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A B S T R A C T

This study introduces a novel approach to 4D printing of biocompatible Poly lactic acid (PLA)/poly methyl 
methacrylate (PMMA) blends using Artificial Neural Network (ANN) and Response Surface Methodology (RSM). 
The goal is to optimize PMMA content, nozzle temperature, raster angle, and printing speed to enhance shape 
memory properties and mechanical strength. The materials, PLA and PMMA, are melt-blended and 4D printed 
using a pellet-based 3D printer. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal 
Analysis (DMTA) assess the thermal behavior and compatibility of the blends. The ANN model demonstrates 
superior prediction accuracy and generalization capability compared to the RSM model. Experimental results 
show a shape recovery ratio of 100% and an ultimate tensile strength of 65.2 MPa, significantly higher than pure 
PLA. A bio-screw, 4D printed with optimized parameters, demonstrates excellent mechanical properties and 
shape memory behavior, suitable for biomedical applications such as orthopaedics and dental implants. This 
research presents an innovative method for 4D printing PLA/PMMA blends, highlighting their potential in 
creating advanced, high-performance biocompatible materials for medical use.

1. Introduction

Smart materials represent a fascinating category, known for their 
ability to sense environmental conditions and to respond to external 
stimuli such as heat, pH changes, light, electromagnetic fields, humidity 
etc. (Fang et al., 2023; Niu et al., 2022; Chen et al., 2018; Gregor et al., 
2017; Donate et al., 2020; Feng et al., 2022; Kiyani et al., 2021; Saeed 
et al., 2024). These materials are basically utilized in biomedical fields, 
electronic devices, sensors, actuators, artificial muscles and many other 
applications (Buckley et al., 2006; Hassan et al., 2018). Smart materials 
which are also known as advanced materials are broadly categorized 
into two types: passive smart materials and active smart materials (Hu 
and Bodaghi, 2023). Passive smart structures are a type of smart mate
rials that respond to external stimuli without requiring control system. 
Instead, their responses are inherently built into their structure or 
composition like optical fibers. On the other hand, there are active smart 
materials which can transform one form of energy into another (e.g. 

piezoelectric materials by producing electric charge out of directional 
strain) or their properties remain unchanged when placed in an external 
stimulus (like photochromatic glass exposed to sunlight) (Ni et al., 2023; 
Subash and Kandasubramanian, 2020). Among smart materials, shape 
memory polymers (SMPs) have been extensively studied in the past two 
decades.

Thermosets are commonly known for their shape memory properties 
thanks to their crosslinking components (Li et al., 2018; Mora et al., 
2019). However, thermoplastics can also demonstrate significant shape 
memory effects, particularly when they possess crystallinity or when 
they are blended with another polymer. In thermoplastic blends, the 
two-phase morphology contributes to the material’s shape memory 
properties (Luo et al., 2024; Xia et al., 2021; Dayyoub et al., 2022). The 
rigid amorphous regions within these blends act similarly to the hard 
segments found in thermosets. When chemical crosslinking is not 
practicable, the entanglement and bonding between different polymer 
chains can mimic the effects of crosslinking, known as physical 
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crosslinking (Lalegani et al., 2023; Nugroho et al., 2021). Furthermore, 
the advantages of thermoplastics, including ease of manufacturing, low 
cost, and recyclability, make them favorable alternatives to thermosets. 
Biodegradable thermoplastics have gained worldwide attention due to 
their sustainability and the role in reducing plastic pollution.

Poly lactic acid (PLA) is an aliphatic biodegradable polyester which 
is extensively employed in 3D printing owing to its excellent process
ability and its mechanical robustness. Despite its advantages, PLA pos
sesses low heat distortion, poor impact strength, and limited shape 
recovery. To address these weaknesses and broaden its potential appli
cations, researchers have explored blending PLA with other thermo
plastics (Tancogne-Dejean et al., 2018; da Cunha et al., 2023; Zhang 
et al., 2021; Gaxiola-Ló et al., 2022; Rodrigues et al., 2016; Anakabe 
et al., 2018). Among them, poly methyl methacrylate (PMMA) stands 
out as a promising candidate for melt-blending with PLA, owing to the 
high degree of chain entanglement that can be formed between them 
along with its good impact resistance, perfect thermal stability, me
chanical strength and more importantly its biocompatibility (Pathak 
et al., 1998; Shi et al., 2023; Samal et al., 2023).

