
Computational Materials Science

DIMS: A tool for setting up defects and impurities CASTEP calculations
--Manuscript Draft--

Manuscript Number: COMMAT-D-21-02455

Article Type: Full Length Article

Section/Category: Electronic Structure

Keywords: software; bash; defects; tool; crystallography; castep; hpc

Corresponding Author: Stavros-Richard G. Christopoulos, (Ph.D.
Coventry University
Coventry, West Midlands UNITED KINGDOM

First Author: Stavros-Richard G. Christopoulos, (Ph.D.

Order of Authors: Stavros-Richard G. Christopoulos, (Ph.D.

Konstantina Papadopoulou

Alexandros Konios

David Parfitt

Abstract: In the present study, we introduce a new tool for calculating the properties of different
crystallographic structures, either pure or with defects. The proposed software’s three
different modes regarding the inputs it accepts, i.e., automatic, semi-automatic and
manual, are explained. Vacancies, anti-sites, interstitials and dopants can be
processed, in any number of combinations. In addition, research studies where the tool
has been already applied are provided. Finally, we describe the advantages of the
proposed tool regarding mass calculations, time management and human error, and
we showcase, through the means of performance analysis, its weak and strong points
using two case studies.

Suggested Reviewers: Panayiotis Varotsos
National and Kapodistrian University of Athens: Ethniko kai Kapodistriako
Panepistemio Athenon
pvaro@otenet.gr

Yerassimos Panagiotatos
University of West Attica Aigaleo Grove Campus: Panepistemio Dytikes Attikes
Panepistemioupole Alsous Aigaleo
gpana@uniwa.gr

Ioannis Goulatis
yannislgoul@gmail.com

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Title: DIMS: A tool for setting up defects and impurities CASTEP calculations

Authors: Stavros-Richard G. Christopoulos , Konstantina A. Papadopoulou, Alexandros

Konios, and David Parfitt

Coventry, September 2021

Dear Editor,

Here we present DIMS, a new tool for calculating the properties of different

crystallographic structures, either pure or with defects, working alongside CASTEP as

supporting software. Vacancies, anti-sites, interstitials and dopants can be processed by the

tool, in any number of combinations.

We anticipate that the present study will have a high impact in the community, as it will

minimize the potential for human error, as well as control mass calculations and offer better

time management. Research studies where the tool has already been applied are provided so

as to showcase its usefulness.

Yours faithfully,

The authors

Cover Letter

begindocument/before

DIMS: A tool for setting up defects and impurities CASTEP calculations

Stavros-Richard G. Christopoulos,1, ∗ Konstantina A. Papadopoulou,1 Alexandros Konios,2 and David Parfitt1

1Faculty of Engineering, Environment and Computing,
Coventry University, Priory Street, Coventry, CV1 5FB, United Kingdom

2School of Digital, Technologies and Arts, Staffordshire University, United Kingdom

In the present study, we introduce a new tool for calculating the properties of different crystal-
lographic structures, either pure or with defects. The proposed software’s three different modes
regarding the inputs it accepts, i.e., automatic, semi-automatic and manual, are explained. Va-
cancies, anti-sites, interstitials and dopants can be processed, in any number of combinations. In
addition, research studies where the tool has been already applied are provided. Finally, we describe
the advantages of the proposed tool regarding mass calculations, time management and human er-
ror, and we showcase, through the means of performance analysis, its weak and strong points using
two case studies.

Keywords: software, bash, defects, tool, crystallography, castep, hpc

I. INTRODUCTION

When it comes to the study of large crystallographic
structures using the CASTEP package1–5, it is of grave
importance to minimize the run-time as well as the po-
tential for human error, especially in the cases where the
number of jobs a user has to run surpasses the thousands.

In the present paper, we introduce a tool called DIMS
(Defects and Impurities Setup) created in order to auto-
mate the process of adding defects in a structure. The
tool deals with three kinds of point defects6,7: vacan-
cies, anti-sites and interstitials. Furthermore, two kinds
of dopants8,9 can be accepted: substitutional, including
multidoping, and interstitial.

The proposed software is able to create all the nec-
essary folders and files that CASTEP needs in order to
execute a number of submitted jobs, however numerous,
instead of the user having to do so by hand. In the case of
too many calculations, the latter is impossible, not only
regarding human error, but also time-wise.

