, these values would correspond to a well-resolved simulation, with between
88% (in the channel center) and 95% (near the wall) of the energy being resolved. The agreement
with the DNS data is generally very good. For sτ = 0.03 the model is more dissipative, the buffer
layer becomes thicker, and the logarithmic layer in the velocity profile is shifted upward. Conversely,
when the SFSs do not contribute enough, the wall stress is overpredicted and the logarithmic layer
is shifted downward [Figs. 4(a) and 4(c)]. The errors in the prediction of the skin-friction coefficient
are −10% and −2% for sτ = 0.03 (at the lower and higher Reτ , respectively) and 2% for sτ = 0.01.
Both the peak value of streamwise root-mean-square (rms) fluctuations and its location are predicted
well in all cases. The thickening of the buffer layer, however, can be observed by zooming into the
region near the peak streamwise rms fluctuations [the insets in Figs. 4(b) and 4(d)], which show a
sharper peak for lower values of sτ .

Another measure of SFS activity is the percentage of Reynolds shear stress supported by the
unresolved scales, which can be defined as

suv =
〈
τ a
uv

〉〈
u′v′ + τ a

uv

〉 . (13)
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FIG. 4. Mean velocity and streamwise root-mean-square velocity fluctuations profiles at (a) and (b) Reτ =
1000 with 128 × 129 × 128 grid points and (c) and (d) Reτ = 2000 with 192 × 193 × 192 grid points with
sτ = 0.010 (red dashed line), sτ = 0.022 (blue solid line), sτ = 0.030 (black dash-dotted line), and DNS [25]
(pluses).

Although suv is not generally applicable because it is not frame invariant, it yields useful information,
in this case, on the level of resolution implied by the three chosen values of sτ .

Figure 5 compares the value of suv for the three simulations shown above with the analogous
quantity obtained from a simulation with the dynamic eddy-viscosity model [24]. As expected,
the SFS stress increases as sτ increases. Outside the wall layer, suv � sτ ; in the viscous sublayer,
with the ILSA model, the SFSs contribute increasingly to the momentum flux and the wall value
of suv approaches unity. The behavior of the ILSA model is due to the fact that near the wall the
integral scale increases linearly, while the grid is refined only in the wall-normal direction; thus, the
unresolved scales should contribute most (or all) of the momentum transport. We notice, however,
that the thickening of the buffer layer mentioned above is associated with large values of suv that
persist through the buffer layer. By contrast, the shear stress predicted by the dynamic model is much
lower and near the wall the SFS contribution to the momentum flux approaches a smaller value,
close to 0.2, because the filter width is proportional to the grid size, and the eddy viscosity decreases
too rapidly.

y+

uv

0 10 20 30 40 500

0.1

0.2

0.3

(a)

y+

s uv

0 10 20 30 40 500

0.3

0.6

0.9
(b)

FIG. 5. Contribution of SFSs to the streamwise momentum flux in channel flow at Reτ = 2000 with
192 × 193 × 192 grid points for (a) τuv and (b) suv with sτ = 0.010 (red dashed line), sτ = 0.022 (blue solid
line), sτ = 0.030 (black dash-dotted line), and dynamic model [24] (green dotted line).
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FIG. 6. Turbulence statistics at Reτ = 2000 using the local ILSA and sτ = 0.022: (a) mean velocity,
(b) urms, (c) vrms, and (d) wrms, all normalized by uτ , with 64 × 97 × 64 grid points (green long-dashed line),
128 × 129 × 128 grid points (black dash-dotted line), 192 × 193 × 192 grid points (red short-dashed line),
256 × 257 × 256 grid points (blue solid line), and DNS [25] (pluses).

We next consider the grid resolution requirements. We performed simulations for both Reynolds
numbers using the value of sτ = 0.022 that was found to yield the most accurate results. Figure 6
shows the results at Reτ = 2000. Both the mean and rms velocities reach grid convergence. For
the mean velocity 128 × 129 × 128 grid points are required, while the rms velocities need 192 ×
193 × 192 grid points to become grid independent. At Reτ = 1000 earlier grid convergence was
reached for the mean using 64 × 97 × 64 and for the rms fluctuations using 128 × 129 × 128 points.
Accurate prediction of the mean velocity on the coarse grid using the local ILSA was also observed
in the global ILSA [7]. This is an additional advantage of these two models, which will be explained
momentarily through further study of their near-wall behavior.

