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Abstract

In this thesis, we consider the geometry of the set of unital quantum maps and the geometry of the
set of bipartite states with maximally mixed marginals. By the map-state duality, these two sets are
isomorphic and can be considered by using the same mathematical formalism. When considering
the geometry of unital quantum maps we encounter one crucial difference between two-dimensional
systems and systems of higher dimensions. Unital qubit maps can be decomposed in terms of
unitary maps. However, non-unitary maps need to be considered to decompose other unital qudit
maps. To consider the geometry of unital quantum maps in higher dimensions, we construct a novel
family of maps that includes both unitary and non-unitary unital quantum maps. For this family,
we derive a criterion determining whether a given map of the family corresponds to an extreme
point of the set of unital quantum maps. By applying the Choi-Jamiotkowski isomorphism over the
family of maps, we consider the geometry of the set of locally maximally mixed bipartite states. In
particular, we consider the problem of entanglement classification for the elements of this family
of bipartite states. To do this, we find a set of invariants determining local unitary classes for our
family. We also consider this family of bipartite states for qutrit systems. Remarkably, in this
scenario, the chosen set of invariants can be used for the entanglement classification of the states of
the family. For qutrit states, we consider the solutions of the equations giving unital quantum maps
and locally maximally mixed bipartite states for the families previously considered. To do this, we
construct an algorithm based on numerical methods to solve these equations. We also provide a
graphical representation of the solutions given by the algorithm. Finally, we consider a constraint

in the parameters of the equations allowing us to obtain solutions with analytical methods.
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Chapter 1

Introduction

The study of the geometrical structure of the quantum state space is usually of great help in
understanding novel features of quantum systems and developing new measures and algorithms with
potential applications. In this thesis, we consider the geometry of the set of unital complete positive
trace-preserving (UCPT) maps and the geometry of the set of locally maximally mixed (LMM)
bipartite states. The advantage of considering these two sets is that the techniques developed for
describing bipartite states can be directly applied to describe quantum maps and vice-versa. There
are several good reasons to consider unital quantum maps instead of general quantum maps. For
low-dimensional systems, the additional constraint required by unitality often simplifies problems
and allows for a geometrical intuition of the state space. For example, for qubit maps, the set of
UCPT maps can be associated with a 3-simplex in the Euclidean space.

This thesis aims to investigate the geometry of the set of UCPT maps/LMM states for systems
of dimensions higher than two. There exists a crucial difference between qubit maps and maps based
on systems of higher dimensions. As opposed to the qubit case, there are examples of maps based
on higher dimensional systems that are not mixed-unitary (they cannot be expressed as convex
combinations of unitary maps). From a theoretical perspective, the existence of such maps implies
that Birkhoff’s theorem does not extend to cases other than the qubits. The initial mission of this

research is to investigate the rationale behind the failure of the quantum analogue of Birkhoff’s
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theorem in high-dimensional systems. Many of the results presented are valid for arbitrary qudit
systems. However, during this work, we focus on the qutrit setup, the simplest case for which the
quantum analogue of Birkhoff’s theorem is no longer valid.

Some relevant works considered geometrical aspects of the set of UCPT maps/LMM states.
Audenaert et al., considered the distance between the set of mixed-unitary maps and the set of
unital quantum maps [1]. Another contribution to this area was made by Mendl and Wolf who
provided computable criteria for the separation of both sets [2]. More recently, the complexity
of the problem of detecting whether a given map is mixed-unitary was determined to be an NP-
hard problem [3]. For locally maximally mixed states, Baumgartner et al., considered the set of
bipartite states obtained as convex mixtures of maximally-mixed pure states [4-6]. In this series of
papers, the entanglement characterisation of this class of bipartite states was considered both for
two-qutrit systems and arbitrary dimension systems. The approach used in this thesis to consider
UCPT maps/LMM states differs from previous works on the same topic. The crucial step in this
approach is to construct novel families of UCPT maps which extends the set of mixed-unitary
maps. Just as mixed-unitary channels correspond to all possible convex combinations of rank-one
maps (unitary channels), we consider the class of unital maps arising from mixing a restricted set
of UCPT maps that are extreme in the whole set of UCPT maps (analogously for LMM states).

To achieve the thesis aims, we determine the following research objectives.

1. Create a novel framework generalising the construction of UCPT maps. Such a framework

should include both unitary maps and maps that are not convex mixtures of unitary maps.

2. Describe the geometry of the maps constructed with this novel framework by determining a

separation criterion between these maps and the set of mixed-unitary maps.

3. Investigate properties of the bipartite states associated through the state-duality to the con-
structed maps. In particular, consider the degree of entanglement of the bipartite states and

classify them in terms of their entanglement properties.

4. Verify numerically the construction methods developed as well as the characterisation of the

resulting maps and states for low dimensional systems



CHAPTER 1. INTRODUCTION 9

The results of this thesis, are organised into three different chapters. Here, we outline their contents,
pointing out the main contributions in each chapter.

In Chapter 4, we consider the convex characterisation of UCPT maps. The contents of this
chapter are partially included in [7]. The main contribution of this chapter is the definition of a
novel family of maps &€ : Dy — Dy of rank k < d generalising previously known UCPT-extremal
maps. A similar family of trace-preserving (not unital) maps was considered in [8] in the context of
quantum circuit decomposition. For this family of maps, the constraints that guarantee that such
maps are unital and trace-preserving are derived as well as the conditions which determine whether
the elements of the family correspond to extreme points of the set of UCTP maps. However, we
acknowledge that the family of maps introduced does not span the whole set of UCPT-extremal
maps. While the family of maps is given in terms of 2d? — 3d + 1 real parameters, a general
description of UCTP-extremal maps would require 2d3 — 3d? real parameters [9, 10]. Finally, we
consider the particular case of qutrit maps. For this dimension, we show that the family of UCTP
maps presented contains the set of unitary qutrit maps but also the antisymmetric Werner-Holevo
channel of dimension three, a well-studied example of UCTP-extremal map [11].

In Chapter 5, we consider the geometry of the set of locally maximally mixed bipartite states
and the problem of entanglement classification for a particular set of bipartite states. First, we
obtain the family of LMM states associated with the family of UCPT maps introduced in Chapter
4. Then, the classification of the elements of this family is made in terms of local unitary equivalence
classes. We use three different sets of LU invariants for entanglement classification. These are the
set of invariants given by the eigenvalues of the density matrix, the set of invariants given by the
eigenvalues of the partially transposed matrix and, finally, the set of invariants given by the singular
values of the correlation matrix. We find that for the family introduced, the diagonalisation of the
mentioned matrices is faster than for a general bipartite state. Finally, the particular case of two
qutrit states is considered.

In Chapter 6, we consider the solutions of the equations giving the families UCTP maps and
LMM bipartite states for qutrit systems and an approximate algorithm based to find solutions for

these equations. A graphical representation of the equations is provided allowing to visualise the
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space of solutions. Finally, we consider a constraint in the parameters of the equations. For this
constraint, the solutions of the equations giving UCTP and LMM states can be solved analyti-
cally. For this particular set of solutions, the LU invariants considered in Chapter 5 are used for

entanglement classification.



Chapter 2

Basic concepts in quantum

mechanics

This chapter serves as an introduction to the area of knowledge of this thesis, quantum information
theory. We start by introducing a set of axioms establishing the basic mathematical framework to
describe quantum systems. This mathematical framework will be used to define the two different
descriptions of quantum systems which we will consider in this thesis: Quantum maps, describ-
ing the evolution of open quantum systems and bipartite states, describing two-party composite

quantum systems. Finally, we introduce a useful relationship that links both descriptions.

2.1 Introduction to quantum information theory

Quantum information theory is the area of science describing the manipulation of information by
means of quantum systems. Before a proper introduction to the subject, we may ask what do we
mean when we talk about ‘information” and when we talk about ‘quantum’. Information can be
identified as the most general thing which must propagate from a cause to an effect. Quantum
science is the area of physics describing systems, such as electrons or photons, which cannot be

described in terms of classical mechanics. It was soon acknowledged that information could be

11
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transmitted, stored and processed by quantum systems [12]. Quantum information science appears
precisely to describe the manipulation of information from the perspective of quantum physics.
Many introductory texts in quantum information theory use an axiomatic approach [12, 13]. Quan-
tum axioms or postulates are based on empirical evidence and provide the basic framework to
construct quantum theory. These axioms characterise the mathematical objects used to describe

quantum systems.

2.1.1 Axioms of quantum mechanics
The first axiom establishes the mathematical description of the state space of quantum systems.

Axiom 1. The state space of a quantum mechanical system is represented by a complex vector

space V' equipped with a Hermitian inner product.
The Hermitian inner product is defined as follows.
Definition 1. A Hermitian inner product on a complex vector space is a map
(|):VxV—=C (2.1)
with the following properties

e Conjugate symmetry. For x,y € V
(zly) = (ylz)” (2.2)

where ‘ *’ denotes the complex conjugate operation.
e Anti-linearity in the first argument and linearity in the second. For x,y,z € V and o, f € C
(ax + Bylz) = o” (z|z) + 87 (y|2) (2.3)

and

(zlax + By) = o (z]x) + B (z]y) . (2.4)
o Positive-definiteness. For x #0 €V,

(z|z) > 0. (2.5)
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The vector space V together with the Hermitian inner product is complete with respect to the
norm induced by the inner product and, by definition, it is a Hilbert space. With a slight abuse
of notation, we will use the term Hilbert space as synonym of the particular state space used to
describe quantum systems.

Depending on the quantum system, its associated Hilbert space can be finite dimensional or
infinite dimensional. For example, the space of positions or the space of momentums of a particle
are infinite dimensional. However, the possible spins of a electron or the polarisations of a photon
are given by finite dimensional vector spaces. In this thesis, we will consider only Hilbert spaces
of finite dimension H := C" where n € N denotes the dimension of the Hilbert space. The vector

space C™ is formed by all n-tuples of complex numbers and a vector x € C™ is represented as

g
z=| 1, (2.6)
ay,
where a; ...a, € C. Consider a set of vectors y1,...,y, € C" such that any vector z € C™ can be
expressed as the linear combination
x=Bry1 + -+ Buyn, (2.7)

where (1,...,8, € C. Then, the set y1,...,y, is a spanning set of C™. For example, the set
{ <1> , <T> } is a spanning set of C? and, in this case, a vector € Cy is expressed in terms of this

0

spanning set as

a1 1 0
T = =aq1 + Qg . (2.8)
(6%) 0 1

To represent the vector space describing a quantum system, we use the standard notation in quan-
tum information theory, Dirac’s notation. In this notation, the elements of the Hilbert space are
given by ‘kets’ expressed as [)) € C™. For the finite space C", there is always a spanning set of

orthonormal vectors |@1) .. .|d,) € C™ satisfying

(Bilds) = 045, (2.9)
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where 0; ;, the Kroneker delta, is defined as

1, ifi=j
5 = (2.10)
0, ifi#j.
In this case, the spanning set |¢1) ... |¢,) € C™ forms an orthonormal basis of C"™ and each element

of the vector space has a unique representation in terms of the same orthonormal basis. The
particular orthonormal basis given by vectors with all zeros except one term is denoted as the
computational basis of C™. In Dirac’s notation the elements of the computational basis of C" are
denoted by kets labelled with natural numbers |0),...,|n — 1). For example, for C2, the elements

of the computational basis are denoted by

1
0) =: (2.11)
0
and
0
1) = : (2.12)
1

A fundamental components in Dirac’s notation is the so called ‘bra’, denoted by (6|. In this notation,
a bra corresponds to a linear map from the space of ‘kets’ |¢) € C™ to a number in the complex

plane. The map given by (f| is formally defined as
0:|¢p) — (¢|0) € C. (2.13)

Using Dirac’s notation, we can also define linear operators acting on the Hilbert space. A linear

operator A acts on the space of kets as
A:|p) = Alo) € H. (2.14)

For a given basis, an operator can always be expressed as a matrix. For example, for C2, an operator

can be expressed on the computational basis as

A = ago |0) (0] + ao1 0) (1] + a0 |1) (O] + a1 [1) (1] (2.15)
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where a;; € C for ¢, j € {0,1}. In this basis, the operator A corresponds to the matrix

aoo  @o1
A= . (2.16)
aip aii
We denote the space of n x m matrices by M, xm. In the case of square matrices, n = m, we

denote them by M,, := M, «,. The following axiom describes how information can be extracted

from quantum systems by means of observables.

Axiom 2. The observables of a quantum mechanical system are given by hermitian operators acting

on the state space H.

An operator A is hermitian if it is equal to its adjoint
A=Al (2.17)

where ‘I, the adjoint operation, represents the combination of conjugation and transposition op-
erations, AT := (A*)”. Observables represent physical quantities that can be measured. Consider
an observable O and consider the state |¢)) which can be expressed in the basis spanned by the

eigenvectors of the observable O as

n

) =" |¢s) (@) (2.18)

i=1
where

O|¢i) = Ai|¢i) - (2.19)
The possible outcomes of the measurement are given by the set of eigenvalues of O, A\1,...,A,. The

Born rule says that the probability of obtaining an eigenvalue \; as the outcome of a measurement

is given by the squared modulus of the projection of the state on the ith eigenstate of the observable
P(Xi) = [(Wlei) |*. (2.20)

Note that the outcomes of the measurements have a physical interpretation because the observables
are Hermitian operators and consequently, they have a real spectrum.

We introduce now the axiom that describes how quantum states evolve in time.
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Axiom 3. The evolution of a closed quantum system is given by unitary operators acting on the

state,
) = Ul) (2.21)

where an unitary operator is defined as the matriz U € M,, such that
Ulv =uUt =1,. (2.22)

There are two equivalent interpretations of how quantum systems evolve in time: The Heisenberg
picture and the Schréodinger picture. In the Schrédinger picture, states change over time. However,
in the Heisenberg picture, states are static and observables evolve in time. In this work, we will
consider the first approach in which the evolution of quantum systems is given by the states.

Until this point we have considered only single quantum systems. However, there are numerous
physical situations in which the joint description of several systems is necessary. For example,
composite systems appear in many-body physics or communication theory where the usual set-up
is two distant systems transmitting information. The following axiom provides the description of

the state space for composite quantum systems.

Axiom 4. The state space of a composite physical system is the tensor product of the state spaces

of the component physical systems.

The tensor product of two Hibert spaces H of dimension m and G of dimension n and is another
Hilbert space H®G which has dimension mn. The elements of HRG are given by linear combinations
of ‘tensor products’ 1)) ® |¢) such that |[¢) € H and |¢) € G. As an example, consider a system
of two two-dimensional systems denoted as A and B, respectively. The Hilbert space of the joint
system is given by H4 ® Hp = C? ® C?. Any state of the joint system can be written in the

computational basis as
[¢aB) = ao|0) ® |0) + a1 |0) ® [1) + a2 [1) @ |0) + a3 [1) ® |1) (2.23)
Usually, the tensor product is not explicitly written and |¢4p) is usually expressed as
[6aB) = a0 [0) |0) + a1 |0) [1) + az [1) |0) + a3 [1) [1) (2.24)

where the tensoring of adjacent kets is assumed.
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2.1.2 Density operators

Axioms 1 to 4 provide the mathematical formalism used to describe closed quantum systems. By
closed systems, we refer to systems not interacting with their environment for which all the variables
can be controlled. This description of a quantum system is far from practical. In reality, it is
impossible to have total control over all the variables affecting a system. Even the most controlled
quantum state is affected by external variables. For example, in modern quantum computers,
memory qubits are susceptible to interaction with the environment and error-correcting techniques
are necessary to correctly run codes. For this reason, open quantum systems are the reference
framework in quantum information theory.

