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5G MEC-based Intelligent Computation Offloading
in Power Robotic Inspection
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Abstract—Power robotic inspection plays a critical role in the
realization of real-time visualization and perception of substation
in power grid. 5G mobile edge computing (MEC) has emerged as
a promising solution to provide the large bandwidth, wide connec-
tivity, and proximate computing capabilities for the computation
offloading of power robotic inspection with stringent delay
requirements. This article proposes a 5G MEC-based intelligent
computation offloading framework in power robotic inspection to
cope with multi-dimension entity heterogeneity, environment dy-
namics, and inspection delay guarantee. Specifically, the proposed
framework and the implementation procedures of computation
offloading are firstly elaborated, and the research challenges
are outlined. Then, we propose an artificial intelligence (AI)-
enabled multi-dimension collaborative optimization algorithm of
route planning and task offloading to address the low-latency
computation offloading problem under queue stability constraint.
A case study is provided to verify the superiority of delay and
queue backlog performance through simulation results.

Index Terms—Power robotic inspection, 5G MEC, route plan-
ning, task offloading, artificial intelligence, computation offload-
ing

I. INTRODUCTION

Power robotic inspection combines infrared thermography,
high-definition video, and dual view technologies to realize
the visualization and perception of substation in power grid.
It can timely find device fault such as oil leakage, equipment
discharge, foreign matter adhesion in power line, and over-
heating of primary electrical equipment [1]. During inspection,
power inspection robots collect a large quantity of images and
videos, and generate various computation tasks that need to
be processed timely for power inspection services such as
fault diagnosis and abnormal alarm. However, the centralized
cloud computing paradigm suffers from the communication
bottleneck and cannot meet the strict delay requirements of
task processing [2].
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With the development of 5G and mobile edge computing
(MEC), power robotic inspection based on 5G MEC has
received extensive attentions from academia and industry. On
the one hand, 5G supports application scenarios of enhanced
mobile broadband (eMBB), massive machine-type communi-
cations (mMTCs), and ultra-reliable low-latency communica-
tions (URLLCs), and can realize the secure isolation of power
inspection services from public network services through
network slicing and service level agreement (SLA). On the
other hand, based on containerization and virtualization, edge
computing resources of MEC are abstracted into adjustable
resource pools with different granularities to support real-
time response of power inspection task processing [3]. 3GPP
further standardizes the integration architecture of 5G core
network and MEC in 3GPP TS 23.501. It specifies standard
data diversion methods including uplink classifier (UL CL),
multi-anchoring IP, and local area data network (LADN) to
support edge-side task processing and reduce end-to-end delay.

In 5G MEC-based power robotic inspection, computation
offloading is the key technology to realize real-time task
processing by combining the large bandwidth and wide con-
nectivity capabilities of 5G as well as proximate computing ca-
pability of MEC [4]. Computation offloading enables resource-
constrained inspection robots to offload computation-intensive
tasks to MEC servers through 5G, which is fundamental to
heterogeneous robotic systems.

In order to further reduce the end-to-end delay, the core of
computation offloading is inspection route planning and task
offloading. Therefore, we study the collaborative optimization
of route planning and task offloading to achieve scalable, flex-
ible and intelligent power robotic inspection. Some scholars
have studied computation offloading optimization of power
robots. In [5], Asad et al. proposed a reward-based feedback
mechanism for resource sharing among robots, which aims
to minimize the transmission delay by facilitating deadline-
aware computing. In [6], Yu et al. developed an energy-
sensitive model and proposed a modified genetic algorithm-
based strategy to optimize task offloading in robotic network.
However, these studies require accurate mathematical model
of inspection route and statistical characteristics of data arrival,
which are unsuitable for the power robotic inspection scenarios
with severe electromagnetic interference, dynamic changes of
environmental information, and high computation complexity.
In addition, due to the mobility of power inspection robots, the
available communication resources and computation resources
within the communication range of robot are constantly
changing [7]. As a result, it is difficult to obtain accurate
global state information. Artificial intelligence (AI) with strong
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learning ability provides an effective solution for power robotic
inspection. It enables intelligent computation offloading for 5G
MEC-based power robotic inspection under large optimization
dimensions, incomplete environmental information and high
robot mobility.

