
POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 18

EVALUATION BY SIMULATION OF INTERPOLATION AND
ACCELERATION ALGORITHMS FOR STEPPER MOTORS

J.F. POLIAKOFF, Y.K. CHOW, P.A. ORTON, M. HOWSON, D. AL-DABASS

School of Computing and Informatics

Nottingham Trent University
Nottingham, NG1 4BU, UK.

janet.poliakoff@ntu.ac.uk, paul.orton@ntu.ac.uk, david.al-dabass@ntu.ac.uk

Abstract: Stepper motors are used to control CNC machines for many applications. As well as following the
required path precisely, it is also important that the motion be smooth and that the surface speed be controllable.
Improved interpolation algorithms for individual straight lines and circular arcs have been developed using
distance as a parameter [Chow et al, 2002], [Chow, 2003]. The algorithms control the motor by means of pulses
and the generation of the pulse timings is based on the geometry of the shape. For high speeds it is necessary to
allow smooth acceleration at the beginning and similar smooth deceleration at the end. Thus, appropriate
acceleration and deceleration algorithms have been developed for use with the new interpolation algorithms.
This paper describes how simulation has been used to evaluate the new algorithms and compare them with
previous algorithms. The algorithms are described for the 2D case but the principle can be extended to 3D.

Keywords: CNC, simulation, interpolation, motion generation, stepper motor, smooth motion, acceleration.

1. INTRODUCTION:
In machine tool control for CNC machines, it is very
important to have both smooth continuous motion
and precise following of the required path. The
surface speed of the machine tool also needs to be
controlled appropriately. Stepper motors are
popular, because they have simple interface
requirements and low cost. They normally operate
without feedback and the required shape is followed
by adjusting the speeds on the different axes. The
path round the shape is generated by sending pulses
to the motors for the axes at calculated times. In
many cases all the steps are of the same size,
typically 0.01 mm. We have assumed that this is the
case in all our examples. When a complex path is to
be followed, it is often approximated first by a
combination of lower degree curves, such as lines
and circular arcs, and interpolation is performed on
these curves.

Previous algorithms suffer from lack of smoothness
in the motion, errors in position and varying surface
speed. In an attempt to address these problems,
research in our group has investigated methods for
smoothing the pulses after they have been generated
[Steiger et al, 1994], [Stout et al, 1994].

More recently algorithms have been developed by
our group to improve the interpolation of straight
lines and circular arcs directly [Chow et al, 2002],
[Chow, 2003], [Poliakoff et al, 2005]. Using
simulation, these algorithms have been demonstrated
to reduce errors in position, reduce unnecessary
fluctuations in surface speed and achieve smoother
motion. The algorithms are based on the geometry
of the line or arc and use distance along the curve as

a parameter to synchronise the axes. At the same
time smoothness of motion is achieved by keeping
the pulse rate constant (for lines) or adjusting it
gradually (for arcs). Acceleration algorithms have
also been developed for use with these algorithms to
allow high speed machining. Smooth acceleration
and deceleration are achieved by gradually
increasing and decreasing the speed at the beginning
and end of the motion, respectively. This paper
describes how a number of simple simulations have
been used to allow the new algorithms to be
evaluated for both errors in position and smoothness
of the motion. Section 2 describes some previously
used interpolation algorithms. Then the simulation
methods are explained in Section 3 before the new
algorithms are presented in the later sections. We
have investigated the algorithms for the 2D case but
the ideas can be generalised to 3D.

2. INTERPOLATION ALGORITHMS:
Previous interpolation algorithms for lines and arcs
include the Digital Differential Analyser (DDA)
[Papaionnou, 1979], the Search-Step algorithm
[Valentino and Goldberg, 2000] and the Direct
Search algorithm [Massory and Koren, 1978]. The
DDA interpolator performs digital integration on
velocity to obtain the positions to be reached at fixed
intervals of time (∆t) and is expressed by

tkkk ∆+=+ vxx 1 , where the position at the start of
the ith interval is xi and vi is the corresponding
velocity [Papaionnou, 1979]. Over the ith interval
the motion is generated in the direction of the
tangent to the curve at the start of the interval.
There is often some deviation from the required
path, because in general the velocity is not constant
over the interval. However, since the velocity is

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 19

involved in the interpolation algorithm, the path will
be machined at close to the required speed.

