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Abstract: Stepper motors are used to control CNC machinemémy applications. As well as following the
required path precisely, it is also important tit motion be smooth and that the surface speediteollable.
Improved interpolation algorithms for individualraght lines and circular arcs have been develapsdg

distance as a parameter [Chow et al, 2002], [CI2003].

The algorithms control the motor by meanpudées

and the generation of the pulse timings is baseth@geometry of the shape. For high speedqigéessary to
allow smooth acceleration at the beginning and laimsmooth deceleration at the end. Thus, appatspri
acceleration and deceleration algorithms have loeeloped for use with the new interpolation aldponis.
This paper describes how simulation has been useddmate the new algorithms and compare them with
previous algorithms. The algorithms are descriloedife 2D case but the principle can be extend&iDto

Keywords: CNC, simulation, interpolation, motion generatietgpper motor, smooth motion, acceleration.

1. INTRODUCTION:

In machine tool control for CNC machines, it isywer
important to have both smooth continuous motion
and precise following of the required path. The

a parameter to synchronise the axes. At the same
time smoothness of motion is achieved by keeping
the pulse rate constant (for lines) or adjusting it
gradually (for arcs). Acceleration algorithms have

surface speed of the machine tool also needs to be also been developed for use with these algoritlims t

controlled appropriately. Stepper motors are
popular, because they have simple interface
requirements and low cost. They normally operate
without feedback and the required shape is followed

allow high speed machining. Smooth acceleration
and deceleration are achieved by gradually
increasing and decreasing the speed at the beginnin
and end of the motion, respectively. This paper

by adjusting the speeds on the different axes. The describes how a number of simple simulations have
path round the shape is generated by sending pulsesbeen used to allow the new algorithms to be
to the motors for the axes at calculated times. In evaluated for both errors in position and smoothnes
many cases all the steps are of the same size, of the motion. Section 2 describes some previously

typically 0.01 mm. We have assumed that thiseés th
case in all our examples. When a complex path is t
be followed, it is often approximated first by a
combination of lower degree curves, such as lines
and circular arcs, and interpolation is performed o
these curves.

Previous algorithms suffer from lack of smoothness
in the motion, errors in position and varying soefa
speed.

In an attempt to address these problems, [Papaionnou,

used interpolation algorithms. Then the simulation
methods are explained in Section 3 before the new
algorithms are presented in the later sections. We
have investigated the algorithms for the 2D cage bu
the ideas can be generalised to 3D.

2. INTERPOLATION ALGORITHMS;

Previous interpolation algorithms for lines andsarc
include the Digital Differential Analyser (DDA)
1979], the Search-Step algorithm

research in our group has investigated methods for [Valentino and Goldberg, 2000] and the Direct
smoothing the pulses after they have been generated Search algorithm [Massory and Koren, 1978]. The

[Steiger et al, 1994], [Stout et al, 1994].

More recently algorithms have been developed by
our group to improve the interpolation of straight
lines and circular arcs directly [Chow et al, 2Q02]
[Chow, 2003], [Poliakoff et al, 2005]. Using

DDA interpolator performs digital integration on
velocity to obtain the positions to be reachedxadf
intervals of time At) and is expressed by
X = X, +V, At where the position at the start of
the i" interval is x; and v; is the corresponding
velocity [Papaionnou, 1979]. Over i interval

simulation, these algorithms have been demonstrated the motion is generated in the direction of the
to reduce errors in position, reduce unnecessary tangent to the curve at the start of the interval.
fluctuations in surface speed and achieve smoother There is often some deviation from the required
motion. The algorithms are based on the geometry path, because in general the velocity is not comsta
of the line or arc and use distance along the casve  over the interval. However, since the velocity is
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FIGURE 1. The path plot from the Zero Order Simulation of BIBA interpolation at 0.3 m/min. for (a) tl
straight line from (0, 0) to (30, 20) and (b) thecalar arc from (20, 0) to (0, 20) with centre @), (mesured ir
steps of size 0.1mm.). The required path is sliashed and the largest errors are 0.55 and 0.84peetively.

involved in the interpolation algorithm, the patiilw
be machined at close to the required speed.