Recent rapid advancements in additive manufacturing techniques 

have significantly changed the production landscape which allows 
fabrication of a diverse structures across various scales for a multitude of 
industries and applications (Spiegel et al., 2022; Alshebly et al., 2021; 
Gastaldi et al., 2023; Zhao et al., 2023). The utility of 3D printing ex
tends across a wide range of applications including biomedical implants, 
bone scaffolds, soft tissues, prototyping, mass production, automotive 
applications and more (Moradi et al., 2023; Asvar et al., 2017). Within 
the domain of smart materials, additive manufacturing, particularly 3D 
printing, plays a crucial role, often termed as 4D printing (Sondagar 
et al., 2024; Raja et al., 2024). The designation ’4D′ denotes the capacity 
of 3D printed objects to change one of their properties in response to 
external stimuli (Raja et al., 2024). Fused deposition modelling (FDM) is 
the most common 3D printing technique used to fabricate thermoplastic 
printed parts (Naresh et al., 2024). In this technique, the feed for 
fabricating parts is a continuous filament which is produced by an 
extruder. Accessibility and ease of use are the pros of FDM (Shanmugam 
et al., 2024). Nevertheless, it only works with filaments and does not 
have material variety. On the other hand, pellet-based 3D printers are a 
new additive manufacturing technique that can be employed for a wide 
range of materials (Zhang and Luo, 2024). This includes not only ther
moplastics like Acrylonitrile Butadiene Styrene (ABS) and PLA but also, 
it’s possible to blend different materials directly in the printer which 
allows the creation of custom material formulations tailored to specific 
applications. It is also applicable for composites with fillers and 
nano/micron particles. Besides, using pellets directly can reduce waste 
in the printing process since there’s no need for filament spools, which 
can generate excess material that is often discarded.

As many parameters contribute to physical and mechanical 

Table 1 
Parameters used in ANN and RSM.

Parameters Unit Values

Bed Temperature ◦C 40
Layer thickness mm 0.2
Nozzle diameter mm 0.6
Hydraulic Pressure bar 1

Fig. 1. Schematic of material processing and 3D printing.
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properties of the blends, response surface methodology (RSM) and 
artificial neural network (ANN) have been utilized in many research 
studies to predict the optimized parameters for having the most desired 
outputs (Das et al., 2023; Shirzad et al., 2021). There are several suc
cessful examples of utilizing ANN and RSM in predicting the optimized 
3D printing parameters for desired outputs. Domingo et al. studied the 
effect of 3D printing parameters like nozzle diameter, velocity and layer 
thickness on the fatigue behavior of ABS specimens utilizing design of 
experiment (DOE) (Domingo-et al., 2018). Their results proved that 
infill density is the main parameter that affects the fatigue behavior of 
the honeycomb and rectilinear architectures. Zolfaghari et al. 

(Zolfagharian et al., 2023) employed RSM to investigate the effect of 
different printing parameters on designing bi-stable soft robotic grip
pers. The optimized parameters helped fabrication grippers with fast 
bending which is highly desired in robotics. Yadav et al. (2020) worked 
on optimizing infill density, extrusion temperature and material density 
for having the best ultimate tensile strength (UTS) in ABS and Poly
ethylene Terephthalate Glycol (PETG) utilizing ANN and genetic 
algorithm-artificial neural network (GA-ANN). Their studied showed 
that GA-ANN can enhance mechanical strength by 4.59%.

In earlier research, it was observed that a 50/50 wt ratio blend of 
PLA and PMMA results in a partially co-continuous morphology, leading 
to excellent shape memory properties and strong mechanical perfor
mance. To investigate the shape memory effects of PLA/PMMA blends 
with varying weight ratios, Samuel et al. (2014) conducted dual shape 
memory tests. They found that for the symmetric blend (50/50 wt of 
PLA/PMMA), the switch temperature (the temperature at which the 
material transitions from its temporary shape back to its original shape) 
increased from 70 ◦C to 90 ◦C, while the stretching temperature rose 
from 65 ◦C to 94 ◦C. This blend demonstrated a high shape fixity ratio of 
99% and a shape recovery ratio of 90%. In contrast, asymmetric blends 

Fig. 2. Schematics of shape memory programming and activation steps.

Fig. 3. Schematics of central composite design.

Table 2 
Design variables and levels in RSM.

