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Abstract— The flexibility of the power-to-gas (P2G) technologies and natural gas units (NGUs) can enhance the resilience 

of the electric distribution system (EDS) considering the high penetration of renewable energy resources (RERs). The 

decentralized collaborative operation (co-operation) of electric distribution systems and natural gas systems (EDSs&NGSs) 

considering information privacy preserving can enhance the resilience during an extreme hurricane. To address this issue, this 

paper proposes a three-level hierarchal solution to decompose the centralized co-operation of the EDS&NGS framework in 

which an independent decision-making strategy and information privacy preserving for both network operators are 

simultaneously addressed. Furthermore, in this paper, a min–max robust resilience-constrained co-optimization model is 

presented to enhance the resilience of the integrated EDS&NGS against worst-case 𝑵 − 𝒌 contingencies and wind power 

generation uncertainty under extreme hurricane events. To attain the spatial dynamics of extreme hurricanes, a the multi-zone 

and multi-time extreme hurricanes model is considered. Then, a column-and-constraints generation (C&CG) algorithm is used 

to solve the proposed robust resilience-constrained co-optimization model. To verify the effectiveness of the model, we 

conducted experiments on a modified IEEE-33-bus-10-node/123-bus-20-node EDS&NGS. The numerical results show that 

the proposed robust resilience-constrained co-operation of EDS&NGS problem is an effective model for enhancing EDS 

resilience.  

Keywords— Resilience enhancement, distribution and natural gas networks, extreme renewable uncertainty, extreme 

hurricanes. 
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NOTATION 

A. Indices 

w  Index of wind turbine. 

i,j Index of electrical buses. 

n Index of gas node. 

k  Index of distribution lines. 

   Index of zone. 

g Index of NGU. 

t Index of hour. 

/t r   Sets of response/target variable. 

/c W¤ ¤  Uncertainty set of distribution line outage/load variations. 

0  Sets of total distribution lines. 

z  Set of distribution lines in the Zone Z. 

Z  Set of wind farms in the Zone Z. 

( ),( ) t•   Related to element ( )  at time period t. 

All variables and constants include the superscript   referring to before,  o , and after,  r , an extreme 

hurricane event. 

B. Parameters 

r  Number of distribution line outages in zone r. 

Z  Number of total zones. 

wtP  Wind power forecasted. 

ˆ
wtP  Variation range of wind power generation from wind power forecasted. 

z  Robustness degree in zone z. 

gc  Generation cost of an NGU. 

su

gc  Start-up cost of an NGU. 

tc
t

  Active power exchange cost at a substation. 
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/UT DT  Min time for on/off an NGU. 

/g gP P  Min/max active power generation for an NGU. 

gQ  Maximum reactive power generation for an NGU. 

/g gr r   Min/max ramp-rate of an NGU. 

/k kg b  Conductance/susceptance of a distribution line. 

/ij ij    Slop/constant parameter. 

   Maximum phase angle limit across a distribution line. 

/i iV V  Min/max voltage magnitude. 

/it itQ P  Active/reactive load forecasted. 

( )

( )

g

gl  Dual variable resilience constraints. 

n  Gas production cost for a gas well. 

n  Cost of gas storage. 

n  Gas unserved cost. 

/n nG G  Min/max gas production for a gas well. 

/n n   Min/max gas pressure at a node. 

ntD  Residential (non-electrical) gas load. 

NGU  Fuel coefficient of NGU. 

,nm nmL  Constants of a gas pipeline. 

nm&  Line pack constant of a gas pipeline. 

/in in

n nS S  Min/max gas flow into a gas storage. 

/ou ou

n nS S  Min/max gas flow out of a gas storage. 

2P G  Power to gas coefficient of P2G technology. 

,   Multipliers of penalty function. 

  Acceptable error. 
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C. Variables 

ktz  Binary variable to specify outage for distribution line k at time t. 

wtP  Wind power generation. 

TC  Total co-operation cost of EDS&NGS. 

/E G    Total EDS/NGS operation cost. 

/t tP Q 
tt

 Active/reactive power exchange. 

/gt gtv w  Start-up/shutdown binary variable for an NGU.  

gtu  Binary variable to show on/off for an NGU. 

/gt gtP Q 
 Active/reactive power generation for a  

NGU. 

, ,/ij t ij tP Q 
 Active/reactive power flow on a distribution line. 

itV 
 Voltage magnitude at a bus. 

,ij t
 Phase angle difference across a distribution line. 

,ij t 
 Auxiliary variable to define ,cos ij t

 

, ,/ij t ij tP Q %%  Auxiliary variable to define active/reactive power flow on a distribution line. 

vtP 
 Active power consumed by P2G technology.  

ntD 
t

 Gas unserved. 

/nt ntS S 
r s

 Storing/ releasing gas for gas storage. 

ntG 
 Gas production for a gas well. 

nt 
 Gas pressure for a node. 

ntD 
 Total gas load at a node. 

ntD 
 Electrical gas load.  

, ,/nm t nm tf f 
s r

 Outflow/inflow of a gas pipeline. 

ntE 
 Gas storage volume for a gas storage. 

/nt nt  
r s

 Binary variable to specify storing/releasing gas of a storage. 
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/r r

nt ntP Q   Active/reactive power load curtailment. 

I. INTRODUCTION 

A. Background and motivations 

Extreme events involving natural phenomena significantly affect the electrical and energy infrastructure [1]. According to 

official reports, Hurricane Sandy, when passing through the United States sequentially in 2012, resulted in significant blackouts 

and financial losses. During Hurricane Sandy, over 8 million customers were left without electricity, and the estimated financial 

losses in New Jersey and New York exceeded $70 billion [2]. The majority of the outages caused by the hurricane, about 90%, 

occurred in electrical distribution systems (EDSs). In the future, the severity and frequency of hurricanes are anticipated to 

increase significantly as a result of climate change [2]. Thus, it will be more and more critical to develop methods to enhance 

the resilience of the EDS operation under 𝑁 − 𝑘  contingencies considering the high penetration of renewable generation. The 

most vulnerable section of the power systems in the occurrence of a hurricane is the conventional EDSs because of the large 

number of components and a close distance to the end user. Indeed, to enhance the resilience of the EDS operation and integrate 

large-scale renewable energy resources, such as wind energy generation (WEG), there are two groups of potential solutions 

[3]: (i) reinforcement actions and infrastructure hardening, such as upgrading the lines with stronger materials or building 

redundant lines and (ii) utilization of the existing distribution system and harnessing the existing flexible resources of the EDS 

before building new or upgrading old distribution lines. The first option is extremely expensive in terms of costs, can cause 

dissatisfaction of the people living close by, and requires several months to complete. In fact, only a small number of actions 

can be taken because of the inadequate response time during extreme hurricane events. Accordingly, a cheaper, faster, and 

more attractive alternative to the first unattractive option is the more effective utilization of the existing EDS, e.g., harnessing 

modern tools, such as fast natural gas units (NGUs) and power-to-gas (P2G) technologies. During extreme hurricane events, 

the volatility and uncertainty behaviors of wind power generations (WPGs) increase significantly. Thus, integration of large-

scale WPGs  in an EDS without deploying fast NGUs and P2G technologies is an intractable task. In recent years, NGUs have 

gained significant interest in electrical system operation because of their high ramping capabilities, high-speed start-up, and 

low carbon emissions and capital cost. The delivery of natural gas to NGUs is “just-in-time” and the most crucial task for the 

EDS operators [3]. Moreover, another major challenge is that supplying interruptible gas loads including NGUs is a difficult 

task, particularly in cold seasons [3]. To address these issues, P2G technologies can be used, because they are fast response 

technologies in the power dispatch and ramping regulation. In addition, P2G can accommodate the fluctuations of the ever-

increasing WPG in extreme hurricane events [4]. The P2G technology is a system with the ability to reduce the dependence to 

buy natural gas from the gas system operator by converting WPG into natural gas and providing power between the EDS and 

the NGS [5]. In addition, the underground installation of major infrastructures could be less vulnerable to extreme conditions 
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and natural disasters like thunderstorms, hurricanes and physical attacks. Accordingly, the natural gas pipeline system is 

traditionally designed as an underground infrastructure. 

Hence, co-optimization of both the energy systems is critical for the integration of NGUs and P2G technology in order to 

enhance the resilience of the EDS operation. These shortcomings motivate us to establish a min–max robust optimization 

model to resolve these issues. 