The Direct Search algorithm [Massory and Koren,
1978] is an improvement of the earlier Search-Step
algorithm and both are based on the local geometry
of the curve. They are used with curves defined in
implicit form, where every point on the curve
satisfies an equation of the form 0),(=yxf . For
points lying off the curve 0),(≠yxf and the
magnitude of),(yxf increases with the error in
position. The algorithm chooses the next
interpolated point to be the one closest to the desired
curve, i.e. the one for which),(yxf is closest to 0.
For the Search-Step algorithm there are four possible
moves at any stage, because it allows a move by one
step but only in a single axis. For Direct Search a
move of one step simultaneously in both axes is also
allowed, so the number of possible moves is eight.
Unlike the DDA algorithm, these two algorithms do
not have full control of the surface speed during
interpolation. Because a move can be of length 1
along a single axis or √2 when both axes are
involved, the value of the resultant speed depends on
the direction of the motion, i.e. the tangent to the
curve. Thus, for interpolation of a 2D circular arc
the speed can vary by up to a factor of √2.

In the next section we use the DDA and Direct
Search algorithms to illustrate the simulation
methods before the new algorithms are introduced.
For evaluation of interpolation algorithms it is
important to investigate both errors in position and
the speed on the individual axes. Three different
simulation methods have been used. None of them
is completely realistic but, between them, they allow
us to make comparisons between the chosen
algorithms.

3. SIMULATION METHODS:
For accuracy of path following we have used two
simulation methods, Zero Order and Second Order,
and have found that they are useful in different
ways. For simulation of speed we have used a first
order method which is effectively an estimate of the
pulse rate.

3.1. Simulation of Path Following:
Simulation of path following has enabled us to
evaluate errors in position [Chow, 2003] and we
present two simulation methods here. The first
method, Zero Order Simulation, does not take into
consideration the response time of the stepper motor,
i.e. the stepper motor is assumed to move by one
step instantaneously when a command pulse is
received. Thus, in detail this simulation is very far
from the motion of a real machine but it does allow
the sequence of pulse timings on the two axes to be
seen, as shown in Figure 1, where the simulation is
shown for one line and one arc. Some moves are in
a single axis, giving a vertical or horizontal line. In
other cases there is a move in both axes
simultaneously, i.e. a diagonal line. Thus, the plot
from Zero Order simulation does not depend much
on the speed but provides an overview of the
expected path of the machine and has been used to
provide a simulator to check the path before cutting
[Henrich et al. 2005]. Effectively it indicates only
the number of pulses in each axis and the sequence
in which the pulses are sent to the two motors. We
explain later how it can be misleading at a detailed
level when errors are considered.

The second method, Second Order Simulation, is
likely to be closer to the behaviour of a real system
than the previous one, because it takes into account
the fact that the motor cannot respond

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10121416 1820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 1. The path plot from the Zero Order Simulation of the DDA interpolation at 0.3 m/min. for (a) the
straight line from (0, 0) to (30, 20) and (b) the circular arc from (20, 0) to (0, 20) with centre (0, 0) (measured in
steps of size 0.1mm.). The required path is shown dashed and the largest errors are 0.55 and 0.81, respectively.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 20

instantaneously [Christodoulou, 2000]. This
simulation system uses as input the Zero Order
simulation of each axis separately (including the
timings for every pulse) before they are combined to
give the simulated path. The Second Order simulator
is still not entirely realistic but it is nevertheless
useful, because it is expected to have a smoothing
effect similar to that of the motor and drive circuits.
For the Second Order simulation two parameters are
needed: the natural frequency and the damping
factor. We have chosen the natural frequency to be
100 Hz, which is a typical value for a stepper motor,
and a damping factor of 0.7. Figure 2 shows the
importance of the damping factor in determining the
resulting motion. Examples of the result of Second
Order Simulation for one pulse are shown for four
different values of the damping factor. For a low
value of damping factor 0.15 in (a) there is a large
overshoot followed by a number of oscillations
which gradually settle down, whereas for a large
value 2.5 in (d) there are no oscillations but it takes a
considerable time to complete the step. The value
1.0, in Figure 2(c), is known as critical damping and
is ideal, because it is the smallest value for which
there are no oscillations and thus takes the shortest
time to complete the step without overshooting. In
practice it is difficult to achieve critical damping and

a compromise has to be reached between avoiding
overshoot and not taking too long to complete the
step. A value of 0.7, in Figure 2(b), has been chosen
to represent this situation and has an almost
negligible overshoot.