The Direct Search algorithm [Massory and Koren,
1978] is an improvement of the earlier Search-Step
algorithm and both are based on the local geometry
of the curve. They are used with curves defined in
implicit form, where every point on the curve
satisfies an equation of the fori(x,y) =0. For
points lying off the curve f(x,y)#0 and the
magnitude of f(x,y )increases with the error in
position. The algorithm chooses the next
interpolated point to be the one closest to thérekds
curve, i.e. the one for which (x,y iy closest to 0.
For the Search-Step algorithm there are four ptessib

3. SMULATION METHODS:

For accuracy of path following we have used two
simulation methods, Zero Order and Second Order,
and have found that they are useful in different
ways. For simulation of speed we have used a first
order method which is effectively an estimate @& th
pulse rate.

3.1. Simulation of Path Following:

Simulation of path following has enabled us to

evaluate errors in position [Chow, 2003] and we

present two simulation methods here. The first

method, Zero Order Simulation, does not take into
consideration the response time of the steppernmnoto

i.e. the stepper motor is assumed to move by one

moves at any stage, because it allows a move by one step instantaneously when a command pulse is

step but only in a single axis. For Direct Seaach
move of one step simultaneously in both axes i3 als
allowed, so the number of possible moves is eight.
Unlike the DDA algorithm, these two algorithms do
not have full control of the surface speed during
interpolation. Because a move can be of length 1
along a single axis on2 when both axes are
involved, the value of the resultant speed depends
the direction of the motion, i.e. the tangent te th
curve. Thus, for interpolation of a 2D circulacar
the speed can vary by up to a factondf

In the next section we use the DDA and Direct
Search algorithms to illustrate the simulation
methods before the new algorithms are introduced.
For evaluation of interpolation algorithms it is
important to investigate both errors in positiordan
the speed on the individual axes. Three different
simulation methods have been used. None of them
is completely realistic but, between them, thepwall

us to make comparisons between the chosen
algorithms.
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received. Thus, in detail this simulation is véay

from the motion of a real machine but it does allow
the sequence of pulse timings on the two axes to be
seen, as shown in Figure 1, where the simulation is
shown for one line and one arc. Some moves are in
a single axis, giving a vertical or horizontal linen
other cases there is a move in both axes
simultaneously, i.e. a diagonal line. Thus, thet pl
from Zero Order simulation does not depend much
on the speed but provides an overview of the
expected path of the machine and has been used to
provide a simulator to check the path before cgttin
[Henrich et al. 2005]. Effectively it indicates lgn

the number of pulses in each axis and the sequence
in which the pulses are sent to the two motors. We
explain later how it can be misleading at a detiaile
level when errors are considered.

The second method, Second Order Simulation, is
likely to be closer to the behaviour of a real eyst
than the previous one, because it takes into atcoun
the fact that the motor cannot respond

ISSN 1473-804x online, 1473-8031 print



POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVAIATION BY SIMULATION

2 - 21
n) 0
AN
7| N 7
1Y |
' |
0 - 0-
Time Time
(@ (b)
2 - 21
v) [%2]
S S
0p] | %1 |r
| !
| I
|
0- 0-
Time Time
(©) (d)

FIGURE 2. Examples of the Second Order Simulation of oneeputsa single axis fadifferent values of th

damping factor: (a) 0.15, (b) 0.7, (c) 1.0 and 2.

instantaneously [Christodoulou, 2000]. This

simulation system uses as input the Zero Order
simulation of each axis separately (including the
timings for every pulse) before they are combireed t

give the simulated path. The Second Order simulator
is still not entirely realistic but it is nevertlesk

a compromise has to be reached between avoiding
overshoot and not taking too long to complete the
step. A value of 0.7, in Figure 2(b), has beerseho

to represent this situation and has an almost
negligible overshoot.

