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Abstract 29 
Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the 30 
increase in anthropogenic activities, MP-accumulation is increasing enormously in aquatic, marine and 31 
terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification 32 
probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental 33 
biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of 34 
contaminants leaching into the water, soil and ultimately to human beings. Over the years, several 35 
microorganisms have been characterized with the potential to degrade different plastic polymers through 36 
enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and 37 
access their functional genetics for the exploration and characterization plastic degrading microbial 38 
consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a 39 
powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics 40 
and sequencing tools allows rapid screening, mining and prediction of genes that are capable of polymer 41 
degradation. This review comprehensively summarizes the growing threat of microplastics around the 42 
world and highlights the role of MGs and computational biology in building effective response strategies 43 
for MP-remediation. 44 
 45 
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1. Introduction 51 
The use of plastic has escalated tremendously over the last fifty years due to industrialization. 52 

Plastic rise from 1.5 million metric tons (MMTs) in 1950 to 367 MMTs in 2020 is a testament to 53 
the global plastic surge (Peng et al. 2021). Even though there has been a decrease of 0.3% in plastic 54 
production, the shoot up in the usage of masks, gloves, sanitizer bottles, and medical equipment 55 
during the ongoing COVID-19 pandemic has contributed to unforeseen environmental crisis 56 
(Patrício Silva et al. 2021). MPs, the plastic fragments with less than 5 millimeters in size, are 57 

insoluble, biodegradable, non-biodegradable waste particles having a half-life of about 100-1000 58 
years. Based on the occurrence, MPs are classified into primary and secondary types. Primary MPs 59 
exist in nature in standard MP-size such as microbeads and plastic pellets whereas, secondary MPs 60 
arise from the breakdown of larger plastic materials like fishing nets, soda bottles, microwave 61 
containers, and other plastic products. Chemically MPs are synthetic or semi-synthetic polymers 62 

composed of carbon, nitrogen, oxygen, hydrogen, chloride, silicon, etc. Depending on the nature 63 

of side chains, polymer backbone, physical properties, tensile strength, density, and thermal 64 
resistant plastics are classified into seven types each numbered according to their recycling codes 65 

as 1. Polyethylene terephthalate/PET (Beverage bottles, polyester clothing, rope), 2, High-density 66 

polyethylene/HDPE (Detergent bottles, toys, buckets, rigid pipes), 3, Polyvinyl chloride/PVC 67 
(Credit cards, medical tubing, rain gutters), 4, Low-density polyethylene/LDPE (Grocery bags, 68 
beverage cups, bread bags), 5, Polypropylene/PP ( Straws, packaging tape, disposable diapers), 6, 69 

Polystyrene/Styrofoam/PS (Insulations, takeout food containers, cutlery), and 7, Others/O 70 
(Bisphenol A, polyamimide, polycarbonate) (Verla et al. 2019; Henderson and Green 2020; 71 

Veerasingam et al. 2020; Frias et al. 2021). 72 
The top countries in the generation plastic waste per year in million tons in 2020 include the United 73 
States (58.02) (Law et al. 2020), India (55.06) (Shams et al. 2021), the United Kingdom (39.7) 74 

(Burgess et al. 2021), South Korea (38.1) (Shin et al. 2020), Germany (36) (Nelles et al. 2016), 75 
Thailand (32.4) (Parashar and Hait 2021), Malaysia (29.8) (Fauziah et al. 2021), Argentina (29.7) 76 

(Ronda et al. 2021), Russia (28) (Filiciotto and Rothenberg 2021), Italy (24.5) (Geyer et al. 2017), 77 
and Brazil (23.2) (Almeida et al. 2021). Most ecosystems are under threat of plastic pollution 78 

because of the properties like non-biodegradability, limited recovery, toxicity, higher ingestion, 79 
accumulation, and incorporation associated with MPs (Campanale et al. 2020; Issac and 80 

Kandasubramanian 2021). Since MP particles bear resemblance with the food of marine biota, 81 
fishes, mammals, and plankton easily engulf it, accumulate in the body leading to blockage of the 82 
digestive system (Walkinshaw et al. 2020). Wang et al. (2019a) studied the effect of ingested PS-83 

MPs on Artemia parthenogenetica (microcrustacean) and reported the occurrence of several 84 
abnormal epithelial cells in the digestive tract. Exposure of zooplankton 85 
crustacean Daphnia magna to PET textile microfibers resulted in increased mortality of daphnids 86 

(Jemec et al. 2016). MPs not only affect the ecosystem directly, but they also act as carriers for 87 
other environmental contaminants like heavy metals such as zinc and copper (Brennecke et al. 88 

2016), polychlorinated biphenyl (Gerdes et al. 2019), polyaromatic hydrocarbons (Sørensen et al. 89 
2020), and others (Ye et al. 2020a). Humans may suffer chronic effects by ingestion, inhalation 90 
and dermal contact of MPs leading to cell damage, inflammation and hypersensitive reactions 91 
(Visalli et al. 2021; Domenech and Marcos 2021; Blackburn and Green 2021). A 2016-17 UN 92 
report documented about 800 animal species contaminated with plastic via entanglement and 93 

ingestion, which is almost 70% greater than that of 1977 UN report. This makes humans prone to 94 
harmful effects of plastic in the upcoming decades (Smith et al. 2018). 95 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/magnon
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 Hwang et al (2019) assessed the PP toxicity in human-derived cells and found that PP-MPs induce 96 
pro-inflammatory cytokines in a size-dependent manner. Likewise, Wu et al (2019) studied the 97 

size-dependent effects of PS-MPs on cytotoxicity and efflux pump inhibition in human colon 98 
adenocarcinoma Caco-2 cells. They reported higher mitochondrial depolarization through 5 μm 99 
PS-MPs while 0.1 μm PS-MPs induced higher inhibition of adenosine triphosphate-binding 100 
cassette transporter. The traditional disposal methods like recycling, incineration, and landfill have 101 
been reported to show negative effects by generating secondary pollutants that cause disastrous 102 

effects on the environment (Rhodes 2018). Therefore, microbial degradation has emerged as a 103 
method of choice for expunging plastic and other pollutants. Several studies have been carried out 104 
in studying the biodegradation of MPs such as, PE (Restrepo-Flórez et al. 2014), PS (Kim et al. 105 
2021), PP (Jeon et al. 2021), and PET (Farzi et al. 2019). Kim et al (2020) reported that the 106 
Pseudomonas aeruginosa DSM 50071 strain, isolated from the gut of Zophobas atratus larvae 107 

mediates the degradation of PS-MPs through enzymatic action. Zalerion maritimum (Paço et al. 108 

2017), Aspergillus versicolor (Akhtar and Mannan 2020), Vibrio parahemolyticus (Kesy et al. 109 
2020), and Psychrobacter sp. (Chattopadhyay 2022) have been also reported to exhibit the MP-110 

remediation potential. A challenge in using microbial degradation on large scale is the slow rate 111 

of plastic degradation. Moreover, most of the reports published on the biodegradation of MPs have 112 
been performed in the laboratory set-ups. 113 
Many microbes cannot be cultured in the laboratory conditions hence culture-based approaches 114 

have proved to be insufficient for the exploration and characterization of microorganisms. Besides, 115 
plastic biodegradation is also an outcome of the microbial consortia acting synergistically, which 116 

is difficult to study through culture-based approach. Metagenomics offers a gateway to overcome 117 
this problem (Handelsman 2004; Wani et al. 2022a). MGs in association with other meta-omics 118 
approaches is proving to be standout approach for the identification of novel uncultivable 119 

microorganisms capable of MP-remediation (Bharagava et al. 2018; Wani et al. 2022b). This 120 
review offers a comprehensive outlook of the MP-threat around the globe besides highlighting the 121 

fundamental MP-remediation studies mediated by microorganisms isolated through culture-122 
dependent and culture-independent approaches. 123 