 

B. Literature survey and research gaps 

Recently, researchers have shown an increasing interest in  co-optimization of integrated electricity and natural gas systems 

under extreme natural disasters [6] , [7], [8], and [9]. In [6 ] , a data-based robust optimization method is presented to improve 

the resilience of the co-operation of electrical transmission and gas networks against sequential extreme weather events, e.g., 

a hurricane event. In [7], a model for the interactions between electrical and natural gas networks is introduced to attain 

operational resilience in an electrical transmission system. In [8], a planning algorithm for integrated electrical and natural gas 

transmission systems is established to improve the electrical transmission system resilience in extreme natural disasters. In [9], 

a robust co-expansion planning model is proposed to improve the resilience of the integrated gas–electric distribution networks 

by expansion of distribution feeders and natural gas pipelines and installation of new NGUs. 

Also, a considerable amount of literature has been published on resilient electrical distribution systems planning problem. In 

a study investigating resilience-based distribution network expansion planning problem [10], a resilient distribution network 

planning problem to coordinate the power line hardening and distributed generation resource allocation has been proposed to 

enhance the resilience of a distribution system in worst N-k contingencies. Ref. [11] presents a the multi-zone and multi-time, 

dynamic, and resilient electrical distribution expansion planning framework to expand a distribution network resiliently. Also, 

in [12], a robust optimal distribution line hardening method coupled with multiple provisional microgrids has been presented 

to improve the distribution system resilience against worst N-k contingencies. Taken together, these literatures are focused on 

electrical distribution systems impacts while ignoring other energy delivery systems such as natural gas system. Also, these 

works mainly focus on distribution network planning or line hardening problems. Nevertheless, operational constraints of the 

integration of NGU and P2G technology are frequently overlooked when the influence of extreme weather in resilience 

enhancement of EDS is considered. 

Recently, a few studies have addressed the resilience of power networks considering extreme weather conditions, e.g., by 

applying a stochastic approach (SA) in [13] and [14] and a robust optimization approach (ROA) in [14] and [15]. Also, [16] 

and [17] provide a literature survey on the SA and ROA in all its variants. In [18] and [19], the optimal application of microgrids 

as a potential solution in increasing and sustaining the distribution system resilience is formulated as a multi-period two-stage 

scenario-based stochastic mixed-integer linear programming. A stochastic approach has been developed in [20] to protect 

distribution networks against flood events in a day-ahead horizon. Flood probability distribution functions are used to generate 
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several flood scenarios at each substation. In [20], a stochastic planning model for improving the resilience of EDS against 

natural disaster uncertainty has been proposed. But, the main disadvantage of the SA can be named as follows: (i) the SA 

needs prior knowledge of the probability density function of extreme weather events. In fact, extreme weather disasters have 

a low probability/high impact, and thus, the concept of “probability” cannot be defined for the most of such disasters. (ii) the 

SA typically requires the generation of a rather large number of scenarios leading to impractically large executing times, even 

for reasonably large values of the duality gap. If the number of scenarios is reduced by means of scenario reduction methods, 

the monetary benefits achieved with SA may be reduced. Taken together, the SA cannot model extreme weather disasters in a 

resilience operation problem, which inescapably results in a solution inaccuracy. But, in comparison with the SA, the ROA 

does not rely on the probability density function and only considers the extreme weather disaster scenario for the resilience 

problems.  

The existing literature on the ROA is extensive and focuses particularly on the static set 𝑁 − 𝑘 contingency condition in power 

system operation problems [21], [22], [23], [24], and [25]. For example, in [21], the ROA is used to model static set 𝑁 − 𝑘 

contingency scenarios in co-operation with integrated electricity and natural gas systems. In [22], the ROA is used to identify 

the critical and vulnerable components within static set scenarios to ensure the resilient co-operation of the integrated 

EDS&NGS. 

Briefly, based on the above literature survey, there are four research gaps in the available literature in the area as follows: 

˗ The impact of the integration of large-scale renewable energy resources (RERs) on resilience has been neglected in these 

studies. 

˗ Many of the previous studies mainly focus on expansion planning strategies of the integrated electricity and natural gas 

system [6] –[9], whereas the operational constraints of a NGS for resilience enhancement of the EDS operation have 

received less attention.  

˗ A considerable body of literature published on the co-optimization of integrated electricity and natural gas systems has 

only focused on decision-making strategies with a central system operator. However, the collaboration between an EDS 

operator and an NGS operator in a centralized manner requires all the information of both the independent energy systems. 

Therefore, this issue causes a lot of communication pressure, in addition to which each independent energy system 

operator’s private data, which are generally considered commercially sensitive, may be revealed. In case of the occurrence 

of an extreme hurricane, the communication system for the centralized system is more likely to be damaged. Thus, 

autonomous performance in a decentralized program can enhance the resilience under limited data exchange.  

˗ As mentioned in [21]–[25], the extreme contingency scenarios are based on static set scenarios and ignore the temporal 

and spatial dynamics of the occurrence of extreme weather and natural disasters. 

˗ Finally, Table 1, briefly, compares contributions of this paper with respect to the existing previous works. 
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Table 1: Taxonomy of survey of previous studies compare with proposed paper (PP). 

Ref Year 

System 

Resilience Horizon 

Optimization  

Algorithm 

Worst-case 

Spatial and Temporal 

Dynamics of 

Uncertainty 

Model 

Uncertainty 

Approach 

NGS EDS SA ROA 

Decentralized Centralized 

Operation Planning 

𝑵 − 𝒌 

Contingencies 

WPG 

[11] 2022 N Y N Y N Y N N Y N 

[18] 2021 N Y Y N N Y N N Y N 

[9] 2020 Y Y N Y N Y Y N N Y 

[20] 2021 N Y Y N N Y N N Y N 

[26] 2019 Y N Y N Y Y N N N Y 

[12] 2017 N Y N Y N Y Y N N Y 

[10] 2016 N Y N Y N Y Y N N Y 

[27] 2020 Y N Y N N Y N N N Y 

[28] 2018 Y Y N Y N Y Y N N Y 

[29] 2022 Y Y N Y N Y N N N Y 

[30] 2021 Y N N Y N Y N N Y N 

[6] 2020 Y N Y N N Y Y N N Y 

PP -- Y Y Y N Y Y Y Y N Y 

Y/N denotes that the subject is/is not considered 

C. Contributions and organization 

In this paper, an iterative decentralized optimization algorithm is proposed to decompose the centralized co-operation of the 

integrated EDS&NGS. In this solution method, each energy system operator has an independent decision-making  method and 

coordinates its method with other energy systems in  an integrated energy system to reduce the total operational costs and 

improve the EDS operation resilience. This paper proposes a min–max robust resilience-constrained co-operation problem that 

can model the spatial and temporal dynamics of extreme natural disasters in order to enhance the resilience of the integrated 

EDS&NGS. The proposed robust min–max resilience problem cannot be solved directly by an off-the-shelf optimization 

package. Thus, this study proposes an effective solution strategy based on a column-and-constraints generation (C&CG) 

algorithm to facilitate the solution process. In comparison with the previous literature, the key contributions of this study are 

summarized as follows: 

˗ The min–max robust resilience optimization is developed based on worst-case 𝑁 − 𝑘 contingencies and worst-case 

realization of WPG in a co-operation integrated EDS&NGS problem for enhancing the EDS resilience under extreme 
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hurricane events. In addition, wind power generation variations are modeled with an interval uncertainty dynamic set in 

the proposed robust optimization. 

˗ In the min–max robust resilience optimization problem, a multi-time- and multi-zone based uncertainty set is used to 

capture the spatial and temporal dynamics of natural disasters, such as extreme hurricanes.  

˗ A computational algorithm based on a hybrid column-and-constraints generation algorithm and an iterative decentralized 

co-optimization algorithm is proposed. The algorithm solves the min–max robust resilience-constrained co-operation of 

the integrated EDS&NGS.  

The rest of the paper is organized as follows: Section II describes the extreme hurricanes model. The proposed min–max robust 

co-operation model is introduced in Section III. The solution algorithm is described in detail in Section IV, and the numerical 

experiments are analyzed in Section V. Conclusions are given in Section VI. 

 

 

Fig. 1. Multizone and multitime extreme hurricanes model in the IEEE 33-bus. 

  

II. EXTREME HURRICANE MODEL  

The proposed multi-zone and multi-time uncertainty set in this study has been considered in order to model the temporal 

and spatial dynamics of an extreme hurricane event which is a sophisticated uncertainty set but more accurate .  Therefore, here, 

a multi-zone and multi-time natural hurricane event model has been used to extend the conventional N-k contingencies model. 

