
Geometry of unital quantum maps and locally maximally

mixed bipartite states.

Constantino Rodriguez Ramos

Supervisor: Dr. Colin Wilmott

A thesis submitted in partial fulfilment of the requirements of Nottingham Trent

University for the degree of Doctor of Philosophy

June 2022



1

The copyright in this work is held by the author. You may copy up to 5% of this work for private

study, or personal, non-commercial research. Any re-use of the information contained within this

document should be fully referenced, quoting the author, title, university, degree level and

pagination. Queries or requests for any other use, or if a more substantial copy is required, should

be directed to the author.



2

Abstract
In this thesis, we consider the geometry of the set of unital quantum maps and the geometry of the

set of bipartite states with maximally mixed marginals. By the map-state duality, these two sets are

isomorphic and can be considered by using the same mathematical formalism. When considering

the geometry of unital quantum maps we encounter one crucial difference between two-dimensional

systems and systems of higher dimensions. Unital qubit maps can be decomposed in terms of

unitary maps. However, non-unitary maps need to be considered to decompose other unital qudit

maps. To consider the geometry of unital quantum maps in higher dimensions, we construct a novel

family of maps that includes both unitary and non-unitary unital quantum maps. For this family,

we derive a criterion determining whether a given map of the family corresponds to an extreme

point of the set of unital quantum maps. By applying the Choi-Jamio lkowski isomorphism over the

family of maps, we consider the geometry of the set of locally maximally mixed bipartite states. In

particular, we consider the problem of entanglement classification for the elements of this family

of bipartite states. To do this, we find a set of invariants determining local unitary classes for our

family. We also consider this family of bipartite states for qutrit systems. Remarkably, in this

scenario, the chosen set of invariants can be used for the entanglement classification of the states of

the family. For qutrit states, we consider the solutions of the equations giving unital quantum maps

and locally maximally mixed bipartite states for the families previously considered. To do this, we

construct an algorithm based on numerical methods to solve these equations. We also provide a

graphical representation of the solutions given by the algorithm. Finally, we consider a constraint

in the parameters of the equations allowing us to obtain solutions with analytical methods.
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Chapter 1

Introduction

The study of the geometrical structure of the quantum state space is usually of great help in

understanding novel features of quantum systems and developing new measures and algorithms with

potential applications. In this thesis, we consider the geometry of the set of unital complete positive

trace-preserving (UCPT) maps and the geometry of the set of locally maximally mixed (LMM)

bipartite states. The advantage of considering these two sets is that the techniques developed for

describing bipartite states can be directly applied to describe quantum maps and vice-versa. There

are several good reasons to consider unital quantum maps instead of general quantum maps. For

low-dimensional systems, the additional constraint required by unitality often simplifies problems

and allows for a geometrical intuition of the state space. For example, for qubit maps, the set of

UCPT maps can be associated with a 3-simplex in the Euclidean space.

This thesis aims to investigate the geometry of the set of UCPT maps/LMM states for systems

of dimensions higher than two. There exists a crucial difference between qubit maps and maps based

on systems of higher dimensions. As opposed to the qubit case, there are examples of maps based

on higher dimensional systems that are not mixed-unitary (they cannot be expressed as convex

combinations of unitary maps). From a theoretical perspective, the existence of such maps implies

that Birkhoff’s theorem does not extend to cases other than the qubits. The initial mission of this

research is to investigate the rationale behind the failure of the quantum analogue of Birkhoff’s

7
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theorem in high-dimensional systems. Many of the results presented are valid for arbitrary qudit

systems. However, during this work, we focus on the qutrit setup, the simplest case for which the

quantum analogue of Birkhoff’s theorem is no longer valid.

Some relevant works considered geometrical aspects of the set of UCPT maps/LMM states.

Audenaert et al., considered the distance between the set of mixed-unitary maps and the set of

unital quantum maps [1]. Another contribution to this area was made by Mendl and Wolf who

provided computable criteria for the separation of both sets [2]. More recently, the complexity

of the problem of detecting whether a given map is mixed-unitary was determined to be an NP-

hard problem [3]. For locally maximally mixed states, Baumgartner et al., considered the set of

bipartite states obtained as convex mixtures of maximally-mixed pure states [4–6]. In this series of

papers, the entanglement characterisation of this class of bipartite states was considered both for

two-qutrit systems and arbitrary dimension systems. The approach used in this thesis to consider

UCPT maps/LMM states differs from previous works on the same topic. The crucial step in this

approach is to construct novel families of UCPT maps which extends the set of mixed-unitary

maps. Just as mixed-unitary channels correspond to all possible convex combinations of rank-one

maps (unitary channels), we consider the class of unital maps arising from mixing a restricted set

of UCPT maps that are extreme in the whole set of UCPT maps (analogously for LMM states).

To achieve the thesis aims, we determine the following research objectives.

1. Create a novel framework generalising the construction of UCPT maps. Such a framework

should include both unitary maps and maps that are not convex mixtures of unitary maps.

2. Describe the geometry of the maps constructed with this novel framework by determining a

separation criterion between these maps and the set of mixed-unitary maps.

3. Investigate properties of the bipartite states associated through the state-duality to the con-

structed maps. In particular, consider the degree of entanglement of the bipartite states and

classify them in terms of their entanglement properties.

4. Verify numerically the construction methods developed as well as the characterisation of the

resulting maps and states for low dimensional systems
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The results of this thesis, are organised into three different chapters. Here, we outline their contents,

pointing out the main contributions in each chapter.

In Chapter 4, we consider the convex characterisation of UCPT maps. The contents of this

chapter are partially included in [7]. The main contribution of this chapter is the definition of a

novel family of maps E : Dd → Dd of rank k ≤ d generalising previously known UCPT-extremal

maps. A similar family of trace-preserving (not unital) maps was considered in [8] in the context of

quantum circuit decomposition. For this family of maps, the constraints that guarantee that such

maps are unital and trace-preserving are derived as well as the conditions which determine whether

the elements of the family correspond to extreme points of the set of UCTP maps. However, we

acknowledge that the family of maps introduced does not span the whole set of UCPT-extremal

maps. While the family of maps is given in terms of 2d2 − 3d + 1 real parameters, a general

description of UCTP-extremal maps would require 2d3 − 3d2 real parameters [9, 10]. Finally, we

consider the particular case of qutrit maps. For this dimension, we show that the family of UCTP

maps presented contains the set of unitary qutrit maps but also the antisymmetric Werner-Holevo

channel of dimension three, a well-studied example of UCTP-extremal map [11].

In Chapter 5, we consider the geometry of the set of locally maximally mixed bipartite states

and the problem of entanglement classification for a particular set of bipartite states. First, we

obtain the family of LMM states associated with the family of UCPT maps introduced in Chapter

4. Then, the classification of the elements of this family is made in terms of local unitary equivalence

classes. We use three different sets of LU invariants for entanglement classification. These are the

set of invariants given by the eigenvalues of the density matrix, the set of invariants given by the

eigenvalues of the partially transposed matrix and, finally, the set of invariants given by the singular

values of the correlation matrix. We find that for the family introduced, the diagonalisation of the

mentioned matrices is faster than for a general bipartite state. Finally, the particular case of two

qutrit states is considered.

In Chapter 6, we consider the solutions of the equations giving the families UCTP maps and

LMM bipartite states for qutrit systems and an approximate algorithm based to find solutions for

these equations. A graphical representation of the equations is provided allowing to visualise the
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space of solutions. Finally, we consider a constraint in the parameters of the equations. For this

constraint, the solutions of the equations giving UCTP and LMM states can be solved analyti-

cally. For this particular set of solutions, the LU invariants considered in Chapter 5 are used for

entanglement classification.



Chapter 2

Basic concepts in quantum

mechanics

This chapter serves as an introduction to the area of knowledge of this thesis, quantum information

theory. We start by introducing a set of axioms establishing the basic mathematical framework to

describe quantum systems. This mathematical framework will be used to define the two different

descriptions of quantum systems which we will consider in this thesis: Quantum maps, describ-

ing the evolution of open quantum systems and bipartite states, describing two-party composite

quantum systems. Finally, we introduce a useful relationship that links both descriptions.

2.1 Introduction to quantum information theory

Quantum information theory is the area of science describing the manipulation of information by

means of quantum systems. Before a proper introduction to the subject, we may ask what do we

mean when we talk about ‘information’ and when we talk about ‘quantum’. Information can be

identified as the most general thing which must propagate from a cause to an effect. Quantum

science is the area of physics describing systems, such as electrons or photons, which cannot be

described in terms of classical mechanics. It was soon acknowledged that information could be

11
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transmitted, stored and processed by quantum systems [12]. Quantum information science appears

precisely to describe the manipulation of information from the perspective of quantum physics.

Many introductory texts in quantum information theory use an axiomatic approach [12, 13]. Quan-

tum axioms or postulates are based on empirical evidence and provide the basic framework to

construct quantum theory. These axioms characterise the mathematical objects used to describe

quantum systems.

2.1.1 Axioms of quantum mechanics

The first axiom establishes the mathematical description of the state space of quantum systems.

Axiom 1. The state space of a quantum mechanical system is represented by a complex vector

space V equipped with a Hermitian inner product.

The Hermitian inner product is defined as follows.

Definition 1. A Hermitian inner product on a complex vector space is a map

⟨·|·⟩ : V × V → C (2.1)

with the following properties

� Conjugate symmetry. For x, y ∈ V

⟨x|y⟩ = ⟨y|x⟩∗ (2.2)

where ‘ ∗’ denotes the complex conjugate operation.

� Anti-linearity in the first argument and linearity in the second. For x, y, z ∈ V and α, β ∈ C

⟨αx+ βy|z⟩ = α∗ ⟨x|z⟩+ β∗ ⟨y|z⟩ (2.3)

and

⟨z|αx+ βy⟩ = α ⟨z|x⟩+ β ⟨z|y⟩ . (2.4)

� Positive-definiteness. For x ̸= 0 ∈ V ,

⟨x|x⟩ > 0. (2.5)
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The vector space V together with the Hermitian inner product is complete with respect to the

norm induced by the inner product and, by definition, it is a Hilbert space. With a slight abuse

of notation, we will use the term Hilbert space as synonym of the particular state space used to

describe quantum systems.

Depending on the quantum system, its associated Hilbert space can be finite dimensional or

infinite dimensional. For example, the space of positions or the space of momentums of a particle

are infinite dimensional. However, the possible spins of a electron or the polarisations of a photon

are given by finite dimensional vector spaces. In this thesis, we will consider only Hilbert spaces

of finite dimension H := Cn where n ∈ N denotes the dimension of the Hilbert space. The vector

space Cn is formed by all n-tuples of complex numbers and a vector x ∈ Cn is represented as

x =


α1

...

αn

 , (2.6)

where α1 . . . αn ∈ C. Consider a set of vectors y1, . . . , yn ∈ Cn such that any vector x ∈ Cn can be

expressed as the linear combination

x = β1y1 + · · ·+ βnyn, (2.7)

where β1, . . . , βn ∈ C. Then, the set y1, . . . , yn is a spanning set of Cn. For example, the set{(
1

0

)
,

(
0

1

)}
is a spanning set of C2 and, in this case, a vector x ∈ C2 is expressed in terms of this

spanning set as

x =

α1

α2

 = α1

1

0

+ α2

0

1

 . (2.8)

To represent the vector space describing a quantum system, we use the standard notation in quan-

tum information theory, Dirac’s notation. In this notation, the elements of the Hilbert space are

given by ‘kets’ expressed as |ψ⟩ ∈ Cn. For the finite space Cn, there is always a spanning set of

orthonormal vectors |ϕ1⟩ . . . |ϕn⟩ ∈ Cn satisfying

⟨ϕi|ϕj⟩ = δi,j , (2.9)
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where δi,j , the Kroneker delta, is defined as

δij =


1, if i = j,

0, if i ̸= j.

(2.10)

In this case, the spanning set |ϕ1⟩ . . . |ϕn⟩ ∈ Cn forms an orthonormal basis of Cn and each element

of the vector space has a unique representation in terms of the same orthonormal basis. The

particular orthonormal basis given by vectors with all zeros except one term is denoted as the

computational basis of Cn. In Dirac’s notation the elements of the computational basis of Cn are

denoted by kets labelled with natural numbers |0⟩ , . . . , |n− 1⟩. For example, for C2, the elements

of the computational basis are denoted by

|0⟩ =:

1

0

 (2.11)

and

|1⟩ =:

0

1

 . (2.12)

A fundamental components in Dirac’s notation is the so called ‘bra’, denoted by ⟨θ|. In this notation,

a bra corresponds to a linear map from the space of ‘kets’ |ϕ⟩ ∈ Cn to a number in the complex

plane. The map given by ⟨θ| is formally defined as

θ : |ϕ⟩ → ⟨ϕ|θ⟩ ∈ C. (2.13)

Using Dirac’s notation, we can also define linear operators acting on the Hilbert space. A linear

operator A acts on the space of kets as

A : |ϕ⟩ → A |ϕ⟩ ∈ H. (2.14)

For a given basis, an operator can always be expressed as a matrix. For example, for C2, an operator

can be expressed on the computational basis as

A = a00 |0⟩ ⟨0|+ a01 |0⟩ ⟨1|+ a10 |1⟩ ⟨0|+ a11 |1⟩ ⟨1| (2.15)



CHAPTER 2. MATHEMATICAL PRELIMINARIES 15

where aij ∈ C for i, j ∈ {0, 1}. In this basis, the operator A corresponds to the matrix

A =

a00 a01

a10 a11

 . (2.16)

We denote the space of n ×m matrices by Mn×m. In the case of square matrices, n = m, we

denote them by Mn := Mn×n. The following axiom describes how information can be extracted

from quantum systems by means of observables.

Axiom 2. The observables of a quantum mechanical system are given by hermitian operators acting

on the state space H.

An operator A is hermitian if it is equal to its adjoint

A = A† (2.17)

where ‘†’, the adjoint operation, represents the combination of conjugation and transposition op-

erations, A† := (A∗)T . Observables represent physical quantities that can be measured. Consider

an observable O and consider the state |ψ⟩ which can be expressed in the basis spanned by the

eigenvectors of the observable O as

|ψ⟩ =

n∑
i=1

|ϕi⟩ ⟨ϕi|ψ⟩ (2.18)

where

O |ϕi⟩ = λi |ϕi⟩ . (2.19)

The possible outcomes of the measurement are given by the set of eigenvalues of O, λ1, . . . , λn. The

Born rule says that the probability of obtaining an eigenvalue λi as the outcome of a measurement

is given by the squared modulus of the projection of the state on the ith eigenstate of the observable

P (λi) = |⟨ψ|ϕi⟩ |2. (2.20)

Note that the outcomes of the measurements have a physical interpretation because the observables

are Hermitian operators and consequently, they have a real spectrum.

We introduce now the axiom that describes how quantum states evolve in time.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 16

Axiom 3. The evolution of a closed quantum system is given by unitary operators acting on the

state,

|ψ⟩ → U |ψ⟩ (2.21)

where an unitary operator is defined as the matrix U ∈Mn such that

U†U = UU† = In . (2.22)

There are two equivalent interpretations of how quantum systems evolve in time: The Heisenberg

picture and the Schrödinger picture. In the Schrödinger picture, states change over time. However,

in the Heisenberg picture, states are static and observables evolve in time. In this work, we will

consider the first approach in which the evolution of quantum systems is given by the states.

Until this point we have considered only single quantum systems. However, there are numerous

physical situations in which the joint description of several systems is necessary. For example,

composite systems appear in many-body physics or communication theory where the usual set-up

is two distant systems transmitting information. The following axiom provides the description of

the state space for composite quantum systems.

Axiom 4. The state space of a composite physical system is the tensor product of the state spaces

of the component physical systems.

The tensor product of two Hibert spaces H of dimension m and G of dimension n and is another

Hilbert spaceH⊗G which has dimensionmn. The elements ofH⊗G are given by linear combinations

of ‘tensor products’ |ψ⟩ ⊗ |ϕ⟩ such that |ψ⟩ ∈ H and |ϕ⟩ ∈ G. As an example, consider a system

of two two-dimensional systems denoted as A and B, respectively. The Hilbert space of the joint

system is given by HA ⊗ HB = C2 ⊗ C2. Any state of the joint system can be written in the

computational basis as

|ϕAB⟩ = a0 |0⟩ ⊗ |0⟩+ a1 |0⟩ ⊗ |1⟩+ a2 |1⟩ ⊗ |0⟩+ a3 |1⟩ ⊗ |1⟩ (2.23)

Usually, the tensor product is not explicitly written and |ϕAB⟩ is usually expressed as

|ϕAB⟩ = a0 |0⟩ |0⟩+ a1 |0⟩ |1⟩+ a2 |1⟩ |0⟩+ a3 |1⟩ |1⟩ (2.24)

where the tensoring of adjacent kets is assumed.
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2.1.2 Density operators

Axioms 1 to 4 provide the mathematical formalism used to describe closed quantum systems. By

closed systems, we refer to systems not interacting with their environment for which all the variables

can be controlled. This description of a quantum system is far from practical. In reality, it is

impossible to have total control over all the variables affecting a system. Even the most controlled

quantum state is affected by external variables. For example, in modern quantum computers,

memory qubits are susceptible to interaction with the environment and error-correcting techniques

are necessary to correctly run codes. For this reason, open quantum systems are the reference

framework in quantum information theory.

The general description of open quantum systems is given by probability ensembles (statistical

mixtures) of multiple states. In this description, we can not longer assume that a system is in

a certain state, instead, we can only assign probabilities of finding the system in a given set of

states. The mathematical description of probability ensembles is made with operators. In par-

ticular, the description of the state of an open quantum system is given by the so-called, density

operators. Using Dirac’s notation, a density operator ρ can be expressed as a matrix in terms of

the computational basis of Cn {|0⟩ . . . |n− 1⟩} as

ρ =

n−1∑
i,j=0

pij |i⟩ ⟨j| (2.25)

with pij ∈ R. However, not all matrices represent probability ensembles of quantum states. The

matrix ρ ∈Mn represents a probability ensemble of states if it satisfies the following two conditions:

� Positive-semidefinite: The matrix ρ has non-negative eigenvalues,

ρ ≥ 0. (2.26)

� Unit trace: The trace of a density matrix needs to be equal to one.

tr ρ = 1. (2.27)

We denote the set of density matrices by Dn ⊂ Mn. Based on the rank of the density matrix,

there are two types of states. A state ρ is pure if rank(ρ) = 1. Conversely, ρ is mixed if rank(ρ) > 1.
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A special type of state is the maximally-mixed state represented by the density matrix ρ = 1
n In

where In corresponds to the identity operator acting on the Hilbert space. Pure states represent

states with total certainty about the state of the system and maximally states represent states with

maximal noise and complete uncertainty about the state of the system.

2.2 Quantum maps

In this section, we introduce the description of the evolution of open quantum systems. Axiom 3

states that the evolution of closed systems is given by unitary transformations on the state space.