 124 
2. Microplastics (MPs): Generation and Escalation 125 

Millions of tons of plastics are released into the environment every year. As a result, the quantity, 126 
and distribution of MPs have escalated in the atmosphere, aquatic, and terrestrial ecosystems 127 
(Figure 1). It is estimated that by 2060 plastic accumulation can reach up to 155-265 million tons, 128 

and it is believed that about 13.2 %  of this weight could be MPs (Eriksen et al. 2014; Geyer et al. 129 
2017; Bergmann et al. 2019). The presence of MPs in different environments was revealed during 130 
the early 1970s (Buchanan 1971; Carpenter and Smith 1972). However, in recent times scientists 131 

have started to investigate MPs spread, accumulation and ecological implications (Huang et al. 132 
2021; Chen et al. 2021a; Vaid et al. 2021; Kallenbach et al. 2022). MP-pollution in terrestrial and 133 

freshwater ecosystems has been less extensively studied in comparison to marine ecosystems 134 
(Chen et al. 2021a). Afrin et al. (2020) investigated MP presence in landfill sites of Dhaka, 135 
Bangladesh and reported the presence of LDPE, HDPE and cellulose acetate. Liu et al. (2018) also 136 
reported PP (50.51 %) and PE (43.43 %) in the suburbs of Shanghai, China. 10 % of the plastic 137 
ends up in the ocean and about 7-8 million plastic pieces escape into the oceans from land 138 

terrestrial sources. At present most of the world’s seas and oceans are MP-contaminated. 139 
Mediterranean Sea, with a 1,500 m average depth, is recognized as a plastic contamination hotspot 140 
because its MP-concentration is 4-fold greater than the North Pacific Ocean. This is attributed to 141 



4 
 

the distinguishing semi-enclosed morphology of the Mediterranean Sea, and surrounding plastic 142 
waste generating countries  (Sharma et al. 2021). Table 1 gives insight about the growing MP 143 

contamination in different parts of the world. Lacerda et al. (2019) evaluated and characterized 144 
plastics in sea surface waters of the Antarctic Peninsula and did not find any statistical difference 145 
between the amount of MPs (54 %) and mesoplastics (46 %). They found smaller fragments 146 
composed of polyamide, PET, and Polyurethane (PU). 147 
 148 

Table 1: Amount and type of microplastic contamination reported in different marine and 149 
terrestrial sites of the world 150 

Country/Region Sampling 

site 

Sample 

type 

Microplastic 

(MP) 

types/shapes 

MP-Amount References 

Atlantic Ocean South-

North 

transect 

Surface PE and PP 1723 ± 1793 

particles m3 and 

822 ± 1250 

particles/ m3 

Pabortsava 

and Lampitt 

(2020) 

Australia Gardens Soil PE and PP NA Sobhani et 

al. (2021) 

      

 

 

       Brazil 

Guanabara 

bay 

sublittoral 

sites 

Sediment Polyester 160-1000 

items/kg 

Alves and 

Figueiredo 

(2019) 

Patos 

Lagoon 

(Laranjal 

beach) 

Water LDPE, HDPE, 

and PFTE 

0.00021g/L Silva and de 

Sousa (2021) 

 

 

 

 

 

China 

Laizhou 

Bay 

Water 

and 

Sediment 

PET, 

Cellophane 

(CP), PE and 

PP 

1.7 ± 1.5 

particles/m3 and 

461.6 ± 167.0 

particles/kg 

Teng et al. 

(2020) 

Maowei 

Sea 

Water Polyester and 

Rayon 

1.2-10.1 

particles/L 

Zhu et al. 

(2019) 

North 

Yellow 

Sea 

Surface 

water and 

Sediment 

PE and PP 545±282 

items/m3 and 

37.1±42.7 

items/kg 

Zhu et al. 

(2018) 

Jiaozhou 

Bay 

Water 

and 

Sediment 

PET, PP, and 

PE 

20-120 items/m3 

and 7-25 

items/kg 

Zheng et al. 

(2019) 

French Polynesia Tropical 

lagoons 

Surface 

water and 

Pearl 

oyster 

PE, and PP 0.2-8.4 items/m3 

and 2.1-125.0 

items/g 

Gardon et al. 

(2021) 

 

 

Coastal 

stretch of 

Water, 

sediment, 

PP, PE, 

polyesters, and 

60-820 items/m3, 

60-1620 

Sunitha et al. 

(2021) 
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India 

the Bay of 

Bengal 

and dry 

sand 

fluoro-

polymers 

items/kg, and 20-

1540 items/kg 

River 

shoreline 

Brahmapu

tra river 

Sediment PP, PE, and 

PVC 

20-240 MP/Kg 

(particles larger 

than 150μm) and 

531–3485 MP/kg 

(MP particles 

size range 20–

150 μm) 

Tsering et al. 

(2021) 

Calicut 

beach, 

Kerela 

Sediment PE, PE+PP, 

PP, PS, PCU, 

PET, and PVC 

80.56 items/Kg Kumar and 

Varghese 

(2021) 

 

 

       Indonesia 

Jakarta 

bay 

(Sunda 

Kelapa 

Port) 

Sediment PP, PE, PS, 

and PA 

45066.67±2444.0

4 particles/kg 

Azizi et al. 

(2021) 

Banten 

Bay 

Sediment Foam and PS 267±98 

particles/kg  

Falahudin et 

al. (2020) 

Malaysia Klang 

River, 

estuary 

Surface 

water 

PE, PA, fibres, 

and pellets 

2.47 particles/L Zaki et al. 

(2021) 

Mediterranean 

Sea 

Calabrian 

coasts 

Surface 

water 

PE 0.13 ± 0.19 

particles/ m2 

Marrone et 

al. (2021) 

Nepal  Mount 

Everest 

Stream 

water and 

Snow 

Polyester fibers 1 item/L and 30 

items/L 

Napper et al. 

(2020) 

 

 

Pacific Ocean 

Western 

part 

Sediment PP, PE, and 

PET 

240 items per kg 

dry weight 

Zhang et al. 

(2020) 

Mid North  Surface 

water 

PP and 

irregular 

fragments 

0.51 ± 0.36 

items/m3 

Pan et al. 

(2022) 

Portugal Beaches 

of 

Portugues

e coast 

Sediment Resin pellets, 

and PS 

358-1679 items 

m-2, and 63-169 

items m-2 

Antunes et 

al. (2018) 

South America Two 

Tributarie

s of 

Cuiaba 

River 

Water Microfibers 9.6 ± 8.3 ×100/L Faria et al. 

(2021) 

Taiwan Taiwan 

Strait 

Sediment 

and 

surface 

seawater 

Films, 

fragment, 

fibers, and 

granules 

28-208 items/kg 

and 0.004-0.0058 

items/m3 

Wu et al. 

(2021) 
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Tropical Eastern 

Pacific and 

Galapagos 

     Coast Water 

and 

specimen

s 

     Fibers       NA Alfaro-

Núñez et al. 