To show this idea, the hurricane event is considered as the case of multi-zone and multi-time hurricane event. As mentioned 

via the Hurricane Forecast Improvement Program [31], a hurricane frequently pass a route that comprises of numerous related 

multi-zones and multi-times. The most destructive forces of a hurricane relate to the wind speed of a hurricane, which increases 

when it closes to a zone and reduces when it drifts away from the zone. According to the spatial and temporal dynamics of a 
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hurricane, in this study is supposed once a hurricane transfers into an area, it will land on the zone that is close to the strong 

rotating wind will affect the distribution lines within the zone whereas the far-away distribution lines will stay intact. Within 

the affected zone, in order to estimate impacts of the hurricane on the distribution lines an N-k contingency constraint is applied. 

Based on the geographic locations, when the hurricane transfers into the inland area, it will cross the areas from one zone to 

another. A hurricane route in the IEEE 33-bus distribution system is shown by Fig. 1. Firstly, the ADS is divided into three (or 

more) zones according to the geographic situations of the distribution lines and route of the hurricane movement. 

As can be seen in Fig. 1 Zone 1 is close to the hurricane center. Therefore, during the first time period and stage the distribution 

lines of this zone will damage extremely from the hurricane impact. In the next time, the hurricane will transfer to Zone 2 and 

the distribution lines in this zone are damaged. Lastly, the hurricane will reach Zone 3 and damage, usually to a less impact 

and extent, the related distribution lines. Similarly, power generation uncertainty of wind turbine (WT) in this zone are affected 

by hurricane.  

Based on such observations and dynamics, the multi-zone and multi-time hurricane events can be divided into multi-zones 

and multi-time period according to the hurricane routes. In order to model the hurricane event, the following uncertainty set 

c¤ can be implemented, thus, the uncertainty set c¤  is characterized based on the multi-zone and multi-time period. 

( )
1

,1 1Damageline ,s in Zone: 11 c

kt k

k

z z 


  
 
 


=


− 


¤  (1) 

  ,1 0 1U 1ndamaged lin exces pt Zone1 , / , 1, ,e k

T
z k t

Z

 
=       

 
K  (2) 

( )
2

,2 2Damagelines in Zone 2 1 k

k

z 


  
−  

  
  (3) 

  ,2 ,1 0 2

2
xcept ZUndamaged lines one2 , / , 1, ,e k k

T T
z z k t

Z Z

 
=       + 

 
K  (4) 

M  

( ),Damagelines in Z ne Z 1o
Z

k T Z

k

z 


  
−  

  
  (5) 

    , , 1 0U
(

ndam
1)

xcept Zone Z , / , 1, , , 1,..aged linese ,k T k T Z

T T
z z k t Z

Z Z

 
−

−  
=       +  =  

  
K  (6) 

where 
ktz  is the binary decision variable that represents whether a distribution line k is on outage (i.e., 0ktz = ) or not outage 

in time period 
( 1)

1, ,
T T

t
Z Z

 − 
 + 
 

K . First thing to remember, parameter Z  shows total number of zones,   signify zone 

number. For example, when the ADS is divided into three zones, parameter 3Z = , in this condition, zone numbers are 

 1,2,3 = . Also, parameter T  displays length of operation time horizon, for our operation, its value is 24 hours. Parameter 
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  is the threshold budget for the number of distribution line  contingencies in the damaged Zone  . Also, the length of time 

period for hurricane event in Zone   is defined by 
( 1)

1, ,
T T

Z Z

 − 
+ 

 
K . In fact, the length of time period is the operation 

time horizon, i.e., T , is divided into Z  according to the speed and route of the hurricane in Zone  . For instance, constraint 

(1) denotes that the number of outage distribution lines (i.e., 0ktz = ) in Zone 1 must not surpass threshold budget 
1 . The set 

of distribution lines before hurricane event is shown by 
0  and the set of distribution lines which are not placed in Zone 1 is 

shown by  0 1/  . Constraint (2) shows that if a distribution line is not located in Zone 2, will not be damaged (i.e., 1ktz =

). Constraint (6) denotes that if the distribution lines are not located in Zone  , will remain in the same state (on/off) in time 

period 
( 1)

1, ,
T T

Z Z

 − 
+ 

 
K . Based on the multi-zone and multi-time period uncertainty set c¤ , the impact of hurricane event 

within each zone is modeled as an extreme N-k contingencies.  

The uncertainty relating to the RES, e.g., wind power generation (WPG), is modeled by a bounded interval within the multi-

zone and multi-time polyhedral uncertainty set as follows: 

ˆ:

( 1)
, , 1, ,

ˆ

wt wt wt wt

w

wt wt

zt

w wt

P P P P

P P T T
w t

Z ZP


 


 − 
  

=  − − 
    +  

   


¤
K

 (7) 

In (7), the budget of uncertainty zt  is applied to handle the degree of robustness that is modeled based on multi-zone and 

multi-time period. Further, once zt  decreases/increases, a lower/higher number of wind farms can deviate from their forecast 

generation values, resulting in a lower/higher degree of robustness. Accordingly, the maximum and minimum values for the 

budget of uncertainty are 1 and 0, respectively. In this model, when the hurricane moves to Zone  , the WT located in Zone 

  has a maximum value for the 
( 1)

, , 1, ,zt

T T
w t

Z Z


 


− 
   + 

 
K , and when the hurricane moves from Zone  , or in 

case of other zones and times, i.e., 
( 1)

, 1, ,
T T

w t
Z Z



 − 
   + 

 
K , it ( zt ) has a minimum value. 

 

III. PROPOSED MODEL FORMULATION 

A. Assumptions 

The main assumptions in the model proposed in this paper are as follows: 

˗ The overhead power grids, e.g., distribution lines and WTs, face extreme events, here a hurricane.  



 

12 

 

- In general, the underground installation of major infrastructures could be less vulnerable to extreme conditions and natural 

disasters like thunderstorms, hurricanes and physical attacks. Accordingly, the natural gas pipeline system is traditionally 

designed as an underground infrastructure. 

The centralized co-operation of the integrated EDS&NGS problem with the min–max robust resilience-constrained approach 

is formulated in detail as follows: 

B. Problem Formulation 

- Objective function  

The objective function (8) represents the total operation cost for the EDS operator, Θ𝐸, and the NGS operator, Θ𝑁, respectively. 

( )minTC E N =  +  (8) 

The EDS and NGS security constraints are explained in detail as follows: 

- EDS Operation Constraints 

( ) ( )0min E su r

g gt g gt t t t t

t g t

c P c v c P c P = + + + 
t tt t

 (9) 

, 1gt gt gt g tv w u u −− = −  (10) 

1

,

gt UT

g t g gt

t t

u UT v

− +



=

  (11) 

( )
1

,1
gt DT

g t g gt

t t

u DT w

− +



=

−   (12) 

1 2: ,g gt gt g gt gt gtP u P P u  l l  (13) 

3 4: ,g gt gt g gt gt gtQ u Q Q u−   l l  (14) 

( ) 5 6

, 1 : ,g gt g t g gt gtr P P r 

−  −   l l  (15) 

( ) 7

, , , ,1 :ij t k it jt ij t k ij t ij tP g V V b     = − − + − l  (16) 

( ) 8

, , , ,1 :ij t k it jt ij t k ij t ij tQ b V V g     = − − − + − l  (17) 

9

, , ,:ij t ij ij t ij ij t    = + l  (18) 

10 11

, , ,: ,ij t ij t ij t  −   l l  (19) 

12 13

, , ,: ,ij kt ij t ij kt ij t ij tP z P P z−  % l l  (20) 

14 15

, , ,: ,ij kt ij t ij kt ij t ij tQ z Q Q z−  % l l  (21) 

16 17: ,i it i it itV V V  l l  (22) 

( ) ( ) 18 19

, , , , ,1 1 : ,ij t kt ij t ij t kt ij t ij tP M z P P M z  − −   + −% l l  (23) 
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( ) ( ) 20 21

, , , , ,1 1 : ,ij t kt ij t ij t kt ij t ij tQ M z Q Q M z  − −   + −% l l  (24) 

22 23

, , ,: ,kt ij t kt ij t ij tz M P z M−  % l l  (25) 

24 25

, , ,: ,kt ij t kt ij t ij tz M Q z M−  % l l  (26) 

max max 26 27: ,t t t t tP P P−  
t t t

l l  (27) 

max max 28 29: ,t t t t tQ Q Q−  
t t t

l l  (28) 

,gt wt t ij t it vt

g w ij v

P P P P P P    + + − = +   
t

%  (29) 

,gt t ij t it

g ij

Q Q Q Q  + − = 
t

%  (30) 

The objective function of the EDS is shown by the equality constraint (9), which includes the generation cost (first term) 

and the start-up cost (second term) for a distribution generator (DG) and the purchase (or sales) cost of the active power 

from/to the transmission network (third term), respectively. Note that constraints (10)–(30) are related to before the 

realization of the hurricane or the worst-case 𝑁 − 𝑘 contingencies (labeled as the base case constraints). The on (start-up)/off 

(shutdown) states of a DG are denoted by (10). Constraints (11) and (12) represent the minimum on/off time limits for a 

DG. Constraints (13) and (14) enforce the active and reactive power generations for a DG. Constraint (15) limits the ramp 

down/up for a DG. Finally, constraints (16)–(18) represent linearized AC optimal power flow (L-ACOPF) constraints.  

