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Significance statement 

Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to 

suggestions that that chronic uremia may cause intestinal dysbiosis which contributes to the 

pathophysiology of chronic kidney disease. Various small, single-cohort rodent studies have supported 

this hypothesis. This meta-analysis of publicly-available repository data demonstrates that cohort 

variation far outweighs any effect of experimental kidney disease on the gut microbiome. No dysbiotic 

changes were seen in kidney disease animals across all cohorts, although a few trends shared between the 

majority of experiments may be attributable to kidney disease. We conclude that rodent studies do not 

provide evidence for the existence of ‘uremic dysbiosis’, and that single-cohort studies are unsuitable for 

produce generalizable results in microbiome research. 
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Abstract 

Background: Single-cohort rodent studies have yielded insights into host:microbiome relationships in 

various disease processes, but their relevance is limited by cohort and cage effects. In nephrology, rodent 

studies have popularized the notion that uremia may induce pathological changes in the gut microbiota 

which contribute to progression of kidney disease.  

Methods: All data describing the molecular characterization of the gut microbiota in rodents with and 

without experimental kidney disease were downloaded from two online repositories and re-analyzed 

using the DADA2 and Phyloseq packages in R. Data were analyzed both in a combined dataset of all 

samples, and at the level of individual experimental cohorts.     

Results: Cohort effects accounted for 69% of total sample variance (p<0.001), substantially outweighing 

the effect of kidney disease (1.9% of variance, p=0.026). No microbial trends were seen universally in 

kidney disease animals, but some (increased alpha diversity, relative decreases in Lachnospiraceae and 

Lactobacillus, increases in other Clostridia and opportunistic taxa) were seen in many cohorts, and may 

represent the effects of kidney disease on the gut microbiome.  

Discussion: We argue that there is inadequate evidence that kidney disease causes reproducible patterns 

of dysbiosis. We advocate meta-analysis of repository data as a way of identifying broad themes that 

transcend experimental variation. 
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Introduction 

It has been widely suggested that alterations in the composition and function of the gut microbiome may 

play an important role in the development of chronic kidney disease (CKD). [1] One potential mechanism 

involves systemic uremia altering the gut microenvironment and exerting selective pressures on bacterial 

populations, causing structural or functional alterations to the resident microbiota which have been termed 

‘uremic dysbiosis’ [2-4]. It has been suggested that abnormal gut microbiota may drive progression of 

CKD and its complications through increased generation of uremic toxins, reduced production of 

beneficial metabolites such as short-chain fatty acids, or disruption of the mucosal barrier of the gut 

resulting in chronic inflammation. 

There is little consensus, however, as to exactly which microbial changes are caused by uremia. In 

humans, case:control studies have identified changes in host microbiota associated with CKD, [8-13] but 

confounding factors including dietary restrictions and use of gut-active or anti-microbial medications 

make the effects of kidney disease itself hard to define.  

Several animal studies have described relative changes in the abundances of various microbial taxa in 

experimental uremia. Most notably, Vaziri et al demonstrated that 175 operational taxonomic units were 

differentially abundant in the gut microbiota of rats following either subtotal nephrectomy or sham 

surgery, concluding that uremia profoundly affects the gut microbiota. [14] However, other animal studies 

have yielded contrasting results, [15-17] and since each of these animal studies employed a single, small 

cohort of animals, the generalizability of the findings they describe is limited. We have previously 

demonstrated the extent of variability in the intestinal microbiota between two batches of animals from 

the same supplier, and the ability of such batch differences to influence the metabolomic phenotype of 

host rats. [18]  
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In this meta-analysis, we re-analyze publicly available datasets describing the gut microbiota of animals 

with or without experimental kidney disease from two online repositories, comprising a total of 127 

rodents across ten experimental cohorts, to attempt to find common microbial signatures that transcend 

batch variability and may be confidently attributed to the effect of kidney disease.  
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Methods 

 

Selection of studies 

We searched the Sequencing Reads Archive (SRA) operated by the National Centre for Biotechnology 

Information (NCBI) for relevant studies, using the search term (uremia OR uraemia OR kidney OR renal) 

AND (microbiome OR microbiota) AND (rodent OR rat OR mouse OR mice), on the 24th May, 2021. 

This search returned gut microbiome data from 412 experimental subjects across fourteen studies, which 

were assessed for suitability for inclusion using the Run Selector facility. Eligibility criteria were: use of 

rodent subjects, use of experimental techniques to induce chronic (>2 weeks) uraemia, and the use of non-

culture dependent, DNA-based tools to assess the gut microbiota. Exclusion criteria included use of other 

experimental interventions, other than the induction of kidney disease; however, in some studies 

employing a four-group design (e.g, control, control plus intervention, uremic, uremic plus intervention), 

data from animals in the non-intervention control and kidney disease groups were included. 

