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Computational design for 4D printing of topology optimized
multi-material active composites
Darshan Athinarayanarao1, Romaric Prod’hon1, Dominique Chamoret1, H. Jerry Qi2, Mahdi Bodaghi3, Jean-Claude André4 and
Frédéric Demoly 1✉

Recent efforts on design for four-dimensional (4D) printing have considered the spatial arrangement of smart materials and energy
stimuli. The development of multifunctional structures and their desired mechanical/actuation performances require tackling 4D
printing from a multi-material design perspective. With the materials distributions there is an opportunity to increase the spectrum
of design concepts with computational approaches. The main goal being to achieve the “best” distribution of material properties in
a voxelized structure, a computational framework that consists of a finite element analysis-based evolutionary algorithm is
presented. It fuses the advantages of optimizing both the materials distribution and material layout within a design space via
topology optimization to solve the inverse design problem of finding an optimal design to achieve a target shape change by
integrating void voxels. The results demonstrate the efficacy of the proposed method in providing a highly capable tool for the
design of 4D-printed active composites.
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INTRODUCTION
The emergence of increasingly ground-breaking scientific
advancement of the additive manufacturing sector over the past
decades as well as cutting-edge discoveries in the domain of
active materials have birthed a novel class of (meta)material(s):
active composites. As its name suggests, active composites consist
of at least two different materials, one, if not both1, comprising of
a smart material and another passive or inert material. Smart
materials are an umbrella term that englobes a variety of materials
that can be subjected to transformations in shape as well as other
properties such as stiffness, state (of matter), color, etc., with a
specific actuation. As present in the literature, these actuations,
commonly referred to as energy stimuli, ranges in terms of
accessibility and ease of use from heat/temperature2 to humidity,
pH, solvent3, electricity4, magnetism5,6, light7, etc. The various
classes of smart materials prominently researched include shape
memory polymers8, shape memory alloys9, liquid crystal elasto-
mers10–13 and hydrogels14,15 to name a few.
In the context of active composites, the reaction to an

environmental stimulus is largely dependent on the constraints
applied to the inert matrix material. In other words, the spatial
layout of both materials, also known as the materials distribution,
in an active composite is the biggest factor that influences the
specific shape changes induced. Conceptually, this provides a
massive breakthrough in terms of design in the form of a
parameter that opens the door to an almost infinite number of
possibilities which were not available when working with unique
standard materials. Inversely, this brings with it a complexity in
determining the best approach or strategy to attain the optimal
materials distribution for a specific need16. This naturally leads to
two types of design strategies, knowledge-based design (intuitive)
and computational design (possibly counter-intuitive)17. The
former takes advantage of experience and knowledge as well as
human intuition and understanding of basic problems to provide

straightforward solutions for elementary needs that can then be
compounded to respond to more complex requirements.
Examples include multi-layer designs and basic patterns18.
However, the limitation to human intuition as well as the trial-
and-error nature of experimentation of this method led to the
second category of design, computational design. Conversely, the
advances in computer programming and machine-learning
capabilities coupled with modeling and simulation approaches
can be used to generate a solution that is tailored to achieve a
highly complex shape-change while including the notion of
‘optimization’19.
By combining additive manufacturing and active materials