(2021) 

United States Northwest 

Panhandle 

Florida 

and 

Central 

Florida 

Water 

and snails 

Microbeads, 

microfragment

s, and 

microfibers 

8.375 items/L 

and 4.26 

MPs/snail 

Kleinschmidt 

and Janosik 

(2021) 

 151 
 152 

 153 
Figure 1: Escalation of plastic waste around the world from 1950 to 2050 (Ritchie and Roser 2018; 154 
Zhang et al. 2021; Jankowska et al. 2022; Luan et al. 2022) 155 
 156 

3. Bioaccumulation and Ecotoxicological repercussions of MPs 157 

The resistance (Sharma and Chatterjee 2017), high durability (Lim 2021), high consumption (Chen 158 
et al. 2021b), and low recycling (Muncke et al. 2020) of plastic polymers contribute to the 159 
escalation of plastic in the environment. Oceans are the largest known sinks for MPs (Kvale et al. 160 

2020). The plastic debris from sewage treatment plants, transport and cosmetic industries, 161 
manufacturing, fishing, packaging, and shipping industries reaches the marine environment and is 162 
estimated to be 5-12 million metric tons per annum (Thushari and Senevirathna 2020; Vriend et 163 
al. 2021; Lim 2021; Peng et al. 2021). MP-accumulation in terrestrial and aquatic biota through 164 
absorption, ingestion, or respiration has been widely recognized (Duis and Coors 2016; Souza 165 
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Machado et al. 2018; Amobonye et al. 2021). Arenicola marina, an annelid species, has been 166 
reported to have MPs embedded in its gastrointestinal tracts (Besseling et al. 2013). Some 167 

crustaceans like Carcinus maenas have also been reported with the presence of MPs in digestive 168 
and respiratory tracts (McGoran et al. 2020). These plastic particles are mistaken for food, leading 169 
to the blockade of essential body tracts which results in the generation of incorrect signals (Smith 170 
et al. 2018; Ugwu et al. 2021). Several studies have shown that MP-accumulation or continuous 171 
exposure in aquatic organism leads to deterioration of inflammatory and oxidative intestinal 172 

balance, and permeability disruption of gut epithelial cells besides promoting the growth of 173 
pathogens on cell surfaces (Viršek et al. 2017; Limonta et al. 2019; Yang et al. 2020). Red tilapia 174 
when exposed to 0.3, 5, and 70 μm PS fragments for 14 days induced oxidative stress, 175 
neurotoxicity, and inhibition of cytochrome P450 enzyme activity (Ding et al. 2020). The 176 
accumulation of PS in Oryzias melastigmas (Ye et al. 2021) and PE in Dicentrachus labrax 177 

(Barboza et al. 2020) have been reported to cause negative effects on histology, immunity, and 178 

metabolism. Barboza et al. (2020), reported that PE and polyester in wild fish cause oxidative 179 
damage in muscle and gills besides increasing acetylcholinesterase activity in the brain. Bisphenol 180 

A and petroleum hydrocarbon aggravate immunotoxicity in blood clams and increase the toxicity 181 

of cadmium in fishes (Prüst et al. 2020). Benthic sea cucumbers, a non-selective bottom feeder, 182 
feed on the ocean floor debris and engulf a large amount of sediment (Sfriso et al. 2020). A study 183 
reported that Holothuria floridana, Thyonella gemmate, and Cucumaria frondose ingested 2-20 184 

times more filter feeders, have been reported to ingest MPs which decreases their filtration ability 185 
leading to effects like neurotoxicity and immunotoxicity (Mohsen et al. 2019; Bulleri et al. 2021). 186 

In 2019, marine biologists reported that seagrass beds in Makassar Strait, Indonesia contain MP-187 
contaminants in the form of beads, pellets, fragments, and fibres (Tahir et al. 2019). Zooplankton 188 
also ingests MP-beads which upon excretion can stick to the exoskeleton and appendages 189 

(Hasegawa and Nakaoka 2021). 190 
The bioaccumulation of MPs in humans largely remains obscure, yet the MP-consumption by 191 

crustaceans and fishes which are subsequently eaten by humans is still a matter of concern. There 192 
has been no study that evaluates the direct effect of plastic polymers on humans. A major concern 193 

in determining the negative effects of MPs on human is the lack of information on human exposure. 194 
Thus, a better understanding of the MP-ability to cross epithelial barriers, skin, and gastrointestinal 195 

tract is needed to alleviate the uncertainty in human risk assessment of MPs (Prata et al. 2020; 196 
Vethaak and Legler 2021). However, several laboratory studies involving human cells and tissues, 197 
and model organisms like rats and mice have shown negative implications of MPs. Researchers 198 

have started to investigate the presence of MPs in human tissues to extrapolate the effects of MPs 199 
that are directly human-oriented rather than in vitro. Ragusa et al, gave the first evidence of PPMP 200 
presence in the human placenta (Ragusa et al. 2021). Even though presence and implications of 201 

MP in human tissues is obscure, there is need to track and monitor MP-pollution continuously. 202 
Exposure of mice to PE showed inflammation (Li et al. 2020) and smaller pups (Park et al. 2020), 203 

and exposure to PS reduced sperm count in mice (Jin et al. 2021). In mice gut MPs increased 204 
intestinal permeability, altered gut microbiota composition and enhanced intestinal inflammation 205 
(Deng et al. 2020). One of the sub-chronic studies reported the accumulation of methacrylate 206 
polymer beads only in the gastrointestinal tract of mice (Groborz et al. 2020). Rodriguez-Seijo et 207 
al. (2017) reported the accumulation of PE-MPs in the earthworm gut causing damage to the 208 

epithelium of the gut wall. Seabirds also feed on marine debris and several studies have reported 209 
the presence of MPs in samples targeted for dietary studies, regurgitated cadavers and faeces. After 210 
engulfing, seabirds likely get rid of MPs through excretion or regurgitation (Blight and Burger 211 
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1997; Gil-Delgado et al. 2017; Hamilton et al. 2021). However, there is a risk of exposing offspring 212 
to the MPs at the time of feeding.  Kühn and van Franeker (2012), found plastic in the intestine of 213 

juveniles rather than adult birds.  214 
 215 
 Table 2 gives insight about the effect of different MPs on aquatic and terrestrial living systems of 216 
earth. Figure 2 illustrates the potential threat of MPs on the biotic components of earth. 217 

 218 

Table 2: Effect of different MPs on the biota of aquatic and terrestrial ecosystems. 219 

Microplastic 

type/shape 

Organism                   Effect Reference 

 

Aquatic Organisms 

HDPE Heliopora, 

Porites,Acropora, 

and Pocillopora 

(Hermatypic 

corals) 

Increase of coral susceptibility to 

stressors and increase in energy 

demand. 

Reichert et al. 

(2019) 

Microspheres Aiptasia sp. and 

Favites chinensis  

Disturbs anthozoan-algae symbiosis Okubo et al. (2018) 

 

 

 

 

PE 

 

Sparus aurata Intestinal distension, liquid 

accumulation, inflammation, 

epithelial desquamation. 

Varó et al. (2021) 

Pagurus 

bernhardus 

(Hermit crabs) 

Impairs shell selection and cognition 

that disrupts essential survival 

behavior 

Crump et al. (2020) 

Clarias 

gariepinus 

(Catfish) 

Reduction in swimming speed and 

increased opercular beat frequency 

Tongo and 

Erhunmwunse 

(2022) 

Polyester Amphibians 

(Host) and 

Trematodes 

(parasite) 

Reduces infection success when both 

are exposed to polyester 

contamination simultaneously. 