Eight studies were excluded: three because there was no induction of kidney disease (NCBI BioProject 

IDs PRJNA576633, PRJNA596575 and PRJNA325943); two which used RNA rather than DNA 

sequencing (PRJNA631843 and PRJNA492322); one which employed an acute kidney injury rather than 

chronic kidney disease model (PRJDB6225); one which studied kidney tissue rather than gut microbiome 

samples (PRJEB27588), and one which included only human samples (PRJEB11419). Seven of these 

excluded studies have subsequently been published. [19-25] 

The remaining six studies were included, [15-18, 26, 27] including our own study (Randall 2019) which 

comprised data from two cohorts of animals. Each of these studies have been published in a peer-

reviewed journal. 
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One cohort (Al-Asmakh2020) included sequencing samples from the ileum, cecum and colon for each 

animal; we elected to include only cecal samples in this analysis to match the majority of the samples 

from other rat cohorts. 

We also included data from two further cohorts of our own (Randall 2021a and Randall 2021b) which are 

also publicly available via the SRA with the publication of this article. These cohorts have not previously 

been published in journals; the experimental conditions of these animals and subsequent sample analysis 

and DNA sequencing are described below. 

Finally, phylochip microbiota data from the older, Greengenes repository was obtained for a final study, 

Vaziri2013, [14] which was the first major study to claim an effect of kidney disease on the gut 

microbiome. All other phylochip datasets also in the Greengenes repository were manually screened for 

eligibility using the criteria above but none were suitable. 

 

 

Data processing 

Datasets downloaded from the SRA were converted into fastq format using the fastq-dump software from 

the SRA toolkit. Raw sequences were analysed in R version 3.6.1, using the DADA2 pipeline (version 

1.4), [28] with each dataset pre-processed separately because of differences in primer pairs and 

sequencing quality, with filtering and trim parameters being optimised for each dataset. One dataset (Al-

Asmakh2020) used widely separated primer pairs (337F/805R) which meant that after adjusting for 

quality, only a very small proportion of reads could be successfully merged, and so for this dataset the 

decision was made to include only forward reads in order to avoid bias. Two datasets (Mishima2015 and 
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Kikuchi2017) used 454 pyrosequencing instead of Illumina paired-end sequencing, and so only longer, 

forward reads were available for these datasets. 

Amplicon sequencing variants (ASVs) were aligned against Silva v138 [29] in order to assign taxonomy.  

Raw abundance data of ASVs were used with taxonomic assignments and sample metadata to create 

phyloseq objects for each cohort. [30] These phyloseq objects were retained for analysis within each 

dataset at the level of individual ASVs, but then agglomerated at family level and merged to allow 

analysis of the whole dataset as described below. 

Phylochip data for the Vaziri2013 dataset was substantially different in nature from the sequencing data 

of all the other datasets; partly because of the nature of the data acquisition (consisting of fluoroscopic 

intensity scores for each of several thousand probes on the chip, rather than simply those sequences 

present in the sample), and partly because the taxonomic identities attributed to the different 25-mer 

probes on the phylochip are incommensurable with the modern Silva taxonomy. Thus, otu table, 

taxonomy and meta-data were combined for this dataset to allow it to be individually analysed in 

phyloseq in parallel with the other datasets, but this dataset was not agglomerated and merged into the 

whole-dataset object for combined analysis. 

 

Quantification and statistical analysis 

Combined analysis of whole dataset 

A combined dataset was constructed to permit comparison between microbial communities from all 

samples (excluding the Vaziri2013 dataset), irrespective of the sequencing methodologies and primer 

pairs used.  
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To allow this, taxa from the individual cohort phyloseq objects were agglomerated to family level (the 

lowest taxonomic level at which all sequencing variants received a confident taxonomic identity), using 

the tax_glom function in phyloseq (version 1.36.0). Taxa were manually renamed across datasets to allow 

comparison of like with like between cohorts; then a combined taxonomy, meta-data and ASV table were 

used to construct a phyloseq object incorporating all samples. 

These data were rendered compositional using centered log-ratio transformation via the transform 

function in the R package microbiome (version 1.14.0), [31] and redundancy analysis (RDA) was carried 

out using the ordinate function in phyloseq which was plotted using the plot_ordination function. Scores 

and loadings were extracted from the RDA model and used to calculate spatial means and the vector 

between control and uremic samples within each cohort on the combined RDA axes. The ADONIS 

function in R package vegan (version 2.5.7) [32]  was used for permutational analysis of variance 

(PerMANOVA) calculations.  

 

Separate analysis of individual datasets 

Each cohort was then analysed independently at the level of individual ASVs, without agglomeration at 

higher taxonomic levels. Redundancy analysis and PerMANOVA were carried out using the same 

methods as for the combined dataset. Additionally, alpha diversity analyses were carried out on log-ratio 

transformed datasets using the estimate_richness function in phyloseq, and beta dispersion was calculated 

for control and uremic groups using the betadisper function in vegan. Abundance data from the combined 

phyloseq object were aggregated to phylum level and rendered compositional before being used to 

generate the bar charts demonstrating compositional community abundance. 
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To reflect the composition nature of microbiota datasets, and to allow for multiple hypothesis correction, 

testing for ASVs displaying differential abundances according to kidney disease was carried out for all 

cohorts using the analysis of the composition of microbiomes (ANCOM2) statistical framework. [33] 

Code for ANCOM2 (version 1) was obtained from GitHub 

(https://github.com/FrederickHuangLin/ANCOM, accessed 26th August 2019) and used according to 

default parameters. ANCOM analysis was carried using data agglomerated at family, order, class and 

phylum levels to pick out differences between control and uremic samples at each of these levels. For the 

data presented in supplementary data table 4, only taxa detected at a cut-off of 0.7 were treated as 

significant, and at each level the differentially-abundant taxa were listed in descending order according to 

their W score. Also on this table, to allow a crude comparison of the significance of association, is the 2-

sample t-test; in some cases this is higher than the set alpha of 0.05, but these all actually had an adjusted 

significance of <0.05 after multiple hypothesis correction. A simple ratio between mean abundance in 

uremics and mean abundance in controls is presented to show whether uremic animals had increased or 

decreased abundance relative to controls. 