under the effect of an energy stimulus, four-dimensional (4D)
printing is a booming research domain that require intensive
investigations both at the digital and physical levels. The current
state-of-the-art technology in 4D printing in terms of manufactur-
ability allows the accurate arrangement of different materials in a
single part, especially with material extrusion (i.e., fused filament
fabrication20, direct ink writing21–25) and material jetting26 (i.e.,
PolyJet technique). This leads to potential applications in various
industries: soft robotics27, biomedical engineering28, smart actua-
tors29, aerospace technology30, etc. In tackling the design aspect
of the application of active composites, one is confronted with a
convoluted inverse problem of finding the optimal material or
property distribution to obtain a desired shape change which
relies heavily on precise numerical models, such as finite element
models, and the exploration strategy, in the form of an
optimization algorithm. Approaches that were previously con-
sidered incorporate various methods founded upon gradient-
based topology optimization (TO) including, but not limited to,
level-set topology31, graded density optimization32,33, linear elastic
TO34, TO with microstructures35, etc. However, the limitations of
these methods are apparent when dealing with active materials
that are highly non-linear and are subject to large deformations.
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Another proponent for a gradient-free method is the design
flexibility and simplicity when dealing with discrete variables
(discrete materials in this context) as opposed to continuous
variables that is practically essential in gradient-based methods.
This leads inevitably to design based on voxelized structures
where each voxel or polyvoxel (i.e., spatial region formed by
joining at least two voxels face to face) corresponds to a specific
material36–38. Taking the aforementioned fabrication technologies
into account, defining clear interfaces between materials during
the design process provides a more accurate representation of the
corresponding printed parts. But, in the present multi-material
modeling, deterministic deformations or the absence of bifurca-
tions are assumed.
As far as non-intuitive design is concerned, a paradigm shift

towards data-driven approaches, i.e., attribute-value systems
incorporating experimental evaluations dependent on perfor-
mance metrics with no programmed knowledge of the problem
that is being solved, is increasingly apparent. An advantage of this
approach is the fact that it is free of human preconceptions and
biases when finding a solution39. One such algorithm that is
prioritized in combinatorial optimization problems with relatively
many variables is the evolutionary algorithm (EA)40,41. It is a
nondeterministic method that employs biomimetic techniques
revolving around natural selection and evolution to strive towards
producing increasingly better ‘individuals’, which correspond to
the evaluated solutions, after each generation. Besides fitness-
based natural selection, otherwise known as ‘the survival of the
fittest’, concepts such as mutation and crossover as well as
populations containing ‘parents’ and ‘children’ are appropriated
and adapted to each problem.
Recently Hamel et al. (2019)42 used an EA-based design strategy

to find the optimal materials distribution for different case studies,
all of which yielded good agreement with the inputted target
shape change. However, the design variables consisted purely of
the materials comprising the active composite: a smart material
and an inert material. In this paper, the objective is to expand
upon a similar strategy while also including the notion of TO
directly in the EA by incorporating void elements as part of the
design variables. This fusion of TO with the existing materials
distribution optimization strategy allows for a gradient-free
method that pushes the limit on the concept of placing the right
material at the right place. A computational framework that
combines EA with a finite element method (FEM) on a
conventional software allows the user to choose from several
types of smart materials to launch a case study that yields an
optimal solution corresponding to a materials distribution
containing three ‘materials’, smart, inert, and void, to obtain a
target shape-change. Two cases are tested and illustrated in the
following section.

RESULTS AND DISCUSSION
Multimaterial active composite
With the proposed computational design framework, we consider
and study an active composite in the form of a simple cantilever
beam subjected to temperature changes in order to induce a
shape change. First, the user-modelized beam is partitioned to
acquire a voxelized structure that is then affected by a certain
material distribution. This generated distribution consists of a
smart material, that is selected from the database and modified by
the user, an inert material, and void elements. Void elements are
thus the novelty that is introduced in this paper and corresponds
to the deletion of voxels within the structure to eventually achieve
a solution that contains the correct placement of smart and inert
materials to achieve the target shape with added benefits.
Including void elements gives the advantage of reducing the

quantity of both materials by limiting them to regions in the

structure where it is essential and to achieve more exaggerated
deformations induced from lesser active material by increasing
the compliance of the structure where it is required. Seeming that
a common problem among active composites and soft actuators
are the fact that the passive material used is usually compliant to
maximize the deformation induced by the active material, which
in turn reduces the general stiffness of the entire structure, adding
void elements allows us to localize this compliance while being
able to use stiffer passive materials which may lead to a stiffer
structure in general.
The computational design framework is driven by an EA that is