It should be noted that further explaining the details of the linearization method in order to linearize the nonlinear AC 

optimal power flow (ACOPF) constraints is not the main concern of this study. Hence, for full details of the linearization 

method for these linear constraints, the reader is referred to [32]. Constraint (18) defines a linear estimate for the nonlinear 

cosine term of the L-ACOPF constraints (16)–(17). In this regard, the variable 𝜓𝑖𝑗,𝑡 in (18) denotes the cosine value (i.e., 

cos 𝜓𝑖𝑗,𝑡
Ω ) for the bus voltage angle through line ij. Constraint (19) shows the min/max voltage angle across a distribution line. 

The disjunctive constraints (23) and (24) denote the min and max active and reactive power flows through a distribution line, 

which are used to avoid the nonlinearity that would otherwise appear. The active/reactive power flow on each distribution line 

is enforced to be zero through (25) and (26) when there is a distribution line outage. In fact, the binary variable zkt within (23)–

(26) enforces the flow of the distribution line to be zero once there is a distribution line outage. Similarly, in (23)–(26), M is 

termed as the ‘‘big M” value, where M is large enough to make these constraints nonbinding. Note that before the realization 

of the hurricane or the worst-case 𝑁 − 𝑘 contingencies, the binary variable zkt in constraints (20)–(21) and (23)–(26) is 1. The 

active and reactive powers sold to and bought from a substation are limited by (27) and (28), respectively. Constraints (29) 

and (30) ensure the balance of active and reactive power at each bus.  

 

- NGS Operation Constraints 
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( )( )min N

n nt n nt nt n nt

t n

G S S D      = + + +
r s t

 (31) 

n nt nG G G   (32) 

n nt n     (33) 

nt nt nt ntD D D D  = + −  (34) 

0 nt ntD D    (35) 

, ( )nt NGU ntD P g i n =    (36) 

, 1 , 1 , ,

, 1 , 1 , ,

, 1 , 1 , , 0

nm t nm t nm t nm t

nm nm t nm t nm t nm t

n t m t n t m t

nm

f f f f

t f f f f

t

L
   

   

+ +

   

+ +

   

+ +

 + − − +
 

   + + + +
 


 − + − = 

s r s r

s r s r
 

(37) 

, 1 , 1 , ,

, 1 , 1 , , 0

nm nm t nm t nm t nm t

n t m t n t m t

t f f f f

   

   

+ +

   

+ +

   − + − +
 

 − + − = 

s r s r
&

 (38) 

,nt n t t nt ntE E t S S   

−
 − =  −
 

r s
 (39) 

n nt nE E E   (40) 

n nt nt n ntS S S    
r r r

 (41) 

n nt nt n ntS S S    
s s s

 (42) 

1nt nt  + 
r s

 (43) 

( ) ,

( , )

, 2

( , ) ( )

nt nt nm t

n p n m

nm t nt P G vt nt

p n m n v n n

S S f

f G P D

  

   



− +

− + + =

 

  
 (44) 

gt gtP P =
v

 (45) 

vt vtP P =
v

 (46) 

Like the EDS, the objective function of the NGS is shown by (31), which includes three main terms: the first term, the cost 

for natural gas well outputs, the second term, the operation cost of charging/discharging processes of the natural gas storage 

(NGS), and the third term, the cost of unserved natural gas loads. Note that the cost of unserved natural gas demand for 

nonelectrical gas loads is much higher than that of electrical gas loads. Constraints related to NGS operation are defined by 

(32)–(46). 

Constraints (32) and (33) are the limits on natural gas well outputs and gas pressure, respectively. Constraint (34) shows the 

total natural gas load, 𝐷𝑛𝑡
Ω , which includes three terms: electric load, i.e., NGUs, 𝐷̃𝑛𝑡

Ω ;  nonelectric load (residential/ industrial 

load), 𝐷̅𝑛𝑡; and unserved gas load, 𝐷⃡ 𝑛𝑡
Ω . Constraint (35) is the limit on unserved natural gas load. The natural gas consumption 
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of the electric load, i.e., the NGU, is expressed by constraint (36). Unlike the electric power flows, which are transferred 

practically immediately from the generator units to the demand, the natural gas flows more slowly from a natural gas well to 

gas loads, which causes an inherent gas pipeline pack effect, which is similar to spinning reserves in an EDS. However, 

previous studies have typically focused on the steady-state model of gas flow, whereas the transient-state model of gas flow 

has often been neglected. Thus, based on [26], a linear transient-state model is implemented in this study to model the gas 

pipeline pack effect in an NGS operation problem. Further details of the linearized approximation procedure and formulation 

of the transient-state model of gas flow are given in [26]. The natural gas flow through a pipeline based on the Wendroff 

Difference approximation [26] is expressed by (37). The transient-state constraint in natural gas pipelines based on the 

Wendroff Difference approximation is given by (38). The state of charge (SOC) of the NGS is described by (39) and (40). 

Constraints (41)–(43) are the limits on the stored natural gas capacity, natural gas inflow, and outflow for each NGS, 

respectively. In the natural gas system, the natural gas may flow into the NGS or out from the NGS, or it may be idled, which 

is denoted by (43). Constraint (44) represents a gas nodal balance, which expresses that the gas outflows and inflows are equal 

at all of the natural gas nodes. Constraints (45)–(46) are coupling constraints and include coupling set variables, {𝑃𝑔𝑡
Ω , 𝑃𝑣𝑡

Ω } and 

{𝑃⃑ 𝑔𝑡
Ω , 𝑃⃑ 𝑣𝑡

Ω}, which couple both the energy systems. In fact, the NGUs, 𝑃⃑ 𝑔𝑡
Ω , and the P2G system, 𝑃⃑ 𝑣𝑡

Ω , are connected to an EDS 

and are usually modeled as a gas load and a gas source on the NGS side, respectively, and also as an electrical source, 𝑃𝑔𝑡
Ω , and 

an electrical load, 𝑃𝑣𝑡
Ω , on the EDS side. 

- Finding the extreme hurricane events 

( )
21

max min r r

it it

t i

P Q


 +   (47) 

 (13) (28), r−   (48) 

30

, :

r r r

gt wt t

g w

r r r

ij t it vt it it

ij v

P P P

P P P P

+ +

− = + −

 

 

t

% l
 (49) 

31

, :r r r r

gt t ij t it it it

g ij

Q Q Q Q Q+ − = − 
t

% l  (50) 

330 :r

it it itP P   l  (51) 

340 :r

it it itQ Q   l  (52) 

350 :r

vt vt vtP P  l  (53) 

   (1) (6) and (7)c W= − =¤ ¤  (54) 
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where Ξ1 = {𝑃𝑤𝑡
r , 𝑧𝑘𝑡}, and Ξ2 = {𝑃𝑔𝑡

r , 𝑄𝑔𝑡
r , 𝑃𝑡

r, 𝑄𝑡
r, 𝑃̃𝑖𝑗,𝑡

r , 𝑄̃𝑖𝑗,𝑡
𝑟 , 𝑃𝑖𝑗,𝑡

r , 𝑄𝑖𝑗,𝑡
𝑟 , 𝑉𝑖,𝑡

𝑟 , 𝜓𝑖𝑗,𝑡
𝑟 , 𝜑𝑖𝑗,𝑡

𝑟 }. The aim of the max–min robust 

problem (47)–(54) is to identify the extreme hurricane events that involve worst-case 𝑁 − 𝑘 contingencies. The max–min 

objective function (47) represents the total cost of the electrical load that is unserved at each bus to avoid problem infeasibility.  