The state evolution formalism given by axiom 3 can also be extended to open quantum systems

[12, 13]. The most general evolution of an open system is given by a linear map Ψ transforming an

initial density operator ρ ∈ Dn into a final density operator,

Ψ : ρ→ Ψ(ρ) ∈ Dn. (2.28)

However, not every linear map can be used to represent the evolution of an open quantum

system. To see this, we will consider the two conditions required by quantum maps. The first

condition is given by the fact that the matrix obtained after the application of the linear maps

needs to be a density matrix, so it needs to be positive, semi-definite and normalised (trace one).

This means that a quantum map must preserve the positivity and the trace of the output matrix.

For the second condition, consider the space of density matrices Dn⊗Dm and the set of linear maps

Ψ ⊗ Im acting on the first subspace while ignoring the second. The form of the linear map Ψ is

constrained by the fact Ψ⊗ Im(ρ) is also a density matrix. The linear maps that transform positive

semi-definite matrices to positive semi-definite matrices Ψ : Dn 7→ Dm are denoted as positive

maps. On top of that, if Ψ ⊗ In is also positive for n ∈ Z, the map Ψ is completely positive. We

conclude that the evolution of quantum maps is given by completely positive and trace-preserving

(CPT) linear maps.
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2.2.1 Representations of quantum maps

The action of a linear map Ψ :Mn →Mm can always be expressed, as the product of an operator

OΨ ∈Mn2×m2 action on the vectorised form of a density matrix as

vec (Ψ(ρ)) = OΨ vec (ρ), (2.29)

where the action of vec on a matrix corresponds to arranging the rows of the matrix in vector form.

The matrix OΨ corresponds to the super-operator representation of the map Ψ. This representation

is not very practical as the conditions for a map to be completely positive and trace-preserving can

not be easily expressed in terms of the operator OΨ. For this reason, other representations are more

suitable to represent quantum maps.

In [14], Jamilokowski established a correspondence between the space of linear maps from Mn

to Mm and the operators in the tensor product space Mn ⊗Mm. This correspondence is stated

by the following theorem.

Theorem 1. For every linear map Ψ : Mn →Mm, there is an operator CΨ ∈ Mm ⊗Mn given

by

CΨ = (Ψ⊗ In) |ψ⟩ ⟨ψ| (2.30)

where |ψ⟩ corresponds to |ψ⟩ =
∑n−1
i=0 |i⟩ |i⟩.

The operator CΨ is denoted as the Choi operator. The action of the mapping Ψ can be recovered

from CΨ by means of the equation

ψ(ρ) = trB
[
(Im⊗ρT )CΨ

]
(2.31)

where trA(trB) denotes the operator applying a partial trace over the first (second) subsystem.

This equation completes the bijection between operators and maps usually referred as the Choi-

Jamilokowski isomorphism. To see that this is the right expression for ψ(ρ), we may insert CΨ in

the expression given by 2.31. We obtain that

trB
[
(Im⊗ρT )CΨ

]
=

1

n

n−1∑
i,j=0

trB
[
(Im⊗ρT )(Ψ(|i⟩ ⟨j|)⊗ |i⟩ ⟨j|)

]
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=
1

n

n−1∑
i,j=0

trB
[
Ψ(|i⟩ ⟨j|)⊗ ρT |i⟩ ⟨j|

]
=

1

n

n−1∑
i,j,l=0

Ψ(|i⟩ ⟨j|)⊗ ⟨l| ρT |i⟩ ⟨j|l⟩

=
1

n

n−1∑
i,j,l=0

Ψ(|i⟩ ⟨j|)pi,lδj,l

=
1

n

n−1∑
i,j

pi,jΨ(|i⟩ ⟨j|)

= ψ(ρ). (2.32)

The following theorem originally introduced in [15] states the condition on CΨ to represent a

completely positive map.

Theorem 2. The linear map Ψ :Mn →Mm is completely positive iff CΨ is positive semi-definite,

CΨ ≥ 0. (2.33)

The original proof of this theorem is given by [15]. The following theorem states the condition

on CΨ to represent a trace-preserving map.

Theorem 3. The linear map Φ :Mn →Mm is trace-preserving iff the following condition on CΨ

is satisfied,

trA(CΨ) = In . (2.34)

Proof. The map is trace-preserving if tr(Ψ(ρ)) = tr(ρ) ∀ ρ ∈ Mn. We take the trace over equation

(2.30) as

tr(ψ(ρ)) = tr(trB(CΨ(Im⊗ρT ))). (2.35)

Consider the sets of density matrices {µi}i∈Z and {νj}i∈Z spanningMm andMn, respectively. We

have that the Choi matrix CΨ ∈ Mm ⊗Mn can be expressed in terms of the elements of the set

{µi ⊗ νj}i∈Zm,j∈Zn
as

CΨ =

m−1∑
i=0

n−1∑
j=0

pijµi ⊗ νj (2.36)
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where {pij ∈ C}i,j∈Z. However, CΨ is hermitian so a basis can always be found such that pij ∈ R.

We express the trace of ψ(ρ) as

tr(ψ(ρ)) = tr
[
(Im⊗ρT )CΨ

]
=

m−1∑
i=0

n−1∑
j=0

pij tr
[
(Im⊗ρT )µi ⊗ νj

]
=

m−1∑
i=0

n−1∑
j=0

pij tr
[
µi ⊗ ρT νj

]

=

m−1∑
i=0

tr

ρT n−1∑
j=0

pijνj


= tr

[
ρT trA(Cψ)

]
(2.37)

and consequently, we require trA(Cψ) = In which yields

tr(ψ(ρ)) = tr(ρT ) ∀ρ ∈Mn. (2.38)

Theorems 2 and 3 establish the conditions for a map to be completely positive and trace-

preserving, respectively, in terms of the Choi matrix CΨ. The following theorem establish the

conditions for a map to be unital [16], a map which leaves the maximally-mixed state unchanged.

Theorem 4. [16] The linear map Φ :Mm →Mn is unital iff

trB(CΨ) = Im . (2.39)

Proof. The map ψ applied to the maximally mixed state In gives as a result

ψ(In) = trB [(Im⊗ In)CΨ]

=

m−1∑
i=0

n−1∑
j=0

pij trB [(Im⊗ In)µi ⊗ νj ]

=

m−1∑
i=0

n−1∑
j=0

pij trB [µi ⊗ νj ]

=

m−1∑
i=0

n−1∑
j=0

pijµi = trB(CΨ) (2.40)
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and, consequently, the identity operator is mapped to the identity operator iff trB(CΨ) = Im.

One can obtain a different representation of a quantum map deriving from the properties of

the Choi matrix of a completely positive map. By theorem 2.33, the Choi matrix representing

completely positive map is a positive matrix and consequently it can be expressed as

CΨ =
∑
i

|Ai⟩ ⟨Ai| (2.41)

where {|Ai⟩}i∈Z are state vectors in the Hilbert space H = Cmn. A state vector can always be

expressed in terms of operators Ai ∈Mm×n as

|Ai⟩ = (In⊗Ai) |ψ⟩ (2.42)

where |ψ⟩ =
∑n−1
i=0 |i⟩ |i⟩. The set of operators {Ai}i∈Z provides the representation of a completely

positive map known as operator-sum representation. This representation was first introduced by

Kraus in [17] and A0, . . . , An−1 are denoted as Kraus operators in his honour. The action of a map

in terms of the Kraus operators can be obtained by expressing the Choi matrix of the map as

CΨ =
∑
i

|Ai⟩ ⟨Ai|

=
∑
i

(Ai ⊗ In) |ψ⟩ ⟨ψ| (A†
i ⊗ In)

=
∑
ijk

(Ai ⊗ In)(|j⟩ ⟨k| ⊗ |j⟩ ⟨k|)(A†
i ⊗ In). (2.43)

We introduce the expression of CΨ in equation (2.31). We get that

ψ(ρ) = trB
[
(Im⊗ρT )CΨ

]
=
∑
ijk

trB

[
(Im⊗ρT )(Ai ⊗ In)(|j⟩ ⟨k| ⊗ |j⟩ ⟨k|)(A†

i ⊗ In)
]

=
∑
ijk

trB

[
(Ai |j⟩ ⟨k|A†

i ⊗ ρ
T |j⟩ ⟨k|)

]
=
∑
ijkl

Ai |j⟩ ⟨k|A†
i ⊗ ⟨l| ρ

T |j⟩ ⟨k|l⟩

=
∑
ijk

pj,kAi |j⟩ ⟨k|A†
i
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=
∑
i

AiρA
†
i (2.44)

which is the action of the map on a density matrix in terms of its operator-sum representation.

As we did with the Choi matrix, we evaluate the conditions in terms of the Kraus operators that

guarantee that a map is trace-preserving and unital. In order to get the trace-preserving and unital

conditions, we express the partial traces of the Choi matrix in terms the Kraus operators {Ai}i∈Z.

The partial trace with respect of the first subsystem can be expressed as

trA [CΨ] =
∑
ijk

trA

[
(Ai ⊗ In)(|j⟩ ⟨k| ⊗ |j⟩ ⟨k|)(A†

i ⊗ In)
]

=
∑
ijk

trA

[
Ai |j⟩ ⟨k|A†

i ⊗ |j⟩ ⟨k|
]

=
∑
ijk

trA

[
A†
iAi |j⟩ ⟨k| ⊗ |j⟩ ⟨k|

]
=
∑
ijkl

⟨l|A†
iAi |j⟩ ⟨k|l⟩ |j⟩ ⟨k|

=
∑
ijk

⟨k|A†
iAi |j⟩ |j⟩ ⟨k|

=
∑
i

(A†
iAi)

T . (2.45)

By theorem 3, we have that a map is trace preserving if trA [CΨ] = Im. In terms of the Kraus

operators representing a map, we require that

∑
i

A†
iAi = Im . (2.46)

Similarly, the partial trace of the Choi matrix with respect to the second subsystem is given by

trB [CΨ] =
∑
ijk

trB [(Ai ⊗ In)(|j⟩ ⟨k| ⊗ |j⟩ ⟨k|)(Ai ⊗ In)]

=
∑
ijk

trB

[
Ai |j⟩ ⟨k|A†

i ⊗ |j⟩ ⟨k|
]

=
∑
ijkl

Ai |j⟩ ⟨k|A†
i ⟨l|j⟩ ⟨k|l⟩

=
∑
i

Ai(
∑
l

|l⟩ ⟨l|)A†
i
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=
∑
i

AiA
†
i . (2.47)

In this case, by theorem 4, a map is unital if trB [CΨ] = In. In terms of the operator-sum represen-

tation, this condition corresponds to ∑
i

AiA
†
i = In . (2.48)

A Choi matrix representing a completely positive map can always be expressed as a convex sum

of pure states as in (2.41). However, for a given matrix this decomposition is not unique. The

following theorem provides the relation between two different convex pure decompositions of the

same operator

Theorem 5 ([18]). Consider two different decompositions of the same positive operator O ∈Md×d

given by

O =

N∑
i

ai |Ai⟩ ⟨Ai| ,
∑
i

ai = c, ai ≥ 0 (2.49)

and

O =

M∑
i

bi |Bi⟩ ⟨Bi| ,
∑
i

bi = c, bi ≥ 0 (2.50)

c ∈ R. Then, {|Ai⟩}i∈ZN
and {|Bi⟩}i∈ZM

are related through the following equation

Bi =
1√
bi

N∑
i

uij
√
ai |Aj⟩ , (2.51)

where U = (uij)i,j∈ZM
is unitary U†U = UU† = IM .

One consequence of this theorem is that the operator-sum representation of a CP map is not

unique. To see this, we can express the sets of state vectors {|Ai⟩}i∈ZN
and {|Bi⟩}i∈ZM

in theorem

5 in terms of operators as in (2.42). The two sets of operators (Ai)i∈ZN
and (Bj)j∈ZM

representing

the same CP map are necessarily related by the following equation

(In⊗Bj) |ψ⟩ =
1√
bj

N∑
i

uij
√
ai(In⊗Ai) |ψ⟩ . (2.52)

and, consequently,

Bj =

N∑
i

uijAj . (2.53)
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Note that two sets of Kraus operators with different cardinality M ̸= N represent the same map

if by appending zero operators to the set with fewer elements, equation (2.53) maintains. From all

the pure decompositions of the Choi matrix representing a CP map the spectral decomposition has

the particularity that the states are orthonormal

CΨ =

c∑
i

λi |κi⟩ ⟨κi| , ⟨κi|κj⟩ = δi,j (2.54)

In this case, c is the rank of the Choi matrix and is denoted as the Choi (or Kraus) rank of a

map. Sets of Kraus operators associated with orthogonal eigenvectors of a given matrix provide

representations of the map for which the Kraus rank is minimal. We will use this idea to construct

a family of maps in Chapter 3.

2.3 Bipartite states

Axiom 4 states that the vector space of a composite closed quantum system is the tensor product

of the vector spaces of the individual subsystems. This property is a characteristic of quantum

mechanics and establishes a significant difference with respect to classical mechanics. We will

consider those differences and their consequences on the understanding of nature using a quantum

mechanics. We shall consider joint systems composed of two individual subsystems which we denote

by A and B. The state space of systems A and B are given by the Hilbert spaces HA and HB ,

respectively. By axiom 4, the state space of the joint system is given by the set of states HA⊗HB .

Consider that HA and HB are have dimension m and n, respectively. In the previous section,

we saw that an orthonormal basis can be found for each one of the Hilbert spaces. If the set of

vectors {|ei⟩A}i∈Z is an orthonormal base of HA and the set {|fi⟩B}i∈Z is an orthonormal base

of HB , then, the set {|ei⟩A ⊗ |fi⟩B}i,j∈Z is a basis of the tensor space HA ⊗ HB . Any density

operator representing the state of the composite system can be expressed as a complex matrix

ρAB ∈Mmn×mn acting on the state space HA ⊗HB .

The fact that the state space of the system is mn-dimensional establishes a crucial difference

in relation to a classical description of the system. In a classical description, all the information
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of a composite system can always be reconstructed from the characterisation of its parts. How-

ever, this is not the case for quantum systems. If all the information of a compound system was

contained in its parts the state space of the system could only have m+ n dimensions. In reality,

for quantum systems the state space is mn-dimensional, and the majority of the states cannot be

described by classical means. Schrödinger summarised this fact stating that in quantum mechanics

the description of the whole is larger than the description of the parts.

We differentiate bipartite states which can be described by classical means from those which

do not admit such description. A bipartite pure state admits a classical description if it can be

expressed as a product state

|ψAB⟩ = |ψA⟩ ⊗ |ψB⟩ . (2.55)

Similarly, a bipartite mixed state admits a classical description if it can be expressed as an proba-

bilistic ensemble of product states

ρAB =

d−1∑
i=0

ρ
(A)
i ⊗ ρ(B)

i . (2.56)

Those states than can be expressed as equation (2.56) (or as equation (2.55) for the particular

case of pure states) are said to be separable. In general, the state of a bipartite system is not

separable and in those cases, the state is said to be entangled. In other words, entangled bipartite

states are those which can only be described using quantum mechanics.

2.3.1 Entanglement as a resource

In 1935, Schrödinger was the first to consider entangled states in a response letter to the famous

paper by Einstein, Podolski and Rosen [19, 20]. For many years, entanglement was seen as a math-

ematical artefact with no practical use. However, this vision changed in the early nineties when

several groups showed that entangled states could be used to perform useful tasks. Bennett et al.

created protocols using entangled states for dense coding [21], they also showed that entanglement

could be used for teleportation [22]. Similarly, Ekert showed that entanglement in states could be

used quantum cryptography [23] and also in quantum computing [23]. Since then, more applica-

tions of entanglement appeared and some of them were experimentally carried out. Entanglement
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emerged as a rich field of study both for theoretical and experimental research and today it is a

key ingredient of the so-called second quantum revolution which aims to bring to the people appli-

cations of quantum information theory such as the future quantum internet [24]. A protocol using

entanglement usually starts with the generation of entangled pairs between systems A and B by

the direct interaction of the two systems or by the interaction of systems A and B with a third

system. As a result of applying a protocol entangled pairs are consumed and, as a consequence, the

entanglement between the systems is lost. In this scenario, entanglement can be seen a resource in

the same way thet energy is as a resource in thermodynamics.

2.3.2 Entanglement characterisation

In many applications, it is usually important to characterise entanglement between two systems.

Intuitively, characterising a state in terms of its entanglement corresponds to determining whether

the state is indeed entangled or not. In the case it is entangled, the characterisation consists of

determining the degree of entanglement of the state or, in other words, how far is the state from

not being entangled. To do this, we need to determine which operations can be performed over ρAB

without increasing its entanglement. As previously stated, operations acting locally on subsystems

A and B do not increase the entanglement of the system. A local operation on ρAB can be expressed

as

ΨA ⊗ΨB(ρAB) (2.57)

where ΨA is a quantum operation applied only A and ΨB is a quantum operation applied on B.

However, local operations are not the only operations that do not increase the entanglement of the

system. The parts of a certain system may be classical correlated without being entangled. This

type of correlation can established via classical communication between A and B which may perform

measurements on their respective states, communicate their results and apply an operation based

on information they receive from the other part. The operations result from applying successive

rounds of local operations and classical communication (LOCC operations) transform the initial

state ρAB as

ρAB
LOCC−−−−→ ρ′AB (2.58)
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where the state ρ′AB is, as much, as entangled as the original state ρAB .

We may also consider the class of operations which maintain the degree of entanglement of

ρAB . Such operations are necessarily local because they do not increase entanglement. In this case,

they also need to be reversible (no measurements) so that entanglement does not decrease either.

This type of operations are called local unitary (LU). In this case, ΨA and ΨB represent unitary

operations so the initial state ρAB is reversely transformed as

ρAB
LU←→ ρ′AB (2.59)

where

ρ′AB = (UA ⊗ UB)ρAB(U†
A ⊗ U

†
B) (2.60)

and UA and UB are unitary operators. In this case, the degree of entanglement is maintained after

applying the LU operation. Local unitary operations determine entanglement classes of equivalent

states. Determining all the LU classes of a system is usually hard and it can only be done for some

certain states such as pure states or two-dimensional mixed states. The LU classification of these

states can be obtained as follows.

Pure states

One of the cases where LU classification is possible is the set of pure states. Consider the pure state

|ψAB⟩ ∈ HA ⊗ HB where dA and dB are the dimensions of HA and HB , respectively. This state

can always be expressed in terms of a product basis as

|ψAB⟩ =

dA−1∑
i=0

dB−1∑
j=0

ti,j |i⟩ ⊗ |j⟩ , (2.61)

where ti,j ∈ C. The LU equivalence class of |ψAB⟩ is given by all the states of the form (U⊗V ) |ψAB⟩

such that U and V are unitary matrices. By expressing U and V in terms of the computational
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basis as U =
∑dA−1
i,j=0 uij |i⟩ ⟨j| and V =

∑dB−1
i,j=0 vij |i⟩ ⟨j|, we get that

(U ⊗ V ) |ψAB⟩ =

dA−1∑
i,j,k=0

dB−1∑
l,m,n=0

ui,jtk,lvm,n |i⟩ ⟨j|k⟩ ⊗ |l⟩ ⟨m|n⟩

=

dA−1∑
i,j=0

dB−1∑
k,l=0

ui,jtj,mvm,l |i⟩ ⊗ |l⟩ . (2.62)

Therefore, a LU operation on |ψAB⟩ corresponds to applying two changes of basis on the matrix

of coefficients T = (ti,j)i=1,...,dA,j=1,...,dB . This transformation in matrix form is expressed as

T ′ = UTV T .