Parameters Unit Low level (− 1) Center (0) High level (+1)

Nozzle 
Temperature

◦C 180 190 200

PMMA content % 40 50 60
Printing speed mm/ 

min
300 500 700

Raster angle – 0/90 30/-30 45/-45

Fig. 4. Schematics of ANN
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with 30% and 80% PMMA showed shape recovery ratios below 80%. 
Additionally, triple shape memory tests were performed, fixing tempo
rary shapes at 94 ◦C and 65 ◦C. All symmetric samples recorded a shape 
recovery of 60% for the first shape and over 90% for the second shape.

Previous studies have not 4D printed PLA/PMMA blends due to 
fundamental challenges. PMMA’s high melting point complicates uni
form extrusion, and its tendency to shrink upon cooling leads to warping 
and distortion of printed parts. These issues limit the utilization of these 
materials in biomedical applications, which require the creation of 
complex architectures achievable only through advanced 3D printing 
technologies.

To overcome these challenges, this study employs a novel approach 
using a custom-made pellet-based bio-3D printer, effectively bypassing 
the difficulties associated with filament fabrication. By utilizing ANN 
and RSM, this research optimizes key parameters to maximize the UTS 
and shape recovery ratio of PLA/PMMA blends. The materials used 
include Poly L-lactic acid (PLLA) filament and PMMA granules, which 
are melt-blended and processed into pellets for 3D printing. Differential 
Scanning Calorimetry (DSC) tests are conducted to analyse the thermal 
transition temperatures and broadness of the blends which identifies 
those with the highest compatibility based on broad thermal transition 
regions. The input parameters for the RSM and ANN models include 
nozzle temperature, printing speed, raster angle, and PMMA content in 
the polymer matrix, particularly focusing on blends with broad glass 
transition temperature regions. This comprehensive approach aims to 
4D print PLA/PMMA composite bio-screws with enhanced mechanical 
properties and shape memory capabilities, suitable for advanced 
biomedical applications such as orthopaedics and dental implants.

2. Materials and methods

2.1. Materials

Poly L-lactic acid (i.e., PLLA) filament (ρ = 1.23 g/cm3, melt flow 
rate = 6 g/10min) and poly methyl methacrylate (PMMA) granules (ρ =
1.19 g/cm3, melt flow rate = 3.8 g/10min) were supplied by YOUSU 3D 
technology Co. and CHIMEI Co. respectively.

2.2. Processing and 3D printing

PLA filaments were chopped into small pieces utilizing a pelletizer 
machine, then along with PMMA granules were placed in a vacuum oven 
at 85 ◦C overnight to remove any moisture. The materials were then 
added to an internal mixer (Baopin Technology co.) and were melt- 

Table 3 
ANN architecture.

Training algorithms Input layer Hidden layers Output layers

Number of neurons Number of neurons Activation function Number of neurons Activation function

Bayesian Regularization Back Propagation 4 4 SELU 2 Purelin (linear)

Fig. 5. DSC results of PLA/PMMA samples.

Table 4 
Glass transition temperature (Tg), its broadness (ΔTg) and crystallinity (Xc) of 
PMMA/PLA blends.

PLA/PMMA Tg (◦C) ΔTg (◦C) Xc (%)

100/0 67 12 13.4
80/20 65 17 11.9
60/40 69 34 0
50/50 72 40 0
40/60 74 35 0
20/80 64/98 10/12 0
0/100 104 15 0

Fig. 6. (a) Storage modulus and (b) tanδ of pure PLA and PLA/PMMA blends.

H. Doostmohammadi et al.                                                                                                                                                                                                                   Journal of the Mechanical Behavior of Biomedical Materials 160 (2024) 106719 

4 



blended for 18 min at 180 ◦C with twin screw speed of 70 rpm. The 
blends were then compressed by compression-moulding technique to 
form sheets. The obtained sheets were then placed in a bath of liquid 
nitrogen right after the compression-moulding step to prevent crystal
lization of PLA. PLA has low crystallinity and its crystallites do not allow 
full interaction between PMMA and PLA chains. Next, sheets were 
chopped into pellets to be added in pellet-based bio-3D printer. The 
pellet-based 3D printer has a cylindrical chamber that exhibits a heater 
at its bottom. The material melts in the chamber and a hydraulic arm 
forces the material through the nozzle. The 3D printing constants are 
presented in Table 1 and the whole process is schematically presented in 
Fig. 1.