The general description of open quantum systems is given by probability ensembles (statistical
mixtures) of multiple states. In this description, we can not longer assume that a system is in
a certain state, instead, we can only assign probabilities of finding the system in a given set of
states. The mathematical description of probability ensembles is made with operators. In par-
ticular, the description of the state of an open quantum system is given by the so-called, density
operators. Using Dirac’s notation, a density operator p can be expressed as a matrix in terms of
the computational basis of C,, {|0)...|n — 1)} as

n—1
p="> pili) (il (2.25)
i,j=0
with p;; € R. However, not all matrices represent probability ensembles of quantum states. The

matrix p € M, represents a probability ensemble of states if it satisfies the following two conditions:
e Positive-semidefinite: The matrix p has non-negative eigenvalues,

p>0. (2.26)

e Unit trace: The trace of a density matrix needs to be equal to one.

trp=1. (2.27)

We denote the set of density matrices by D,, C M,,. Based on the rank of the density matrix,

there are two types of states. A state p is pure if rank(p) = 1. Conversely, p is mixed if rank(p) > 1.
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I

A special type of state is the maximally-mixed state represented by the density matrix p = %
where I, corresponds to the identity operator acting on the Hilbert space. Pure states represent
states with total certainty about the state of the system and maximally states represent states with

maximal noise and complete uncertainty about the state of the system.

2.2 Quantum maps

In this section, we introduce the description of the evolution of open quantum systems. Axiom 3
states that the evolution of closed systems is given by unitary transformations on the state space.
The state evolution formalism given by axiom 3 can also be extended to open quantum systems
[12, 13]. The most general evolution of an open system is given by a linear map ¥ transforming an

initial density operator p € D,, into a final density operator,
U:p—¥(p) €D,. (2.28)

However, not every linear map can be used to represent the evolution of an open quantum
system. To see this, we will consider the two conditions required by quantum maps. The first
condition is given by the fact that the matrix obtained after the application of the linear maps
needs to be a density matrix, so it needs to be positive, semi-definite and normalised (trace one).
This means that a quantum map must preserve the positivity and the trace of the output matrix.
For the second condition, consider the space of density matrices D,, ® D,,, and the set of linear maps
U ® I, acting on the first subspace while ignoring the second. The form of the linear map ¥ is
constrained by the fact ¥ ®1,,(p) is also a density matrix. The linear maps that transform positive
semi-definite matrices to positive semi-definite matrices ¥ : D,, — D,, are denoted as positive
maps. On top of that, if ¥ ® I, is also positive for n € Z, the map ¥ is completely positive. We
conclude that the evolution of quantum maps is given by completely positive and trace-preserving

(CPT) linear maps.
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2.2.1 Representations of quantum maps

The action of a linear map ¥ : M,, — M,, can always be expressed, as the product of an operator

Oy € M,,24m2 action on the vectorised form of a density matrix as
vec (U(p)) = Og vec (p), (2.29)

where the action of vec on a matrix corresponds to arranging the rows of the matrix in vector form.
The matrix Oy corresponds to the super-operator representation of the map W. This representation
is not very practical as the conditions for a map to be completely positive and trace-preserving can
not be easily expressed in terms of the operator Oy. For this reason, other representations are more
suitable to represent quantum maps.

In [14], Jamilokowski established a correspondence between the space of linear maps from M,
to M,,, and the operators in the tensor product space M,, ® M,,. This correspondence is stated

by the following theorem.

Theorem 1. For every linear map ¥ : M,, — M,,, there is an operator Cy € M,, ® M,, given
by
Cy = (Y@ 1L,) |¢¥) (Y] (2.30)

where 1) corresponds to |1) = Z?;OI i) ]%).

The operator C'y is denoted as the Choi operator. The action of the mapping ¥ can be recovered

from Cy by means of the equation

P(p) = trp [(Ln ®p")Cy] (2.31)

where tra(trg) denotes the operator applying a partial trace over the first (second) subsystem.
This equation completes the bijection between operators and maps usually referred as the Choi-
Jamilokowski isomorphism. To see that this is the right expression for ¢ (p), we may insert Cy in
the expression given by 2.31. We obtain that

tr5 [(Ln 29T)Cu] = & 3 tr (L 26T (¥ () © i) ()]
4,7=0
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- % i trg [U(Ji) (j]) @ p" |i) (5]
i,j=0
i:wng®WHWQW

,5,l=0

SRS

n—1

Z ([i) (71)piidj

1,5,1=0

-1 ip,,jxmm ()

SRS

=P(p). (2.32)

The following theorem originally introduced in [15] states the condition on Cy to represent a

completely positive map.

Theorem 2. The linear map ¥ : M,, — M, is completely positive iff C'y is positive semi-definite,
Cy > 0. (2.33)

The original proof of this theorem is given by [15]. The following theorem states the condition

on Cy to represent a trace-preserving map.

Theorem 3. The linear map ® : M,, = M,, is trace-preserving iff the following condition on Cy
is satisfied,

trA(Cq;) =10,. (234)

Proof. The map is trace-preserving if tr(¥(p)) = tr(p) V p € M,,. We take the trace over equation
(2.30) as

tr((p)) = tr(trp (Ca (I 2p7))). (2.35)

Consider the sets of density matrices {u; }iez and {v;};cz spanning M,,, and M,,, respectively. We
have that the Choi matrix Cy € M,, ® M,, can be expressed in terms of the elements of the set
{ni ® vitiez,, jez., as

Cy = Dijli @ Vj (2.36)
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where {p;; € C}; jez. However, C'y is hermitian so a basis can always be found such that p;; € R.

We express the trace of ¢(p) as

tr(¢(p)) = tr [(H @p")Cy]

n

S
[

pij tr [(H ®p" )i © Vj]

-
Il
=)

3
,_.
3 o
|
H‘o

st [ 7]

Il
{ngh
OM

3

|
L—F

ZPUVJ

r [p" tra(Cy)] (2.37)

s

and consequently, we require tra(Cy) = I,, which yields
tr(¢(p)) = tr(p”) Vp € My, (2.38)
O
Theorems 2 and 3 establish the conditions for a map to be completely positive and trace-

preserving, respectively, in terms of the Choi matrix Cy. The following theorem establish the

conditions for a map to be unital [16], a map which leaves the maximally-mixed state unchanged.
Theorem 4. [16] The linear map ® : M,,, — M,, is unital iff

trp(Cy) =1,y (2.39)
Proof. The map 1 applied to the maximally mixed state I,, gives as a result

P(I,) = trp (I, ®L,)Cy]

me trp [(H ®1, )m@yj]

I
i{nghi

[
3 Q

HO

3

Dij trp [Nz ® V]}

I
(]

s
I
=)

3
|
-
3
[l
- o

Dijlbi = tI‘B((C\p) (240)

s
I
o
<.
I
o
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and, consequently, the identity operator is mapped to the identity operator iff trg(Cy) =1,,. O

One can obtain a different representation of a quantum map deriving from the properties of
the Choi matrix of a completely positive map. By theorem 2.33, the Choi matrix representing

completely positive map is a positive matrix and consequently it can be expressed as

Cy = Z | Ai) (Al (2.41)

where {|A;)}iez are state vectors in the Hilbert space H = C™". A state vector can always be

expressed in terms of operators A; € M, «xn as
|Ai) = (I, ®A;) [¥) (2.42)

where [1)) = Z?;Ol i) |i). The set of operators { 4; };cz provides the representation of a completely
positive map known as operator-sum representation. This representation was first introduced by
Kraus in [17] and Ay, ..., A,,—1 are denoted as Kraus operators in his honour. The action of a map

in terms of the Kraus operators can be obtained by expressing the Choi matrix of the map as

Cy = Z'Ai> (A
—Z ) 10) (] (Al @ 1)

= > (A @ L)(lj) (kl © lj) (k) (A] ®1,). (2.43)

ijk

We introduce the expression of Cy in equation (2.31). We get that

Y(p) = trp [(Ln ®p" )Cy]

=3 tr [(Ln @) (A @ L)) (K] @ 13) (B(A] ©1T,)

ijk

= g [(Ai 15) (k| AT @ p" |) <k|)]

=" A 15) (K| Al @ (1] pT |5} (kD)

ikl

= pixdilj) (k| Al

ijk
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=Y AipAl (2.44)

which is the action of the map on a density matrix in terms of its operator-sum representation.
As we did with the Choi matrix, we evaluate the conditions in terms of the Kraus operators that
guarantee that a map is trace-preserving and unital. In order to get the trace-preserving and unital
conditions, we express the partial traces of the Choi matrix in terms the Kraus operators {A4;};cz.

The partial trace with respect of the first subsystem can be expressed as

talCul = 3 tra [(4 © 1) (1) (K @ 1) (k1) (4] @1,)]
ijk )
=3 tra [Asli) (4] 4L @ 1) (8]
ijk i
=3 tra [AlA ) (k| @ 1) (k]
ijk )

= > (AT A; 1) (k[ |5) (K]

ikl

=3 (HALA) 1) (K
ijk

=> (Alay)". (2.45)

By theorem 3, we have that a map is trace preserving if trg [Cy] = I,,,. In terms of the Kraus

operators representing a map, we require that
> AlA =1, . (2.46)
i

Similarly, the partial trace of the Choi matrix with respect to the second subsystem is given by

trp [Col =) trp (A @ L)(|) (k| @ 1) (k) (Ai © L,)]

ijk
=3t [Aili) (k1 Af @ 15) (K]
ijk
= Aulg) (k| AT (U3) (kID)
ijkl

=>4 anAal
7 !
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YAl (2.47)

In this case, by theorem 4, a map is unital if trg [Cy] = I,. In terms of the operator-sum represen-

tation, this condition corresponds to
> AA =1, (2.48)

A Choi matrix representing a completely positive map can always be expressed as a convex sum
of pure states as in (2.41). However, for a given matrix this decomposition is not unique. The
following theorem provides the relation between two different convex pure decompositions of the

same operator

Theorem 5 ([18]). Consider two different decompositions of the same positive operator O € Mixq
given by

0= ZaZ|A Za,—c a; >0 (2.49)
and

Zb|B Y (B, Zb—c b >0 (2.50)

c € R. Then, {|A;)} and {|B;)} are related through the following equation

1€LN i€l

N
1
Bi= — wi;vai |4;), (2.51)
where U = (uij); ;eg,, 5 unitary UtU =UUT =1,.

One consequence of this theorem is that the operator-sum representation of a CP map is not

unique. To see this, we can express the sets of state vectors {|A;)},c; and {|B;)};c;,  in theorem

5 in terms of operators as in (2.42). The two sets of operators (A4;) and (B)) representing

1€ELN JE€LM

the same CP map are necessarily related by the following equation

N
(L, ®Bj) [¢) = #Zuij\/a?(lln ®A;) [¢) - (2.52)
N

and, consequently,

N
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Note that two sets of Kraus operators with different cardinality M # N represent the same map
if by appending zero operators to the set with fewer elements, equation (2.53) maintains. From all
the pure decompositions of the Choi matrix representing a CP map the spectral decomposition has

the particularity that the states are orthonormal
c
Co =Y Nilri) (kil,  (kilkj) =6, (2.54)

In this case, ¢ is the rank of the Choi matrix and is denoted as the Choi (or Kraus) rank of a
map. Sets of Kraus operators associated with orthogonal eigenvectors of a given matrix provide
representations of the map for which the Kraus rank is minimal. We will use this idea to construct

a family of maps in Chapter 3.

2.3 Bipartite states

Axiom 4 states that the vector space of a composite closed quantum system is the tensor product
of the vector spaces of the individual subsystems. This property is a characteristic of quantum
mechanics and establishes a significant difference with respect to classical mechanics. We will
consider those differences and their consequences on the understanding of nature using a quantum
mechanics. We shall consider joint systems composed of two individual subsystems which we denote
by A and B. The state space of systems A and B are given by the Hilbert spaces H4 and Hp,
respectively. By axiom 4, the state space of the joint system is given by the set of states Ha @ Hp.

Consider that H4 and Hp are have dimension m and n, respectively. In the previous section,
we saw that an orthonormal basis can be found for each one of the Hilbert spaces. If the set of
vectors {|e;) 4 }icz is an orthonormal base of H 4 and the set {|f;)z}icz is an orthonormal base
of Hp, then, the set {|e;) 4 ® |fi)g}i,jez is a basis of the tensor space Ha ® Hp. Any density
operator representing the state of the composite system can be expressed as a complex matrix
PAB € Minxmn acting on the state space Hy @ Hp.

The fact that the state space of the system is mn-dimensional establishes a crucial difference

in relation to a classical description of the system. In a classical description, all the information
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of a composite system can always be reconstructed from the characterisation of its parts. How-
ever, this is not the case for quantum systems. If all the information of a compound system was
contained in its parts the state space of the system could only have m + n dimensions. In reality,
for quantum systems the state space is mn-dimensional, and the majority of the states cannot be
described by classical means. Schrodinger summarised this fact stating that in quantum mechanics
the description of the whole is larger than the description of the parts.

We differentiate bipartite states which can be described by classical means from those which
do not admit such description. A bipartite pure state admits a classical description if it can be

expressed as a product state
[aB) = [¢a) ® |[¥B) . (2.55)

Similarly, a bipartite mixed state admits a classical description if it can be expressed as an proba-

bilistic ensemble of product states
d—1
A B
pas = @ (2.56)
i=0

Those states than can be expressed as equation (2.56) (or as equation (2.55) for the particular
case of pure states) are said to be separable. In general, the state of a bipartite system is not
separable and in those cases, the state is said to be entangled. In other words, entangled bipartite

states are those which can only be described using quantum mechanics.

2.3.1 Entanglement as a resource

In 1935, Schrédinger was the first to consider entangled states in a response letter to the famous
paper by Einstein, Podolski and Rosen [19, 20]. For many years, entanglement was seen as a math-
ematical artefact with no practical use. However, this vision changed in the early nineties when
several groups showed that entangled states could be used to perform useful tasks. Bennett et al.
created protocols using entangled states for dense coding [21], they also showed that entanglement
could be used for teleportation [22]. Similarly, Ekert showed that entanglement in states could be
used quantum cryptography [23] and also in quantum computing [23]. Since then, more applica-

tions of entanglement appeared and some of them were experimentally carried out. Entanglement
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emerged as a rich field of study both for theoretical and experimental research and today it is a
key ingredient of the so-called second quantum revolution which aims to bring to the people appli-
cations of quantum information theory such as the future quantum internet [24]. A protocol using
entanglement usually starts with the generation of entangled pairs between systems A and B by
the direct interaction of the two systems or by the interaction of systems A and B with a third
system. As a result of applying a protocol entangled pairs are consumed and, as a consequence, the
entanglement between the systems is lost. In this scenario, entanglement can be seen a resource in

the same way thet energy is as a resource in thermodynamics.

2.3.2 Entanglement characterisation

In many applications, it is usually important to characterise entanglement between two systems.
Intuitively, characterising a state in terms of its entanglement corresponds to determining whether
the state is indeed entangled or not. In the case it is entangled, the characterisation consists of
determining the degree of entanglement of the state or, in other words, how far is the state from
not being entangled. To do this, we need to determine which operations can be performed over p4p
without increasing its entanglement. As previously stated, operations acting locally on subsystems
A and B do not increase the entanglement of the system. A local operation on p4p can be expressed
as

V4@ V¥p(pan) (2.57)

where U4 is a quantum operation applied only A and Vg is a quantum operation applied on B.
However, local operations are not the only operations that do not increase the entanglement of the
system. The parts of a certain system may be classical correlated without being entangled. This
type of correlation can established via classical communication between A and B which may perform
measurements on their respective states, communicate their results and apply an operation based
on information they receive from the other part. The operations result from applying successive
rounds of local operations and classical communication (LOCC operations) transform the initial
state pap as

paB —= pap (2.58)
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where the state p/y 5 is, as much, as entangled as the original state pag.