We are interested in finding a state representative for each of the LU classes. For any matrix T ,

one can always find matrices U and V such that UTV T is diagonal. Suppose that dA ≥ dB , then

|ψAB⟩ can be brought by means of LU operations to the following form

|ψAB⟩ =

dA−1∑
i=0

λi+1 |i⟩ ⊗ |i⟩ . (2.63)

The expression above corresponds to the Schmidt decomposition of the state |ψAB⟩ [25]. The

coefficients of the decomposition λi correspond to the singular values of the matrix T . They form

the Schmidt vector λ⃗ = (λi)i=1,...,dA determining the entanglement properties of any pure state.

The number of non-zero elements of the Schmidt vector is denoted as Schmidt rank. Because of

the normalisation condition ⟨ψAB |ψAB⟩ = 1 the Schmidt vector elements satisfy
∑dA
i=1 λ

2
i = 1.

Equivalently, the the coefficients λi can be evaluated as the square root of the eigenvalues of the

partially reduced states ρA = trB |ψAB⟩ ⟨ψAB | and ρB = trA |ψAB⟩ ⟨ψAB | which may differ by

dA − dB zero valued eigenvalues.

We can discriminate between separable and entangled states by using the Schmidt decomposi-

tion. For pure separable states, the Schmidt decomposition is a product state and therefore has only

one term. Therefore, we can determine whether a pure state is entangled by evaluating its Schmidt

rank. In the case that the Schmidt rank is one the state is separable. Otherwise the state is entan-

gled. Schmidt decomposition can also be used to determine the degree of entanglement of a pure

state. In this context, Nielsen introduced a theorem used to compare the degree of entanglement

of two states. Before presenting this theorem we need to define vector majorisation.
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Definition 2. Consider two positive vectors with the same length u⃗ = (u1, . . . , ud) and v⃗ =

(v1, . . . , vd) where their elements add up to the same number
∑d
i=1 ui =

∑d
i=1 vi. The elements

in u⃗ and v⃗ can be ordered in decreasing order, we denote the ordered versions of these vectors by

u⃗↓ and v⃗↓, respectively. The vector u⃗ majorises v⃗, written as u⃗ ≻ v⃗, if and only if

k∑
i=1

u↓i ≥
k∑
i=1

v↓i for k = 1, . . . , d. (2.64)

The following theorem can be used to compare the degree of entanglement of two pure states.

Theorem 6 ([26]). The state |ψAB⟩ can be transformed into |ϕAB⟩ by a LOCC operation if the

Schmidt vector λ⃗ϕ majorises the Schmidt vector λ⃗ψ

|ψAB⟩
LOCC−−−−→ |ϕAB⟩ ⇔ λ⃗ψ ≺ λ⃗ϕ. (2.65)

We refer to the original paper by Nielsen for the proof of the theorem. Theorem 6 provides a

hierarchy for the degree of entanglement of pure states. We may ask if there are states on the top

of that hierarchy, states that can be transformed into any other using LOCC operations. This class

of states are characterised by a uniform Schmidt vector and they are usually denoted as maximally

entangled pure states (MEPS),

|ψMEPS⟩ ⇔ λ⃗MEPS =

{√
1

dA
, . . . ,

√
1

dA

}
. (2.66)

By theorem 6, maximally entangled states can be transformed to any other by means of LOCC

operations. A well-known example of two-dimensional maximally entangled states , dA = 2 and

dB = 2, are the four Bell states |ψ+⟩, |ψ−⟩, |ϕ+⟩ and |ϕ−⟩ which in the computational basis are

expressed as

|ψ±⟩ =
1√
2

(|0⟩ |1⟩ ± |1⟩ |0⟩) and |ϕ±⟩ =
1√
2

(|0⟩ |0⟩ ± |1⟩ |1⟩). (2.67)

The degree of entanglement of a state can be quantified using entanglement measures. An

entanglement measure is a real and positive function quantifying the degree of entanglement of

a given state. Despite there is not a universally accepted definition of entanglement measure,
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there are commonly accepted properties that entanglement measure should satisfy. Namely, one of

these commonly accepted properties is monotonicity proposed by Vidal in [27]. An entanglement

monotone is a magnitude which does not increase, on average, under probabilistic LOCC opera-

tions. Probabilistic LOCC operations generalise of LOCC operations by allowing the preparation

probabilistic outcomes in the rounds of classical communication between the subsystems. Another

commonly accepted property is that entanglement measures must discriminate between entangled

and separable states. This means that the result of applying an entanglement measure on a state

is zero if and only if the state is separable. Besides these two commonly accepted properties, there

are some desirable properties for entanglement measures such as additivity or normalisation.

In the case of pure states, we can find well-behaved entanglement measures. One example of

an entanglement measure of pure states is the entropy of entanglement E(|ψAB⟩) which was first

introduced in [28]. Entropy of entanglement is defined as the Von Neumann entropy of the partially

traced state

E(|ψAB⟩) := S(trB |ψAB⟩) (2.68)

where the Von Neunman entropy of a density state rho is given by

S(ρ) = −
d−1∑
i=0

ei log (ei) (2.69)

where e0, . . . , ed−1 are the eigenvalues of ρ. Following the fact that Schmidt coefficients correspond

to the square root of the eigenvalues of the partially traced states, the entropy of entanglement of

|ψAB⟩ can be obtained as

E(|ψAB⟩) = −
d∑
i=1

λ2i log (λ2i ), (2.70)

where {λ1, . . . , λd} are the Schmidt coefficients of |ψAB⟩. For example, the entropy of entanglement

of a maximally entangled pure state is given by

E(|ψMEPS⟩) = −
d∑
i=1

1

d
log

(
1

d

)
= log (d) (2.71)
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and, in the case of separable states

E(|ψSEP ⟩) = log (1) = 0. (2.72)

For two-qudit states dA = dB = d so the Schmidt vector has d elements. Due to the normalisation

the Schmidt vector, d − 1 degrees of freedom are required to characterise the entanglement of the

system. For example, for a two-qubit system, we only require one entanglement measure (such as

entropy of entanglement) to characterise completely the entanglement of the system.

Mixed states

Pure state entanglement can be detected and quantified by using the Schmidt decomposition.

Unfortunately, there is not an analogous tool for the characterisation of the entanglement of mixed

states. One of the objectives of entanglement characterisation is detecting whether a given bipartite

system is entangled. This is known as the separability problem. In the case of mixed states of

arbitrary dimension, the separability problem is known to be NP-hard [29].

The best technique so far to determine whether a given mixed state is separable is by using

entanglement witnesses [30]. Horodecki et al. proved the following result

Theorem 7 ([31]). For every entangled state ρAB, there exists a Hermitian operator W such that

tr (WρAB) < 0 (2.73)

and

tr (WσAB) ≥ 0 (2.74)

for all separable states σAB.

An operator W which fulfils the conditions in theorem 7 is an entanglement witness for the

state ρAB . Therefore, a given state can determined to be entangled if a witness is found. However,

finding the entanglement witness is usually hard and on top of that, an witness is only valid to

detect the entanglement of a limited set of states. For these reasons, more practical methods are

to be developed to detect entanglement.
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One possibility for detecting entanglement is via entanglement tests or criteria. One of the most

used tests to detect the entanglement is the so-called Peres–Horodecki criterion which was proposed

in [32]. The Peres–Horodecki criterion, also known as the partial positive transpose (PPT) criterion,

says that for separable states, their partially transpose necessarily have a positive spectrum,

ρTB

AB ≥ 0. (2.75)

It can be shown that the Peres–Horodecki criterion is necessary and sufficient for qubit-qubit and

qubit-qutrit states [33] and consequently it can be used to detect entanglement in those systems.

However, for arbitrary dimensional systems, the Peres–Horodecki criterion despite still being nec-

essary, is not sufficient. In other words, this means that there are entangled states which pass the

PPT criterion. This class of entangled states are known as PPT-bound entangled states.

As in the case of pure states, entanglement measures may be used to quantify the degree

of entanglement of a state. In the case of mixed states, finding an entanglement measure is a

compromise between possessing desirable properties (such as monotonicity or additivity) and being

easy to compute. In what follows, we introduce several examples of entanglement measures and we

discuss their advantages and disadvantages.

Negativity is an easy to compute entanglement measure. Negativity was first introduced in [34]

and is defined as the trace norm of the partially transposed density matrix minus one,

N(ρAB) := ||ρTA

AB ||1−1 (2.76)

where the trace norm of a density matrix, written ||ρ||1, is defined as the sum of its singular values

or, equivalently

||ρ||1= tr
√
ρρ†. (2.77)

Negativity measures the degree to which the partial transposed matrix fails to be positive, and

therefore it can be regarded as a quantitative version of the PPT criterion. As mentioned, one of

the advantages of negativity is its ease to compute. However, one problem of negativity is that it

fails to discriminate entangled states from separable ones. For example, bound PPT states have

zero negativity despite being entangled.
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One of the most used entanglement measures is the entanglement of formation (EoF), first

introduced in [35]. Entanglement of formation is defined as

EF (ρ) := min
Eb

M∑
i=1

piEi(|ψi⟩) (2.78)

where the minimisation is performed over all possible decompositions

Eb = {pi, |ψi⟩}Mi=1 : ρ =

M∑
i=1

pi |ψ⟩ ⟨ψ| (2.79)

where pi > 0 and
∑M
i=1 pi = 1. Entanglement of formation can be interpreted as the minimal degree

of entanglement from pure states required to construct a given mixed state.

Unlike pure states, there is not a hierarchy in the degree of entanglement of mixed states. It was

shown that the forms of the maximally entangled mixed states can vary with the measures chosen

[36].

2.4 Channel-state duality

In section 2.2, we considered the Choi-Jamilkowski isomorphism as a tool to represent a quantum

map in terms of an operator. However, the implications of this isomorphism go beyond quantum

maps representation theory. In this section, we see that Choi-Jamilkowski’s isomorphism can be

used to establish a duality between the set of quantum maps and the set of bipartite states. This

duality is of extreme usefulness in quantum information theory as it allows the employment of the

measures normally used with bipartite states to characterise quantum maps and vice-versa.

The Choi-Jamilkowski isomorphism establishes a correspondence between the space of linear

maps from Mn to Mm and the space operators in the tensor product space Mn ⊗Mm. The

condition on a Choi operator to represent a complete positive map corresponds to CΨ be positive

semi-definite. Thus, by choosing the correct normalisation, every Choi matrix CΨ ∈ Mn ⊗Mm

representing a complete positive map can be associated with a density matrix representing the state

of a bipartite system. In particular

CΨ = nρAB (2.80)



CHAPTER 2. MATHEMATICAL PRELIMINARIES 35

is the relation that guarantees that tr [ρAB ] = 1. By using this relation, we consider different classes

of maps and their corresponding classes of bipartite states.

In section 2.2, we considered trace-preserving CP maps which were those representing physical

evolutions of quantum systems. In terms of the Choi representation, a map is trace-preserving if

equation trA [CΨ] = In holds. In the case of bipartite states, this condition is equivalent to obtaining

the maximally mixed state if we trace ρAB with respect to system A. Note that, contrary to the

case of quantum maps, physically realisable bipartite states do not require to fulfil this condition.

In section 2.2, we also considered the set of maps which were unital on top of being trace-

preserving. In terms of the Choi representation of the map, this condition is equivalent to the

equation trB [CΨ] = Im. Similarly, unital and trace-preserving maps correspond to bipartite states

in which the maximally mixed state is obtained after partial tracing with respect to any of the

subsystems. Unital quantum channels and locally maximally mixed bipartite states will be deeply

considered in this thesis and an introduction to these classes of maps and their equivalent class of

bipartite states will be given in the following chapter. For the moment, we will consider the relation

between other classes of maps and bipartite states given by the channel-state duality.

A subclass of unital and trace-preserving maps is the class of unitary maps. In terms of the

action over the density matrix, unitary maps correspond to conjugations of ρ given by

Ψ(ρ) = UρU†. (2.81)

Equivalently, they are represented by rank-one Choi matrices. By the map-state duality, the class

of bipartite states corresponding to unitary maps is the class of maximally entangled pure states.

For these states the Schmidt decomposition is given by

|ψ⟩AB =
1√
n

n−1∑
j=0

|ei⟩A ⊗ |fi⟩B (2.82)

with the Schmidt coefficients αi = 1√
n

.

Finally, we may consider another interesting association between maps and states. In section 2.3,

we considered the class of separable states. In [37], the authors introduce entanglement breaking

channels, the class of quantum maps associated, by the map-state duality, with separable states.
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A bipartite entangled bipartite state is separable if an entanglement breaking channel is applied to

any of the two subsystems.



Chapter 3

Unital quantum maps and locally

maximally mixed states

3.1 Introduction

In the previous chapter, we introduced quantum maps which are the mathematical representation

used in quantum information science to describe open quantum systems. We also introduced bipar-

tite states describing two-part compound systems. We saw that dualism can be established between

quantum maps and bipartite states which is given by the so-called Choi-Jamilkowski isomorphism.

In this chapter, we will consider the particular type of quantum maps which are trace-preserving

and unital (UTCP maps). We will also consider the same object represented by UTCP maps in the

space of bipartite states which are the so-called locally maximally mixed (LMM) bipartite states.

These two mathematical objects are the main focus of this thesis. In particular, we consider the

convex geometry of UTCP maps and the entanglement classification of LMM states. To do this,

first, we will review the simplest setup of these problems which is given by qubit systems. Second,

we will consider the case in which the dimension of the quantum system is higher than two and we

will review some problems appearing when dealing with such systems.

37
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3.2 UCTP qubit maps

The set of qubit maps (not necessarily unital) can be parametrised [38–41]. We will follow a well-

known method to obtain such parametrisation which is based on the Bloch state representation.

We start by defining the Bloch decomposition of a density matrix.

Definition 3 (Bloch decomposition). Any density matrix ρ ∈Md can be expressed as

ρ =
I2
2

+

d2−1∑
i=1

τiλi (3.1)

where τi ∈ C and λ1, . . . , λd2−1 form a basis of traceless matrices.

In the case of qubit systems, ρ ∈ M2, we can choose this basis to be the set of Pauli matrices,

denoted as {σ1, σ2, σ3} where

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 and σ3 =

1 0

0 −1

 . (3.2)

The elements of the Pauli basis are Hermitian and unitary. As a consequence of the hermiticity,

the coefficients of the Bloch decomposition in (3.1) are real and they can be represented graphically

as points in R3. If we do this for all qubit states, we obtain a graphical representation of the whole

set denoted as the Bloch ball which, by convention, is given by a sphere of radius one. In this

picture, the pure states correspond to points on the surface of the sphere and the mixed states

correspond to points in the interior. The maximally-mixed state locates at the centre of the sphere.

Consider the qubit map ϕ(ρ) : M2 → M2. The super-operator representation of ϕ(ρ) is

expressed in the Pauli basis as the 4×4 real matrix T . In the case that the map is trace-preserving

T =

1 0⃗

κ⃗ T

 (3.3)

where κ⃗, 0⃗ ∈ R3 and T is a 3 × 3 matrix. In this basis, the action of a map on the Bloch

representation of the state can be expressed as

τ⃗ → τ⃗ ′ = ϕ(τ⃗) = κ⃗+ T τ⃗ . (3.4)
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The maximally-mixed in the Pauli basis corresponds to the zero vector and the action of ϕ on this

state is given by

ϕ(⃗0) = κ⃗. (3.5)

Unital maps are those sending the maximally-mixed state to itself ϕ(⃗0) = 0⃗, so κ⃗ = 0⃗ for these

types of maps.

A crucial towards the parametrisation of qubit maps is made in [39]. In this work, it is shown

that for any qubit map ϕ, the matrix T can be brought to the form

T =



1 0 0 0

κ1 η1 0 0

κ2 0 η2 0

κ3 0 0 η3


with κi, ηi ∈ R, (3.6)

by applying two unitary conjugations on the map as

ϕUV (ρ) = Uϕ(V ρV †)U† (3.7)

where U and V are unitary matrices. In the Bloch representation of two dimensional systems,

unitary conjugations correspond to rotations of the Bloch ball. The action of all maps ϕUV (ρ)

given by the same matrix T are equal up to two rotations of the Bloch ball, one before the action

of the map and another one after it. A unital map (κ⃗ = 0⃗) given by a matrix T as in (3.6) can be

characterised solely in terms of the vector η⃗ = (η1, η2, η3), usually denoted as the distortion vector.

The action of such maps on Bloch vector can be expressed in terms of the distortion vector as

τ⃗ ′ = η⃗τ⃗ . By considering this equation, the set of pure states |τ |= 1, corresponding to the exterior

of the Bloch ball, is mapped into the ellipsoid given by the following equation(
τ ′1
η1

)2

+

(
τ ′2
η2

)2

+

(
τ ′3
η3

)2

= 1. (3.8)

We conclude that the parameters in the distortion vector determine the way in which the Bloch

ball is squeezed along the three principal axis.

Now we can identify all the parameters of a qubit map and determine their action on the Bloch

ball. Firstly, we have the three parameters of the vector κ⃗ corresponding to a displacement of
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the whole Bloch ball which in the case of unital maps is zero. Secondly, we have another three

parameters corresponding to the rotation in the Bloch ball induced by the conjugation of the map

with V as in (3.7). Thirdly, we have the action of the distortion vector converting the Bloch sphere

into an ellipsoid. Finally, we have another three parameters corresponding to a rotation of the

squeezed ball.

However, not all ellipsoids in the Bloch picture represent physically allowed transformations

between maps. In Chapter 1, we saw that physically realizable maps are necessary completely

positive. We may obtain the conditions for complete positive maps in terms of the parametrisation

of unital qubit maps. Given a unital qubit map, its Choi matrix is expressed in terms of the

distortion vector as

Cϕ =
1

2



1 + η3 0 0 η1 + η2

0 1− η3 η1 − η2 0

0 η1 − η2 1− η3 0

η1 + η2 0 0 1 + η3


. (3.9)

By Choi’s Theorem, a map is completely positive iff the Choi matrix of the map has positive

eigenvalues. The eigenvalues of Cϕ in (3.9) are given by

e1 = (1 + η3 + (η1 + η2))/2

e2 = (1 + η3 − (η1 + η2))/2

e3 = (1− η3 + (η1 − η2))/2

e4 = (1− η3 − (η1 − η2))/2 (3.10)

and are all positive iff the following four conditions are satisfied

(1± η3)2 ≥ (η1 ± η2)2. (3.11)

The four conditions given by (3.11), first introduced in [38], define a 3-simplex in the space of

distortion vectors in which the extreme points are given by

η⃗0 = (1, 1, 1), η⃗1 = (1,−1,−1), η⃗2 = (−1, 1,−1) and η⃗3(−1,−1, 1). (3.12)
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The action of these four maps over a state can be expressed as

ρ→ ρ′ = σiρσi for i = 0, 1, 2, 3 (3.13)

where σ0 = I and {σi}i=1,2,3 is the set of Pauli matrices. We can identify all UCTP qubit maps

with a point of the tetrahedron with Pauli maps as vertices. We just need to express the Choi

matrix of the map in terms of the Pauli basis and evaluate its eigenvalues which correspond to

the parameters of the distortion vector. Similarly, the set of UCTP qubit maps correspond to all

possible convex combinations of unitary channels. We will see that this is no longer true for higher

dimensions.