As an example of the simulations, one line and one
arc have been interpolated at surface speed 500
steps/sec, i.e. 0.3 m/min. The line is from (0,0) to
(30, 20) and the arc is from (20,0) to (0, 20) with the
arc centre at (0,0) (all distances given in steps, which
are of length 0.01mm.). Figures 1 and 3 show the
Zero Order simulation of the DDA and Direct
Search algorithms, while the Second Order
simulations are given in Figures 4 and 5. The
simulation of axis speed is described in the
following section. In Figures 1(b) and 4(b) it can be
seen that the direction of the motion tends to lag
behind a little, so the path is mostly outside the arc.
This is because the DDA method assumes that the
velocity is constant over the time interval.

3.2. Simulation of Speed:
For simulation of axis speed we have estimated the
speed at the time of each pulse based on the time
between that pulse and the next. Thus, at time tx(n),
the time of the nth pulse, x-axis the speed is given by

0

1

2

Time

St
ep

s

0

1

2

Time

St
ep

s

(a) (b)

0

1

2

Time

St
ep

s

0

1

2

Time

St
ep

s

 (c) (d)

FIGURE 2. Examples of the Second Order Simulation of one pulse on a single axis for different values of the
damping factor: (a) 0.15 , (b) 0.7, (c) 1.0 and (d) 2.5.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 21

())()1(ntnt

L

xx −+
 (and similarly for y), where L is

the step length [Chow et al, 2002], [Chow, 2003].
This is effectively a first order simulator. Again it is
not very realistic in detail and is actually estimating
the pulse frequency. A real motor will allow some
smoothing but will often suffer from vibrations,
exacerbating the situation, especially when the pulse
rate fluctuates. Therefore it is the fluctuations in the
pulse rates that need to be detected. Figure 6 shows
the speed plots for the y-axis with the DDA
algorithms. Only the y-axis speed is shown, because
the speed plot is similar for x in each case (although
there are more fluctuations in the linear case and for
the arc the speed increases rather than decreases).
The y-axis speed plots for the Direct Search
algorithms are shown in Figure 7. For the arc the x-
axis speed plot is again similar but for the line it is
constant (at 500 steps/sec). Thus, for both
interpolation algorithms in these examples at least
one axis has sudden changes or fluctuations in
speed.

Ideally, for smooth motion along a straight line the
speeds on both axes would be constant, while for an
arc they would each follow the appropriate part of a
sine wave. Our new algorithms are able to generate
pulse trains close to the ideal and without any
sudden fluctuations in speed.

4. THE NEW INTERPOLATION
ALGORITHMS:
We have developed new linear and circular arc
interpolation algorithms to reduce the problems of
lack of smoothness in the motion and varying
surface speed [Chow, 2003], [Poliakoff et al., 2005].
At the same time it is important that errors in
position are not increased. On a particular axis the
pulses are generated with timings which allow the

machine to follow the required path according to the
geometry of the path, while moving at the required
speed. Unlike the previous methods, we have used a
parameter-based method to synchronise the
individual axes. For both lines and arcs, the surface
speed can be calculated from the distance, s, along
the curve, so this distance has been found to be a
suitable parameter. Indeed for straight lines and
circular arcs the other parameters normally used are
proportional to the distance along the curve, e.g. x
for a line or the angle of turn for an arc. The
calculation of the pulse timings are based on the path
geometry and the required surface speed. For
interpolation we assume the overall speed is
constant. Then the acceleration algorithms can be
used when changes in speed are required, as
described in Section 6.