 

Experimental method for the two previously unpublished datasets 

This paper includes data from two experimental cohorts (Randall2021a and Randall2021b) that 

were not previously published in a peer-reviewed format. Details of these animal experiments are 

provided here. 

All animal experiments were conducted in accordance with the UK Home Office Animals 

(Scientific Procedures) Act 1986, with local ethical committee approval. All animal work was 

carried out in the Biological Services Units of Queen Mary University of London at 
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Charterhouse Square; and complied fully with all relevant animal welfare guidance and 

legislation (UK Home Office Project License number PPL 70/8350 and P73DE7999).  

Randall2021a cohort: This cohort consisted of two experimental groups from a larger study 

which had been designed to investigate the effects of lactulose on the gut microbiota, using a 2x2 

experimental design (control with lactulose, control without lactulose, uremic with lactulose, 

uremic without lactulose). Only samples from the non-lactulose groups were included in this 

analysis. In the whole experiment, twenty-seven male wild-type outbred Wister IGS rats were 

obtained at seven weeks of age from Charles Rivers (Kent, UK). During a week of 

acclimatization, rats were swapped between cages each day for a week in order to homogenize 

resident microbiota. Seventeen underwent subtotal nephrectomy (SNx) and ten underwent sham 

procedures Subtotal nephrectomy involved exteriorisation of the left kidney with decapsulation 

and removal of the upper and lower poles and subsequent replacement of the middle pole only, 

followed by total right nephrectomy 2 weeks later. Sham procedures involved exteriorisation, 

decapsulation and replacement of the left kidney, followed by the same procedure on the right 

kidney 2 weeks later. 

Four weeks after the completion of surgery, lactulose was administered mixed into drinking 

water to eight SNx animals and six controls, with the remaining animals in each group (nine 

SNx, six sham) continuing to receive tap water. Only samples from these latter groups were 

included in the meta-analysis. All animals received free access to RM1 standard rodent diet 

(SDS dietary services, Essex, UK), and water, and were housed under standard 12 hour light-

dark cycles in individually ventilated cages.. There were up to four rats per cage, and the animals 

housed according to surgical procedure, with no co-housing between batches.  
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In weeks 5-8 post surgery, rats underwent individual housing in metabolism cages weekly to 

allow the collection of a 24-h urinary specimen which was frozen at − 80 °C until the time of 

analysis. Rats were killed by lethal injection of sodium thiopentone (LINK Pharmaceuticals, 

Horsham, UK), and caecal fluid was expressed, stored in foil and snap-frozen in liquid nitrogen 

and then at − 80 °C until the time of analysis. Blood samples were taken by cardiac puncture, and 

after centrifugation, the serum was frozen at − 80 °C until the time of analysis. Data describing 

the housing, weights and serum biochemistry is available in supplementary data file 5. 

Randall2021b cohort: 20 male wild-type C57/BL6 mice were obtained from Charles Rivers at 7 

weeks of age. After a week-long period of acclimatization, ten animals were placed on an 

intervention diet (RM1 with 0.15% adenine as published previously by our group [34]), whilst 

ten remained on standard RM1 diet (both diets from SDS dietary services, Essex, UK). All 

animals received free access to food and water, and were housed under standard 12 hour light-

dark cycles, with five animals in each individually ventilated cages. Mice were weighed weekly, 

and housed individually in metabolism cages every four weeks to allow the collection of a 24-h 

urinary and fecal specimen. All mice were sacrificed 18 weeks after the start of the experimental 

protocol (at 26 weeks of age), by lethal injection of sodium thiopentone (LINK Pharmaceuticals, 

Horsham, UK). Cecal fluid was stored at -80o pending DNA extraction. Data describing the 

housing, weights and urine volumes is available in supplementary data file 6. 

 

DNA extraction and next-generation sequencing: DNA from cecal fluid samples from both 

cohorts was extracted using the PowerSoil© kit from Qiagen, according to manufacturer’s 
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instructions. Polymerase chain reaction (PCR) was carried out in-house using barcoded 

27F/338R primer pairs, targeting the V1/V2 hypervariable region of the 16S rRNA gene. PCR 

was carried out in a sterile 96-well plate using Phusion Green Hot Start II High Fidelity PCR 

Master Mix (ThermoFisher Scientific), using an initial denaturation step for 5 mins at 98°C 

followed by 25 cycles of 98°C for 10s, 53°C for 30s, 72°C for 45s and a final extension of 72°C 

for 10 min. Normalization of DNA concentrations was carried out using SequalPrep™ 

Normalization Plates (ThermoFisher) and DNA was quantified using a Qubit® 4 Fluorometer 

(also ThermoFisher). Pooled samples were then sent for next generation sequencing at the DNA 