3.2.1 UCTP qubit maps and doubly-stochastic matrices

We saw that any UCTP qubit map can be expressed as a convex combination of unitary maps. As

a consequence, the set UCTP qubit maps has the geometry of a 3-simplex for which the vertices

are given by unitary maps. This property of UCTP qubit maps relates to Birkhoff’s theorem, a

well-known result in matrix theory which we consider in what follows.

The map ϕ(ρ) =
∑d−1
i=0 KiρK

†
i is doubly-stochastic (UCTP) if it is trace-preserving ,

∑d−1
i=0 K

†
iKi =

I, and unital,
∑d−1
i=0 KiK

†
i = I. Similarily, the matrix M = (mij)i,j=0,...,d−1 with mij ≥ 0 is doubly-

stochastic if
∑d−1
i=0 mij = 1 for j = 0, ..., d − 1 and

∑d−1
j=0 mij for i = 0, ..., d − 1. This is, the rows

and the columns of a doubly-stochastic matrix add up to one. In a similar fashion, unitary maps

ϕU (ρ) = UρU† correspond to permutation matrices in the space of real matrices. Permutation

matrices P are doubly-stochastic matrices that have exactly just one entry equal to one in each row

and each column and zeros elsewhere. Now we are in position to state Birkhoff’s theorem which

characterises the convex structure of doubly-stochastic matrices.

Theorem 8. Any doubly-stochastic matrix M of dimension d admits a decomposition in terms of

the possible permutation matrices of dimension d, P0, ..., Pd!−1. Such decomposition is given by

M =

d!−1∑
i=0

tiPi (3.14)

where t0, ..., td!−1 are positive scalars such that t1 + ...+ td!−1 = 1.
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For the proof of this theorem, we refer to the original paper by Birkhoff [42]. By this theorem,

the set of doubly-stochastic matrices can be associated with a the d! dimensional polytope (usually

known as Birkhoff polytope) in which the vertices correspond to permutation matrices. This geo-

metrical picture of the set of doubly-stochastic matrices agrees with the representation of UCPT

qubit maps. Interestingly, as mentioned, this common property of doubly-stochastic matrices and

UCPT qubit maps is lost when the sets of UCPT maps of higher dimensions are considered.

3.3 LMM bipartite qubit states

As we saw the set of locally maximally mixed bipartite qubit states is isomorphic to the set of unital

and trace-preserving quantum maps. In this section, we will discuss the classification of LMM qubit

states in terms of their entanglement [43, 44]. We will see that the entanglement classification of

this set allows for a geometrical representation that, unsurprisingly, is completely equivalent to the

geometrical representation of UCPT maps. As in pure states, the degree of entanglement of LMM

qubit bipartite states can be characterised by using local unitary equivalent classes.

Consider a density matrix ρAB acting on the product space HA⊗HB in which both spaces have

the same dimension dA = dB = d. In the previous section, we considered the Bloch decomposition

of a density state. For bipartite states, the elements of the Bloch basis can be chosen to be product

states. The Fano decomposition of ρAB [45] is given by

ρAB =
1

d2

Id⊗ Id +

d2−1∑
i=1

siλi ⊗ Id +

d2−1∑
i=1

ti Id⊗λ+

d2−1∑
i,j=1

rijλi ⊗ λj

 (3.15)

where si = tr (ρAB λi ⊗ Id), ti = tr (ρAB Id⊗λi), rij = tr (ρAB λi ⊗ λj) and {λi}i∈Zd2−1
is a base of

traceless matrices. In the particular case of LMM states, the Fano form can be further simplified.

By taking the partial trace of ρAB with respect to the first subsystem we get that

trA (ρAB) =
1

d

Id +

d2−1∑
i=1

tiλi

 . (3.16)

The vector t⃗ = {ti}i∈Zd2−1
corresponds to the coefficients of the Bloch decomposition of one of the

reduced states. Similarly, if we take the partial trace of the same state with respect with the second
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subsystem we get that

trB (ρAB) =
1

d

Id +

d2−1∑
i=1

siλi

 . (3.17)

In this case, the vector s⃗ = {si}i∈Zd2−1
corresponds to the coefficients of the Bloch decomposition

of the other reduced state. In the case of LMM states, trA (ρAB) = trB (ρAB) = 1
d Id, so it follows

that t⃗ = s⃗ = 0⃗. LMM states are expressed in the Fano form as

ρAB =
1

d2

Id⊗ Id +

d2−1∑
i,j=1

rijλi ⊗ λj

 . (3.18)

The matrix R = {rij}i,j∈Zd2−1
is usually denoted as the correlation matrix and it encodes non-local

information about the state. As we saw, LMM states can be described solely in terms of their

correlation matrix. We will introduce a theorem that establishes a set of LU invariants in terms of

the correlation matrix. To prove this theorem we will make use of the following lemma.

Lemma 1. Let U ∈ SU(d) and let {λm}m∈Zd2−1
denote an orthonormal basis of traceless matrices.

Then

UλmU
† =

d2−1∑
n=1

vmnλn, for m = 1, . . . , d2 − 1 (3.19)

where V = (vmn)n,m∈Zd2−1
∈ SU(d2 − 1).

Proof. Let Md denote the set of all d× d traceless matrices. Since {λm}m∈Zd2−1
is a basis of Md

over C, we can write any matrix A ∈Md as

A =

d2−1∑
m=1

vmλm, (3.20)

where vm ∈ C. All the matrices which are unitarily similar to A are also traceless and can be

expressed as

A′ = UAU† =

d−1∑
m=0

v′mλm. (3.21)
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The product of two matrices given by the left hand side of equation (3.19) can be expressed as

⟨UλiU†, UλjU
†⟩ = ⟨

d2−1∑
m=1

vmiλm,

d2−1∑
n=1

vnjλn⟩

=

d2−1∑
m,n=1

v∗mivnj ⟨λm, λn⟩

=

d2−1∑
m=1

v∗mivmj (3.22)

where ⟨λi, λj⟩ = δi,j . Since unitary similar transformations preserve the normalisation and orthog-

onality between elements of the basis,

⟨UλiU†, UλjU
†⟩ = tr (Uλ†iU

†UλjU
†)

= tr (λ†iλjU
†U)

= tr (λ†iλj)

= ⟨λi, λj⟩ = δi,j , (3.23)

we get that necessarily
d2−1∑
m=1

v∗mivmj = δi,j (3.24)

which corresponds to the conditions that guarantee that V = (vmn)m,n∈Zd2−1
is a unitary matrix.

Now we are in a position to introduce the following theorem.

Theorem 9 ([43]). Any state ρAB can be transformed by means of LU operations into a state ρ′AB

whose correlation matrix R′ is in diagonal form.

Proof. Let ρAB and ρ′AB be two bipartite states related by a local unitary operation,

ρ′AB = (UA ⊗ UB)ρAB(U†
A ⊗ U

†
B). (3.25)

We recall from the Bloch decomposition in (3.15) that the coefficients of the correlation matrix are

given by

rij = ⟨ρAB , λi ⊗ λj⟩ . (3.26)
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The corresponding coefficients of ρ′AB can be expressed as

r′ij = ⟨ρ′AB , λi ⊗ λj⟩

= tr
(

(UA ⊗ UB)ρ†(U†
A ⊗ U

†
B)λi ⊗ λj

)
= tr

(
ρ†(U†

A ⊗ U
†
B)λi ⊗ λj(UA ⊗ UB)

)
= tr

(
ρ†U†

AλiUA ⊗ U
†
BλjUB

)
= ⟨ρ, U†

AλiUA ⊗ U
†
BλjUB⟩ (3.27)

and, by lemma 1,

r′ij = ⟨ρ, U†
AλiUA ⊗ U

†
BλjUB⟩

= ⟨ρ,
d2−1∑
m=1

v
(A)
mi λi ⊗

d2−1∑
n=1

v
(B)
nj λj⟩

=

d2−1∑
m,n=1

v
(A)
mi v

(B)
nj ⟨ρ, λi ⊗ λj⟩ . (3.28)

If we express it in matrix form, then

R′ = VARVB (3.29)

where VA, VB ∈ SU(d2 − 1). We can always find two special unitary matrices, VA and VB , such

that R′ = diag(r′1, . . . , r
′
d2−1) where r′i ∈ R.

Note that we did not use the usual singular value decomposition (SVD) in the last step of the

proof. As opposed to the usual SVD, in this case, the matrices VA and VB are restricted to the subset

of unitary matrices with determinant one. To compensate for this constraint, the condition that the

singular values are positive needs to be relaxed and accordingly the elements of the diagonal matrix

R′ may also take negative values. Regardless of this fact, the singular values of the correlation

matrix can be used for entanglement classification as they correspond to the absolute values of the

elements of R′

SV D(R) = |r′1|, . . . , |r′d2−1|. (3.30)

By using the mathematical tools introduced, we can discuss the particular case of two-qubit

LMM states and their characterisation in terms of entanglement. Lemma 1 associates a unitary
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matrix V ∈ SU(d2 − 1) to every unitary transformation given by the left-hand side of equation

(3.19). For, d = 2, this association can be established in the other direction and for every decom-

position given by the right-hand side of (3.19), one can find a unique conjugation in terms of a

unitary matrix U ∈ SU(2). To see this, it is useful to consider Pauli matrices as the elements of the

Bloch basis. In this case, the matrix V is real and consequently V ∈ SO(3). The sets U ∈ SU(2)

and V ∈ SO(3) are both three-dimensional and a direct relationship exists between the elements

from both Lie groups. In particular, SU(2) is a double-cover of SO(3).

Consider now a state ρ′AB ∈M2 for which R′ is a a diagonal matrix

R′ =


r′1 0 0

0 r′2 0

0 0 r′3

 . (3.31)

By Theorem 9, any state can be brought to this form by means of LU operations and consequently

states like ρ′AB are representatives of the entire LU class. All the LU classes of a two-qubit LMM

state can be characterised by using three parameters r′1,r′2 and r′3. However, not all diagonal matrices

R′ correspond to density matrices with positive eigenvalues. To obtain the positive constraints, we

express ρ′AB in terms of r′1 ,r′2 and r′3 and we evaluate its spectrum. We obtain that ρ′AB is positive

if the conditions given by

1− r′1 − r′2 − r′3 ≥ 0

1− r′1 + r′2 + r′3 ≥ 0

1 + r′1 − r′2 + r′3 ≥ 0

1 + r′1 + r′2 − r′3 ≥ 0 (3.32)

are satisfied. In R3, these conditions correspond to the points of the 3-simplex with vertices at

(1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1) and correspond to the four bell states |Φ+⟩, |Φ−⟩,

|Ψ+⟩ and |Ψ−⟩ introduced in the first chapter.

This geometrical representation of the LU classes of two-qubit LMM states is equivalent to the

parametric representation of qubit UCPT maps. The Choi-Jamilokowsli isomorphism establishes a
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Figure 3.1: Tetrahedron representing the set of unital and trace-preserving qubit maps.

one-to-one correspondence between the set of LMM states and the set of UCPT maps. On top of

that, Choi’s theorem establishes that the conditions that guarantee the positivity of ρ′AB correspond

to the conditions for a map to be completely positive and, in this case, they are given by (3.11).

The elements of the correlation matrix R′ in the case of LMM states play the same role played by

the distortion vector η⃗ for UCPT maps.

Now we can discuss the entanglement characterisation of the set of two-qubit LMM states in

terms of the geometry of the set of LU classes. As we saw, the degree of entanglement is maximised

by the four Bell states which lie at the vertices of the tetrahedron. We can consider the position

of the separable states within this tetrahedron. To do that, we will use the PPT criterion which

is necessary and sufficient for two-qubit states. If we take the partial transpose of ρ′AB expressed

in terms of r′1,r′2 and r′3 and we evaluate the spectrum of the resulting matrix we obtain that PPT
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states are those which fulfil the following conditions

1 + r′1 + r′2 + r′3 ≥ 0

1 + r′1 − r′2 − r′3 ≥ 0

1− r′1 + r′2 − r′3 ≥ 0

1− r′1 − r′2 + r′3 ≥ 0. (3.33)

In R3, these conditions correspond to the 3-simplex obtained from inverting the 3-simplex represent-

ing the states in which ρ′AB is positive. The set of separable states corresponds to the intersection

of both figures. Geometrically, the intersection of these two figures is the octahedron with vertices

at (0, 0,±1),(0,±1, 0) and (0, 0,±1).

3.4 Higher dimensional case

It is the case that qubit systems have some particularities which can not be extrapolated to higher-

dimensional setups [46]. From an algebraic point of view, unitary conjugations correspond to

rotations in the real space, SU(d) ∼= SO(d2 − 1) only for d = 2. In a like manner, for higher

dimensional systems the Bloch representation of the state space has a much richer structure than

the Bloch ball used for qubit systems [47]. For example, for d = 2 the boundary of the state

space corresponds only to pure states. In the higher dimension, every density state with at least

one eigenvalue equal to zero is on the boundary of the state space, including those density states

with more than one non-zero eigenvalues (mixed-states). In general, the problems appearing in

higher-dimensional quantum systems are substantially harder than their qubit counterparts and

many questions about such maps remain unanswered [48].

We saw unital qubit quantum maps possess a differential property compared to higher-dimensional

maps. Namely, UCPT qubit maps always admit a decomposition in terms of convex combinations

of unitary map [49]. This property of qubit maps allows the representation of the UCPT set as

the 3-simplex with Pauli channels as vertices. However, this is no longer true for UCPT maps of

higher dimensions. Various investigations introduced examples of maps which were neither uni-
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tary channels nor could be decomposed in terms of convex combinations of unitary channels [50,

51]. One consequence of the existence of these types of maps is that there is not an analogue of

Birkhoff’s theorem for UCPT maps of dimension greater than two. Interestingly, it was found that

the distance between a given UCPT map and the set of mixed-unitary maps was reduced by ap-

plying the tensor product with more copies of the same map [52]. Based on this observation, it was

conjectured that Birchoff’s theorem could be restored in the asymptotic limit. However, Haagerup

and Musat in [53] resolved this conjecture as negative.



Chapter 4

The convex set of unital quantum

maps

4.1 Introduction

The objective of this chapter is to find families of UCPT-extremal maps generalising the set of

rank-one maps (unitary maps) to maps of higher rank. Such maps are interesting from the point of

view of the convex characterisation of UCPT maps. To see this, we consider the set of all possible

convex mixtures of a family of UCPT-extremal maps including both rank one maps and other maps

with a higher rank. Such a set of maps includes all mixed-unitary maps but also other maps which

cannot be expressed as convex combinations of unitary maps. An extension of the mixed-unitary set

like this could provide new insight into the failure of the quantum analogue of Birkhoff’s theorem

and it could also offer better classifications for UCPT maps. Figure 4.1 shows the relation between

the set of all UCPT maps, the set of mix-unitaries and the set of maps which can be reached by

considering convex combinations of families of UCPT-extremal maps including maps other than

unitaries.

To do this, we present a family of CP maps which is defined in terms of a particular set of

50
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Figure 4.1: Schematic representation of the set of UCPT maps, the set of mixed-unitary maps and
the set of all maps given by convex mixtures of rank-generalised families UCPT-extremal maps.

Kraus operators. We introduce a canonical parametrisation of the elements of this family and we

discuss in terms of the parameters which elements of the family correspond to UCTP-extremal

maps. As an application, we consider the particular case of qutrit maps. In this setting, we see that

the family of maps introduced includes maps of rank three or less and we see explicit examples of

those UCTP-extremal maps. However, it is well documented the existence of UCTP-extremal maps

with rank four [2]. For this reason, we also introduce a different family of qutrit maps including

rank-four UCTP-extremal maps. Finally, we consider the evaluation of the degree of extremality

for the families of qutrit maps introduced.

4.2 Convex characterisation of UCPT maps

We start by introducing some results concerning the convex characterisation of UCPT maps. The

set of trace-preserving maps and its adjoint, the set of unital maps, are convex sets. We denote

those maps in a set which cannot be expressed as convex combinations of other elements of the

same set as extremal maps. The concise characterisation of the extreme points of the set of unital

maps (not trace-preserving) was provided by Choi with the following theorem.

Theorem 10 ([15]). Consider the set of UCP maps E : Dn 7→ Dm with minimal operator-sum

representation E(ρ) =
∑r
i=1KiρK

†
i . Then, E is an extreme point within the set of unital maps if

and only if the set {KiK
†
j }i,j∈Zr is linearly independent.

Choi’s theorem has a natural extension provided that the set of CPT maps is the dual of the set

of UCP maps with respect to the complex conjugation. The following theorem establishes when a
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CPT map is extremal with respect to the CPT set.

Theorem 11. Consider the set of CPT maps E : Dn 7→ Dm with minimal operator-sum represen-

tation E(ρ) =
∑r
i=1KiρK

†
i . Then, E is an extreme point of within the set of trace preserving maps

if and only if the set {K†
iKj}i,j∈Zr is linearly independent.

Theorem 10 and theorem 11 establish bounds to the Kraus rank of the extreme points of the

sets of unital maps and trace-preserving maps, respectively. The Kraus rank of an extreme point

of the set of unital maps is upper bounded by m. This follows from the fact that at most m2

matrices KiK
†
j can be linearly independent as their size is m×m. For the case of trace-preserving

maps, we have it that the Kraus rank of an extreme point of the set is upper bounded by n. This

follows from the fact that at most n2 matrices K†
iKj ∈ Mn×n can be linearly independent. The

set of unital and trace-preserving maps is also convex and the following theorem characterises the

extreme points of the set.

Theorem 12 ([51]). Consider the set of UCPT maps E : Dd → Dd where E(ρ) :=
∑r
i=1KiρK

†
i

and
∑r
i=1KiK

†
i =

∑r
i=1K

†
iKi = Id. Then we say that E is UCPT-extremal if and only if the set

of 2d× 2d matrices

{K†
iKj ⊕KiK

†
j }i,j∈Zr

(4.1)

is linearly independent.

From this theorem, it follows that the Kraus rank of UCPT-extremal maps is upper bounded

by ⌊
√

2d2⌋. This follows from the fact that 2d2 is the maximum number of linearly independent

matrices given by K†
iKj ⊕KiK

†
j .

4.3 A family of UCPT-extremal maps

The objective of this section is to find a family of maps including both unitary maps and UCPT-

extremal maps of higher rank. To do this, we look at a particular family of CP maps in which its

Kraus operators have a special form with respect to the Heisenberg-Weyl basis. For this family
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of maps, we select a canonical parametrisation and we discuss in terms of those parameters which

elements of the family correspond to UCTP maps.