The variation across the channel of the eddy viscosity and Ck is shown in Fig. 7. At Reτ = 1000
the eddy viscosity and Ck become grid independent when 128 × 129 × 128 grid points are used,
similarly to the second-order statistics. In the local ILSA, as shown in Fig. 7(b), the eddy viscosity
near the wall is proportional to y2, not far from the required y3 behavior. This is an improvement
over the global ILSA model, in which near the wall the eddy viscosity is proportional to y6 when
νSFS 	 ν and to y2 only if νSFS 
 ν. The difference between the two models is due to the fact that
in global ILSA Ck is spatially constant and νSFS ∝ L2

est. In the localized model Ck is allowed to vary.
To explain the near-wall behavior, (8) can be rewritten in the form(

1 − 1/s2
τ

)〈
τ a
ij τ

a
ij

〉 − 2/s2
τ

〈
Ra

ij τ
a
ij

〉 − 〈
Ra

ijR
a
ij

〉 = 0; (14)

substituting (3) and (9) for τ a
ij and Ra

ij , expanding ui as a Taylor series of y, and retaining only the
leading-order terms, we obtain

aν2
SFS + bνSFSy

2 + cy4 = 0, (15)

where a, b, and c are independent of y. The above equation is only satisfied if νSFS ∝ y2. The
near-wall behavior of νSFS implies that Ck ∝ y−2 at low Reynolds numbers; this can also be observed
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FIG. 7. Profiles of (a) and (b) normalized SFS eddy viscosity νSFS/ν and (c) and (d) Ck at Reτ = 1000
with 48 × 65 × 48 (black long-dashed line), 64 × 97 × 64 (red dash-dotted line), 128 × 129 × 128 (green
short-dashed line), and 192 × 193 × 192 (blue solid line) grid points.

in Fig. 7(d). We conclude by observing that formulating sτ locally not only gives better control of
the SFS activity, but also improves the near-wall behavior of the eddy viscosity, compared to the
global ILSA.

The local and global ILSA models were also compared with the dynamic eddy-viscosity model
[24]. Figures 8 and 9 show the mean and rms velocity profiles at different grid resolutions,
respectively. We have also added coarse DNS simulations without an explicit SFS term to quantify
the explicit model contribution.

Piomelli et al. [7] observed higher accuracy in the global ILSA compared to the dynamic model
on coarse grids; the local ILSA preserves this property, in particular in the mean velocity. The better
agreement of the ILSA model on a coarse grid is due to its near-wall behavior, shown in Figs. 10(a)
and 10(b). Near the wall the eddy viscosity increases more rapidly compared to the dynamic model
so that, on the coarse grid, the eddy viscosity in the buffer layer is 4–8 times larger than the one
produced by the dynamic model. Such high model activity compensates for the lack of momentum
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FIG. 8. Mean velocity profiles in inner units at Reτ = 1000 for DNS [25] (pluses), the dynamic model
[24] (blue dashed line), the local ILSA with sτ = 0.02 (red solid line), the global ILSA with sτ = 0.02 (black
dash-dotted line), and no model (green dash–double-dotted line). The bottom curves show 48 × 65 × 48 grid
points, the middle curves 64 × 97 × 64 grid points, and the top curves 128 × 129 × 128 grid points.
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FIG. 9. Profiles of (a) urms and (b) vrms at Reτ = 1000. Legends and grid resolutions are consistent with
Fig. 8. For clarity the data are shown up to y = 0.5.

transport due to underresolved eddies on a coarse grid. It is easy to show that near the wall suv is
proportional to y−1 for the local ILSA model; y−1 or y0 for the global ILSA model, at high or low
Re, respectively; and y0 for the dynamic model. These behaviors can be observed in Figs. 10(c) and
10(d).

The effect of the model contribution to transport can also be observed from Figs. 8 and 9. On
the coarse and intermediate grids the mean velocity and streamwise fluctuations are predicted more
accurately when the model is used; the mean velocity is more sensitive than the rms fluctuations
to the model. Note that the results are grid converged on the intermediate grid and the fine one is
excessively refined. When the fine grid is used, the rms fluctuations obtained by the coarse DNS are
in very close agreement with the LES, while the mean velocity (and the wall stress) are predicted
less accurately. Also, both simulations that use SFS models have a more reliable grid-convergence
behavior than the coarse DNS. The coarse DNS in fact gives reasonably good agreement with
the data at 64 × 97 × 64 grid points, but as the resolution is doubled, error appears in the wall
shear stress and hence in the logarithmic region intercept. Such behavior was previously addressed
in the literature [26,27]; Meyers and Sagaut [26], using an energy-conserving code, observed that
underresolved DNS predicts the wall friction and the mean velocity accurately at a certain resolution,
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FIG. 10. Plots of SFS parameters at Reτ = 1000 for the dynamic model [24] (dashed blue line), the local
ILSA with sτ = 0.02 (red solid line), and the global ILSA with sτ = 0.02 (black dash-dotted line) with (a) and
(c) 48 × 65 × 48 and (b) and (d) 128 × 129 × 128 grid points for (a) and (b) the ratio of subfilter eddy viscosity
over kinematic viscosity and (c) and (d) suv .
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TABLE II. Simulation cost for channel flow at Reτ = 1000 using 128 × 129 × 128 grid points.

Model Average time step CPU per time step (s) Total CPU (h)

Smagorinsky 0.0055 1.065 10.55
global ILSA, sτ = 0.02 0.0056 1.142 11.1
local ILSA, sτ = 0.02 0.0056 1.151 11.19
dynamic [24] 0.0056 1.374 13.35

but this accuracy may disappear once the grid is refined. This illustrates complex error behavior at
coarse resolution, which is not in the fully asymptotic regime yet.