Sequencing Facility, Department of Biochemistry, University of Cambridge. Samples with 

<4,500 reads were excluded from further analysis, and all remaining fastq files were uploaded to 

the NCBI SRA database.  
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Results 

Published datasets exhibit significant variability in experimental technique 

A search of the NCBI Sequence Read Archive [35] and the Greengenes repository [36] was conducted to 

discover publicly-available data describing the bacterial composition of the gut microbiota in 

experimental kidney disease (figure 1). Data were included from seven published studies, including one 

specifically designed to investigate the effect of kidney disease on the gut microbiome, [14] three 

designed to investigate bacterial production of uremic toxins, [17, 18, 26] and three investigating gut-

acting medications for the improvement of the uremic syndrome (only samples from non-intervention 

animals were included). [15, 16, 27] In addition, two unpublished but publicly available datasets were 

included from our own group; a description of the experimental treatment of cohorts is included in the 

methods section below.  

In total, we included data from 127 animals; 73 rats across six cohorts and 54 mice across four cohorts. 

There were significant differences between these datasets in the animal strains used, the methods used to 

induce kidney disease, the age of animals at the time of sacrifice, and the sample types used; as well as in 

the methods of DNA amplification and sequencing employed (table 1). 

Raw sequencing data were re-analysed using the DADA2 pipeline and the Silva (v138) taxonomy 

database. [29] There was a broad but non-significant positive correlation between sequencing depth 

(mean reads per sample) and observed species richness (amplicon sequencing variants, ASVs, per 

sample); Spearman rank coefficient 0.55, p=0.133.  

 

Cohort is the key driver of variation across all datasets 
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Sequencing data from different cohorts were agglomerated at family level (the lowest taxonomic level at 

which all ASVs were assigned a clear taxonomic identity) and combined to allow broad trends in 

variation to be visualized across all datasets (figure 2). Redundancy analysis revealed clustering to be 

most significantly influenced by cohort, with the Al-Asmakh2020 and Kikuchi2017 cohorts completely 

separate from other samples and only the Randall2019a and Randall2019b cohorts, which comprised 

animals obtained a few weeks apart from the same supplier, displaying broadly overlapping ordination. 

We have previously shown, however, significantly differential ordination between these two cohorts 

when analysed in a reduced dataset comprising only these samples. [18]  

PerMANOVA of the log-ratio transformed datasets was used to establish how much variation could be 

attributed to different experimental variables; this revealed that cohort accounted for the largest amount of 

variation (69% of variance, p<0.001), with host species (rat vs mouse) accounting for 13.3% (p<0.001). 

Other significant associations were found between clustering and primer type (V1/V2 vs V3 vs V3/V4, 

23.9% of variation, p<0.001), method of inducing kidney disease (surgery vs adenine feed, 13.2% of 

variation, p<0.001), sequencing methodology (454 pyrosequencing vs Illumina, 9.7% of variance, 

p<0.001) and sample type (feces vs cecal fluid, 6.7% of variance, p<0.001); although these variables were 

closely associated with cohort. 

Treatment effect (control vs uremic) did influence sample clustering, but to a much lesser extent (1.9% of 

variance, p=0.026).  Scores and loadings from the redundancy analysis model were interrogated to 

understand the basis for this small observed effect of kidney disease, and it became clear that whilst 

control and uremic samples were not significantly separated in axes 1 and 2, when plotted on axes 3 and 4 

of the redundancy analysis model, there was a significant shift between control and uremic samples in 

both dimensions (supplementary data figure 1).  Loadings for these axes revealed that a ‘uremic’ 

deflection along both was notably associated with increased abundances of certain families from class 
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Clostridia (including Peptostreptococcaceae, Peptococcaceae, Clostridiaceae and Christenellaceae), 

supplementary data table 1. 

 

Significant compositional differences exist between experimental cohorts 

Each experimental dataset was agglomerated at phylum level, and community composition was plotted 

for each sample to allow comparison at a high taxonomic level between cohorts (figure 3).  

Dominant phyla in all samples were Firmicutes, accounting for 76% of reads in rat samples vs 40% in 

mouse samples (p<0.001); and Bacteroidetes (58.7% of sequencing reads in mouse samples but only 

9.9% in rat samples; p<0.001). Mouse samples were simpler than those from rats, with the contribution of 

these major taxa accounting for an average of 98.4% of reads in mice, but only 84% in rats (p<0.001).  

The Al-Asmakh2020 and Kikuchi2017 datasets appeared to be outliers compared to other rat cohorts. The 

Al-Asmakh2020 cohort demonstrated clear differences between control and uremic samples at phylum 

level, with a substantial increases in Proteobacteria and Actinobacteria in uremic animals, accounting for 

an average of 39.9% and 9.4% of reads, respectively, in this group. Conversely, samples in the 

Kikuchi2017 cohort were very simple, with reads from the phylum Firmicutes accounting for 98.5% of 

reads across all samples and kidney disease having no discernible effect. In other datasets, there were no 

obvious high-level community differences between control and uremic samples.  