In this paper, we propose a 5G MEC-based intelligent
computation offloading framework in power robotic inspec-
tion. First, the proposed framework and the implementation
procedures of computation offloading are elaborated, and the
research challenges are outlined. Then, we formulate a low-
latency computation offloading problem, and propose an AI-
enabled multi-dimension collaborative optimization algorithm
of route planning and task offloading to solve it. Next, a case
study is provided to verify the superiority of computation
offloading performance through simulation results. Finally,
we conclude this paper, and put forward insights on future
research directions of power robot inspection computation
offloading.

II. 5G MEC-BASED INTELLIGENT COMPUTATION
OFFLOADING FRAMEWORK IN POWER ROBOTIC

INSPECTION

A. Architecture

The metal particles in gas insulated switchgear discharge
under strong electric field which threatens the insulation safety
of the electric equipment. When there is a discharge defect,
the ions, atoms, molecules and other particles of the material
inside the electrical equipment will be excited from a low
energy state to a higher energy state under the action of
electric energy or heat energy. When the particle is deexcited
back to the low energy state, it will release photons and form
the multispectral signals. Therefore, in the power transformer
and distribution substations, power inspection robots can be
equipped with visible light, ultraviolet, and Infrared cameras
to collect multispectral information of electrical equipment
operation status and perform online equipment monitoring.
With the assistance of edge intelligence, robots can also
perform real-time fault detection, localization, and alarming
which substantially reduces manpower input, improves power
system automation level and fine management ability.

We propose a 5G MEC-based intelligent computation of-
floading framework to guarantee the strict delay requirements
of power inspection services under heterogeneous resources
and highly dynamic environment as shown in Fig. 7. Particu-
larly, we develop a multi-timescale collaborative optimization
architecture of route planning and task offloading. Based
on the service demands and incomplete information, route
planning and task offloading decisions are jointly optimized
to reduce end-to-end computation task offloading delay. AI
technologies are explored to realize intelligent computation
offloading. The power inspection service demands and major
architecture entities are elaborated below.

Inspection Service Demand: Inspection services pose strict
demands on video resolution, image resolution, inspection
area, delay, bandwidth, and packet error rate. The inspection
area of a typical 1000 kV substation spans around 96,000
m2, which contains thousands of inspection points. Inspection

requires video resolution of 1920*1080 and image resolu-
tion of 640*480. To support advanced inspection functions
such as real-time fault diagnosis and abnormal alarm, reli-
able bandwidth and delay guarantee is required for massive
data transmission [8]. Generally, the communication delay
for transmission is required to be less than 500 ms, and
the transmission rates of 1080P video and infrared thermal
imaging data are required to be around 384 kbps to 4 Mbps.

Power Inspection System: Power inspection system com-
bines software modules including task layer, application layer
and system layer and hardware modules such as data acqui-
sition system, data analysis system, master station data inter-
action interface and station human-computer interaction inter-
face. It supports routine inspection, special inspection, regular
inspection, and abnormal three-phase temperature difference
alarm. Specifically, in routine inspection, an inspection robot
automatically plans inspection routes, records inspection data
based on predefined parameters such as inspection point, start
time, and inspection cycle, and finally uploads the collected
data to the power inspection system for advanced inspection
functions.

Power Inspection Robot: Power inspection robot has the
functions of autonomous navigation, positioning, charging,
and power inspection. It implements substation inspection
according to preset routes, and combines high-definition video,
infrared thermal imaging, ultrasonic protection, and laser au-
tonomous navigation to accurately identify the readings of
various instruments and equipment status information [9]. For
example, a CSG inspection robot is equipped with a 30x
optical zoom camera and 640*480 resolution infrared thermal
image sensor, which can achieve a positioning accuracy less
than 1 cm, a long-distance detection of 100 m, and scanning
with a 360-degree angle of view.

5G MEC: Power inspection robot offloads the collected
data to MEC servers through 5G. The MEC consists of MEC
servers, local MEC management platform, and regional MEC
management platform. The servers perform data cleaning,
preprocessing, calculation, and feedbacks the results to the
inspection robot and system [10]. The local MEC management
platform coordinates and dispatches the computing, storage,
network, and other infrastructure resources in a transformer
district to support local data preprocessing. The regional MEC
management platform supports advanced data analysis through
resource coordination among different transformer districts.