Let us consider the family of CP maps over dimension d, E : Dd 7→ Dd, whose operator-sum

representation is given by

E(ρ) =

d−1∑
i=0

KiρK
†
i (4.2)

with the following Kraus operators

Ki =

d−1∑
j

αijXiZj

=

d−1∑
j,k=0

αijω
kj |k + i⟩ ⟨k| (4.3)

where (αij)i,j∈Zd
∈ Cd×d is a matrix of complex coefficients and ω = e

2π
d i is the dth primitive root of

unity. The set {XiZj =
∑d−1
k=0 ω

kj |k + i⟩ ⟨k|}i,j∈Zd
corresponds to the Heisenberg-Weyl basis over

dimension d, a set of orthonormal matrices that generalise the set of Pauli matrices to arbitrary

dimension [54]. The sets of Kraus operators {Ki}i=0,...,d−1 and {Gi}i=0,...,d−1 represent the same

map if

Kj =

d−1∑
ij=0

uijGi for j = 0, . . . , d− 1 (4.4)

where U = (uij)ij∈Zd
is a unitary matrix. Now suppose that {Ki}i=0,...,d−1 and {Gi}i=0,...,d−1

are given respectively by the Kraus operators in (4.3). Because of the orthogonality of the sets,

tr (K†
iGj) ∝ δi,j for i, j = 0, . . . , d − 1, we have it that the unitary matrix in theorem 4.4 is given

by

U =


eiϕ1

. . .

eiϕd

 (4.5)

and this means that the only possible freedom corresponds to multiplying each one of the d Kraus

operators by an arbitrary phase. In terms of group theory, this freedom is determined by the

action of the group generated by taking the direct product of d copies of the unitary group U(1),⊗
i∈Zd

U(1). The different maps given by the Kraus operators in (4.3) can be divided in equivalence
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classes determined by the action of
⊗

i∈Zd
U(1). We can represent each one of these classes of maps

by fixing the phase of one of the columns of the matrix of coefficients (αij)i,j∈Zd
. To represent each

class, we fix the phase of the first column of this matrix of coefficients to zero. We can discuss

the properties of a given map of this family in terms of the coefficients αij . The following theorem

establishes which maps are unital and trace preserving.

Theorem 13. The map E : Dd 7→ Dd given by the operator-sum representation E(ρ) =
∑d−1
i=0 KiρK

†
i

where Ki =
∑d−1
j,k=0 αijω

jk |k + i⟩ ⟨k| is trace-preserving if

d−1∑
i,j=0

αijα
∗
ij = 1 (4.6)

and
d−1∑
i,j=0

αij+lα
∗
ij = 0, l = 1, . . . , d− 1. (4.7)

The map E is unital if in addition to condition (4.6), we have it that

d−1∑
i,j=0

αij+lα
∗
ijω

−il = 0 l = 1, . . . , d− 1. (4.8)

Proof. The proof follows from the evaluation of the trace-preserving and unital conditions for the

Kraus set given by (4.3). Let us consider the set {K†
iKi}i∈Zd

in the {|a⟩ ⟨b| , a, b ∈ Zd} basis as

K†
iKi =

 d−1∑
k,j=0

α∗
ijω

−kj |k⟩ ⟨k + i|

( d−1∑
m,n=0

αimω
mn |n+ i⟩ ⟨n|

)

=

d−1∑
k,j,m,n=0

αimα
∗
ijω

mn−kj |k⟩ ⟨k + i|n+ i⟩ ⟨n|

=

d−1∑
k,j,m=0

αimα
∗
ijω

k(m−j) |k⟩ ⟨k| . (4.9)

To satisfy the trace-preserving condition
∑d−1
i=0 K

†
iKi = Id, it necessarily follows that

d−1∑
i,j,m=0

αimα
∗
ijω

k(m−j) = 1 for k = 0, . . . , d− 1. (4.10)
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By the change of index, m− j = l, (4.10) can be expressed as

d−1∑
i,l=0

d−1∑
j=0

αij+lα
∗
ijω

kl = 1 for k = 0, . . . , d− 1 (4.11)

and using the change of variable βil =
∑d−1
j=0 αij+lα

∗
ij , we get that

d−1∑
i,l=0

βilω
kl = 1 for k = 0, . . . , d− 1. (4.12)

The unique solution to this system of d linearly independent equations in terms of the set of variables

{βil}i,l∈Zd
corresponds to

∑
i=0 βi0 = 1 and

∑
i=0 βil = 0 for l = 1, . . . d − 1. By expressing the

solution of the system in terms of the original variables {αij}i,k∈Zd
we get precisely the equations

(4.6) and (4.7).

Similarly, we can obtain the conditions required by a map to be unital. Let us consider the set

{KiK
†
i }i∈Zd

as

KiK
†
i =

(
d−1∑
m,n=0

αimω
mn |n+ i⟩ ⟨n|

) d−1∑
k,j=0

α∗
ijω

−kj |k⟩ ⟨k + i|


=

d−1∑
k,j,m,n=0

αimα
∗
ijω

mn−kj |k + i⟩ ⟨k|n⟩ ⟨n+ i|

=

d−1∑
k,j,m,n=0

αimα
∗
ijω

mn−kjδk,n |k + i⟩ ⟨n+ i|

=

d−1∑
k,j,m=0

αimα
∗
ijω

(k−i)(m−j) |k⟩ ⟨k| . (4.13)

To satisfy the unital condition
∑d−1
i=0 KiK

†
i = Id, it follows that

d−1∑
i,j,m=0

αimα
∗
ijω

(k−i)(m−j) = 1 for k = 0, . . . , d− 1. (4.14)

By the change of index, m− j = l, equation (4.14) can be written as

d−1∑
i,l=0

d−1∑
j=0

αij+lα
∗
ijω

(k−i)l = 1 for k = 0, . . . , d− 1 (4.15)
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and using now the change of variable βil =
∑d−1
j=0 αij+lα

∗
ij we get that

d−1∑
i,l=0

βikω
(k−i)l = 1 for k = 0, . . . , d− 1. (4.16)

We get again a system of d equations in terms of {βik}i,k∈Zd
. The solution of this system is given

by
∑
i,l=0 βi0 = 1 and

∑
i βilω

−l = 0 for l = 1, . . . d − 1. If we express the solution of the system

in terms of the elements of the set {αij}i,j∈Zd
we get precisely the equations (4.6) and (4.8) which

completes the proof.

Equations (4.6), (4.7) and (4.8) represent 2(d−1)+1 real constraints. To see this, we notice that

(4.6) corresponds to one real constraint while (4.7) and (4.8) correspond to (d− 1) real constraints

each. The following theorem establishes whether a UCPT map given by the Kraus set in (4.3)

corresponds to a UCPT-extremal map.

Theorem 14. A unital and trace-preserving map given by E : Dd 7→ Dd with operator-sum represen-

tation E(ρ) =
∑d−1
i=0 KiρK

†
i where Ki =

∑d−1
j,k=0 αijω

jk |k + i⟩ ⟨k| corresponds to an extreme point

of the set unital and trace-preserving maps iff the matrices (Ml|Nl) are full-rank for l = 0, ..., d− 1

where

Ml =

d−1∑
j=0

αi+ljω
j(k−l)

d−1∑
j=0

α∗
ijω

−jk


i,k∈Zd

(4.17)

and

Nl =

d−1∑
j=0

αi+ljω
(k−i)j

d−1∑
j=0

α∗
ijω

−(k−i)j


i,k∈Zd

. (4.18)

Proof. By theorem 12, we have it that a map is an extreme point of ΞUTd,d if the set {K†
iKj ⊕

KiK
†
j }i,j∈Zd

is linear independent. First, let us consider K†
iKi+l as

K†
iKi+l =

 d−1∑
k,j=0

α∗
ijω

−kj |k⟩ ⟨k + i|

 d−1∑
j,n=0

αi+ljω
jn |n+ i+ l⟩ ⟨n|


=

d−1∑
k,n=0

d−1∑
j=0

αi+ljω
jn

d−1∑
j=0

α∗
ijω

−kj

 |k⟩ ⟨k + i|n+ i+ l⟩ ⟨n|
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=

d−1∑
k,n=0

d−1∑
j=0

αi+ljω
j(n−l)

d−1∑
j=0

α∗
ijω

−kj

 |k⟩ ⟨k + i|n+ i⟩ ⟨n− l|

=

d−1∑
k

d−1∑
j

αi+ljω
j(k−l)

d−1∑
j

α∗
ijω

−jk

 |k⟩ ⟨k − l| . (4.19)

The matrices in (4.19) can be expressed in vector form if we use |k⟩ ⟨k − l| ∼ |k, k − l⟩ so that

K†
iKi+l

∼=
d−1∑
k=0

γikl |k, k − l⟩ . (4.20)

We take the inner product of two arbitrary vectors as

⟨K†
jKj+n|K†

iKi+l⟩ =

d−1∑
km

γiklγ
∗
jmn ⟨m,m− n|k, k − l⟩ . (4.21)

We see that ⟨K†
jKj+n|K†

iKi+l⟩ = 0 if l ̸= n for k, l,m, n ∈ Zd. The non-zero coefficients of

{K†
iKi+l}i∈Zd

can be expressed in matrix form as Ml for l = 0, ..., d − 1. Second, we consider

Ki+lK
†
i as

Ki+lK
†
i =

 d−1∑
j,n=0

αi+ljω
nj |n+ i+ l⟩ ⟨n|

 d−1∑
j,k=0

α∗
ijω

−jk |k⟩ ⟨k + i|


=

d−1∑
n,k=0

d−1∑
j=0

αi+ljω
jn

d−1∑
j=0

α∗
ijω

−jk

 |n+ i+ l⟩ ⟨n|k⟩ ⟨k + i|

=

d−1∑
k=0

d−1∑
j=0

αi+ljω
jk

d−1∑
j=0

α∗
ijω

−jk

 |k + i+ l⟩ ⟨k + i|

=

d−1∑
k=0

d−1∑
j=0

αi+ljω
(k−i)j

d−1∑
j=0

α∗
ijω

−(k−i)j

 |k + l⟩ ⟨k| . (4.22)

As we did before, we may vectorise the these matrices by using |k + l⟩ ⟨k| ∼ |k + l, k⟩ so that

Ki+lK
†
i
∼=

d−1∑
k=0

γikl |k + l, k⟩ (4.23)

The inner product of two arbitrary vectors is expressed as

⟨Kj+nK
†
j |Ki+lK

†
i ⟩ =

d−1∑
km

γiklγ
∗
jmn ⟨m+ n,m|k + l, k⟩ (4.24)
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and we note that ⟨Kj+nK
†
j |Ki+lK

†
i ⟩ = 0 in the case that n ̸= l. In this case, the non-zero coefficients

of the sets {Ki+lK
†
i }i∈Zd

are given by the matrices Nl with l = 0, ..., d−1. As we saw, two elements

of {K†
i+lKi ⊕KiK

†
i+l}i,l∈Zd

with different l are linear independent so we just require that the all

the matrices (Ml|Nl) with l = 0, ..., d− 1 to be full-rank as stated by the theorem.

The following theorem characterises the set of maps given in terms of the operator-sum repre-

sentation in (4.3) which are extremal with respect to the set of UCPT maps.

Theorem 15. Consider the set of matrices given by

A(d) =


(αij)i,j∈Zd

∈ Cd×d :

d−1∑
i,j=0

αijα
∗
ij = 1

d−1∑
i,j=0

αij+lα
∗
ij = 0 for l = 1, ..., d− 1

d−1∑
i,j=0

αij+lα
∗
ijω

−il = 0 for l = 1, ..., d− 1


(4.25)

where ω = e
2π
d i and further consider the set

Bl(d) = {(αij)i,j∈Zd
∈ Cd×d : det

(
(Ml|Nl)(Ml|Nl)†

)
= 0} for l = 0, ..., d− 1 (4.26)

where the matrices {Ml}l=0,...,d−1 and {Nl}l=0,...,d−1 are given by (4.17) and (4.18), respectively.

Then we have it that the set

X (d) =

(
A(d)−

(
A(d) ∩

( ⋃
l∈Zd

Bl(d)

)))
/
⊗
i∈Zd

U(1) (4.27)

corresponds to the set of all quantum maps defined by the Kraus operators in (4.3) which are extreme

points of the set of unital and trace-preserving maps.

Proof. This theorem follows directly from the consideration of theorems 13 and 14. Let π denote

the map that sends complex matrices to quantum maps as

π(αij) = E (4.28)

where the action of the quantum map E on a density operator is given by

E(ρ) =

d−1∑
i=0

 d−1∑
j,k=0

αijω
kj |k + i⟩ ⟨k|

 ρ

 d−1∑
j,k=0

α∗
ijω

−kj |k⟩ ⟨k + i|

 . (4.29)
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On the one hand, by theorem 13, we have it that if we apply the map π to A(d) we get as a result

the set of maps which are trace-preserving and unital. On the other hand, if we apply the map

π to the elements of the sets Bl(d) for l = 0, . . . , d − 1 we get maps where the matrices (Ml|Nl)

are not full-rank. Therefore, by theorem 14, the map π applied over the set A(d) ∩
(⋃

l∈Zd
Bl(d)

)
corresponds to the maps which are not UCPT-extremal. Note that the theorem is enunciated in

terms of its complementary, the maps that are extreme within the set. Finally, it remains to consider

the freedom in the choice of Kraus operators to obtain an injection between the set A(d) and the

set of unital and trace-preserving maps. In this case, the freedom in the choice of Kraus operators

is given by the action of the group
∏
i∈Zd

U(1) and therefore to get a one-to-one correspondence we

take the quotient space of the set A(d) with respect to the action of this group.

Corollary 1. The set of unital and trace-preserving maps given by the Kraus operators defined by

(4.3) has dimension 2d2 − 3d+ 1.

Proof. This lemma follows from the evaluation of the dimension of the set given by (4.27). We have

it that

dim (X (d)) = dim(A(d))− dim(
⊗
i∈Zd

U(1)) (4.30)

Since A(d) is a 2d2 dimensional set with 2(d − 1) + 1 real constraints and
⊗

i∈Zd
U(1) is a d

dimensional group. We conclude that

dim (X (d)) = 2d2 − (2(d− 1) + 1)− d = 2d2 − 3d+ 1 (4.31)

4.4 Qutrit case

In the previous section, we introduced a family of UCPT-extremal maps to extend the well-known

set of mixed-unitary channels. The simplest set of UCPT maps for which the existence of non-

unitary extremal maps is known is the set of qutrit maps. For qutrit maps, by theorem 12, the

rank of UCPT-extremal maps is bounded by ⌊
√

18⌋ ≈ ⌊4.24⌋. While all rank one UCTP maps are
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UCPT-extremal (unitary maps), it is the case that all rank-two maps admit a decomposition in

terms of other UCTP qutrit maps [51]. Rank-three and rank-four UCTP-extremal maps are key

to characterising the convex structure of the set of UCPT qutrit maps. However, the rank of the

maps of the family is bounded by d and consequently, for qutrit maps, this family only includes

maps with a rank of three or less. In this section, we will see some examples of UCTP-extremal

qutrit maps of this family. In particular, we will present examples of unitary maps but also one

example of a rank-three UCTP-extremal map.

Let E : D3 7→ D3 be the map E(ρ) =
∑2
i=0KiρK

†
i where the Kraus operators are given by

K0 =


α00 0 0

0 α00 0

0 0 α00

+


α01 0 0

0 α01ω 0

0 0 α01ω
2

+


α02 0 0

0 α02ω
2 0

0 0 α02ω

 , (4.32)

K1 =


0 0 α10

α10 0 0

0 α10 0

+


0 0 α11ω

2

α11 0 0

0 α11ω 0

+


0 0 α12ω

α12 0 0

0 α12ω
2 0

 (4.33)

and

K2 =


0 α20 0

0 0 α20

α20 0 0

+


0 α21ω 0

0 0 α21ω
2

α21 0 0

+


0 α22ω

2 0

0 0 α22ω

α22 0 0

 (4.34)

where ω = e
2πi
3 denotes the third root of unity. Theorem 13 maintains that a map given by this

Kraus set is unital and trace-preserving if it satisfies the equations

2∑
i,j=0

αijα
∗
ij = 1, (4.35)

2∑
i,j=0

αij+1α
∗
ij = 0 (4.36)
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and
2∑

i,j=0

αij+1α
∗
ijω

−i = 0. (4.37)

We note that, for the case of qutrit maps, equations (4.36) and (4.37) can be expressed as the

simple condition

ωi
d−1∑
j=0

αi,j+1α
∗
ij = β for i = 0, 1, 2 (4.38)

where β ∈ C. The family of maps given by the Kraus set in (4.3) includes the nine unitary

Heisenberg-Weyl channels,

EHWmn (ρ) = XmZnρ(XmZn)† for m,n ∈ Z3. (4.39)

These maps can be obtained from the Kraus operators in (4.3) by fixing the coefficients

αij =

 1 if i = m, j = n

0 if i ̸= m, j ̸= n
(4.40)

for m,n ∈ Z3. The family of maps introduced includes also UCPT-extremal maps of rank three

and to see that, we present an example of such map. We also show that this example corresponds

to a unitary transformation of the well-known antisymmetric qutrit Werner-Holevo channel EWH

[11].

Example 4.4.1. We define the map Ea by the Kraus set in (4.3) where, in this case, the defining

coefficients are given by the matrix

(αij) =

√
2

6


2 e

5π
3 i e

π
3 i

2 eπi eπi

2 e
π
3 i e

5π
3 i

 . (4.41)

To see the relation between Ea and EWH , we consider Ea(ρ) =
∑2
i=0KiρK

†
i where

K0 =
1√
2


1 0 0

0 −1 0

0 0 0

 ,K1 =
1√
2


0 0 −1

0 0 0

0 1 0

 and K2 =
1√
2


0 0 0

0 0 1

−1 0 0

 (4.42)
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and the unitary matrix

U =


0 1 0

1 0 0

0 0 1

 . (4.43)

The conjugation of Ea with U results in the map

UEa(ρ)U† =

2∑
i=0

UKiρK
†
i U

†

=

2∑
i=0

UKiρ(UKi)
† (4.44)

where the Kraus operators are

UK0 =
1√
2


0 1 0

−1 0 0

0 0 0

 , UK1 =
1√
2


0 0 1

0 0 0

−1 0 0

 and UK2 =
1√
2


0 0 0

0 0 −1

0 1 0

 . (4.45)

This Kraus set corresponds precisely to the anti-symmetric Werner–Holevo channel of dimension

three. One peculiarity of this map is that it maximises the distance from the set of mixed-unitaries

[2]. We also note that the Landau-Streater channel over dimension three can be obtained as a

unitary conjugation of the Werner–Holevo channel [55] and consequently, it can also be recovered

as a unitary conjugation of the map Ea.

4.4.1 Rank-four UCPT-extremal qutrit maps

Theorem 12, establishes that the rank of UCPT-extremal qutrit maps is bounded by four. However,

the family of maps we introduced in the previous section only includes maps of rank three or less.

