1	Lytic bacteriophage vB_KmiS-Kmi2C disrupts biofilms formed by members of
2	the Klebsiella oxytoca complex, and represents a novel virus family and genus
3	
4	Fiona Newberry ¹ , Preetha Shibu ² #, Thomas Smith-Zaitlik ¹ , Mohamed Eladawy ^{1,3} ,
5	Anne L. McCartney ¹ , Lesley Hoyles ^{1*} , David Negus ^{1*}
6	
7	¹ Department of Biosciences, Nottingham Trent University, United Kingdom
8	² Life Sciences, University of Westminster, United Kingdom
9	³ Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura
10	University, Egypt
11	
12	* Corresponding authors: David Negus, <u>david.negus@ntu.ac.uk</u> ; Lesley Hoyles,
13	lesley.hoyles@ntu.ac.uk
14	# Present address: Berkshire and Surrey Pathology Services, Frimley Health NHS
15	Trust, Wexham Park Hospital, Slough, United Kingdom.
16	
17	Abbreviations: CARD, comprehensive antibiotic resistance database; KoC,
18	Klebsiella oxytoca complex; PC, protein cluster; RBP, receptor binding protein; SD,
19	standard deviation; TEM, transmission electron microscopy; TSA, tryptone soy agar;
20	TSBG, tryptone soy broth supplemented with 1 % glucose; VC, viral cluster; VFDB,
21	virulence factor database.
22	Keywords: multidrug-resistant, Klebsiella michiganensis, siphovirus, phage
23	taxonomy, biofilm.
24	Running headline: Klebsiella phage vB_KmiS-Kmi2C.

- 25 Data availability: The genome sequence of vB_KmiS-Kmi2C has been deposited
- 26 with GenBank under accession OP495736. Updated genome data for *K*.
- 27 michiganensis strains PS_Koxy1, PS_Koxy2 and PS_Koxy4 are available from
- BioProject PRJNA562720.

29 ABSTRACT

30 <u>AIMS</u>

- 31 This study aimed to characterise the lytic phage vB_KmiS-Kmi2C, isolated from
- 32 sewage water on a GES-positive strain of *Klebsiella michiganensis*.

33 METHODS AND RESULTS

- 34 Comparative phylogenetic and network-based analyses were used to characterise
- the genome of phage vB_KmiS-Kmi2C (circular genome of 42,234 bp predicted to
- 36 encode 55 genes), demonstrating it shared little similarity with other known phages.
- 37 The phage was lytic on clinical strains of K. oxytoca (n=2) and K. michiganensis
- 38 (n=4), and was found to both prevent biofilm formation and disrupt established
- 39 biofilms produced by these strains.
- 40 CONCLUSIONS
- 41 We have identified a phage capable of killing clinically relevant members of the
- 42 Klebsiella oxytoca complex (KoC). The phage represents a novel virus family
- 43 (*Dilsviridae*) and genus (*Dilsvirus*).

44 SIGNIFICANCE AND IMPACT OF THE STUDY

- 45 Identification a novel lytic phage active against clinically relevant strains of the KoC
- 46 provides an alternative to antibiotics to treat these increasingly antimicrobial-resistant
- 47 opportunistic pathogens. The unusual way in which the phage can disrupt
- 48 established biofilms may allow us to identify novel phage-based approaches for
- 49 biofilm remediation in the future.

51 INTRODUCTION

52 Bacteriophages (phages) are viruses of bacteria that infect their bacterial hosts for the purpose of replication. In the case of lytic phages, this process results 53 in lysis and destruction of the host. The potential for applying the bactericidal action 54 55 of lytic phages in a therapeutic setting was realised shortly after their discovery, with d'Herelle performing the first recorded clinical studies in 1918 (d'Herelle, 1918). 56 57 Although interest in phage therapy diminished in Western countries following the introduction of antibiotics, the emergence of multidrug-resistant pathogens has 58 59 resulted in a resurgence of interest. 60 Members of the Klebsiella oxytoca complex (KoC) are emerging as a serious health concern. The complex currently consists of several distinct phylogroups, 61 representing K. oxytoca (Ko2), K. michiganensis (Ko1, Ko5), K. grimontii (Ko6), K. 62 huaxiensis (Ko8), K. pasteurii (Ko4), K. spallanzanii (Ko3), and three unnamed novel 63 64 species (Merla et al., 2019; Yang et al., 2022). Members are phylotyped based on the sequence of their chromosomally encoded β-lactamase (*bla*_{oxy}) gene (Cosic *et* 65 66 al., 2021). KoC bacteria can cause a range of serious infections in both humans and 67 animals and are of particular concern in healthcare settings where immunocompromised patients are predisposed to potential infection. Isolates have 68 been associated with urinary tract infections, lower respiratory tract infections, 69 septicaemia, and soft-tissue injuries (Sohn, Seo & Jung, 2012; Paasch, Wilczek & 70 71 Strik, 2017; Shakya et al., 2017; Lee et al., 2019). Certain members of the complex 72 (K. oxytoca, K. pasteurii, K. grimontii, K. michiganensis) also encode the 73 kleboxymycin biosynthetic gene cluster associated with antibiotic-associated

haemorrhagic colitis (Shibu et al., 2021). Worryingly, antibiotic resistance amongst

89	Details of all strains included in this study can be found in Table 1 . All strains
88	Strain and cultivation information
87	MATERIALS AND METHODS
86	
85	analyses of vB_KmiS-Kmi2C reveal that it represents a novel genus of phage.
84	indwelling catheters and ventilators. Further extensive genomic and phylogenetic
83	by KoC bacteria such as that which occurs on medical devices, particularly
82	further determine therapeutic utility with respect to preventing or resolving biofouling
81	(Shibu et al., 2021). The anti-biofilm properties of the phage were investigated to
80	Kmi2C, isolated against a GES-5-encoding strain of K. michiganensis (PS_Koxy2)
79	to characterise the morphology, genome and host range of a lytic phage, vB_KmiS-
78	isolates would be a welcome addition to our therapeutic armoury. This study aimed
77	New treatment options for tackling drug-resistant infections caused by KoC
76	beta-lactamases and carbapenemases (Lowe et al., 2012; White et al., 2016).
75	KoC members is increasing and resistance mechanisms include extended-spectrum

were grown on nutrient agar (Sigma Aldrich) unless stated otherwise. Nutrient broth
(Sigma Aldrich) was used for overnight cultures unless stated otherwise, incubated
aerobically at 37 °C. All media used for phage assays were supplemented with
CaCl₂ and MgCl₂ (both at final concentration of 0.5 mM). The study of anonymised
clinical isolates provided by the Nottingham University Hospitals NHS Trust (NUH)
Pathogen Bank was approved by NUH Research and Innovation (19MI001).

97 Generation of hybrid genome sequences

Cell pellets from 10-ml overnight cultures grown in nutrient broth were sent to
 microbesNG (Birmingham, UK) for DNA extraction, library preparation and

100	sequencing	according	to the sec	uencing	provider's	strain-su	bmission	procedures
		,						

- 101 (refer to
- 102 https://microbesng.com/documents/24/MicrobesNG Sequencing Service Methods
- 103 v20210419.pdf for the protocol).
- 104 For Illumina sequencing, the Nextera XT Library Preparation Kit (Illumina, San
- 105 Diego, USA) was used and paired-end reads (HiSeq/NovaSeq; 2x250 bp were
- 106 generated for PS_Koxy1 (coverage 141x), PS_Koxy2 (coverage 52x) and
- 107 PS_Koxy4 (coverage 57x). Reads were adapter-trimmed using Trimmomatic 0.30
- 108 (Bolger, Lohse & Usadel, 2014) with a sliding window quality cut-off of Q15. For
- 109 Illumina/MinION hybrid genomes, long-read genomic DNA libraries were prepared
- 110 with Oxford Nanopore SQK-RBK004 kit and/or SQK-LSK109 kit with Native
- 111 Barcoding EXP-NBD104/114 (ONT, United Kingdom) using 400–500 ng of high-
- 112 molecular-weight DNA. Barcoded samples were pooled together into a single
- 113 sequencing library and loaded into a FLO-MIN106 (R.9.4.1) flow cell in a GridION
- 114 (ONT, United Kingdom). *De novo* genome assembly was performed using Unicycler
- 115 v0.4.0 (Wick et al., 2017).
- 116 The genome assemblies returned to us by microbesNG were annotated in-
- 117 house using Bakta v1.6.1, database v4.0 (Schwengers et al., 2021). RGI 6.0.0,
- 118 CARD 3.2.5 was used to predict antimicrobial resistance genes encoded within
- 119 genomes (Alcock et al., 2020). COPLA and plaSquid were used to characterise
- plasmids harboured by strains (Redondo-Salvo *et al.*, 2021; Giménez, Ferrés &
 Iraola, 2022).
- 122
- 123 Biolog GEN III MicroPlate assays

124	All strains were grown aerobically overnight on blood-free BUG agar (Biolog)
125	at 37 °C. For each assay, one to two colonies were used to inoculate Biolog
126	Inoculation Fluid B to a turbidity of 95 % (Biolog turbidimeter). Biolog Gen III plates
127	were inoculated according to the manufacturer's instructions, and incubated
128	aerobically at 37 °C for 22 h. Results were read at 540 nm using a BioTek Cytation $ ^3$
129	imaging reader spectrophotometer. All Biolog reagents and kits were purchased from
130	Technopath. Assays were carried out in triplicate for strains PS_Koxy1, PS_Koxy2
131	and PS_Koxy4.