 

 

Kidney disease increases alpha diversity in rats but not in mice 
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There were no significant differences in alpha diversity between control and uremic animals across the 

whole dataset (supplementary data table 2, supplementary data figure 2). However, samples from rats 

were found to have higher alpha diversity than samples from mice (significantly so for observed ASVs 

per sample, 338 in rats vs 232 in mice, p=0.006, and the related Chao1 and ACE indices).  

Among rat samples, those from uremic animals showed higher alpha diversity than those from controls 

across all measures; significantly so for the Shannon (4.135 in control vs 4.656 in uremic, p=0.011), 

Simpson (9.952 vs 9.975, p=0.01) and Inverse Simpson (40.74 vs 62.59, p=0.012) indices. Although this 

was chiefly driven by the highly diverse uremic samples in the Al-Asmakh2020 cohort, a trend towards 

increased alpha diversity was seen universally across all measures of diversity in every rat cohort. No 

measures of alpha diversity showed significant differences between control and uremic samples in mice. 

Beta dispersion was assessed to test the hypothesis that kidney disease increases the heterogeneity of gut 

communities, but no reproducible differences were seen between groups, supplementary data table 3.  

 

 

Samples from control and uremic animals cluster apart in most cohorts 

Plots of redundancy analysis ordination for log-ratio transformed datasets at the level of individual ASVs 

were constructed for all cohorts (figure 4). Samples from uremic animals clustered separately from those 

from control animals in most cohorts, and this was confirmed using PerMANOVA which quantified 

significant between-group differences associated with kidney disease in seven of the ten cohorts. 

Nevertheless, significantly divergent clustering between similarly treated animals (seemingly attributable 

to cage effects) was seen in a number of cohorts; especially the Mishima2015, Nanto-Hara2020, 

Randall2019a and Randall2021b cohorts. 
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Kidney disease is associated with reduced abundances of health-associated taxa and an increased 

abundance of opportunistic species in some cohorts 

The ANCOM2 methodology was used to assess differential abundances of bacterial taxa between control 

and uremic samples in all cohorts, at each taxonomic level between individual ASVs and phyla 

(supplementary data table 4).  

In two cohorts (Al-Asmakh2020 and Vaziri2013), a classically dysbiotic picture emerged with reductions 

in health-associated taxa (prominently genus Lactobacillus, also Bacteroides and Akkermansia), an 

increase in Gram-negative bacteria (including families from the class Gammaproteobacteria, such as 

Enterobacteriaceae and Pseudomonadaceae); and an increase in families from the high-GC content, 

Gram-positive phylum Actinobacteria (including Corynebacteriaceae and Bifidobacteriaceae).  

However, these changes were not seen universally, and in some cohorts – including the Randall2019a and 

Kikuchi2017 cohorts which did not show significantly differential clustering in ordination plots and 

PerMANOVA – there were no differentially abundant taxa between control and uremic groups at any 

taxonomic level. In other cohorts, conflicting results were seen, such as in the two mouse cohorts 

Mishima2015 and Nanto-Hara2020, where some Lactobacillus species were seen to increase in 

abundance in samples from uremic animals, an opposite trend from that seen in the Al-Asmakh2020 and 

Vaziri2013 cohorts. 

To assess whether similar trends were seen across multiple groups, the mean relative abundance of all 

families was compared between control and uremic animals within each sequencing cohort (figure 5). 

There were no families or organisms for which kidney disease caused uniform changes in relative 

abundance across all cohorts. However, two highly prevalent taxa showed a trend to reduced abundances 
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in uremic animals (Lachnospiraceae, the most proportionally abundant family overall, present at lower 

relative abundances in uremic animals in 7/9 cohorts, and Lactobacillaceae, the third most proportionally 

abundant family overall, present at lower relative abundances in 7/8 cohorts). Other highly abundant 

families (including Oscillospiraceae and Ruminococcaceae) did not show anything approaching a 

uniform association with kidney disease. A number of lower-abundance taxa showed relatively uniform 

increases in uremic animals, including Clostridiaceae, increased in 8/9 cohorts; Erysipeltrichaceae, 

increased in 7/9 cohorts; Peptostreptococcaceae, increased in 6/7 cohorts; Tannerellaceae, increased in 

6/7 cohorts; and Eggerthellaceae, increased in 7/9 cohorts).  In most cohorts the difference in mean 

relative abundances between control and uremic samples was small, and there were no families in which 

the mean relative abundances were significantly different between control and uremic animals. 
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Discussion 

This meta-analysis demonstrates that between-cohort differences eclipse the effect of experimental kidney 

disease in explaining compositional variation between samples of rodent gut microbiota. The limitations 

of animal models of uremia means that it is impossible to say whether the greater degree of ‘uremia’ seen 

in human subjects on dialysis may exert more selective pressure than is seen in the animal models 

described in the animals studies re-analyzed here. Likewise, limitations of 16S amplicon sequencing 

(which describes only the composition, and not the activity of the microbiota),  mean it is impossible to 

determine on the basis of the data described her whether a similar population of gut microbes may be 

exhibiting a different metabolic phenotype in the gut environment of a host organism with kidney disease 

than they would in the gut environment of a healthy host.Nevertheless, these findings do fundamentally 

question the idea that kidney disease itself, in the absence of drug, dietary or behavioural interventions 

commonly used in humans with CKD, causes distinct and reproducible changes in the composition of the 

gut microbiome. 