independent from the FEA simulations launched. Such strategy
grants us better flexibility and control over the program. The
modeling of the structure to be studied depends on the initial user
inputs, which includes the dimensions and the voxel size
parameter. As we are dealing with perfectly cubic voxels, the
modus operandi consists of first determining the division number
of the smallest dimension between the length and the width, after
which the entire structure is partitioned according to the size of
this voxel. For example, following Fig. 1a cantilever beam of
X × Y × Z is used where the width Y is smaller than the length X.
The width is thus divided by two (division number), which gives a
voxel size of (Y/2) × (Y/2). The number of partitions following the X
and Y directions (NX and NY) are applied to the structure while
assuring that the length X is divisible by the voxel size without
remainder (else the voxels at Xmax will be rectangular).
The three ‘materials’ can hence be assigned randomly to each

voxel, a digital encoding of which will serve as one individual
genome in the EA. The digital representation is obtained by
designating the materials with numbers; 0 for void, 1 for active
material, and 2 for passive material, which can then be expressed
as a two-dimensional (2D) or one-dimensional (1D) array
depending on function and facility of use, as shown in Fig. 1.
Other variables required are the material models selected and the
corresponding values as well as the EA parameters, which will be
detailed in the next sections.

Evolutionary algorithm
An EA is a nondeterministic gradient-free optimization method. In
a typical EA, during the initialization stage, an initial population
containing randomly generated solutions or individuals are
created within the limitations of preliminary constraints. Secondly,
an evaluation stage is affected, where each individual is assessed
and assigned a score, also known as fitness, based on a fitness
function. The next step is the selection, where a certain number of
individuals are selected from the previous population, or the
parent population, based on several criteria following different
strategies. Crossovers, which emulate the sexual reproduction
between individuals of a species in nature, and mutations, which
characterize the small changes which occur in the deoxyribonu-
cleic acid (DNA) of a living creature are applied to a select number
of individuals to introduce randomness into the next population,

Fig. 1 Genome encoding in the EA. a 2D array of materials
distribution and (b) its corresponding flattened 1D list as per usage
(seen as a concatenation of each line from left to right following the
X direction and from the bottom to the top following the Y
direction).

D. Athinarayanarao et al.

2

npj Computational Materials (2023)     1 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



called the children population. Concepts such as elitism, where
some of the best individuals from the parents’ population are
directly added into the children population without any modifica-
tion, may be integrated in the program. This child population is
then evaluated, initiating the next generation. The algorithm will
run until the maximum number of generations is attained or the
stop criteria is triggered. The latter occurs when the fitness of a
particular solution is below the threshold set in the beginning and
this solution is considered to be the best.
However, applying this concept to a problem where the

evaluation process requires the model to be ‘outsourced’ to a
separate computational procedure or software as well as the fact
that the problem itself is largely dependent on real-world
mechanical limitations and contains specific attributes, such as
material models and simulation steps, adds to the restrictions that
need to be considered.

Population. In the present case, the first population is generated
based on the user inputs for the EA parameters while respecting
the design/non-design space. The population size (Pop), number
of generations (Gen), active material fraction (Pa) and void fraction
(Pv) are first defined. The two material fractions that are
introduced act as additional constraints found in typical optimiza-
tion problems, which allow us to control the amount of either
material. For instance, here if Pv is too high, a default value is
applied to ensure that the generated distribution follows the
design/non-design space constraint. The limitation applied to the
void elements are as such:

Void polycubes, which describe groups of adjacent void voxels,
are not allowed to avoid an abrupt change in local stiffness
within the structure.
Diagonal void voxels are also not allowed as the contact
between the material voxels are linear and thus not clearly
defined for the FEA.
The nondesign space is the region comprised of the column of
voxels at Xmin of the cantilever beam where the boundary
conditions are applied. Void voxels are not applied here to
maintain the same boundary conditions for all simulations.