In Section II, we perform a Performance Analysis of the
tool, testing it against supercells as large as 937 atoms
and 100,000 inserted interstitials. In addition, in Section
III, we discuss the advantages and disadvantages of the
software, as well as future improvements. Examples of
publications where the software has already been used
are also showcased. Finally, in Section IV, we briefly
describe how the tool needs to be set up from the user
in order to run, alongside how the different modules of it
are executed.

II. RESULTS

In order to evaluate the performance of the proposed
tool, we tested it against two separate supercell sizes
of Ti3AlC2, examining various numbers of interstitial
dopants. The aim was to examine how the number of
submitted jobs affects the run-time of the programme
regarding the creation of all necessary folders and files.

FIG. 1: How the run-time of the proposed tool increases with
the number of submitted jobs to run when using an HDD and
Linux operating system.

The first supercell examined was the 3x3x3 containing
424 atoms while the second was the 4x4x4 containing 937
atoms.

In the first case, we run the software in a system uti-
lizing Linux Ubuntu 20.04, a Hitachi HTS545050A7E380
500GB Hard Disk Drive (HDD) with 300MB/s writing
speed, an i3-3217U processor, and 3832MB RAM. In Fig-
ure 1, we can see the dependence of the run-time on the
number of jobs to execute, for the two sizes of supercells.

We conducted five different doping cases for each of
the supercells so that we could examine how the run-
time is affected when extra number of atoms are added
to the initial supercell. As it was expected, increasing the
number of dopants and hence the number of submitted
jobs, the programme’s execution time also increases, as
it is evident in Fig. 1.

The 937-atoms supercell is 121% larger than the 424-
atoms one. For the first three cases of 10, 100 and 1,000
interstitials, the execution time is less than one minute
for both supercell sizes. However, for 10,000 intersti-

Manuscript Click here to access/download;Manuscript;programV2.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/commat/download.aspx?id=978302&guid=7493f4c0-b5c1-48f6-a3fb-eb6dcb6e466b&scheme=1
https://www.editorialmanager.com/commat/download.aspx?id=978302&guid=7493f4c0-b5c1-48f6-a3fb-eb6dcb6e466b&scheme=1
https://www.editorialmanager.com/commat/viewRCResults.aspx?pdf=1&docID=56260&rev=0&fileID=978302&msid=8c21c1db-abb8-43c6-b3ff-d70da2b57302

2

FIG. 2: How the run-time of the proposed tool increases
with the number of submitted jobs to run, when we use an
SSD and Windows 10 operating system.

tials, the software has a run-time of 23.9min for the 424-
atoms supercell and 24.3min for the 937-atoms supercell.
In addition, for the last case of 100,000 interstitials, the
software has a run-time of 10.6h for the 424-atoms super-
cell and 12.8h for the 937-atoms supercell, an increase of
20.75%.

As we can see, as the workload has increased from the
first to the last case by 999, 900%, the run time has also
increased drastically from less than a second to hours.
However, if one is to compare the run-times of the soft-
ware with the ones it would take a user to create and
submit all the jobs manually while ensuring there are no
mistakes, it is logical that the automated software we
propose in this article will be of great use.

Using Solid State Drives (SSD) instead of HDD, one
can have the advantage of reading and writing data faster
while using less energy. For comparison, we ran the afore-
mentioned doping cases anew, utilizing a KIOXIA, XG6
series 1024GB SSD, reaching up to sequential read speeds
of 3180MB/s, sequential write speeds of 2960MB/s and
delivering up to 355,000 random read and 365,000 ran-
dom write IOPS. The operating system was Windows 10
Pro, Version 20H2, with Linux Bash Shell installed, an
i5-10210U processor, and 8GB RAM.

The dependence of the execution time on the number
of submitted jobs for this case is shown in Fig. 2.

Again, for the first two cases of 10 and 100 intersti-
tials, the execution time is less than one minute for both
supercell sizes. However, for 1,000 interstitials, the SSD
is slower than the HDD, with both supercell sizes run-
ning for approximately 3min. This is also the case for
the 10,000 interstitials where the 3x3x3 supercell has a
run-time of 42.48min, an 77.67% increase from the corre-
sponding HDD case, and the 4x4x4 supercell has a run-
time of 41.13min, 69.58% slower than the corresponding
HDD case.