The objective function (47) has outer maximization and inner minimization processes; the outer maximization process 

represents the extreme consequence of possibly severe events, e.g., worst-case 𝑁 − 𝑘 contingencies and worst-case wind power 

uncertainty, whereas the inner minimization process is related to the EDS operation actions to modify the effects of such severe 

events. The related EDS operation constraints, i.e., (13)–(28) in (48), were discussed above, but these constraints are related 

to the severe condition operation, i.e., extreme hurricane events. Constraints (49) and (50) are like (29) and (30) but include 

the unserved electrical active and reactive loads, {Δ𝑃𝑛𝑡
r , Δ𝑄𝑛𝑡

r }, respectively. The maximum values of unserved active and 

reactive loads are limited by (51) and (52), respectively. Constraints (1)–(7) are discussed in Section II. 

Important to realize, the problem (47)-(54) is an adaptive robust max-min model, which is well-known model for optimization 

problems in engineering sciences. In fact, the robust max-min model is a general model and a considerable amount of literature 

in power system optimization problems have been used this robust model, e.g., [10], [12] and [33]. Also, formally prove global 

convergence in mathematical approach for the mentioned robust model is a difficult task which is beyond the scope of these 

papers and it needs a separate paper. 

 

IV. PROPOSED SOLUTION ALGORITHM 

In this section, a three-level hierarchical method, as an effective decentralized solution strategy, is proposed to solve the 

min–max robust resilience-constrained co-operation of the integrated EDS&NGS. In fact, the proposed hierarchical 

optimization method includes three levels as shown in Fig. 2: 

˗ The first level is related to the EDS operation problem under worst-case 𝑁 − 𝑘 contingencies and extreme wind power 

uncertainty conditions;  

˗ The second level is related to the NGS operation problem; 

˗ The third level is related to a max–min robust resilience-constrained optimization problem for identifying the multi-time 

and multi-zone based uncertainty set caused by extreme hurricane events, i.e., worst-case 𝑁 − 𝑘 contingencies and extreme 

wind power uncertainty. 

The following parts describe the details of the proposed three-level hierarchical method. 



 

17 

 

 

Fig. 2. Tri-level algorithm to solve the max–min robust resilience-constrained co-optimization model. 

 

 

A. Interactions between First and Second Levels 

As mentioned above, the centralized decision-making strategy for co-operation of integrated EDS&NGS is not applicable in 

the real world because the EDS&NGS are operated independently through an EDS operator and an NGS operator. Therefore, 

to have a completely decentralized operation, the collaboration between the first and second levels is essential, and thus, an 

independent two-level hierarchical method is proposed. In fact, the independent two-level hierarchical method decomposes 

the co-operation of the integrated EDS&NGS into two independent operation problems. The EDS operation problem is located 

at the upper level (first level) and the NGS operation problem at the lower level (second level). Further, the two-level 

hierarchical method uses two main sets of target and response variables to model the shared information in the decentralized 

decision-making strategy. The sets of target variables are defined by 𝜒𝑡 ∈  {𝑃𝑔𝑡
Ω , 𝑃𝑣𝑡

Ω} in the EDS operation problem, and the 

sets of response variables are represented by 𝜒𝑟 ∈  {𝑃⃑ 𝑔𝑡
Ω , 𝑃⃑ 𝑣𝑡

Ω} in the NGS operation problem as vectors of shared information 

provided by the collaborating operators. The proposed solution method finds an optimal solution if the consistency constraint 

𝜒𝑡 − 𝜒𝑟 = 0 is satisfied by the decentralized collaboration. 

 

First level (the EDS operation problem): The mathematical model of the EDS operation problem can be written as follows: 

( ) ( )
2

2
ˆ ˆmin E u r r

it it t r t rc P Q       +  +  + − + −  (55) 

(10)–(12) (56) 
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 (13) (30) o−   (57) 

 (13) (30) r−   (58) 

In this part, the objective function (55) has three key terms; the first is the same as (9) described in Section III. The next term 

shows the cost of unserved active and reactive loads under severe hurricane conditions. The last term is related to the penalty 

function that defines the shared sets of response variables. Note that in the third term, the set of target variables, 𝜒𝑡 , is 

determined by the EDS operation problem, whereas the set of response variables, 𝜒̂𝑟 , is determined by the NGS operation 

problem. Note that 𝜒̂𝑟  in (55) is a constant value determined by the NGS operation problem. 

Further, the EDS operator is coordinated by the NGS operator through a set of response variables, 𝜒̂𝑟 , in the penalty functions. 

Note that the parameters 𝜏 and 𝜏̅ in the penalty function are Lagrangian penalty terms, which are updated through an iterative 

solution procedure. The penalty functions include two parts: linear and quadratic. A critical feature of the quadratic term, 

𝜏̅‖𝜒𝑡 − 𝜒̂𝑟‖2
2, is that it is a convex second-order curve. Hence, the quadratic part can be linearized based on [34]. Meanwhile, 

the EDS operation constraints (56)–(58) should be satisfied. Note that, constraint (58) includes unit commitment and network 

reconfiguration decisions for both before and after the extreme hurricane event.  Similarly, constraints (57) and (58), 

respectively, are related to operation constraints before and after the extreme hurricane event. It should be noted that the 

variables in (57) and (58) with Ω ∈ {𝑜} and Ω ∈ {𝑟} superscripts are related to before and after the extreme hurricane event, 

respectively. 

Second level (the NGS operation problem): The mathematical model of the stochastic NGS operation is presented by: 

( )
2

2
ˆ ˆN

r t r tMin       + − + −  (59) 

( ) ( )32 44−  (60) 

Like (55), the objective function (59) comprises two principal terms, the first term and (31), similar to as described in Section 

III. The next term defines the penalty function, which is a shared set of target variables, 𝜒̂𝑡. In the second term, the set of target 

variables, 𝜒̂𝑡, is a fixed parameter, which is determined by the EDS operation problem, and hence, the set of response variables 

𝜒𝑟  should be determined by the NGS operation problem. Meanwhile, the NGS operation constraints (32)–(44) in (60) were 

explained in detail in the previous section. 

Convergence strategy: The set of target and response variables 𝜒𝑡  and 𝜒𝑟  is shared information that is transferred between 

EDS&NGS operation problems, and an iterative procedure between first- and second-level operation problems continues until 

the following stopping criteria are satisfied:   

( 1)

( 1)

v v

t t

v v

r r

  

  

−

−

 − 


− 

 (61) 

q q

t r  −   (62) 
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where 𝜀 is the prespecified error level; the subscript 𝜈 shows iterative calculation between the EDS&NGS operation problems. 

Noted that, the optimal solution and global convergence for first- and second-level operation problems are obtained if the 

continues target and response variables, i.e, 𝜒𝑡  and 𝜒𝑟 , at iteration “q” become identical. 

Third level (Identifying the worst-case 𝑁 − 𝑘 contingencies and extreme wind power uncertainty): At this level, the max–min 

robust resilience-constrained optimization problem, i.e., constraints (47)–(54) should be solved to identify the multi-zone and 

multi-time extreme uncertainty realizations, i.e., the worst-case 𝑁 − 𝑘 contingencies and extreme wind uncertainty. However, 

this max–min robust optimization problem cannot be solved directly by the existing commercial solvers. Hence, in this section, 

the max–min robust problem based on dual theory is converted into a maximizing optimization problem, i.e., constraints (63)–

(78), which can solve this problem with existing solving tools. Point often overlooked, for converting max-min model to a 

max-max model, the objective functions must be a mixed-integer linear equation or a linear equation, otherwise the max-min 

model cannot be converted to a max-max optimization model by the strong duality theory, in this condition, may be happen 

saddle point problem for max-min optimization model [35]. The formulation of the maximizing optimization problem is 

explained in detail as follows: 

 

( ) ( )

( ) ( )

( )

( ) ( )( )

( )

1 2 3 4

5 6 7 8

, ,

9 11 10

, , ,

12 13 14 15
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 

− − +

+  −  + −
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( ) ( )( )
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max 26 27 max 28 29
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kt ij t ij t ij t ij t
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it it it it wt it

t i t w
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 
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 (63) 

1 2 5 6 5 6 30

, 1 , 1 0gt gt gt gt g t g t it− −− + − − + + l l l l l l l  (64) 

3 4 31 0gt gt it− + =l l l  (65) 

7 18 19

, , , 0ij t ij t ij t− + =l l l  (66) 

8 20 21

, , , 0ij t ij t ij t− + =l l l  (67) 