useful, because it is expected to have a smoothing As an example of the simulations, one line and one

effect similar to that of the motor and drive citsu

For the Second Order simulation two parameters are
needed: the natural frequency and the damping
factor. We have chosen the natural frequency to be
100 Hz, which is a typical value for a stepper moto
and a damping factor of 0.7. Figure 2 shows the
importance of the damping factor in determining the
resulting motion. Examples of the result of Second
Order Simulation for one pulse are shown for four
different values of the damping factor. For a low
value of damping factor 0.15 in (a) there is adarg
overshoot followed by a number of oscillations
which gradually settle down, whereas for a large
value 2.5 in (d) there are no oscillations buakes a
considerable time to complete the step. The value
1.0, in Figure 2(c), is known as critical dampingla

is ideal, because it is the smallest value for Wwhic
there are no oscillations and thus takes the sttorte
time to complete the step without overshooting. In
practice it is difficult to achieve critical damjrand
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arc have been interpolated at surface speed 500
steps/sec, i.e. 0.3 m/min. The line is from (0®) t
(30, 20) and the arc is from (20,0) to (0, 20) witk

arc centre at (0,0) (all distances given in stefisch

are of length 0.01mm.).  Figures 1 and 3 show the
Zero Order simulation of the DDA and Direct

Search algorithms, while the Second Order
simulations are given in Figures 4 and 5. The
simulation of axis speed is described in the

following section. In Figures 1(b) and 4(b) it dam
seen that the direction of the motion tends to lag
behind a little, so the path is mostly outside dhe
This is because the DDA method assumes that the
velocity is constant over the time interval.

3.2. Simulation of Speed:

For simulation of axis speed we have estimated the
speed at the time of each pulse based on the time
between that pulse and the next. Thus, at ti(ng

the time of the"" pulse x-axis the speed is given by
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FIGURE 3. Path plotsfrom the Zero Order Simulation of the Direct Sémnaterpolation for the line and ai
from Figure 1. The largest errors are 0.28 and().fespectively.

L d similarly f herel i machine to follow the required path according ® th
) (and similarly fory), whereL is geometry of the path, while moving at the required

b+ D -t d. Unlike the previ thods, we h d
speed. Unlike the previous methods, we have used a
the step length [Chow et al, 2002], [Chow, 2003]. parameter-based method to synchronise the

This is effectively a first order simulator. Agatris individual axes. For both lines and arcs, theamef

?hoé Vigerefi'sﬂgr:g deflIrsgdrrlzti(r:t\lljv?lh;l?;v%";%me speed can be calculated from the distascalong
P q Y- the curve, so this distance has been found to be a

smoothmg_ but W'I.l of;en suffer_ from vibrations, suitable parameter. Indeed for straight lines and
exacerbating the situation, especially when theegul :
circular arcs the other parameters normally used ar

rate fluctuates. Therefore it is the fluctuatiamshe . :
pulse rates that need to be detected. Figure\wssho proport_lonal o the distance along the curve, g.g.
: for a line or the angle of turn for an arc. The

g:eoristﬁ(rer?sd glnolts thfo_raxtizggagg d |st Ig%owr? bDeE::Jse calculation of the pulse timings are based on #th p
9 ' y g P ' geometry and the required surface speed. For

the speed plot is similar forin each case (although interpolation we assume the overall speed is

mgrzrir?hrgosreggj dCtiuna;ggzelg tg?hlge?r:a(;‘azeefggises)constant. Then the acceleration algorithms can be
P used when changes in speed are required, as

The y-axis speed plots for the Direct Search . . )
algori¥hms arepshowrfin Figure 7. For the arcxhe described in Section 6.
axis speed plot is again similar but for the linégsi
constant (at 500 steps/sec). Thus, for both
interpolation algorithms in these examples at least
one axis has sudden changes or fluctuations in
speed.