2.3. Characterization

To study the thermal behavior and the compatibility of the materials, 
DSC based on ASTM D3418-21was utilized. DMA Q850 was utilized to 
study the physical properties of the polymer blends and field emission 
scanning electron microscopy (FE-SEM) analysis were carried out uti
lizing DSC 214 Polyma and TESCAN Mira 3 respectively. DSC was per
formed under heating range of 25–300 ◦C with heating rate of 20 ◦C/ 
min. The crystallinity of the samples were then calculated according to 
Eq. (1). Gold coated (10 nm thickness) samples with dimension of 10 ×
10 × 1 (mm3) were employed for FE-SEM analysis.

For evaluating shape memory properties, samples of 30 × 10 × 1 

(mm3) were 3D printed. As shown in Fig. 2, assessing shape memory 
properties contain two steps of programming and activation. In pro
gramming step, samples were bent into “U shapes” (temporary shape) at 
100 ◦C (nearly 25 ◦C higher than glass transition temperature of the 
blends). Next, the samples were cooled to room temperature and then 
the force was removed. The activation step began with heating up the 
samples to 100 ◦C. At this temperature, the samples recover their orig
inal shape (permanent shape). The shape memory properties of the 
samples were assessed in this study using the following equations (Eqs.) 
to determine the shape recovery ratio (Rr) and shape fixity ratio (Rf) 

Xc =
ΔHm

ΔH0
m(1 − ϕ)

× 100% (1) 

Rf =
θfixed

θmax
× 100% (2) 

Rr =
θmax − θi

θmax
× 100% (3) 

In equation (1), ΔHm is the heat of melting obtained from the area 
under the melting peak, ΔHm

∘ is the heat of melting for a 100% crystal
line sample of the same polymer, which can be found in standard 
reference tables. The heat of melting for 100% crystalline poly (L-lactic 
acid) (PLA) is approximately 93.7 J/g (Ertiletskaya et al., 2023). and φ is 
the volume fraction of the polymer phase and in equations (2) and (3), 
θmax represents the target angle for shape retention, θfixed is the angle 
that remains after the constraints are removed, and θi is the unrecovered 
angle. A schematic of shape memory tests is presented in Fig. 2.

For tensile tests, samples were 3D printed according to ASTM-D638 
(type-V). Nevertheless, the clamping length was reduced due to re
striction in gripper of universal testing machine (SANTAM-STM05). The 
tests were done with the stretching rate of 1(mm/min).

2.4. Response surface methodology

Response surface methodology was utilized to predict the optimum 
3D printing parameters and PMMA content for shape recovery process 
and UTS. In this respect two central composite experimental designs 
(CCD) with 4 independent variables were employed. This design is 
characterized by its ability to explore both linear and quadratic effects, 
as well as interactions between different factors in a systematic way. 
Central composite design typically consists of a factorial portion, a set of 
center points, and a set of axial points that are located at various dis
tances from the center (Fig. 3). The CCDs were performed by Design 
Expert v.13.0.1with 26 runs and α = 1. Each run represents two samples 
(One for shape memory and one for tensile test, each with the afore
mentioned size). Table 2 displays the variables and levels. The correla
tion between the variables and the responses were calculated by second- 
order polynomial Eqs. as given below: 

Y = β0 +
∑n

i=0
βiXi +

∑n

i=0
βiiXiXi +

∑n− 1

i=0

∑n

j=i+1
βijXiXj + ε (4) 

where β0, βi and βii are constant, linear coefficient and squared coeffi
cient, βij is the cross-product coefficient, n is the number of factors (n =
4), Xi is the real value of the independent variable and ε is the error term 
which is typically assumed to be normally distributed with a mean of 
zero.

2.5. Artificial neural network methodology

The Artificial Neural Network (ANN) is a mathematical model 
inspired by the structure and functioning of the human brain and ner
vous system. ANNs work by simulating the behavior of interconnected 
neurons in the human brain to process complex information and make 
predictions or classifications (Zolfagharian et al., 2021). In the current 

Table 5 
ANOVA table with terms of each variable and the interconnected terms for 
model prediction- *NU denotes the term which is not involved in the model.

UTS Shape recovery

Source P P

Model 0.0002 0.0089
A- Temperature 0.4157 0.7603
B- Raster angle 0.0308 0.0061
C- Speed 0.3030 0.3558
D- PMMA content 0.0713 0.5260
AB 0.9155 *NU
AC 0.9359 *NU
AD 0.4956 0.6675
BC 0.7734 0.0810
BD 0.0095 *NU
CD 0.0302 0.1401
A2 0.1932 0.0460
B2 0.0008 0.0020
C2 0.5315 0.0023
D2 0.7622 *NU
Anticipated R2 0.9276 0.88
lack of fit 0.3423 0.5935

Table 6 
The optimal ANN parameters for predicting UTS and shape recovery ratio of the 
composites.

