
Utility Driven Adaptive Workflow Execution

Kevin Lee, Norman W. Paton, Rizos Sakellariou, Alvaro A. A. Fernandes

School of Computer Science, University of Manchester, U.K.

Abstract—Workflows are widely used in applications that
require coordinated use of computational resources. Workflow
definition languages typically abstract over some aspects of the
way in which a workflow is to be executed, such as the level of
parallelism to be used or the physical resources to be deployed.
As a result, a workflow management system has responsibility
for establishing how best to map tasks within a workflow to the
available resources. As workflows are typically run over shared
resources, and thus face unpredictable and changing resource
capabilties, there may be benefit to be derived from adapting
the task-to-resource mapping while a workflow is executing.
This paper describes the use of utility functions to express the
relative merits of alternative mappings; in essence, a utility
function can be used to give a score to a candidate mapping,
and the exploration of alternative mappings can be cast as an
optimization problem. In this approach, changing the utility
function allows adaptations to be carried out with a view to
meeting different objectives. The contributions of this paper
include: (i) a description of how adaptive workflow execution
can be expressed as an optimization problem where the objective
of the adaptation is to maximize some property expressed as a
utility function; (ii) a description of how the approach has been
applied to support adaptive workflow execution in grids; and
(iii) an experimental evaluation of the resulting approach for
alternative utility measures based on response time and profit.

I. INTRODUCTION

Workflow languages provide a high-level characterization of
the pattern of activities that needs to be carried out to support
a user task. Workflows written in such languages typically
leave open a number of decisions as to how a workflow is
enacted, such as where the workflow is to be run, what level
of parallelism is to be used and what resources are to be made
available to the workflow. As a result, a collection of decisions
must be made before a workflow can be enacted, for example
by a compilation process that translates a workflow from
an abstract form into a concrete representation that resolves
various of the details as to how the workflow is to make use
of available resources.

Most existing workflow systems (e.g., [1], [2]) provide
static approaches for mapping on the basis of information
that provides a snapshot of the state of the computational
environment. Such static decision making involves the risk
that decisions may be made on the basis of information about
resource performance and availability that quickly becomes
outdated. As a result, benefits may result either from incre-
mental compilation, whereby resource allocation decisions are
made for part of a workflow at a time (e.g., [3]), or by
dynamically revising compilation decisions that gave rise to
a concrete workflow while it is executing (e.g., [4], [5], [6],
[7]). In principle, any decision that was made statically during
workflow compilation can be revisited at runtime [8].

In common with adaptive techniques in other areas [9], in
this paper adaptive workflow execution involves a feedback
loop, the implementation of which differs from platform
to platform, but in which various themes recur: monitoring

records information on workflow progress and/or the execution
environment; an analysis activity identifies potential problems
and/or opportunities; a planning phase explores alternatives to
the current evaluation strategy; and, if adapting is considered
beneficial, an execution step takes place whereby a revised
evaluation strategy is adopted. In all such feedback loops,
some form of decision-making process must establish which
adaptation is likely to be effective in a given context. In the au-
tonomic computing community, decision-making in autonomic
systems has been classified into three types, which are referred
to as policies [10]: action policies, in which the behavior
of the system is captured using condition-action rules; goal

policies, in which one or more desired states are identified
and a planner identifies actions that should lead to that state;
and utility function policies, in which the value of different
outcomes is quantified, and an optimization activity seeks to
identify actions that maximize utility. In previous work we
described the use of an action policy to adaptively balance
load during workflow execution [11]; this paper investigates
the use of utility functions to support the adaptive execution
of workflows on grid resources. Advantages of the utility-
based approach include the declarative expression of the utility
of an adaptation and the use of well founded mathematical
optimization techniques (e.g., [12]) to identify adaptations that
maximize the utility measure. This differentiates the approach
followed in this paper from the large body of literature on
mostly bespoke techniques for run-time, dynamic, or multi-
criteria workflow scheduling and execution (e.g., [5], [13],
[14]).

The context for this work is illustrated in Figure 1. In
essence, workflows are submitted to an autonomic workflow

mapper, which adaptively assigns the jobs in the workflows to
execution sites. Each execution site queues jobs for execution
on one or more computational nodes. Given some objective,
such as to minimize total execution times or, more generally,
to optimize for some Quality of Service (QoS) target, the auto-
nomic workflow mapper must determine which jobs to assign
to each of the available execution sites, revising the assignment
during workflow execution on the basis of feedback on the
progress of the submitted jobs. In this paper we describe two
different utility measures within a consistent framework.