A verification is hence required after the generation of the first
population as well as after crossovers and mutations to ensure
that the void elements generated fulfil the above criteria and to
avoid a structure such as the one illustrated in Fig. 2.

Evaluation. Once an entire population is generated, the first
individual is evaluated. Due to the existence of void elements
within the structure, every evaluation requires the structure to be
recreated and repartitioned before the new distribution can be
applied. This is done automatically, and the process is generally
very fast and computationally negligible relative to the
simulation time.
The FE simulation and analysis is done with ABAQUS software

(Version 2022, Dassault Systèmes Simulia Corp., Johnston, RI, USA)
and the settings and steps depend on the chosen active material.
This will be discussed in depth in the following section. Once the

simulation is complete, the displacement of each node at the
vertices on the top surface of every voxel is calculated relative to
their initial position at peak deformation. This data is extracted
and compared to the target deformation after, which a fitness can
be calculated for the simulated individual based on the fitness
function. Subsequently, after a score is assigned to every
individual in the population the next step is begun.
A mean-squared-errors (MSE) approach is adopted for the

fitness function where the general from can be defined as the
follows (Eq. 1), assuming that the quantitative effects of energy
stimulation is the same for each active voxel:

f ¼ 1
N

XN

i¼1

xi � x̂ið Þ þ ðyi � ŷiÞ½ � (1)

where N is the number of sample points, (xi, yi) are the
displacements of the sample points (nodes) during deformation
and (x̂i; ŷi) are the target displacement of the sample points during
deformation. A minimization problem thus entails the reduction of
the error between the target displacements and the calculated
displacements. Concretely, each genome is scored according to
how similar the induced deformation is relative to the target
shape change and thus a smaller fitness is better.
There are two ways to define the target shape in the program.

The first one serves the purpose of testing the performance of the
program whereby the user can choose to input the expected
target material distribution to then calculate the target deforma-
tion from which the target coordinates are extracted. This gives us
the ability to compare the initial material distribution and its
generated counterpart in terms of other constraints, such as the
active material volume fraction. The second is a more traditional
approach where the target deformation is obtained from a
mathematical expression and hence exists with the additional
constraint of the non-existence of a viable solution.

Selection. The selection process is relatively simple as a specific
constraint is employed to reduce unnecessary simulations. The
concept of elitism is not implemented as it is crucial for each
population to be made up of completely new individuals to avoid
the re-simulation of the same material distributions, considering
that a major segment of the computational time is induced from
the actual simulation. Hence, two different selection methods can
be employed. The first and simpler method is the selection by
rank whereby the population is ordered according to ascending
fitness values (the smaller the better as it concerns a minimization
problem) and halved. The best half then moves towards the
crossover stage. The second method, which incorporates an
element of randomness, is the selection by tournament whereby a
certain number of individuals (4 by default) are selected randomly,
among which the best is selected. This allows the weaker
individuals to qualify and add diversity to the genetic pool.

Crossover. Crossovers describe the step where two individuals
from the previous population, the parents, produce two other
individuals, the children, through genetic splicing where the
children contain data from both the original individuals. The
material distribution is represented as a 1D array, or a list, as
shown in Fig. 1, to facilitate the process.
To avoid a repetition of solutions, a parent pool is first

established where two individuals are chosen among the selected
individuals to form compatible couples until the number of
couples are equal to the number of selected individuals, which is
half the size of the population. Individuals can be represented
with their indices within the selected half of the population, which
also refers to their ranking (individual 1 is better than individual 2
and so on). For example, the same description can be applied to
the couples formed whereby a couple comprised of individuals 5
and 7 is denoted as [5:7], where the first parent is individual 5 and

Fig. 2 All possible void element placement restrictions. The black
voxels denote non-design regions where the boundary conditions
are applied and then cannot be hollowed out. The blue voxels are
material voxels (whether smart or inert materials).
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the second, individual 7. Several conditions are applied here to
ensure maximum diversity:

An individual is not allowed to form a couple with itself [1:1], as
this evidently produces two children that is the same as the
parent.