Buss et al. (2021) 

 

 

PP 

 

Dicentrarchus 

labrax (Sea bass) 

Upregulation of tumour necrosis 

factor- α and perturbations in gut 

microbiota 

Montero et al. 

(2022) 

Daphnia magna Acute toxicity Jemec Kokalj et al. 

(2022) 

 

 

 

PS/ 

PS-

microbeads 

Pelteobagrus 

fulvidraco 

(Yellow catfish) 

Expression Inhibition of interleukin-8 

and tumour necrosis factor-α 

Li et al. (2021) 

Mytilus coruscus 

(Mussel) 

Depletion of cellular energy stores 

like proteins, carbohydrates, and 

lipids. 

Shang et al. (2021) 

Danio rerio 

(Zebrafish)  

Inflammation, increased permeability, 

microbiota dysbiosis and mucosal 

damage  

Qiao et al. (2019) 
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Poecilia 

reticulata 

(Juvenile guppy) 

Impairs digestive performance, 

induces microbiota dysbiosis, and 

stimulates immune response 

Huang et al. (2020) 

Paracentrotus 

lividus (sea 

urchin) 

Increase in reactive oxygen and 

nitrogen species thus inducing stress 

on immune cells 

Murano et al. 

(2020) 

 

 

PVC 

 

Carassius 

auratus 

(Goldfish) 

Liver inflammation, oxidative 

damage in the brain, and 

histomorphological changes in the 

intestine  

Romano et al. 

(2020) 

Cyprinus carpio 

var. larvae 

Inhibition of weight gain and 

reduction in malondialdehyde level 

Xia et al. (2020) 

 

Terrestrial Organisms 

BPA Sprague-Dawley 

rats 

Perturbations in butanoate, alanine and 

aspartate metabolism 

Mao et al. (2021) 

 

PE 

Mice Increase in gut microbiota species and 

increase of interleukin-1α in serum 

Li et al. (2020) 

Mice Increase in globulin and albumin levels Sun et al. (2021) 

PE and PVC Drosophila 

melanogaster 

Changes in fertility and sex ratio Jimenez-Guri et al. 

(2021) 

 

 

PET 

Achatina fulica 

(Snail) 

Villi damage in gastrointestinal walls 

and elevation in malondialdehyde 

levels 

Song et al. (2019) 

Human Alteration in colonic microbial 

community 

Tamargo et al. 

(2022) 

PP, PVC, 

PET, & PE 

Cucurbita pepo Root and shoot growth impairment, 

leaf size, and chlorophyll reduction 

Colzi et al. (2022) 

 

 

PS 

 

D. melanogaster Negative effect on locomotion and 

intestinal damage 

Matthews et al. 

(2021) 

Rats Apoptosis and pyroptosis of granulosa 

cells 

Hou et al. (2021) 

Triticum 

aestivum 

(Wheat) 

Inhibition of wheat root and stem 

elongation 

Liao et al. (2019) 

 220 
 221 
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 222 
Figure 2: Impact of MPs on marine, terrestrial biota, and its potential threat to human beings 223 

 224 
 225 

4. Microplastic remediation mediated by microorganisms  226 
MPs degrade mechanically (Schyns and Shaver 2021), chemically (Zhou et al. 2021), and 227 
biologically (Arpia et al. 2021) in the environment. Degradation rates mainly depend on structure, 228 

chemical composition, temperature, humidity, and deposition environment (Soil, water, sand). 229 
Mechanical degradation of MPs occurs through particle contact with anthropogenic (littered trash, 230 

boats, vehicles, groynes) and natural items (sediment, woody debris, shells) (Strayer and Findlay 231 
2010; Qiao et al. 2019). Mechanical abrasion of MPs produces items that are similar in morphology 232 

to sediment grains. Song et al. (2017), examined the effect of UV exposure on MPs in the replicated 233 
beach environment and reported that the degradation rate varies with plastic-type. PE and PP 234 
showed low degradation possibility through mechanical abrasion, but PS was found to fragment 235 

into more pieces. The exposure of floating plastic to UV light leads to the polymer degradation 236 
and generation of chain scission products (Gewert et al. 2018). Enfrin et al. (2020), investigated 237 
weathering of MPs when exposed to stress using pumping, ultrasonic irradiation, and stirring. They 238 
reported that MPs break down into nanoplastics (NPs) under low stress thus introducing more 239 
plastic debris to the environment. The weathering process of MPs is initiated or sometimes 240 

enhanced by chemical degradation through thermal oxidation, hydrolysis, and photooxidation. 241 

Plastics upon degradation produce different hydrocarbon gases such as methane, ethane, propylene 242 
and ethylene when exposed to the solar radiation. Thus, climate-relevant trace gases are expected 243 
to increase with the accumulation of more plastic in the environment (Royer et al. 2018). 244 

Besides, chemical degradation in seawater or replicated seawater has been reported to advance at 245 
a higher rate as compared to freshwater because of the variations in pH, and biotic community 246 
(Weinstein et al. 2016; Da Costa et al. 2018). Multiple chemical processes that are involved in the 247 
chemical degradation of MPs have been extensively reported and reviewed in great detail by 248 
different authors (Min et al. 2020; Ye et al. 2020b; Miao et al. 2020; Venkataramana et al. 2021; 249 



11 
 

Zhou et al. 2021; Akhtar et al. 2022). Both natural and synthetic plastics are degraded by microbial 250 
action (Zeenat et al. 2021). Microorganisms degrade MPs using oxygen as an electron acceptor in 251 

the case of aerobic biodegradation (Yoshikawa et al. 2016). MPs are not transported directly into 252 
microorganisms because of their large size and water-insoluble nature (Cavicchioli et al. 2019). 253 
The degradation of MPs occurs through a series of events including, microbial attachment forming 254 
biofilms (Oberbeckmann and Labrenz 2020), and utilization of MPs as a carbon source (Lear et 255 
al. 2021). The microbial attachment to the MPs leads to the secretion of enzymes changing large 256 

MPs into monomers and oligomers having a low molecular weight (Lin et al. 2022). The 257 
microorganisms can change the surface properties of MPs followed by their bio-fragmentation 258 
through enzymatic action (Pathak and Navneet 2017). Hou and Majumder (2021), identified 259 
cytochrome 4500s, monooxygenases, and hydrolases from microbial sources with PS-degrading 260 
potential. Several other microorganisms have been reported to have MP-degradation potential with 261 

varying biodegradation efficiency. Pseudomonas fluorescens, Bacillus sp. and Paenibacillus sp. 262 

degrade PE (Kathiresan 2003; Park and Kim 2019), B. vallismortis, Aspergillus oryzae, B. cereus, 263 
Trichoderma viride, A. nomius and B. siamensis degrade LDPE (Skariyachan et al. 2017; Montazer 264 

et al. 2018; Nourollahi et al. 2019), and Klebsiella pneumoniae, and A. flavus degrade HDPE 265 