The initial idea was to imagine a point travelling
along the curve at the required speed and then
generate a pulse to theaxis motor every time a
step in thex direction has been completed (and
similarly for they-axis). For 2D linear interpolation,

Ideally, for smooth motion along a straight line th astraight line is given in parametric form as:

speeds on both axes would be constant, while for an
arc they would each follow the appropriate paraof
sine wave. Our new algorithms are able to generate \yheres is the distance along the lineg,(yo) is the

pulse trains close to the ideal and without any g4t point andd is the (constant) angle between the
sudden fluctuations in speed. line and thex-axis. IfL is the length of one motor
step, then the distance incorresponding to tha"
pulse isnL and the corresponding distance along the
curves(n) can be calculated. Thus for botlandy

we have:

X(8) = %, +sc0, y(s) =y, +ssing, 1)

4. THE NEW INTERPOLATION

ALGORITHMS:

We have developed new linear and circular arc
interpolation algorithms to reduce the problems of
lack of smoothness in the motion and varying ¢ ) -_n . ") _nL @
surface speed [Chow, 2003], [Poliakoff et al., 2005 x cog’ Y sin@

At the same time it is important that errors in

position are not increased. On a particular axés t  If a constant speed is required, the corresponding
pulses are generated with timings which allow the timings of then™ pulse for each axis is given by:
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FIGURE 4. Path plots from the Second Order Simulation ofIDEA interpolation from Figure 1. The large

errors are 0.38 and 0.63, respectively.
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FIGURE 5. Path plots from the Second Order Simulation of theeBtirSearch interpolation from Figure

The largest errors are 0.13 and 0.29, respectively.

nL
t.(n)=—
«() V cosé

nL

Vsing' ®)

t,(n) =

However, we have found that, although smoothness
was improved, errors in position could be
exacerbated by this method. In Figures 8(a) aajl 9(
it can be seen that the path is, on average, glstvb
the required line, as is reflected in the valuahef
average error as 0.14 and 0.13, respectively.theor
arc, Figures 8(b) and 9(b), the path starts to move
outside the required arc, then follows it quite lwel
but moves somewhat inside it near the end. For both
line and arc each simulation has a rather highevalu
for the largest error. After further investigatiore
have found that it is possible to obtain a redurctio

the errors can be obtained without losing the
smoothness of the speed plots.

I.J. of SIMULATION Vol. 6 No 7-8 22

If we assume that the motor moves instantaneously
when a pulse is sent, then the initial method will
always cause a delay in each axis, which will vary
between 0 and with an average value ofl*2 This

is because the algorithm waits for a complete step
before generating a pulse. We have estimated the
error in position for the case of a delay in betind

y of %L, For a line at anglé to thex-axis a point

(X1, Y1) on the line satisfies for some const&nt

(4)

Then the distance from the line of a point
(X, - YA, y; - Y4) representing the actual position is
given by:

E= (xl —1/2L)sin9 - (yl —1/2L)c059 +C.
Substituting forC from equation 4 we obtain:

X, sind-y,cosf+C =0.

(®)
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FIGURE 6. Speed plots for gxis from the DDA interpolation for the line andcdrom Figures 1 and 4. (Tt
plots for the x-axis are similar, except that foetarc it starts low and then increases to the aiglalue.)
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FIGURE 7. Speed plots for gxis from the Direct Search interpolation for tlreel and arc from Figures 3 ar
5. (In the case of the arc the x-axis plot agairsimilar but starts low and then increases totiigher value
For the line the x-axis plot is constant.)

E:%L(cose—sinﬁ). (6) A similar argument can be applied in the case of
circular arcs or, more generally, to other curves,

This applies wher? is strictly between 0 and 90°  pecause at any instant the motion can be thought of

but the error is 0 whed# = 0 or 90°, because then  as moving in a straight line along the tangenti® t

only one axis is involved. For the line, we obtain arc.