The computational cost of the models is summarized in Table II; all the simulations were run
at Reτ = 1000 using 128 × 129 × 128 grid points for 10δ/uτ on eight 2.52-GHz Sparc64 VII
processors. The difference between the global and local ILSA models is marginal, while the dynamic
model [24] is approximately 20% more expensive, due to the extra filtering operations. The cost of
the ILSA models is only 6% higher than that of the Smagorinsky model.

B. Backward-facing step

The BFS is a canonical benchmark test case for turbulence models; it includes flow separation
and reattachment, recirculation, and flow acceleration. To assess the local ILSA and its accuracy
compared to other models in a geometry more complex than the plane channel tested so far we
performed calculations of the backward-facing step in conditions matching the experiment of Vogel
and Eaton [28]. The Reynolds number is Rec = 28 000, based on the mean centerline velocity of the
inflow channel Uc and the step height hs . Figure 11 shows the domain size and grid arrangement;
the origin is placed at the bottom edge of the step. The height of the inflow channel is 4hs and the
expansion ratio is 1.25; the spanwise width is W = 3hs . To generate a fully developed turbulent
channel inflow, the velocity field at x = −5hs was recycled to the inlet plane at x = −32hs ; thus our
inflow length is Lch = 27hs , 13.5 times the inflow channel half height. The mean and rms velocity
profiles in the inlet channel were in agreement with those obtained from simulations of periodic
channel flow. At the outlet, a convective outflow boundary condition [29] was used. The length of
the expanded duct is Lout = 20hs , which was also used in previous LES simulations [17,30]. To
ensure the adequacy of Lout, a longer domain with Lout = 30hs was also used; the flow statistics at
x = 19hs showed very little difference.

Figure 11 highlights the clustering of grid points at the step edge and near the walls. The models
were tested on three grids, summarized in Table III: coarse (256 × 100 × 64), intermediate (384 ×
150 × 96), and fine (512 × 200 × 128). Following Yu and Moin [30], wall units were calculated
using the friction velocity at the outlet. Also, since our domain of interest is x/hs < 10, the
adequacy of the streamwise grid size is assessed within this range only. The intermediate resolution

x/hs

y/
h s

-30 -20 -10 0 100

2

4

6
Lch Lout

FIG. 11. Grid size and arrangement for the backward-facing step calculations using the coarse grid 256 ×
100 × 64. Grid size distributions �x/hs and �y/hs are normalized by the step height hs .
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TABLE III. Summary of grid resolutions for a backward-facing step. Grid sizes are normalized by the
friction velocity at the outlet uτ (x/hs = 20).

Grid level Nx × Ny × Nz �x+(x/hs < 10) �y+ �z+

coarse 256 × 100 × 64 42.8–244.2 0.9–122.3 33.5
intermediate 384 × 150 × 96 28.7–163.4 0.6–80.4 21.5
fine 512 × 200 × 128 19.3–109.1 0.4–54.2 14.3

was adopted in previous studies of this problem [17,30]. Here we also consider a coarser and a finer
level for a more extensive comparison. The local ILSA model used sτ = 0.022 and the averaging
was performed in the spanwise direction only.

The accuracy of the local ILSA was assessed through comparison with the Lagrangian dynamic
model [23] and the experimental data [28]; the mean velocity is shown in Fig. 12 and the streamwise
turbulence intensity in Fig. 13. The ILSA model is slightly more accurate than the dynamic model
on the coarsest grid in the mean velocity (after the flow reattachment) and Reynolds shear stress
(within the circulation bubble). We also compared the Reynolds shear stress in Fig. 14 (note that the
SFS shear stress τ12 was added to the resolved one 〈u′v′〉); experimental data were not available for
the Reynolds shear stress at the locations considered.

We also performed calculations with no model. On the coarse and grid-converged meshes, the
coarse DNS results in significant errors in the mean velocity, especially in the prediction of the
reattachment point (Fig. 12). Even on the fine mesh some differences with the LES and experimental
data persist. The error in the rms fluctuations is similar, while that in the Reynolds shear stress
(Fig. 14) is higher when no model is used.
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FIG. 12. Mean velocity normalized by the centerline velocity at the inlet duct at the locations specified
downstream of the step with (a) a coarse 256 × 100 × 64 grid, (b) an intermediate 384 × 150 × 96 grid, and
(c) a fine 512 × 200 × 128 grid for the local ILSA with sτ = 0.022 (solid blue line), no model (red dashed
line), the Lagrangian dynamic model [23] (black dash-dotted line), and experiment [28] (closed circles).
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FIG. 13. Plots of urms velocity normalized by the centerline velocity at the inlet duct. The grid resolutions,
locations, and legends are the same as in Fig. 12.

The global ILSA was also tested on the coarse resolution, using Ck = 0.0075 and 0.013, values
that yield sτ up to 0.03 in the first case and up to 0.05 in the second (the distribution of sτ is of
course nonuniform). The results are also in good agreement with the experimental data (not shown)
and the case with the higher constant is only slightly less accurate.