133 Biofilm assays and their interpretation

134 Biofilm assays were performed as described previously (Stepanovic et al., 2000; Merritt, Kadouri & O'Toole, 2005; Eladawy et al., 2021). In brief, a single 135 colony of each strain was used to inoculate 5 ml of tryptone soy broth supplemented 136 137 with 1 % glucose (TSBG). Cultures were incubated aerobically for 24 h at 37 °C without shaking. The overnight cultures were diluted to 1:100 using TSBG, then 138 139 aliquots (100 µl) of the diluted cultures were introduced into wells of a 96-well plate. 140 The plates were incubated aerobically for 24 h at 37 °C without shaking. Then, the spent medium was carefully removed from each well. The wells were washed three 141 142 times with 200 µl sterile phosphate-buffered saline (pH 7.4; Oxoid) to remove any 143 non-adherent planktonic cells. The adherent cells were fixed by heat treatment at 60 144 °C for 60 min to prevent widespread detachment of biofilms prior to dye staining. The 145 adhered biofilms were then stained by addition of 1 % (w/v) crystal violet (150 µl per well) and the 96-well plate was left to incubate for 20 min. The excess stain was then 146 147 carefully removed from the wells and discarded. The 96-well plate was then carefully 148 rinsed with distilled water three times, and the plate was inverted and left at room

149	temperature until the wells were dry. The stained biofilms were solubilised by adding
150	33 % (v/v) glacial acetic acid (Sigma Aldrich) to each well (150 μI per well). After
151	solubilisation of the stained biofilms, the OD_{540} was measured and recorded for all
152	samples using a BioTek Cytation $ ^3$ imaging reader spectrophotometer. K.
153	michiganensis Ko14 and uninoculated medium were used as negative controls in
154	biofilm assays. Biological ($n=3$) and technical ($n=4$) replicates were done for all
155	strains. The mean of each isolate's OD quadruplicate readings (ODi) was calculated
156	and compared with the control cut-off OD (OD _c), which was defined as three
157	standard deviations (SD) above the mean of the negative control (3SD + mean). The
158	amount of biofilm formed was scored as non-adherent (OD _i \leq OD _C), weakly adherent
159	(OD _C < OD _i \leq 2 OD _C), moderately adherent (2 OD _C < OD _i \leq 4 OD _C) or strongly
160	adherent (4 $OD_C < OD_i$).
161	

162 Isolation of lytic phage and host range analysis

Filter-sterilised sewage samples (0.45 µm cellulose acetate filter; Millipore) 163 164 collected from mixed-liquor tanks at Mogden Sewage Treatment Works (March 165 2017) were screened against K. michiganensis strain PS_Koxy2 as described 166 previously (Smith-Zaitlik et al., 2022). Host range analysis was carried out as described previously (Smith-Zaitlik et al., 2022). After overnight incubation, overlay 167 168 assay plates were inspected for lysis, with results recorded according to a 169 modification of (Haines et al., 2021): ++, complete lysis; +, hazy lysis; 0, no visible 170 plaques. 171

Phage concentration and transmission electron microscopy (TEM) 172

173	The Vivaspin 20 50 kDa centrifugal concentrator (Cytiva) was used to
174	concentrate filter-sterilised propagated phage as described previously (Smith-Zaitlik
175	et al., 2022). For TEM, formvar/carbon-coated 200 mesh copper grids (Agar
176	Scientific) were prepared via glow discharge (10 mA, 10 s) using a Q150R ES
177	sputter coater (Quorum Technologies Ltd) and processed as described previously
178	(Smith-Zaitlik et al., 2022). Samples were visualised using a JEOL JEM-2100Plus
179	(JEOL Ltd) TEM and an accelerating voltage of 200 kV. Images were analysed and
180	annotated using ImageJ (<u>https://imagej.net/Fiji</u>).
181	
182	Phage DNA extraction and sequencing
183	Phage DNA was extracted from concentrated phage lysate using the Qiagen
184	DNeasy Blood & Tissue Kit as described previously (Smith-Zaitlik et al., 2022).
185	Sequence data were generated on our in-house Illumina MiSeq platform, with the
186	Nextera XT DNA library preparation kit (Illumina) to produce fragments of
187	approximately 500 bp. Fragmented and indexed samples were run on the sequencer
188	using a Micro flow cell with the MiSeq Reagent Kit v2 (Illumina; 150-bp paired-end
189	reads) following Illumina's recommended denaturation and loading procedures.
190	
191	Phage genome assembly and annotation
192	Quality of raw sequence data was assessed using <u>FastQC</u> v0.11.9. Reads
193	had a mean phred score above 30 and contained no adapter sequences, so data
194	were not trimmed. Genomes were assembled using SPAdes v3.15.4 (Bankevich et
195	al., 2012) and visualised using Bandage v0.8.1 (Wick et al., 2015). Contamination
196	and completeness of genomes were determined using CheckV v0.8.1 (CheckV
197	database v1.0) (Nayfach et al., 2021). Gene annotations were made using Prokka

198	(v1.14.6) with the PHROGs database (v3) (Terzian <i>et al.</i> , 2021). Genomes were
199	screened for antimicrobial resistance genes using the Resistance Gene Identifier
200	(v5.2.0) of the Comprehensive Antibiotic Resistance Database (CARD) (v3.1.4)
201	(Alcock et al., 2020), and for virulence genes using the Virulence Factor Database
202	(VFDB) (accessed: 6/6/2022) (Liu et al., 2019). Presence of temperature-lifestyle
203	genes was determined using PhageLeads (Yukgehnaish et al., 2022). An annotated
204	genome map was generated using GenoPlotR (v0.8.11) and predicted protein
205	function from the PHROGs database (Guy, Kultima & Andersson, 2010)To identify
206	potential depolymerase-associated genes, predicted protein names were searched
207	for the following terms: 'depolymerase', 'pectin', 'pectate', 'sialidase', 'levanase',
208	'xylosidase', 'rhamnosidase', 'dextranase', 'alginate', 'hyaluronidase', 'hydrolase',
209	'lyase'.

211 Comparative genome analysis

212 To generate a gene-sharing network, 21,903 phage genomes from the 213 INPHARED database (April 2022) and the query phage were clustered using 214 vConTACT2 (v0.9.22; default settings) and visualised in Cytoscape (v.3.9.1) (Bolduc 215 et al., 2017; Cook et al., 2021). The viral cluster (VC) containing the query phage 216 was determined and a proteomic phylogenetic tree generated from all phage within 217 the same VC using VipTree (v1.1.2; default settings) (Nishimura et al., 2017). 218 Klebsiella oxytoca phage genomes vB_KmiM-2Dii (accession: MZ707156) and vB_KmiM-4Dii (accession: MZ707157) were used as outliers. An additional 219 proteomic phylogenetic tree was generated from all phages within the VC and three 220 221 representative phage genomes from distantly related genera Nonagvirus (JenK1; 222 NC_029021.1), Seuratvirus (CaJan; NC_028776.1) and Nipunavirus (NP1;

223	NC_031058.1). The large terminase protein sequences were used to generate a
224	maximum likelihood phylogenetic tree with ClustalW (v.2.1) and IQTree with 1000
225	bootstraps (v1.6.12) (Thompson, Higgins & Gibson, 1994; Minh, Nguyen & von
226	Haeseler, 2013). IQModelFinder (v.1.4.2) was used with IQTree to determine the
227	model of best fit (Kalyaanamoorthy et al., 2017). The percentage of shared proteins
228	within the VC was determined using all-versus-all BLASTP (\geq 30 % identity and \geq 50
229	% sequence coverage; v2.12.0) (Turner, Kropinski & Adriaenssens, 2021). The
230	intergenomic similarity between phage within the same VC was determined using
231	VIRIDIC (v1.0) (Moraru, Varsani & Kropinski, 2020). ComplexHeatmap was used to
232	generated all heatmaps (Gu, Eils & Schlesner, 2016).

245

234 Phage–biofilm assays

235 The titre of the phage stock was determined by plaque assay using the double-layer agar technique. Briefly, phage vB_KmiS-Kmi2C was serially diluted in 236 237 phosphate-buffered saline (pH 7.4; Oxoid) and 100 µl of each phage dilution was 238 combined with 100 µl of an overnight culture of K. michiganensis PS_Koxy2 and 5 ml 239 of 0.6 % tryptone soy agar (TSA) supplemented with CaCl₂ and MgCl₂ both at a final 240 concentration of 1 mM. The mixture was gently swirled and poured onto solid TSA plates. Plates were incubated overnight at 37 °C and pfu/ml determined by 241 242 enumeration of visible plaques. The ability of vB_KmiS-Kmi2C to prevent and disrupt biofilms was examined 243 244 using a modification of a previously described protocol (Taha et al., 2018). Hosts of

246 included in the assay. For prevention of biofilms, host cultures were incubated

vB_KmiS-Kmi2C identified as moderately (2 OD_C < OD_i ≤ 4 OD_C) adherent were

247 aerobically for 24 h at 37 °C without shaking in TSBG. Overnight cultures were

diluted 1:100 with TSBG and aliquots (100 μ l) of diluted culture were introduced into wells of a 96-well plate with or without phage vB_KmiS-Kmi2C (added to a final concentration of 4.5 x 10⁸ pfu/ml to each test well). Plates were incubated without shaking for 24 h at 37 °C. Then, the supernatants were discarded, the biofilm of each well was washed to remove planktonic cells and biofilms stained as described above.