MLPS Learning 
rate

Momentum Training 
RMSE

Cross validation 
RMSE

Epochs

4-12- 
6-2

0.62 0.43 0.036 0.041 18000

Table 7 
Comparison of predicted vs. actual values in ANN and RSM.

Shape recovery UTS

Parameters ANN RSM ANN RSM

MAE 1.64 3.0657 1.3334 2.1918
R2 0.9536 0.8588 0.9615 0.9145
RMSE 1.8002 3.2525 2.1918 2.6916

H. Doostmohammadi et al.                                                                                                                                                                                                                   Journal of the Mechanical Behavior of Biomedical Materials 160 (2024) 106719 

5 



study ANNs have been applied on the same data used for RSM. As 
depicted in Fig. 4, ANN has some inputs, hidden layers and outputs. 
Between the input and output layers, there may be one or more hidden 
layers. These layers contain neurons that process the input data through 
weighted connections and activation functions. These layers consist of 
neurons that transfer weights by functions. The transfer functions used 
in this work are given as below: 

F(x)= λ
{

x, if x > 0
αex − α, if x ≤ 0 − ∞≤ Fi ≤ + ∞ (5) 

Fi = x − ∞ ≤ Fi ≤ +∞ (6) 

After testing various training functions, it was discovered that the 
Bayesian regularization (BR) algorithm yields the best results with 
minimal square root error since it incorporates Bayesian principles to 
prevent overfitting, which is especially beneficial for small data sets 
where overfitting is a common issue, also it can adapt well to varying 
data distributions and complexities which is again an advantage for 
small data sets with diverse characteristics. The ANN architecture used 
for this work is presented in Table 3., it should be noted that the ANN 
used 21 random data for training and checked the results with the other 
five for reaching the best performance. The model uses Scaled expo
nential linear unit (SELU) activation function due to its better perfor
mance than rectified linear unit (ReLU) activation functions for this 
problem.

2.6. Error functions

In this work, three error functions were used to validate the perfor
mance of ANN and RSM. 

R2 =1 −

∑n

m=1

(
Ym,e − Ym,p

)2

∑n

m=1

(
Ym,p − Ye

)2
(7) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

m=1

(
Ym,p − Ym,e

)2

n

√
√
√
√
√

(8) 

MAE=
1
n
∑n

m=1

⃒
⃒Ym,e − Ym,p

⃒
⃒ (9) 

where R2 is the coefficient of determination and RMSE is the root mean 
square error, Ym,e and Ym,p are the experimental and predicted values 
respectively. n represents the number of experiments and Ye represents 
mean square value of experimental data.

Fig. 7. Experimental and predicted values for (a) shape recovery ratio and (b) UTS.
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3. Results and discussion

3.1. Differential Scanning Calorimetry

The miscibility, thermomechanical behavior and crystallinity of 
polymer blends have been investigated by DSC and DMTA. According to 
Fig. 5, the two consequent black arrows show the glass transition region 
of each polymer blends. In pure PLA, the glass transition region is be
tween 60 ◦C and 72 ◦C. the crystallites start to form at 103 ◦C. and the 
melting point was recorded at 171 ◦C. the same trend was observed for 
PMMA/PLA with 20/80 %wt. which indicates that PMMA phase did not 
influence the crystallinity of PLA. For 80/20 and 0/100 %wt. of PMMA/ 
PLA blends two glass transition regions can be noticed which means that 
there are not compatible. High compatibilities with broad thermal 
transition regions are observed in polymers with PMMA content of 40 % 
wt., 50 %wt. and 60% wt. This region is as broad as around 35 ◦C for all 
three compatible blends. Broad thermal transition regions allow multi
ple shape memory effect, additionally, it brings more flexibility in tun
ing the activation temperature for shape memory behavior which makes 
it suitable for different applications. Hence, these three blends were 
chosen as one of the four parameters used for RSM and ANN inputs. It 
can also be noticed that in these samples PLA and PMMA chains could 
make fully dispersed interconnections. This can be confirmed by having 
no sign of crystallinity in the curves. More details about crystallinity are 
provided in Table 4. DMTA results in Fig. 6 also confirm the results of 
DSC. Broad thermal transitions seen in Fig. 6 (a) and 6 (b) for PLA PMMA 
blends with 40/60%, 50/50% and 60/40% are almost the same. The 

peaks of tanδ and its broadness indicate long α-relaxation time 
compared to pure PLA. The broad tanδ also indicates that two thermal 
transition temperatures overlap and one single peak is observed. This 
shows that different segments of both polymers relax within a long 
α-relaxation time and it takes time for each chain of one phase to be 
released from the other. This broadness confirms that a good portion of 
PLA and PMMA chains are fully entangled and this entanglement plays 
part in shape memory mechanism which is discussed in the shape 
memory test section.