The initial idea was to imagine a point travelling
along the curve at the required speed and then
generate a pulse to the x-axis motor every time a
step in the x direction has been completed (and
similarly for the y-axis). For 2D linear interpolation,
a straight line is given in parametric form as:

θcos)(0 sxsx += , θsin)(0 sysy += , (1)

where s is the distance along the line, (x0, y0) is the
start point and θ is the (constant) angle between the
line and the x-axis. If L is the length of one motor
step, then the distance in x corresponding to the nth
pulse is nL and the corresponding distance along the
curve sx(n) can be calculated. Thus for both x and y
we have:

θcos
)(

nL
nsx = ,

θsin
)(

nL
nsy = . (2)

If a constant speed V is required, the corresponding
timings of the nth pulse for each axis is given by:

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 1012 1416 1820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 3. Path plots from the Zero Order Simulation of the Direct Search interpolation for the line and arc
from Figure 1. The largest errors are 0.28 and 0.40, respectively.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 22

θcos
)(

V

nL
ntx = ,

θsin
)(

V

nL
nt y = . (3)

However, we have found that, although smoothness
was improved, errors in position could be
exacerbated by this method. In Figures 8(a) and 9(a)
it can be seen that the path is, on average, just below
the required line, as is reflected in the value of the
average error as 0.14 and 0.13, respectively. For the
arc, Figures 8(b) and 9(b), the path starts to move
outside the required arc, then follows it quite well
but moves somewhat inside it near the end. For both
line and arc each simulation has a rather high value
for the largest error. After further investigation we
have found that it is possible to obtain a reduction in
the errors can be obtained without losing the
smoothness of the speed plots.

If we assume that the motor moves instantaneously
when a pulse is sent, then the initial method will
always cause a delay in each axis, which will vary
between 0 and L with an average value of ½L. This
is because the algorithm waits for a complete step
before generating a pulse. We have estimated the
error in position for the case of a delay in both x and
y of ½L. For a line at angle θ to the x-axis a point
(x1, y1) on the line satisfies for some constant C:

0cossin 11 =+− Cyx θθ . (4)

Then the distance from the line of a point
(x1 - ½L, y1 - ½L) representing the actual position is
given by:

() () CLyLxE +−−−= θθ cos½sin½ 11 . (5)

Substituting for C from equation 4 we obtain:

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 101214161820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 4. Path plots from the Second Order Simulation of the DDA interpolation from Figure 1. The largest
errors are 0.38 and 0.63, respectively.

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 101214161820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 5. Path plots from the Second Order Simulation of the Direct Search interpolation from Figure 3.
The largest errors are 0.13 and 0.29, respectively.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 23

()θθ sincos½ −= LE . (6)

This applies when θ is strictly between 0 and 90°
but the error is 0 when θ = 0 or 90°, because then
only one axis is involved. For the line, we obtain
E = 0.14, which agrees well with the average error
from the simulations (0.14 from Zero Order and 0.13
from Second Order). If, however, the timing of the
pulse is calculated when the imaginary point is mid-
way between the two steps, the average error E will
be 0. Thus we replace n with n – ½ in the formulae
for the nth pulse and equation 2 becomes:

()
θcos

)(2
1 Ln

nsx

−
= ,

()
θsin

)(2
1 Ln

nsy

−
= , (7)

and equation 3 becomes:

()
θcos

)(2
1

V

Ln
ntx

−
= ,

()
θsin

)(2
1

V

Ln
nt y

−
= . (8)

A similar argument can be applied in the case of
circular arcs or, more generally, to other curves,
because at any instant the motion can be thought of
as moving in a straight line along the tangent to the
arc.

For a circular arc in the first quadrant with radius R,
centre (xc, yc) and start angle α0 the parametric form
is:

 ±+=
R

s
Rxsx c 0cos)(α ,

 ±+=
R

s
Rysy c 0sin)(α (9)

 (with the signs corresponding to anticlockwise or
clockwise motion, respectively). Thus, for the nth
pulse on each of the axes we obtain:

0
100
200
300
400
500
600

0 50 100

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

0
100
200
300
400
500
600

0 50 100

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

(a) (b)

FIGURE 6. Speed plots for y-axis from the DDA interpolation for the line and arc from Figures 1 and 4. (The
plots for the x-axis are similar, except that for the arc it starts low and then increases to the higher value.)

0
100
200
300
400
500
600

0 50 100

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

0
100
200
300
400
500
600

0 50 100

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

(a) (b)

FIGURE 7. Speed plots for y-axis from the Direct Search interpolation for the line and arc from Figures 3 and
5. (In the case of the arc the x-axis plot again is similar but starts low and then increases to the higher value.
For the line the x-axis plot is constant.)