B. Implementation of 5G MEC-based Intelligent Computation
Offloading

The implementation scenario of 5G MEC-based intelligent
computation offloading is shown in Fig. 8. There exist multiple
inspection points in substation, and the robot has to traverse all
inspection points through route planning. During inspection,
the robot continuously collects equipment and environment
data including high-definition video, infrared thermal imaging,
electromagnetic interference, channel gain, and available base
stations (BSs), and stores them in its local buffer as a data
queue. The stored data are either processed locally or offloaded
to MEC servers through 5G BSs. Due to the robot mobility,
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Fig. 1. The proposed 5G MEC-based intelligent computation offloading framework in power robotic inspection.

the available BS set is dynamically varying. Particularly, as
the robot moves from one inspection point to another one,
some previously available BSs are disconnected when the
robot moves out of their communication ranges. Apart from
BSs, other network states such as electromagnetic interference,
channel state information, and server computation resources
are also time-varying. Therefore, the robot has to decide which
5G BS and MEC server should be selected for task offloading
to minimize the end-to-end delay.

The implementation process of power robotic inspection
includes route planning, task admission and partition, task
offloading, as well as task processing and feedback. Route
planning is optimized in large timescale, i.e., every epoch,
while task admission and partition, task offloading, as well as
task processing and feedback are optimized in small timescale,
i.e., every time slot. The details are explained as follows.

Route planning: Route planning determines the next in-
spection point from the current one. Then, a robot traverses
all the inspection points and performs power inspection along
predefined routes from one inspection point to another one.
It is intuitive to avoid repeated inspection routes to further
reduce the total inspection distance and improve inspection
efficiency.

Task admission and partition: Task admission determines
the portion of data that enter into the buffer queue of the robot.
It is necessary to avoid the large volume of raw data flooding
the limited buffer. Afterwards, the data stored in the queue are
partitioned into two separate queues, as shown in Fig. 9. One
is the local-computation queue processed locally by the robot,

and the other is the task-offloading queue processed remotely
by MEC servers. The balance between local-computing queue
and task-offloading queue needs to be dynamically adjusted
by optimizing task partitioning strategies.

Task offloading: Task offloading determines the 5G BS
and co-located MEC server for task offloading and process-
ing. Since multiple BSs with different link conditions and
computing capabilities are available, both communication and
computation combinations have to be decided by the robot
with limited BS-side information. When the robot learns that
the delay performance of the selected BS is poor or the
selected BS becomes unavailable due to mobility, it will switch
to another previously available BS or a newly appeared one. A
switching cost evaluated in terms of delay occurs because of
BS switching and task computation migration. An example is
shown in Fig. 8 and Fig. 9. In Case 1 of Fig. 9, the robot selects
BS 2 for task offloading in slot t, and the data are offloaded
from the task-offloading queue of the robot to the buffer queue
of BS 2. In the next slot, the robot moves out of the coverage
of BS 2, and switches to BS 3 for task offloading, as shown in
Fig. 8. The data are offloaded from the task-offloading queue
of the robot to the buffer queue of BS 3, as shown in Case 2
of Fig. 9.

Task processing and feedback: The data stored in the
local-computation queue are processed locally by the robot
and uploaded to the power inspection system. The data stored
in the buffer queue of BSs are processed by MEC servers and
the results are fed back to robots and system based on service
demands.
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Fig. 2. The implementation scenario of 5G MEC-based intelligent computation offloading.

Fig. 3. The implementation procedure of 5G MEC-based intelligent computation offloading.

C. Research Challenges

To realize 5G MEC-based intelligent computation offload-
ing in power robotic inspection, several critical research chal-
lenges have to be addressed.

Coupling between large-timescale route planning and
small-timescale task offloading: The large-timescale route
planning affects the total inspection distance and available BSs
and MEC servers for small-timescale task offloading. On the
other hand, the small-timescale task offloading affects the total
end-to-end delay and needs to be jointly optimized with large-
timescale route planning.

Unavailability of BS-side information: The BS-side in-
formation including BS load profile, available computation
resources, and server operation state is generally unknown
to the inspection robot. Furthermore, due to robot mobility
and electromagnetic interference caused by partial discharge
of high-voltage substation and gas insulated switchgear, the
channel state information is time varying. How to collabo-
ratively optimize route planning and task offloading without
BS-side information is a great challenge. Traditional graph-
based optimization approach requires to traverse all states,
which leads to extremely high computation complexity in
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multi-dimension and multi-timescale decision-making.
Delay performance guarantee: The end-to-end computa-

tion offloading delay is determined by both inspection delay
and task offloading delay. Moreover, the task offloading delay
is determined by the last finished task, which is further affected
by task size and server computing capability. The coupling
between long-term data queue backlog stability of robot with
short-term delay minimization puts another dimension of chal-
lenge on computation offloading optimization. For instance,
offloading few tasks with smaller sizes may reduce delay but
increases data backlog.