To provide a better characterisation of the set UCPT-extremal qutrit maps, rank-four maps need

to be considered too. We construct a family of rank-four qutrit maps given also in terms of the

operator-sum representation which is nothing but a modification of the structure of the Kraus set

given by 4.2 to include also rank-four qutrit maps.
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Let F : D3 7→ D3 be the map F(ρ) =
∑3
i=0KiρK

†
i where the Kraus operators are given by

K0 =


α00 0 0

0 α00 0

0 0 α00

+


α01 0 0

0 α01ω 0

0 0 α01ω
2

+


α02 0 0

0 α02ω
2 0

0 0 α02ω

 , (4.46)

K1 =


0 0 0

α10 0 0

0 α10 0

+


0 0 0

α11 0 0

0 α11ω 0

+


0 0 0

α12 0 0

0 α12ω
2 0

 , (4.47)

K2 =


0 0 α10

0 0 0

α20 0 0

+


0 0 α11ω

2

0 0 0

α21 0 0

+


0 0 α12ω

0 0 0

α22 0 0

 (4.48)

and

K3 =


0 α20 0

0 0 α20

0 0 0

+


0 α21ω 0

0 0 α21ω
2

0 0 0

+


0 α22ω

2 0

0 0 α22ω

0 0 0

 (4.49)

where ω = e
2πi
3 denotes the primitive cube root of unity.

4.4.2 Evaluating extremal conditions

Now we present the conditions which determine whether these maps correspond to extreme points

of the set of UCTP maps. For the case of the family of rank-three qutrit maps, these particular

conditions are established by Theorem 14. However, for the case of the family of rank-four qutrit

maps the same result does not hold. To overcome this issue, we construct a set of matrices which

determine whether the maps of the family correspond to extreme points of the set of UCTP maps.
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Rank-three qutrit maps

Theorem 14 states that a map with the given Kraus form is an extreme point of the set of UCTP

maps if the matrices (Ml|Nl) are full-rank for l = 0, ..., d − 1. In the case of dimension d = 3, we

write the explicit form of these matrices. Letting ω = e
2πi
3 we have it that for l = 0

M0 =


(∑2

j α0j

)(∑2
j α

∗
0j

) (∑2
j α0jω

j
)(∑2

j α
∗
0jω

−j
) (∑2

j α0jω
2j
)(∑2

j α
∗
0jω

−2j
)

(∑2
j α2j

)(∑2
j α

∗
2j

) (∑2
j α2jω

j
)(∑2

j α
∗
2jω

−j
) (∑2

j α2jω
2j
)(∑2

j α
∗
2jω

−2j
)

(∑2
j α1j

)(∑2
j α

∗
1j

) (∑2
j α1jω

j
)(∑2

j α
∗
1jω

−j
) (∑2

j α1jω
2j
)(∑2

j α
∗
1jω

−2j
)
 (4.50)

and

N0 =


(∑2

j α0j

)(∑2
j α

∗
0j

) (∑2
j α0jω

j
)(∑2

j α
∗
0jω

−j
) (∑2

j α0jω
−j
)(∑2

j α
∗
0jω

j
)

(∑2
j α2jω

j
)(∑2

j α
∗
2jω

−j
) (∑2

j α2jω
−j
)(∑2

j α
∗
2jω

j
) (∑2

j α2j

)(∑2
j α

∗
2j

)
(∑2

j α1jω
−j
)(∑2

j α
∗
1jω

j
) (∑2

j α1j

)(∑2
j α

∗
1j

) (∑2
j α1jω

j
)(∑2

j α
∗
1jω

−j
)
 .

(4.51)

Simiraly, for l = 1, we have it that

M1 =


(∑2

j α2jω
j
)(∑2

j α
∗
1jω

j
) (∑2

j α2jω
−j
)(∑2

j α
∗
1j

) (∑2
j α2j

)(∑2
j α

∗
1jω

−j
)

(∑2
j α1jω

j
)(∑2

j α
∗
0jω

j
) (∑2

j α1jω
−j
)(∑2

j α
∗
0j

) (∑2
j α1j

)(∑2
j α

∗
0jω

−j
)

(∑2
j α0jω

j
)(∑2

j α
∗
2jω

j
) (∑2

j α0jω
−j
)(∑2

j α
∗
2j

) (∑2
j α0j

)(∑2
j α

∗
2jω

−j
)
 (4.52)

and

N1 =


(∑2

j α2jω
−j
)(∑2

j α
∗
1jω

j
) (∑2

j α2j

)(∑2
j α

∗
1j

) (∑2
j α2jω

j
)(∑2

j α
∗
1jω

−j
)

(∑2
j α1j

)(∑2
j α

∗
0j

) (∑2
j α1jω

j
)(∑2

j α
∗
0jω

−j
) (∑2

2j α1jω
−j
)(∑2

j α
∗
0jω

j
)

(∑2
j α0jω

j
)(∑2

j α
∗
2jω

−j
) (∑2

j α0jω
−j
)(∑2

j α
∗
2jω

j
) (∑2

j α0j

)(∑2
j α

∗
2j

)
 .

(4.53)

Finally, for l = 2, we have

M2 =


(∑2

j α1jω
−j
)(∑2

j α
∗
2jω

−j
) (∑2

j α1j

)(∑2
j α

∗
2jω

j
) (∑2

j α1jω
j
)(∑2

j α
∗
2j

)
(∑2

j α0jω
−j
)(∑2

j α
∗
1jω

−j
) (∑2

j α0j

)(∑2
j α

∗
1jω

j
) (∑2

j α0jω
j
)(∑2

j α
∗
1j

)
(∑2

j α2jω
−j
)(∑2

j α
∗
0jω

−j
) (∑2

j α2j

)(∑2
j α

∗
0jω

j
) (∑2

j α2jω
j
)(∑2

j α
∗
0j

)
 (4.54)
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and

N2 =


(∑2

j α1jω
−j
)(∑2

j α
∗
2jω

j
) (∑2

j α1j

)(∑2
j α

∗
2j

) (∑2
j α1jω

j
)(∑2

j α
∗
2jω

−j
)

(∑2
j α0j

)(∑2
j α

∗
1j

) (∑2
j α0jω

j
)(∑2

j α
∗
1jω

−j
) (∑2

j α0jω
−j
)(∑2

j α
∗
1jω

j
)

(∑2
j α2jω

j
)(∑2

j α
∗
0jω

−j
) (∑2

j α2jω
−j
)(∑2

j α
∗
0jω

j
) (∑2

j α2j

)(∑2
j α

∗
0j

)
 .

(4.55)

Theorem 14 states that a map with the given Kraus form in 4.3 is an extreme point of the set

of UCTP maps if the matrices (Ml|Nl) are full-rank for l = 0, ..., d−1. The matrix M1 corresponds

to the conjugate of M2 and the matrix N1 corresponds to the conjugate of N2. Therefore, it

suffices to establish the rank of (M0|N0) and (M1|N1) in order to determine whether the given map

corresponds to an extreme point of the set of UCPT maps. Noting that the rank of a matrix is

given by the number of non-zero singular values, we shall consider the specific case of the map Ea.

For this map we get that

(M0|N0) =
1

2


0 1 1 1 0 1

1 1 0 1 1 0

1 0 1 0 1 1

 (4.56)

and

(M1|N1) =
1

2


0 −1 0 −1 0 0

−1 0 0 0 −1 0

0 0 −1 0 0 −1

 . (4.57)

The singular values of the matrix (M0|N0) are given by σ (M0|N0) = {
√

2, 1√
2
, 1√

2
} and the singular

values of the matrix (M1|N1) are given by σ (M1|N1) = { 1√
2
, 1√

2
, 1√

2
}.

Rank-four qutrit maps

For the case of rank-four qutrit maps, Theorem 14 cannot be applied. However, a similar result can

be derived for this particular family of maps. We have that a map given by the Kraus operators

(4.46), (4.47), (4.48) and (4.49) is an extreme point of the set of UCTP maps if the matrices (M ′
l |N ′

l )

are full-rank for l = 0, ..., 3. The specific form of these matrices is given as follows. Letting ω = e
2πi
3

we have it that for l = 0 we obtain



CHAPTER 4. THE CONVEX SET OF UNITAL QUANTUM MAPS 66

M ′
0 =



(∑2
j α0j

)(∑2
j α

∗
0j

) (∑2
j α0jω

j
)(∑2

j α
∗
0jω

−j
) (∑2

j α0jω
2j
)(∑2

j α
∗
0jω

−2j
)

(∑2
j α1j

)(∑2
j α

∗
1j

) (∑2
j α1jω

j
)(∑2

j α
∗
1jω

−j
)

0(∑2
j α2j

)(∑2
j α

∗
2j

)
0

(∑2
j α1jω

2j
)(∑2

j α
∗
1jω

−2j
)

0
(∑2

j α2jω
j
)(∑2

j α
∗
2jω

−j
) (∑2

j α2jω
2j
)(∑2

j α
∗
2jω

−2
)


(4.58)

and

N ′
0 =



(∑2
j α0j

)(∑2
j α

∗
0j

) (∑2
j α0jω

j
)(∑2

j α
∗
0jω

−j
) (∑2

j α0jω
−j
)(∑2

j α
∗
0jω

j
)

0
(∑2

j α2jω
−j
)(∑2

j α
∗
2jω

j
) (∑2

j α2j

)(∑2
j α

∗
2j

)
(∑2

j α2jω
j
)(∑2

j α
∗
2jω

−j
)

0
(∑2

j α1jω
j
)(∑2

j α
∗
1jω

−j
)

(∑2
j α1jω

−j
)(∑2

j α
∗
1jω

j
) (∑2

j α1j

)(∑2
j α

∗
1j

)
0


.

(4.59)

Similary, for the case in which l = 1, we have that

M ′
1 =



(∑2
j α1j

)(∑2
j α

∗
0jω

−j
) (∑2

j α1jω
j
)(∑2

j α
∗
0jω

−2j
)

(∑2
j α2j

)(∑2
j α

∗
1jω

−j
)

0

0
(∑2

j α2jω
j
)(∑2

j α
∗
1jω

−2j
)

(∑2
j α0j

)(∑2
j α

∗
2jω

−j
) (∑2

j α0jω
j
)(∑2

j α
∗
2jω

−2j
)


(4.60)

and

N ′
1 =



(∑2
j α1j

)(∑2
j α

∗
0j

) (∑2
j α1jω

j
)(∑2

j α
∗
0jω

−j
)

0
(∑2

j α2j

)(∑2
j α

∗
1j

)
(∑2

j α2jω
2j
)(∑2

j α
∗
1jω

−2j
)

0(∑2
j α0jω

j
)(∑2

j α
∗
jω

−j
) (∑2

j α0jω
2j
)(∑2

j α
∗
2jω

−2j
)


. (4.61)

For l = 2, we have it that

M ′
2 =



(∑2
j α1jω

2j
)(∑2

j α
∗
0j

) (∑2
j α2j

)(∑2
j α

∗
0jω

−2j
)

(∑2
j α2jω

2j
)(∑2

j α
∗
1j

)
0(∑2

j α0jω
2j
)(∑2

j α
∗
2j

) (∑2
j α0j

)(∑2
j α

∗
1jω

−2j
)

0
(∑2

j α1j

)(∑2
j α

∗
2jω

−2j
)


(4.62)
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and

N ′
2 =



(∑2
j α1jω

2j
)(∑2

j α
∗
0jω

−2j
) (∑2

j α2j

)(∑2
j α

∗
0j

)
(∑2

j α2jω
j
)(∑2

j α
∗
1jω

−j
)

0(∑2
j α0j

)(∑2
j α

∗
2j

) (∑2
j α0jω

2j
)(∑2

j α
∗
1jω

−2j
)

0
(∑2

j α1j

)
ωj
(∑2

j α
∗
2jω

−j
)


. (4.63)

Finally, for l = 3, we have it that

M ′
3 =



(∑2
j α0jω

j
)(∑2

j α
∗
1j

) (∑2
j α0jω

2j
)(∑2

j α
∗
1jω

−j
)

(∑2
j α1jω

j
)(∑2

j α
∗
2j

)
0

0
(∑2

j α1jω
2j
)(∑2

j α
∗
2jω

−j
)

(∑2
j α2jω

j
)(∑2

j α
∗
0j

) (∑2
j α2jω

2j
)(∑2

j α
∗
0jω

−2j
)


(4.64)

and

N ′
3 =



(∑2
j α0j

)(∑2
j α

∗
1j

) (∑2
j α0jω

j
)(∑2

j α
∗
1jω

−j
)

0
(∑2

j α1j

)(∑2
j α

∗
2j

)
(∑2

j α1jω
2j
)(∑2

j α
∗
2jω

−2j
)

0(∑2
j αjω

j
)(∑2

j α
∗
0jω

−j
) (∑2

j α2jω
2j
)(∑2

j α
∗
0jω

−2j
)


. (4.65)

The specific form of the matrices {(M ′
l |N ′

l )}l∈Z4 can be obtained just as we did for rank-three

maps.

4.5 Conclusion

In this chapter, we introduced a family of UCPT-extreme defined in terms of its operator-sum

representation. To do so, we constructed a family of CP maps for which the set Kraus operators

have a special form with respect to the Heisenberg-Weyl basis of matrices. We derived firstly the

equations needed to establish that the maps of the family are unital and trace-preserving. Secondly,

we established the conditions which determine whether a given map corresponds to an extreme point

of the set of unital and trace-preserving maps. As an application, we considered the case of maps

of dimension three. For the qutrit case, we showed that the family of maps introduced contains

examples of rank one and rank-three maps. In this setting, we also presented a different family of

UCPT-extreme maps which includes also maps with rank four.



Chapter 5

On the entanglement classification

of locally maximally mixed states

5.1 Introduction

The Choi–Jamiolkowski (CJ) isomorphism establishes a correspondence between quantum maps

and bipartite states [14]. By the CJ isomorphism, unital quantum channels correspond to bipartite

states with maximally-mixed partially traced states. In Chapter 4, we constructed a family of d-

dimensional UCPT-extremal maps of rank r ≤ d to study the convex structure of the set of UCPT

maps.

In this chapter, we consider the family of bipartite states which are CJ-isomorphic to the family

of UCPT-extremal maps introduced in Chapter 4. For pure states, maximally entangled states

correspond to those states for which the marginals are maximally mixed. However, universally

maximally entangled mixed bipartite states cannot be defined for qutrit systems as different states

may maximize different entanglement measures. The family of bipartite states we consider includes

not only the set of maximally entangled pure states, but also mixed states with maximally mixed

marginals. For this reason, our family of bipartite states is a good candidate to investigate entan-

68
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glement classification in systems of dimension higher than two. In this chapter, we consider the

local unitary classification for our family of states.

5.2 A family of locally maximally mixed bipartite states

In this section, we consider the bipartite states ρAB ∈Md associated to the family of completely pos-

itive maps for which the Kraus operators are given by equation 4.3. Through the Choi-Jamilkowski

isomorphism we can find the corresponding set of bipartite states which are given by

ρAB =
1

d
(Φ⊗ Id) |ψ⟩ ⟨ψ| (5.1)

where |ψ⟩ represents a maximally entangled pure state i.e. |ψ⟩ =
∑d−1
m=0 |m⟩ |m⟩ and

ϕ(ρ) =

d−1∑
i=0

KiρK
†
i (5.2)

represents the quantum operation in which the Kraus operators are given by

Ki =

d−1∑
j,k=0

αijω
jk |k + i⟩ ⟨k| (5.3)

and ω is the dth root of unity. We have it that Ki ⊗ Id =
∑d−1
j,k,l=0 αijω

jk |k + i⟩ |l⟩ ⟨k| ⟨l| so the

density operator of the bipartite state can be expressed as

ρAB =
1

d

d−1∑
i=0

(Ki ⊗ Id) |ψ⟩ ⟨ψ| (K†
i ⊗ Id)

=
1

d

d−1∑
i=0

 d−1∑
k,j=0

αijω
jk |k + i⟩ |k⟩

 d−1∑
k,j=0

α∗
ijω

−jk ⟨k + i| ⟨k|


=

1

d

d−1∑
i,k,l=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jl

 |k + i⟩ |k⟩ ⟨l + i| ⟨l| . (5.4)

Sometimes it will be useful to express ρAB in terms of ci,k = 1√
d

(∑d−1
j=0 αijω

jk
)

so that

ρAB =

d−1∑
i,k,l=0

ci,kc
∗
i,l |k + i⟩ |k⟩ ⟨l + i| ⟨l| . (5.5)
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We are interested in the set of locally maximally mixed states, those in which trA (ρAB) = Id
d

and trB (ρAB) = Id
d . We can we express the LMM conditions in terms of the defining parameters

{αij}i,j∈Zd
obtaining exactly the same set of equations. For our family of LMM states, we have

that trA (ρAB) = Id
d if

d2−1∑
i,j=0

αijα
∗
ij = 1 (5.6)

and
d−1∑
i,j=0

αij+lα
∗
ij = 0 for l ̸= 0. (5.7)

On the other hand, we have that trB (ρAB) = Id
d if condition (6.1) is satisfied and

d−1∑
i,j=0

αij+lα
∗
ijω

−il = 0 for l ̸= 0. (5.8)

To verify the correctness of the equations, we may evaluate the partial traces of the bipartite state

ρAB as

trA (ρAB) =
1

d
trA

 d−1∑
i,k,l=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jl

 |k + i⟩ |k⟩ ⟨l + i| ⟨l|


=

1

d

d−1∑
i,k=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jk

 |k⟩ ⟨k|
=

1

d

d−1∑
k,l=0

 d−1∑
i,j=0

αij+lα
∗
ijω

lk

 |k⟩ ⟨k| (5.9)

By equation (6.2), we get that all the elements of the last sum in (5.9) with l ̸= 0 cancel out and

consequently we obtain that

trA (ρAB) =
1

d

d−1∑
i,k=0

d−1∑
j

αijα
∗
ij

 |k⟩ ⟨k| (5.10)

and, by equation (6.1), we obtain that

trA (Cϕ) =
1

d

d−1∑
k=0

|k⟩ ⟨k| . (5.11)
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We may also evaluate the second partial trace which is given by

trB (ρAB) =
1

d
trB

 d−1∑
i,k,l=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jl

 |k + i⟩ |k⟩ ⟨l + i| ⟨l|


=

1

d

d−1∑
i,k=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jk

 |k + i⟩ ⟨k + i|

=
1

d

d−1∑
i,k=0

d−1∑
j=0

αijω
j(k−i)

d−1∑
j=0

α∗
ijω

−j(k−i)

 |k⟩ ⟨k|
=

1

d

d−1∑
k,l=0

 d−1∑
i,j=0

αij+lα
∗
ijω

l(k−i)

 |k⟩ ⟨k|
=

1

d

d−1∑
k,l=0

 d−1∑
i,j=0

αij+lα
∗
ijω

−il

ωkl |k⟩ ⟨k| . (5.12)

By equation (5.8), we get that all the elements of the sum in (5.12) with l ̸= 0 cancel out and

consequently we obtain that

trB (ρAB) =
1

d

d−1∑
i,k=0

d−1∑
j

αijα
∗
ij

 |k⟩ ⟨k| (5.13)

and, by equation (6.1),

trB (ρAB) =
1

d

d−1∑
k=0

|k⟩ ⟨k| . (5.14)

5.3 Local unitary invariants

In this section, we search for magnitudes invariant under local unitary transformations on ρAB . In

principle, if we could find local unitary invariants for each one of the degrees of freedom of the family

of states, we could obtain a complete characterisation of the family in terms of entanglement. We

start by defining LU invariance. We have that κ ∈ R is an local unitary (LU) invariant of ρAB ∈Md

if

κ(ρAB) = κ(ρ′AB) (5.15)

where

ρ′AB = (U ⊗ V )ρAB(U ⊗ V )† (5.16)
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and U, V ∈ SU(d). From this definition of LU invariant, we can see that the eigenvalues of ρAB

are LU invariants of the state. This follows from the fact that a unitary transformation on the

density matrix as the one given in (5.16) does not change the spectrum. To obtain the spectrum

of ρAB , we find a unitary operator that leaves the density matrix into a block diagonal form. Such

unitary operation leaves the spectrum unchanged and the eigenvalues of ρAB correspond exactly

to the eigenvalues of the blocks of the transformed matrix. In particular, we have that the unitary

operator

U =

d−1∑
q,j=0

|j − q⟩ |q⟩ ⟨j| ⟨q| (5.17)

is the one block diagonalizing ρAB . To see that we apply the unitary transformation τU on the

density matrix so that the transformed matrix can be expressed as

τU (ρAB) = UρABU
−1

=
1

d

d−1∑
i=0

d−1∑
j=0

αijω
jk |i⟩ |k⟩

 d−1∑
j,k=0

α∗
ijω

−jk ⟨i| ⟨k|

 (5.18)

The matrix τU (ρAB) is block diagonal

τU (ρAB) =


P0

. . .