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 24

()

−

 −
±= −

0
2
1

0
1 coscos)(αα

R

Ln
Rnsx m ,

()

−

 −
±±= −

0
2
1

0
1 sinsin)(αα

R

Ln
Rnsy . (10)

For constant speed V, as in the case for linear
interpolation, the pulse timings can then be
calculated by dividing by V. For the second, third
and fourth quadrants similar expressions can be
derived.

Figures 10 and 11 show the path plots for the new
algorithms using Zero and Second Order simulation,

respectively. For the line the average error is now
0.0 in both cases, and for the arc the value is much
reduced (0.06 and 0.02, respectively). Again, the
speed plots in Figure 12 are for the y-axis only but
those for the x-axis are similar, although for the arc
the speed increases rather than decreases. It can be
seen that for both line and arc there are now no
sudden fluctuations in speed. The speeds on the two
axes are a great improvement on the previous
algorithms and they are close to the ideal, i.e.
constant or changing sinusoidally, respectively.
Therefore with the new algorithms it is less likely
that there will be undesirable vibrations of the
motors.

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10121416 1820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 8. Path plots from the Zero Order Simulation for the Initial New interpolation algorithms for the line
and arc from Figure 1. The largest errors are 0.55 and 0.97, while the average errors are 0.14 and -0.03.
(Errors are positive below the line or outside the arc, and negative otherwise.)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 9. Path plots from the Second Order Simulation for the Initial New interpolation algorithms from
Figure 8. The largest errors are 0.19 and 0.93, while the average errors are 0.13 and -0.07.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 25

5. PREVIOUS ACCELERATION
ALGORITHMS:
Two types of acceleration technique commonly used
for high-speed machining are linear and parabolic
acceleration, in which the speed changes either
linearly or parabolically with time. The minimum
speed at which a motor can move depends on the
rotor and load inertia [Palmin and Shlain, 1986] and
this will also be the speed at which the motor can
start moving from rest.

Linear acceleration results in slow acceleration and
much of the available torque is not utilised [Palmin
and Shlain, 1986]. This is because a stepper motor
can achieve high acceleration at low speeds but the
achievable acceleration decreases as the speed
increases. Thus, for linear acceleration either the
acceleration rate has to be limited to take this into
account or the maximum speed has to be reduced.

Both cases are disadvantageous, because the total
machining time will then be increased, as can be
seen in Figure 13. A parabolic acceleration
algorithm allows a higher acceleration at low motor
speed combined with a lower rate at high speed.
With this method much more of the available motor
torque can be utilised and therefore the stepper
motors can be used effectively at higher speeds.
Moreover, [Kim et al, 1994] have shown that
machining accuracy is improved with parabolic
acceleration in comparison with linear acceleration.
This is likely to be because any linear acceleration
algorithm involves sharp discontinuities in the
acceleration, which tend to cause increased vibration
and overshoot.

For a parabolic acceleration algorithm the equations
for speed during the acceleration and deceleration
phases are quadratic functions of time and were

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 1012 1416 1820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 10. Path plots from the Zero Order Simulation for the New interpolation algorithms for the line and
arc from Figure 1. The largest errors are 0.55 and 0.62, while the average errors are 0.00 and 0.06.

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 101214161820

X-axis (steps)

Y
-a

xi
s

(s
te

ps
)

 (a) (b)

FIGURE 11. Path plots from the Second Order Simulation for the New interpolation algorithms from Figure
10. The largest errors are 0.06 and 0.28, while the average errors are 0.00 and 0.02.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 26

represented by Palmin et al. in terms of the
acceleration (or deceleration) time T, the maximum
speed Vm and minimum speed V0 as follows:

0
2 VqtptV ++= , (11)

where
2

0

T

VV
p m−

= and pTq 2−= . Palmin et al.

calculated the approximate timing tn for every
command pulse by assuming that:

)(111 −−− −+= nnnnn ttaVV , (12)

where Vn is the speed at time tn and an is the
acceleration at time tn.

6. THE NEW ACCELERATION
ALGORITHMS:
Our new parabolic acceleration and deceleration
algorithms have been developed for use with the
new interpolation algorithms. They produce pulse
timings which allow the stepper motors to accelerate
or decelerate smoothly. We do not use the
approximation given by Palmin et al. from equation
12 above.