We may also consider the class of operations which maintain the degree of entanglement of
paB- Such operations are necessarily local because they do not increase entanglement. In this case,
they also need to be reversible (no measurements) so that entanglement does not decrease either.
This type of operations are called local unitary (LU). In this case, ¥4 and Vg represent unitary

operations so the initial state psp is reversely transformed as

paB <= plp (2.59)
where
Pap = (Ua®Up)pap(UL @ UL) (2.60)

and Uy and Upg are unitary operators. In this case, the degree of entanglement is maintained after
applying the LU operation. Local unitary operations determine entanglement classes of equivalent
states. Determining all the LU classes of a system is usually hard and it can only be done for some
certain states such as pure states or two-dimensional mixed states. The LU classification of these

states can be obtained as follows.

Pure states

One of the cases where LU classification is possible is the set of pure states. Consider the pure state
[aB) € Ha ® Hp where dg and dp are the dimensions of H 4 and Hpg, respectively. This state
can always be expressed in terms of a product basis as

da—1dp—1

[a)= > > tiliy@ls), (2.61)

i=0 j=0
where t; ; € C. The LU equivalence class of |14 5) is given by all the states of the form (UQV) |¢aB)

such that U and V are unitary matrices. By expressing U and V in terms of the computational
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basis as U = Zf’;;& wi; i) (j| and V = Zf?;ol v;5 |9) (], we get that

da—1 dp—1

UeV)[ap)= D> D twigtiivmnli) (k) ®[1) (mln)
i,7,k=01,m,n=0
da—1dp—1

YD tigtimvmali) ® D). (2.62)

i,j=0 k,1=0

Therefore, a LU operation on |14 ) corresponds to applying two changes of basis on the matrix
of coefficients T' = (t;;)i=1,....da j=1,...,ds- Lhis transformation in matrix form is expressed as
T'=UTVT.

We are interested in finding a state representative for each of the LU classes. For any matrix T,
one can always find matrices U and V such that UT'V7 is diagonal. Suppose that d4 > dp, then
| ap) can be brought by means of LU operations to the following form

da—1
[Wa) = Y Nip1li) @1i). (2.63)
i=0
The expression above corresponds to the Schmidt decomposition of the state |tbag) [25]. The
coefficients of the decomposition \; correspond to the singular values of the matrix 7. They form
the Schmidt vector X = (Ai)i=1,....d, determining the entanglement properties of any pure state.
The number of non-zero elements of the Schmidt vector is denoted as Schmidt rank. Because of
the normalisation condition (Y ap|ap) = 1 the Schmidt vector elements satisfy Zf;‘l A2 o= 1.
Equivalently, the the coefficients A; can be evaluated as the square root of the eigenvalues of the
partially reduced states pa = trp |¥ap) (Yap| and pp = tra|ap) (¥ap| which may differ by
da — dp zero valued eigenvalues.

We can discriminate between separable and entangled states by using the Schmidt decomposi-
tion. For pure separable states, the Schmidt decomposition is a product state and therefore has only
one term. Therefore, we can determine whether a pure state is entangled by evaluating its Schmidt
rank. In the case that the Schmidt rank is one the state is separable. Otherwise the state is entan-
gled. Schmidt decomposition can also be used to determine the degree of entanglement of a pure
state. In this context, Nielsen introduced a theorem used to compare the degree of entanglement

of two states. Before presenting this theorem we need to define vector majorisation.
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Definition 2. Consider two positive vectors with the same length @ = (uy,...,uq) and ¥ =
(v1,...,vq) where their elements add up to the same number 2?21 U; = Zle v;. The elements
i U and U can be ordered in decreasing order, we denote the ordered versions of these vectors by

@t and T, respectively. The vector @ majorises U, written as i@ > U, if and only if

k k
Zufzzqﬁ for k=1,...,d. (2.64)
i=1 i=1

The following theorem can be used to compare the degree of entanglement of two pure states.

Theorem 6 ([26]). The state [hap) can be transformed into |dpap) by a LOCC operation if the

Schmidt vector X¢> magorises the Schmidt vector Xw

Locc

lYap) — |paB) & qu = X¢- (2.65)

We refer to the original paper by Nielsen for the proof of the theorem. Theorem 6 provides a
hierarchy for the degree of entanglement of pure states. We may ask if there are states on the top
of that hierarchy, states that can be transformed into any other using LOCC operations. This class
of states are characterised by a uniform Schmidt vector and they are usually denoted as maximally

entangled pure states (MEPS),

Wasps) € Aupps = {\/g, e \/g} : (2.66)

By theorem 6, maximally entangled states can be transformed to any other by means of LOCC
operations. A well-known example of two-dimensional maximally entangled states , d4 = 2 and
dp = 2, are the four Bell states [¢)F), [1)7), |¢1) and |¢~) which in the computational basis are

expressed as
1 1
V2 V2

The degree of entanglement of a state can be quantified using entanglement measures. An

[0*) = —=(10) [1) £[1)[0)) and |¢%) = —=(]0) [0) & [1) [1)). (2.67)

entanglement measure is a real and positive function quantifying the degree of entanglement of

a given state. Despite there is not a universally accepted definition of entanglement measure,
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there are commonly accepted properties that entanglement measure should satisfy. Namely, one of
these commonly accepted properties is monotonicity proposed by Vidal in [27]. An entanglement
monotone is a magnitude which does not increase, on average, under probabilistic LOCC opera-
tions. Probabilistic LOCC operations generalise of LOCC operations by allowing the preparation
probabilistic outcomes in the rounds of classical communication between the subsystems. Another
commonly accepted property is that entanglement measures must discriminate between entangled
and separable states. This means that the result of applying an entanglement measure on a state
is zero if and only if the state is separable. Besides these two commonly accepted properties, there
are some desirable properties for entanglement measures such as additivity or normalisation.

In the case of pure states, we can find well-behaved entanglement measures. One example of
an entanglement measure of pure states is the entropy of entanglement E(|¢45)) which was first
introduced in [28]. Entropy of entanglement is defined as the Von Neumann entropy of the partially

traced state

E(|[¢ap)) == S(trp [YaB)) (2.68)

where the Von Neunman entropy of a density state rho is given by

d—1
= eilog(e;) (2.69)
=0
where e, ..., eq_1 are the eigenvalues of p. Following the fact that Schmidt coefficients correspond

to the square root of the eigenvalues of the partially traced states, the entropy of entanglement of

[tap) can be obtained as
E([¢an)) Z)\Q log (A\?), (2.70)

where {\1, ..., A\q} are the Schmidt coefficients of |¢)4p). For example, the entropy of entanglement

()

= log (d) (2.71)

of a maximally entangled pure state is given by

d
E([Ymeps)) Z

&M—‘
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and, in the case of separable states

E(jsep)) = log (1) = 0. (2.72)

For two-qudit states d4 = dg = d so the Schmidt vector has d elements. Due to the normalisation
the Schmidt vector, d — 1 degrees of freedom are required to characterise the entanglement of the
system. For example, for a two-qubit system, we only require one entanglement measure (such as

entropy of entanglement) to characterise completely the entanglement of the system.

Mixed states

Pure state entanglement can be detected and quantified by using the Schmidt decomposition.
Unfortunately, there is not an analogous tool for the characterisation of the entanglement of mixed
states. One of the objectives of entanglement characterisation is detecting whether a given bipartite
system is entangled. This is known as the separability problem. In the case of mixed states of
arbitrary dimension, the separability problem is known to be NP-hard [29].

The best technique so far to determine whether a given mixed state is separable is by using

entanglement witnesses [30]. Horodecki et al. proved the following result

Theorem 7 ([31]). For every entangled state pap, there exists a Hermitian operator W such that
tr (Wpap) <0 (2.73)

and

tr (Woap) >0 (2.74)
for all separable states cap.

An operator W which fulfils the conditions in theorem 7 is an entanglement witness for the
state pap. Therefore, a given state can determined to be entangled if a witness is found. However,
finding the entanglement witness is usually hard and on top of that, an witness is only valid to
detect the entanglement of a limited set of states. For these reasons, more practical methods are

to be developed to detect entanglement.
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One possibility for detecting entanglement is via entanglement tests or criteria. One of the most
used tests to detect the entanglement is the so-called Peres—Horodecki criterion which was proposed
in [32]. The Peres—Horodecki criterion, also known as the partial positive transpose (PPT) criterion,

says that for separable states, their partially transpose necessarily have a positive spectrum,
it > 0. (2.75)

It can be shown that the Peres—Horodecki criterion is necessary and sufficient for qubit-qubit and
qubit-qutrit states [33] and consequently it can be used to detect entanglement in those systems.
However, for arbitrary dimensional systems, the Peres—Horodecki criterion despite still being nec-
essary, is not sufficient. In other words, this means that there are entangled states which pass the
PPT criterion. This class of entangled states are known as PPT-bound entangled states.

As in the case of pure states, entanglement measures may be used to quantify the degree
of entanglement of a state. In the case of mixed states, finding an entanglement measure is a
compromise between possessing desirable properties (such as monotonicity or additivity) and being
easy to compute. In what follows, we introduce several examples of entanglement measures and we
discuss their advantages and disadvantages.

Negativity is an easy to compute entanglement measure. Negativity was first introduced in [34]

and is defined as the trace norm of the partially transposed density matrix minus one,
N(pag) = llpilhi—1 (2.76)

where the trace norm of a density matrix, written ||p||1, is defined as the sum of its singular values

or, equivalently

[lpll1= tr v/ ppt. (2.77)

Negativity measures the degree to which the partial transposed matrix fails to be positive, and
therefore it can be regarded as a quantitative version of the PPT criterion. As mentioned, one of
the advantages of negativity is its ease to compute. However, one problem of negativity is that it
fails to discriminate entangled states from separable ones. For example, bound PPT states have

zero negativity despite being entangled.
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One of the most used entanglement measures is the entanglement of formation (EoF), first

introduced in [35]. Entanglement of formation is defined as

- mmzpz (1) (279)

where the minimisation is performed over all possible decompositions
{plv |1/}z> i=1- P= sz W) (279)

where p; > 0 and Z —1 p; = 1. Entanglement of formation can be interpreted as the minimal degree
of entanglement from pure states required to construct a given mixed state.

Unlike pure states, there is not a hierarchy in the degree of entanglement of mixed states. It was
shown that the forms of the maximally entangled mixed states can vary with the measures chosen

[36].

2.4 Channel-state duality

In section 2.2, we considered the Choi-Jamilkowski isomorphism as a tool to represent a quantum
map in terms of an operator. However, the implications of this isomorphism go beyond quantum
maps representation theory. In this section, we see that Choi-Jamilkowski’s isomorphism can be
used to establish a duality between the set of quantum maps and the set of bipartite states. This
duality is of extreme usefulness in quantum information theory as it allows the employment of the
measures normally used with bipartite states to characterise quantum maps and vice-versa.

The Choi-Jamilkowski isomorphism establishes a correspondence between the space of linear
maps from M, to M,, and the space operators in the tensor product space M, & M,,. The
condition on a Choi operator to represent a complete positive map corresponds to Cy be positive
semi-definite. Thus, by choosing the correct normalisation, every Choi matrix Cy € M, ® M,,
representing a complete positive map can be associated with a density matrix representing the state
of a bipartite system. In particular

C\I/ = MNPAB (2.80)
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is the relation that guarantees that tr [pap] = 1. By using this relation, we consider different classes
of maps and their corresponding classes of bipartite states.

In section 2.2, we considered trace-preserving CP maps which were those representing physical
evolutions of quantum systems. In terms of the Choi representation, a map is trace-preserving if
equation tr4 [C'y| = I, holds. In the case of bipartite states, this condition is equivalent to obtaining
the maximally mixed state if we trace pap with respect to system A. Note that, contrary to the
case of quantum maps, physically realisable bipartite states do not require to fulfil this condition.

In section 2.2, we also considered the set of maps which were unital on top of being trace-
preserving. In terms of the Choi representation of the map, this condition is equivalent to the
equation trp [Cy] = I,,,. Similarly, unital and trace-preserving maps correspond to bipartite states
in which the maximally mixed state is obtained after partial tracing with respect to any of the
subsystems. Unital quantum channels and locally maximally mixed bipartite states will be deeply
considered in this thesis and an introduction to these classes of maps and their equivalent class of
bipartite states will be given in the following chapter. For the moment, we will consider the relation
between other classes of maps and bipartite states given by the channel-state duality.

A subclass of unital and trace-preserving maps is the class of unitary maps. In terms of the

action over the density matrix, unitary maps correspond to conjugations of p given by
(p) = UpUT. (2.81)

Equivalently, they are represented by rank-one Choi matrices. By the map-state duality, the class
of bipartite states corresponding to unitary maps is the class of maximally entangled pure states.

For these states the Schmidt decomposition is given by

n—1
1
‘¢>AB:72|61>A®‘JC¢>B (2.82)
Vi =
with the Schmidt coefficients «; = %
n

Finally, we may consider another interesting association between maps and states. In section 2.3,
we considered the class of separable states. In [37], the authors introduce entanglement breaking

channels, the class of quantum maps associated, by the map-state duality, with separable states.
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A bipartite entangled bipartite state is separable if an entanglement breaking channel is applied to

any of the two subsystems.



Chapter 3

Unital quantum maps and locally

maximally mixed states

3.1 Introduction

In the previous chapter, we introduced quantum maps which are the mathematical representation
used in quantum information science to describe open quantum systems. We also introduced bipar-
tite states describing two-part compound systems. We saw that dualism can be established between
quantum maps and bipartite states which is given by the so-called Choi-Jamilkowski isomorphism.

In this chapter, we will consider the particular type of quantum maps which are trace-preserving
and unital (UTCP maps). We will also consider the same object represented by UTCP maps in the
space of bipartite states which are the so-called locally maximally mixed (LMM) bipartite states.
These two mathematical objects are the main focus of this thesis. In particular, we consider the
convex geometry of UTCP maps and the entanglement classification of LMM states. To do this,
first, we will review the simplest setup of these problems which is given by qubit systems. Second,
we will consider the case in which the dimension of the quantum system is higher than two and we

will review some problems appearing when dealing with such systems.

37
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3.2 UCTP qubit maps

The set of qubit maps (not necessarily unital) can be parametrised [38—41]. We will follow a well-
known method to obtain such parametrisation which is based on the Bloch state representation.

We start by defining the Bloch decomposition of a density matrix.

Definition 3 (Bloch decomposition). Any density matriz p € Mgy can be expressed as

I d*-1
2
=1
where ; € C and A1, ..., \g2_1 form a basis of traceless matrices.

In the case of qubit systems, p € My, we can choose this basis to be the set of Pauli matrices,

denoted as {01, 02,03} where

01 0 —i 1 0
o1 = , 09 = and o3 = . (3.2)
10 i 0 0 -1

The elements of the Pauli basis are Hermitian and unitary. As a consequence of the hermiticity,
the coefficients of the Bloch decomposition in (3.1) are real and they can be represented graphically
as points in R3. If we do this for all qubit states, we obtain a graphical representation of the whole
set denoted as the Bloch ball which, by convention, is given by a sphere of radius one. In this
picture, the pure states correspond to points on the surface of the sphere and the mixed states
correspond to points in the interior. The maximally-mixed state locates at the centre of the sphere.