If a couple already exists [2:7], it cannot be created again,
irrespective of the position [2:7] or [7:2].

Thus, once the parent pool is created, one of the two methods,
presented below, is employed to affect a crossover:

Single point crossover - where a random point is selected within
the solution as the splicing point, as shown by the grey voxel in
Fig. 3. The position of the point is limited to the middle third of
the structure to maximize the difference between parents and
children lest the point falls on the extremity of list which would
cause minimal or no change.
Random crossover - Every voxel in the first child has a 50%
chance of inheriting the value from parent 1 or parent 2. For
example, if the first child obtains the value of the first voxel
from parent 2, the second child automatically obtains the value
from parent 1. This process is run for every voxel in the
structure to obtain the new materials distributions.

As with the selection process, it is crucial to verify the positions
of the void voxels in the children population. If there is a group of
void elements that does not respect the set criteria, one is
selected randomly and converted into an inert material (0→2). The
children population is thus formed.

Mutation. The next stage is the mutation process, which occurs
independent of the crossover process. In other words, an
individual created by crossover can still be affected with a
mutation. Mutations consist of minimal, local changes in the
genome to inject diversity in the population. However, mutations
are a special case where, to properly replicate the process that
happens in nature, only the changes that produce better solutions
with better fitness ‘survive’. Consequently, this requires an
intermediate evaluation stage to recalculate the score of an
individual after a mutation is applied. Since this is computationally
expensive, the probability of a mutation happening is kept low.
One of three mutation strategies can be employed as follows:

Apply active material: a randomly chosen voxel that is not made
of an active material (0 or 2) is converted into an active material
(1) (see Fig. 4a).
Apply void: similarly, a randomly chosen voxel that is not a void
element (1 or 2) is converted into one void (0) (see Fig. 4b).
Shift: a randomly chosen voxel is extracted and plugged into
another randomly chosen point within the genome, the rest of
the sequence is thus shifted one place to accommodate this
(see Fig. 4c).

For the second and third operations, the position of void

Fig. 3 Random crossover. Every voxel has a 50–50 chance of inheriting the properties from either parent, and single point crossover where
two children are produced from two parents with genome splicing at one point (represented here by the grey voxel).

Fig. 4 The mutations are applied to the genome created from
random crossover in Fig. 3. (a) two active material voxels replace a
passive material and a void element, (b) two void elements replace
an active and a passive material voxel, (c) a sequence shifting is
applied and upon encountering a restriction, a different shift point
is chosen.
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elements needs to be checked again to ensure that the void
placement criterion is respected. Thus, each generated distribu-
tion will be verified and regenerated until a plausible mutation is
created. The created mutation and its initial individual are both
evaluated and compared to each other to ensure that the
mutation yields better results. If this is not the case, a new
mutation is generated and evaluated until a suitable mutation is
achieved or the maximum number of mutation evaluations is
reached, in which case the original unmutated individual is
maintained.
The entire design process is illustrated in Fig. 5 where the user

can input the parameters for the part creation, such as the
dimensions and the materials used, and the target displacement,
either by plugging in a target material distribution that is then
evaluated to obtain the target displacements or by directly
calculating the target displacements via mathematical equations.

Material models
It is crucial to use material models that sufficiently represent their
real-world counterparts based on function without overloading
the computational cost. A simple linear elastic model is used to
characterize the inert material with the following mechanical
properties: Young’s modulus E= 2.1 MPa and Poisson’s ratio
ν= 0.3. As for the smart material, two choices are available: a
liquid crystal elastomer and a hydrogel, both are sensitive to
temperature.