E = 0.14, which agrees well with the average error

from the simulations (0.14 from Zero Order and 0.13 For a circular arc in the first quadrant with resiR)

from Second Order). If, however, the timing oéth  centre &, y.) and start angley, the parametric form

pulse is calculated when the imaginary point is-mid  js:

way between the two steps, the average étnoill

be 0. TtDus we replaaewif[h n — % in the formulae X(s) = x_ + Rco{ao _Ej,
for then™ pulse and equation 2 becomes:

(n-4) (h-3)L =y, +Rsi 2 9
s (n) = 2/— g (n)= 2/— 7 y(s) =y, +Rsin a, * 9)

() cosd () sin@ @ R
and equation 3 becomes: (with the signs corresponding to anticlockwise or
clockwise motion, respectively). Thus, for th8
_ (-2 _ (-2 pulse on each of the axes we obtain:

t(n)= L) == ®)

V cosd Vsind
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FIGURE 8. Path plots from the Zero Order Simulation for tingial New interpolation algorithm$or the line
and arc from Figure 1. The largest errors are 0&%d 0.97, while the average errors are 0.14 a@d3.
(Errors are positive below the line or outside #re, and negative otherwise.)
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FIGURE 9. Path plots from the Second Order Simulation for lthiéal New interpolation algorithmgrom
Figure 8. The largest errors are 0.19 and 0.93jlevthe average errors are 0.13 and -0.07.

s (n) = iRl:COS_l(COSG'O ¥ @J - ao} :

s, (n) = iR{sin’l[sinao + (n _R%)Lj - ao} . (10)

For constant speet®/, as in the case for linear
interpolation, the pulse timings can then be
calculated by dividing by. For the second, third
and fourth quadrants similar expressions can be
derived.

Figures 10 and 11 show the path plots for the new
algorithms using Zero and Second Order simulation,

I.J. of SIMULATION Vol. 6 No 7-8 24

respectively. For the line the average error i no
0.0 in both cases, and for the arc the value ishmuc
reduced (0.06 and 0.02, respectively). Again, the
speed plots in Figure 12 are for thaxis only but
those for thex-axis are similar, although for the arc
the speed increases rather than decreases. becan
seen that for both line and arc there are now no
sudden fluctuations in speed. The speeds on the tw
axes are a great improvement on the previous
algorithms and they are close to the ideal, i.e.
constant or changing sinusoidally, respectively.
Therefore with the new algorithms it is less likely
that there will be undesirable vibrations of the
motors.
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FIGURE 10. Path plots from the Zero Order Simulation for thewNinterpolation algorithméor the line anc
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FIGURE 11. Path plots from the Second Order Simulation for éeav interpolation algorithms from gre
10. The largest errors are 0.06 and 0.28, whike @lverage errors are 0.00 and 0.02.

Both cases are disadvantageous, because the total
ALGORITHMS: machining time will then be increased, as can be
Two types of acceleration technique commonly used seen in Figure 13. A parabolic acceleration
for high-speed machining are linear and parabolic algorithm allows a higher acceleration at low motor
acceleration, in which the speed changes either speed combined with a lower rate at high speed.
linearly or parabolically with time. The minimum  With this method much more of the available motor
speed at which a motor can move depends on the torque can be utilised and therefore the stepper
rotor and load inertia [Palmin and Shlain, 1986 an motors can be used effectively at higher speeds.
this will also be the speed at which the motor can Moreover, [Kim et al, 1994] have shown that
start moving from rest. machining accuracy is improved with parabolic
acceleration in comparison with linear acceleration
Linear acceleration results in slow acceleratiod an This is likely to be because any linear accelenatio
much of the available torque is not utilised [Pami  algorithm involves sharp discontinuities in the
and Shlain, 1986]. This is because a stepper motor acceleration, which tend to cause increased vidmati
can achieve high acceleration at low speeds but the and overshoot.
achievable acceleration decreases as the speed
increases. Thus, for linear acceleration either th For a parabolic acceleration algorithm the equation
acceleration rate has to be limited to take thie in  for speed during the acceleration and deceleration
account or the maximum speed has to be reduced. phases are quadratic functions of time and were

5. PREVIOUSACCELERATION
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FIGURE 12. Greatly improved speed plots for the y-axis from lew interpolatioralgorithms from Figure
10 and 11. (The plots for theaxis are similar, except that for the line it isated up and for the arc the spe

starts low and increases.)

represented by Palmin et al. in terms of the
acceleration (or deceleration) tirfie the maximum
speedV,, and minimum speeX, as follows:

V = pt?+qt+V,, 11

V, -V, .
where p:% and q=-2pT. Palmin et al.
calculated the approximate timing, for every
command pulse by assuming that:

Vn :Vn—l + an—l(tn _tn—l) ’ (12)

where V, is the speed at timé, and a, is the
acceleration at timg.