Figure 15 shows the distributions of Lest and Ck . The critical feature of the ILSA is the adaptation
of Lest to the local state of the flow. Near the edge of the step where small-scale structures emerge,
Lest decreases in size; then, after the separation, where the flow structures start growing in size, Lest

grows again. The dynamic variation of the model parameter is an additional property of the local

y/
h s

0

1

2
(a)

y/
h s

0

1

2
(b)

<u’v’>/Uc
2

y/
h s

-0.01 0 0.01 0.02 0.03
0

1

2
(c)

FIG. 14. Total Reynolds shear stress 〈u′v′〉 normalized by the centerline velocity at the inlet duct. The grid
resolutions, locations, and legends are the same as in Fig. 12.
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FIG. 15. Plots of the SFS parameters for the backward-facing step using the local ILSA on the coarse
resolution (256 × 100 × 64) for (a) Lest/hs and (b) Ck .

ILSA. After the separation region where Lest is growing, Ck decreases to maintain a constant value
of the SFS activity.

The fact that the model length scale is based on the flow physics rather than on the grid is a major
advantage in this problem, in which severe grid refinements are required to resolve appropriately
the inviscid instability of the shear layer. Figure 16 compares the eddy viscosity obtained using the
ILSA with that used in the dynamic model, which, because of its strong dependence on the grid
size, is sharply reduced near the step. The ILSA, on the other hand, gives a smoother distribution of
νSFS, since the length scale does not reflect the grid size but the turbulence properties only. The fact
that the grid is refined does not, in this case, imply that, locally, finer scales are present. Because of
the convective nature of this flow, the eddies present at a point in the separated shear layers are not
generated locally, but advected from upstream. The decrease in eddy viscosity, not accompanied by
an increase in the range of turbulent eddies present, is liable to result in errors of the type described
by Vanella et al. [5] even when the mesh is not discontinuous. In more complex applications with
sudden grid refinement, the discontinuity in the eddy viscosity would also lead to aliasing and
commutation errors in the resolved scales [5].

C. Effects of temporal averaging

The local ILSA is formulated based on the integral scale, which relies on averaging the turbulence
quantities [20]; in general, time averaging over an appropriate averaging period can be adopted in the
simulations. However, in the problems described in this article, due to the existence of homogeneous
directions, we used spatial averaging to evaluate the model parameters. The benefit of spatial
averaging (especially for the channel, in which averaging is performed in both streamwise and
spanwise directions) lies in the fact that several large eddies are included, resulting in fairly smooth
TKE and total dissipation, thereby reducing numerical discretization error effects in addition to faster
convergence in model parameters. In complex problems in which no homogeneous direction exists,
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FIG. 16. Plots of the SFS eddy viscosity for the backward-facing step using coarse resolution (256 × 100 ×
64) for (a) the Lagrangian dynamic model [23], (b) the local ILSA with sτ = 0.022, (c) the eddy viscosity across
the backward-facing step at x/hs = 10 for the local ILSA with sτ = 0.022 (red solid line) and the Lagrangian
dynamic model (black dash-dotted line), and (d) the grid-size distribution across the backward-facing step.
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time is the only feasible averaging dimension as far as the evaluation of the SFS model is concerned.
In this section we consider the effect of time averaging in detail. For a proper understanding it
is important that one distinguishes clearly the standard long-time averaging needed to evaluate
averaged properties during postprocessing from the weighted time averaging over much shorter time
intervals (here denoted by Tavg) used to calculate the model parameters yielding the SFS flux in the
simulation.

As part of the SFS model evaluation, we determine how sensitive the results are to Tavg. Using a
large value of Tavg, the model might need a long transient before the simulations reach a statistically
steady state; the flow may then adjust slowly to the model and the total computational time might
be increased substantially. On the other hand, by using a small Tavg, error may appear in the long
time-averaged mean and rms quantities due to the deviation of the SFS parameters from their integral
nature. In this section we will examine the response of the model predictions when only temporal
averaging is performed as part of the SFS model flux evaluation.

We consider a general formulation in which the average is performed over all previous times with
an exponential weighting function

〈φ〉(t) = 1

Tavg

∫ t

−∞
φ(t ′) exp[−(t − t ′)/Tavg]dt ′, (16)

where Tavg is the characteristic time scale of the averaging operation. This can be conveniently
formulated, numerically, as

〈φ〉n+1 = εφn+1 + (1 − ε)〈φ〉n, ε = �t

�t + Tavg
, (17)

where �t is the time step. For Tavg → 0 this yields an instantaneous quantity (no averaging), while
for Tavg → ∞ the standard Reynolds average is recovered.