Liquid Crystal Elastomer (LCE). This active material is modelled as
an incompressible thermoelastic solid with temperature-
dependent thermal expansion behavior. An LCE part shrinks
along its nematic direction, which refers to its printing (extrusion)
direction, and expands following the other principal directions. In
general, this behavior is achieved via direct ink writing where the
mesogen alignment is controlled by both the ink extrusion and
the nozzle path13. The contraction following the nematic direction
is simulated using a negative coefficient of thermal expansion

(CTE) while an anisotropic, or more specifically, a transversely
isotropic expansion (non-uniform) is considered. The contractile
thermal strain following this direction is thus characterized as eT
and the strain following the directions perpendicular to the
filament is characterized as �eT

2 . An equilibrium contraction is
assumed such that the CTE values depend purely on the current
temperature of the structure T and the reference temperature of
the material Tref, where the thermal strain is null. This material
constitutes the active material used in all the examples and case
studies presented in this paper and represented in red voxels. For
FEM simulations, each voxel was meshed with C3D8R elements in
the commercial software ABAQUS. A linear elastic material is
considered instead of a hyperelastic material as the latter is limited
solely to isotropic thermal expansions in ABAQUS.

Hydrogel. A simplistic version of a temperature-sensitive hydro-
gel42,43 is modelled with an incompressible neo-Hookean material
model such that the strain energy potential is defined as below:

U ¼ C10ðI1 � 3Þ þ 1
D1

ðJel � 1Þ2; (2)

where U is the strain energy per unit of reference volume, C10 and
D1 are temperature-dependent material parameters, I1 is the first
deviatoric strain invariant defined as:

I1 ¼ λ
2
1 þ λ

2
2 þ λ

2
3

(3)

where the deviatoric stretches λi is expressed as follows:

λi ¼ J�
1
3λi (4)

J is the total volume ratio, Jel is the elastic volume ratio, and λi
are the principal stretches. The elastic volume ratio Jel relates the
total volume ratio J and the thermal volume ratio Jth, as follows:

Jel ¼ J
Jth

Fig. 5 Schematic flowchart of the full design process drivenby an EA. By considering a voxel-based representation of a design space, the
computational design process starts from a target shape (or displacement) and uses a FEA-based EA. It combines the advantages of
optimizing both the materials distribution and material layout via TO to solve the inverse design problem of finding an optimal design to
achieve a target shape by integrating void voxels.
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The thermal volume ratio Jth can be given by:

Jth ¼ 1þ εth
� �3 (5)

where εth is the linear thermal expansion strain that is obtained
from the temperature and the isotropic CTE.
An incompressible model would give us the following

simplification:

U ¼ C10ðI1 � 3Þ (6)

For FEM simulations in the ABAQUS software, hybrid C3D8RH
elements were used.

Target shape from known target distribution
The first case study aims to gauge the efficacy of the framework
by exploiting the option of setting the target shape via a known
target distribution in a nonlinear inverse problem. A classic
example of a cantilever beam that deforms into a parabola shape
when subjected to a force exerted on its unrestrained extremity is
emulated as it involves a known and intuitive material distribution
in the context of design for 4D printing. A beam with dimensions
(240mm´ 30mm ´ 5mm) is voxelized as illustrated in Fig. 6 and
affected with the shown material distribution. It is interesting to
note that, by limiting the target distribution to voxels consisting of
smart and inert materials, a more controlled target shape is
achieved while simultaneously examining the pertinence of
adding void voxels. This, while serving as a benchmark test, can
also be equated to a classic TO problem by imposing the use of
void voxels and effectively reducing the amount of material used

in the final design solution. The impact of adding void voxels on
the active material fraction can also be observed.
The beam is fixed on the left end and an external temperature

range of 40°C to 80°C is applied to achieve a large bending, with a
reference temperature of -20°C. A deflection or total displacement
of 76mm following the y direction is observed, indicated in Fig. 7,
which constitutes 31% of the total length of the structure,
effectively placing this example in the realm of a nonlinear
problem. The parameters used for the EA are shown in Table 1.
The result for the entire process is presented in Fig. 8. The