(Awasthi et al. 2017; Taghavi et al. 2021). The bio-fragmented MPs enter microorganisms through 266 
cell membrane. The large monomers stay outside the microbial cells whereas small monomers 267 
move inside. Within the microbial cells the monomers undergo oxidation which leads to energy 268 

generation used for biomass production (Lucas et al. 2008; Ru et al. 2020). MP-biodegradability 269 
is largely affected by the factors like structural complexity, functional groups, morphology, 270 

polymer toughness, and bond strength (Klein et al. 2018). Biodegradability of MPs can be 271 
enhanced by combining MPs with several additives like nitric acid or pre-treating MPs with heat 272 
or UV (Montazer et al. 2018; Falkenstein et al. 2020). B. amyloliquefaciens degrades LDPE upon 273 

preliminary heat treatment by depolymerization reaction (Das and Kumar 2015). Similarly, B. 274 
safensis and B. mycoides degrades LDPE and HDPE upon pretreatment with 0.1% mercuric acid 275 

and sunlight respectively (Ibiene et al. 2013; Das and Kumar 2015). Microorganisms are known 276 
to adapt to varying environmental conditions including the pollution sites through a cascade of 277 

cellular and genetic pathways (Wani et al. 2022c). Microorganisms colonize surface of MPs which 278 
causes changes in mechanical properties like roughness, strength, and reduction in molecular 279 

weight (McGivney et al. 2020). The attachment changes hydrophobic MP surfaces into hydrophilic 280 
which makes them prone to degradation through the action of enzymes like tyrosinase, laccase, 281 
lipase, and peroxidase. For example, K. pneumoniae releases certain surfactants that mediate 282 

hydrophobic and hydrophilic phase exchange assisting in easy microbial penetration into PE for 283 
its degradation (Awasthi et al. 2017). Table 3 highlights the MP-degrading potential of 284 
microorganisms. 285 

 286 
Table 3:  Microorganisms with MP-degrading potential isolated from different sites 287 

Microorganism

s 

Sample MP-type MP- Initial 

concentratio

n (Grams) 

Weight loss (%) Incubation 

period in 

days 

Massilia sp. 

FS1903 

Galleria 

mellonell

a gut 

PS 0.15 12.97 ± 1.05 30 (Jiang et 

al. 2021) 

B. siamensis Waste 

disposal 

LDPE 100 8.46 ± 0.3 90 (Maroof 

et al. 2021) 
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B. cereus Landfill 

area 

LDPE 0.13 1.53 120 

(Zerhouni et 

al. 2018) 

Pseudomonas sp. Soil Bisphenol

-A 

0.0001 54.6±3.7 60 

(Matsumura 

et al. 2009) 

Lysinibacillus 

sp. 

Soil 

grove 

PE and 

PP 

0.3 and 0.39 7.5 and 3 28 (Jeon et 

al. 2021) 

Microbacterium 

paraaoxydans 

and P. 

aeruginosa 

Pure 

cultures 

used 

LDPE 0.25 61 and 50.5 60 

(Rajandas et 

al. 2012) 

Pseudomonas sp. 

and 

Rhodococcus sp. 

Antarctic 

soil 

PP 0.100 17.3 and 7.3 40 (Habib et 

al. 2020) 

Rhodococcu sp. Mangrov

e 

sediment 

PP 0.500 6.4 40 (Auta et 

al. 2018)  

Aspergillus 

tubingensis and 

A. flavus 

Coastal 

area soil 

HDPE 0.200 6.02 ± 0.1 and 9.34 

±0.2 

30(Sangeeth

a Devi et al. 

2015) 

Paenibacillus sp. Landfill PE 0.0147 11.6 90 (Bardají 

et al. 2019) 

Lysinibacillus 

xylanilyticus and 

Aspergillus niger 

Landfill LDPE 0.300 8.9 and 17.4 63 and 

126(Esmaeil

i et al. 2013)  

 

Stenotrophomon

as sp. and 

Fusarium sp. 

Compost 

soil 

Nylon 0.03 16 and 14 28 

(Tachibana 

et al. 2010) 

P. aeruginosa Surface 

water 

PE 0.80 6.25 30 (Mouafo 

Tamnou et 

al. 2021) 

Dethiosulfovibri

o sp.; 

Sporobacter sp., 

and Cupriavidus 

sp. 

Marine 

litter and 

water 

PVC 10 3.51±0.81,3.71±0.2

8, and 3.91±0.2, 

90 

(Giacomucc

i et al. 2020) 

Mycobacterium 

neoaurum 

Soil Dimethyl 

phenol 

0.5 6.7 60 (Ji et al. 

2020) 

  288 

5.  Enzymatic degradation of MPs 289 
Owing to the presence of the homoatomic and heteroatomic backbone in plastics, MP-degradation 290 
by microorganisms is an arduous process (Edmondson and Gilbert 2017). There is considerable 291 
weight loss in the plastic polymer with the action microorganisms but the process in significantly 292 
slower than chemically mediated biodegradation processes (Jaiswal et al. 2020). The polymer 293 
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chains of MPs are broken by enzymes secreted by microbes (Mohanan et al. 2020; Lv et al. 2022; 294 
Kaur et al. 2022; Gaur et al. 2022). ATP-binding cassette transporters couple hydrolysis process 295 

to mediate the uptake and efflux of small fragments across the cell membrane in prokaryotic and 296 
eukaryotic cells. These transporters also play role in the secretion of toxins (Giuliani et al. 2011). 297 
Enzymatic actions like oxidation, hydrolysis and hydroxylation cleave the MPs into monomers 298 
(Rana et al. 2022). The high molecular weight MPs are degraded first by extracellular enzymes 299 
and then incorporate into microbial cells (Urbanek et al. 2018). Within the microorganisms, the 300 

degraded MPs are catabolically channeled to yield energy for intracellular polymerization and 301 
integration into cellular structures (Müller et al. 2019; Rogers et al. 2020). Cutinase, an esterase 302 
sub-class, isolated from F. solani, Thermobifida fusca, T. alba, and T. cellulosilytica is effective 303 
in hydrolyzing polyester MPs (Ribitsch et al. 2012; Dong et al. 2020). Several studies have 304 
reported that PET degradation is mediated by PET-hydrolases belonging to cutinases (Kawai et al. 305 

2019; Furukawa et al. 2019; Carr et al. 2020). The enzymatic degradation of PET occurs either by 306 

surface modification of polyester fibres or polymer hydrolysis (Bååth et al. 2020). Several 307 
hydrolases have been reported to cause PET surface hydrophilization, such as lipases from 308 

Thermomyces sp., Candida antartica (Carniel et al. 2017), cutinases from Penicillium citrinum, 309 

Humicola insolens, and Saccharomonospora viridis (Liebminger et al. 2007), and 310 
carboxylesterases from T. halotolerans (Samak et al. 2020). PU degradation by membrane-311 
associated (PudA) and extracellular (PueA, PueB) esterases isolated from Comamonas 312 

acidovorans, P.fluorescens, and P. chlororaphis have been characterized (Stern and Howard 313 
2000). The blending of certain natural polymers like starch with synthetic MPs has been shown to 314 

increase the rate of MP-biodegradation (Vroman and Tighzert 2009). This is attributed to the rapid 315 
hydrolysis of starch making the MPs susceptible to microbial degradations. Karimi and Biria have 316 
reported LDPE degradation by the action of amylase when blended with starch (Karimi and Biria 317 

2019). Currently, the least information on the enzymes acting on MPs with high molecular weight 318 
like PVC, PP, PS and Polyamide is available. Even though mixed microbial communities have 319 

been reported to cause the weight loss of these MPs, the effectiveness of gene products is yet to be 320 
ascertained completely. Extreme environments are rich reservoirs of hydrolytic enzymes stable at 321 

fluctuating environmental conditions like temperature, pH, salinity, and pressure. The search for 322 
MP-degrading microorganisms and enzymes is already gaining research attention through 323 

metagenomic strategies.  Table 4 gives an overview of the enzymes isolated and characterized 324 
from microbial sources with MP-degrading potential. 325 
 326 

 327 
Table 4: Enzymes derived from different microorganisms and their MP-degrading potential 328 

MP-type Enzyme Microorganism References 

Biodegradable plastic Esterase Pseudozyma 

antartica 

Sameshima-

Yamashita et al. 