Equation (17) is used to evaluate all the averaged quantities in Eq. (5) and the model response to
variations in Tavg was studied in both channel flow and backward-facing step. For channel flow, we
concentrated on Reτ = 1000 using 128 × 129 × 128 grid points with sτ = 0.022. The characteristic
time Tavg was based on the large-eddy turnover time δ/uτ and was varied from 0.0025 to 5 times
δ/uτ . Simulations were performed starting from a converged velocity field (the same in all cases)
obtained from a previous simulation using the local ILSA with plane-averaging, initializing the eddy
viscosity using the Smagorinsky model [3]; time histories at three points, located at y+ = 12, 50,
and 800, were recorded. Data were collected every five time steps (�t was about 2.5 × 10−4δ/uτ );
to assess the convergence of the data in a consistent manner, cumulative averaging was carried out:

〈φ〉cuml(t) = 1

t

∫ t

0
φ(t ′)dt ′. (18)

Note that cumulative averaging yields a delayed convergence of the sample compared to averaging
over a finite window, due to the effects of the initial transient. However, here we used this choice on
purpose to assess how fast the initial transient is removed from the averaged quantities by changing
Tavg.

Results for the streamwise velocity, Reynolds shear stress, and eddy viscosity in the channel
are shown in Fig. 17 at y+ = 12 and 50; the behavior at y+ = 800 was similar to that observed at
y+ = 50. Due to the initialization from a developed velocity field, first-order statistics were found
to converge earlier (after about 20δ/uτ ) than second-order statistics and eddy viscosity. The local
ILSA yields simultaneous convergence of turbulent fluctuations and SFS parameters, regardless of
the choice of Tavg. For Tavg = 1.0δ/uτ –2.0δ/uτ , after a transient of approximately 30δ/uτ , both
the eddy viscosity and Reynolds shear stress stabilize near the average value obtained using spatial
averaging. The choice of Tavg = 5.0δ/uτ requires a longer time for convergence due to the memory
of the initial transient, which is felt for a longer period. Overall, for values of Tavg within the range
1.0δ/uτ –5.0δ/uτ , the converged values are the same as the plane-averaged data.

044401-17



A. ROUHI, U. PIOMELLI, AND B. J. GEURTS

U
/u

0 20 40 60 804

6

8

10

12 (a)

R uv
/u

2

0 20 40 60 800

0.3

0.6

0.9 (c)

tu
0 20 40 60 800

0.3

0.6

0.9 (f)

tu

v sf
s /

 v

0 20 40 60 800

0.3

0.6

0.9 (e)

0 20 40 60 8010

12

14

16

18 (b)

0 20 40 60 800

0.3

0.6

0.9 (d)

FIG. 17. History of (a) and (b) velocity u, (c) and (d) Reynolds shear stress Ruv , and (e) and (f) eddy
viscosity for channel flow at (a), (c), and (e) y+ = 12 and (b), (d), and (f) y+ = 50 for Tavg = 5.0δ/uτ (red solid
line), Tavg = 2.0δ/uτ (blue solid line), and Tavg = 1.0δ/uτ (green solid line). The straight horizontal line is the
converged value from plane averaging.

The effect of Tavg on the converged statistics is studied further in Figs. 18 and 19. Except for
the case with the smallest characteristic time Tavg = 0.0025δ/uτ , the eddy viscosity is insensitive
to the choice of Tavg (Fig. 18), as are the velocity statistics (Fig. 19). The smallest averaging
time used reflects an almost instantaneous field, since it corresponds to averaging over nine or ten
time steps only; when the averaging time becomes a small fraction of the integral time scale, the
averaged quantities approach the instantaneous ones and thus the predicted fluctuating field (i.e.,
φ′ = φ − 〈φ〉) approaches zero, which ultimately under-predicts the eddy viscosity. The fact that the
eddy viscosity does not change as long as Tavg is of the order of a large-eddy turnover time indicates
that time averaging can be performed in flows without homogeneous directions. It should also be
noted that the time required for the SFS quantities to converge is similar to that required by all the
other statistics and the computational overhead is limited.

We performed the same study in the backward-facing step, which is more representative of flows
with large-scale unsteadiness, since the recirculation bubble oscillates at a fairly low frequency [31].
We considered the case with sτ = 0.022 using 384 × 150 × 96 grid points. The shedding period
of the separated shear layer τs was used as the integral time scale of the flow and is estimated
as τs = XR/Ub, where XR is the separation length and Ub is the bulk inflow velocity [32]. The
time history of SFS parameters was recorded at six points, as Tavg was varied from τs to 5τs . Also
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FIG. 18. Ratio of eddy viscosity to kinematic viscosity for channel flow at Reτ = 1000 with sτ = 0.022
using 128 × 129 × 128 grid points for Tavg = 5.0δ/uτ (red solid line), Tavg = 2.0δ/uτ (blue solid line), Tavg =
1.0δ/uτ (green solid line), Tavg = 0.1δ/uτ (pink solid line), Tavg = 0.0025δ/uτ (black solid line), and plane
averaging (closed circles).
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FIG. 19. (a) Mean streamwise velocity and (b) urms for channel flow at Reτ = 1000 with sτ = 0.022 using
128 × 129 × 128 grid points. Legends are the same as in Fig. 18.