Pd−1

 (5.19)

and the blocks P0, . . . , Pd−1 are given by

Pi =
1

d

d−1∑
k=0

d−1∑
j=0

αijω
jk |k⟩

d−1∑
k=0

d−1∑
j=0

α∗
ijω

−jk ⟨k|

 . (5.20)

We observe that the matrices P0, . . . , Pd−1 are can be expressed as a projector Pi = |pi⟩ ⟨pi| where

|pi⟩ =
1√
(d)

d−1∑
k=0

d−1∑
j=0

αijω
jk |k⟩ (5.21)
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and consequently P0, . . . , Pd−1 are rank one and each eigenvalue is given by

⟨pi|pi⟩ =
1

d

d−1∑
k=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jk


=

1

d

d−1∑
k,j,l=0

αi,j+lα
∗
ijω

lk

=
1

d

d−1∑
k,j=0

(
αijα

∗
ij +

d−1∑
l=1

αi,j+lα
∗
ijω

lk

)

=

d−1∑
j=0

|αij |2. (5.22)

We obtain a first set of LU invariants κ
(1)
i , . . . , κ

(1)
d−1 for our family of maps based on the spectrum

of ρAB . These LU invariants are given by

κ
(1)
i =

d−1∑
j=0

|αij |2. (5.23)

A different set of LU invariants is given the spectrum of the partially transposed matrix ρTAB .

Zhang et al. established that two states are local unitary equivalent iff their respective partially

transposed matrices are local unitary equivalent too (Theorem 2 in [56]). Therefore, we have that

the eigenvalues of the partially transposed matrix are also invariant under LU transformations.

To obtain this second set of LU invariants we proceed in the same way we did to obtain the

eigenvalues of the density matrix: We define a unitary transformation that block diagonalises ρTB

AB .

To obtain ρTB

AB we apply the partial transposition over system B as

ρTB

AB =
1

d

d−1∑
i,k,l=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jl

 |k + i⟩ |l⟩ ⟨l + i| ⟨k| . (5.24)

Now we apply a unitary transformation τU on the partially transposed matrix where in this case

the unitary is given by the unitary operator

U =

d−1∑
q,j=0

|j + q⟩ |q⟩ ⟨j| ⟨q| . (5.25)
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We get that the transformed matrix can be expressed as

τU (ρTB

AB) = UρTB

ABU
−1

=
1

d

d−1∑
i,k,l=0

d−1∑
j=0

αijω
jk

d−1∑
j=0

α∗
ijω

−jl

 |k + l + i⟩ |l⟩ ⟨l + k + i| ⟨k| . (5.26)

To obtain the blocks we make use of the change of variable i→ i− l − k

τU (ρTB

AB) =
1

d

d−1∑
i,k,l=0

d−1∑
j=0

αi−l−k;jω
jk

d−1∑
j=0

α∗
i−l−k;jω

−jl

 |i⟩ |l⟩ ⟨i| ⟨k| . (5.27)

This state can be written as

τU (ρTB

AB) =


Q0

. . .

Qd−1

 (5.28)

where the blocks Q0, . . . , Qd−1 are given by

Qi =
1

d

d−1∑
k,l=0

d−1∑
j=0

αi−l−k;jω
jk

d−1∑
j=0

α∗
i−l−k;jω

−jl

 |l⟩ ⟨k| . (5.29)

The eigenvalues of Qi . . . matrices are also eigenvalues of the partially transposed matrix ρTB

AB which

are LU invariants. The second set of LU invariants κ
(2)
0 , . . . , κ

(2)
d2−1 is given by

κ
(2)
i = ei ∈ {E(Q0) ∪ . . . ∪ E(Qd−1)}. (5.30)

where E(Qi) corresponds to the set of eigenvalues of Qi.

We can obtain a third set of LU invariants for the states of our family based on their correlation

matrix. In Chapter 2, we considered the singular values of the correlation matrix for bipartite

state entanglement classification. By theorem 9, we have that the correlation matrix of a given

state can be diagonalised by means of LU operations acting on the state. The elements of the

diagonalized correlation matrix correspond to the singular values of the original matrix up to a

sign. Consequently, the set of singular values of the correlation matrix are invariants under local

unitary operations. The correlation matrix ρAB is given by

R = {rij}i,j∈Zd2−1
(5.31)
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where

rij = ⟨ρAB , λi ⊗ λj⟩ := tr (ρAB λi ⊗ λj) (5.32)

and λ1, . . . , λd2−1 form a basis for the set of traceless matrices. To evaluate the correlation matrix,

we select the particular basis λ1, . . . , λd2−1 defined as follows. We define the elements of this basis in

terms of d collections of matrices which we denote by {Λ(k)}k=0,...,d−1. We have that Λ(0) contains

d− 1 elements while the rest of collections, Λ(k) for k = 1, . . . , d− 1, contain d elements each. The

matrices {λ(0)i ∈ Λ(0)}i=1,...,d−1 are given by

λ
(0)
i =

d−1∑
m=0

|m⟩ ⟨m|ωim where i = 1, . . . , d− 1 (5.33)

and ω is a dth root of unity. The rest of matrices {λ(k)i ∈ Λ(k)}i=0,...,d−1 for k = 1, . . . , d − 1 are

given by

λ
(k)
i = |i+ k⟩ ⟨i| where i = 0, . . . , d− 1. (5.34)

Now we will relabel the elements of the correlation with taking into account the collection of the

element of the basis. We have in this case that

R = {r(k,l)i,j } where k, l ∈ Zd and


i ∈ Zd−1 if k = 0

j ∈ Zd−1 if l = 0

i, j ∈ Zd otherwise

(5.35)

where the indexing in expression above has the exceptions that i ∈ Zd−1 if k = 0 and j ∈ Zd−1 if

l = 0. To obtain all the elements of the correlation matrix, we evaluate first the projections of ρAB

as given in (5.5) over the elements of the computational basis. We get that

⟨ρAB , |a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|⟩ = tr

 d−1∑
i,k,l=0

ci,k,l |k + i⟩ |k⟩ ⟨l + i| ⟨l| · |a1⟩ |b1⟩ ⟨a2| ⟨b2|


=

d−1∑
i,k,l=0

ci,kc
∗
i,l ⟨a2|k + i⟩ ⟨b2|k⟩ ⟨l + i|a1⟩ ⟨l|b1⟩

=

d−1∑
i=0

ci,b2c
∗
i,b1 ⟨a2|b2 + i⟩ ⟨b1 + i|a1⟩ (5.36)
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where a1, a2, b1, b2 ∈ Zd. We can see that only those terms in which a2 − b2 = b1 − a1 are different

from zero so the projections can be expressed as

⟨ρAB , |a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|⟩ = ca1−b1,b2c
∗
a1−b1,b1 ⟨a2 + b1|b2 + a1⟩ . (5.37)

Consider the elements of the correlation matrix r
(k,l)
i,j such that k ̸= l. In that case, one can check

that all the projections of the state in the computational basis are zero. We conclude that for this

choice of basis the correlation matrix is block diagonal

R =


R0 0 0

0
. . . 0

0 0 Rd−1

 (5.38)

where each block R0, . . .Rd−1 corresponds to each one of the collections Λ(k) of elements of the

basis for k = 0, . . . , d− 1. We shall evaluate their elements by using (5.37). In the case k = l = 0,

we have that

R0 = (r
(0,0)
i,j )i,j=1,...,d−1 (5.39)

where

r
(0,0)
i,j = ⟨ρAB , λ(0)i ⊗ λ

(0)
j ⟩

= ⟨ρAB ,
d−1∑
m=0

ωmi |m⟩ ⟨m| ⊗
d−1∑
p=0

ωpj |p⟩ ⟨p|⟩

=

d−1∑
m,p=0

ωmi+pj ⟨ρAB , |m⟩ ⟨m| ⊗ |p⟩ ⟨p|⟩

=

d−1∑
m,p=0

ωmi+pjcm−p,pc
∗
m−p,p

=
1

d

d−1∑
m,p=0

ωmi+pj

(
d−1∑
s=0

αm−p,sω
sp

)(
d−1∑
s=0

α∗
m−p,sω

−sp

)
. (5.40)

We can evaluate the rest of the blocks which are given by the elements of R for which l = k ̸= 0.

In this case, the blocks can be expressed as

Rk = (r
(k,k)
i,j )i,j=0,...,d−1 (5.41)
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LU invariant Set Cardinality

κ
(1)
i {

∑d−1
j=0 |αij |2} i ∈ Zd

κ
(2)
i {E(Q0) ∪ . . . ∪ E(Qd−1)} i ∈ Zd2
κ
(3)
i {SV (R0) ∪ . . . ∪ SV (Rd−1)} i ∈ Zd2−1

Table 5.1: In this table we summarize all the different sets of LU invariants obtained for the bipartite
state ρAB .

where

r
(k,k)
i,j = ⟨ρAB , λ(k)i ⊗ λ

(k)
j ⟩

= ⟨ρAB, |i+ k⟩ ⟨i| ⊗ |j + k⟩ ⟨j|⟩

= ci−j,jc
∗
i−j,j+k

=
1

d

(
d−1∑
s=0

αi−j,sω
sj

)(
d−1∑
s=0

α∗
i−j,sω

−s(j+k)

)
. (5.42)

The singular values of R0, . . . , Rd−1 are also eigenvalues of the correlation ρTB

AB which, as we

saw, are LU invariants of the state. The third set of LU invariants κ
(3)
1 , . . . , κ

(3)
d2−1 is given by

κ
(3)
i = si ∈ {SV (R0) ∪ . . . ∪ SV (Rd−1)}. (5.43)

5.4 Bipartite qutrit state LU classification

In the previous section we obtained sets LU invariants for the family of LMM states given by (5.4).

In this section we will consider the particular case of qutrit states. We fix d = 3 in (5.4), in this

case, the density state is given by

ρAB =
1

3

2∑
i,k,l=0

 2∑
j=0

αijω
jk

3−1∑
j=0

α∗
ijω

−jl

 |k + i⟩ |k⟩ ⟨l + i| ⟨l| . (5.44)

where ω = e
2πi
3 . For d = 3, we saw that ρAB is locally maximally mixed provided that

2∑
i,j=0

αijα
∗
ij = 1 (5.45)



CHAPTER 5. LMM BIPARTITE STATES 78

and

2∑
j=0

ωiαij+1α
∗
ij = β for i = 0, 1, 2 (5.46)

where β ∈ C is a complex constant. The family of LMM states given by ρAB has 2d2 − 3d + 1

dimensions. For qutrit systems, this family of bipartite states is 10 dimensional and entanglement

classification can be achieved finding as many independent local unitary invariants. For d = 3, the

invariants κ
(1)
1 ,κ

(1)
2 and κ

(1)
3 are given by

κ
(1)
1 =

2∑
j=0

α0jα
∗
0j ,

κ
(1)
2 =

2∑
j=0

α1jα
∗
1j ,

κ
(1)
3 =

2∑
j=0

α2jα
∗
2j . (5.47)

We can also obtain κ
(2)
1 , . . . , κ

(2)
9 which are given by the eigenvalues of the matrices

Q0 =


c0,0c

∗
0,0 c2,0c

∗
2,1 c1,0c

∗
1,2

c2,1c
∗
2,0 c1,1c

∗
1,1 c0,1c

∗
0,2

c1,2c
∗
1,0 c0,2c

∗
0,1 c2,2c

∗
2,2

 ,

Q1 =


c1,0c

∗
1,2 c0,1c

∗
0,0 c2,2c

∗
2,1

c0,0c
∗
0,2 c2,1c

∗
2,0 c1,2c

∗
1,1

c2,0c
∗
2,2 c1,1c

∗
1,0 c0,2c

∗
0,1

 ,

Q2 =


c2,0c

∗
2,2 c1,1c

∗
1,0 c0,2c

∗
0,1

c1,0c
∗
1,2 c0,1c

∗
0,0 c2,2c

∗
2,1

c0,0c
∗
0,2 c2,1c

∗
2,0 c1,2c

∗
1,1

 . (5.48)

where ci,k = 1
d

(∑d−1
j=0 αijω

jk
)

. Finally, for qutrits, the LU invariants κ
(3)
1 , . . . , κ

(3)
8 are given by

the singular values of the matrices

R0 =

2∑
m,p=0

cm−p,pc
∗
m−p,p

 ωm+p ω2m+p

ωm+2p ω2m+2p

 ,
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R1 =


c0,0c

∗
0,1 c2,1c

∗
2,2 c1,2c

∗
1,0

c1,0c
∗
1,1 c0,1c

∗
0,2 c2,2c

∗
2,0

c2,0c
∗
2,1 c1,1c

∗
1,2 c0,2c

∗
0,0

 ,

R2 =


c0,0c

∗
0,2 c2,1c

∗
2,0 c1,2c

∗
1,1

c1,0c
∗
1,2 c0,1c

∗
0,0 c2,2c

∗
2,1

c2,0c
∗
2,2 c1,1c

∗
1,0 c0,2c

∗
0,1

 . (5.49)

At this point, the evaluation of these invariants for qutrit systems depends on the specific choice of

coefficients {αij}i,j∈Z. For the moment, we can make some observations about the relation of the

LU invariants in the qutrit case.

For the invariants κ
(1)
1 , κ

(1)
2 , κ

(1)
3 , we have that only two of them are linearly independent. To

see this, we may evaluate their sum as

2∑
i=0

κ
(1)
i =

2∑
ij=0

αijα
∗
ij . (5.50)

If we use the condition satisfied by LMM states which is given by (5.45), we obtain that
∑2
i=0 κ

(1)
i =

1. So one of the invariants can always be obtained from the other two. For the rest of the invariants,

we also found that not all of them are linearly independent. In particular, the numerical analysis of

the invariants suggests that for the κ
(2)
1 , . . . , κ

(2)
9 at least three of them are linearly independent while

for the invariants κ
(3)
1 , . . . , κ

(3)
8 , we also have that at least three of them are linearly independent. In

total, we have that from all the LU invariants evaluated at least 8 of them are linearly independent.

5.5 Conclusion

In this chapter, we considered the set of bipartite states which are dual to the family of UCPT maps

introduced in Chapter 4 in terms of the Choi-Jamilkowski isomorphism. For this family of bipartite

states, we considered the problem of entanglement classification. To do this we used three known

sets of invariants under local unitary operations corresponding to the spectra of three different

matrices: the density matrix, the partially transposed matrix and the square of the correlation

matrix. For the family of states considered, we found that the evaluation of these invariants is
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greatly simplified. This follows from the fact the operators introduced can be expressed in block

diagonal form by means of unitary transformations. We considered the particular case of bipartite

states based on qutrit systems. In this setup, numerical evidence indicates that the set of invariants

we derived provide full entanglement classification for the family of two qutrit states we studied.

However, we acknowledge that a more robust analysis of the same problem should be carried out

by considering analytical methods.



Chapter 6

Solving UCPT/LMM equations in

qutrit systems

6.1 Introduction

In Chapter 4, we introduced a family of UCPT maps which served as an extension of the set of

unitary maps in the context of convex set characterisation. In Chapter 5, we saw that this family

had a dual in the set of LMM bipartite states which was interesting for state classification. To

construct those maps/bipartite states, first, we considered matrices with a fixed structure whose

elements were expressed in terms of a set of parameters. We found the equations in terms of

these parameters representing UCPT maps and LMM bipartite states, respectively. In both cases,

we considered the scenario of states based on qutrit systems. In this setup, we saw that the

UCPT/LMM equations were simpler compared with the case of systems of higher dimensions. In

this chapter, we will consider precisely the solutions to these equations. First, we will construct an

algorithm solving the UCPT/LMM equations. Second, we will consider a particular simplification

of these equations for which the solutions can be obtained analytically. Finally, for these solutions,

we will evaluate explicitly the set of local unitary invariants we obtained in Chapter 5.

81
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6.2 Expressing UCPT/LMM equations in terms of real pa-

rameters

Previously we considered the family of CP maps given by the Kraus set in (4.3) and also its dual

in the set of bipartite states given by (5.4). In both cases, the elements of the families are given in

terms of the same set of parameters {αij}ij∈Zd
. In Chapter 4, we saw that for d = 3 a map given

by (4.3) was unital and trace-preserving provided that

2∑
i,j=0

αijα
∗
ij = 1 (6.1)

and

2∑
j=0

αij+1α
∗
ijω

i = β for i = 0, 1, 2. (6.2)

where β ∈ C. Equivalently, in Chapter 5, we saw that a bipartite state given by (2.33) is locally

maximally mixed if the same equations apply. The parameters αij can be arranged as the complex

matrix A = (αij)ij∈Z2
to represent the maps (or bipartite states) of the family. We saw that there

is a freedom in the definition of maps in terms of A. To see this, consider a map represented in

terms of A. The multiplication of any row of A by a constant complex phase factor preserves the

map being represented. We can get rid of this arbitrariness in the choice of A by fixing the complex

phases of the first column of the matrix to zero. For d = 3, by using complex exponents we have

that A can be expressed in terms of 15 real parameters as

A =


a0 b0e

iθ0 c0e
i(θ0+ϕ0)

a1 b1e
iθ1 c1e

i(θ1+ϕ1)

a2 b2e
iθ2 c2e

i(θ2+ϕ2)

 (6.3)

where in this case ai, bi, ci, θi, ϕi ∈ R for i = 0, 1, 2. We can rewrite the equations required by

UCPT maps using these real parameters. We get that (6.1) is expressed as

a20 + b20 + c20 + a21 + b21 + c21 + a22 + b22 + c22 = 1. (6.4)



CHAPTER 6. SOLVING UCPT/LMM EQUATIONS 83

and (6.2) is given by

a0b0e
iθ0 + b0c0e

iϕ0 + a0c0e
−i(θ0+ϕ0) = |β|earg (β)i

a1b1e
iθ1 + b1c1e

iϕ1 + a1c1e
−i(θ1+ϕ1) = |β|e(arg (β)+ 4π

3 )i

a2b1e
iθ2 + b2c2e

iϕ2 + a2c2e
−i(θ2+ϕ2) = |β|e(arg (β)+ 2π

3 )i. (6.5)

We will consider two different approaches to solve this set of equations: First, we will introduce

a numerical method to obtain the solutions to the equations. Second, we will show how analytical

solutions can be obtained by considering an extra constraint on the set of parameters.