3.2. Artificial neural network and response surface methodology

3.2.1. RSM
To show the significance of each coefficient in RSM modelling, an 

analysis of variance was conducted which is needed to determine the 
pattern of mutual interactions between each individual variable. The 
terms are called significant if the values of P are less than 0.05. Addi
tionally, model terms with P > 0.1 are not significant. Some quadratic 
and linear terms are omitted in the analysis as it results in better model 
fit for shape recovery. Table 5 demonstrates the significance of each 
variable on shape recovery percentage and UTS. According to the table, 
terms B, BD, CD and B2 in UTS and terms B, A2, B2 and C2 in shape re
covery are significant. Hence, the raster angle plays a crucial role in both 
models and quadratic terms of temperature and raster angle are signif
icant. The lack of fit in both models are not significant which means that 
our model fits properly. R2 value of shape recovery is around 0.8 which 
was predictable due to the close value ranges.

Fig. 8. the effect of model parameters on shape recovery ratio of PLA/PMMA blends.
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3.2.2. ANN
Multi-layer perceptron structure (MLPS) represents a fundamental 

type of ANN that has a hierarchical structure and is comprised of an 
input layer, one or more hidden layers, and an output layer. The defining 
characteristic of MLPs lies in the fully interconnected nature of their 
layers, where each neuron in a given layer is linked to every neuron in 
the subsequent layer via weighted connections. During training, MLPS 
uses a process called backpropagation to adjust the weights of these 
connections which minimizes the error between predicted and actual 
outputs. In the developed ANN model, the most suitable MLPS was 
selected as 4-12-6-2. The optimal configuration of the ANN parameters, 
including momentum, epochs, and learning rate were determined for 
the MLPS proposed in this study. The RMSE for the validation data set 
was determined so that the optimal number of epochs can be identified. 
Epochs were limited to 18000 for avoiding overfitting. The momentum 
was selected by choosing a reasonable range and then the best value was 
selected. The selected parameter values, which yielded the highest 
predictive performance for the output variables, are provided in Table 6.

3.2.3. Comparison of RSM and ANN
The ANN and RSM models were compared for their predictive ca

pabilities. As mentioned in the paper, MAE, RMSE and R2 are the pa
rameters used for this comparison. Table 7 shows the computed values 
for these parameters and Fig. 7 indicates the resemblance of the 

predicted value vs. actual values for UTS and shape recovery ratio of the 
composite samples. The ANN model displays excellent accuracy in both 
outputs. Unlike the UTS results, the RSM model does not show high 
accurate results for shape recovery ratio. This can be reasonable since 
the values of shape recovery ratio are within a close range. In general, 
the RSM model shows higher deviation in comparison with the ANN 
model. In this work ANN performance was more significant that the RSM 
as ANN has higher capacity in generalization and is more capable in 
approximating the nonlinear systems whereas RMS model is limited to a 
specific polynomial form. Another limitation of RSM models is the 
optimization of multiple responses, which can be accomplished more 
easily in the ANN model. To achieve reasonable accuracy with the RSM 
model in multi-responses tasks, it is necessary to run it multiple times. 
Therefore, the ANN model is favored over the RSM model in terms of its 
generalization capability, approximation of nonlinear systems, and 
handling of multiple responses.