( ) ( )7 7 8 8

, , , ,

16 17

, , 0

k ji t ij t k ij t ji t

ij ij

ij t ij t

g b− + −

+ − 

 l l l l

l l

 (68) 
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7 8 9

, , , 0k ij t k ij t ij tg b− + l l l  (69) 

7 8 19 10 11

, , , , , 0k ij t k ij t ij ij t ij t ij tb g + − + − =l l l l l  (70) 

12 13 18 19 22 23 30

, , , , , , 0ij t ij t ij t ij t ij t ij t it− + − + − − =l l l l l l l  (71) 

14 15 20 21 24 25 31

, , , , , , 0ij t ij t ij t ij t ij t ij t it− + − + − − =l l l l l l l  (72) 

26 27 30 0t t t− + =l l l  (73) 

28 29 31 0t t t− + =l l l  (74) 

30 33 1it it− l l  (75) 

31 34 1it it− l l  (76) 

30 35 0it vt− − l l  (77) 

   (1) (6) and (7)c W= − =¤ ¤  (78) 

Equation (63) defines the dual objective function for the dual optimization problem. However, because the binary and 

continuous variables are multiplied in continuous variables in the objective function (63), 𝑧𝑘𝑡ℓ(∙)
(∙)

 and 𝑃𝑤𝑡
𝑟 ℓ𝑖𝑡

30, the dual 

optimization problem is converted into an MINLP problem, which, as mentioned above, is very problematic to solve. However, 

the multiplication of the binary and continuous variables in the continuous variables can be linearized by the method proposed 

in [36]. Thus, the proposed dual optimization problem can easily become a mixed-integer linear programming (MILP) case. 

Constraints (64)–(77) are associated with the variables {𝑃𝑔𝑡
Ω , 𝑄𝑔𝑡

Ω , 𝑃𝑖𝑗,𝑡
Ω , 𝑄𝑖𝑗,𝑡

Ω , 𝑉𝑖,𝑡
Ω, 𝜓𝑖𝑗,𝑡

Ω , 𝜑𝑖𝑗,𝑡
Ω , 𝑃̃𝑖𝑗,𝑡

Ω , 𝑄̃𝑖𝑗,𝑡
Ω , 𝑃𝑡

Ω, 𝑄𝑡
Ω, Δ𝑃𝑖𝑡

Ω , Δ𝑄𝑖𝑡
Ω}, ∀Ω ∈

{𝑟}, respectively. Constraints (64)–(77) are also explained above. Also, constraint (78) has been explained in detail previously. 

Finally, Fig. 2 summarizes the proposed decentralized solution of the co-operation of the EDS&NGS under extreme 

uncertainty realizations. More details about the single equivalent dual problem is described in the Appendix. 

B. convergence of the proposed solution technique 

The convergence of the proposed iterative solution technique can be proved theoretically. Recently, researchers have shown 

an increased interest in implementing iterative solution strategies in optimization problems [26], [37] and [38]. References 

[26], [37], and [38] provide an overview of the convergence properties of iterative solution strategies. The following conditions 

guarantee the convergence of proposed iterative solution strategies: (i) Convexity of EDS and NGS objective functions, (ii) 

Convexity of EDS and NGS operation constraints, and (iii) Convexity of the max–min robust resilience-constrained 

optimization problem. Thereby, the convergence property of proposed solution strategy can be guaranteed. Also, the proposed 

iterative solution strategy has been deployed by the analytical target cascading (ATC) method whose convergence properties 

are discussed in [34] and [39]. The detailed proof of convergence of ATC has been shown by [39]. The ATC has proved to 

converge for a convex problem. The EDS and NGS operation constraints and max–min robust resilience-constrained 
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optimization formulations in our proposed problem are all MILP and convex. Thus, the convergence property of the iterative 

solution technique deployed to the proposed problem can be guaranteed and an optimal solution of the decentralized model 

can be provided when the hierarchical optimization process converges. Also, the augmented Lagrangian penalty function, i.e., 

( ) ˆ ˆ,t r t r   − − , in the objective functions (54) and (58) and the multiplier, i.e.,  ,  , are updated which can 

meaningfully improve the convergence property of the entire optimization problem. Indeed, as a local convexification 

approach, quadratic penalty terms are added to the objective functions to improve the convexity of the problem [34]. Through 

an experiment, the effectiveness of the penalty function method has been validated through many experiments, which can 

usually at least provide a local optimal solution after convergence [40]. 

Noted that, the mixed-integer linear programming (MILP) is a well-known model in real-world optimization problems. 

Also, the most literature in power system area have used MILP, because, the MILP combines the integer and linear constraints 

into a versatile modeling framework. The MILP is often considered as a “difficult” or “non-convex” class of optimization 

problems. However, there has been significant progress in the field commercial solvers during last twenty years and there are 

several good solvers for MILP problems available today e.g., CPLEX, BARON, GUROBI, LINDO and XPRESS. Note that 

all available solvers are, in theory and practical perspectives, capable of finding globally optimal solutions with proven 

optimality for mixed-integer programming models. In fact, some these solvers convert the MILP problem to a convex problem. 

As mentioned before, the MILP problems include the integer and linear constraints, the linear constraints are convex, but the 

integer constraints make original optimization problems to a non-convex problem. Accordingly, in these solvers have replaced 

a integer constraint with relaxed linear constraint by defining the discrete variable as continuous variable in a integer constraint 

and it bounded by the original discrete bound. The original optimization problem with continuous relaxation of constraint is a 

convex problem, thus, it has the global convergence with optimum solution results. If all relaxed integer variables take on 

integer values, then it is also an optimal solution for the MILP problem. Otherwise, the mentioned solvers use Branch and 

Bound, Cutting-Plane, Branch and Cut methods or similar methods. Must be remembered, in the Branch and Bound, Cutting-

Plane and Branch&Cut methods the non-convex integer inequality constraints are relaxed as convex continuous inequality 

constraints using relaxed integer variables with continuous variables. When all relaxed integer variables take on integer values, 

and all equality/non-equality constraints were satisfied then it is also the global convergence and optimal solution for the 

mentioned solvers. 

V. CASE STUDIES 

In this study, a modified IEEE 33-bus distribution system with a ten-node natural gas system has been implemented to 

demonstrate the effectiveness of the proposed model for managing the multi-zone and multi-time worst-case uncertainties in 

the co-operation of an integrated EDS&NGS problem. The integrated IEEE 33-bus distribution and 10-node natural gas 

systems are presented in Figs. 1 and 3. The bus connected to the upstream grid is Bus 1, and it has a fixed voltage magnitude 
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in the EDS. The 33-bus distribution system comprises three NGUs, one wind turbine (WT), P2G technology, 32 distribution 

lines, and 32 loads. Three NGUs, the WT, and the P2G technology are located at buses [18, 22, 25, 12, 12], which are indicated 

by G1–G3, WT, and P2G, respectively. The topology of a ten-node gas system is given in Fig. 3, which has ten nodes, ten 

pipelines, six natural gas loads, and two natural gas suppliers or gas wells, one gas storage and one P2G facility. Furthermore, 

the locations of the WT, the NGUs, the distribution lines, the P2G facility, the gas wells, the gas storage systems, and the gas 

pipelines for the 33-bus EDS and 10-node NGS are shown in Figs. 1 and 3. Additional data of the parameters for the EDS and 

NGS can be found at http://motor.ece.iit.edu/data/33-bus-6-node.xlsx. The penalty prices for unserved electrical and gas loads 

are fixed at 10,000$/MWh and 100$/kcf, respectively. The primary penalty multipliers values are fixed at 1, and the 

prespecified error level for the convergence is set at 0.0001. As shown in Fig. 1, the multi-zone and multi-time dynamic 

progress process of the extreme hurricane is shown by the IEEE 33-bus distribution system, which is divided into three zones 

and time periods. Through each zone and period, the hurricane event causes distribution line outages with a pre-defined budget. 

Note that the distribution lines that experience an outage in the prior zone and time remain in outage in the next zone and 

period. The proposed solution method was implemented by the solving tools (12.6 CPLEX) in the GAMS software [41] on a 

computer with an Intel Core i7-4.50 GHz CPU and 16 GB of memory. 

This paper considers three different optimization methods for the integrated EDS&NGS: 

Isolated method: In this method, the operation problem for the EDS problem (first level) for objective function (9) subject 

to (10)-(30) and the third level operation problem (identifying the worst-case 𝑁 − 𝑘 contingencies and extreme wind power 

uncertainty) for (63) subject to (64)-(77) and finally the second level operation problem for (31) subject to (32)-(44) are 

optimized, respectively. Precisely, the first level and third level problems are hierarchicaly optimized and then the problem 

formulation of the NGS operation problem is solved by fixing the sets of target variables ( 𝜒𝑡 ∈  {𝑃𝑔𝑡
Ω , 𝑃𝑣𝑡

Ω}) obtained from the 

first level operation problem. 