Consider the qubit map ¢(p) : My — Ms. The super-operator representation of ¢(p) is

expressed in the Pauli basis as the 4 x 4 real matrix 7. In the case that the map is trace-preserving

T = (3.3)

where /?3,6 € R?® and T is a 3 x 3 matrix. In this basis, the action of a map on the Bloch

representation of the state can be expressed as

Fo 7 = (7)) =R+ TF (3.4)
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The maximally-mixed in the Pauli basis corresponds to the zero vector and the action of ¢ on this

state is given by

¢(0) = . (3.5)

Unital maps are those sending the maximally-mixed state to itself qS(G) =0, so & = 0 for these
types of maps.
A crucial towards the parametrisation of qubit maps is made in [39]. In this work, it is shown

that for any qubit map ¢, the matrix 7 can be brought to the form

1 0 0 0
K 0 0
T=|" " with ks, 7m; € R, (3.6)
Ko 0 12 0
K3 0 0 3

by applying two unitary conjugations on the map as
uv(p) = Up(VpV U (3.7)

where U and V are unitary matrices. In the Bloch representation of two dimensional systems,
unitary conjugations correspond to rotations of the Bloch ball. The action of all maps ¢y (p)
given by the same matrix 7 are equal up to two rotations of the Bloch ball, one before the action
of the map and another one after it. A unital map (% = 0) given by a matrix 7 as in (3.6) can be
characterised solely in terms of the vector 77 = (11,72, 73), usually denoted as the distortion vector.
The action of such maps on Bloch vector can be expressed in terms of the distortion vector as
= 777. By considering this equation, the set of pure states |7|= 1, corresponding to the exterior

of the Bloch ball, is mapped into the ellipsoid given by the following equation

I\ 2 I\ 2 I\ 2
(1) +(2) +<3> =1 (3.8)
m 2 M3
We conclude that the parameters in the distortion vector determine the way in which the Bloch
ball is squeezed along the three principal axis.

Now we can identify all the parameters of a qubit map and determine their action on the Bloch

ball. Firstly, we have the three parameters of the vector K corresponding to a displacement of



CHAPTER 3. UTCP MAPS AND LMM STATES 40

the whole Bloch ball which in the case of unital maps is zero. Secondly, we have another three
parameters corresponding to the rotation in the Bloch ball induced by the conjugation of the map
with V as in (3.7). Thirdly, we have the action of the distortion vector converting the Bloch sphere
into an ellipsoid. Finally, we have another three parameters corresponding to a rotation of the
squeezed ball.

However, not all ellipsoids in the Bloch picture represent physically allowed transformations
between maps. In Chapter 1, we saw that physically realizable maps are necessary completely
positive. We may obtain the conditions for complete positive maps in terms of the parametrisation
of unital qubit maps. Given a unital qubit map, its Choi matrix is expressed in terms of the

distortion vector as
14+n3 0 0 m + 12

1 0 1—m3 m—m 0

0 m—mn 1—mn3 0
m + 12 0 0 L+m3
By Choi’s Theorem, a map is completely positive iff the Choi matrix of the map has positive

eigenvalues. The eigenvalues of Cy in (3.9) are given by

er = (1+n3+ (m +mn2))/2
ea=(14n3—(m+mn))/2
ez = (1—nz+ (m —n2))/2

es=(1—=n3—(m —mn2))/2 (3.10)
and are all positive iff the following four conditions are satisfied
(L£73)* = (m £ )% (3.11)

The four conditions given by (3.11), first introduced in [38], define a 3-simplex in the space of

distortion vectors in which the extreme points are given by

770 = (17 171>7 ﬁl = (17_1a _1>7 772 = (_17 1a _1> and ﬁ3(_17_17 1) (312)
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The action of these four maps over a state can be expressed as
p—p =opo; for i=0,1,2,3 (3.13)

where 09 = I and {0;}i=1,2,3 is the set of Pauli matrices. We can identify all UCTP qubit maps
with a point of the tetrahedron with Pauli maps as vertices. We just need to express the Choi
matrix of the map in terms of the Pauli basis and evaluate its eigenvalues which correspond to
the parameters of the distortion vector. Similarly, the set of UCTP qubit maps correspond to all
possible convex combinations of unitary channels. We will see that this is no longer true for higher

dimensions.

3.2.1 UCTP qubit maps and doubly-stochastic matrices

We saw that any UCTP qubit map can be expressed as a convex combination of unitary maps. As
a consequence, the set UCTP qubit maps has the geometry of a 3-simplex for which the vertices
are given by unitary maps. This property of UCTP qubit maps relates to Birkhoff’s theorem, a
well-known result in matrix theory which we consider in what follows.

The map ¢(p) = Z?:_ol KipK;r is doubly-stochastic (UCTP) if it is trace-preserving , Z?:_Ol KJKi =
I, and unital, Z?:_Ol K,KlT = I. Similarily, the matrix M = (m;;); j=o0,...a—1 With m;; > 0 is doubly-
stochastic if Z?:_Ol m;; =1for j =0,...,d—1 and Z?;& my; for ¢ = 0,...,d — 1. This is, the rows
and the columns of a doubly-stochastic matrix add up to one. In a similar fashion, unitary maps
du(p) = UpUT correspond to permutation matrices in the space of real matrices. Permutation
matrices P are doubly-stochastic matrices that have exactly just one entry equal to one in each row
and each column and zeros elsewhere. Now we are in position to state Birkhoff’s theorem which

characterises the convex structure of doubly-stochastic matrices.

Theorem 8. Any doubly-stochastic matriz M of dimension d admits a decomposition in terms of

the possible permutation matrices of dimension d, Py, ..., Py_1. Such decomposition is given by

dl—1
=3 up (3.14)
1=0

where tg, ...,tq_1 are positive scalars such that t1 + ... +tq_1 = 1.
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For the proof of this theorem, we refer to the original paper by Birkhoff [42]. By this theorem,
the set of doubly-stochastic matrices can be associated with a the d! dimensional polytope (usually
known as Birkhoff polytope) in which the vertices correspond to permutation matrices. This geo-
metrical picture of the set of doubly-stochastic matrices agrees with the representation of UCPT
qubit maps. Interestingly, as mentioned, this common property of doubly-stochastic matrices and

UCPT qubit maps is lost when the sets of UCPT maps of higher dimensions are considered.

3.3 LMM bipartite qubit states

As we saw the set of locally maximally mixed bipartite qubit states is isomorphic to the set of unital
and trace-preserving quantum maps. In this section, we will discuss the classification of LMM qubit
states in terms of their entanglement [43, 44]. We will see that the entanglement classification of
this set allows for a geometrical representation that, unsurprisingly, is completely equivalent to the
geometrical representation of UCPT maps. As in pure states, the degree of entanglement of LMM
qubit bipartite states can be characterised by using local unitary equivalent classes.

Consider a density matrix pap acting on the product space H 4 ® Hp in which both spaces have
the same dimension d4 = dg = d. In the previous section, we considered the Bloch decomposition
of a density state. For bipartite states, the elements of the Bloch basis can be chosen to be product

states. The Fano decomposition of pap [45] is given by

d?—1 d?—1 d?—1
1
pAB = o I @I+ Z sidi @ Ig+ Z tilg @A+ Z Tij A @ Aj (3.15)
i=1 i=1 ij=1
where s; = tr (pap A\ ® Ig), ti = tr (pap Lla @A), 1i; =tr (pap Ai @ A;) and {Ai}ieZdz,l is a base of

traceless matrices. In the particular case of LMM states, the Fano form can be further simplified.
By taking the partial trace of pap with respect to the first subsystem we get that

d*-1
1
tra (PAB) = g I+ Z tidi | - (316)
=1

The vector t = {ti}icz corresponds to the coefficients of the Bloch decomposition of one of the

42 -1

reduced states. Similarly, if we take the partial trace of the same state with respect with the second
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subsystem we get that
d*—1

1
trg (pap) = p Ig+ Z Sidi | - (3.17)
i=1

In this case, the vector §= {s;}icz corresponds to the coefficients of the Bloch decomposition

d2—1
of the other reduced state. In the case of LMM states, tra (pap) = trp (pap) = éﬂd, so it follows
that £ = §= 0. LMM states are expressed in the Fano form as

d*—1
1
PAB = ﬁ IyI;+ Z rij)\i ® /\j . (318)

ij=1
The matrix R = {Tij}i,jEZdz_l is usually denoted as the correlation matrix and it encodes non-local
information about the state. As we saw, LMM states can be described solely in terms of their
correlation matrix. We will introduce a theorem that establishes a set of LU invariants in terms of

the correlation matrix. To prove this theorem we will make use of the following lemma.

Lemma 1. Let U € SU(d) and let {\n}mez,, , denote an orthonormal basis of traceless matrices.

Then
d*-1
UNaUT =" vndn,  for m=1,...,d> —1 (3.19)
n=1
where V = (V) € SU(d? - 1).

n,meLy2

Proof. Let Mg denote the set of all d x d traceless matrices. Since {Am}tmez is a basis of My

d2 -1
over C, we can write any matrix A € My as
d*-1
A= vmAm, (3.20)
m=1

where v,, € C. All the matrices which are unitarily similar to A are also traceless and can be

expressed as

d—1
A =UAUT = > v, Am. (3.21)
m=0
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The product of two matrices given by the left hand side of equation (3.19) can be expressed as
d*—1 d*-1

<U>\iUT, U/\jUT> = <Z UmiAm, Z Unj)\n>
m=1 n=1

d?—1

Z anivnj <)‘ma )‘n>

m,n=1

d?—1
Y Uivmg (3.22)
m=1

where (A\;, \j) = d; ;. Since unitary similar transformations preserve the normalisation and orthog-

onality between elements of the basis,

(U NUT, UNUY =t (UNTUTONUT)

= tr A\, UT0)
=tr (AL)))
= (A, Aj) = b4y, (3.23)
we get that necessarily
d*—1
UpniVmj = 0ij (3.24)
m=1

which corresponds to the conditions that guarantee that V = (Umn)mmezdz,l is a unitary matrix.

O
Now we are in a position to introduce the following theorem.

Theorem 9 ([43]). Any state pap can be transformed by means of LU operations into a state p'yp

whose correlation matriz R’ is in diagonal form.
Proof. Let pap and p/,  be two bipartite states related by a local unitary operation,
Pap = (Ua@Up)pap(UL @ UL). (3.25)

We recall from the Bloch decomposition in (3.15) that the coefficients of the correlation matrix are
given by
rij = (paB, Ai ® ;) . (3.26)
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The corresponding coefficients of p/y 5 can be expressed as
i = (Plap, Ai ® Aj)

:tr«UA®UBMWUL®U£Mi®AO

=tr (pT(UZ RUELN @ N\j(Ua ® UB))

= tr (pUIAUL © UL U )

= (p,UlNU4 ® ULA;Up) (3.27)
and, by lemma 1,

vl = (p, UNUA @ UL UB)

d*-1
S SIS S
d2—1
= Z vml m p,)\ ® ;). (3.28)
m,n=1
If we express it in matrix form, then
R =V,RVp (3.29)

where V4, Vg € SU(d? —1). We can always find two special unitary matrices, V4 and Vg, such

that R’ = diag(r},...,rl. ;) where r; € R. O

Note that we did not use the usual singular value decomposition (SVD) in the last step of the
proof. As opposed to the usual SVD, in this case, the matrices V4 and Vg are restricted to the subset
of unitary matrices with determinant one. To compensate for this constraint, the condition that the
singular values are positive needs to be relaxed and accordingly the elements of the diagonal matrix
R’ may also take negative values. Regardless of this fact, the singular values of the correlation
matrix can be used for entanglement classification as they correspond to the absolute values of the
elements of R’

SVD(R) = r',..., [ _4]. (3.30)

By using the mathematical tools introduced, we can discuss the particular case of two-qubit

LMM states and their characterisation in terms of entanglement. Lemma 1 associates a unitary
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matrix V € SU(d? — 1) to every unitary transformation given by the left-hand side of equation
(3.19). For, d = 2, this association can be established in the other direction and for every decom-
position given by the right-hand side of (3.19), one can find a unique conjugation in terms of a
unitary matrix U € SU(2). To see this, it is useful to consider Pauli matrices as the elements of the
Bloch basis. In this case, the matrix V' is real and consequently V' € SO(3). The sets U € SU(2)
and V € SO(3) are both three-dimensional and a direct relationship exists between the elements
from both Lie groups. In particular, SU(2) is a double-cover of SO(3).

Consider now a state p/y 5 € My for which R’ is a a diagonal matrix

rp 0 0
R=10 r, o] (3.31)
0 0 r

By Theorem 9, any state can be brought to this form by means of LU operations and consequently
states like p/; 5 are representatives of the entire LU class. All the LU classes of a two-qubit LMM
state can be characterised by using three parameters 71,15 and 5. However, not all diagonal matrices
R’ correspond to density matrices with positive eigenvalues. To obtain the positive constraints, we
express p'y g in terms of 7 ,r5 and 75 and we evaluate its spectrum. We obtain that p', 5 is positive

if the conditions given by

1—ry—rh—r;>0
1 Vi ! A
—ry+ry+r3 >0
! A /
1+7r—ry+7r3>0

1+ +ry5—1r5>0 (3.32)

are satisfied. In R3, these conditions correspond to the points of the 3-simplex with vertices at
(1,1,1), (1,-1,-1), (—=1,1,—1) and (—1,—1,1) and correspond to the four bell states |®T), |®7),
|U*) and |[¥7) introduced in the first chapter.

This geometrical representation of the LU classes of two-qubit LMM states is equivalent to the

parametric representation of qubit UCPT maps. The Choi-Jamilokowsli isomorphism establishes a
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Oo

]

Figure 3.1: Tetrahedron representing the set of unital and trace-preserving qubit maps.

one-to-one correspondence between the set of LMM states and the set of UCPT maps. On top of
that, Choi’s theorem establishes that the conditions that guarantee the positivity of p/y 5 correspond
to the conditions for a map to be completely positive and, in this case, they are given by (3.11).
The elements of the correlation matrix R’ in the case of LMM states play the same role played by
the distortion vector 77 for UCPT maps.

Now we can discuss the entanglement characterisation of the set of two-qubit LMM states in
terms of the geometry of the set of LU classes. As we saw, the degree of entanglement is maximised
by the four Bell states which lie at the vertices of the tetrahedron. We can consider the position
of the separable states within this tetrahedron. To do that, we will use the PPT criterion which
is necessary and sufficient for two-qubit states. If we take the partial transpose of p/y 5 expressed

in terms of r{,r5 and r} and we evaluate the spectrum of the resulting matrix we obtain that PPT
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states are those which fulfil the following conditions

L+ri+ry+r5>0
1+7ry—rh—r5>0
1—ri+rh—r;>0

1—7r) —rh+7r5>0. (3.33)

In R3, these conditions correspond to the 3-simplex obtained from inverting the 3-simplex represent-
ing the states in which p/, 5 is positive. The set of separable states corresponds to the intersection
of both figures. Geometrically, the intersection of these two figures is the octahedron with vertices

at (0,0,=£1),(0,+1,0) and (0,0, %1).

3.4 Higher dimensional case

It is the case that qubit systems have some particularities which can not be extrapolated to higher-
dimensional setups [46]. From an algebraic point of view, unitary conjugations correspond to
rotations in the real space, SU(d) = SO(d? — 1) only for d = 2. In a like manner, for higher
dimensional systems the Bloch representation of the state space has a much richer structure than
the Bloch ball used for qubit systems [47]. For example, for d = 2 the boundary of the state
space corresponds only to pure states. In the higher dimension, every density state with at least
one eigenvalue equal to zero is on the boundary of the state space, including those density states
with more than one non-zero eigenvalues (mixed-states). In general, the problems appearing in
higher-dimensional quantum systems are substantially harder than their qubit counterparts and
many questions about such maps remain unanswered [48].