3.3. 3D and 4D printing based on RMS and ANN results

The 3D printing parameters and PMMA content were analyzed for 
both tensile and shape memory tests in Figs. 8 and 9 respectively. Only 
three significant contours for each are shown here, with the rest avail
able in the supplementary material. All parameters are shown to be vital 
in determining optimal results. The RSM model indicates that a raster 

Fig. 9. the effect of model parameters on UTS of PLA/PMMA blends.
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angle of 30◦/-30◦ (represented by 30◦ in contour plots) yields the best 
shape recovery ratio, as indicated by the maximum values surrounding 
it. The ANN model however, is more complex than RSM and presents 
challenges in discussing the results of raster angle. The same complexity 
applies to the speed parameter. A moderate printing speed ensures 
uniform material flow, while temperature also plays a crucial role in 
achieving uniform 3D printing. Higher temperatures are more suitable 
for shape memory tests, evidenced by both ANN and RSM models in all 
contour plots. Therefore, higher temperatures result in more uniform 
printing of specimens in this case. In Fig. 9, the influence of PMMA 
content is more obvious. Higher content of PMMA resulted in higher 
ultimate stresses. It is possible that the expected uniform core-shell 
morphology led to that. Polymer core-shell morphology which in 
many research studies is referred to as sea-island morphology is a type of 
morphology seen in polymer blends. Sea-island morphology is a specific 
type of phase-separated structure commonly observed in polymer 
blends. In this arrangement, one phase (the "sea") is continuous, while 
the other phase (the "island") is dispersed within it as discrete domains. 
The islands are usually small and can vary in size and shape depending 
on the processing conditions and the compatibility of the two phases. 
The well distribution of islands within the sea phase can significantly 
enhance the material’s overall performance. Raster angle with 0◦/90◦

(represented by 0◦ in contour plots) is supposed to have the best impact 
on tensile strength. Speed and temperature behaviors is almost different 
in each model and is complex to be discussed.

4. FE-SEM

The results from the ANN and RSM analysis revealed that materials 
containing 50% and 60% PMMA content exhibited the highest perfor
mance in shape memory and tensile tests, respectively. Figs. 10 (a) and 
Fig. 10 (c) show the morphology of etched samples for PLA/PMMA 
blends with 50/50% wt. and 40/60% wt., respectively. Fig. 10 (b) and 
Fig. 10 (d) display the cross sections of the samples in the same order. In 
Fig. 10 (a), a partial co-continuous morphology is evident, while fully 
dispersed PLLA droplets are observed in Fig. 10 (c). These different 
morphologies impact the shape memory properties, as discussed in 
detail in the shape memory test section. The fully dispersed sea-island 
morphology in Fig. 10 (c) enhances stress distribution, while the cross 
section of both materials shows high printing quality without defects, 
leading to improved shape fixity, recovery, and load distribution. 
Furthermore, materials with minimal defects exhibit consistent shape 
memory cycles with minimal changes in shape fixity and shape ratio.

5. Tensile test

According to the predictions of both models and experimental test 
that were conducted (All predictions are provided in the supplementary 
file), the best tensile test specimen was 3D printed with 60% of PMMA 
content, raster angle of 0◦/90◦, printing speed of 500 mm/min and 
temperature of 200 ◦C. The strength of the specimen was 65.2 MPa 
which is around 3% more than the predicted value by ANN (68.7) and 
5% compared to RSM guess (61.23). Fig. 11 (a) illustrates the specimen 

Fig. 10. SEM of Etched samples and cross sections of PLA/PMMA with (a, b) 50/50% wt. and (c, d) 40/60% wt. respectively.
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and the tensile test. The results are presented in Fig. 11 (b). As it is 
displayed, addition of PMMA with equal weight portion to PLA caused 
an increase in ultimate tensile strength of the material. As demonstrated 
in the previous section (FE-SEM) Also, the strain at break was recorded 
the same for both material which indicates that addition of PMMA does 
not influence its elongation. All in all, it is to believe that the material is 
mechanically robust and can be used in applications like bio-screws for 
bone fractures and bio-robotics due to its biocompatibility.

6. Shape memory test

The research study done by Shi et al. (2013) provided information 
about the complex behavior of blends with broad glass transitions which 
reveals that the presence of multiple individual glass transitions corre
sponds to different shape memory elements within nano-domains. This 
indicates that during the shape recovery process, the high Tg and low Tg 
nano-domains containing varying amounts of oriented PLA/PMMA can 
be selectively activated. The researchers identified three distinct 