III. AI-ENABLED MULTI-DIMENSION COLLABORATIVE
OPTIMIZATION ALGORITHM OF ROUTE PLANNING AND

TASK OFFLOADING

Route planning and task offloading need to be collabo-
ratively optimized in an online fashion without the perfect
knowledge of BS-side and environment-related information.
Reinforcement learning in AI can effectively deal with on-
line random decision-making problems by constantly interact-
ing with dynamic environment and learning from empirical
performance [11]. It has the advantages of strong environ-
mental adaptability and fast feedback convergence. Typical
reinforcement learning algorithms include exponential-weight
algorithm for exploration and exploitation (EXP3), upper
confidence bound (UCB), Q-learning, deep Q-network (DQN),
and federated deep Q-network (FDQN). Particularly, the fun-
damentals of Q-learning and UCB are introduced below [12].

Q-learning leverages Q value, i.e., state-action value, to
evaluate and optimize strategy without the requirement of
environment state transition model. Therefore, it is suitable
for solving the route planning problem with complex elec-
tromagnetic interference where the environment state tran-
sition probability cannot be modeled directly [13]. UCB is
a lightweight learning algorithm to solve sequential strategy
optimizing problem, which evaluates a candidate option with
the combined power of its empirical performance estimate
and the estimate confidence interval. The advantage of low-
complexity implementation makes it suitable to address task
offloading problem [14].

By combining reinforcement learning algorithms, i.e., Q-
learning and UCB, with queue awareness, we propose an AI-
enabled multi-dimension collaborative optimization algorithm
of route planning and task offloading to address the compu-
tation offloading problem. A two-timescale model is adopted.
The large timescale, i.e., epoch, is defined as the inspection
routing time for the robot moving from one inspection point
to another one, the duration of which depends on the route
planning decision optimized at the beginning of each epoch.
Each epoch can be partitioned into several small-timescale
intervals with a fixed time duration, i.e., time slot. Task
offloading decision is optimized at the beginning of each slot.
Without loss of generality, it can be assumed that the set of
available BSs and the channel state information are unchanged
within one slot.

Objective: The optimization objective is defined as the
delay required for processing all the inspection data. It depends

on both the inspection delay and task offloading delay, while
the latter one is the sum of BS switching delay, data transmis-
sion delay, computing delay, and feedback delay. Considering
the comparatively small size of feedback data, the feedback
delay can be ignored.

Route planning constraint: It ensures that only one route
is inspected in each epoch and the inspection procedure ends
only if all inspection points have been traversed.

Task offloading constraint: In each time slot, the robot can
only select one BS within its communication range for task
offloading.

Queue stability constraint: The long-term average backlog
of the robot-side data queue should not exceed a predefined
threshold.

The framework of the proposed algorithm is shown in Fig.
10. A virtual queue is constructed to quantify the long-term
performance deviation of queue backlog from the predefined
threshold. Based on Lyapunov optimization, the queue sta-
bility constraint is transformed into minimizing virtual queue
backlog. Therefore, the short-term route planning and task
offloading decision optimization can be decoupled from the
long-term queue stability constraint by transforming the origi-
nal optimization problem into minimizing the upper bound of
drift-plus-penalty in each slot. Specifically, the upper bound
of drift-plus-penalty is derived as the weighted sum of delay
and the product of virtual queue backlog and throughput, i.e.,
the amount of offloaded inspection data.

Based on the optimization variables involved, the joint op-
timization problem is transformed into a large-timescale route
planning subproblem and a small-timescale task offloading
subproblem.