254 To investigate the disruption of established biofilms, host cultures were grown and prepared as described above prior to inoculating a 96-well plate. Plates were 255 incubated without shaking for 24 h at 37 °C to allow biofilms to form. Unattached 256 257 planktonic cells were carefully aspirated without disrupting the biomass. Phage 258 vB_KmiS-Kmi2C diluted in 100 µl TSBG was added to test wells (final titre of 4.5×108 pfu/ml) whereas control wells received only TSBG without phage. Plates were 259 260 incubated for a further 24 h at 37 °C without shaking. Supernatants were carefully discarded; the biofilm of each well was washed to remove planktonic cells and 261 262 biofilms stained as described above. Biological (n=3) and technical (n=4) replicates 263 were completed for all strains. 264 265

267 **RESULTS**

268 Host range of phage vB_KmiS-Kmi2C

269	Phage vB_KmiS-Kmi2C was isolated from sewage water on K. michiganensis
270	PS_Koxy2 (ST138), a multidrug-resistant, GES-5-positive isolate recovered from
271	human urine (Shibu et al., 2021). The phage was screened against 56 clinical and 28
272	animal isolates representing a range of Klebsiella spp. (K. michiganensis n=49, K.
273	oxytoca n=25, K. grimontii n=9, K. huaxiensis n=1) (Shibu et al., 2021; Smith-Zaitlik
274	et al., 2022). It did not infect the closely related K. michiganensis strains PS_Koxy1
275	and PS_Koxy4 (Shibu et al., 2021). vB_KmiS-Kmi2C did not infect animal isolates of
276	Klebsiella spp. (Smith-Zaitlik et al., 2022), but did infect some of the clinical K.
277	oxytoca ($n=2$) and K. michiganensis ($n=4$) strains within our extended in-house
278	collection (Smith-Zaitlik et al., 2022) (Table 1). From strain information provided by
279	the Pathogen Bank (EUCAST testing) all these strains were resistant to amoxycillin,
280	and sensitive to amikacin, ceftazidime, ceftazidime, ceftriaxone, cefuroxime,
281	ciprofloxacin, ertapenem, gentamicin, meropenem, piptazobactam and trimethoprim.
282	Strains Ko13, Ko22, Ko43 and Ko53 were sensitive to co-amoxiclav; Ko21 was
283	resistant to co-amoxiclav; no data were supplied for Ko37 and co-amoxiclav. Phage
284	vB_KmiS-Kmi2C did not exhibit depolymerase activity (i.e. it did not form haloes
285	around plaques) on any of the strains that it infected.
286	
287	Genotypic and phenotypic characterisation of the GES-positive strains

288 Our previous work had shown PS_Koxy1, PS_Koxy2 and PS_Koxy4 to be 289 very similar based on the analysis of draft genome sequence data (Shibu *et al.*, 290 2021). In this study, we generated hybrid assemblies of their genomes (**Table 2**).

291 The initial description of the strains' draft genomes (Ellington et al., 2019) 292 predicted they each harboured an identical IncQ 8,300-bp circular GES-5-positive plasmid, confirmed in this study. PS_Koxy2 and PS_Koxy4 both carried an identical 293 76,870-bp circular plasmid (replication initiation protein domain Rep_3, replicon type 294 295 IncR). The 4,448-bp plasmid carried by all three strains shared high identity with seven other plasmids, harboured by Salmonella enterica, Enterobacter spp. and K. 296 297 michiganensis (Table 3). A comparison (progressiveMauve, not shown) of the sequence of pPSKoxy2_4 with those of the other 4,448-bp plasmids in Table 3 298 showed they shared 4,446 identical sites (99.98 % pairwise identity) across their 299 length. A PlasmidMLST search returned no hits for the plasmid sequence. It was 300 301 found to be PTU-E3 (score 96.97 %) by COPLA, exceeding the 90 % threshold to 302 validate the plasmid taxonomic unit assignment [16], and to belong to mobility group MOBP1 with a Col440I replicon type by plaSquid (Giménez et al., 2022). The 303 304 plasmid was predicted by Bakta to encode six genes (MobA, MobC, two YgdI/YgdR 305 family lipoproteins, two hypothetical proteins), an origin of replication, oriT and a non-306 coding RNAI (Figure 1a). UniProt BLASTP analyses showed MobA shared 55 % 307 identity (across 517 aa) with the DNA relaxase MbeA of Escherichia coli (reviewed 308 UniProt record P13658); MobC shared 63.6 % identity (across 115 aa) with the 309 mobilisation protein MbeC of E. coli (reviewed UniProt record P13657). The 39-aa hypothetical protein was predicted by I-TASSER (Zhang, 2008) to be an alpha helix, 310 311 while the 122-aa hypothetical protein was found to include a transmembrane 312 segment (HHPRED, UniRef30 (Zimmermann et al., 2018)) that had limited structural 313 homology with only the Escherichia coli signal transduction protein PmrD (PDB:4HN7) and the Vps26 dimer region of a fungal vacuolar protein sorting-314 associated protein (PDB:7BLQ). 315

316	PS_Koxy4 could be differentiated from PS_Koxy1 and PS_Koxy2 by
317	phenotypic traits determined using the Biolog GEN III system (Table <u>4</u>). PS_Koxy1
318	and PS_Koxy2 were resistant to the tetracycline antibiotic minocycline; both were
319	predicted to encode the tetracycline efflux pump tet(A) on incompletely assembled
320	plasmids (contig_3 PS_Koxy1, predicted to be FIIK by PlasmidMLST; contig_2
321	PS_Koxy2, predicted to be IncA/C ST12 by PlasmidMLST), but this gene was absent
322	from the genome of PS_Koxy4, with the strain sensitive to minocycline (Figure 1b,
323	Table <u>4</u>).
324	
325	Biofilm-forming ability of strains used in this study
326	We determined the biofilm-forming ability of strains used in this study as
327	described previously (Taha et al., 2018). Our results show a wide range of biofilm-
328	forming abilities among the strains (Figure 2a; Supplementary Table 1), yet there
329	was no difference in the virulence factor profiles of PS_Koxy1, PS_Koxy2 and
330	PS_Koxy4 according to a VFDB (Liu et al., 2019) analysis (Supplementary Table
331	2). Strains K. michiganensis PS_Koxy1, K. michiganensis Ko13, K. michiganensis
332	Ko21 and K. michiganensis Ko22 were identified as weakly adherent (OD_C < OD_i ≤ 2
333	OD _c). Strains K. michiganensis PS_Koxy2, K. michiganensis PS_Koxy4, K. oxytoca
334	Ko37, K. oxytoca Ko43 and K. oxytoca Ko53 were identified as moderately adherent
335	(2 $OD_C < OD_i \le 4 OD_C$). K. michiganensis Ko14 was used as a non-adherent
336	negative control (OD _i \leq OD _C).
337	
338	Capacity of phage vB_KmiS-Kmi2C to prevent and disrupt biofilms

Phage vB_KmiS-Kmi2C was found to be highly effective at both preventing
(Figure 2b) and disrupting (Figure 2c) biofilms formed by isolates identified as

341	susceptible to lysis. Presence of vB_KmiS-Kmi2C was found to reduce biofilm
342	formation for all strains included in the study. This reduction was found to be
343	significant ($P < 0.01$) for three of the isolates tested (PS_Koxy2, Ko37 and Ko53)
344	compared to no-phage controls. Addition of vB_KmiS-Kmi2C to pre-established
345	biofilms also resulted in biofilm disruption, seen as a reduction in measured biofilm
346	compared to non-phage-treated controls. Biofilm disruption was determined to be
347	significant ($P < 0.05$) for isolates PS_Koxy2 and Ko37 compared to non-phage
348	treated controls.

350 Morphology of phage vB_KmiS-Kmi2C

351 TEM showed vB_KmiS-Kmi2C to have a siphovirus-like morphology (Figure
352 3). It had a long, non-contractile tail. The capsid diameter was 59.6 nm (SD 2.3 nm),
353 the tail and baseplate were 157.8 nm in length (SD 5.1 nm), and the phage had a
354 total length of 218.11 nm (SD 4.8) (*n*=3 measurements).