Tavg = 0.1τs was tested but, as in the channel, the use of nearly instantaneous data affected adversely
the results and is not shown. Similar to the channel flow, simulations were initiated from a converged
velocity field with the Smagorinsky eddy viscosity as the initial condition for νSFS.

Figure 20 shows the location of the monitoring points and the history of the solution at two
representative points [points (2) and (4)], one near the shear layer and the other one within the
separation bubble. The second one can be expected to yield the slowest convergence, since it is
not in an advection-dominated region, and the oscillations of the separation bubble are expected to
affect the convergence of the statistics. According to Simpson [31], the size of the separation bubble
oscillates (flapping motion) with a period that is about an order of magnitude larger than τs .
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FIG. 20. History of (a) and (b) streamwise mean velocity, (c) and (d) Reynolds shear-stress, and (e) and (f)
eddy viscosity for the backward-facing step with sτ = 0.022 using 384 × 150 × 96 grid points at (a), (c), and
(e) point (2) and (b), (d), and (f) point (4) for Tavg = 5.0τs (red solid line), Tavg = 2.0τs (blue solid line), and
Tavg = 1.0τs (green solid line). The straight horizontal line is the converged value from line averaging.

044401-19



A. ROUHI, U. PIOMELLI, AND B. J. GEURTS

<u>/Uc

y/
h s

-1 0 1 2 3 40

1

2

(a)

urms/Uc

y/
h s

0 0.2 0.4 0.6 0.80

1

2

(b)

FIG. 21. (a) Mean streamwise and (b) urms velocities normalized by the centerline velocity at the inlet duct
for Tavg = 5.0τs (red solid line), Tavg = 2.0τs (blue solid line), Tavg = 1.0τs (green solid line), Tavg = 0.1τs

(black solid line), and line averaging (closed circles). Locations are the same as in Fig. 12.

In Fig. 20 the cumulative-averaged statistics are plotted. At point (2) convergence of the results
is insensitive to the choice of Tavg and occurs at approximately 50τs . It can be conjectured that
evolution of the flow at this point is mainly dependent on the time scale of the inflow channel; the
range of Tavg = 5.0τs–1.0τs is equivalent to about 0.75 to 0.15 of the large-eddy turnover time of the
inflow duct. According to our channel flow analysis, this is the range within which fast convergence
is reached and at the same time the averaged quantities can accurately yield the integral parameters.

As expected, point (4) in the recirculation bubble converges more slowly, especially for Tavg = 5τs .
However, for Tavg = 1.0τs–2.0τs , convergence is reached in approximately t = 50τs–20τs . Within
the recirculation bubble the time scale of the flow is mainly dictated by the oscillation period of the
bubble; therefore the choice of Tavg = 1.0τs might be thought to be too low as an averaging window.
However, this is equivalent to about 0.1 of the local integral time scale and, according to the channel
flow analysis, this averaging time gives adequate results for the integral quantities. If we average the
results over a finite time window (of the order of the integral time scale) rather than using cumulative
averages, convergence is reached in about 10τs–20τs (not shown here).

For reference, for the production simulation of the backward-facing step starting from coarse
simulation data, it takes about 15τs for the first-order statistics to converge, while the data shown
for backward-facing step in the previous section were averaged over a time of about 75τs . Since
our analysis here indicates that little simulation time is required (over that required for turbulence
statistics) for the convergence of the SFS quantities required in the model, we conclude that time
averaging in the ILSA model would not increase the computational cost appreciably.

The sensitivity of the statistics to Tavg is shown in Fig. 21. All the turbulence statistics collapse,
except for Tavg = 0.1τs , which presents a slight underprediction in the mean velocity near the
reattachment point, due to the eddy viscosity, which is underpredicted by about 50% in that region.
The choice of Tavg = 0.1τs corresponds to 0.01 of the local time scale within the recirculation
bubble, equivalent to a nearly instantaneous calculation of SFS parameters and causing a rise in the
modeling error.

In summary, our analysis demonstrates that the local ILSA can be applied to complex problems
using time as the only averaging dimension. With a time-averaging period in the order of the integral
time scale of the flow, convergence of the SFS parameters is reached as fast as the flow field itself
and at the same time sufficient sampling period is provided for accurate reconstruction of integral
quantities that are used in the SFS model.
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IV. CONCLUSION

We developed an eddy-viscosity model for LES, based on the one proposed by Piomelli et al. [7],
which uses a model length scale based on an estimation of the integral scale of turbulence (the ILSA
model). This model was used for simulations of plane channel flow and flow over a backward-facing
step.

Two main modifications were carried out. First, a measure of subfilter activity was defined that
is more robust to increases in the Reynolds number. This quantity sτ measures the contribution of
the subfilter scales to the second invariant of the Reynolds stress tensor. This quantity is related to
the percentage of turbulent kinetic energy carried by the SFSs and the ratio between the two can
be calculated for homogeneous isotropic turbulence at high Reynolds number. For low Reynolds
numbers and in the presence of shear, the relationship is harder to quantify, but the ratio remains of
order one.