When a utility-based approach is adopted, the following
steps are followed by designers: (i) identify the property that
it would be desirable to minimize or maximize – in the

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

9780769536224/09 $25.00 © 2009 IEEE

DOI 10.1109/CCGRID.2009.15

220

Fig. 1. High level architecture.

case of workflows, useful utility measures may be cast in
terms of response time, number of QoS targets met, etc. (ii)
define a function Utility(w, a) that computes the utility of an
assignment of tasks to nodes a for a workflow w expressed
in terms of the chosen property – for workflow mapping,
such a function can be expected to include expressions over
variables VE that describe the environment and variables VM

that characterize the mapping from abstract requests to jobs on
specific execution nodes; (iii) select an optimization algorithm
that, given values for VE , searches the space of possible
values for VM with a view to maximising the utility function;
one benefit of the utility-based approach is that standard
optimization algorithms can be used to explore the space of
alternative mappings. Several researchers have reported the
use of utility functions in autonomic computing, typically to
support systems management tasks (e.g. [15], [16]); to the best
of our understanding this is the first attempt to deploy utility
functions for adaptive workflow execution.

The remainder of this paper is structured as follows. Section
II describes utility functions that assign scores to workflow
assignments on the basis of response times and cost incurred
to meet target deadlines. Section III describes how the search
for a mapping that maximizes a utility measure can be cast
as an optimization problem. Section IV presents the results
of an experimental evaluation of the utility-based approach in
the context of the Pegasus workflow management system [3].
Section V presents some conclusions.

II. UTILITY FUNCTIONS

A. Problem Statement

A workflow w is a directed acyclic graph, where the nodes
consists of a collection of tasks, w.tasks and the edges
represent dependencies between those tasks; a workflow is
evaluated through an allocation of tasks to a set of nodes.
The role of the autonomic workflow mapper is to adaptively
assign the tasks to specific nodes. These nodes have different
computational capabilities, and thus take different (and, thanks
to their shared nature, changing) amounts of time to evaluate a
job. As a result of the unstable environment, it is challenging
to statically identify an assignment for the tasks in a workflow
that remains effective throughout the lifetime of its execution.

The objective of the autonomic workflow mapper is to max-
imize a utility measure; two utility measures are considered:

(i) utility based on response time, so utility is maximized
when response time is minimized; and (ii) utility based on
profit, where profit for a workflow is maximized by meeting a
response time target while incurring minimal resource usage
costs. In essence, during the evaluation of a workflow w,
the autonomic workflow mapper monitors its progress, and
when an alternative assignment is predicted to improve utility,
remaps the workflow to conform to the new assignment.

Each execution node is assumed to support the submission
of tasks, which are queued prior to execution, at which point
the task obtains exclusive access to one of the processors of
the node.

B. Utility Functions

1) Utility Based on Response Time: Where utility is based
on response time, the objective is to minimize the response
time of the workflow for an assignment a of w.tasks to a
set of resources. As a result, the utility of a workflow can be
represented as being in an inverse relationship to its response
time:

UtilityRT
w (w, a) = 1/PRT (w, a)

where, as described in Section II-C, PRT estimates the
predicted response time of the workflow given the assignment
a and for every j ∈ w.tasks, there exists an assignment j → r
in a for some r ∈ R, where R is the set of available resources
(execution sites).

2) Utility Based on Profit: Where utility is based on profit,
it is assumed that a workflow w has a response time target that,
when met, gives rise to a payment of value v. Furthermore, it
is assumed that nodes charge different amounts for executing
a job. The problem, then, is to meet the response time target
at minimum cost.

The utility of an individual workflow for an assignment a
of tasks to a set of resources can then be represented as:

UtilityProfit
w (w, a) =

(UtilityCurve(w, a) ∗ v) − fcost(w, a)

where UtilityCurve(w, a) estimates the success of the allo-
cation a at meeting the response time target of w, fcost(w, a)
estimates the financial cost of the resources used, and v is the
payment received for meeting the response time target for w.
For every j ∈ w.tasks, there exists an assignment j → r in a
for some r ∈ R; and UtilityProfit

w (w, a) is the utility of the
given job assignment a for an individual workflow w.

In principle, we can define the UtilityCurve for a work-
flow w in such a way that it returns 1 if it meets its response
time target, and 0 otherwise. However, such a definition is
problematic during the search for effective assignments, as
every candidate assignment that misses its target has the same
utility of 0, no matter how near to or far from the target it
is, and every assignment that meets the target has the same
utility of 1 no matter how narrowly or comfortably the target
is met. This makes it difficult for an optimization algorithm
to rank alternative solutions effectively. As a result, we use
a definition for UtilityCurve that provides high and broadly

221

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Response Time

U
til

ity

Fig. 2. Utility for a target response time of 50.

consistent scores for meeting a response time target, and low
but broadly consistent scores for missing a target, while also
enabling improvements to be recognized during optimization.