355

356 Genome of phage vB_KmiS-Kmi2C

357 The genome of phage vB_KmiS-Kmi2C was assembled into a single contig, 358 with 100 % completeness according to CheckV (Nayfach et al., 2021). Assembly of the phage was confirmed using visualisation with Bandage (Supplementary Figure 359 1). It comprised 42,234 bp (816 \times coverage) and was predicted to encode 55 genes 360 361 (upper panel Figure 4). The genome is arranged into functional modules as typically 362 seen in phage genomes: replication/regulation, viral structure, DNA packaging and lysis. Interesting genomic features of the genome included a Sak4-like ssDNA 363 364 annealing protein with single-strand DNA-binding protein, a Cas4-domain 365 exonuclease, a holin and a Rz-like spanin.

366	Analysis using NCBI BLASTN showed the genome of vB_KmiS-Kmi2C
367	shared 85.6 % identity (80 % query coverage) with a phage metagenome-assembled
368	genome (accession OP072809) recovered from human faeces in Japan (Nishijima et
369	al., 2022). Preliminary analysis of the genome sequence using the online version of
370	ViPTree suggested the phage was novel (not shown). Further support for this came
371	from genomic similarity analysis (Supplementary Figure 2) and analyses of
372	protein-protein network data using vConTACT (Figure 5). According to vConTACT,
373	vB_KmiS-Kmi2C shared a VC with 38 other known phage from a range of genera:
374	Septimatrevius (n=24), Lokivirus (n=6), Titanvirus (n=4), Pradovirus (n=1),
375	Kilunavirus (n=1) and 2 unclassified genera. The VC did not contain any other phage
376	isolated using <i>Klebsiella</i> and the majority of phage had <i>Pseudomonas</i> as an
377	assigned host (Figure 6). The intergenomic similarity within the VC ranged from 100
378	% to 2 $%$, with the highest similarity noted between phage within the same genus
379	(Supplementary Figure 2). vB_KmiS-Km2iC showed the highest genomic similarity
380	(18.8 %) to Septimatrevirus vB_Pae-Kakheti25, a Pseudomonas phage. The genera
381	Titanvirus, Lokivirus, Septimatrevirus do not currently belong to any recognised
382	phage family, whereas <i>Pradovirus</i> belongs to the Autographiviridae, which are
383	podovirus-like in terms of their morphology. Therefore, we suggest vB_KmiS-Kmi2C
384	does not belong to any currently recognised phage family.
385	The vConTACT output was used to determine the shared protein clusters
386	(PCs) within the VC compared to phage vB_KmiS-Kmi2C (lower panel Figure 4). Of
387	the 53 PCs identified in vB_KmiS-Kmi2C, 14 were shared between all phage within
388	the VC (007793 Cas4-domain exonuclease (KJBENDCP_00001); 006166 DNA
389	helicase (KJBENDCP_00002); 006824 DNA polymerase processivity factor
390	(KJBENDCP_00003): 004149 DNA polymerase (KJBENDCP_00004): 005059 tail

391 length tape measure protein <u>(KJBENDCP_00011)</u>; 005663 Neck1 protein

392 (KJBENDCP_00012); 005850 minor tail protein (KJBENDCP_00015); 008503 tail

393 terminator (KJBENDCP_00016); 005899 head-tail adaptor Ad1

394 (KJBENDCP_00018); 003930 head scaffolding protein (KJBENDCP_00022);

395 002520 portal protein (KJBENDCP 00023); 005106 terminase large subunit

396 (KJBENDCP_00024); 007093 Sak4-like ssDNA annealing protein

(KJBENDCP_00053); 008553 ssDNA binding protein (KJBENDCP_000154)). Seven
 of the shared PCs were associated with viral structure and six were associated with
 viral replication/regulation. vB_KmiS-Kmi2C shared the most PCs with *Erwinia*

400 phage AH03, including <u>most</u> of the viral structure genome module.

401 Protein-based phylogenetic analysis with VipTree showed phages within the 402 VC grouped according to the assigned genus, with vB_Kmi2S_Kmi2C not within the 403 defined genus groups (Figure 6). vB_KmiS-Kmi2C showed the closest relationship 404 to Erwinia phage AH03, as previously noted in the lower panel of Figure 4. A 405 representative species from three closely related genera were included in a further 406 protein-based phylogenetic analysis to determine if vB_KmiS-Kmi2C grouped with 407 genera outside the VC defined by vConTACT: Nipunavirus NP1 (NC_031058), 408 Nonagavirus JenK1 (NC_024146) and Seuratvirus Cajan (NC_028776) (Supplementary Figure 3). Analysis of the shared protein percentage within the 409 viral cluster was consistent with the intergenomic similarity and protein phylogenetic 410 411 analysis (Supplementary Figure 4). The phage belonging to the same genera 412 shared the highest percentage of proteins. vB_KmiS-Kmi2C shared the highest percentage of proteins with Pseudomonas phage Septimatrevirus KP1 and Erwinia 413 414 phage AH03. This confirmed that vB_KmiS-Kmi2C does not belong to any currently 415 defined genus of phage.

416	Given that vB_KmiS-Kmi2C represents a novel family, genus and species of
417	phage, we propose the following taxonomy: <i>Duplodnaviria</i> > <i>Heunggongvirae</i> >
418	Uroviricota > Caudoviricetes > Dilsviridae > Dilsvirus > vB_KmiS-Kmi2C.
419	

420 DISCUSSION

421 There has been a significant research effort into the investigation of phages 422 for the treatment of K. pneumoniae infections and we have recently authored an extensive review on phages of Klebsiella spp. (Herridge et al., 2020). However, there 423 424 are relatively few studies documenting the isolation and characterisation of lytic 425 phages against members of the KoC (Kesik-Szeloch et al., 2013; Townsend et al., 2021; Smith-Zaitlik et al., 2022), an emerging group of clinical and veterinary 426 pathogens with growing antibiotic resistance. As such, we set out to identify phages 427 with the capacity to lyse clinically relevant members of the KoC. We have previously 428 429 reported on the characterisation of two such phages with lytic activity against 430 numerous species within the KoC (Smith-Zaitlik et al., 2022). Here, we report on the 431 characterisation of phage vB_KmiS-Kmi2C isolated against a carbapenem-resistant 432 isolate of K. michiganensis (PS_Koxy2) (Shibu et al., 2021), for which we generated 433 a hybrid genome assembly and phenotypic data to allow it to be differentiated from 434 closely related strains (PS_Koxy1, PS_Koxy4) from our in-house collection. 435 There were clear differences in the biofilm-forming abilities of the three GES-5 436 -positive strains, yet all strains encoded the same virulence factors (Supplementary 437 Table 2). We did not compare protein sequences of the virulence factors across the 438 strains. It is acknowledged that our understanding of KoC phenotypes is poor (Yang et al., 2022), and our future work will look to address how differences in biofilm-439

Commented [LH1]: Do we need to do anything else here? E.g. for bacteria, you have to provide the etymology as well as the novel names. forming abilities of KoC members and their genetic differences contribute to survivaland potentially pathogenicity.

While the three strains all carried two small (4,448 and 8,300 bp) plasmids, 442 only PS_Koxy2 and PS_Koxy4 carried a 76,860-bp plasmid. This and the other 443 444 larger plasmids carried by the strains will be described elsewhere as part of ongoing 445 work. The 8,300-bp IncQ plasmid carried by the three strains has been described 446 elsewhere (Ellington et al., 2019). While the 4,448-bp plasmid (mobility group 447 MOBP1, replicon type Col440I) has been detected in a strain of K. michiganensis previously (AbuOun et al., 2021), it has not been described in detail. Based on its 448 449 gene content (specifically, MobA/MobC), we predict the plasmid to be conjugative plasmid. The MobA and MobC functional homologues MbeA and MbeC, 450 451 respectively, are required for efficient mobilisation of the CoIE1 plasmid (Varsaki et

452 al., 2012).

453

454 Host range analysis and anti-biofilm properties

455 Understanding the lytic profile of any individual phage is important for its 456 potential deployment in a clinical setting, either in an isolated form or for inclusion in a phage cocktail that may increase host range and potentially suppress phage 457 458 resistance (Yang et al., 2020). Ordinarily, phage host range is narrow, sometimes down to the strain level. In accordance with this, we found that vB_KmiS-Kmi2C 459 exhibits a relatively narrow host range, lysing six clinical isolates from the KoC out of 460 461 a panel of 84 isolates representing a range of clinical and animal Klebsiella spp. 462 To further characterise the therapeutic potential of vB_KmiS-Kmi2C, 463 experiments were performed to determine the phage's capacity to prevent and disrupt biofilms formed by the clinical isolates susceptible to lysis in our host range 464