We saw unital qubit quantum maps possess a differential property compared to higher-dimensional
maps. Namely, UCPT qubit maps always admit a decomposition in terms of convex combinations
of unitary map [49]. This property of qubit maps allows the representation of the UCPT set as
the 3-simplex with Pauli channels as vertices. However, this is no longer true for UCPT maps of

higher dimensions. Various investigations introduced examples of maps which were neither uni-
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tary channels nor could be decomposed in terms of convex combinations of unitary channels [50,
51]. One consequence of the existence of these types of maps is that there is not an analogue of
Birkhoft’s theorem for UCPT maps of dimension greater than two. Interestingly, it was found that
the distance between a given UCPT map and the set of mixed-unitary maps was reduced by ap-
plying the tensor product with more copies of the same map [52]. Based on this observation, it was
conjectured that Birchoff’s theorem could be restored in the asymptotic limit. However, Haagerup

and Musat in [53] resolved this conjecture as negative.



Chapter 4

The convex set of unital quantum

maps

4.1 Introduction

The objective of this chapter is to find families of UCPT-extremal maps generalising the set of
rank-one maps (unitary maps) to maps of higher rank. Such maps are interesting from the point of
view of the convex characterisation of UCPT maps. To see this, we consider the set of all possible
convex mixtures of a family of UCPT-extremal maps including both rank one maps and other maps
with a higher rank. Such a set of maps includes all mixed-unitary maps but also other maps which
cannot be expressed as convex combinations of unitary maps. An extension of the mixed-unitary set
like this could provide new insight into the failure of the quantum analogue of Birkhoff’s theorem
and it could also offer better classifications for UCPT maps. Figure 4.1 shows the relation between
the set of all UCPT maps, the set of mix-unitaries and the set of maps which can be reached by
considering convex combinations of families of UCPT-extremal maps including maps other than
unitaries.

To do this, we present a family of CP maps which is defined in terms of a particular set of

50
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Target region Mixed-unitary maps

Figure 4.1: Schematic representation of the set of UCPT maps, the set of mixed-unitary maps and
the set of all maps given by convex mixtures of rank-generalised families UCPT-extremal maps.

Kraus operators. We introduce a canonical parametrisation of the elements of this family and we
discuss in terms of the parameters which elements of the family correspond to UCTP-extremal
maps. As an application, we consider the particular case of qutrit maps. In this setting, we see that
the family of maps introduced includes maps of rank three or less and we see explicit examples of
those UCTP-extremal maps. However, it is well documented the existence of UCTP-extremal maps
with rank four [2]. For this reason, we also introduce a different family of qutrit maps including
rank-four UCTP-extremal maps. Finally, we consider the evaluation of the degree of extremality

for the families of qutrit maps introduced.

4.2 Convex characterisation of UCPT maps

We start by introducing some results concerning the convex characterisation of UCPT maps. The
set of trace-preserving maps and its adjoint, the set of unital maps, are convex sets. We denote
those maps in a set which cannot be expressed as convex combinations of other elements of the
same set as extremal maps. The concise characterisation of the extreme points of the set of unital

maps (not trace-preserving) was provided by Choi with the following theorem.

Theorem 10 ([15]). Consider the set of UCP maps £ : D, — Dy, with minimal operator-sum
representation E(p) = >\, Kiij. Then, £ is an extreme point within the set of unital maps if

and only if the set {KiK;}i,jle 18 linearly independent.

Choi’s theorem has a natural extension provided that the set of CPT maps is the dual of the set

of UCP maps with respect to the complex conjugation. The following theorem establishes when a
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CPT map is extremal with respect to the CPT set.

Theorem 11. Consider the set of CPT maps & : Dy, — D,, with minimal operator-sum represen-
tation E(p) = Z:zl Kl-pKiT. Then, £ is an extreme point of within the set of trace preserving maps

if and only if the set {KJKj}i,jEZT 1s linearly independent.

Theorem 10 and theorem 11 establish bounds to the Kraus rank of the extreme points of the
sets of unital maps and trace-preserving maps, respectively. The Kraus rank of an extreme point
of the set of unital maps is upper bounded by m. This follows from the fact that at most m?
matrices KiK;-[ can be linearly independent as their size is m x m. For the case of trace-preserving
maps, we have it that the Kraus rank of an extreme point of the set is upper bounded by n. This
follows from the fact that at most n? matrices K j K; € M;,xy can be linearly independent. The
set of unital and trace-preserving maps is also convex and the following theorem characterises the

extreme points of the set.

Theorem 12 ([51]). Consider the set of UCPT maps € : Dg — Dgq where E(p) == > ., KipK]
and >i_, Kin =3 KJKi =1y. Then we say that £ is UCPT-extremal if and only if the set
of 2d x 2d matrices

(KK @ KK} jez, (4.1)
1s linearly independent.

From this theorem, it follows that the Kraus rank of UCPT-extremal maps is upper bounded
by |V2d?|. This follows from the fact that 2d? is the maximum number of linearly independent

matrices given by KZTKJ- & KZKJJr

4.3 A family of UCPT-extremal maps

The objective of this section is to find a family of maps including both unitary maps and UCPT-
extremal maps of higher rank. To do this, we look at a particular family of CP maps in which its

Kraus operators have a special form with respect to the Heisenberg-Weyl basis. For this family
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of maps, we select a canonical parametrisation and we discuss in terms of those parameters which
elements of the family correspond to UCTP maps.
Let us consider the family of CP maps over dimension d, £ : Dy — Dy, whose operator-sum

representation is given by
d—1
E(p) = 3 Kipk] (4.2)
i=0

with the following Kraus operators

d—1
Ki = ZainiZj
J

d—1

> aijwh [k + i) (k] (4.3)
j,k=0

where (vi;)i jez, € C¥*®is a matrix of complex coefficients and w = ¢ is the dth primitive root of
unity. The set {X;Z; = Zz;é wk9 |k + 1) (k|}i jez, corresponds to the Heisenberg-Weyl basis over
dimension d, a set of orthonormal matrices that generalise the set of Pauli matrices to arbitrary
dimension [54]. The sets of Kraus operators {K;}i=o,. a—1 and {G;};=o,... 4—1 represent the same
map if

d—1

K;j =Y ujGiforj=0,...,d—1 (4.4)

ij=0
where U = (u;)ijez, i a unitary matrix. Now suppose that {K;}i—o,. a—1 and {G;}i=o, . a—1
are given respectively by the Kraus operators in (4.3). Because of the orthogonality of the sets,
tr (KZTGj) x 93 for 4,5 =0,...,d — 1, we have it that the unitary matrix in theorem 4.4 is given
by

citn
U= (4.5)
cida

and this means that the only possible freedom corresponds to multiplying each one of the d Kraus
operators by an arbitrary phase. In terms of group theory, this freedom is determined by the
action of the group generated by taking the direct product of d copies of the unitary group U(1),

ez, U(1). The different maps given by the Kraus operators in (4.3) can be divided in equivalence
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classes determined by the action of ®i€Zd U(1). We can represent each one of these classes of maps
by fixing the phase of one of the columns of the matrix of coefficients (c;)i jez,. To represent each
class, we fix the phase of the first column of this matrix of coefficients to zero. We can discuss
the properties of a given map of this family in terms of the coefficients c;;. The following theorem

establishes which maps are unital and trace preserving.

Theorem 13. The map & : Dy — Dy given by the operator-sum representation E(p) = Zldz_ol KipK;r

where K; = Zj‘l;l:o a;jwI |k + i) (k| is trace-preserving if

d—1
> e =1 (4.6)
i,j=0
and
d—1
> aijue=0, I=1,...,d-1 (4.7)

4,5=0

The map & is unital if in addition to condition (4.6), we have it that

d—1
Z aij+la:jw_il =0 [= 17...,d— 1. (48)

i,7=0

Proof. The proof follows from the evaluation of the trace-preserving and unital conditions for the

Kraus set given by (4.3). Let us consider the set {K] K;}iez, in the {|a) (b|, a,b € Z4} basis as

d—1 d—1
KK = 3 aiw™ |k) (k+il (Z Q™ [ + 1) <n|>

k,7=0 m,n=0
d—1
= > cimaw™ M k) (k+iln + ) (0
k,j,m,n=0
d-1
= > cuma Wt k) (K] (4.9)
k,j,m=0
To satisfy the trace-preserving condition Z?;ol K;r K; =1, it necessarily follows that
d—1
Z aimafjwk(mfj) =1fork=0,...,d—1 (4.10)

i,j,m=0
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By the change of index, m — j =, (4.10) can be expressed as

d—1 d—1
agjpawt =1fork=0,...,d—1 (4.11)

i,l=0 7=0

<.

and using the change of variable 3;; = Zj;é Qij105;, we get that

d—1

> BawM =1fork=0,....d-1. (4.12)
i,0=0

The unique solution to this system of d linearly independent equations in terms of the set of variables
{Bit}iiez, corresponds to >, Bio =1land ) . By =0for I =1,...d — 1. By expressing the
solution of the system in terms of the original variables {c;}i kez, We get precisely the equations
(4.6) and (4.7).

Similarly, we can obtain the conditions required by a map to be unital. Let us consider the set

{KiKJ}iEZd as

d—1 d—1
KK = ( > imw™ |n i) <n|> > agw ™M k) (k + ]

m,n=0 k,j=0
d—1
= Z Qi ;W™ ik ) (k|n) (n + 1|
k,j,m,n=0
d—1

= D maiw™ M ki) (n+ ]
k,j,m,n=0

d—1

= > cimajwt T k) (k] (4.13)
k,7,m=0

To satisfy the unital condition Zd 'K; K; = Iy, it follows that

d—1
> aimafwk ) =1 for k=0,...,d 1. (4.14)

2,7,m=0
By the change of index, m — j = [, equation (4.14) can be written as

d—1

IS
=

agpafw M =1for k=0,...,d—1 (4.15)
i,1=0

<.
Il
o
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and using now the change of variable §;; = Z?;é aijyia;; we get that

d—1
> Buw T =1for k=0,....d—1. (4.16)
i,1=0

We get again a system of d equations in terms of {f;x }: kez,. The solution of this system is given
by 31— Bio =1 and >, Buw b =0forl =1,...d — 1. If we express the solution of the system
in terms of the elements of the set {c;}; jez, we get precisely the equations (4.6) and (4.8) which

completes the proof. O

Equations (4.6), (4.7) and (4.8) represent 2(d—1)+1 real constraints. To see this, we notice that
(4.6) corresponds to one real constraint while (4.7) and (4.8) correspond to (d — 1) real constraints
each. The following theorem establishes whether a UCPT map given by the Kraus set in (4.3)

corresponds to a UCPT-extremal map.

Theorem 14. A unital and trace-preserving map given by € : Dy — Dy with operator-sum represen-
tation E(p) = Z?;Ol KipK! where K; = Z?’?:O aijw® |k + i) (k| corresponds to an extreme point
of the set unital and trace-preserving maps iff the matrices (M;|N;) are full-rank for 1 =0,...,d —1
where
d—1 d—1
M, = Zai+ljw3(’€_l) Zafjwﬂk (4.17)
3=0 j=0 i,k€Zq

and

d-1 d—1
N, = Zai+ljw(k_i)j Zafjw_(k_i)j . (4.18)
j=0 j=0 i,k€Zq

Proof. By theorem 12, we have it that a map is an extreme point of 27 if the set {K]K; @

KiK;}i,jeZd is linear independent. First, let us consider KJKL-H as

d—1 d—1
KK = Z afjw_kj k) (k + 4| Z Qig1w!™ 0+ i+ 1) (n]
k,j=0 4,n=0
d-1 [d—1 d—1

Z Zaiﬂjwj” Zafjw_kj |k) (k+iln+i+1) (n]

k,n=0 \ j=0 7=0
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d—1 [d—1 d—1
= Z Z g ! Y Z a;‘jwfkj |k) (k +iln + i) (n — |
k=0 \j=0 5=0
d—1 [d—1 d—1
= Z Z AT Z a;‘jw_jk |k) (k—1]. (4.19)
k J J

The matrices in (4.19) can be expressed in vector form if we use |k) (k — 1| ~ |k, k — ) so that

d—
KK = Z Yika |k ke — 1) (4.20)
k=0

We take the inner product of two arbitrary vectors as

d—1
<K;Kj+n|KiTKi+l> = Z ’)/ik'lp)/;mn <m7 m— ’I’L|k, k — l> . (421)

km
We see that (K;Kj+n|KjKi+l) = 0if ] # n for k,I,m,n € Zg. The non-zero coefficients of

{KJKi—&-l}iEZd can be expressed in matrix form as M; for [ = 0,...,d — 1. Second, we consider

KH_ZKJ as
d—1 d—1
Kkl = [ 3 o nti b o | |32 o 16 o+
J,n=0 j,k=0
d-1 fd-1 d—1
= Z Zaiﬂjoﬂ” Zafjw_ﬂ“ [n 4+ i+ 1) (nlk) (k+ 1
n,k=0 \ j=0 7=0
d-1 [d-1 d-1
= ZaiJrljUJJk Zafjw_ﬂ“ |k + i+ 1) (k+1
k=0 \j=0 3=0
d—1 1 d—1
= Z iy Z a;kjw_(k_m |k +1) (k. (4.22)
k=0 \Jj §=0

As we did before, we may vectorise the these matrices by using |k + 1) (k| ~ |k + 1, k) so that

K K] = Z%kl ke + 1, k) (4.23)

The inner product of two arbitrary vectors is expressed as

d—1
(KjnKIKip KD = itV omn (m + n,mlk + 1 k) (4.24)

km
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and we note that (KjJrnK;r \KiHKJ) = 0 in the case that n # [. In this case, the non-zero coefficients
of the sets {KiJrlKj}ieZd are given by the matrices N; with [ =0, ...,d—1. As we saw, two elements
of {KZ.THKZ- ® KiKL_l}i,leZd with different [ are linear independent so we just require that the all

the matrices (M;|N;) with [ =0, ...,d — 1 to be full-rank as stated by the theorem. O

The following theorem characterises the set of maps given in terms of the operator-sum repre-

sentation in (4.3) which are extremal with respect to the set of UCPT maps.

Theorem 15. Consider the set of matrices given by

d—1
Z OtijOl;(j = 1
i,j=0

d—1

A(d) = { (aij)ijen, € C? > il =0 forl=1,..d-1 (4.25)

4,J=0

d—1
Z aij+lafjw_il =0forl=1,...,d—1
i,j=0

where w = ed ' and further consider the set
By(d) = {(vij)ijez, € C™*? : det ((My|Ny)(My|N,)T) = 0} for1=0,...,d — 1 (4.26)

where the matrices {M;}i=o,...a—1 and {N;}i=o,... .a—1 are given by (4.17) and (4.18), respectively.
Then we have it that the set

X(d) = <A(d) - <A(d) N (U Bl(d)>>> /QU) (4.27)

1€Zq 1€Zq

corresponds to the set of all quantum maps defined by the Kraus operators in (4.3) which are extreme

points of the set of unital and trace-preserving maps.

Proof. This theorem follows directly from the consideration of theorems 13 and 14. Let 7 denote

the map that sends complex matrices to quantum maps as
m(ag;) =& (4.28)

where the action of the quantum map £ on a density operator is given by

d—1 d—1 d—1

Elp) = Z Z ik |k + i) (k| | p Z afjw_kj |k) (k+1| | . (4.29)

i=0 \ j,k=0 3,k=0
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On the one hand, by theorem 13, we have it that if we apply the map 7 to A(d) we get as a result
the set of maps which are trace-preserving and unital. On the other hand, if we apply the map
7 to the elements of the sets B;(d) for [ = 0,...,d — 1 we get maps where the matrices (M;|N;)
are not full-rank. Therefore, by theorem 14, the map 7 applied over the set A(d) N (UZEZd Bi(d))
corresponds to the maps which are not UCPT-extremal. Note that the theorem is enunciated in
terms of its complementary, the maps that are extreme within the set. Finally, it remains to consider
the freedom in the choice of Kraus operators to obtain an injection between the set .A(d) and the
set of unital and trace-preserving maps. In this case, the freedom in the choice of Kraus operators
is given by the action of the group HieZd U(1) and therefore to get a one-to-one correspondence we

take the quotient space of the set A(d) with respect to the action of this group. O

Corollary 1. The set of unital and trace-preserving maps given by the Kraus operators defined by

(4.3) has dimension 2d* — 3d + 1.