Finally, for the case of 100,000 interstitials, for the
3x3x3 supercell the software’s execution time is 11.39h,

an 7.25% increase from the corresponding HDD case.
For the 4x4x4 supercell however, the execution time is
12.19h, which is actually 4.78% faster than the corre-
sponding HDD case. The latter percentage practically
translates to 36.6min in real time, which is negligent
when compared to the time it would take a user to create
100,000 folders and the corresponding files manually.

It is evident that the use of Linux has more advantages
regarding the proposed tool’s speed, regardless of the use
of an SSD. In addition, the run-time does not increase
linearly with the number of jobs, a fact that showcases
the proposed tools usefulness when it comes to setting
up an amount of jobs that surpasses the thousands.

In general, it can be concluded that despite the fact
that the execution time increases with the number of the
inserted interstitial atoms and, thus, with the number of
submitted jobs to run, the tool performs equally well in
all cases, showing that it can cope with extremely large
number of calculations for significantly large crystallo-
graphic structures.

III. DISCUSSION

In the present paper, we present a tool developed
to calculate the properties of different crystallographic
structures. The main advantage of the proposed software
is that it utilizes only bash, therefore no compilers need
to be built-in in order to execute it in Linux operating
systems, or High-Performance Cluster (HPC) with Linux
operating systems. Due to that fact, it can be expanded
for use with other platforms, for example Windows if the
Linux Bash Shell is installed.

In addition, the tool allows for the execution of mil-
lions of calculations automatically, when a manual ap-
proach could take a lot of time and the risk of human
error would be high. That being said, the software is
designed in such a way so that if someone was to skip
the automatic process, the programme could still run ei-
ther semi-automatically or completely manually. Fur-
thermore, it can be easily incorporated into any other
script for automating even more complex calculations for
similar group of compositions or even extend the current
version in such a way that it will include migration, multi-
doping and other cases.

Finally, the software is student-friendly, as the neces-
sary parameters can be inserted without previous knowl-
edge of HPC or Linux.

The software has already been proved useful in a num-
ber of studies. For example, in Ref. 10, the authors ex-
amined carbon interstitial defects and self-interstitials in
a 250-atoms supercell of neutron-irradiated silicon con-
taining carbon. Moreover, in Ref. 11, the authors stud-
ied carbon and oxygen-related defects formed upon ir-
radiation of silicon. A supercell of 250 silicon atomic
sites was used. In addition, in Ref. 12, substitu-
tional phosphorous-vacancy pairs were studied in a ran-
dom silicon germanium alloy. The special quasirandom

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

structures13 (SQS) method was used to reduce the size of
the supercell, and hence the time of the calculations. 896
phosphorous substitutional-vacancy defects were consid-
ered, and more than 1350 DFT calculations were per-
formed.

Furthermore, in Ref. 14, n-type and p-type dopants
were examined also in a random silicon germanium alloy,
using a 64-atomic site supercell. Finally, in Ref. 15, a
250-atomic site supercell was used to study the structure
and energetics of carbon interstitials and substitutionals
in silicon. A 10x10x10 grid of interstitials was used for
each step of adding interstitials, resulting in 3000 sub-
mitted jobs.

Despite the software’s many advantages, it is true that
some points could still be optimized. For instance, as it
is shown in Section II, the run-time increases drastically
with the number of the jobs submitted. Moreover, while
parsing the .cell files, we refer to the file line for an atom’s
position and not to the atom itself. That means that if
for example we want the position of the 100th atom, we
should look into the 116th line of the .cell file. That fact
increases the potential for human error, especially for a
beginner user, however the method is in place because
HPC allows the user to view a file through its lines. Ad-
ditionally, instead of running all the jobs simultaneously
using ./runAll.sh (see Section IV), we could find a way
of utilizing blocks of jobs, e.g. one block per n number
of jobs, where n is chosen by the user, so that we could
execute the calculations in parts.

Another issue might arise from the use of the resub-
mit.sh script which resubmits for continuation all the
jobs that have not finished after the initial allocated
time for the run. We incorporated this script because
we judged it useful when it comes to a high number of
jobs, else the user would have to resubmit the unfinished
jobs manually. That, in cases of thousands of jobs, is im-
practical. However, a user needs to be careful to adjust
the resubmit.sh script accordingly if they use an HPC.

Finally, as it currently stands, the software does not
allow for multiple interstitials. The solution to this would
be something to look into in the future.

IV. METHODS

The proposed tool enables a CASTEP user to create
all the necessary folders and files in order to set up a big
number of calculations regarding the properties of differ-
ent crystallographic structures. In addition, it gives the
user control by automating the process, minimizing the
potential for human error when it comes to thousands of
calculations, while drastically reducing the time needed
to set up the calculations.