Large-timescale route planning: The large-timescale route
planning subproblem is modeled as a Markov decision process
(MDP) problem, and its key elements include state space,
action space and reward. State space is defined as the inspec-
tion point of the robot at the beginning of the current epoch
and histroical channel information. Action space is defined
as the set of candidate inspection options. The large-timescale
reward consists of two parts. The first part is the delay required
for processing all the inspection data offloaded in an epoch
multiplied by weight V . The second part is the product of
virtual queue backlog and the throughput at the end of an
epoch. V trades off delay minimization and queue stability.
The proposed algorithm leverages Q-learning to address the
transformed large-timescale route planning problem. It quan-
tifies each inspection route with Q value where a large Q value
indicates that the inspection route has superior performances
in delay and queue backlog stability. At the beginning of each
epoch, the robot selects the next inspection point based on the
Q values and ε-greedy algorithm. At the end of each epoch,
the robot updates Q values based on the large-timescale reward
and the potentially maximum Q value in the observed next
state.

Small-timescale task offloading: The small-timescale task
offloading subproblem is modeled as a multi-armed bandit
(MAB) problem, and its key elements include player, arm
and reward. Player is defined as the inspection robot. Arm
is defined as the set of available BSs for the inspection robot,
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Fig. 4. The framework of the proposed algorithm.

which would vary across epochs due to robot mobility. The
small-timescale reward consists of two parts. The first part is
the delay for processing the inspection data in the current slot
multiplied by V , which is fed back by the selected BS. The
second part is the product of virtual queue backlog and the
amount of offloaded inspection data. The proposed algorithm
leverages UCB to address the transformed small-timescale task
offloading problem. At the beginning of each slot, the robot
selects the BS with the largest UCB value, which is defined
as the sum of the empirical performance estimate and the
estimate confidence interval. The confidence interval is defined
as the square root of a fraction where its denominator is the
number of times that the BS is selected, and its numerator is
the logarithm of slot t multiplied with a queue backlog-related
exploration weight ω. Specifically, ω is inversely proportional
to queue backlog. Besides, the confidence interval of the
firstly available BS is set as positive infinity to ensure that
it is selected at least once. At the end of each slot, the
robot updates the empirical performance estimate, confidence
interval, exploration weight and UCB value based on the queue
backlogs and the small-timescale reward. The upper bound
confidence is updated at each slot. The proposed algorithm
has fast convergence speed and strong learning performance
to adapt with inter-epoch dynamics.

The proposed algorithm can achieve queue awareness in
three folds. First, since it integrates Q value with the virtual
queue backlog, the route with severe electromagnetic interfer-
ence and poor task offloading performance is quantified with a

small Q value and has less probability to be selected, thereby
enabling queue stability. Second, since the small-timescale
reward is involved with virtual queue backlog and the through-
put, the large virtual queue backlog enforces the robot to select
a BS with large transmission rate to reduce queue backlog,
thereby maintaining data queue stability. Last but not least,
with the queue backlog-related exploration weight, the robot
prefers to explore the BS with potentially superior perfor-
mance when its queue backlog is small and prefers to exploit
the BS with historically optimal performance when the queue
backlog is severely deviated from the threshold. Therefore, the
tradeoff between exploration and exploitation is dynamically
balanced without severe queue backlog fluctuation.

The specific implementation process of the proposed algo-
rithm is shown in Fig. 11, which is described as follows.

Step 1: Initialization. Initialize large-timescale state space,
action space, Q value and small-timescale available BS set.

Step 2: Large-timescale route planning.
Step 2.1: Route planning action drawing. Inspection robot

draws a route planning action based on the ε-greedy method
and Q values.

Step 2.2: Small-timescale task offloading. Based on the
drawn route, the robot performs small-timescale task offload-
ing optimization.

Step 2.2.1: Available BS set updating. The robot updates
the available BS set.

Step 2.2.2: Task offloading action drawing. The robot
selects the BS with the largest UCB value for task offloading.
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Fig. 5. The flowchart of the proposed algorithm.

Step 2.2.3: Task offloading action execution. The robot
offloads tasks to the selected BS.

Step 2.2.4: Small-timescale reward calculation. The robot
calculates the small-timescale reward based on the computa-
tion delay fed back by the BS, virtual queue backlog, and the
throughput.

Step 2.2.5: UCB value updating. The inspection robot up-
dates the empirical performance estimate, confidence interval,
exploration weight and UCB value of BSs.

Step 2.3: Large-timescale Q value updating. When the
inspection robot reaches the selected inspection point, it cal-
culates the large-timescale reward and observes the next state.
Then, it updates the Q value and enters the next epoch. Repeat
step 2 until all inspection points have been traversed.