(2019) 

HDPE Peroxidase   Citrobacter sp. Ojha et al. (2017) 

LDPE Laccase  Lysinibacillus sp. Ghatge et al. (2020) 

 

 

Laccase Rhodococcus ruber Santo et al. (2013) 
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PE Alkane hydroxylase  Pseudomonas sp. Jeon and Kim (2015) 

 

 

 

 

 

 

 

PET 

 

PETase Ideonella sakaiensis Webb et al. (2013) 

Cutinase Thermobifida fusca Müller et al. (2005) 

Cutinase Fusarium sp., & 

Humicola sp. 

O’Neill et al. (2007); 

Ronkvist et al. 

(2009) 

MHETase Ideonella sakaiensis Yoshida et al. (2016) 

Oxidoreducase Klebsiella 

pneumoniae 

Peter Guengerich 

and Yoshimoto 

(2018); Kawai et al. 

(2019) 

Polycaprolactone Lipase  Alcaligenes faecalis Oda et al. (1997) 

Polycaprolactone and 

Polyhydroxybutyrate 

Manganese peroxidase Amycolaptosis sp. 

and Tremetes 

versicolor 

Deguchi et al. 

(1998); Fujisawa et 

al. (2001) 

 

 

 

 

Polyester 

Polyesterase  Cyanobacteria sp. Hajighasemi et al. 

(2018); Wani et al. 

(2021) 

Protease P. fluorescens Howard and Blake 

(1998) 

Serine hydrolase Pestalotiopsis 

microspore 

Russell et al. (2011) 

Polylactic acid Cutinase like enzyme Cryptococcus sp. Masaki et al. (2005) 

 

PP 

Monooxygenase  Rhodococcus sp. Toda et al. (2012) 

Hydrolases Rhodococcus sp. and 

Bacillus sp. 

Auta et al. (2018) 

 

 

Hydrolases Rhodococcus ruber Mor and Sivan 

(2008) 
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PS 

 

Styrene 

monooxygenase 

Nocordia sp. Jacquin et al. (2019) 

Isomerase, 

dehydrogenase, & 

monooxygenase 

Micrococcus, 

Nocordia, & Bacillus 

Jacquin et al. (2019); 

Danso et al. (2019) 

Cytochrome P4500s  Enterococcus sp. Hou and Majumder 

(2021) 

Peroxidase, esterase, 

dioxygenase, and 

monooxygenase 

B. paralicheniformis Ganesh Kumar et al. 

(2021) 

Oxygenase Exiguobacterium sp. 

RIT 594 

Parthasarathy et al. 

(2022) 

 

PU 

Esterase  Alicycliphilus sp. Oceguera-Cervantes 

et al. (2007) 

Lipase Candida rugosa Gautam et al. (2007) 

 329 
 330 

6. Metagenomics (MGs): Gateway to microbial and enzyme mining  331 
Even though microorganisms are present everywhere in the environment, limitations in traditional 332 

culture techniques have crippled the exploration of vast microbial flora (Lewis et al. 2021). 333 
Microbiologists estimate that only 1-2% of the total microbial flora is culturable, which leaves 334 
majority of the microorganisms unexplored. MGs offers an efficient lens to reveal the hidden 335 
microbial diversity in a culture-independent manner (Handelsman 2004; Wani et al. 2022d). Figure 336 

3 highlights the fundamental methodology of the sequence- and function-based metagenomic 337 
approach for the exploration of microorganisms and gene products. The taxonomic profiling and 338 

functional gene annotation of microbial communities of river Ganga (sediment) using whole-339 
genome MGs has also been done (Rout et al. 2022). Several other research groups have identified 340 
novel bacteria from different sites including extreme environments like hot springs, deserts, and 341 
deep-sea sediments for bioprospecting using a MG approach (Tang et al. 2018; Najar et al. 2020; 342 
Alotaibi et al. 2020; Zhu et al. 2022; Wani et al. 2022b). Global ocean sampling revealed about 40 343 

million non-redundant novel genes from more than 30,000 species, whereas over 97% of the 150 344 
million genes reported in topsoil globally cannot be found in the existing gene catalogue. This is a 345 
strong indicator that microbiomes carry huge functional potential, with unculturable 346 
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microorganisms as acting enzyme reservoir (Sunagawa et al. 2015; Bahram et al. 2018). In a study, 347 
hidden Markov models were constructed from experimentally verified enzymes and mined soil 348 

and ocean metagenomes to assess the ability of microorganisms in degrading plastics. They 349 
compiled almost 30,000 non-redundant enzymes that were homologues with known enzymes 350 
having plastic degrading potential (Zrimec et al. 2021). Chow et al (2023) presents a sequence-351 
based in silico strategy for screening and characterization of PETases from MG datasets. The MG 352 
screening of a  novel PET esterase through in vitro expression system has also been developed 353 

using next generation sequencing (Han et al. 2023). In a recent study, distinct microbial 354 
communities have been unveiled through MGs that degrade hydrocarbon chains, which are units 355 
of plastic polymers (Hauptfeld et al. 2022). Using 16S rRNA datasets obtained through MGs, the 356 
taxonomic and functional characteristics of PE-degrading microorganisms have been analyzed 357 
from one of the waste recycling sites in Tehran, Iran (Hesami Zokaei et al. 2021). 358 

Integrated Microbial Genome (IMG) helps to identify candidate genes from different 359 

metagenomes (Zaidi et al. 2021). In a MG study, two heat stable enzymes with application in 360 
plastic degradation were partially characterized (Danso et al. 2018). Shotgun MGs has revealed 361 

the microbial community response to plastic contamination in coastal environments (Pinnell and 362 

Turner 2019). Shotgun MGs generated 3,314,688 contigs (DNA sequences that overlap providing 363 
contiguous representation of a genomic region) and 120 microbial genomes. This was followed by 364 
the functional gene annotation to identify microbiomes that harbor genes encoding esterases, 365 

lipases, and monooxygenases that are known to degrade different types of plastics (Radwan et al. 366 
2020).  Hu et al (2021) reported hydrolysis of PET by a metalloprotease and a serine protease. The 367 

study provided intrinsic insight into PET degradation and opened a gateway for hunting more 368 
plastic-degrading enzymes. Bollinger et al. (2020), also characterized a novel polyester hydrolase 369 
from P. aestusingri for the degradation of synthetic PET. Table 5 highlights some of the abundant 370 

microbes and enzymes isolated and characterized from microorganisms through culture-based and 371 
sequence- and function-based MG approaches having MP-degrading potential. Even though the 372 