465	analysis. Biofilm formation can reduce the efficacy of antibiotic chemotherapy and
466	contributes to the successful colonisation of wounds and indwelling medical devices
467	(Wang et al., 2020). Therefore, phages with anti-biofilm properties may make
468	particularly attractive the rapeutics. We found that vB_KmiS-Kmi2C is highly effective
469	at both preventing biofilm formation and disrupting established biofilms. It is likely
470	that prevention of biofilm formation is largely due to the lytic action of the phage,
471	resulting in cell death and the prevention of biofilm formation. However, established
472	biofilms can be extremely recalcitrant to disruption. This is likely due to the complex
473	nature of mature biofilms which are typically composed of numerous
474	macromolecules including, polysaccharides, proteins, nucleic acids and
475	metabolically inactive cells (Chhibber, Nag & Bansal, 2013). Phage-mediated
476	disruption of K. michiganensis biofilms has been previously reported in the literature
477	(Ku et al., 2021). The lytic phage KMI8 was shown to disrupt a
478	K. michiganensis mono-biofilm produced by a strain expressing the polysaccharide
479	capsule KL70 locus. It was hypothesised this antibiofilm activity was largely due to
480	the activity of a potential phage-associated depolymerase, identified as a putative
481	endosialidase encoded within the KMI8 genome. The antibiofilm effects of phages
482	against K. oxytoca have also been investigated (Townsend, Moat & Jameson, 2020).
483	A recent study showed that phages originally isolated against K. pneumoniae were
484	able to reduce the viability of K. oxytoca biofilms when added at the start of biofilm
485	formation. However, the same phages were unable to reduce the viability of
486	established K. oxytoca biofilms. Here, we found that vB_KmiS-Kmi2C is highly
487	effective at disrupting established biofilms formed by both K. michiganensis and K.
488	oxytoca. In the present study, we found no evidence of depolymerase activity
489	associated with vB_KmiS-Kmi2C. Plaques on susceptible host lawns did not show

490 evidence of haloes which are typically indicative of depolymerase activity. 491 Furthermore, our bioinformatic analysis did not identify any genes associated with depolymerase activity. Studies are therefore ongoing to determine the mechanism of 492 493 biofilm disruption used by vB_KmiS-Kmi2C. 494 495 Phage vB_KmiS-Kmi2C represents a new genus 496 Whole-genome sequencing is important for the identification of features relevant to phage therapy and for aiding taxonomic classification. Genomic analysis 497 498 using the resistance gene identifier tool available through the comprehensive 499 antibiotic resistance database did not identify the presence of known antimicrobial resistance mechanisms within the genome of vB_KmiS-Kmi2C. The presence of 500 501 such genes would suggest the potential to transfer antibiotic resistance markers between bacteria if vB_KmiS-Kmi2C were to be applied therapeutically in a 502 503 polymicrobial setting. PhageLeads did not detect the presence of classical lysogeny 504 genes, suggesting vB_KmiS-Kmi2C is exclusively lytic. 505 Initial genome sequence analysis of vB_KmiS-Kmi2C using BLASTN and 506 ViPTree suggested that our phage was novel, sharing little sequence similarity with 507 other deposited phage genomes. To aid with taxonomy, we employed the gene-508 sharing network analysis tool vConTACT2. Phage taxonomic assignment using whole genome gene-sharing profiles has been shown to be highly accurate; a recent 509 510 study showed that vConTACT2 produces near-identical replication of existing genus-511 level viral taxonomy assignments from the International Committee on Taxonomy of 512 Viruses (ICTV) (Bin Jang et al., 2019). Our analysis using vConTACT2 and the INPHRARED database of phage genomes identified that vB_KmiS-Kmi2C shared a 513 514 VC with 38 other sequenced phages. The VC was polyphyletic, containing phage

515	from at least five different genera, suggesting that vB_KmiS-Km2iC did not group
516	with any existing genus. Recently published guidelines have suggested that for
517	genome-based phage taxonomy, assignment to taxonomic ranks should be based
518	on nucleotide sequence identity across entire genomes (Adriaenssens & Brister,
519	2017; Turner et al., 2021). These guidelines suggest any two phages belong to the
520	same species if they are more than 95 % identical across their genome and belong
521	to the same genus if they are more than 70 % identical. We used VIRIDIC to
522	determine the intergenomic similarity between vB_KmiS-Kmi2C and the 38 other
523	phages identified within the VC. Our findings show that based on these criteria,
524	vB_KmiS-Kmi2C cannot be assigned to any current species or genus as it shares
525	only 18.8 % genomic similarity to Septimatrevirus vB_Pae-Kakheti25, a
526	Pseudomonas phage, the closest nucleotide sequence relative we could identify.
527	Most of the phages within the VC (21/38) were identified as infecting bacteria
528	belonging to the genus Pseudomonas. According to the GenBank accession details
529	associated with the genomes of these phages, they were all isolated-on strains of P.
530	aeruginosa. A preliminary screen of vB_KmiS-Kmi2C against a panel of 11 P.
531	aeruginosa isolates did not identify any lytic activity against members of this species
532	(data not shown).
533	In addition to identifying phages belonging to a VC, vConTACT2 can also
534	identify proteins shared by members within the VC. Our analysis found that 14
535	proteins were shared between all phages within the VC, of which seven were
536	associated with viral structure and six were associated with viral
537	replication/regulation. At least 35 of the phages within the VC are from genera with
538	siphovirus-like morphology. It is therefore unsurprising that phages within the cluster
539	share several proteins related to general structure/morphology.

540 Phage vB_KmiS-Kmi2C is the only member of the VC known to infect members of the genus Klebsiella. Host-cell tropism is often determined by receptor-541 binding proteins (RBPs) which mediate recognition and attachment to host cells 542 543 (Dams et al., 2019). RBPs are typically identified as phage tail fibres or spikes 544 (Nobrega et al., 2018). The genomic region of vB_KmiS-Kmi2C encoding 545 hypothetical tail fibre proteins can be seen in Figure 4 and comprises proteins 546 088411, 095417, 028210, 033709, 031062 and 060189 (KJBENDCP_00005 to 547 KJBENDCP 00010). Unannotated proteins within this region were confirmed to 548 share homology with phage tail fibre proteins by HHPred analysis using an e-value 549 cut-off of >10⁻⁵. The tail fibre proteins of vB_KmiS-Kmi2C are not widely present within the VC and are typically shared by only one or two phages within the cluster. 550 This may explain the host tropism of vB_KmiS-Kmi2C compared to other members 551 of the VC but further experimentation will be required to determine this. Protein 552 553 005059 (KJBENDCP_00011) is a predicted tail length tape measure protein; such 554 proteins are involved in determining tail length and participate in DNA injection into 555 the host-cells and are not involved in host recognition (Mahony et al., 2016). 556 Our additional protein-based phylogenetic analyses, including phages from outside the VC, highlighted that vB_Kmi2S_Kmi2C does not group with any genera 557 included in the analyses and as such does not belong to any currently defined genus 558 559 of phage. Phages are recognised as the most abundant biological entities on the planet 560 561 and exhibit extensive biological diversity (Hendrix, 2002). With an estimated 10³¹

562 phage virions in the biosphere (Hatfull, 2015) and 14,244 complete phage genomes 563 sequenced as of 2021 (Cook *et al.*, 2021), it is clear we have characterised a

relatively small number of distinct phages. However, with the cost of genome

565	sequencing falling and the capacity to assemble phage genomes from metagenome
566	sequence data, it is likely that the number of novel phages identified will increase
567	rapidly. The classification of phages representing entirely novel genera or
568	families/sub-families poses a challenge for taxonomy, especially when new isolates
569	share little sequence similarity with previously characterised phages. Previously,
570	tailed phages were assigned to a family based on morphology, with the families
571	Podoviridae, Myoviridae and Siphoviridae belonging to the order Caudovirales.
572	However, the increase in available phage sequence data has shown that these
573	families are paraphyletic. It has, therefore, been suggested that they are abolished,
574	and that phage morphology should no longer play a role in classification (Turner et
575	al., 2021). Based on recently updated guidelines for the classification of phage
576	based on nucleotide sequence identity, and subsequent protein based phylogenetic
577	analyses, we show here that phage vB_KmiS-Kmi2C represents a new genus.
578	
579	AUTHOR CONTRIBUTION STATEMENT

Conceptualisation: FN, PS, LH, DN. Data curation: all authors. Formal
analysis: FN, TSZ, PS, ME, ALM, LH, DN. Funding acquisition: PS, ALM, LH.
Investigation: FN, TSZ, PS, ME, ALM, LH, DN. Methodology: FN, ME, LH, DN.
Resources: ALM, LH, DN. Supervision: ALM, LH, DN. Visualisation: FN, LH, DN.
Writing – original draft: FN, ME, LH, DN. Writing – reviewing and editing: all authors.
ACKNOWLEDGEMENTS

PS was in receipt of an IBMS Research Grant (project title "Isolation of lytic bacteriophages active against antibiotic-resistant *Klebsiella pneumoniae*"). Imperial Health Charity is thanked for contributing to registration fees for the Professional

- 590 Doctorate studies of PS. ME is supported by the Egyptian Government Ministry of
- 591 Higher Education/Egyptian Cultural and Education Bureau. This work used
- 592 computing resources funded by the Research Contingency Fund of the Department
- 593 of Biosciences, Nottingham Trent University (NTU). TSZ completed this work as part
- 594 of an MRes degree at NTU.
- 595

596 **REFERENCES**

597	AbuOun, M., Jones, H., Stubberfield, E., Gilson, D., Shaw, L.P., Hubbard, A.T.M., Chau, K.K., Sebra, R.,
598	Peto, T.E.A., Crook, D.W., Read, D.S., Gweon, H.S., Walker, A.S., Stoesser, N., Smith, R.P.,
599	Anjum, M.F. and On Behalf Of The Rehab Consortium, null (2021) A genomic
600	epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales
601	is associated with the livestock host, as well as antimicrobial usage. Microb Genomics. 7,
602	000630.