Proof. This lemma follows from the evaluation of the dimension of the set given by (4.27). We have

it that
dim (X (d)) = dim(A(d)) — dim(X) U(1)) (4.30)
i€Zq
Since A(d) is a 2d* dimensional set with 2(d — 1) + 1 real constraints and iz, U(1) is a d
dimensional group. We conclude that
dim (X (d)) =2d* — (2(d —1) +1) —d =2d* — 3d + 1 (4.31)
O

4.4 Qutrit case

In the previous section, we introduced a family of UCPT-extremal maps to extend the well-known
set of mixed-unitary channels. The simplest set of UCPT maps for which the existence of non-
unitary extremal maps is known is the set of qutrit maps. For qutrit maps, by theorem 12, the

rank of UCPT-extremal maps is bounded by [v/18] ~ [4.24|. While all rank one UCTP maps are
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UCPT-extremal (unitary maps), it is the case that all rank-two maps admit a decomposition in
terms of other UCTP qutrit maps [51]. Rank-three and rank-four UCTP-extremal maps are key
to characterising the convex structure of the set of UCPT qutrit maps. However, the rank of the
maps of the family is bounded by d and consequently, for qutrit maps, this family only includes
maps with a rank of three or less. In this section, we will see some examples of UCTP-extremal
qutrit maps of this family. In particular, we will present examples of unitary maps but also one
example of a rank-three UCTP-extremal map.

Let & : D3 — D3 be the map E(p) = Z?:o KipK;r where the Kraus operators are given by

agg 0 0 Qo1 0 0 02 0 0
Ko=10 ap 0 [|+] 0 anw 0 +]1 0 oapw: 0 |, (4.32)
0 0 ag 0 0 ogw? 0 0 QoW
0 0 a0 0 0 aq1w? 0 0 oW
Ki=|aw 0 0 [+]an 0 0 |+|ae 0 0 (4.33)
0 aip O 0 aqw 0 0 «pow? 0
and
0 agyp O 0 anw 0 0 agow? 0
Ko=10 0 ag|[+] 0 0 an?|+]0 0 amnw (4.34)
azy O 0 91 0 0 92 0 0

27

where w = €73

denotes the third root of unity. Theorem 13 maintains that a map given by this

Kraus set is unital and trace-preserving if it satisfies the equations

2
> agap =1, (4.35)

4,7=0

2
> e =0 (4.36)
i,j=0



CHAPTER 4. THE CONVEX SET OF UNITAL QUANTUM MAPS 61

and

2
Z aijﬂafjw_i =0. (4.37)

4,J=0
We note that, for the case of qutrit maps, equations (4.36) and (4.37) can be expressed as the

simple condition
d—1

W aijpay =8 for i=0,1,2 (4.38)
j=0

where 8 € C. The family of maps given by the Kraus set in (4.3) includes the nine unitary

Heisenberg-Weyl channels,
EIW (0) = XonZnp( X Z,)T for m,n € Zs. (4.39)
These maps can be obtained from the Kraus operators in (4.3) by fixing the coefficients

1 if i=m,j=n

0 if i#m,j#n
for m,n € Zs. The family of maps introduced includes also UCPT-extremal maps of rank three
and to see that, we present an example of such map. We also show that this example corresponds

to a unitary transformation of the well-known antisymmetric qutrit Werner-Holevo channel Eyy g

11].

Example 4.4.1. We define the map &, by the Kraus set in (4.3) where, in this case, the defining

coefficients are given by the matriz

(aij) =— 12 €™ e |. (4.41)

5w ;

2 est e%!
To see the relation between &, and Ew g, we consider £,(p) = Z?:o KipK;r where

1 0 O 0 0 -1 0 00

1 1
— and Ky = — 4.42
\/5000 2ﬁ001 (4.42)
0 0 0 01 0 1.0 0

KOZ 0 -1 0 aKlz

1
V2
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and the unitary matrix

01 0
v=11 0 ol. (4.43)
00 1

The conjugation of &, with U results in the map

2
U(p)Ut =3 UK pK]U

i=0
2
=Y UKip(UK;)! (4.44)
i=0
where the Kraus operators are
0 1 0 0 0 1 0 0 O
1 1
UKoy=—| - JUK, = and UKy = — — 4.45
o= -1 00 1=5|0 00 2\/§001()
0 0 O -1 0 O 0 1 0

This Kraus set corresponds precisely to the anti-symmetric Werner—Holevo channel of dimension
three. One peculiarity of this map is that it maximises the distance from the set of mixed-unitaries
[2]. We also note that the Landau-Streater channel over dimension three can be obtained as a
unitary conjugation of the Werner—Holevo channel [55] and consequently, it can also be recovered

as a unitary conjugation of the map &,.

4.4.1 Rank-four UCPT-extremal qutrit maps

Theorem 12, establishes that the rank of UCPT-extremal qutrit maps is bounded by four. However,
the family of maps we introduced in the previous section only includes maps of rank three or less.
To provide a better characterisation of the set UCPT-extremal qutrit maps, rank-four maps need
to be considered too. We construct a family of rank-four qutrit maps given also in terms of the
operator-sum representation which is nothing but a modification of the structure of the Kraus set

given by 4.2 to include also rank-four qutrit maps.
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Let F : D3 +— D3 be the map F(p) = Z?:o Kiij where the Kraus operators are given by

(7414} 0 0 Qp1 0 0 ap2 0 0
Ko=10 apo 0 [|+] 0 anw 0 +1 0 oapwr 0 |, (4.46)
0 0 apo 0 0 0£01W2 0 0 (7312
0 0 0 0 0 0 0 0 0
Kl = | o190 0 ol + a1 0 ol + 12 0 0], (447)
0 10 0 0 1w 0 0 a12w2 0
0 0 10 0 0 04110.)2 0 0 Q1oW
K=o 0o o|+lo0o o o [+]0 0 o0 (4.48)
Q20 0 0 Q921 0 0 22 0 0
and
0 Q20 0 0 a1 W 0 0 0422(,02 0
Kz3= 10 0 Q90 +10 0 a21w2 + 10 0 QooW (449)
0 0 0 0 0 0 0 0 0

27i

where w = €73

denotes the primitive cube root of unity.

4.4.2 Evaluating extremal conditions

Now we present the conditions which determine whether these maps correspond to extreme points
of the set of UCTP maps. For the case of the family of rank-three qutrit maps, these particular
conditions are established by Theorem 14. However, for the case of the family of rank-four qutrit
maps the same result does not hold. To overcome this issue, we construct a set of matrices which

determine whether the maps of the family correspond to extreme points of the set of UCTP maps.
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Rank-three qutrit maps

Theorem 14 states that a map with the given Kraus form is an extreme point of the set of UCTP
maps if the matrices (M;|N;) are full-rank for [ = 0,...,d — 1. In the case of dimension d = 3, we

write the explicit form of these matrices. Letting w = e*" we have it that for [ =0

2 2 2 ; 2 . 2 ; 2 . o

(35 00s) (35 0y) - (35 o) (5 eis?) - (55 ) (5 i)
_ 2 2 2 i 2 . 2 ; 2 . 9

Mo = (Zj 0‘23') (Zj %‘) (Zj 0‘2ij> (Zj G250 j) (ZJ O‘%‘"Q]) (Za‘ A5 2]) (4.50)
2 2 2 ; 2 . 2 ; 2 . 9
(Zj alj) (Za alj) (Z] Oéljwj) (Z] QW ]) (Z] Oéljw2j> (Zj ;W 2j)

and
(Z? 0<0j> (Zj aSj) (Zf QOjo) (Zf aSjw*j) (Z? OZOjofj) (Zf aSjwj)
No = (Zf azjwj) (Z? Oééjw*j) (Z? szjwfj) (Z? O‘;jwj) (Zf azj) (Zf OéSj)

(Z? Oflj“fj) (Z? Of{jwj) (Z? 041;') (Z? OZTJ) (Z? Oéljwj) (Zf O‘Tjwij)
(4.51)

2j> (Z? OéL-w_j)
1,7') (Z? agjw_j) (4.52)

or) (35 o)

Simiraly, for [ = 1, we have it that

(@3 o2y’ ) (Do) (Zj0ae) (£0n;) (5
My =

Q
Q

(o) (Soier) (S5 one?) (Son) (2

2
J

2
Q

\g)

o

(o) (Sjeis) (Sjons) (53 (

and

(S asw) (Shage’) (5 “27') Oy | (3 anwf)_(zi a;jw)
Ny = (Z? alj) (Z? O‘Sj) (Zj aljwj) (Z? O‘Sjwfj) (Zg_] aljwﬂ) <Z§ O‘Sj‘*’j) :

(T 00?) (Shaze) (SJeuw) (Sage’)  (Sawy) (03
(4.53)

Finally, for | = 2, we have

(Zf aljwfj) (Z? ogjwfj) (Zf 041]) (Zj o@joﬂ) (Z? Oquj) (Z? aﬁj)
= | () (Shot) (500 (S (S5 (S505) | 059
(Z? ozgjw_j> (Zj agjw_j) (Z? Ozzj) (Zj aéjoﬂ) (Zj 062jwj> (E? ozgj)
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and

(o) (i) (Shan) (S03) (o) (i)
(Sh00) (505) (o) (Sh3) (Shome) (S0
(Zf agjoﬂ) (Zf agjw_f) (Zf OZQ]‘OJ_]) (Zf az‘)jwj) (Zf azj) (23 O‘Sj)

Na

(4.55)

Theorem 14 states that a map with the given Kraus form in 4.3 is an extreme point of the set

of UCTP maps if the matrices (M;|N;) are full-rank for I = 0, ...,d — 1. The matrix M; corresponds
to the conjugate of M, and the matrix N; corresponds to the conjugate of Ns. Therefore, it
suffices to establish the rank of (My|Ng) and (M7|N7) in order to determine whether the given map
corresponds to an extreme point of the set of UCPT maps. Noting that the rank of a matrix is
given by the number of non-zero singular values, we shall consider the specific case of the map &,.

For this map we get that

1
(M0|N0)=§ 1 1 0|1 1 0 (4.56)

and

1
(MN)=5] -1 0 0|0 -1 0 |- (4.57)
The singular values of the matrix (My|Ny) are given by o (My|No) = {V/2, %, %} and the singular
=}.

(M
values of the matrix (M;|Ny) are given by o (M;|N7) = {% —=

sw~

Rank-four qutrit maps

For the case of rank-four qutrit maps, Theorem 14 cannot be applied. However, a similar result can
be derived for this particular family of maps. We have that a map given by the Kraus operators
(4.46), (4.47), (4.48) and (4.49) is an extreme point of the set of UCTP maps if the matrices (M]|N])

2mi

are full-rank for [ = 0, ..., 3. The specific form of these matrices is given as follows. Lettingw = e

we have it that for [ = 0 we obtain
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(Zj 040,7‘) (Z? 3;') (Z? anWJ> (Z 0‘0] ) (Z aojWQj) (E? aSjW_Qj)
> 041;‘) (Z? Offj) (Z? 041ij> (Z af;w ’)
5 0

(

2

0
(o) 570 ) |

0 (Z? O”%“) o J) (Zlazjoﬂj) (Z?aé‘j‘”ﬂ)

and

(Z? 040]') (Z? a8j> (Z? ao]'wj) (Zf a?‘)jw*j) (Z? OZOJ'W*J') (Zf aSjwj)
o G (@) (Do) (B2e5) |
S (S 0 (S (S
(S o) (Saie’)  (Saw) (Zei) 0

N =

(4.59)
Similary, for the case in which [ = 1, we have that
(o) (S0t ) (S5 (S0 )
M = (Za agj) (Z] agw j) 0 (4.60)
0 (5 sy ) (325 at,w)
(Z 0403) (Z W ) (Z? Oéojwj) (Z? ;W 2j)
and
() () (So) (Seoe)
N (23 as) (325 01)) o
(Z? agjw2j> (Z? a}‘jw*%) 0
g jw’ atwd S agjw? g w2
(T 00?) (Zhagu?) (5w (5 e
For | = 2, we have it that
(52 oe) (S20) (52 om) ()
M = (Z? agjw2j> (Z? oﬁl‘j) 0 (4.62)

=

(Sho0e) (Shos) (Seor) (o)
: (22 (S z7)
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and
(ZFnge) (Sfas™)  (SFaw) (5 0is)
(Zf O[ijj> (Z? oﬁl‘jwfj)

Nz = (4.63)
2 (23 @oj ) (25 O‘%) (Z? agjw?’ ) (Zf Offjw%j) 03
: () ()
Finally, for [ = 3, we have it that
(S0 (£300)  (Shoms) (B2 0is)
a - | (Z ) (S0 ’ (4.64)
0 (Zj a1jw2j) (Z? a;jw*j)
(S0) (5) () ()
and
(Shew) (Soi) (S aw) (S aie)
Ny = ’ (=) () (4.65)

(Z? aljw2j> (Z? a%jw_%) 0
(S (She) (Shons) (S )
The specific form of the matrices {(M]|N])}iez, can be obtained just as we did for rank-three

maps.

4.5 Conclusion

In this chapter, we introduced a family of UCPT-extreme defined in terms of its operator-sum
representation. To do so, we constructed a family of CP maps for which the set Kraus operators
have a special form with respect to the Heisenberg-Weyl basis of matrices. We derived firstly the
equations needed to establish that the maps of the family are unital and trace-preserving. Secondly,
we established the conditions which determine whether a given map corresponds to an extreme point
of the set of unital and trace-preserving maps. As an application, we considered the case of maps
of dimension three. For the qutrit case, we showed that the family of maps introduced contains
examples of rank one and rank-three maps. In this setting, we also presented a different family of

UCPT-extreme maps which includes also maps with rank four.



Chapter 5

On the entanglement classification

of locally maximally mixed states

5.1 Introduction

The Choi—-Jamiolkowski (CJ) isomorphism establishes a correspondence between quantum maps
and bipartite states [14]. By the CJ isomorphism, unital quantum channels correspond to bipartite
states with maximally-mixed partially traced states. In Chapter 4, we constructed a family of d-
dimensional UCPT-extremal maps of rank r < d to study the convex structure of the set of UCPT
maps.

In this chapter, we consider the family of bipartite states which are CJ-isomorphic to the family
of UCPT-extremal maps introduced in Chapter 4. For pure states, maximally entangled states
correspond to those states for which the marginals are maximally mixed. However, universally
maximally entangled mixed bipartite states cannot be defined for qutrit systems as different states
may maximize different entanglement measures. The family of bipartite states we consider includes
not only the set of maximally entangled pure states, but also mixed states with maximally mixed

marginals. For this reason, our family of bipartite states is a good candidate to investigate entan-

68
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glement classification in systems of dimension higher than two. In this chapter, we consider the

local unitary classification for our family of states.