MP-degradation by microorganisms and their gene products is effective, the rate of degradation 373 
has always been a matter of concern. MG investigation allows upscaling the degradation rate by 374 

modifying the microbial composition and genome engineering.  375 
 376 

 377 

 378 
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 379 
Figure 3: Metagenomic (MG) driven search operation for MP-degrading microorganisms through 380 
function and sequence-based metagenomic approaches. The function-based approach is followed 381 
by random screening for different enzymes while the sequence-based approach ensures the 382 

prediction of several genes that are effective in producing MP-degrading enzymes. 383 
 384 

Table 5: Sequence based (SB) and Function-based (FB) metagenomic approaches for the 385 
identification of abundant microbes and /or enzymes useful in targeting different plastic 386 
substrates  387 
 388 

Microbes/Enzym

es 

Metageno

me source 

Metageno

me 

Sequencing 

approach 

Metageno

me 

strategy  

Target plastic 

substrate 

Reference

s 

Bryozoa, 

Cyanobacteria, 

Alphaproteobacte

ria, and 

Bacteroidetes 

Sea water Shotgun 

metagenom

ics 

SB Mixed plastic 

debris 

Bryant et 

al. (2016) 

Flavobacteriacea

e, 

Surface sea 

water 

16S 

metagenom

SB PS Sekiguchi 

et al. 
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Methylophilaceae, 

Rhodobacteracea

e, 

Planctomycetacea

e, Nocardiaceae, 

and 

Verrucomicrobiac

eae 

ics (V4-V6 

and V9) 

(2009); 

Kirstein et 

al. (2019) 

Rhodococcus sp. 

(YC-SY1, YC-

BJ1, and YC-

GZ1) 

Soil  Illumina 

HiSeq 16S 

metagenom

ics 

(V3+V4) 

SB Triphenyl 

phosphate 

(Plasticizer) 

Wang et 

al. (2019b) 

PET hydrolase Marine 

water 

Next-

generation 

metagenom

e 

sequencing 

FB PET Danso et 

al. (2018) 

Thalassospiracea, 

Alteromonadacea

e, 

Alcanivoraceae, 

and Vibrionaceae 

Beach 

sediment 

Meta-omics 

(16S 

metagenom

ic 

approach) 

SB and FB PET Wright et 

al. ( 2021) 

Proteobacteria, 

Firmicutes, 

Actinobacteria, 

and Firmicutes 

Landfill 

soil 

High 

throughput 

metagenom

ics 

SB PE and PS Kumar et 

al. (2021) 

Polyurethane 

esterase 

Landfill Shotgun 

metagenom

ics 

FB PU Gaytán et 

al. (2019) 

Cutinase Compost Shotgun 

metagenom

ics 

FB PET Sulaiman 

et al. 

(2012) 

Esterase Seawater Illumina 

Hiseq 

FB Polyhydroxybutyr

ate, and polylactic 

acid 

Tchigvints

ev et al. 

(2015) 

Esterase Compost Shotgun 

metagenom

ics 

SB and FB PU Kang et al. 

(2011) 

Protease Marine 

sediment 

Bidirection

al end 

sequencing 

FB Polyester Lim et al. 

(2005); 

Sun et al. 

(2020) 

 389 
 390 

6.1. Microbial manipulation 391 
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The manipulation of human, animal, soil, plant and water microbiome is the contemporary strategy 392 
followed for increasing the benefits offered by them (Huynh et al. 2016; Hussain et al. 2018; Jochum 393 

et al. 2019). It includes several cellular, molecular, and chemical methods for extensive 394 
manipulation with higher specificity and magnitude. The prebiotic (chemical) approach enables 395 
modification in microbial communities to increase their adaptability and functionality in a particular 396 
environment (Gianoulis et al. 2009; Raes et al. 2021). Polysaccharides and oligosaccharides affect 397 
microbiome composition and support the growth of MP-degrading microorganisms (Grondin et al. 398 

2017). Chitin, starch, lipopeptides, glycolipids, etc. help in biofilm formation by acting as 399 
surfactants on MP-surfaces  (Shilpa et al. 2022). Similarly, probiotic cultures are applied for the 400 
better performance of MP-degraders through bioaugmentation (Kamilya and Devi 2022). The 401 
microorganisms like Pseudomonas, Micrococcus, Moraxella, Streptomyces, Thermoactinomyces, 402 
Penicillium, and Aspergillus are preferred over the native microorganism (Spini et al. 2018). 403 

Microbiome transplantation and probiotic bioaugmentation remain unsuccessful owing to the slow 404 

microbial growth, low cell viability, limited distribution, and reduced functionality. These issues are 405 
likely to be solved by metagenome engineering followed by bioaugmentation.  406 

Microorganisms are genetically modified to produce novel strains that express unique and well-407 

defined genetic determinants or to introduce genetic variants that cause phenotypic changes. The 408 
process is used to investigate the biotechnological potential linked to environmentally useful 409 
microorganisms and to make use of functional genes when put into the right host (Zeaiter et al. 410 

2018). There have also been attempts to chemically alter marine microbes. Besides natural 411 
competence, wild-type and DNase-negative Vibrio cholerae strains are effectively electroporated 412 

and transformed by the researchers for biotechnological applications (Marcus et al. 1990; Jaskólska 413 
et al. 2018). Although the outcome of the electroporation can also be influenced by other parameters, 414 
including growth conditions, the pulse used, and the type of exogenous DNA, the electroporation 415 

efficiency is strain dependent. Several marine strains from various genera, including Roseobacter, 416 
Vibrio, Pseudoalteromonas, Caulobacter, Cyanobacteria, and Halomona, have been successfully 417 

modified for expression of environment-useful genes (Kivelä et al. 2008; Borg et al. 2016; 418 
Laurenceau et al. 2020). 419 

 420 
6.2.  Genetic engineering  421 

With the progress in molecular biology and genetic engineering, the development of genetically 422 
modified microorganisms as potent MP-degraders has advanced significantly. The construction of 423 
metagenomic libraries makes it likely to create genetic circuits with novel and precise functionalities 424 

(Bacha et al. 2021). The synthetic microbial cells created through genome editing, protein 425 
engineering, or genetic engineering can be employed for metagenome engineering in the 426 
plastisphere (Austin et al. 2018; Jaiswal et al. 2019). Since biodegradation of MPs involves a 427 

cascade of oxidation processes which is difficult and slow by the action of single species (Klein et 428 
al. 2018). Metagenome engineering can be applied for complementing multiple genes involved in 429 

MP-degrading metabolic pathways. This will ensure the production of multiple enzymes that 430 
regulate biofilm formation and quorum sensing. Genome modification of B. subtilis and E. coli for 431 
expression of PETase enzyme for the degradation of PET is a common example. PETase and 432 
MHETase have been identified in Ideonella sakaiensis 201-F6 and cloned in a suitable PUCIDT 433 
vector for the creation of recombinants with higher PET-degrading potential (Janatunaim and 434 

Fibriani 2020). Puspitasari et al. (2021), showed that the rate of PETase hydrolysisincreases 435 
significantly in the presence of hydrophobin. Since the core metagenome of any site is constant, 436 
therefore rather than modifying a single genome it is possible to engineer the entire metagenome.  437 
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The direct in situ metagenome engineering of microbial population is achievable through horizontal 438 
gene transfer of plasmid construct through genetic augmentation. The applicability of 439 

bacteriophages as gene delivery agents is advancing. The strategy can very well be applied to the 440 
gene delivery with having MP-degrading potential. However, there is a growing concern about the 441 
release of genetically engineered microorganisms into the environment owing to their adverse 442 
effects. There are chances that engineered microorganisms may affect the biodiversity by creating 443 
more infectious pathogens, harm non-target species, and disrupt ecological balance (Lenski 1993; 444 