The complexity of the proposed algorithm includes the
complexity of large-scale routing planning and that of small-
scale task offloading. The former one is linearly proportional
to the numbers of inspection points and epochs while the latter
one is also linearly proportional to the numbers of time slots
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and available MEC servers.

IV. A CASE STUDY

In the case study, we investigate the effectiveness im-
provement of the AI-enabled multi-dimension collaborative
optimization algorithm of route planning and task offloading.
A 1 km × 1 km power robotic inspection area with 100
inspection points and 10 5G BSs is considered. The power
inspection robot moves at a speed within [2,6] m/s. The slot
length is 100 ms. BS switching cost is set as 5 ms. The robot
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transmission power is 20 dBm, and the transmission bandwidth
is 1 MHz. The route planning and task offloading decisions
are jointly optimized to reduce end-to-end computation task
offloading delay. Specifically, the joint optimization problem
is transformed into two subproblems on different timescales
based on Lyapunov optimization, which are solved by Q-
learning and UCB respectively. The fixed detection order
scheme-UCB based computation offloading algorithm (FDO-
UCO) [15] is utilized for comparison, which cannot optimize
route planning and ignores the queue stability constraint.

Fig. 12 (a) shows the average excess queue backlog and
inspection delay versus electromagnetic interference. The ex-
cess queue backlog is defined as the amount of data backlog
exceeding the predefined threshold. With the increase of
electromagnetic interference from −110 dBm to −92 dBm,
compared with FDO-UCO, the proposed algorithm can reduce
68.87% average excess queue backlog at the cost of only
8.52% inspection delay increment. The reason is that in ad-
dition to task offloading optimization, the proposed algorithm
also optimizes the route planning to avoid the areas with strong
electromagnetic interference and ensure the queue stability,
which may result in detour and increase the inspection delay.

Considering the buffer capacity of the inspection robot is
limited in the real-world implementation, data overflow occurs
when the queue backlog exceeds the buffer capacity. Given
that the inspection robot has a limited buffer capacity of 120
Mbits, Fig. 12 (b) shows the queue backlog and the amount
of overflow data versus epoch. Compared with FDO-UCO, the
proposed algorithm reduces the queue backlog and the amount
of overflow data by 16.43% and 82.84% due to the endowed
queue awareness.

Fig. 12 (c) shows inspection routes under different V ,
where the blue and yellow lines represent the inspection routes
starting from inspection point A to point E when V = 0.01
and V = 0.1, respectively. When the weight increases from
0.01 to 0.1, the inspection delay decreases from 163.4 s
to 136.2 s while the queue backlog increases from 86.8
Mbits to 98.5 Mbits. The reason is that with V increasing,
the proposed algorithm puts more emphasis on inspection
delay minimization which enforces the robot to select the
shorter path. However, the strong electromagnetic interference
between point A to point B results in poor data transmission
performance and queue backlog increment.

V. CONCLUSION

In this article, we proposed a 5G MEC-based intelligent
computation offloading framework in power robotic inspec-
tion, where a multi-timescale collaborative optimization archi-
tecture of route planning and task offloading was developed
to deal with the heterogeneous resources and highly dynamic
environment. An AI-enabled multi-dimension collaborative
optimization algorithm of route planning and task offloading
was proposed to minimize the inspection delay under queue
backlog constraint. Simulation results show that compared
with FDO-UCO, the queue backlog is reduced by 15.56%.
The proposed algorithm can achieve well-balanced tradeoff
between inspection delay and queue backlog under strong
electromagnetic interference.

In future research, the proposed framework can be expanded
by involving cloud-edge-end collaboration and advanced se-
curity technologies. First, edge computing is flawed by insuf-
ficient scalability, limited computing and storage resources.
How to integrate the advantages of cloud computing and edge
computing to achieve cloud-edge-end collaborative computa-
tion offloading for inspection delay performance improvement
remains an open issue. Second, the 5G MEC-based computa-
tion offloading requires the power inspection robot to access
to the public network, which leads to task data exposed in
an untrusted and opaque environment. The stable operation of
the power system is seriously endangered due to the security
problems such as data interception and tampering caused by
illegal attacks on the 5G MEC server. Therefore, it is necessary
to combine advanced security technologies such as blockchain
and trusted computing to further improve the data integrity and
security in power robotic inspection.
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