6. THE NEW ACCELERATION

ALGORITHMS:

Our new parabolic acceleration and deceleration
algorithms have been developed for use with the
new interpolation algorithms. They produce pulse
timings which allow the stepper motors to acceterat

or decelerate smoothly. We do not use the
approximation given by Palmin et al. from equation

12 above.

In order to maintain the desired shape during path
following, the new parabolic acceleration and

deceleration need to be applied to the surfacedspee
and not to the speed for an individual axis. Using
Palmin’s notation from equation 11, the distance
travelled,s, is given, by:

3 2
s:det:%+%+Vot. (13)

The distances, for every axis step movement is
obtained by interpolation from equations 7 and 10.
Every pulse timing can then be calculated by sglvin
the cubic equation 13. We have implemented this
using Newton-Raphson iteration.
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For the evaluation of the acceleration algorithnes w
have chosen a desired surface speed 4.8 m/mit., bu
with the step size 0.01 mm., as before. Both
acceleration time and deceleration time were set to
0.15 sec. and the initial speed was 0.12 m/min. We
have used a different line and arc, because theg ne
to be longer to allow the maximum speed to be
reached before the end and slow down again. The
straight line is from (0, 0) to (3000, 2000) (irezs$)

and the arc is from (2000, 0) to (0, 2000) withtoen

(0, 0). We have chosen the deceleration time to be
the same as acceleration time in our examples but
they do not have to be the same; in practice they
could be chosen to suit the properties of the motor
used.

Figure 13(b) shows the speed plot for fhaxis of

the line and it can be seen that the speed has a
parabolic shape at the beginning and end during
acceleration and deceleration and is constant in
between. The speed plot for tkh@xis is similar but

the speed is scaled up in the ratio 3 to 2. Tthes,
overall speed also follows the same shape (also
scaled up). Figure 14 shows the speed plots fibr bo
axes with the arc. In this case it is harder to
distinguish the acceleration and deceleration phase
because, although the overall speed is constant
during the middle phase, the speed for yhaxis
follows a sinusoidal shape similar to that in Fegur
12(b) and for thec-axis it is another part of a sine
wave. The plot of the overall speed is similathtat

for the line but the total time is shorter, becatise
total distance along the arc is shorter.

7. RESULTSAND DISCUSSION:

When they are compared with the previous
algorithms, the new algorithms have made a great
improvement to the smoothness of the speed plots.
The results of the simulations of path following fo
new algorithms can be summarised in Table 1
below.
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FIGURE 13. The y-axis speed plot for the longeragght line from (0, 0) to (3000, 2000) using (a)dar
acceleration and (b) parabolic acceleration. Thaximum speed was 4.8 m/min. and the starting spes
0.12 m/min. (The plots for the x-axis and verpfied in each case are similar but with the speattdaip.)
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FIGURE 14. The speed plots for the longer circular arc frond@@, 0) to (0, 2000) with centre (0, 0) us
parabolic acceleration: (a) x-axis and (b) yiax Again the maximum speed was 4.8 m/min. andttréng
speed 0.12 m/min. The acceleration stopped at 6@ the deceleration started at 340 ms. (The plotHe
overall speed is similar to that in Figure 13(b)tlsealed up and the time at maximum speed is ghiorte

Table 1. Position Errors for the Interpolation
Algorithms using Two Simulation Methods