5.2 A family of locally maximally mixed bipartite states

In this section, we consider the bipartite states pap € M associated to the family of completely pos-
itive maps for which the Kraus operators are given by equation 4.3. Through the Choi-Jamilkowski

isomorphism we can find the corresponding set of bipartite states which are given by

(® @ 1a) ) (| (5.1)

PAB =

ISHEE

where [1)) represents a maximally entangled pure state i.e. [¢)) = an_:lo |m) |m) and

d—1
o(p) = 3 Kipk! (5.2)
i=0
represents the quantum operation in which the Kraus operators are given by
d—1
K=Y aw’® |k +1i) (k (5.3)
j,k=0

and w is the dth root of unity. We have it that K; ® Iy = Zi;,ll:o aijwI® |k + 1) |1) (k| (| so the

density operator of the bipartite state can be expressed as

d—1
1
pan = = (K © 1) [6) (6] (K] ©1,)
=0
1 d—1 d—1 ) d—1 )
=3 Z i |k + i) | k) Z a;‘jwﬂk (k + 1| (k|
i=0 \ k,j=0 k,j=0
1 d—1 d—1 ) d—1 )
= D aiw™ | D agw | ki) k) (Ll (1] (5.4)
i,k,1=0 \j=0 =0

Sometimes it will be useful to express pap in terms of ¢; . = ﬁ (Zj;é aijwjk) so that

d—1

pap =y cixciylk+i) k) {1+l (5.5)
i,k,0=0
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We are interested in the set of locally maximally mixed states, those in which tra (pag) = %‘i

and trp (pap) = %. We can we express the LMM conditions in terms of the defining parameters

{ci;}ijez, obtaining exactly the same set of equations. For our family of LMM states, we have

that tra (pap) = % if
d?—1
> agap =1 (5.6)
i,j=0
and
d—1
Z agjyiag; =0 for 1#0. (5.7)
i,5=0
On the other hand, we have that trg (pap) = %‘1 if condition (6.1) is satisfied and
d—1 _
Z aij+lafjw_ll =0 for 1#£0. (5.8)
i,5=0

To verify the correctness of the equations, we may evaluate the partial traces of the bipartite state

PAB as
. d-1 [d-1 d—1
tra (pap) = 7t Z Zaijwjk Zafjw_ﬂ |k + ) k) (L + ] (1]
ik, l=0 \ j=0 =0
4=t [at d—1
== Za”uﬂ Zafjw_Jk |k) (K|
ik=0 \ j=0 =0
| a1 [dt
=3 Z Oéij+la;‘kjwlk k) (K| (5.9)
k=0 \i,j=0

By equation (6.2), we get that all the elements of the last sum in (5.9) with [ # 0 cancel out and

consequently we obtain that

d-1 [d-1
1 *
tra(pas) = 5 S aijag; | k) (K (5.10)
ik=0 \ j

and, by equation (6.1), we obtain that

d—1
tra (Cy) = éz k) (k| . (5.11)
k=0
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We may also evaluate the second partial trace which is given by

d-1 [d-1 d—1
1 , ,
trp (pap) = it Z aijw’® Zafjw_jl |k + ) k) (L + 4] (1]
ik, l=0 \j=0 j=0
] a1 [t d—1
=3 Zaijuﬂk Zafjwﬂk |k + ) (k + i
i,k=0 \j=0 j=0
| a1 [t d—1
= > w0 af;w T F0 ) k) (k|
i,k=0 \j=0 j=0
| =1 [zt
= > e (k) (k]
k=0 \4,5=0
d-1 [ d-1
1 * =1
= 8 Z ainal-jW t wkl |]€> <I€| . (512)
k=0 \4,j=0

By equation (5.8), we get that all the elements of the sum in (5.12) with [ # 0 cancel out and

consequently we obtain that

| =1 it
trp (pan) = 5 > aijag; | k) (k] (5.13)
ik=0 \ Jj
and, by equation (6.1),
=
b (par) = 5 D 1K) (k] (5.14)
k=0

5.3 Local unitary invariants

In this section, we search for magnitudes invariant under local unitary transformations on pap. In
principle, if we could find local unitary invariants for each one of the degrees of freedom of the family
of states, we could obtain a complete characterisation of the family in terms of entanglement. We
start by defining LU invariance. We have that x € R is an local unitary (LU) invariant of pap € My
if

K(pag) = #(Psp) (5.15)

where

pap=UV)pap(U V)i (5.16)
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and U,V € SU(d). From this definition of LU invariant, we can see that the eigenvalues of pap
are LU invariants of the state. This follows from the fact that a unitary transformation on the
density matrix as the one given in (5.16) does not change the spectrum. To obtain the spectrum
of pap, we find a unitary operator that leaves the density matrix into a block diagonal form. Such
unitary operation leaves the spectrum unchanged and the eigenvalues of psp correspond exactly
to the eigenvalues of the blocks of the transformed matrix. In particular, we have that the unitary

operator

d—1
U= li—a)la Gl (5.17)

q,j=0

is the one block diagonalizing psp. To see that we apply the unitary transformation 7y on the

density matrix so that the transformed matrix can be expressed as

1 d—1 d—1 ) d—1 .
= S i iy k) | [ S agw I Gl (k] (5.18)
i=0 \ j=0 3,k=0

The matrix 7y (pap) is block diagonal

B
Tu(paB) = (5.19)
Py
and the blocks Py, ..., P;_1 are given by
1 [d=tamt d—1d—1
Pi=- SN etk | [ D0 aqw R k]| (5.20)
k=0 j=0 k=0 j=0
We observe that the matrices Py, ..., P;j—1 are can be expressed as a projector P; = |p;) (p;| where
d—1d—1

; :L ;i |k 5.2
|pi) \ﬂd)zz jw!” |k) (5.21)

k=0 j=0
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and consequently P, ..., P;_1 are rank one and each eigenvalue is given by
11 fd=t d—1
Ap) = = Ik Jk
(pilpi) = d E E QW E :aljw
k=0 \j=0 Jj=0
d—1
1 Ik
- g Q100
k.j,1=0
d-1 d-1
_ 1 Lk o * 1k
=4 QijQuy + ) O 0w
k,j=0 =1
d—1
2
j=0

() 1)

We obtain a first set of LU invariants «; ’,...,x; ; for our family of maps based on the spectrum

of pap. These LU invariants are given by
K = |Oéij|2. (523)

A different set of LU invariants is given the spectrum of the partially transposed matrix p’ 5.
Zhang et al. established that two states are local unitary equivalent iff their respective partially
transposed matrices are local unitary equivalent too (Theorem 2 in [56]). Therefore, we have that
the eigenvalues of the partially transposed matrix are also invariant under LU transformations.

To obtain this second set of LU invariants we proceed in the same way we did to obtain the
eigenvalues of the density matrix: We define a unitary transformation that block diagonalises pZBB.

To obtain pﬁ% we apply the partial transposition over system B as

d—1 d—1 d—1
1 ; . i . .
ol = - > Wt | Y e k) (D) 0+ (k] (5.24)
i,k,1=0 \ j=0 j=0

Now we apply a unitary transformation 7 on the partially transposed matrix where in this case
the unitary is given by the unitary operator

d—1

U= > li+a)leGlal- (5.25)

q,j=0



CHAPTER 5. LMM BIPARTITE STATES 74

We get that the transformed matrix can be expressed as

Tu(ph%) = UphnU™!

d—1 d—1 d—1
1 . .
== > aiw® | Y agw | (k) 1) @+ k] (K] (5.26)
i,k,0l=0 \ j=0 j=0

To obtain the blocks we make use of the change of variable i — i —1 — k

d-1 [d-1 d-1
1 . « s . .
Tu(phh) = p ST ik | Y o™ i) 1) (6 (K] (5.27)
ik, 1=0 \ j=0 =0

This state can be written as

Qo
GRS (5.28)
Qa1
where the blocks Qq,...,Q4_1 are given by
| =1 it _ d—1 _
Qi == > (Y e | | Xty | 1D Ghl. (5.29)
k=0 \j=0 §=0

The eigenvalues of @; ... matrices are also eigenvalues of the partially transposed matrix pEBB which

are LU invariants. The second set of LU invariants Iﬁ:é2), ceey /@&22)_1 is given by

kP =e; € {E(Qo)U...UE(Qq_1)}. (5.30)

where E(Q;) corresponds to the set of eigenvalues of Q;.

We can obtain a third set of LU invariants for the states of our family based on their correlation
matrix. In Chapter 2, we considered the singular values of the correlation matrix for bipartite
state entanglement classification. By theorem 9, we have that the correlation matrix of a given
state can be diagonalised by means of LU operations acting on the state. The elements of the
diagonalized correlation matrix correspond to the singular values of the original matrix up to a
sign. Consequently, the set of singular values of the correlation matrix are invariants under local

unitary operations. The correlation matrix p4p is given by

R=A{rij}ijen,_, (5.31)
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where

i = (pap, N @ M) == tr (pap \i @ Aj) (5.32)
and Aq,...,A\g2_1 form a basis for the set of traceless matrices. To evaluate the correlation matrix,
we select the particular basis A1, ..., A\g2_1 defined as follows. We define the elements of this basis in

terms of d collections of matrices which we denote by {A(k)}k:o,...,d—l- We have that A contains
d — 1 elements while the rest of collections, A®) for k =1,...,d — 1, contain d elements each. The
matrices {)\EO) € AO},_; 41 are given by

d—1
A0 Z |m) (m|w™  where i=1,...,d—1 (5.33)

i
m=0

and w is a dth root of unity. The rest of matrices {)\Ek) € A(k)}i:O,...,d—l fork=1,...,d—1 are

given by
AR =i k) (6] where i=0,....d— 1. (5.34)

Now we will relabel the elements of the correlation with taking into account the collection of the

element of the basis. We have in this case that

iEZd_l if =0

R = {r(k.’l)} where k,l € Zy and jElLgq if 1=0 (5.35)

i,

i,] € Zq otherwise
where the indexing in expression above has the exceptions that ¢ € Zy_1 if k =0 and j € Zy4_; if
I = 0. To obtain all the elements of the correlation matrix, we evaluate first the projections of pap

as given in (5.5) over the elements of the computational basis. We get that

d—1
(paB,la1) (az| @ [b1) (ba) = tr Cikt |k + 0) [K) (L + i 1] - |a1) [b1) (az] (be]
i,k,1=0
d—1

= Y cincly(aslk +1) (balk) (L +ilar) (1[b1)

i,k,1=0

d—1
= CibsClp, (a2lby + 1) (b1 + ilas) (5.36)

=0
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where a1, as,b1,bs € Zg. We can see that only those terms in which as — by = b1 — a; are different

from zero so the projections can be expressed as

<pABa |a1> <a2| ® |b1> <b2|> = cal*b17b2czlfb1,b1 <a2 + b1|b2 + a1> . (537)

Consider the elements of the correlation matrix rl(fcj’l) such that k£ # [. In that case, one can check

that all the projections of the state in the computational basis are zero. We conclude that for this

choice of basis the correlation matrix is block diagonal

Ry O 0
0 0 Ry

where each block Ry, ...R4_1 corresponds to each one of the collections A*) of elements of the
basis for k = 0,...,d — 1. We shall evaluate their elements by using (5.37). In the case k =1 =0,
we have that

Ro = (r{%™)ij=1,..a1 (5.39)

.3

where

r5Y = (pan A" @A)

2,7
d—1 d—1
= (pa, Y_ ™ |m) (m| @Y w |p) (p])
m=0 p=0
d—1
= > W™ (pap,|m) (m| @ |p) (p])
m,p=0
d—1
= WP Cm—p pc:n—pyp
m,p=0
1 d—1 d—1 d—1
=7 Z W™itPI (Z ozm_p73w3p> <Z afn_pvstp). (5.40)
m,p=0 s=0 s=0

We can evaluate the rest of the blocks which are given by the elements of R for which | = k # 0.

In this case, the blocks can be expressed as

Ry = (Tgfcj,k))i,jzo,...,d—l (5.41)
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LU invariant Set Cardinality
ki {520 o} 1€ Zg
iy {E(Q)U...UE(Q4)} | i€Zap
k) {SV(Ro)U...USV(Ry_1)} | i€ Zgo_y

Table 5.1: In this table we summarize all the different sets of LU invariants obtained for the bipartite
state papg.

where
5 = (pap, AP @A)
= (pAB, i+ k) (il @5 + k) (j])
= CimjiCimjjth
= d—1
= (Z ai-j,sw”> (Z a:j,sw—“”“) : (5.42)
s=0 5=0
The singular values of Ry,...,R4—1 are also eigenvalues of the correlation piBB which, as we
saw, are LU invariants of the state. The third set of LU invariants ngg), ey ’45132)71 is given by

kP =5, € {SV(Ry)U...USV(Ry1)}- (5.43)

K2

5.4 Bipartite qutrit state LU classification

In the previous section we obtained sets LU invariants for the family of LMM states given by (5.4).
In this section we will consider the particular case of qutrit states. We fix d = 3 in (5.4), in this

case, the density state is given by

2 2 3—1
1 , - . ,
paB =3 E E ajw’ E agw™t | k) k) U+ (1] (5.44)
ik 1=0 \ j=0 =0

27mi

where w = e™3 . For d = 3, we saw that pap is locally maximally mixed provided that

2
Z aija?j =1 (545)

1,j=0
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and

2
Zwiaijﬂafj =p for i=0,1,2 (5.46)
=0

where 3 € C is a complex constant. The family of LMM states given by pap has 2d> — 3d + 1
dimensions. For qutrit systems, this family of bipartite states is 10 dimensional and entanglement
classification can be achieved finding as many independent local unitary invariants. For d = 3, the

gl),ng) and nél) are given by

2
1) _ § : *
H:l — 00]05017
Jj=0

2
1 _ § *
K/2 — aljollj,
Jj=0

invariants

2
mél) = Z Qs (5.47)
j=0
We can also obtain 1152), ceey néf) which are given by the eigenvalues of the matrices
€0,0C0,0 C€2,0C21 CL,0CT2
QO = 02,103’0 Cl,lcil 00’103’2 ;
€12C1 0 C02C51 €2,2C59
€1,0C12 €0,1C00 €2,2C51
Ql = 00700672 62716370 0172611 ;
C2,0C39 C1,1C1 0 €0,2CH1
02,00572 Cl,lcio 00,20871
QQ = 617OCT,2 60716870 62720371 . (548)
C0,0Ch2 €2,1C50 €120
where ¢;p = % (Z]d;é aijwjk). Finally, for qutrits, the LU invariants 553), . ,@é3) are given by

the singular values of the matrices

2 wmtp w2mtp

. *
Ry = E : Cm—p,pCm—p,p

m.p=0 wm+2p w2m+2p
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C0,0C0,1 €2,1C59 C1,2C] ¢
Ry = €1,0€1,1 C0,1Ch2 22050 |
€2,0C51 C1,1C1 2 €0,2Ch0
C0,0Ch2 €2,1C50 €120 4
Ry = 6170612 60716370 62726571 . (549)

02,00572 Cl,lcio 00,20871
At this point, the evaluation of these invariants for qutrit systems depends on the specific choice of
coefficients {aij}i,jez. For the moment, we can make some observations about the relation of the
LU invariants in the qutrit case.
For the invariants H(l ) ﬁél), Hg ), we have that only two of them are linearly independent. To
see this, we may evaluate their sum as
Z 1) = Z o (5.50)
i=0 ij=0
If we use the condition satisfied by LMM states which is given by (5.45), we obtain that Z?:o nz(-l) =
1. So one of the invariants can always be obtained from the other two. For the rest of the invariants,
we also found that not all of them are linearly independent. In particular, the numerical analysis of

the invariants suggests that for the 11(2) . ( )

for the invariants n( ) . nég), we also have that at least three of them are linearly independent. In

at least three of them are linearly independent while

total, we have that from all the LU invariants evaluated at least 8 of them are linearly independent.

5.5 Conclusion

In this chapter, we considered the set of bipartite states which are dual to the family of UCPT maps
introduced in Chapter 4 in terms of the Choi-Jamilkowski isomorphism. For this family of bipartite
states, we considered the problem of entanglement classification. To do this we used three known
sets of invariants under local unitary operations corresponding to the spectra of three different
matrices: the density matrix, the partially transposed matrix and the square of the correlation

matrix. For the family of states considered, we found that the evaluation of these invariants is
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greatly simplified. This follows from the fact the operators introduced can be expressed in block
diagonal form by means of unitary transformations. We considered the particular case of bipartite
states based on qutrit systems. In this setup, numerical evidence indicates that the set of invariants
we derived provide full entanglement classification for the family of two qutrit states we studied.
However, we acknowledge that a more robust analysis of the same problem should be carried out

by considering analytical methods.