In order to maintain the desired shape during path
following, the new parabolic acceleration and
deceleration need to be applied to the surface speed
and not to the speed for an individual axis. Using
Palmin’s notation from equation 11, the distance
travelled, s, is given, by:

tV
qtpt

Vdts 0

23

23
++== ∫ . (13)

The distance, s, for every axis step movement is
obtained by interpolation from equations 7 and 10.
Every pulse timing can then be calculated by solving
the cubic equation 13. We have implemented this
using Newton-Raphson iteration.

For the evaluation of the acceleration algorithms we
have chosen a desired surface speed 4.8 m/min., but
with the step size 0.01 mm., as before. Both
acceleration time and deceleration time were set to
0.15 sec. and the initial speed was 0.12 m/min. We
have used a different line and arc, because they need
to be longer to allow the maximum speed to be
reached before the end and slow down again. The
straight line is from (0, 0) to (3000, 2000) (in steps)
and the arc is from (2000, 0) to (0, 2000) with centre
(0, 0). We have chosen the deceleration time to be
the same as acceleration time in our examples but
they do not have to be the same; in practice they
could be chosen to suit the properties of the motor
used.

Figure 13(b) shows the speed plot for the y-axis of
the line and it can be seen that the speed has a
parabolic shape at the beginning and end during
acceleration and deceleration and is constant in
between. The speed plot for the x-axis is similar but
the speed is scaled up in the ratio 3 to 2. Thus, the
overall speed also follows the same shape (also
scaled up). Figure 14 shows the speed plots for both
axes with the arc. In this case it is harder to
distinguish the acceleration and deceleration phases,
because, although the overall speed is constant
during the middle phase, the speed for the y-axis
follows a sinusoidal shape similar to that in Figure
12(b) and for the x-axis it is another part of a sine
wave. The plot of the overall speed is similar to that
for the line but the total time is shorter, because the
total distance along the arc is shorter.

7. RESULTS AND DISCUSSION:
When they are compared with the previous
algorithms, the new algorithms have made a great
improvement to the smoothness of the speed plots.
The results of the simulations of path following for
new algorithms can be summarised in Table 1
below.

0

200

400

600

0 50 100

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

0

200

400

600

0 50 100

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

(a) (b)

FIGURE 12. Greatly improved speed plots for the y-axis from the New interpolation algorithms from Figures
10 and 11. (The plots for the x-axis are similar, except that for the line it is scaled up and for the arc the speed
starts low and increases.)

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 27

Table 1: Position Errors for the Interpolation
Algorithms using Two Simulation Methods

Largest Error
(steps)

Simulation
Type

Interpolation
Algorithm

Line Arc
DDA 0.55 0.81
Direct-Search 0.28 0.40

Zero
Order

New Algorithm 0.55 0.62
DDA 0.57 0.83
Direct-Search 0.30 0.43

Second
Order
0.1 m/min New Algorithm 0.28 0.42

DDA 0.38 0.63
Direct-Search 0.13 0.29

Second
Order
0.3 m/min New Algorithm 0.06 0.28

From Table 1 it is clear that using the Second Order
simulator gives a reduction in the largest error for
the new algorithms compared with both the previous
ones. This is not always the case when the Zero

Order simulator is used. We have investigated the
Zero Order simulator and concluded that it is not
suitable for testing for small errors below the length
of one step, as explained below.

The plot from the Zero Order simulator must always
pass through intermediate points with integer
coordinates when measured in steps. Therefore, for
a straight line at an angle θ to the x-axis, unless θ is
an integer multiple of 45°, the errors in position can
be considerable. Without diagonal lines in the
simulated path the error may be up to ½√2, i.e. about
0.71. However, diagonal lines will occur only when
two pulses on different axes are calculated with
identical timings. Even a very short time interval
between the pulses could therefore increase the error
by up to 0.71 in the simulation, whereas in a real
situation the difference would be very small.
Therefore, with Zero Order simulation an estimated
error may itself have an error of up to 0.71 of a step.