Simulation| Interpolation Largest Error
Type Algorithm (s_teps)
Line Arc

Zero DDA 0.55 0.81
Order Dlrect-Sea_rch 0.28 0.40

New Algorithm | 0.55 0.62
Second DDA 0.57 0.83
Order Direct-Search 0.30 0.43
0.1 m/min | New Algorithm | 0.28 0.42
Second DDA 0.38 0.63
Order Direct-Search 0.13 | 0.29
0.3 m/min | New Algorithm | 0.06 0.28

From Table 1 it is clear that using the Second Orde
simulator gives a reduction in the largest errar fo
the new algorithms compared with both the previous
ones. This is not always the case when the Zero
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Order simulator is used. We have investigated the
Zero Order simulator and concluded that it is not
suitable for testing for small errors below thegtm

of one step, as explained below.

The plot from the Zero Order simulator must always
pass through intermediate points with integer
coordinates when measured in steps. Therefore, for
a straight line at an angteto thex-axis, unles9 is

an integer multiple of 45°, the errors in positican

be considerable. Without diagonal lines in the
simulated path the error may be up tg244.e. about
0.71. However, diagonal lines will occur only when
two pulses on different axes are calculated with
identical timings. Even a very short time interval
between the pulses could therefore increase tloe err
by up to 0.71 in the simulation, whereas in a real
situation the difference would be very small.
Therefore, with Zero Order simulation an estimated
error may itself have an error of up to 0.71 ofeps
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Thus, small errors cannot be considered to be
significant in judging the likely deviation from e¢h
required path.

If the speed were reduced more and more, the

behaviour under Second Order simulation would
become closer and closer to the Zero Order
simulation. This explains why the errors are reudlic

as the speed increases. The Zero Order simulation

will not normally change with increasing speed,

unless the resolution of time causes two timings
which are close but different a low speed to become
identical at higher speed.

The speed plots in Figures 13 and 14 show that the
pulse trains are also smooth when the new parabolic

acceleration algorithms are used for the longez lin
and arc. Table 2 shows the errors obtained ukiag t
two simulation methods and the two acceleration
algorithms.

Table 2: Position Errors for the Acceleration
Algorithmsusing Two Simulation M ethods

Largest Error
Simulation Type (steps
Line | Arc

0.55 | 0.71

Zero Order (both linear and
parabolic acceleration)
Second Order (both linear
and parabolic acceleration)

059 | 053

From the detailed error plots (not shown) it hasrbe
found that the errors are largest at the beginaimt)
end of the motion, particularly for the larger nasli
arc. We have found that the largest error for a
straight line depends very much on the direction of
the line. We have simulated the interpolation of a
line at several different angles to tReaxis at 0.3
m/min. and found that the largest error ranges from
0 to at least 0.52. When the line is parallel i o
axis, only one motor is involved, so the error is 0
For a line at 4% both motors will receive an
identical stream of pulses, so the resulting path w
follow the line exactly under our simulations. The
line in our example is at 33.and the largest error is
only 0.06. However, when the angle is close to 0O,
such as 0.57 one motor is moving very slowly and

then the error becomes 0.52. This is summarised in

Table 3.

Table 3: Position Errors for Interpolation of a
Line at Speed 0.3 m/min. (Second Order
Simulation)

Line Angle 0° 057 | 33.7 | 45

Largest Error 0 0.52 0.06 0
(steps)

The algorithms have been tested on stepper motors
and speeds of 7.5 m/min. have been reached.
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However, further work is needed to measure the
motor behaviour in detail.

8. CONCLUSIONS:

The use of appropriate simulation methods has
enabled the evaluation of the new interpolation and
acceleration algorithms for stepper motors before
testing on real motors. The Zero Order simulagor i
the simplest and is useful to obtain an overaliwie
of the path. However, it is not suitable to inigste

the detail of deviations from the path. The Second
Order simulator has allowed us to compare the new
algorithms with previous ones for accuracy of path
following. The axis speed simulator has shown that
the expected motion with the new algorithms is
much smoother than for the previous ones and less
likely to cause vibrations. Future work will invel
extending the algorithms to other types of curves,
such as splines.
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