- Adriaenssens, E. and Brister, J.R. (2017) How to Name and Classify Your Phage: An Informal Guide.
 Viruses. 9, E70.
- Alcock, B.P., Raphenya, A.R., Lau, T.T.Y., Tsang, K.K., Bouchard, M., Edalatmand, A., Huynh, W.,
 Nguyen, A.-L.V., Cheng, A.A., Liu, S., Min, S.Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R.E.,
 Nasir, J.A., Oloni, M., Speicher, D.J., Florescu, A., Singh, B., Faltyn, M., HernandezKoutoucheva, A., Sharma, A.N., Bordeleau, E., Pawlowski, A.C., Zubyk, H.L., Dooley, D.,
 Griffiths, E., Maguire, F., Winsor, G.L., Beiko, R.G., Brinkman, F.S.L., Hsiao, W.W.L.,
 Domselaar, G.V. and McArthur, A.G. (2020) CARD 2020: antibiotic resistome surveillance
 with the comprehensive antibiotic resistance database. *Nucleic Acids Res.* 48, D517–D525.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko,
 S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev,
 M.A. and Pevzner, P.A. (2012) SPAdes: a new genome assembly algorithm and its
 applications to single-cell sequencing. *J Comput Biol J Comput Mol Cell Biol.* 19, 455–477.
- 616 Bin Jang, H., Bolduc, B., Zablocki, O., Kuhn, J.H., Roux, S., Adriaenssens, E.M., Brister, J.R., Kropinski,
 617 A.M., Krupovic, M., Lavigne, R., Turner, D. and Sullivan, M.B. (2019) Taxonomic assignment
 618 of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. *Nat* 619 *Biotechnol.* 37, 632–639.
- Bolduc, B., Jang, H.B., Doulcier, G., You, Z.-Q., Roux, S. and Sullivan, M.B. (2017) vConTACT: an iVirus
 tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. *PeerJ.* 5,
 e3243.
- 623 Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence 624 data. *Bioinforma Oxf Engl.* **30**, 2114–2120.
- Chhibber, S., Nag, D. and Bansal, S. (2013) Inhibiting biofilm formation by Klebsiella pneumoniae
 B5055 using an iron antagonizing molecule and a bacteriophage. *BMC Microbiol.* 13, 174.

627	Clokie, M.R., Millard, A.D., Letarov, A.V. and Heaphy, S. (2011) Phages in nature. Bacteriophag	ge. 1 ,
628	31–45.	

- Cook, R., Brown, N., Redgwell, T., Rihtman, B., Barnes, M., Clokie, M., Stekel, D.J., Hobman, J., Jones,
 M.A. and Millard, A. (2021) INfrastructure for a PHAge REference Database: Identification of
 Large-Scale Biases in the Current Collection of Cultured Phage Genomes. *PHAGE*. 2, 214–223.
- Cosic, A., Leitner, E., Petternel, C., Galler, H., Reinthaler, F.F., Herzog-Obereder, K.A., Tatscher, E.,
 Raffl, S., Feierl, G., Högenauer, C., Zechner, E.L. and Kienesberger, S. (2021) Variation in
 Accessory Genes Within the *Klebsiella oxytoca* Species Complex Delineates Monophyletic
 Members and Simplifies Coherent Genotyping. *Front Microbiol.* 12, 692453.
- bams, D., Brøndsted, L., Drulis-Kawa, Z. and Briers, Y. (2019) Engineering of receptor-binding
 proteins in bacteriophages and phage tail-like bacteriocins. *Biochem Soc Trans.* 47, 449–460.
- Eladawy, M., El-Mowafy, M., El-Sokkary, M.M.A. and Barwa, R. (2021) Antimicrobial resistance and
 virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. *Microb Pathog.* 158, 105042.
- Ellington, M.J., Davies, F., Jauneikaite, E., Hopkins, K.L., Turton, J.F., Adams, G., Pavlu, J., Innes, A.J.,
 Eades, C., Brannigan, E.T., Findlay, J., White, L., Bolt, F., Kadhani, T., Chow, Y., Patel, B.,
 Mookerjee, S., Otter, J.A., Sriskandan, S., Woodford, N. and Holmes, A. (2019) A multi species cluster of GES-5 carbapenemase producing Enterobacterales linked by a
 geographically disseminated plasmid. *Clin Infect Dis Off Publ Infect Dis Soc Am*.
- 646 Giménez, M., Ferrés, I. and Iraola, G. (2022) Improved detection and classification of plasmids from 647 circularized and fragmented assemblies. *bioRxiv*.
- 648 Gu, Z., Eils, R. and Schlesner, M. (2016) Complex heatmaps reveal patterns and correlations in
 649 multidimensional genomic data. *Bioinforma Oxf Engl.* 32, 2847–2849.
- 650Guy, L., Kultima, J.R. and Andersson, S.G.E. (2010) genoPlotR: comparative gene and genome651visualization in R. *Bioinforma Oxf Engl.* 26, 2334–2335.
- Haines, M.E.K., Hodges, F.E., Nale, J.Y., Mahony, J., van Sinderen, D., Kaczorowska, J., Alrashid, B.,
 Akter, M., Brown, N., Sauvageau, D., Sicheritz-Pontén, T., Thanki, A.M., Millard, A.D., Galyov,
 E.E. and Clokie, M.R.J. (2021) Analysis of Selection Methods to Develop Novel Phage Therapy
 Cocktails Against Antimicrobial Resistant Clinical Isolates of Bacteria. *Front Microbiol.* 12,
 613529.
- Hatfull, G.F. (2015) Dark Matter of the Biosphere: the Amazing World of Bacteriophage Diversity. J
 Virol. 89, 8107–8110.
- Hendrix, R.W. (2002) Bacteriophages: Evolution of the Majority. *Theor Popul Biol.* **61**, 471–480.
- d'Herelle, F. (1918) Sur le rôle du microbe filtrant bactériophage dans la dysentérie bacillaire.
 Comptes Rendus Académie Sci. 167, 970–972.
- Herridge, W.P., Shibu, P., O'Shea, J., Brook, T.C. and Hoyles, L. (2020) Bacteriophages of Klebsiella
 spp., their diversity and potential therapeutic uses. *J Med Microbiol.* 69, 176–194.

664	Malyaanamoortny, S., Minn, B.Q., Wong, T.K.F., Von Haeseler, A. and Jermin, L.S. (2017)
665	ModelFinder: fast model selection for accurate phylogenetic estimates. <i>Nat Methods</i> . 14 ,
666	587–589.
667	Kęsik-Szeloch, A., Drulis-Kawa, Z., Weber-Dąbrowska, B., Kassner, J., Majkowska-Skrobek, G.,
668	Augustyniak, D., Łusiak-Szelachowska, M., Żaczek, M., Górski, A. and Kropinski, A.M. (2013)
669	Characterising the biology of novel lytic bacteriophages infecting multidrug resistant
670	<i>Klebsiella pneumoniae. Virol J.</i> 10 , 100.
671	Ku, H., Kabwe, M., Chan, H.T., Stanton, C., Petrovski, S., Batinovic, S. and Tucci, J. (2021) Novel
672	Drexlerviridae bacteriophage KMI8 with specific lytic activity against Klebsiella michiganensis
673	and its biofilms. <i>PLOS ONE</i> . 16 , e0257102.
674	Lee, S.H., Ruan, SY., Pan, SC., Lee, TF., Chien, JY. and Hsueh, PR. (2019) Performance of a
675	multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main
676	determinants of resistance from the lower respiratory tract specimens of adult patients in
677	intensive care units. J Microbiol Immunol Infect. 52, 920–928.
678 679	Liu, B., Zheng, D., Jin, Q., Chen, L. and Yang, J. (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. <i>Nucleic Acids Res.</i> 47 , D687–D692.
680	Lowe, C., Willey, B., O'Shaughnessy, A., Lee, W., Lum, M., Pike, K., Larocque, C., Dedier, H., Dales, L.,
681	Moore, C., McGeer, A., and the Mount Sinai Hospital Infection Control Team (2012)
682	Outbreak of Extended-Spectrum β-Lactamase–producing <i>Klebsiella oxytoca</i> Infections
683	Associated with Contaminated Handwashing Sinks1. <i>Emerg Infect Dis.</i> 18 , 1242–1247.
684	Mahony, J., Alqarni, M., Stockdale, S., Spinelli, S., Feyereisen, M., Cambillau, C. and Sinderen, D. van
685	(2016) Functional and structural dissection of the tape measure protein of lactococcal phage
686	TP901-1. <i>Sci Rep</i> . 6 , 36667.
687	Merla, C., Rodrigues, C., Passet, V., Corbella, M., Thorpe, H.A., Kallonen, T.V.S., Zong, Z., Marone, P.,
688	Bandi, C., Sassera, D., Corander, J., Feil, E.J. and Brisse, S. (2019) Description of Klebsiella
689	spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. <i>Front Microbiol</i> . 10 , 2360.
690	Merritt, J.H., Kadouri, D.E. and O'Toole, G.A. (2005) Growing and analyzing static biofilms. <i>Curr</i>
691	Protoc Microbiol. Chapter 1 , Unit 1B.1.
692	Minh, B.Q., Nguyen, M.A.T. and von Haeseler, A. (2013) Ultrafast Approximation for Phylogenetic
693	Bootstrap. <i>Mol Biol Evol</i> . 30 , 1188–1195.
694	Moraru, C., Varsani, A. and Kropinski, A.M. (2020) VIRIDIC—A Novel Tool to Calculate the
695	Intergenomic Similarities of Prokaryote-Infecting Viruses. <i>Viruses</i> . 12 , 1268.
696 697 698	Nayfach, S., Camargo, A.P., Schulz, F., Eloe-Fadrosh, E., Roux, S. and Kyrpides, N.C. (2021) CheckV assesses the quality and completeness of metagenome-assembled viral genomes. <i>Nat Biotechnol.</i> 39 , 578–585.
699	Nishijima, S., Nagata, N., Kiguchi, Y., Kojima, Y., Miyoshi-Akiyama, T., Kimura, M., Ohsugi, M., Ueki,
700	K., Oka, S., Mizokami, M., Itoi, T., Kawai, T., Uemura, N. and Hattori, M. (2022) Extensive gut
701	virome variation and its associations with host and environmental factors in a population-
702	level cohort. <i>Nat Commun.</i> 13 , 5252.