Decentralized method: This is a hierarchically coordinated method as described in detail in Section IV. 

Centralized method: In this method, the original first and second operation level problems for the EDS and NGS in Section 

III are solved in a joint manner. In fact, the objective function (8) is minimized subject to the EDS operation constraints, i.e., 

(10)-(30), and the NGS operation constraints, i.e., (32)-(46). The centralized method can achieve an optimal solution, but 

cannot be implemented in practice, since the EDS and NGS operation problems are executed by different operators. Thus, 

solution results from this method are only deployed to check the validity of the convergence of the proposed decentralized 

method. 

 

A. Effectiveness of Hurricane Event 

In the proposed min–max robust resilience-constrained co-optimization model, the set  is defined for hurricane events, the 

worst-case 𝑁 − 𝑘 contingencies, and the worst realizations of wind power uncertainty based on the uncertainty. As shown in 

http://motor.ece.iit.edu/data/33-bus-6-node.xlsx
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Fig. 1, the IEEE 33-bus distribution system based on the multi-zone and multi-time extreme hurricane model is divided into 

three zones, including Zones 1, 2, and 3. The total operation period, considered to be 24 h, is divided into three time periods: 

1h–8h, 9h–16h, and 17h–24h. It is worthwhile to note that the extreme hurricane crosses a zone during a time period, and thus, 

as shown in Fig. 1, the time periods 1h–8h, 9h–16h, and 17h–24h are related to the crossing of the hurricane from Zone 1, 2, 

and 3, respectively.  

A set of the budgets of wind uncertainty  , t0.8 8 ,16t h h  = ,  0, 8 ,16tt h h =   and worst-case 𝑁 − 3 contingencies 

(𝜂1 = 𝜂2 = 𝜂3 = 1) is shown by Fig. 1 to demonstrate the proposed multi-zone and multi-time extreme hurricane model. 

Therefore, the uncertainty associated with wind generators is only considered for a period of 8 h. Similarly, it is apparent from 

Fig. 1 that there is one distribution line outage at most in each zone and time. For example, in the first time, 1 h–8 h, once the 

hurricane crosses Zone 1, the distribution line 13–14 is damaged. In the second period, 9 h–16 h, the hurricane moves along 

its path and damages distribution lines 10–11 in Zone 2. Likewise, in this period, power generation deviations from the nominal 

power forecasts are considered for the wind turbine installed in Zone 2, i.e., 𝛼𝑡 = 0.8. Consequently, in the third period, 17h–

24h, once the hurricane arrives in Zone 3, it damages distribution lines 3–23. These outages cause 10.08 MW electrical load 

curtailment (ELC) and 31.64 kcf gas load curtailment (GLC), respectively. The electrical and gas load curtailment and total 

electrical operation cost (EOC) and the gas operation cost (GOC) for different worst-case 𝑁 − 𝑘 contingencies are listed in 

Table 2. It is interesting that the ELC is significantly increased with an increase in the number of worst-case contingencies in 

all contingencies.  

 

 

Fig. 3. Topology of a ten-node gas system. 

 

Table 2: Comparison of results for different 𝑁 − 𝑘 contingencies; without P2G technology 

N-k 
EOC 

[M$] 

GOC 

[k$] 

ELC 

[MW] 

GLC 

[kcf] 

Computational 

burden [s] 

3 1.17 1.02 10.08 31.64 100 

4 1.83 1.32 21.05 51.45 133 

5 2.08 1.66 89.26 101.15 167 
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B. Influence of P2G technology 

Here, the beneficial role of the P2G facilities in co-operation with the EDS&NGS in the occurrence of an extreme hurricane 

is analyzed. When lines 10–11 and 13–14 are tripped, the wind turbine in bus 12 is insulated from the other parts of the 

distribution system, and thus, the total available wind power generation cannot be accommodated by total distribution system 

loads. In this case, if there are no P2G facilities in the joint scheduling distribution system, the distribution system will partially 

overcome this issue by wind power curtailment. Besides, if there are P2G facilities in the joint scheduling distribution system, 

the distribution system can overcome this issue by converting wind power generation into natural gas. Fig. 4 compares the 

wind power generation of the WT (i.e., the wind turbine in bus 12) without and with the P2G technology. The dashed curve 

indicates the total available WPG, the blue curve shows the WPG without P2G technology, and the orange curve illustrates 

the WPG with P2G technology integrated. Furthermore, the effect of the P2G technology on the electrical and gas operation 

cost values and electrical and gas load curtailment under the worst-case 𝑁 − 𝑘 contingencies are compared in Tables 2 and 3. 

Tables 2 and 3 show the rapid decrease in the values of ELC, GLC, EOC, and GOC. Accordingly, the bidirectional energy 

flow caused by the P2G technology enhances the resilience of the combined gas and electrical networks considering the worst-

case 𝑁 − 𝑘 contingencies. 

 

Table 3: Comparison of results for different N-k contingencies; with P2G technology 

N-k 

EOC 

[k$] 

GOC 

[k$] 

ELC 

[MW] 

GLC 

[kcf] 

Computational 

burden [s] 

3 1.03 0.97 8.12 21.23 110 

4 1.72 1.11 19.23 34.67 144 

5 1.98 1.43 76.32 88.55 170 

 

 

Fig. 4. Wind power accommodation without/with P2G technology. 
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C. Comparison of three operation methods for co-operation of the EDS&NGS  

Three operation strategies for the min–max robust resilience-constrained co-operation of the EDS&NGS are compared in 

Tables 4 and 5.  They compare the three operation strategies from the perspective of electrical and gas operation costs, load 

curtailments, the number of worst-case 𝑁 − 𝑘 contingencies, and solution time. It should be noted that the decision-making in 

two energy systems is considered fully independent for the isolated method. Thus, the system operators operate autonomously 

without communication or sharing any data, whereas in the decentralized and centralized strategies the data can exchange 

among the EDS&NGS preserving information privacy. As shown in Table 3, there is a significant difference between the 

isolated strategy and the other two strategies under the worst-case 𝑁 − 3 contingencies. Besides, small differences between 

the operation results of two decentralized and centralized strategies demonstrate the effectiveness of the proposed decentralized 

strategy.  

The most interesting aspect of this table is the highest values for electrical and gas unserved loads detected for the isolated 

strategy, whereas the values are lowest for the centralized strategy. However, the reason for this result is that once we ignore 

data sharing between the two energy systems, the gas consumption of NGU-2 and the gas load at the same node, i.e., Node 7, 

are considerable during the operation process. Accordingly, there is a higher chance of a gas pressure loss and a natural gas 

shortage at Node 7 during periods 9 h–24 h because of the nonelectrical gas load and the electrical gas load, i.e., NGU-1, have 

simultaneously reached their peak values. To improve the gas pressures and supply gas loads at Node 7, there are two primary 

options: i) curtailment of the nonelectrical gas load at Node 7 and ii) reducing gas consumption of NGU-1 at the same node. 

As the gas load at Node 7 for the natural gas operator has the higher priority, consequently, just reducing the gas consumption 

of NGU-2 is the best option for the natural gas operators. In addition, a point often overlooked is that as mentioned above, 

extra wind power generation can be converted into gas with P2G technology and consumed with both NGUs and nonelectrical 

gas loads, but if data communication is ignored, this gas generation is only consumed with nonelectrical gas loads. 

Table 4: Comparison of results for worst-case N-3 contingencies; with P2G technology.  

Method 
EOC 

[k$] 

GOC 

[k$] 

ELC 

[MW] 

GLC 

[kcf] 

Computational 

burden [s] 

Decentralized 1.03 0.97 8.12 21.23 110 

Centralized 1.01 0.97 8.09 21.23 78 

Isolated 1.32 0.89 13.09 12.23 66 

 

Table 5: Comparison of results for worst-case N-5 contingencies; with P2G technology. 

Method 

EOC 

[k$] 

GOC 

[k$] 

ELC 

[MW] 

GLC 

[kcf] 

Computational 

burden [s] 

Decentralized 1.98 1.43 76.32 88.55 170 

Centralized 1.97 1.42 75.12 86.16 130 

Isolated 2.66 1.21 96.21 62.56 71 
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Under those circumstances, the energy generation of the NGUs in the EDS is reduced and the electrical load curtailment is 

increased. However, the shared data could enhance the gas pressure and reduce gas curtailment for NGU-1 at Node 7 by 

increasing gas injection to this node with P2G technology.  