The software’s two basic computational modes, i.e.,
automatic and semi-automatic, operate under a main al-
gorithm which determines the mode according to the in-
puts. The flowchart of this main algorithm is pictured in
Fig. 3, while we will explain its main characteristics in

Start

Programme

Input Flags

Flags valid?
Y

Flag values comply

with init. files?

N

Termination

Y

Input files and

calculations

Are the input flags

& files correct?

Y

Automatic

mode

Semi-automatic

mode

N

N

Generates file with

list of calculations

to be run

Stores list with

considered

calculations

Generates script to run

all the cases

User answered

the prompts for

the inputs?

Y

N

Manual

mode

Defects inserted

manually?

Y

N

FIG. 3: The flowchart of the main algorithm, which de-
termines whether the automatic, the semi-automatic or the
manual mode will be selected, according to the programme’s
inputs.

the subsequent paragraphs.
Initially, the user needs to define the flags that will

set up the process. A list of the available flags is given
in Table I. The flags -f, -i, -s, -d must be followed by
appropriate files that contain the positions of the vacan-
cies and anti-sites, the interstitials, the substitutionals
and the interstitial dopants. The format of these files is
given in the Supplementary Material. The flags -v and
-a denote whether or not we want to do calculations for
vacancies and anti-sites respectively. The label -l notes
the job’s name, which should be the same as the name of
the .param file. The label -c defines the initial .cell file
and should be followed by it, while the label -p denotes
whether we want to perform calculations for the initial
.cell file. In addition, apart from the individual flags, we
can use the combinations -vaf, -vf, -af, where the -f flag
that is followed by the file containing the positions of
vacancies and anti-sites should always come last.

In order to run the programme, the user needs to cre-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

ate a folder containing the .resubmit, .cell, .param, and
modified .slurm files. An example of a command submit-
ting the script to run is the following:

DefectCalcV5.3.1.multidoping.sh -l jobname -p -c jobname.initial.cell

-vaf Vacancy_positions.dat -i Interstitial_positions.dat

-s Substitutional_Doping.dat -d Interstitial_Doping.dat

The .slurm file is the job submission file, used to submit
the programme and ask for resources from the HPC or
the system used. It is the file that calls CASTEP to sub-
mit the jobs and run the calculations. In it, the run-time,
the partition of the HPC we want to use, and the num-
ber of nodes is also noted. The user must be careful to
modify this file according to the HPC they use, if any, or
according to the system they have CASTEP installed in.
The parameter of interest here is the “SETJOBNAME”.
Using this parameter, the user can transfer the input
parameter of the -l label to the corresponding working
directories and case names.

After initialization, the programme checks the validity
of the flags and whether the format of the input files is
compatible with its commands. At this stage, the process
can be terminated only in the cases where all the flags are
invalid or all the input files do not exist. That means that
the calculations can continue to run even if a partially
wrong command is entered, ignoring the invalid flags.
In that case, the programme chooses the semi-automatic
mode and prompts the user to input the right command.

When the programme has completed the flags and files
validity check and has chosen between the two operating
modes, a series of files and scripts is generated, necessary
to store the calculations and run them.

First of all, in order to ensure that when the pro-
gramme is executed for a second time it does not leave
any remnants of its previous run, all the previously gen-
erated files are deleted. Then all the necessary subfolders
for the submission jobs are created and the .param, .cell,
.slurm files are copied into each of them. The parame-
ter “SETJOBNAME” in the .slurm file is also changed
accordingly.

Furthermore, a file titled runAll.sh is generated, which
contains all the jobs to be run. The user is then prompted
to run them using ./runAll.sh.

In addition, the CheckContinuefile.sh script is created.
This script allows the user to check which jobs have
reached the allocated time-limit and need to be resub-
mitted. Basically, it collects the case names stopped due
to time-limit by checking whether the slurm-#.out files
contain the word “LIMIT”.

The results are gathered in the AllRES.dat file, and
the final energies in particular in the finalEnergyFile.sh
script. The latter can be run by the user using
./finalEnergyFile.sh to check all the final energies
for all cases running in the AllRES.dat file. Moreover,
the checkWarnings.sh script provides any warnings the
calculations may have produced.

Finally, before its termination, the programme gath-
ers all the .castep output files into a directory called
castep.Job_name.Files.