703 704	Nishimura, Y., Yoshida, T., Kuronishi, M., Uehara, H., Ogata, H. and Goto, S. (2017) ViPTree: the viral proteomic tree server. <i>Bioinforma Oxf Engl.</i> 33 , 2379–2380.
705	Nobrega, F.L., Vlot, M., de Jonge, P.A., Dreesens, L.L., Beaumont, H.J.E., Lavigne, R., Dutilh, B.E. and
706	Brouns, S.J.J. (2018) Targeting mechanisms of tailed bacteriophages. <i>Nat Rev Microbiol</i> . 16 ,
707	760–773.
708 709	Paasch, C., Wilczek, S. and Strik, M.W. (2017) Liver abscess and sepsis caused by <i>Clostridium</i> perfringens and Klebsiella oxytoca. Int J Surg Case Rep. 41 , 180–183.
710	Redondo-Salvo, S., Bartomeus-Peñalver, R., Vielva, L., Tagg, K.A., Webb, H.E., Fernández-López, R.
711	and de la Cruz, F. (2021) COPLA, a taxonomic classifier of plasmids. <i>BMC Bioinformatics</i> . 22 ,
712	390.
713	Schwengers, O., Jelonek, L., Dieckmann, M.A., Beyvers, S., Blom, J. and Goesmann, A. (2021) Bakta:
714	rapid and standardized annotation of bacterial genomes via alignment-free sequence
715	identification. <i>Microb Genomics</i> . 7 .
716 717 718	Shakya, P., Shrestha, D., Maharjan, E., Sharma, V.K. and Paudyal, R. (2017) ESBL Production Among <i>E. coli</i> and <i>Klebsiella</i> spp. Causing Urinary Tract Infection: A Hospital Based Study. <i>Open Microbiol J.</i> 11 , 23–30.
719	Shibu, P., McCuaig, F., McCartney, A.L., Kujawska, M., Hall, L.J. and Hoyles, L. (2021) Improved
720	molecular characterization of the <i>Klebsiella oxytoca</i> complex reveals the prevalence of the
721	kleboxymycin biosynthetic gene cluster. <i>Microb Genomics</i> . 7, 000592.
722 723 724	Smith-Zaitlik, T., Shibu, P., McCartney, A.L., Foster, G., Hoyles, L. and Negus, D. (2022) Extended genomic analyses of the broad-host-range phages vB_KmiM-2Di and vB_KmiM-4Dii reveal slopekviruses have highly conserved genomes. <i>Microbiology</i> . 168 , 001247.
725 726	Sohn, WI., Seo, B.F. and Jung, SN. (2012) Forehead Abscess Caused by <i>Klebsiella oxytoca</i> With Undiagnosed Type 2 Diabetes: <i>J Craniofac Surg</i> . 23 , 247–249.
727	Stepanovic, S., Vukovic, D., Dakic, I., Savic, B. and Svabic-Vlahovic, M. (2000) A modified microtiter-
728	plate test for quantification of staphylococcal biofilm formation. <i>J Microbiol Methods</i> . 40 ,
729	175–179.
730	Taha, O.A., Connerton, P.L., Connerton, I.F. and El-Shibiny, A. (2018) Bacteriophage ZCKP1: A
731	Potential Treatment for Klebsiella pneumoniae Isolated From Diabetic Foot Patients. <i>Front</i>
732	<i>Microbiol</i> . 9 , 2127.
733	Terzian, P., Olo Ndela, E., Galiez, C., Lossouarn, J., Pérez Bucio, R.E., Mom, R., Toussaint, A., Petit, M
734	A. and Enault, F. (2021) PHROG: families of prokaryotic virus proteins clustered using remote
735	homology. NAR Genomics Bioinforma. 3, Iqab067.
736 737 738	Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. <i>Nucleic Acids Res.</i> 22 , 4673–4680.
739	Townsend, E.M., Kelly, L., Gannon, L., Muscatt, G., Dunstan, R., Michniewski, S., Sapkota, H.,
740	Kiljunen, S.J., Kolsi, A., Skurnik, M., Lithgow, T., Millard, A.D. and Jameson, E. (2021) Isolation
741	and Characterization of <i>Klebsiella</i> Phages for Phage Therapy. <i>PHAGE</i> . 2 , 26–42.

742	Townsend, E.M., Moat, J. and Jameson, E. (2020) CAUTI's next top model - Model dependent
743	Klebsiella biofilm inhibition by bacteriophages and antimicrobials. <i>Biofilm</i> . 2 , 100038.
744	Turner, D., Kropinski, A.M. and Adriaenssens, E.M. (2021) A Roadmap for Genome-Based Phage
745	Taxonomy. <i>Viruses</i> . 13 , 506.
746	Varsaki, A., Lamb, H.K., Eleftheriadou, O., Vandera, E., Thompson, P., Moncalián, G., de la Cruz, F.,
747	Hawkins, A.R. and Drainas, C. (2012) Interaction between relaxase MbeA and accessory
748	protein MbeC of the conjugally mobilizable plasmid ColE1. <i>FEBS Lett.</i> 586 , 675–679.
749 750	Wang, G., Zhao, G., Chao, X., Xie, L. and Wang, H. (2020) The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. <i>Int J Environ Res Public Health</i> . 17 , 6278.
751	Webb, H.E., Kim, J.Y., Tagg, K.A., de la Cruz, F., Peñil-Celis, A., Tolar, B., Ellison, Z., Schwensohn, C.,
752	Brandenburg, J., Nichols, M. and Folster, J.P. (n.d.) Genome Sequences of 18 Salmonella
753	enterica Serotype Hadar Strains Collected from Patients in the United States. <i>Microbiol</i>
754	Resour Announc. 11 , e00522-22.
755	White, L., Hopkins, K.L., Meunier, D., Perry, C.L., Pike, R., Wilkinson, P., Pickup, R.W., Cheesbrough, J.
756	and Woodford, N. (2016) Carbapenemase-producing <i>Enterobacteriaceae</i> in hospital
757	wastewater: a reservoir that may be unrelated to clinical isolates. <i>J Hosp Infect</i> . 93 , 145–151.
758 759	Wick, R.R., Judd, L.M., Gorrie, C.L. and Holt, K.E. (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. <i>PLoS Comput Biol.</i> 13 , e1005595.
760 761	Wick, R.R., Schultz, M.B., Zobel, J. and Holt, K.E. (2015) Bandage: interactive visualization of de novo genome assemblies. <i>Bioinforma Oxf Engl.</i> 31 , 3350–3352.
762	 Yachison, C.A., Yoshida, C., Robertson, J., Nash, J.H.E., Kruczkiewicz, P., Taboada, E.N., Walker, M.,
763	Reimer, A., Christianson, S., Nichani, A., PulseNet Canada Steering Committee and Nadon, C.
764	(2017) The Validation and Implications of Using Whole Genome Sequencing as a
765	Replacement for Traditional Serotyping for a National Salmonella Reference Laboratory.
766	<i>Front Microbiol.</i> 8, 1044.
767	Yang, J., Long, H., Hu, Y., Feng, Y., McNally, A. and Zong, Z. (2022) Klebsiella oxytoca Complex:
768	Update on Taxonomy, Antimicrobial Resistance, and Virulence. <i>Clin Microbiol Rev.</i> 35 ,
769	e0000621.
770	Yang, Y., Shen, W., Zhong, Q., Chen, Q., He, X., Baker, J.L., Xiong, K., Jin, X., Wang, J., Hu, F. and Le, S.
771	(2020) Development of a Bacteriophage Cocktail to Constrain the Emergence of Phage-
772	Resistant <i>Pseudomonas aeruginosa</i> . <i>Front Microbiol</i> . 11 , 327.
773	Yukgehnaish, K., Rajandas, H., Parimannan, S., Manickam, R., Marimuthu, K., Petersen, B., Clokie,
774	M.R.J., Millard, A. and Sicheritz-Pontén, T. (2022) PhageLeads: Rapid Assessment of Phage
775	Therapeutic Suitability Using an Ensemble Machine Learning Approach. <i>Viruses</i> . 14 , 342.
776	Zhang, Y. (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9, 40.
777	Zimmermann, L., Stephens, A., Nam, SZ., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas,
778	A.N. and Alva, V. (2018) A Completely Reimplemented MPI Bioinformatics Toolkit with a
779	New HHpred Server at its Core. <i>J Mol Biol.</i> 430 , 2237–2243.