Chapter 6

Solving UCPT/LMM equations in

qutrit systems

6.1 Introduction

In Chapter 4, we introduced a family of UCPT maps which served as an extension of the set of
unitary maps in the context of convex set characterisation. In Chapter 5, we saw that this family
had a dual in the set of LMM bipartite states which was interesting for state classification. To
construct those maps/bipartite states, first, we considered matrices with a fixed structure whose
elements were expressed in terms of a set of parameters. We found the equations in terms of
these parameters representing UCPT maps and LMM bipartite states, respectively. In both cases,
we considered the scenario of states based on qutrit systems. In this setup, we saw that the
UCPT/LMM equations were simpler compared with the case of systems of higher dimensions. In
this chapter, we will consider precisely the solutions to these equations. First, we will construct an
algorithm solving the UCPT/LMM equations. Second, we will consider a particular simplification
of these equations for which the solutions can be obtained analytically. Finally, for these solutions,

we will evaluate explicitly the set of local unitary invariants we obtained in Chapter 5.

81
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6.2 Expressing UCPT/LMM equations in terms of real pa-
rameters

Previously we considered the family of CP maps given by the Kraus set in (4.3) and also its dual
in the set of bipartite states given by (5.4). In both cases, the elements of the families are given in
terms of the same set of parameters {;;}ijez,. In Chapter 4, we saw that for d = 3 a map given
by (4.3) was unital and trace-preserving provided that
2
> agap =1 (6.1)
i,j=0

and

2

Z ajjpagw' =4 for i=0,1,2. (6.2)
j=0

where 8 € C. Equivalently, in Chapter 5, we saw that a bipartite state given by (2.33) is locally
maximally mixed if the same equations apply. The parameters o;; can be arranged as the complex
matrix A = (a;)ijez, to represent the maps (or bipartite states) of the family. We saw that there
is a freedom in the definition of maps in terms of A. To see this, consider a map represented in
terms of A. The multiplication of any row of A by a constant complex phase factor preserves the
map being represented. We can get rid of this arbitrariness in the choice of A by fixing the complex
phases of the first column of the matrix to zero. For d = 3, by using complex exponents we have

that A can be expressed in terms of 15 real parameters as

ag  boeo ¢ ¢i(Bo+¢o)
A= |ay bt ¢eitriten) (6.3)

as  boe2  cyei(02192)

where in this case a;,b;,¢;,0;,¢; € R for ¢ = 0,1,2. We can rewrite the equations required by

UCPT maps using these real parameters. We get that (6.1) is expressed as

ag + by +cg+al+b3+cf+as+b5+cs=1. (6.4)
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and (6.2) is given by

aoboe™ + bocoe™® + agege 00t P0) = | geare (B
a1bie® + breie®t + agcre{O1HeD) = |glelars (B)+ )i

asb1€"? 4 bycae!® + agege 02102) — |[3’|e(arg (B)+3)i, (6.5)

We will consider two different approaches to solve this set of equations: First, we will introduce
a numerical method to obtain the solutions to the equations. Second, we will show how analytical

solutions can be obtained by considering an extra constraint on the set of parameters.

6.3 Numerical solutions

In this section we introduce an algorithm solving equations (6.4) and (6.5). This algorithm can be
divided in two parts. The first part consists on selecting the modulus of the elements of A (a;, b;
and ¢;) such that equation (6.4) is satisfied. The second part of the algorithm consists on finding
the phases of A (¢; and 6;) such that the set of equations (6.5) is satisfied too. This second part
of the algorithm, in general, needs to be solved numerically. However, depending on the particular
choice of parameters in the first part, solutions may exist or not. To understand why this is the
case, we will consider a graphical representation of the equations. Consider the general form of the

left hand side of (6.5) which can be expressed as the complex function
f(¢,0) = abe®® + bee™ + ace 0+ (6.6)

where a,b and ¢ are fixed. We can always represent f(6,¢) in the complex plane with 6 € [0, 27]
and ¢ € [0, 27]. If we do this for different combinations of parameters a,b and ¢, we obtain a variety
of different representations of f(¢,0) in the complex plane (Fig. 6.1).

For fixed set of parameters {a;, b;, ¢; }z, a solution of the equation in (6.5) can be visualised as
three points in the complex plane in fo(do, 0o), f1(é1,61) and fa(pa, 02), respectively. The relation
between the solution set of points is given by the right hand side of the equations in (6.5). We have

that fo(¢o,00) = |Ble®&(¥) So necessarily we have that the three points representing the solution
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Figure 6.1: Representation in the complex plane of f(¢, ) for ¢ € [0,27] and 6 € [0, 27] and fixed
a,b, and ¢ such that a +b+c = 1.
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fo(do,00) Ji(é1,01) Ja(¢2,02)

Figure 6.2: Representations in the complex plane of fy(¢o,60), f1(d1,01) and fo(ga,62) for the
particular parameters given in 6.7

of the system lie in a circumference centred at the origin and have a relative phase of % between
them. We have now a geometrical intuition which allows us to know beforehand if for a given set
of parameters {a;, b;, ¢; }iez, we can find a solution to the system of equations given by (6.5). In
the following example, we show explicitly how the algorithm can be used to obtain a solution and
the geometrical intuition we provided.

The objective of the algorithm is to obtain a matrix A such that the system of equations given
by (6.4) and (6.5) is satisfied. By this algorithm, first we randomly choose a 3 x 3 matrix whose

squared elements add up to one. We obtain the matrix

ap by co 0.1196 0.4264 0.3976
ar b e | =10.2661 02711 0.1315 | - (6.7)
as by o 0.3873 0.3693 0.4449

Before searching for the solutions we represent fo(do,6o), f1(¢1,01) and fo(¢a,02) in the complex
plane for particular choice of parameters in (6.7). The graphical representations of these functions
in the complex plane are given in figure 6.2.

Any solution of the system is given by three points in fo(¢o,60), f1(¢1,01) and fa(de,02),
respectively. The three points giving the solution lie in the same circumference centred at origin and
have a relative phase between them of %’“ Therefore, any solution is necessarily in the intersection
of the representations of fo(¢o,060), f1(d1,601) and fo(dpe, 62). This intersection for this particular
choice of parameters can be visualised in figure 6.3.

Finally, we randomly choose a complex number in the intersection of fo(¢o,60), f1(¢1,61) and
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Figure 6.3: Representation of the superposition of fy(¢o,00), f1(d1,61) and fa(d2,02) in the same
plot where the intersection of the three is shown in red.

f2(@2,02). For example, we set

Fo(do,80) = —0.0485 + 0.0799i. (6.8)
Then, we have that necessarily
F1(61,01) = fo(do,00)e™ s = 0.0934 + 0.00205 (6.9)
and
Fa($2,82) = foldo,fo)e T = —0.0449 — 0.0820i. (6.10)

The three complex values are solutions of equations, now we need to obtain a set of parameters
{®i,0;}z, corresponding to that solution. To to this we solve numerically the three non-linear

complex equations in (6.5). By substituting all the parameters in (6.3), we obtain the matrix

0.1196 0.3984 — 0.1520i —0.0696 + 0.3915i
A=10.2661 0.2710 + 0.0068; 0.0375+ 0.1261: (6.11)
0.3873 0.3498 — 0.1185i —0.1792 + 0.4072i

for which we can check that equations (6.4) and (6.5) are satisfied.



CHAPTER 6. SOLVING UCPT/LMM EQUATIONS 87

6.4 Analytical solutions

Consider the representation of maps/states in terms of the parameters of A in (6.3). As we did in
the previous section, we will consider the solutions of the UCPT/LMM equations (6.4) and (6.5).
In this case, instead of considering the general case, we will consider a particular constraint on A
for which the UCPT/LMM equations can be solved analytically.

Consider a the matrix A such that ag = a1 =as =a,bg=b;y =bs =band cg=c; =co =c. In
this case, to satisfy (6.4) we require that a® + b + ¢ = % One particularity of this A is that for
every choice of a,b and ¢ we can always find sets of 8y,00,01,¢1,02 and ¢2 solving the UCPT/LMM

equations given by (6.5). An analytical solution of such system of equations is given by

0o =0 Po=¢
=0-% | dr=¢-%
o=0—F | po=0¢—F
In terms of A, this set of solutions is given by
a bet? cet0+9)
A= |a b5 cemiritor—5) |, (6.12)

a belf=F cemillatda—3)
In this case, A represents a 4-dimensional family of UCTP maps/LMM states. Finally, for the family
of bipartite states, we will compute the local unitary invariants derived in Chapter 5 in terms of
the parameters of A. In this case, the first set of LU invariants corresponds to the spectrum of the

density matrix. These invariants are given by

1
Tgl) = ’rél) = ’I"gl) = a2 + b2 + C2 = g (613)

The second set consisting of nine LU invariants given by the eigenvalues of the partially transposed
matrix. We get that
¢+ 2y/av/bcos(h) ¢+ 2y/av/bcos(6 + ) ¢+ 2y/avbcos(f + )
(rg))i,jeRg = a+ 2v/by/ccos(¢) a4 2vby/ccos(¢ + ) a+ 2v/by/ccos(¢ + )
b+2vevacos(f+¢) b+ 2y/eyacos(0+ ¢+ 3F) b+ 2y/cv/acos(d + ¢+ 4T)
(6.14)
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Finally, the third set of invariants is represented by the eight singular values of the correlation
matrix. However, for the particular family of states considered only four of them are distinct.

These four eigenvalues can be evaluated as

r® = a2+ b2+ ¢ —ab— be — ac

rés) = \/ab + be + ac — 2y/aby/ccos (6 — @) — 2av/by/c cos (—20 — ¢) — 2v/av/be cos (0 + 2¢)

7’&3) = \/abJr be + ac — 2v/aby/ccos (0 — ¢ + g) — 2aVby/ccos (—20 — ¢ + g) — 2v/aVbecos (6 + 2¢ + g)

r{¥ = \/ab +be + ac — 2y/aby/ccos (0 — ¢ — g) — 2aVby/ccos (—260 — ¢ — g) — 2v/avbecos (6 + 2¢ — g)}
(6.15)

By inspecting these LU invariants we clearly see that more than four are linearly independent and
consequently, they can be used to establish entanglement classification for the particular subfamily

considered in this section.

6.5 Conclusions

In this chapter, we obtained explicit solutions to the equations producing families of unital and
trace-preserving maps and locally maximally bipartite states which were previously considered in
describing the geometry of the quantum state space. We considered the simplest setup ,the qutrit
case, for which the convex decomposition of generic maps/bipartite states is still an open problem.
Even in this setup, the family considered has 10 dimensions and numerical methods need to be
used to solve the UCTP/LMM equations. We presented an algorithm obtaining the solutions to
these equations. To gain insight about the high-dimensional space of solutions we introduced a
geometrical representation of the equations which allows to determine which sets of parameters
result in solvable equations. Finally, we considered a constraint on UCTP/LMM equations for
which they can be solved analytically. The set of solutions for such equations represent a subset of
the original family. For this subset of solutions, we evaluated explicitly the LU invariants provided
in the previous chapter and we showed that these invariants can be use to establish a classification

of the elements of this subfamily in terms of their entanglement.



Chapter 7

Conclusions

This thesis aims to improve the understanding of the geometry of the quantum state space. Such
an improvement could lead to better characterisations of quantum systems. To do this, we develop
novel tools to study the geometry of the set of unital quantum maps and the geometry of locally
maximally mixed states. Despite the apparent differences between these sets, the map-state duality
allows us to consider them using the same mathematical formalism. The geometry of unital qubit
maps/LMM bipartite qubit states has the shape of a convex polytope in which the vertices corre-
spond to unitary maps/pure bipartite quantum states. However, it is the case that the analogous
geometry fails to describe the set of unital maps of higher dimensions. The description of uni-
tal qubit maps and LMM bipartite qubit states can be improved by considering polytopes whose
vertices can be non-unitary maps and bipartite mixed quantum states, respectively. This thesis
introduces the framework required to obtain and characterise novel families of unital quantum
maps extreme with respect to the whole set of unital quantum maps. Following the aims of this
work, we proposed a list of four objectives stated in the introduction. Here, we describe the main
achievements associated with these research objectives.

In Chapter 4, we constructed a novel (2d? — 3d + 1)-dimensional family of quantum unital maps
containing both unitary maps and maps of higher rank (objective 1). To do this, we selected a

particular set of Kraus operators representing a family of complete positive maps in terms of a list
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of parameters. Then, we derived the equations for those parameters required by unital and trace-
preserving conditions. For this family of unital and trace-preserving maps, we derived a criterion to
determine whether a given map of the family corresponds to an extreme point of the set of unital
and trace-preserving maps (objective 2). In the qutrit setup, the family of maps introduced cannot
reproduce the rank-four maps for which set-extremal examples are known to exist. To consider
this issue, we change the structure of the original set of Kraus operators. This change permits the
description of rank-four qutrit maps (objective 1).

In Chapter 5, we considered the family of bipartite states isomorphic to the family of unital
and trace-preserving maps constructed in Chapter 4. The main contribution of this chapter is the
entanglement classification of the given family of bipartite states in terms of local unitary invariants
(objective 3). To do this, we selected three sets of local unitary invariants whose evaluation is
analytical. The selected sets invariants are the following: the eigenvalues of the density matrix,
the eigenvalues of the partially transposed matrix and the singular values of the correlation matrix
of the bipartite state. We evaluated the three sets of invariants for our family of bipartite states.
Finally, we considered the particular case of two qutrit states. In this setup, we showed that not
all invariants obtained are independent. However, numerical evidence supports the completeness
of the invariants introduced for the entanglement classification of our family of locally maximally
mixed two-qutrit states (objective 4).

In Chapter 6, we considered the solutions of the equations producing families of unital and
trace-preserving qutrit maps and locally maximally two qutrit states considered in Chapter 4 and
Chapter 5, respectively. The main contribution of this chapter is a numerical algorithm solving
these equations (objective 4). To improve the parameter search by the algorithm, we presented
a technique to visualise the 10-dimensional space of solutions. Finally, we derived the constraint
on the equations used to find analytical solutions. For these constrained equations, we presented
explicit solutions (objective 4). The solutions obtained represent a 4-dimensional family of locally
maximally bipartite states for which we evaluated the set of local unitary invariants provided in
Chapter 5. For this particular subset of the original family, we showed that the local unitary

invariants presented are complete for entanglement classification (objective 4).
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7.1 Future work

We propose several research ideas which could expand the work presented in this thesis. As men-
tioned, the 2d? — 3d + 1-dimensional family of maps we introduce generalises the set of mixed
unitary maps. However, this family still fails to span all possible UCPT-extremal maps. It would
be interesting to quantify the distance between the convex combinations of elements of the family
and the set of mixed-unitary maps, as well as the distance between them and generic unital quan-
tum maps. We could also study how these distances change as we increase the dimension of the
quantum systems. In a different line of research, in this thesis, we derived a set of constants clas-
sifying the elements of the family of bipartite states presented in terms of their entanglement. We
could express well-known entanglement measures using the derived constants. Some entanglement
measures can be associated with various operational meanings. By finding the explicit relations
between the LU-invariant constants and the different entanglement measures, we could explore the
usefulness of the states of the family presented in other applications. Finally, we believe this work
serves as an inspiration for other works further improving the characterisation of the state space

for quantum systems of higher dimensions for which many questions are still unknown.
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