Both the automatic and semi-automatic modes have
counters put in in order to count the times each individ-
ual calculation (vacancies, anti-sites, interstitials, substi-
tutional, interstitial doping) is to be run. However, the
semi-automatic mode has s few extra counters in order to
store the data values inserted manually for the vacancy,
interstitial, interstitial doping and substitutional doping
calculations. In addition, the highest number of the dif-
ferent elements that can be entered manually by the user
is set to 1, 000.

We will now describe briefly the main points regard-
ing the way the different calculations are set up, using
the automatic, semi-automatic and manual modes in the
Subsections IV A and IV B respectively.

A. Automatic mode

1. Initial cell calculations

If the flag -p is equal to “true”, the programme copies
the initial .cell file into the path ./Job_name/cells,
where the Job_name is the parameter following the -l
label. The file is then renamed, following the syntax
Job_name.initial.cell. The latter is then moved to
the directory named cells.

At this stage, the programme assigns to the
first element of an array called Unique_nameDef the
Job_name.initial.cell filename. Unique_nameDef
will also be used to store the defect calculations.

The programme then proceeds to make the folders with
the necessary files where the calculations of the final en-
ergy of the initial crystal will be executed. However, if
the -p flag is not activated, it skips this calculation and
carries on with the remaining ones.

The -p flag should always be accompanied by the -c
one, followed by the initial .cell file.

2. Vacancy calculations

If the -f flag is activated, it should be followed by
the file Vacancy_positions.dat which contains the po-
sitions of the vacancies and the anti-sites. The file is
then read line by line. The Vacancy_positions.dat file
has three columns: the first is for the number of the
lines where the vacancies will be created in the .cell file,
the second stores the names of the elements existing in
those lines, and the third stores the labels for the differ-
ent crystallographic positions that we want to examine
for the respective elements.

As a next step, the activation of the -v flag is examined.
If it is activated, the initial .cell file is copied into the
folder named after the Job_name parameter like before.
Then, in order to create the vacancies, the programme

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

starts parsing through the lines of the .cell indicated by
the first column of Vacancy_positions.dat and com-
menting them out.

Finally, the .cell file is moved to the cells folder for
backup, and all the unique elements that were found
in the Vacancy_positions.dat file are stored in the
Unique_nameDef array. So if, for example, we created
vacancies where three different elements should be, then
the Unique_nameDef array will expand by three lines.
But if we created vacancies in three positions where the
same element existed, the Unique_nameDef array will be
expanded by one line, since the programme will run one
job for the vacancies of the same type.

3. Anti-site calculations

First, the activation of the -a flag is examined. If it
is activated, the programme initially checks whether the
two elements to be displaced are the same or not. If they
are different, using the Vacancy_positions.dat file all
the possible combinations for the anti-sites are derived.

Next, the programme copies the
Job_name.initial.cell file into the cells directory
renaming it into Job_name.ElementONElement.cell.
Finally, the anti-sites are created by processing the first
column of the Vacancy_positions.dat, which indicates
the line in the initial .cell file where the displacement
takes place. The existing element in that line is then
replaced as required.

4. Interstitial calculations

The flag that needs to hold the value “true” for the in-
terstitials calculations is the -i, followed by the file where
the interstitial positions are stored.

The programme then copies the
Job_name.initial.cell file into the cells direc-
tory renaming it according to the line the intersti-
tial will be and the Job_name. Finally, under the
BLOCK_POSITIONS_FRAC section of the latter .cell file,
lines including the coordinates of the interstitial elements
are created and the final .cell file is moved to the cells
directory.

For the interstitial calculations, interstitials are cre-
ated for all the elements noted in the file containing the
vacancy positions. As such, the -f flag needs to also be
used alongside the file containing the vacancy positions,
even if we do not want to perform calculations for the
vacancies. More information on that is included on the
Supplementary Material.

5. Interstitial Doping calculations

For this section, the flag -d needs to be activated, fol-
lowed by the file containing the positions and the name of

the interstitials. Same as before, the programme copies
the Job_name.initial.cell file into the cells directory,
renaming it accordingly. After that, the programme
functions the same way as in paragraph IV A 4.

6. Substitutional Doping calculations

For the substitutional doping calculations, the activa-
tion of the -s flag is first examined, and whether it is
followed by the file containing the positions of the substi-
tutional elements. If the aforementioned condition holds
true, the programme copies the Job_name.initial.cell
file into the cells directory, renaming it according to the
element to be substituted and its position in the .cell file.