6.3 Numerical solutions

In this section we introduce an algorithm solving equations (6.4) and (6.5). This algorithm can be

divided in two parts. The first part consists on selecting the modulus of the elements of A (ai, bi

and ci) such that equation (6.4) is satisfied. The second part of the algorithm consists on finding

the phases of A (ϕi and θi) such that the set of equations (6.5) is satisfied too. This second part

of the algorithm, in general, needs to be solved numerically. However, depending on the particular

choice of parameters in the first part, solutions may exist or not. To understand why this is the

case, we will consider a graphical representation of the equations. Consider the general form of the

left hand side of (6.5) which can be expressed as the complex function

f(ϕ, θ) = abeiθ + bceiϕ + ace−i(θ+ϕ) (6.6)

where a,b and c are fixed. We can always represent f(θ, ϕ) in the complex plane with θ ∈ [0, 2π]

and ϕ ∈ [0, 2π]. If we do this for different combinations of parameters a,b and c, we obtain a variety

of different representations of f(ϕ, θ) in the complex plane (Fig. 6.1).

For fixed set of parameters {ai, bi, ci}Z3
a solution of the equation in (6.5) can be visualised as

three points in the complex plane in f0(ϕ0, θ0), f1(ϕ1, θ1) and f2(ϕ2, θ2), respectively. The relation

between the solution set of points is given by the right hand side of the equations in (6.5). We have

that f0(ϕ0, θ0) = |β|e(arg (β)), So necessarily we have that the three points representing the solution
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Figure 6.1: Representation in the complex plane of f(ϕ, θ) for ϕ ∈ [0, 2π] and θ ∈ [0, 2π] and fixed
a,b, and c such that a+ b+ c = 1.
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f0(ϕ0, θ0) f1(ϕ1, θ1) f2(ϕ2, θ2)

Figure 6.2: Representations in the complex plane of f0(ϕ0, θ0), f1(ϕ1, θ1) and f2(ϕ2, θ2) for the
particular parameters given in 6.7

of the system lie in a circumference centred at the origin and have a relative phase of 2
3 between

them. We have now a geometrical intuition which allows us to know beforehand if for a given set

of parameters {ai, bi, ci}i∈Z3
we can find a solution to the system of equations given by (6.5). In

the following example, we show explicitly how the algorithm can be used to obtain a solution and

the geometrical intuition we provided.

The objective of the algorithm is to obtain a matrix A such that the system of equations given

by (6.4) and (6.5) is satisfied. By this algorithm, first we randomly choose a 3 × 3 matrix whose

squared elements add up to one. We obtain the matrix
a0 b0 c0

a1 b1 c1

a2 b2 c2

 =


0.1196 0.4264 0.3976

0.2661 0.2711 0.1315

0.3873 0.3693 0.4449

 . (6.7)

Before searching for the solutions we represent f0(ϕ0, θ0), f1(ϕ1, θ1) and f2(ϕ2, θ2) in the complex

plane for particular choice of parameters in (6.7). The graphical representations of these functions

in the complex plane are given in figure 6.2.

Any solution of the system is given by three points in f0(ϕ0, θ0), f1(ϕ1, θ1) and f2(ϕ2, θ2),

respectively. The three points giving the solution lie in the same circumference centred at origin and

have a relative phase between them of 2π
3 . Therefore, any solution is necessarily in the intersection

of the representations of f0(ϕ0, θ0), f1(ϕ1, θ1) and f2(ϕ2, θ2). This intersection for this particular

choice of parameters can be visualised in figure 6.3.

Finally, we randomly choose a complex number in the intersection of f0(ϕ0, θ0), f1(ϕ1, θ1) and
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Figure 6.3: Representation of the superposition of f0(ϕ0, θ0), f1(ϕ1, θ1) and f2(ϕ2, θ2) in the same
plot where the intersection of the three is shown in red.

f2(ϕ2, θ2). For example, we set

f0(ϕ0, θ0) = −0.0485 + 0.0799i. (6.8)

Then, we have that necessarily

f1(ϕ1, θ1) = f0(ϕ0, θ0)e
4πi
3 = 0.0934 + 0.00205i (6.9)

and

f2(ϕ2, θ2) = f0(ϕ0, θ0)e
2πi
3 = −0.0449− 0.0820i. (6.10)

The three complex values are solutions of equations, now we need to obtain a set of parameters

{ϕi, θi}Z3
corresponding to that solution. To to this we solve numerically the three non-linear

complex equations in (6.5). By substituting all the parameters in (6.3), we obtain the matrix

A =


0.1196 0.3984− 0.1520i −0.0696 + 0.3915i

0.2661 0.2710 + 0.0068i 0.0375 + 0.1261i

0.3873 0.3498− 0.1185i −0.1792 + 0.4072i

 (6.11)

for which we can check that equations (6.4) and (6.5) are satisfied.
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6.4 Analytical solutions

Consider the representation of maps/states in terms of the parameters of A in (6.3). As we did in

the previous section, we will consider the solutions of the UCPT/LMM equations (6.4) and (6.5).

In this case, instead of considering the general case, we will consider a particular constraint on A

for which the UCPT/LMM equations can be solved analytically.

Consider a the matrix A such that a0 = a1 = a2 = a, b0 = b1 = b2 = b and c0 = c1 = c2 = c. In

this case, to satisfy (6.4) we require that a2 + b2 + c2 = 1
3 . One particularity of this A is that for

every choice of a,b and c we can always find sets of θ0,ϕ0,θ1,ϕ1,θ2 and ϕ2 solving the UCPT/LMM

equations given by (6.5). An analytical solution of such system of equations is given by

θ0 = θ ϕ0 = ϕ

θ1 = θ − 2π
3 ϕ1 = ϕ− 2π

3

θ2 = θ − 4π
3 ϕ2 = ϕ− 4π

3

In terms of A, this set of solutions is given by

A =


a beiθ cei(θ+ϕ)

a beiθ−
2π
3 ce−i(θ1+ϕ1− 4π

3 )

a beiθ−
4π
3 ce−i(θ2+ϕ2− 2π

3 )

 . (6.12)

In this case, A represents a 4-dimensional family of UCTP maps/LMM states. Finally, for the family

of bipartite states, we will compute the local unitary invariants derived in Chapter 5 in terms of

the parameters of A. In this case, the first set of LU invariants corresponds to the spectrum of the

density matrix. These invariants are given by

r
(1)
1 = r

(1)
2 = r

(1)
3 = a2 + b2 + c2 =

1

3
. (6.13)

The second set consisting of nine LU invariants given by the eigenvalues of the partially transposed

matrix. We get that

(r
(2)
ij )i,j∈R3

=


c+ 2

√
a
√
b cos(θ) c+ 2

√
a
√
b cos(θ + 2π

3 ) c+ 2
√
a
√
b cos(θ + 4π

3 )

a+ 2
√
b
√
c cos(ϕ) a+ 2

√
b
√
c cos(ϕ+ 2π

3 ) a+ 2
√
b
√
c cos(ϕ+ 4π

3 )

b+ 2
√
c
√
a cos(θ + ϕ) b+ 2

√
c
√
a cos(θ + ϕ+ 2π

3 ) b+ 2
√
c
√
a cos(θ + ϕ+ 4π

3 )

 .

(6.14)
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Finally, the third set of invariants is represented by the eight singular values of the correlation

matrix. However, for the particular family of states considered only four of them are distinct.

These four eigenvalues can be evaluated as

r
(3)
1 =

√
a2 + b2 + c2 − ab− bc− ac

r
(3)
2 =

√
ab+ bc+ ac− 2

√
ab
√
c cos (θ − ϕ)− 2a

√
b
√
c cos (−2θ − ϕ)− 2

√
a
√
bc cos (θ + 2ϕ)

r
(3)
2 =

√
ab+ bc+ ac− 2

√
ab
√
c cos (θ − ϕ+

π

3
)− 2a

√
b
√
c cos (−2θ − ϕ+

π

3
)− 2

√
a
√
bc cos (θ + 2ϕ+

π

3
)

r
(3)
4 =

√
ab+ bc+ ac− 2

√
ab
√
c cos (θ − ϕ− π

3
)− 2a

√
b
√
c cos (−2θ − ϕ− π

3
)− 2

√
a
√
bc cos (θ + 2ϕ− π

3
)}.

(6.15)

By inspecting these LU invariants we clearly see that more than four are linearly independent and

consequently, they can be used to establish entanglement classification for the particular subfamily

considered in this section.

6.5 Conclusions

In this chapter, we obtained explicit solutions to the equations producing families of unital and

trace-preserving maps and locally maximally bipartite states which were previously considered in

describing the geometry of the quantum state space. We considered the simplest setup ,the qutrit

case, for which the convex decomposition of generic maps/bipartite states is still an open problem.

Even in this setup, the family considered has 10 dimensions and numerical methods need to be

used to solve the UCTP/LMM equations. We presented an algorithm obtaining the solutions to

these equations. To gain insight about the high-dimensional space of solutions we introduced a

geometrical representation of the equations which allows to determine which sets of parameters

result in solvable equations. Finally, we considered a constraint on UCTP/LMM equations for

which they can be solved analytically. The set of solutions for such equations represent a subset of

the original family. For this subset of solutions, we evaluated explicitly the LU invariants provided

in the previous chapter and we showed that these invariants can be use to establish a classification

of the elements of this subfamily in terms of their entanglement.



Chapter 7

Conclusions

This thesis aims to improve the understanding of the geometry of the quantum state space. Such

an improvement could lead to better characterisations of quantum systems. To do this, we develop

novel tools to study the geometry of the set of unital quantum maps and the geometry of locally

maximally mixed states. Despite the apparent differences between these sets, the map-state duality

allows us to consider them using the same mathematical formalism. The geometry of unital qubit

maps/LMM bipartite qubit states has the shape of a convex polytope in which the vertices corre-

spond to unitary maps/pure bipartite quantum states. However, it is the case that the analogous

geometry fails to describe the set of unital maps of higher dimensions. The description of uni-

tal qubit maps and LMM bipartite qubit states can be improved by considering polytopes whose

vertices can be non-unitary maps and bipartite mixed quantum states, respectively. This thesis

introduces the framework required to obtain and characterise novel families of unital quantum

maps extreme with respect to the whole set of unital quantum maps. Following the aims of this

work, we proposed a list of four objectives stated in the introduction. Here, we describe the main

achievements associated with these research objectives.

In Chapter 4, we constructed a novel (2d2− 3d+ 1)-dimensional family of quantum unital maps

containing both unitary maps and maps of higher rank (objective 1). To do this, we selected a

particular set of Kraus operators representing a family of complete positive maps in terms of a list
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of parameters. Then, we derived the equations for those parameters required by unital and trace-

preserving conditions. For this family of unital and trace-preserving maps, we derived a criterion to

determine whether a given map of the family corresponds to an extreme point of the set of unital

and trace-preserving maps (objective 2). In the qutrit setup, the family of maps introduced cannot

reproduce the rank-four maps for which set-extremal examples are known to exist. To consider

this issue, we change the structure of the original set of Kraus operators. This change permits the

description of rank-four qutrit maps (objective 1).

In Chapter 5, we considered the family of bipartite states isomorphic to the family of unital

and trace-preserving maps constructed in Chapter 4. The main contribution of this chapter is the

entanglement classification of the given family of bipartite states in terms of local unitary invariants

(objective 3). To do this, we selected three sets of local unitary invariants whose evaluation is

analytical. The selected sets invariants are the following: the eigenvalues of the density matrix,

the eigenvalues of the partially transposed matrix and the singular values of the correlation matrix

of the bipartite state. We evaluated the three sets of invariants for our family of bipartite states.

Finally, we considered the particular case of two qutrit states. In this setup, we showed that not

all invariants obtained are independent. However, numerical evidence supports the completeness

of the invariants introduced for the entanglement classification of our family of locally maximally

mixed two-qutrit states (objective 4).

In Chapter 6, we considered the solutions of the equations producing families of unital and

trace-preserving qutrit maps and locally maximally two qutrit states considered in Chapter 4 and

Chapter 5, respectively. The main contribution of this chapter is a numerical algorithm solving

these equations (objective 4). To improve the parameter search by the algorithm, we presented

a technique to visualise the 10-dimensional space of solutions. Finally, we derived the constraint

on the equations used to find analytical solutions. For these constrained equations, we presented

explicit solutions (objective 4). The solutions obtained represent a 4-dimensional family of locally

maximally bipartite states for which we evaluated the set of local unitary invariants provided in

Chapter 5. For this particular subset of the original family, we showed that the local unitary

invariants presented are complete for entanglement classification (objective 4).
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7.1 Future work

We propose several research ideas which could expand the work presented in this thesis. As men-

tioned, the 2d2 − 3d + 1-dimensional family of maps we introduce generalises the set of mixed

unitary maps. However, this family still fails to span all possible UCPT-extremal maps. It would

be interesting to quantify the distance between the convex combinations of elements of the family

and the set of mixed-unitary maps, as well as the distance between them and generic unital quan-

tum maps. We could also study how these distances change as we increase the dimension of the

quantum systems. In a different line of research, in this thesis, we derived a set of constants clas-

sifying the elements of the family of bipartite states presented in terms of their entanglement. We

could express well-known entanglement measures using the derived constants. Some entanglement

measures can be associated with various operational meanings. By finding the explicit relations

between the LU-invariant constants and the different entanglement measures, we could explore the

usefulness of the states of the family presented in other applications. Finally, we believe this work

serves as an inspiration for other works further improving the characterisation of the state space

for quantum systems of higher dimensions for which many questions are still unknown.



References

[1] Koenraad M. R. Audenaert and Stefan Scheel. “On random unitary channels”. In: New Jour-

nal of Physics (2008). issn: 13672630. doi: 10.1088/1367- 2630/10/2/023011. arXiv:

0709.0824.

[2] Christian B. Mendl and Michael M. Wolf. “Unital quantum channels–convex structure and

revivals of Birkhoff’s theorem”. In: Communications in Mathematical Physics 289.3 (2009),

pp. 1057–1086.

[3] Colin Do-Yan Lee and John Watrous. “Detecting mixed-unitary quantum channels is NP-

hard”. In: Quantum 4 (2020), p. 253.

[4] Bernhard Baumgartner, Beatrix C. Hiesmayr, and Heide Narnhofer. “State space for two

qutrits has a phase space structure in its core”. In: Physical Review A 74.3 (2006), p. 032327.

[5] Bernhard Baumgartner, Beatrix Hiesmayr, and Heide Narnhofer. “A special simplex in the

state space for entangled qudits”. In: Journal of Physics A: Mathematical and Theoretical

40.28 (2007), p. 7919.

[6] Bernhard Baumgartner, Beatrix C. Hiesmayr, and Heide Narnhofer. “The geometry of bipar-

tite qutrits including bound entanglement”. In: Physics Letters A 372.13 (2008), pp. 2190–

2195.

[7] Constantino Rodriguez Ramos and Colin M. Wilmott. “On the convex characterisation of the

set of unital quantum channels”. In: arXiv preprint arXiv:2111.13705 (2021).

92



REFERENCES 93

[8] Dong Sheng Wang and Barry C. Sanders. “Quantum circuit design for accurate simulation

of qudit channels”. In: New Journal of Physics (2015). issn: 13672630. doi: 10.1088/1367-

2630/17/4/043004. arXiv: 1407.7251.

[9] Raban Iten and Roger Colbeck. “Smooth manifold structure for extreme channels”. In: Jour-

nal of Mathematical Physics (2018). issn: 00222488. doi: 10.1063/1.5019837. arXiv: 1610.

02513.

[10] Shmuel Friedland and Raphael Loewy. “On the extreme points of quantum channels”. In:

Linear Algebra and Its Applications (2016). doi: 10.1016/j.laa.2016.02.001. arXiv:

1309.5898.

[11] R. F. Werner and A. S. Holevo. “Counterexample to an additivity conjecture for output

purity of quantum channels”. In: Journal of Mathematical Physics 43.9 (2002), pp. 4353–

4357. doi: 10.1063/1.1498491. eprint: https://doi.org/10.1063/1.1498491. url:

https://doi.org/10.1063/1.1498491.

[12] Michael A. Nielsen and Isaac Chuang. Quantum computation and quantum information. 2002.

[13] Mark M. Wilde. Quantum information theory. Cambridge University Press, 2013.

[14] A. Jamio lkowski. “Linear transformations which preserve trace and positive semidefiniteness

of operators”. In: Reports on Mathematical Physics 3.4 (1972), pp. 275 –278. issn: 0034-

4877. doi: https://doi.org/10.1016/0034- 4877(72)90011- 0. url: http://www.

sciencedirect.com/science/article/pii/0034487772900110.

[15] Man Duen Choi. “Completely positive linear maps on complex matrices”. In: Linear Algebra

and Its Applications (1975). issn: 00243795. doi: 10.1016/0024-3795(75)90075-0.

[16] Ingemar Bengtsson and Karol Zyczkowski. Geometry of quantum states: an introduction to

quantum entanglement. Cambridge university press, 2017.

[17] Karl Kraus, Arno Böhm, John D. Dollard, and WH Wootters. States, Effects, and Operations

Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University

of Texas at Austin. Springer, 1983.



REFERENCES 94

[18] Lane P. Hughston, Richard Jozsa, and William K Wootters. “A complete classification of

quantum ensembles having a given density matrix”. In: Physics Letters A 183.1 (1993), pp. 14–

18.

[19] Erwin Schrodinger. “Die gegenwartige Situation in der Quantenmechanik”. In: Naturwis-

senschaften 23.50 (1935), pp. 844–849.

[20] Albert Einstein, Boris Podolsky, and Nathan Rosen. “Can quantum-mechanical description

of physical reality be considered complete?” In: Physical review 47.10 (1935), p. 777.

[21] Charles H. Bennett and Stephen J Wiesner. “Communication via one-and two-particle oper-

ators on Einstein-Podolsky-Rosen states”. In: Physical review letters 69.20 (1992), p. 2881.

[22] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William

K Wootters. “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-

Rosen channels”. In: Physical review letters 70.13 (1993), p. 1895.

[23] Artur K. Ekert. “Quantum Cryptography and Bell’s Theorem”. In: Quantum Measurements

in Optics. Springer, 1992, pp. 413–418.

[24] H. Jeff Kimble. “The quantum internet”. In: Nature 453.7198 (2008), pp. 1023–1030.

[25] Artur Ekert and Peter L. Knight. “Entangled quantum systems and the Schmidt decomposi-

tion”. In: American Journal of Physics 63.5 (May 1995), pp. 415–423. issn: 0002-9505. doi:

10.1119/1.17904. eprint: https://pubs.aip.org/aapt/ajp/article-pdf/63/5/415/

11806926/415\_1\_online.pdf. url: https://doi.org/10.1119/1.17904.

[26] Michael A. Nielsen. “Conditions for a class of entanglement transformations”. In: Physical

Review Letters 83.2 (1999), p. 436.
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