Tables 4 and 5 compare the isolated and centralized strategies under the worst-case 𝑁 − 3 and 𝑁 − 5 contingencies. The values 

of the operation costs and load curtailments for the isolated strategy under different worst-case 𝑁 − 𝑘 contingencies are at the 

highest level for both operators. However, these values for decentralized and centralized strategies are at lower levels. Tables 

4 and 5 show that the decentralized strategy has a more efficient capability to cover the worst-case 𝑁 − 𝑘 contingencies in 

EDS operation, and it could provide a more resilient level for the EDS operator under the same worst-case 𝑁 − 𝑘 contingencies. 

Similarly, the proposed decentralized strategy plays a more important role in preserving the decision-making independence 

and data privacy between both the energy system operators. Furthermore, data sharing between both the energy system 

operators is generally more time consuming in practice. When only restricted data are shared in the proposed decentralized 

strategy, communication burdens are mitigated for both decision-makers. Accordingly, a decentralized strategy is necessary 

for the co-operation of the EDS&NGS to demonstrate the effectiveness and necessity of this strategy. 

B. 123-bus-20-node EDS&NGS 

To illustrate the efficacy of the proposed method, the results of a relatively large-scale test energy systems are presented here 

to represent the computational and convergence performances of the proposed decentralized approach. Thus, a modified 123-

bus-20-node EDS&NGS is presented to verify the effectiveness of the proposed models and decentralized approach. The 

modified 123-bus-20-node EDS&NGS has 124 transmission lines, 6 WT, 6 P2G, 5 NGUs, 2 gas wells, and 19 pipelines. More 

data for these energy systems can be found at motor.ece.iit.edu/data/123-bus-20-node.xlsx. The percent of hourly system load 

is the same as the pervious test EDS&NGS. Similar to previous test EDS&NGS, the new EDS&NGS based on the multi-zone 

and multi-time extreme hurricane model is divided into three zones, including three zones and three time periods. Noted that, 

the WTs and the P2G technologies are located at the same buses, i.e., [7, 52, 84, 97, 115,121]. The WT output profile and P2G 

capacity follow the same pattern as that of the previous energy systems. Similar to before test system, two set of the budgets 

of wind uncertainty  , t0.8 8 ,16t h h  = ,  , t0.2 8 ,16t h h  =  and worst-case 𝑁 − 3 and 𝑁 − 9 contingencies 

(𝜂1 = 𝜂2 = 𝜂3 = 3 and 𝜂1 = 𝜂2 = 𝜂3 = 3) are considered to demonstrate the proposed multi-zone and multi-time extreme 

hurricane model for an larger test system. The decentralized, centralized, and isolated methods for 123-bus-20-node 

EDS&NGS in terms of the EOC, GOC, ELC, GLC and computation time are compared in Tables 6 and 7 for different N-k 

contingencies. 

The results of the centralized method, which are globally optimal, are served as the benchmark in Tables 8 and 9. It is apparent 

from this table that the solution results for the decentralized method need less computation time compared with the centralized 

method, although the scale of the new test system increases compared with the previous test energy systems, confirming its 

fast convergence features. What is interesting about the data in this table is that when the decentralized method is implemented 
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in a larger test system (i.e., 123-bus-20-node EDS&NGS), the computation advantages of the proposed decentralized method 

can be better unlocked which justifies the performance of the decentralized method against the system’s scale. Note that the 

computational time to solve the proposed min–max robust resilience-constrained co-optimization model relative to its accuracy 

is reasonable and vary good for the large-scale system. Also, to evaluate the convergence property and solution quality, the 

optimization results of the proposed decentralized approach for the previous and new test systems of EDS&NGS are shown in 

Fig. 5. Noted that, the EOC of the centralized method, which are globally optimal, are served as the benchmark in Tables 6 

and 7. The most interesting aspect of this figure is that the maximum number of convergence iterations for the proposed 

decentralized approach in 33-bus-9-node energy systems is 10 and in the new modified 123-bus-20-node EDS&NGS is 16. 

Indeed, while the scale of EDS&NGS increases with a factor of 3.7, the number of iterations to converge and corresponding 

solution time for the proposed iterative proposed decentralized approach does not increase in a linear function of the scale of 

test system. 

Table 6: Comparison of results for the worst-case N-3 contingencies; with P2G technology; modified 123-bus-20-node EDS&NGS.  

Method 
EOC 

[k$] 

GOC 

[k$] 

ELC 

[MW] 

GLC 

[kcf] 

Computational 

burden [s] 

Decentralized 4.12 2.54 15.11 41.43 310 

Centralized 4.11 2.55 15.12 41.43 806 

Isolated 4.42 2.98 18.12 32.43 155 

 

Table 7: Comparison of results for the worst-case N-9 contingencies; with P2G technology; modified 123-bus-20-node EDS&NGS. 

Method 

EOC 

[k$] 

GOC 

[k$] 

ELC 

[MW] 

GLC 

[kcf] 

Computational 

burden [s] 

Decentralized 7.53 4.56 34.31 61.54 390 

Centralized 7.51 4.54 34.32 61.53 1087 

Isolated 7.82 4.98 26.21 53.34 183 
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Fig. 5: Convergence of the proposed iterative decentralized approach. 

VI. CONCLUSIONS 

In this paper, a min–max robust co-optimization model was proposed to enhance the resilience of the co-operation of the 

EDS&NGS. The proposed model can identify the multi-zone and multi-time uncertainty set that includes worst-case 𝑁 − 𝑘 

contingencies and wind power generation uncertainty. The obtained results verify that utilization of the P2G technology can 

enhance the resilience of the co-operation of the EDS&NGS under worst-case 𝑁 − 𝑘 contingencies by reducing electrical and 

gas load curtailment. Three operation strategies, i.e., isolated, centralized, and decentralized strategies were considered. The 

results demonstrate that the operation cost and load curtailment for both energy systems are at the highest level for the isolated 

strategy. However, the centralized strategy is at the lowest level among the three strategies. The obtained results for the 

centralized and decentralized strategies are almost the same with slight differences. The EDS&NGS can perform as 

independent entities with sharing a set of restricted information to preserve information privacy. 

VII.  APPENDIX 

It should be noted that the model (47)-(54) is a bi-level optimization problem where the worst-case N − 𝑘 contingencies and 

extreme wind power uncertainty is found. Its abstract mathematical formulation can be given as follows:  

 

 ,
max min T

yU z P
b y

 
 (78) 

Hy h    (79) 

 , 0,1Az By g z+      (80) 

Iy d p = −   (81) 

 , 0,1Fz n z    (82) 
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p p   (83) 

where y indicates continuous variables and  ,z p show discrete and continuous uncertain variables in the third level problem. 

In fact, a continuous variable y is a vector of Ξ2 = {𝑃𝑔𝑡
r , 𝑄𝑔𝑡

r , 𝑃𝑡
r, 𝑄𝑡

r, 𝑃̃𝑖𝑗,𝑡
r , 𝑄̃𝑖𝑗,𝑡

𝑟 , 𝑃𝑖𝑗,𝑡
r , 𝑄𝑖𝑗,𝑡

𝑟 , 𝑉𝑖,𝑡
𝑟 , 𝜓𝑖𝑗,𝑡

𝑟 , 𝜑𝑖𝑗,𝑡
𝑟 } and the discrete and 

continuous uncertain variables  ,z p  are vectors of Ξ1 = {𝑃𝑤𝑡
r , 𝑧𝑘𝑡} in Section 4. Constraint (79) includes dispatch related 

constraints such as constraints (13)-(19) and (27)-(28). Constraint (80) refers to line flow limit constraints such as constraints 

(20)-(26). Constraint (81) shows power balance at a bus which includes constraints (49)-(50). Constraints (82) and (83) 

represent the maximum limits for the discrete and continuous uncertain variables which includes constraints (1)-(6). 

 
( ) ( )

, ,
max T T Th g Az d p
  

  − − − + −   (84) 

T T T TH B I b  − − + =  (85) 

0, 0, free     (86) 

(81)-(82) (87) 

The max-min problem (78)-(83) is transformed into a max-max problem. Also, it can be converted to a single equivalent dual 

problem based on the duality theory [42]. Also, the continuous variables , ,    are the dual variables of the constraints (79)–

(83), respectively. 
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