We use a function definition from earlier work on resource
allocation in data centers [16] (which generates the curve
illustrated in Fig. 2 for a target time of 50):

UtilityCurve(w, a) = e−P RT (w,a)+T T (w)

1+e−P RT (w,a)+T T (w)

where PRT (w, a) is as defined in Section II-C, and TT (w)
returns the target response time of w.

The (expected) financial cost of evaluating a workflow on
a set of resources can be obtained as follows:

fcost(w, a) =
∑

t∈w.tasks fcost(t, a),

that is, the financial cost of the workflow is the sum of the
financial costs of all tasks it contains. To compute the financial
cost of a single task we assume that there is a lookup table
that gives the financial cost per execution time unit for each
different site. Then, the financial cost of each task is the
expected execution time for the task multiplied by the given
financial cost per execution time unit for the site on which the
task is to be run.

C. Estimating Predicted Response Times

The predicted response time of a workflow for a given
assignment a can be estimated as follows:

PRT (w, a) = ECT (exit task, a),

where exit task is the exit node of the workflow (it is
assumed that the workflow has a single exit node; it is
straightforward to convert any workflow to a workflow with a
single exit node, by adding a dummy node with zero execution
time), and ECT is the expected completion time of the exit
task, as described in detail below.

Where adaptations incur a cost, the predicted response time
of a workflow for a given assignment a can be estimated as:

PRT (w, a) = ECT (exit task, a)+
AdaptationCost(w, CurrentAllocation(w), a),

where AdaptationCost(w, CurrentAllocation(w), a) repre-
sents the cost of adapting from the current allocation asso-
ciated with w to the candidate allocation a. The estimation

of this cost depends on the environment in which workflow
execution is taking place, and is discussed for our experimental
context in Section IV.

To find ECT (exit task, a), we can use the following
recursive formula that computes the expected completion time
(ECT) of any task, taski, of the workflow:

ECT (taski, a) = ET (taski, a) + EQT (taski, a)+
maxtaskj∈successors(taski)(ECT (taskj , a)),

where ET (taski, a) is the expected execution time of taski,
EQT (taski, a) is the estimated amount of time that taski will
spend in a queue, and taskj is bound in turn to all immediate
successors of taski in the workflow (if a task taski has no
immediate successors, then this component of the formula is
zero).

In what follows, it is assumed that ET is given, that is, for
each node, for each type of task, it is known how long that task
type will take to execute on the node. However, the time spent
by a task in the queue, EQT , is neither constant nor known in
advance, and is influenced both by external task assignments
(those over which the autonomic workflow mapper has no
control) to a node and assignments of tasks to machines. The
next section describes how EQT can be estimated.

D. Estimating Queue Times

In the following, we consider two time periods, p and p′,
such that length(p) = length(p′) and End(p) = Start(p′).
Adaptation is being considered at End(p); as a result, p is in
the past, and we have access both to information about the
assignment a of our workflow w to execution nodes during
p and to monitoring information collected during p. In this
context, we are interested in estimating the queue time during
p′ for potential future assignments a′.

The estimated (average waiting) queue time, EQT , during
p′ depends on: (i) the queue time at the start of p′ (or
the end of p); (ii) the demand for use of the node during
p′ as a result of workflow execution over which the auto-
nomic workflow mapper has control (henceforth referred to
as AssignedDemand); and (iii) the demand for use of the
node during p′ as a result of allocations of work to the node
over which the autonomic workflow mapper has no control
(henceforth referred to as ExternalDemand); we assume
that the ExternalDemand during p′ is the same as the
ExternalDemand observed during p. By demand we mean
the fraction of the available resource used during a given
period. Thus if the AssignedDemand is 0.5 then the amount
of work assigned during p′ is such as to fully occupy the node
half of the time. If the AssignedDemand is less than 1 and
the ExternalDemand is 0 during p′ then either the EQT
will be 0 (assuming that a node contains several processors)
or the EQT at the end of p′ can be expected to be less than
at the start of p′ (as the length of the queue will reduce during
p′).