A second improvement was carried out by making the model more responsive to the local
dynamics of the flow. In the original ILSA model, the model coefficient Ck was a constant, assigned
in such a way to maintain a desired value of the SFS activity measure chosen. In the formulation
called the local ILSA, Ck is calculated dynamically, at each time step, to satisfy the desired SFS
activity locally, using either local spatial averaging or time averaging. This modification has an
additional advantage in that it improves the near-wall asymptotic behavior of the model.

Application of the local ILSA to channel flow indicated that sτ � 0.03 yields an accurate solution.
Values of sτ above this range cause the SFS shear stress to carry more than 50% of the Reynolds
stress in the buffer layer, causing an increase in the modeling error. The model is at least as
accurate, in channel flow, as the dynamic model [24] at a substantially reduced cost. On coarse
or marginal meshes, the model is significantly more accurate, due to its better behavior near the
wall.

The local ILSA was also applied to flow over a BFS. Results indicated that ILSA adapts itself to
the local state of the flow, varying consistently with the size of the turbulent eddies. Furthermore,
better control over local SFS activity resulted in higher accuracy of the local ILSA compared to the
dynamic model on coarse grids. Finally, the distribution of the eddy viscosity demonstrated that,
due to the minimal sensitivity of the ILSA to the grid topology, the local ILSA results in a smooth
distribution of the eddy viscosity independent of the local grid size, whereas the grid-based nature
of the dynamic model yields sharp variations of the eddy viscosity in the refined-grid region. The
smooth but physically consistent model length scale produced by the ILSA model makes it a suitable
choice for complex geometries with an unstructured grid in which sudden grid refinement might
lead to an increase in the error if a grid-based filter width would be adopted [33,34].

In all presently used models, the user must provide a parameter that contains a certain degree
of arbitrariness. In the Smagorinsky model, for instance, the choice is made of having � ∝ h (the
proportionality constant and the exact definition of � are also somewhat arbitrary, as discussed in
Ref. [7]). The model constant is then calculated based on homogenous isotropic turbulence theory
and modified to account for shear, solid walls, etc. In the dynamic model, the definition of the
filter width (� ∝ h) is still an arbitrary choice, as is the ratio between the test and grid filter. The
model coefficient, however, is determined according to the dynamic procedure (which also has
some degree of arbitrariness, caused by the type of averaging adopted). In the models based on
the integral length-scale approximation the main choice the user must make is the expected cost
of the calculation, measured by the SFS activity measure, in this case sτ . The smaller this number,
the higher the cost of the simulation, as finer grids are required to resolve the smaller filter width
associated with low values of the SFS activity measure. Once this choice has been made, the model
coefficient is determined and the grid can be refined to achieve grid convergence. In a sense, ILSA
models make the role of the computational cost of the calculation, and its relationship to the expected
accuracy, explicit.

The local ILSA model has the potential of being a very adaptable, robust, and inexpensive
tool for large-eddy simulations. Further studies should determine its accuracy in cases in which
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the perturbation of the turbulence from equilibrium is more significant (relaminarizing flows, for
instance) and also in wall-modeled simulations.
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APPENDIX: RELATIONSHIP BETWEEN sτ AND sk

In this Appendix we use the theory of homogeneous isotropic turbulence to relate sτ to sk , whose
meaning is easier to grasp intuitively. We begin by considering a model spectrum [20]

E(k) = αε2/3k−5/3fL(kL)fη(kη), (A1)

fL(kL) =
[

kL

[(kL)2 + 6.78]1/2

]11/3

, (A2)

fη(kη) = exp(−5.2{[(kη)4 + 0.404]1/4 − 0.40}). (A3)

The Kolmogorov constant is α = 1.5, L = 〈Ktot〉3/2/〈εtot〉 is the dissipation length scale, η =
L Re−3/4

L is the Kolmogorov scale, and ReL = 〈Ktot〉1/2L/ν.
We use the box filter (in physical space) to filter the energy spectrum. The Fourier representation

of the box filter is

Ĝ(k) = sin(k�/2)

k�/2
. (A4)

Then turbulent kinetic energy and dissipation are decomposed into resolved and subfilter parts

〈KSFS〉 =
∫ +∞

0
E(k)dk︸ ︷︷ ︸

〈Ktot〉

−
∫ +∞

0
Ĝ2(k)E(k)dk︸ ︷︷ ︸

〈Kres〉

, (A5)