781 Table 1. K. oxytoca complex strains used in this study

Strain *	Species	Source	Reference
PS_Koxy1	K. michiganensis	Throat swab	(Shibu <i>et al.</i> , 2021)
PS_Koxy2 §#	ŧ K. michiganensis	Urine	(Shibu <i>et al.</i> , 2021)
PS_Koxy4	K. michiganensis	Rectal swab	(Shibu <i>et al.</i> , 2021)
Ko13 §	K. michiganensis	Blood culture	(Smith-Zaitlik et al.,
			2022)
Ko14	K. michiganensis	Blood culture	(Smith-Zaitlik et al.,
			2022)
Ko21 §	K. michiganensis	Perfusion fluid	(Smith-Zaitlik et al.,
			2022)
Ko22 §	K. michiganensis	Perfusion fluid	(Smith-Zaitlik et al.,
			2022)
Ko37 §	K. oxytoca	Blood culture	(Smith-Zaitlik et al.,
			2022)
Ko43 §	K. michiganensis	Bile fluid	(Smith-Zaitlik et al.,
			2022)
Ko53 §	K. oxytoca	Blood culture	(Smith-Zaitlik <i>et al.</i> ,
			2022)

782 * Ko prefix indicates strains came from the Pathogen Bank of Queen's Medical

783 Centre Nottingham, UK.

784 § Infected by phage vB_KmiS-Kmi2C.

785 # Strain on which phage vB_KmiS-Kmi2C was isolated; all other strains used in host

range analysis but not infected by the phage are described in (Smith-Zaitlik et al.,

787 2022).

788 **Table 2.** Summary statistics for hybrid genome assemblies of the GES-5-positive

789 strains

Strain (accession)	Contigs	Size (bp)	Status *	N50	CDS	Plasmids (RIP; MOB; REP; PTU) #	
PS_Koxy1	7	6,392,093	CCC; 4 CCPs; ?	6,023,296	5,952	pPSKoxy1_1 (RepA_C; MOBH; IncAC, IncN; -)	
(GCA_014050555.2)			incomplete			pPSKoxy1_2 (Rep_3; -; IncR; -)	
			plasmid			pPSKoxy1_3 [-; MOBP1; -; PTU-Q2 (IncQ)]	
						PSKoxy1_4 (-; MOBP1; Col440I; PTU-E3)	Formatted: Italian (Italy)
PS_Koxy2	10	6,357,486	Draft	5,917,750	5,910	pPSKoxy2_1 (IncFII_repA, IncFII_repA, RepA_C,	Tormatted. Italian (Italy)
(GCA_014050535.2)			chromosome; 4			RepB–RCR_reg; MOBF, MOBH;	
			CCPs; ?			IncFII_1_pKP91, IncAC, IncN; -)	
			incomplete			pPSKoxy2_2 (Rep_3; -; IncR; -)	
			plasmid			pPSKoxy2_3 [-; MOBP1; -; PTU-Q2 (IncQ)]	
						PSKoxy2_4 (-; MOBP1; Col440I; PTU-E3)	Example Italian (Italy)
PS_Koxy4	6	6,406,207	CCC; 5 CCPs	6,075,855	5,969	pPSKoxy4_1 [IncFII_repA, IncFII_repA, RepB-	Formatted: Italian (Italy)
(GCA_014050515.2)						RCR_reg; MOBF; IncFII_1_pKP91; PTU-FK	
						(IncFII)]	
						PSKoxy4_2 [-; MOBH; IncAC; PTU-C (IncA)]	Formatted: Franch (France)
						pPSKoxy4_3 (Rep_3; -; IncR; -)	Formatted: French (France)
						pPSKoxy4_4 [-; MOBP1; -; PTU-Q2 (IncQ)]	
						pPSKoxy4_5 (-; MOBP1; Col440l; PTU-E3)	Commente de litelieur (Italie)
							Formatted: Italian (Italy)

790 *CCC, complete circular chromosome; CCP, complete circular plasmid.

791 # RIP, replication initiation protein domain; MOB, mobility group; REP, replicon type;

792 PTU, plasmid taxonomy unit; -, no data available. RIP, MOB and REP determined

vising plaSquid (Giménez et al., 2022), PTU determined using COPLA (Redondo-

794 Salvo et al., 2021).

Table 3. Closest relatives of the circular 4,448 bp plasmid as determined using NCBI BLASTN

Species, strain and plasmid	Identity	Size (nt)	Accession	Source	Location	Reference
S. enterica PNUSAS021403 pPNUSAS021403_3	3511/3513 (99 %)	4,448	CP093106.1	Patient	USA	(Webb et al., 2022)
S. enterica subsp. enterica serovar Hadar PNUSAS018090	2662/2664 (99 %)	4,448	CP093099.1	Patient	USA	(Webb et al., 2022)
pPNUSAS018090_3						
S. enterica 2016K-0377 p2016K-0377_3	4387/4389 (99 %)	4,448	CP093079.1	Patient	USA	(Webb et al., 2022)
S. enterica subsp. enterica serovar Hadar 12-2388 p12-2388.3	2662/2664 (99 %)	4,448	CP038598.1	Reference laboratory	Canada	(Yachison et al., 2017)
<i>E. cloacae</i> 78 pP6	3403/3403 (100 %)	9,923	OW849463.1	Hospital	Spain	BioProject PRJEB42440
E. hormaechei RHBSTW-00070 pRHBSTW-00070_3	3403/3403 (100 %)	9,923	CP058166.1	Wastewater influent	UK	(AbuOun <i>et al.</i> , 2021)
K. michiganensis RHBSTW-00676 pRHBSTW-00676_6	3211/3211 (100 %)	4,448	CP055990.1	Wastewater influent	UK	(AbuOun <i>et al.</i> , 2021)

Formatted: Spanish (Spain, Traditional Sort)

- 798 **Table 4.** Phenotypic traits that differentiate PS_Koxy1 and PS_Koxy2 from
- 799 PS_Koxy4

Growth in presence of	PS_Koxy1	PS_Koxy2	PS_Koxy4
D-Serine	_	_	+
L-Alanine	+	+	-
Minocycline	+	+	-
Acetic acid	-	-	+

- 800 +, Positive according to the Biolog GEN III system; -, negative according to the
- 801 Biolog GEN III system.

- 805 michiganensis strains PS_Koxy1, PS_Koxy2 and PS_Koxy4. (b) Tetracycline-
- 806 antibiotic-associated genes predicted to be encoded within the genomes of strains
- 807 PS_Koxy1, PS_Koxy2 and PS_Koxy4 by RGI/CARD. All hits were considered 'strict'
- 808 by CARD.
- 809

Figure 2. Biofilm-forming abilities of the strains used in this study. **(a)** The biofilm-

- 812 forming abilities of all strains listed in **Table 1** were assessed. *K. michiganensis*
- 813 Ko14, a strain that does not form biofilms in TSBG, was used as the negative
- 814 control. Differences in biofilm formation in comparison with the control were

- 815 statistically significant for all strains (unpaired *t* test, adjusted *P* value < 0.05,
- 816 Benjamini-Hochberg; **Supplementary Table 1**). The ability of phage vB_KmiS-
- 817 Kmi2C to (b) prevent biofilm formation or (c) disrupt established biofilms was
- 818 assessed using those strains infected by the phage and forming the strongest
- 819 biofilms (a). (b, c) Statistical significance of the differences in biofilm formation of
- 820 strains in the presence and absence of phage was assessed using unpaired *t* test.
- 821 (a-c) Data are shown as mean for four technical and three biological replicates per
- strain.

Figure 3. Transmission electron micrograph of phage vB_KmiS-Kmi2C. Scale bar,

825 50 nm.

- 827 Figure 4. Genome map and predicted function of vB_KmiS-Kmi2C (upper image) and presence/absence of PCs within VC (lower
- 828 image). The genome map shows the predicted function of the coding regions, direction of transcription and PC ID for each gene
- segment. The phage genus and host genus are shown to the left of the PC heatmap (see legend for annotation) and phage
- 830 genome size on the right-hand side of the heatmap.

Figure 5. Protein-sharing network generated from vB_KmiS-Kmi2C and INPHARED database. Each node represents a phage genome and connection between the genomes shown by a grey line. The nodes are annotated according to viral family. The VC containing vB_KmiS-Kmi2C is highlighted with a black circle.