An estimate for EQT during p′ can be computed as:

EQT (n, p, w, a′) = max(0,

222

(QueueT ime(n, End(p)) + length(p)∗
(ExternalDemand(n, p)+

CandidateDemand(n, w, a′)))

where QueueT ime(n, End(p)) is the (monitored) queue time
on node n at the time when adaptation is being considered
(End(p)), length(p) is the period for which the demand
levels applied, ExternalDemand(n, p) is an estimate of the
demand for the node from tasks over which the autonomic
workflow mapper had no control during the period p, and
CandidateDemand(n, w, a′) is an estimate of the demand
that will be placed on the node by the workflows w and
candidate assignment a′. As such, the queue time increases
if the demand for the resource is greater than the amount
of resource available, and decreases if the demand for the
resource is less than the amount of resource available.

Given the above definition of estimated queue time, the
EQT for a task used in Section II-C can be defined as:

EQT (task, a′) =
let n = the node such that (task → node) ∈ a′

in EQT (n, p, Workflow(task), a′)

where p is a configuration property that specifies the period
for which monitoring information is to be used to inform
queue estimation, and Workflow(task) returns the workflow
of which the given task is a component.

To complete the estimate for EQT , definitions for
ExternalDemand and CandidateDemand are now pro-
vided.

1) Estimating ExternalDemand: The level of the exter-
nal demand can be estimated as follows. The change in the
queue time on a node, ∆QT , over a period p can be computed
as follows from available monitoring information about the
queues on each node:

∆QT (n, p) =QueueT ime(n, End(p))−

QueueT ime(n, Start(p))
(1)

The change in the queue time also depends on the level of
demand on a node during a period.

∆QT (n, p) =(ExternalDemand(n, p)+

AssignedDemand(n, p)) ∗ length(p)
(2)

which can be rewritten in terms of ExternalDemand as:

ExternalDemand(n, p) =
∆QT (n,p)−(AssignedDemand(n,p)∗length(p))

length(p)

where ∆QT can be obtained from monitoring information and
(1), and the duration of p is a configuration property.

The AssignedDemand during p can be computed based
on monitoring information concerning which tasks have been
assigned to which machines and the capabilities of the ma-
chines:

AssignedDemand(n, p) =
P

task∈QueuedT ask(n,p) ET (task,a)

length(p)∗Processors(n)

where QueuedTask(n, p) identifies the tasks assigned to n
during p, ET (Task, a) is the execution time of a task in a

given assignment, a is the assignment that applied during p,
and Processors(n) is the number of processors available on
node n.

2) Estimating CandidateDemand: The
CandidateDemand is an estimate of the demand placed
on resources by a candidate assignment a′ of the tasks in a
workflow w:

CandidateDemand(n, w, a′) =
P

{task∈w|(task→n)∈a′)} ET (task,a′)

(TT (w)−ElapsedTime(w))∗Processors(n)

where ET (Task, a′) is the execution time of a task in a
given assignment, ElapsedT ime(w) is the time for which
a workflow has been executing, and Processors(n) is the
number of processors available on node n. In essence, the
CandidateDemand is a measure of the demand that must
be placed on a node by the assignments to that node if target
response times are to be met.

E. Summary

This section has described two utility functions,
UtilityRT

w (w, a′) and UtilityProfit
w (w, a′) that can be

used to compare the relative merits of different node
assignments a′ for tasks in w. Both definitions build on
predictions of the estimated completion times of w given
a′, which in turn make use of predictions of average queue
times. The queue time predictions principally take account of
the impact of the change from the current assignment a to
a new candidate assignment a′ on the demand being placed
on each node, using information that is readily available
from the definition of the workflow and from monitoring of
queue lengths. The exploration of alternative assignments is
discussed in the next section.

III. OBTAINING PLANS FROM UTILITY FUNCTIONS

In Section II, utility functions were defined that characterize
and quantify desirable behaviors. This section describes how
they can be used to decide on the benefits of adapting
dynamically to changes in the execution environment. At any
point in the evaluation of a workflow where adaptation is being
considered, the process of obtaining an effective assignment
of tasks to resources for a workflow w is a question of
identifying assignments a′ that maximize UtilityRT

w (w, a) or
UtilityProfit

w (w, a).
To obtain an effective assignment a′, a search algorithm

can be used that (i) generates an assignment; (ii) calculates
the value of the utility based on this assignment; and (iii) uses
this value to inform the selection of an appropriate next as-
signment. The search continues until it converges on a specific
value or a maximum number of iterations has taken place. For
the purposes of the search, an assignment can be represented
as a list of discrete categorical variables, each representing
the assignment of a task to a specific execution node. In the
experiments, we use the NOMADm [17] implementation of a
Mesh Adaptive Direct Search (MADS) [12] algorithm; MADS
is a class of nonlinear optimization algorithm that can be used

223

to maximize a black box function, such as UtilityRT
w (w, a)

or UtilityProfit
w (w, a).