convergence analysis, as illustrated in Fig. 8c, is represented by the
fitness statistics, consisting of the minimum fitness corresponding
to the best individual of the population and the average fitness of
the entire population, which describes the overall performance of
the population.
As shown in Table 1, a population size of 10 individuals is

evolved for 25 generations, towards the end of which the fitness
converged to a MSE of 0.5, which corresponds to a geometric
agreement with approximately 7% error. The final deformed
shape as well as the optimal material distribution is presented in
Fig. 8a and b. A total of 250 FEM simulations were run for
approximately 12 hours to obtain the results presented. The
simulations were launched on a central processing unit (CPU) only
setting (Intel(R) Xeon(R) CPU E5–1607 v4 @ 3.10 GHz) and without
parallelization, which explains the length of the total duration of
the process. Admittedly, a bigger population size and number of
generations will yield better results and the possibility of utilizing
a more powerful computer greatly reduces the computational cost
of the entire process.
As shown in Table 1, the first population of generated

individuals were constrained to a certain active material fraction
and void fraction. These values are then allowed to evolve
throughout the process via crossover and mutation. As a result,
the optimal solution found consists of lesser material due to the
incorporated void voxels and more specifically lesser active
material (0.33–24 voxels in the target distribution vs 0.25–18
voxels in the optimal solution).

Target shape based on a Bezier curve
A standard employment of mathematical equations to find the
target displacement values that is then plugged into the fitness
function includes polynomial equations and multiperiodic

Fig. 6 Known target distribution to attain a parabola target shape after deformation. In this voxel-based model, active material and
passive material are distributed through red voxels and blue voxels, respectively.

Table 1. EA parameters used in both case studies.

EA Parameters Case Study 1 Case Study 2

Population Size, Pop 10 10

Genome Size 72 144

Number of generations, Gen 25 30

Active Material Fraction, Pa % 0.3 0.3

Void Fraction, Pv % 0.05 0.05

Fig. 7 The target displacement following the y-direction inputted for the first case study. The beam—fixed on the left side—exhibits a
large deflection (76mm) once thermally stimulated (from 40 °C to 80 °C).
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sinusoidal equations. However, to maximize the capacity of the
framework to solve for 2D shape changes, it is essential to
introduce multivariable displacement equations. Since it is
complicated to specify the target displacements in both
directions, especially in the context of large deformations, a novel
approach is adopted. A user-friendly method to design the target
shape is via Bezier curves. Bezier curves are parametric curves that
allows the user to define a smooth, continuous curve using
discrete control points. Although these curves can be represented
via specific functions, a more hands-on strategy is opted for, via a
module designed on the graphical algorithm editor Grasshopper®
(GH), an add-on of the commercial computer-aided design (CAD)
software Rhinoceros© (RH).
As shown in Fig. 9, the user inputs the length of the structure as

well as the coordinates of the control points. A Bezier curve is
formed and then scaled down until the final length of the
deformed structure is equivalent to the length of the initial,
undeformed structure. Both the curves are then partitioned into
equal segments with points that act as sample points. A vector
cluster then describes the displacement of each of these points in
the x and y directions, which serve as the target displacement
values for the fitness function (Fig. 9). This one-dimensional
representation of the deformed structure is replicated following
the y-direction and then slightly scaled down following the x
direction to achieve a two-dimensional equivalent of the target
displacement values as shown in Fig. 9. Some of the simplifica-
tions employed to utilize this method include the hypothesis that
the structure remains the same length after deformation and that
the sample points remain equidistant from one another. As such,
the second case study uses this method to set the target
displacement. A beam with dimensions (240mm ´ 15mm ´ 2mm)
was used with a temperature-sensitive hydrogel (with a CTE equal
to 0.001) as the active material. The beam is fixed on the left end
and a temperature range of 40°C to 70°C is applied. The maximum
target displacement in this example is equal to 17.5 mm.
The results for the second case study are presented in Fig. 10.