Although it is possible that differences in experimental technique and sequencing methodologies may 

account for some of the cohort differences described in this meta-analysis, we suggest that the majority is 

likely to be accounted for by baseline differences in the gut microbiota of animals used in different 

studies. These results are consistent with previous reports showing batch variation to be a major 

confounder in microbiome research; [37] microbial variation being demonstrated based on animal vendor, 

[18, 38] differences in husbandry, [39-44] animal strain, sex and even diurnal rhythm. [45-47] 

Significant heterogeneity between experimental cohorts makes it difficult to describe with confidence any 

reproducible pattern of ‘uremic dysbiosis’. For example, whereas in the Al-Asmakh2020 and Vaziri2013 

cohorts, large and classically ‘dysbiotic’ effects were associated with induction of kidney disease, in the 

Kikuchi2017 and Randall2019a datasets (which employed the same intervention – five sixths 
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nephrectomy, in the same host species, rats),  there was no discernable difference at all between the 

microbiota of experimental groups. These data suggest that microbial community changes may vary 

widely between groups of experimental animals in response to a similar biological insult, and pose 

significant questions about the generalizability of any single-cohort rodent experiments where the gut 

microbiota might play a significant physiological or pathological role. Publication bias risks obscuring 

genuine heterogeneity of response by highlighting experiments reporting more striking results.  

A drawback of most of the studies included in this analysis is that caging was defined by treatment class 

(i.e. control animals were housed with other controls, and uremic animals with other uremics), 

presumably because of the practicalities of administering a modified feed, or allowing for different 

recovery times after sham surgery or subtotal nephrectomy. The consequence of separate housing is that it 

becomes impossible to distinguish the effects of kidney disease from the diverging effects that would be 

seen in microbiota between any two groups of animals housed in separate cages. Profound cage effects 

were seen between different groups of similarly-treated animals in a number of the cohorts analyzed 

(Mishima2015, Nanto-Hara2020, Randall2019a and Randall2021b), and in several of the cohorts there 

were ASVs present in high abundance in one experimental group but totally absent in the other group; we 

feel this situation is highly likely to reflect cage effects rather than the biological effect of kidney disease. 

Interestingly, the fewest differences between control and uremic groups were seen in cohorts where 

attempts had been made to reduce caging effects, either by moving animals between cages prior to the 

initiation of surgery to homogenize microbial populations (Randall2021a), by housing control and uremic 

animals together after post-operative recovery (Randall2019a and Randall2019b), or by housing all 

animals in individual cages (Kikuchi2017). 

We conclude that single-cohort studies comparing control and intervention animals are an unsuitable tool 

for investigating the role of the gut microbiota in health and disease. Future microbiome experiments 
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should assess baseline gut microbiota in all animals before experimental interventions are undertaken, 

allowing comparison of longitudinal changes in bacterial taxa and allowing every animal to act as its own 

control. Studies should ideally employ several batches of animals, take measures to reduce caging effects, 

and if describing ‘dysbiosis’, should demonstrate trends that transcend batch and cage variability, as has 

been advocated elsewhere. [48, 49] We furthermore suggest that meta-analysis of published data from 

different studies, such as this one, can be used to discriminate batch effects from genuine biological 

trends.    

In the specific context of experimental kidney disease, no bacterial trends could be demonstrated that 

were present universally in uremic animals across all animal cohorts.  However, the following features 

were each seen in many cohorts, implying that the common factor of kidney disease may be causative: 

increased alpha diversity (in samples from rats); an increase in lower-abundance taxa including non-

Lachnospiraceae Clostridia, Gammaproteobacteria and Actinobacteria; and a decrease in core, health-

associated taxa, particularly Lactobacillus and Lachnospiraceae. It is possible that the effect of kidney 

disease is to disrupt dominant members of the gut microbiota and create an environment where less-

prevalent, opportunist organisms, varying at species level between cohorts, can expand in number. 

However, it must be noted that some animal cohorts (eg Kikuchi2017 and Randall2019a) did not display 

even these broad trends. Reassuringly, the effects we describe in our re-analysis of others’ data are 

broadly the same as those reported by the authors in the original descriptions of their research.  

These data also present a broadly similar picture to results in published human studies. We are aware of 

twenty studies describing the molecular characterization of the gut microbiota in kidney disease; findings 

from these studies are summarized in Table 2. [8, 10-14, 50-63]  There are many differences between 

these studies in the patient populations included, sequencing techniques used and statistical analysis 

employed, and many of these studies not meet quite basic requirements for modern microbiological work, 
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as discussed in a recent review article. [64] Whilst most of these studies compare patients with end-stage 

renal disease on dialysis with healthy controls, several consider those with much milder renal impairment 

[8, 13, 56, 58]. Similar to the rodent data reviewed in this paper, there is a significant degree of 

heterogeneity in the results described by authors, alongside some broader themes that may reflect the 

effect of kidney disease, and in some case match trends in the animal data presented here. Measures of 

alpha diversity were reported in 11/20 studies; in six diversity was reduced in kidney disease [8, 11, 13, 

50, 59, 61], in three it was not significantly different [9, 12, 14] and in two it was increased [56, 65]. 