mechanisms at play when the composites were subjected to direct 
heating stimulator. At lower switch temperatures (around 60 ◦C–75 ◦C), 
the soft domains formed by PLA rich nanodomains drive shape changes 
primarily through the action of PLA chains. Moving into the temperature 
range of 75 ◦C–85 ◦C, shape changes are enabled by the presence of 
highly entangled PLA and PMMA chains. At higher switch temperatures 
approaching 90 ◦C, only the PMMA chains within the PMMA rich do
mains are thermally activated. In light of these findings, a stretching 
temperature of 100 ◦C was selected to ensure that all chains are actively 
involved in the shape changing process. This careful consideration of 
temperature parameters highlights the intricate interplay between 
different chain configurations and their roles in shape memory behavior 
within the nanocomposite material. The full process is depicted in 
Fig. 12 (a). According to the results, the best shape memory specimen 
has 50% of PMMA content, with 3D printing speed of 190 ◦C, speed of 
300 mm/min and raster angle of 30◦/-30◦. Two types of tests were 
performed. The first test was carried out in hot water in bending mode 
and the second one was performed in stretching mode in DMA Q850 
from TA instrument. The sample showed perfect shape fixity in both 
tests (100%). The results for the test in hot water is provided in Fig. 11 
(b) which shows an excellent shape recovery ratio (100%) within 5 s 
(Movie S1). This result was predicted with 5% error in ANN and 6% 
error in RSM models. The shape recovery ratio in tensile mode is 
calculated differently from the bending mode as it can be computed 
according to Eq. (4). The shape recovery was recorded 97.8% which 
shows the effect of timing while both displayed maximum shape fixity 
ratio (Fig. 12 (c)). The effect of time played a role in the observed dif
ferences in shape recovery ratio between the two testing modes. In the 
tensile mode with higher time, the material has been exposed to pro
longed stress and strain, which could potentially lead to some level of 
permanent deformation or memory loss in the material. This could affect 
its ability to fully recover its original shape compared to the bending 
mode with a shorter duration of testing.

Supplementary video related to this article can be found at https:// 
doi.org/10.1016/j.jmbbm.2024.106719

7. Potential applications

As previously discussed, both PLA and PMMA are known for their 
biocompatibility, a characteristic that is also present in PLA/PMMA 
blends. Moreover, these blends exhibit superior UTS and shape memory 
properties compared to pure PLA, which is commonly used for bio- 
scaffolds and implants. Utilizing the optimal 3D printing parameters 
identified through RSM and ANN models, a bio-screw and a bio-scaffold 
were successfully 3D printed for maximum UTS (Fig. 13). This 3D 
printed parts can be effectively used to address bone defects in ortho
pedic procedures and the bio-screw can serve as dental implants due to 
its mechanical robustness, full biocompatibility, and high stability. 
Additionally, the blend’s shape memory properties are advantageous for 
such applications. It should be noted that the bio-parts temporary shape 
can be fixed in a within a temperature range of 60 ◦C–70 ◦C, where PLA 
chains act as soft domains since the material has a single broad thermal 
transition temperature and therefore the bone cells do not suffer 
considerable damage. It should be mentioned that a temperature of 
70 ◦C can be harmful when it directly affects the bone tissues. However, 
in this case, the temporary shape of the SMPs has no direct interaction 
with bone tissue (As depicted in Fig. 13). Instead, localized heat is 
applied to the specimen itself—not the bone. Due to its rapid recovery, 
the entire process completes in less than 6 s and consequently, this 
process is not harmful to the bone tissue.

8. Conclusion

In this research, PLA/PMMA blends were successfully 4D printed for 
the first time. The study utilized ANN and RSM models to identify the 
optimal 3D printing parameters and PMMA content needed to achieve 

Fig. 11. (a) Tensile test specimen and testing machine (b) tensile test plot and 
(c) the UTS of the materials.
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the desired shape recovery ratio and ultimate tensile strength. Both 
models provided accurate predictions, with the ANN model demon
strating greater flexibility in handling nonlinear relationships compared 
to the RSM model. The predicted data closely matched the experimental 
results, as indicated by the error functions. The blends with a 50/50% 
weight ratio of PLA to PMMA exhibited the best shape memory perfor
mance, achieving a shape recovery ratio and shape fixity of 100%. 
Comparative shape memory tests in tensile and bending modes revealed 
that the time factor negatively impacted the shape recovery ratio. 
Additionally, the blend with a 40/60% weight ratio showed an ultimate 
tensile strength of 65.2 MPa, which is 17% higher than that of pure PLA. 
These findings suggest that PLA/PMMA blends, due to their high per
formance and biocompatibility, could serve as a suitable alternative to 
pure PLA in shape memory components and biomedical applications 
requiring mechanically robust polymers. To demonstrate this, a bio- 
screw and a bio-scaffold were 3D printed, showcasing excellent 3D 
printability and potential applications in biomedical fields such as 

orthopaedics and dental implants.
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