Clark 2006). 445 
 446 

7. Metagenome analysis through computational tools 447 
Development in computational tools and advancement of computational power has enormously 448 
aided in metagenome refinement and analysis. The sequencing of metagenome samples with the 449 

potential to degrade contaminants is a method of choice for identifying novel microorganisms and 450 

predicting genes. Shotgun MGs gives insight into the microbial community members and the 451 
possible metabolic pathways mediated by them. Since metagenome collection from environments 452 

is largely uncontrolled, the organisms present in abundance are highly represented in sequence data. 453 

To achieve equal coverage of all the microbial members, the random shotgun sequencing resolves 454 
genomes uniformly and ensures the identification of lesser presented organisms. The metagenome 455 
data is often enormous containing fragmented and raw data (Wooley et al. 2010). The metagenome 456 

sequencing of cow rumen generated more than 250 gigabases, while the gut microbiome of human-457 
generated more than 550 gigabases of sequence data (Qin et al. 2010; Hess et al. 2011). Thus, the 458 

identification, collection, and curation of useful data from huge metagenome datasets are 459 
challenging for many researchers. Almeida et al, employed in silico screening method for the 460 
identification of potential PETase-like enzymes. They identified the PETase-like gene SM14est in 461 

Streptomyces after analyzing more than 50 genomes (Almeida et al. 2019). Figure 4 represents the 462 
basic methodology of metagenome data analysis useful for understanding microbial diversity and 463 

predicting useful genes. One of the standalone metagenome analyzing tools is Meta Genome 464 
Analyzer (MEGAN). It was initially used for studying metagenomes obtained from mammoth bone 465 

(Poinar et al. 2006). The tool is used to perform functional and taxonomic binning using the lowest 466 
common ancestor algorithm. More efficient, accurate, and faster computational tools are being 467 

developed to keep up the face with high-throughput sequencing. Metagenomic Rapid Annotations 468 
using Subsystems Technology (MG-RAST) is one of the biggest metagenome repositories 469 
developed for automatic phylogenic and functional analysis of metagenomes. Wani et al. (2022e) 470 

has comprehensively reviewed the maximum number of computational tools used in the analysis of 471 
metagenome data-sets. 472 

 473 
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 474 
Figure 4: Basic methodology of the metagenome analysis through computational tools. 475 

The generated metagenome sequences are prefiltered for the removal of low-quality, and 476 
redundant sequences using Eu-detect, & DeConseq. To increase the analytical efficiency 477 

of computational tools, the metagenome assemblies are developed using Phrap or Celera 478 
or MEGAHIT assembler. This is followed by the prediction of genes using the MEGAN 479 

or Gene Mark or Gene Locator and Interpolated Markov Modeler (GLIMMER) program. 480 
Function-based annotation and taxonomic profiling are carried out MetaPhlan or 481 
Automatic phylogenomic inference application (AMPHORA) or Metaphyler followed by 482 

integration into MG-RAST, Integrated Microbial Genomes and Metagenomes (IMG/M) 483 

and Genomic Encyclopedia of Bacteria and Archaea (GEBA) like tools. 484 
 485 
 486 

8. Limitations and way forward 487 
MGs based studies allows exploration of microbial diversity, genetic evolution, species 488 

composition, and bioprospecting. However, bottlenecks in MGs right from sample collection until 489 
the analysis have always been challenging (Scholz et al. 2012). Sample collection is one of the 490 

confounding factors that affect the sequencing outcomes owing to concerns like contamination, 491 
transportation, storage, and safety. The developments in sequencing technology have significantly 492 
advanced computational tools for functional annotations and analysis (Bharti and Grimm 2021). 493 
However, multiple challenges still exist owing to the complexity of metagenomic data.  While 494 
analyzing the complex metagenome data sets challenges like multiple genomes, and inter- and 495 

intra-genomic repeats lead to uneven sequencing with a higher degree of sequencing errors. 496 
Although the gene prediction tools have an efficiency of about 90%, the small number of genes 497 
escaping detection can be novel and more useful (Coleman and Korem 2021). Downstream 498 
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processing of MG data is also much crucial for understanding microbiome structures and metabolic 499 
pathways, but due to multivariate metagenomic data, the downstream analysis is difficult 500 

(Lindgreen et al. 2016). The discovery of enzymes is prevented by other limitations like limited 501 
thermostability, low stereoselectivity, and insufficient expression.  Ribosome engineering can be 502 
useful in retrieving all possible candidate genes for synthesis and testing the activities (Uchiyama 503 
and Miyazaki 2009). Fungi despite their affinity for plastics have been largely neglected. MG 504 
findings provide evidence that the plastisphere is a suitable niche for various fungal organisms, 505 

including pathogenic species (Gkoutselis et al. 2021). 506 
The technical glitches and problems in data evaluation and interpretation confronted during 507 
metagenome studies can be overcome by the combination of MGs and machine learning tools like 508 
artificial intelligence (Rhoads 2020; Wani et al. 2022f). This will help in accurate, and timely 509 
characterization of microorganisms and microbial products useful in remediation processes. 510 

Artificial intelligence can be utilized in developing new models to design effective bioremediation 511 

tools and evaluate the performance and functionality of microorganisms. The development of 512 
smart biomarkers as indicators of pollution is an efficient way to track environmental fluctuations 513 

(Krishna Kumar et al. 2011). Moreover, gene engineering within genomes and metagenomes using 514 

gene-editing tools like Clustered regular interspaced short palindromic repeats-associated protein 515 
(CRISPR-Cas) system can revolutionize the microbe-mediated degradation processes owing to its 516 
specific nature (Jaiswal et al. 2019; Wani et al. 2022g; Mir et al. 2022). This will help to upregulate 517 

contaminant-degrading genes and pave way for understanding the molecular pathway involved in 518 
it. The applicability of artificial intelligence environmental and genome editing for microbial 519 

simulation will continue to be the method of choice in combatting plastic and other pollution. 520 
 521 

9. Conclusion 522 

The emergence of MP-contamination has become a serious concern for the biota owing to 523 
the small size and their ability to reach into the human body through secondary sources 524 

like food. Moreover, research investigations and evidence based on the ecological toxicity 525 
of microplastics to aquatic biota revealed numerous toxic effects on organisms, posing 526 

serious ecological risks. The hazardous effect of microplastic is outlined as 527 
single and combined toxicity of various pollutants, which has reportedly impacted 528 

mortality rates, development, food intake capacity, reproductive capability, and gene 529 
expression in aquatic organisms. Considering the degradation potential of microbes and 530 
enzymes, it is possible to detoxify and degrade MPs into non-toxic end products. Thus, it 531 

is necessary to explore microorganisms that can mediate the bioremediation process of 532 
these MPs. MGs is a powerful genome centric culture-independent technique to identify 533 
novel microorganisms and their products for bioprospecting including the degradation of 534 

environmental contaminants. MGs with other meta-omics strategies can be useful in 535 
building a timely response strategy for combatting the growing plastic threat and its 536 

associated concerns. Overall, MGs has enabled scientific studies of complex microbiomes, 537 
which have assisted to explain certain metabolic processes of polymer degradation. As a 538 
result, extensive research in this area is required, which may significantly reduce global 539 
plastic pollution while also ensuring the health of future generations. 540 
 541 
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