〈εSFS〉 = 2ν

∫ +∞

0
k2E(k)dk︸ ︷︷ ︸

〈εtot〉

− 2ν

∫ +∞

0
k2Ĝ2(k)E(k)dk︸ ︷︷ ︸

〈εres〉

(A6)

and we perform the integrations varying the filter width � = C�L and ReL.
To calculate sτ , three terms must be computed, 〈Ra

ij τ
a
ij 〉, 〈Ra

ijR
a
ij 〉, and 〈τ a

ij τ
a
ij 〉, which appear

when the products in Eq. (8) are expanded. In a well-resolved LES, |τ a
ij | 	 |Ra

ij |; thus, 〈Ra
ij τ

a
ij 〉 and

〈τ a
ij τ

a
ij 〉 are expected to be significantly smaller than 〈Ra

ijR
a
ij 〉 and can be neglected (an assumption

that will be validated momentarily). An approximation of sτ can then be written as

s∗
τ =

[ 〈
τ a
ij τ

a
ij

〉〈
Ra

mnR
a
mn

〉]1/2

. (A7)

By expanding 〈Ra
ijR

a
ij 〉 we obtain 〈

Ra
ijR

a
ij

〉 = 2
3 〈u′

iu
′
iu

′
ju

′
j 〉. (A8)

The fourth moments can be expressed in terms of the second ones if the velocity fluctuations are
assumed to behave as Gaussian functions; such behavior is supported by previous studies [35,36].
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FIG. 22. Variation of sτ (black solid line) and s∗
τ (red dash-dotted line) with C� for filtered DNS of

homogeneous isotropic turbulence at (a) ReL = 250 and (b) ReL = 4490.

Isserlis’s theorem [37] for Gaussian random functions allows us to write〈
Ra

ijR
a
ij

〉 � 10
9 〈u′

ku
′
k〉2 = 40

9 〈Kres〉2, (A9)

which gives

s∗
τ =

[ 〈
τ a
ij τ

a
ij

〉
40/9〈Kres〉2

]1/2

. (A10)

We compared the values of sτ and s∗
τ using our databases for homogeneous isotropic turbulence.

The results are shown in Fig. 22 and indicate that the error due to neglecting the SFS contributions
and assuming Gaussian behavior is less than 7%.

To calculate the numerator of (A10), we use the eddy-viscosity hypothesis, consistent with the
modeling approach used in this work:〈

τ a
ij τ

a
ij

〉 = 〈
2ν2

SFS

∣∣S∣∣2〉 = 2(CkL)4〈|S|4〉. (A11)

While the ILSA model does not require that � is specified, here we need to determine it.
Consequently, we write

CkL = CmC�L (A12)

and determine Cm, following Lilly [4] and Meyers and Sagaut [38], by equating the SFS dissipation
modeled using the eddy viscosity with its exact value from (A6):

〈2νSFSSijSij 〉 = 〈εSFS〉 ⇒ C2
m = 〈εSFS〉

(C�L)2〈|S|3〉 � 〈εSFS〉
(C�L)2〈|S|2〉3/2

, (A13)

where 〈|S|3〉 � 〈|S|2〉3/2 was used [4,38] and 〈|S|2〉 = 〈εres〉/ν.
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FIG. 23. Variation of flatness factor Fu(C�) for the random β model (black solid line) and empirical
relations from DNS data [42] (red dashed line and blue dash-dotted line).
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The remaining parameter to be calculated in Eq. (A11) is 〈|S|4〉. Due to homogeneity and isotropy
[39] we have

〈|S|4〉
〈|S|2〉2

= 7

15

〈(∂u1/∂x1)4〉
〈(∂u1/∂x1)2〉2

. (A14)

The Gaussian assumption for the velocity gradient is not valid due to intermittency effects [35,36].
Empirical relations for (A14) that include all the scales of turbulence [40] are not applicable to the
filtered field. Instead, we take advantage of the box filter used and relate the filtered velocity gradient
to the velocity structure function δu1(�),(

∂u1

∂x1

)
=

(
∂u1

∂x1

)
= 1

�

∫ x1+�/2

x1−�/2

(
∂u1

∂x ′
1

)
dx ′

1 = δu1(�)

�
. (A15)

Therefore, we have

〈(∂u1/∂x1)4〉
〈(∂u1/∂x1)2〉2

=
〈
δu4

1(�)
〉〈

δu2
1(�)

〉2 = Fu(�). (A16)

To calculate Fu(�), we use the multifractal random β model [41]. This method predicts the
probability density function (PDF) of the velocity difference δu(�n) at separation distances that
are fractions of the integral length scale (i.e., �n = L/an, a > 1). Then the fourth-order structure
function 〈δu4(�n)〉 was predicted through the integration of its PDF. The agreement between the
β model and the DNS data is very good, as shown in Fig. 23. The Fu(�) given by the model was
substituted in Eqs. (A16) and (A14) to evaluate the ratio 〈|S|4〉/〈|S|2〉2. The 〈|S|2〉 can be calculated
from the model spectrum and 〈|S|4〉 can be substituted into (A11) to obtain s∗

τ . The sk can be
calculated directly from (A5) and the model spectrum.

The results of this analysis are summarized in Fig. 24, which shows sk and s∗
τ for 102 � ReL �

1010 and 0.02 � C� � 0.10. For ReL > 106 both s∗
τ and sk and their ratio become Reynolds number

independent and are affected by C� only. The ratio sτ /sk converges to 0.2–0.3 for ReL � 106.
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