In order to create the substitutional, the programme
then finds the line in the .cell file where the substitu-
tion will occur and substitutes the element existing in it
with the one indicated by the substitutional doping file.
The final .cell file after this procedure is finished, is then
moved to the cells directory.

Finally, the software creates all the necessary files and
subfolders inside the main folder named after the job-
name as it was input using the -l label.

B. Semi-Automatic and Manual modes

For the semi-automatic mode to be activated, no flags
should have been entered. In that case, the programme
prompts the user to enter the job-name to be submitted.
Next, the existence of an initial .cell file is examined.
If such a file is not found, the user is also prompted to
provide it manually.

The various calculations are set up as in Subsection
IV A. The only difference is that in the semi-automatic
mode, the programme will prompt the user to answer
with “yes” or “no” whether they want a specific calcu-
lation to be run. If the answer is “yes”, the respective
flag will be activated and the user will be prompted anew
to enter the file corresponding to that particular calcu-
lation. If no file is entered, a completely manual mode
emerges where the user must input all the defect posi-
tions by hand.

Data Availability

No data were used relevant to the purpose of this pa-
per. The software is designed so as to accept any .cell
file as input for setting up CASTEP calculations.

Author Contributions

Stavros-Richard G. Christopoulos was responsible for
the investigation of the methodology, conceptualization,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

code development, formal analysis, review and edit-
ing; Konstantina A. Papadopoulou performed the per-
formance analysis evaluation, writing, formal analysis,
review and editing; Alexandros Konios did the writing;
David Parfitt did the review and editing.

Acknowledgments

Konstantina Papadopoulou acknowledges support
from the International Consortium of Nanotechnologies

(ICON) funded by Lloyd’s Register Foundation, a chari-
table foundation which helps to protect life and property
by supporting engineering-related education, public en-
gagement and the application of research.

TABLE I: List of the available flags.
Flag Meaning
-p calculation for the initial file(pure crystal)
-l label for HPC, same as the .param file
-c always followed by the initial .cell file
-v vacancies calculations
-a anti-site calculations
-f file with vacancies and anti-sites positions
-i interstitials calculations
-s substitutionals calculations
-d interstitial doping calculations
-r resubmit unfinished jobs

∗ Electronic address: ac0966@coventry.ac.uk
1 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip,

M. I. Probert, K. Refson, and M. C. Payne, Zeitschrift für
Kristallographie-Crystalline Materials 220, 567 (2005).

2 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
3 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
4 M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and J. D.

Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

5 B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen,
J. Comput. Phys. 131, 233 (1997).

6 A. Lidiard, Science Progress (1933-) pp. 103–129 (1968).
7 C. Kittel and P. McEuen, Introduction to solid state

physics, vol. 8 (Wiley New York, 1976).
8 B. Averill and P. Eldredge, Washington, DC: Saylor

Academy p. 1472 (2015).
9 A. Lavakumar, Morgan & Claypool Publishers (2017).

10 C. Londos, S.-R. Christopoulos, A. Chroneos, T. Angele-
tos, M. Potsidi, and G. Antonaras, Journal of Materials
Science: Materials in Electronics 31, 930 (2020).

11 M. S. Potsidi, N. Kuganathan, S.-R. G. Christopoulos,
A. Chroneos, T. Angeletos, N. V. Sarlis, and C. A. Londos,
Crystals 10, 1005 (2020).

12 S.-R. G. Christopoulos, N. Kuganathan, and A. Chroneos,
Scientific Reports 9, 1 (2019).

13 A. Zunger, S.-H. Wei, L. Ferreira, and J. E. Bernard, Phys-
ical Review Letters 65, 353 (1990).

14 S.-R. G. Christopoulos, N. Kuganathan, and A. Chroneos,
Scientific Reports 10, 1 (2020).

15 S.-R. G. Christopoulos, E. N. Sgourou, R. V. Vovk,
A. Chroneos, and C. A. Londos, Materials 11, 612 (2018).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:ac0966@coventry.ac.uk

Supplementary material for on-line publication only

Click here to access/download
Supplementary material for on-line publication only

SUPPLEMENTARY MATERIAL.docx

https://www.editorialmanager.com/commat/download.aspx?id=978300&guid=a1ee4d64-f380-4182-9599-f9eadf4fdcff&scheme=1

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Declaration of Interest Statement