-1000

1000

3000

5000

7000

0 200 400 600

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

-1000

1000

3000

5000

7000

0 200 400 600

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

(a) (b)

FIGURE 13. The y-axis speed plot for the longer straight line from (0, 0) to (3000, 2000) using (a) linear
acceleration and (b) parabolic acceleration. The maximum speed was 4.8 m/min. and the starting speed was
0.12 m/min. (The plots for the x-axis and verall speed in each case are similar but with the speed scaled up.)

0

2000

4000

6000

8000

0 100 200 300 400 500

Time (ms)

X
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

0

2000

4000

6000

8000

0 100 200 300 400 500

Time (ms)

Y
-a

xi
s

Sp
ee

d
(s

te
ps

/s
)

(a) (b)

FIGURE 14. The speed plots for the longer circular arc from (2000, 0) to (0, 2000) with centre (0, 0) using
parabolic acceleration: (a) x-axis and (b) y-axis. Again the maximum speed was 4.8 m/min. and the starting
speed 0.12 m/min. The acceleration stopped at 150 ms. and the deceleration started at 340 ms. (The plot for the
overall speed is similar to that in Figure 13(b) but scaled up and the time at maximum speed is shorter.)

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 28

Thus, small errors cannot be considered to be
significant in judging the likely deviation from the
required path.

If the speed were reduced more and more, the
behaviour under Second Order simulation would
become closer and closer to the Zero Order
simulation. This explains why the errors are reduced
as the speed increases. The Zero Order simulation
will not normally change with increasing speed,
unless the resolution of time causes two timings
which are close but different a low speed to become
identical at higher speed.

The speed plots in Figures 13 and 14 show that the
pulse trains are also smooth when the new parabolic
acceleration algorithms are used for the longer line
and arc. Table 2 shows the errors obtained using the
two simulation methods and the two acceleration
algorithms.

Table 2: Position Errors for the Acceleration
Algorithms using Two Simulation Methods

Largest Error
(steps) Simulation Type
Line Arc

Zero Order (both linear and
parabolic acceleration)

0.55 0.71

Second Order (both linear
and parabolic acceleration)

0.59 0.53

From the detailed error plots (not shown) it has been
found that the errors are largest at the beginning and
end of the motion, particularly for the larger radius
arc. We have found that the largest error for a
straight line depends very much on the direction of
the line. We have simulated the interpolation of a
line at several different angles to the x-axis at 0.3
m/min. and found that the largest error ranges from
0 to at least 0.52. When the line is parallel to one
axis, only one motor is involved, so the error is 0.
For a line at 45° both motors will receive an
identical stream of pulses, so the resulting path will
follow the line exactly under our simulations. The
line in our example is at 33.7° and the largest error is
only 0.06. However, when the angle is close to 0,
such as 0.57°, one motor is moving very slowly and
then the error becomes 0.52. This is summarised in
Table 3.

Table 3: Position Errors for Interpolation of a
Line at Speed 0.3 m/min. (Second Order
Simulation)

Line Angle 0° 0.57° 33.7° 45°
Largest Error
(steps)

0 0.52 0.06 0

The algorithms have been tested on stepper motors
and speeds of 7.5 m/min. have been reached.

However, further work is needed to measure the
motor behaviour in detail.

8. CONCLUSIONS:
The use of appropriate simulation methods has
enabled the evaluation of the new interpolation and
acceleration algorithms for stepper motors before
testing on real motors. The Zero Order simulator is
the simplest and is useful to obtain an overall view
of the path. However, it is not suitable to investigate
the detail of deviations from the path. The Second
Order simulator has allowed us to compare the new
algorithms with previous ones for accuracy of path
following. The axis speed simulator has shown that
the expected motion with the new algorithms is
much smoother than for the previous ones and less
likely to cause vibrations. Future work will involve
extending the algorithms to other types of curves,
such as splines.

9. ACKNOWLEDGEMENTS:
We thank Nottingham Trent University and
Axiomatic Technology Ltd. for supporting this
project.

10. REFERENCES:
Chow Y.K., Poliakoff, J.F. and Thomas P.D. 2002,
“Interpolation and Acceleration Algorithms for
Stepper Motors – A Parametric Approach”. In 8th
IEEE Int. Conf. on Methods and Models in
Automation and Robotics, Szczecin, Poland.

Chow Y.K. 2003, “Parametric Interpolation
Algorithms for Motion Control”. PhD Thesis, The
Nottingham Trent University.