The convergence analysis, as illustrated in Fig. 10c shows that the
overall fitness of the population throughout the entire process
remained relatively low compared to the first study due to the
difference in the maximum displacement. The second case study
has a much smaller maximum displacement to attain as the focus
is towards achieving the more complex form. Thus, the MSE of
each of the individuals in the second case logically cannot be
higher than the first case. A population size of 10 individuals is
evolved for 30 generations, towards the end of which the fitness
converged to a MSE of 0.25. Similar to the first case, the maximum

error was found near the region that is subjected to the maximum
displacement and away from the fixed extremity. A total of 300
FEM simulations were thus ran for approximately 7 hours with the
same computer configuration. The EA input parameters remained
the same, however, due to the complexity of the form, a much
higher active material fraction was required to achieve the shape
change.
The proposed FEA-EA approach incorporates the notion of TO

via the incorporation of void elements in a standard EA process.
The usage of an EA as opposed to other gradient-based methods
allow us to simulate large-deformation, nonlinear problems with a
voxel-based geometry which facilitates not only the definition of
the geometry with discrete materials but also the inclusion of
equally sized void elements. The inherent separation between the
EA and the FEM simulations allows us to apply this method with
vastly different material models, two of which are described and
used in the problems above. However, one of the downsides of
the EA method owes itself to its iterative strategy. In other words,
the speed and accuracy of the process is largely dependent on the
individuals generated in the beginning. A population of sub-
standard individuals will also reduce the chances of finding the
best solution possible and lead to a situation akin to a local
minimum.
The case studies presented aim to showcase the two different

methods of defining the target shape that is available in the
framework. The first emulates a classic TO problem by introducing
a fixed ratio of void voxels and active material in the beginning.
The second case demonstrates an alternative method in design
for 4D printing using Bezier curves whereby the target shape is
defined manually via control points. This addition has decom-
plexified the usage of strictly mathematical representations of
geometry and allows a layman to design. Moreover, in this specific
context, using Bezier curves were necessary to properly identify
the displacement of the structure in 2D after deformation.
The results shown in Figs. 8 and 10 demonstrate the

effectiveness of the framework in finding an optimal solution for
a given problem with decent agreement considering the number
of simulations run to achieve the results. As mentioned above,
better results can be expected with more computational power
and the parallelization of the process in terms of simulations.
Furthermore, with a lower computational cost, more complex
problems can be incorporated with increasingly accurate con-
stitutive material models.
In this paper, we present a framework based on the coupling

of EA and FEM analysis in the design of active composite
structures for 4D printing. The inclusion of void elements in the

Fig. 8 The results for the first case study. (a) the displacement of the optimal solution, (b) the optimal materials distribution generated by
the EA, and (c) convergence statistics for the evolutionary process.
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volumetric materials distribution of the generated solutions has
allowed for an amalgamation of shape-matching algorithms
with TO. We have presented two case studies with distinct
methods to set the target shape as well as different smart
material models that have yielded results with good agreement
to the target shape. This approach is a start towards finding non-
intuitive design solutions in more complex designs while
minimizing the quantity of material required. Future advances
for this approach include adapting the framework for three-
dimensional (3D) design and solving more complex problems
using machine learning techniques.

METHOD
The proposed computational framework has been implemented
in a program written in Python 2.7 and adapted to be launched via
ABAQUS CAE’s python scripting within the ABAQUS software and
the settings and steps depend on the chosen active material. The
program is structured into two principal classes, VoxAbaqus, that
contains the methods used to run commands directly in ABAQUS,
such as assigning material distributions to a structure or creating a
material, and EvolutionaryAlgorithm which contains the methods
that govern the EA processes, such as crossover and mutation. The

latter class pilots and calls methods from the former class. The
slightly outdated version of Python limits the number of libraries
that can be imported and utilized.
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