Eleven studies reported the results of ordination between samples; in five there was clear separation 

between control and kidney disease samples [11-13, 50, 52]; in two samples there was partial separation 

[53, 61] and in five there was no separate clustering; [8, 14, 56, 58, 66] although two of these studies 

noted that samples from kidney disease subjects showed a greater degree of beta dispersion than those 

from controls. [14, 58] At the level of individual microbial taxa, changes in abundance between subjects 

with kidney disease and controls were especially notable for Enterobacteriaceae (where the whole family, 

or subtaxa within it, were increased in subjects with kidney disease in 13 studies, [8, 10, 11, 14, 50, 53, 

56, 57, 60-62, 65] but decreased in five [11, 12, 50, 54, 60]), Clostridia (increased in subjects with kidney 

disease in four studies [10, 11, 13, 53] but decreased in one [55]), Bifidobacteria (decreased in subjects 

with kidney disease in three studies [8, 10, 60] but increased in one [12]), and a group of well-recognized, 

health-associated producers of short chain fatty acids (genera Roseburia, Faecalibacteria, Romboustia, 

Blautia and Eubacteria; decreased in subjects with kidney disease in nine studies, [11-13, 50-53, 55, 61] 

but increased in two [8, 50]). 

Many questions remain in seeking to define the relationship between kidney disease and the gut 

microbiome. Firstly, what microbiological factors underlie the heterogeneity of changes seen in response 

to kidney disease in the host organisms? Are there features of organisms, or consortia of organisms, that 

make them more or less able to survive in a uremic environment?  Longitudinal studies showing how 
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different taxa fare over time as a host organism becomes uremic may be helpful in this regard, as may in 

vitro testing of urea tolerance by batch culture. 

Secondly, might the functions of the microbiota change in kidney disease, even if structural shifts vary? 

For example, in the setting of non-alcoholic fatty liver disease it has been shown that functional changes 

in the microbiota precede compositional changes, but nevertheless affect host phenotype. [68] The family 

Lachnospiraceae (which tended to reduce in relative abundance in uremic animals) includes numerous 

species which are highly metabolically active and associated with production of short-chain fatty acids, 

which have a variety of beneficial health outcomes. [69, 70] Gammaproteobacteria, [71, 72] which we 

have shown to be variably increased in the gut microbiota of uremic animals, possess the metabolic 

potential for production of toxic molecules from dietary protein [73, 74] and production of forms of 

lipopolysaccharide which have been associated with an exaggerated inflammatory response to systemic 

endotoxemia. [75, 76]  Studies using different -omics techniques (metagenomics, metatranscriptomics, 

metabolomics, metaproteomics) may answer these key mechanistic questions. For example, recent 

metabolomic data has suggested that fears of increased toxin generation by bacteria in the context of CKD 

may be wide of the mark. [77]   

Finally, is the microbiome of uremic animals amenable to the kinds of modifications that have been 

demonstrated in other contexts, for instance using prebiotic or probiotic interventions? Studies looking at 

manipulation of the microbiota for therapeutic purposes may lead us to view the microbiome in CKD not 

primarily as a factor in pathology, but rather as a potential therapeutic resource. 

We conclude that single-cohort, intervention/control rodent studies are not fit for purpose in describing 

the effect of experimental conditions on gut microbiota, or on the wider host phenotype where the 

host:microbiome interactions might be a key pathophysiological factor in the disease process studied. We 

conclude further that there is no definite and reproducible effect of experimental kidney disease on the 
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rodent gut microbiome, but that trends seen in several different experiments may be caused by the effects 

of kidney disease. Finally, we advocate meta-analysis of repository data as a way of addressing 

experimental variation and identifying trends that transcend batch effect. 
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Figure and table legends 

 

Figure 1: Consort diagram of the meta-analysis. Searches were conducted on 24th May 2021. The 

NCBI BioProject IDs of excluded studies were PRJDB6225, PRJEB27588, PRJEB11419, 

PRJNA576633, PRJNA596575, PRJNA631843, PRJNA325943 and PRJNA492322; seven of these 

studies are published. [19-25]  BioProject IDs of included studies are shown in table 1. All datasets in the 

Greengenes repository were manually screened but none met inclusion criteria. NCBI, National Center 

for Biotechnology Information; SRA, Sequencing Reads Archive. 

 

Table 1:  Protocols for animal cohorts and techniques used for molecular characterization of gut 

microbiota in the datasets included in this study. ≠The publicly available phylochip data from the 

Vaziri2013 dataset consists of mean fluouroscopic intensity data from 4,522 probes each consisting of a 

25 bp DNA strand against a portion of the 16S rRNA gene unique to one bacterial taxon. Each of these 

probes was treated as a separate ASV for the purposes of phyloseq analysis. ǂThe Al-Asmakh2020 dataset 

included paired samples from the ileum, cecum and distal colon of each animal; we included only the 

cecal fluid samples to match the majority of other rat datasets. ASV, amplicon sequencing variant; NCBI, 

National Center for Biotechnology Information. 