Christodoulou, N. 2000, The Programmable
Graphical Simulation of Stepping Motors Driven
CNC 2-Axes Machine. MSc Thesis, Department of
Computing, Nottingham Trent University.

Henrich C., Poliakoff J.F., Orton P.A. 2005,
“Simulation of 2D Cutter Paths for CNC Machines
Controlled by Stepper Motors”. In Proc. 8th ICCMS
(8th Int. Conf. on Computer Modelling & Simulation,
Oxford, UK.

Kim D., Song J. and Kim S. 1994, “Dependence of
Machining Accuracy on Acceleration /Deceleration
and Interpolation Methods in CNC Machine Tools”.
In EEE – IAS Annual Meeting, Denver, USA.
Pp1898-1905.

Massory O. and Koren Y. 1978, “The Direct-Search
Method In CNC Interpolators”. In ASME Winter
Annual Meeting, San Francisco, Calif. Pp2–8.

Palmin S. and Shlain V. 1986, “Stepper Motor
Controller with Parabolic Velocity Profile allows
Maximum Torque”. In Control Engineering.

Papaioannou S. 1979, “Interpolation Algorithms For
Numerical Control”. In Computers In Industry,
No.1. Pp27-40.

POLIAKOFF, CHOW, ORTON, HOWSON and AL-DABASS: EVALUATION BY SIMULATION

I.J. of SIMULATION Vol. 6 No 7-8 ISSN 1473-804x online, 1473-8031 print 29

Poliakoff J.F., Chow Y.K., Orton P.A., Howson M.
and Al-Dabass D. 2005, “Simulation for
Development of 2D Interpolation Algorithms for
Stepper Motors”. In Proc. 8th ICCMS (8th Int. Conf.
on Computer Modelling & Simulation, Oxford, UK.

Steiger W., Sherkat N. and Thomas P. 1994, “A
Stepping Motor Control Algorithm For Smooth
Continuous Path Motion”. In Proc. of the IEEE Int.
Conf. on Control ’94, University of Warwick, UK,
Vol.1, No. 389. Pp816-821.

Stout A.J., Orton P.A. and Thomas P.D. 1998,
“Improving Continuous Path Motion Using Stepper
Motors”. In Proc. 10th European Simulation
Symposium & Exhibition, The Nottingham Trent
University, Nottingham, UK.

Valentino J.V. and Goldenberg J. 2000, Introduction
to Computer Numerical Control. Prentice-Hall.

BIOGRAPHIES:
Dr Janet Poliakoff is a Senior Lecturer in the School

of Computing and
Informatics at Nottingham
Trent University. After a
BA and Part III Mathematics
at the University of
Cambridge, she worked for
the Open University as a
tutor in Mathematics before
starting research under the
supervision of Prof. Peter

Thomas at Nottingham Trent University, where she
received a PhD in Computing in 1993. Her thesis
was entitled “The Digital Representation of Two-
Dimensional Cutter Paths”. Her research interests
include: digital representation of (2- and 3-D) curves
and surfaces; fairing of B-spline curves;
measurement of surfaces using laser scanners;
smooth motion generation for stepper motors;
monitoring of rotary motion.

Dr. Yuan Kai Chow graduated from Nottingham

Trent University in 1999. He
then worked as a research
student, also at Nottingham
Trent University, under the
supervision of Dr. Janet
Poliakoff, Prof. Peter
Thomas and Dr. Paul Orton.
Dr. Chow was awarded his
PhD in July 2004 and his
thesis is entitled “Parametric

Interpolation Algorithms for Motion Control”. His
research interests are: Computer Numerical Control
(CNC), motion control systems, smooth path
following and stepper motors.

Dr Paul Orton is a Senior Lecturer in the School of
Computing and Informatics
at Nottingham Trent
University. After receiving
a BSc in Automatic Control
Engineering from Sussex
University, he worked in the
engineering industry for a
number of years, producing
several patented designs for
machine tools. Dr Orton

received a PhD from Nottingham Trent University in
1990 on “Adaptive Control and Instrumentation for
Precision Grinding Machines”. His research
interests include: intelligent instrumentation,
including condition monitoring and control;
development of patented Incremental Motion
Encoder technology (IME) for monitoring rotary
motion; smooth motion generation for stepper
motors.