 

Figure 2: Ordination plot of redundancy analysis of combined, log-ratio transformed data from all 

sequencing samples, agglomerated at family level. Each point represents an individual sample; circles 

represent samples from control animals and triangles samples from uremic animals; colors represent 

samples from different cohorts. 
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Figure 3: Proportional abundances of bacterial phyla in all experimental cohorts. Rat cohorts are on 

the top row and mouse cohorts below. Each vertical bar represents a sample from a single animal, 

grouped within cohorts with control samples on the left and uremic samples on the right. Because of the 

nature of phylochip analysis, the Vaziri2013 cohort included data for 43 phyla, including many making 

negligible contributions to the overall population, thus for the Vaziri2013 cohort only the 12 most 

abundant phyla are shown and a different legend is provided to reflect the different taxonomy used in 

phylochip analysis compared to the other datasets. The relatively high abundances of minor phyla in the 

Vaziri2013 samples may reflect increased prominence of these probes in the design of the phylochip. 

 

 

Figure 4: Ordination plots of compositionally-transformed data for all cohorts at the level of 

individual ASVs. Each point represents a sample from an individual animal, colored according to 

treatment (control vs uremic). R2 and p-values from PerMANOVA analysis of the same data are 

superimposed on each plot. Divergent clusters between similarly-treated animals seen in the 

Mishima2015, Nanto-Hara2020, Randall2019a and Randall2021b are attributed to caging effects. 
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Figure 5: Relative abundances of the fifteen most abundant families of bacteria in the overall 

dataset in uremic vs control animals within different experimental cohorts. Graphs are presented in 

order of decreasing overall abundance, with Lachnospiraceae having the highest overall relative 

abundance, Muribaculaceae the second highest, and Lactobacillaceae the third highest, and so on. Each 

point represents the mean proportional contribution of a particular family of bacteria within control or 

uremic animals in a given cohort; when a family is represented by fewer dots than the number of studies, 

this is because that family was not detected in all studies; bars link control and uremic animals within a 

given cohort so that upwards slopes suggest that the family forms a higher proportion of the microbiota in 

uremic animals within that cohort, and downwards slopes indicate that the family forms a higher 

proportion of the microbiota in control animals in that cohort. None of the differences between the 

average proportional abundances between control and uremic animals were significant by two-sample 

unequal variances t-test, and the average of all slopes on a given graph was never significantly different 

from zero by the one-sample t-test.   
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Supplementary figure and table legends 

Supplementary figure 1: Ordination plot showing axes 3 and 4 from the redundancy analysis model 

of all samples. Axis 3 represented 14.3% of total variance and axis 4 represented 6.7%. Each point 

represents an individual sample, colored according to treatment class. Ellipses represent different cohorts. 

Within most cohorts, uremic samples were clustered below and to the left of control samples, and overall 

there was a vector of [-0.035, -0.046] between the spatial mean of all uremic samples compared to the 

spatial mean of all control samples (p=0.045 and p=0.009, respectively). Furthermore there was a uniform 

negative vector of movement in both axes between the spatial mean of uremic and control samples within 

each individual cohort, implying the same microbial shifts are occurring in all datasets. 

 

Supplementary data table 1: Loadings for axes 3 and 4 in the RDA model, the basis for the scores 

plot in Supplementary data figure 1. These axes showed significant associations with the shift in spatial 

means between control and uremic samples (p=0.045 and p=0.009, respectively). The five families most 

positively and negatively associated with each axis are listed along with their respective contributions to 

the model. 

 

Supplementary data table 2: Alpha diversity. The mean alpha diversity for groups of samples is 

calculated using measures including observed amplicon sequencing variants per sample, and the Chao1 

index, the abundance-based coverage estimators (ACE) index and the Shannon, Simpson, Inverse 

Simpson and Fisher indices. Comparisons are made using all samples in the dataset between control and 

uremic samples and between rat and mouse samples; and between control and uremic samples in all and 

all mouse samples, and then within each individual cohort. Significance is assessed using the unequal 

variances t-test. Calculation of these measures for each individual sample was carried out in R using the 
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estimate_richness function in phyloseq. The Vaziri2013 cohort was not included in this analysis because 

the nature of the phylochip analysis makes the results directly incomparable with sequencing 

methodologies. 

 

Supplementary data table 3: beta dispersion. The mean beta dispersion, calculated as mean distance 

between an individual point and the group median, is calculated for all groups using the method 

developed by Anderson. [78] Comparisons are made using all samples in the dataset between control and 

uremic samples and between rat and mouse samples; and between control and uremic samples in all and 

all mouse samples, and then within each individual cohort. Significance is assessed using the unequal 

variances t-test. Calculation of these measures for each individual sample was carried out in R using the 

betadisp function in vegan. Rat samples were significantly more heterogeneous than mouse communities 

overall (average distances of individual points to group median 0.399 vs 0.312, p<0.001); however, 

uremic animals did not demonstrate increased beta dispersion compared with control animals either in the 

whole dataset (0.352 in controls vs 0.364 in uremics, p=0.53). The Vaziri2013 cohort was not included in 

this analysis because the nature of the phylochip analysis makes the results directly incomparable with 

sequencing methodologies. 

 

 

Supplementary data table 4: Bacterial taxa showing significant differences in abundance between 

control and uraemic samples at each taxonomic level within each cohort. Analysis was carried out in 

R using the ANCOM2 methodology. All significantly differentially abundant taxa at an ANCOM cut-off 

of 0.7 are included; at species level these are aggregated at genus level. 
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