IV. EXPERIMENTAL EVALUATION

A. Experimental Context

To evaluate the approach to adaptive workflow execution
using utility functions, we have extended the Pegasus work-
flow management system [3] with a framework based around
the MAPE functional decomposition [9] which partitions adap-
tive functionality into four components, Monitoring, Analysis,
Planning and Execution. The principal components of rele-
vance to the experiments, and their relationships, are illustrated
in Figure 3. Pegasus takes as input an Abstract Workflow,
which is compiled on the basis of metadata from registries
and a replica manager to produce a Concrete Workflow that
is explicit about where individual tasks are to be executed
and which physical files are to be read and written by those
tasks. Each Concrete Workflow is submitted to the DAGMan
job manager of Condor-G [18], which in turn submits jobs to
computational nodes for execution.

During execution, information about the files produced
during evaluation of the Concrete Workflow is recorded by
the Replica Manager, and job queue, execute and termination

events are tracked by a Monitoring component. Current queue
times are derived from these log entries and passed to the Anal-

ysis component which compares these to the times predicted
when the current plan was generated. When a sustained change
is detected between the actual and predicted queue times Plan-

ning is triggered. The Planning phase, given the monitored
information on queue times, searches for assignments that
maximize the chosen Utility measure as described in Section
III; where an assignment is produced that is predicted to
improve on the current assignment, the new assignment is
passed to the Execution component. The estimated cost of
performing an adaptation is taken into account at this stage,
based on micro-benchmarks.

The Execution component calls Pegasus again to produce a
new concrete workflow from the abstract workflow. A custom
Pegasus site scheduler has been developed that uses the assign-
ment produced by the Planning component. As intermediate
products for already completed tasks are available from the
Replica Manager, these tasks are not included in the Concrete

Workflow, and thus completed tasks are not repeated. Once
the new concrete workflow has been created with the new
assignments and replicas, it can replace the currently submitted
concrete workflow. A request is made to DAGMan to halt
the current workflow; DAGMan in turn removes the jobs
from the remote grid site queues. The new concrete workflow
can then be submitted to DAGMan, which again follows the
task dependencies and submits the tasks appropriately to the
execution nodes. The adaptation process can repeat as many
times as necessary.

B. Experimental Setup

The aim of the experiments is to explore the effect of the
different utility functions on the execution of workflows on

Fig. 3. Adaptive Workflow Execution with Pegasus.

Fig. 4. A Simple Montage Workflow [3]

grid resources. The experiments use two abstract workflow
styles. The first type is a linear workflow which is simply a
Directed Acyclic Graph (DAG) were each task is dependent on
the file created by the previous task. With these dependencies
present, the tasks in the workflow will execute in series. In
our experiments we consider linear workflows containing 50
tasks. The second workflow type is a Montage workflow, which
creates a large mosaic image from many smaller astronomical
images [3]. These can be of varying sizes depending on the
size of the area of sky of the mosaic. A simple Montage
workflow is illustrated in Figure 4. The numbers represent the
level of each task in the overall workflow. In our experiments
we use a 0.2 degree area workflow which has 25 tasks.

Two execution sites were used to run the workflows which
we designate ES 1 and ES 2. ES 1 consists of Intel 2Ghz
Pentium 4 CPUs with 1GB of RAM, whilst ES 2 consists
of Intel 2Ghz Core 2 Duo CPUs with 2GB of RAM. The
execution sites are connected together directly by Gigabit
Ethernet and each have access to sufficient independent and

224

shared disk storage.
Both execution sites run Debian Linux, the Sun Grid Engine

Version 6.1 Update 5 (as the site job scheduler) with its default
scheduler, and expose WSGRAM interfaces provided by the
Globus Toolkit Version 4.0.7. ES 2 has double the number
of cores of ES 1. Under un-loaded conditions ES 1 has an
average queue time of 35 seconds, and ES 2 has an average
queue time of 25 seconds for a typical job.

C. Response Time Utility Experiments

The aim of the first set of experiments is to compare the
standard Pegasus non-adaptive approach with the response
time utility approach. For these experiments, two separate
runs are performed under the same environmental conditions,
with adaptation switched off and adaptation switched on.
Where adaptation is switched off, Pegasus uses simple round-
robin scheduling, whereas when adaptation is switched on
the optimization technique described in Section III seeks to
maximize UtilityRT

w as defined in Section II-B1.

During workflow execution, to induce some uncertainty into
the execution environment, a load is applied to ES 1. This
load consists of a process that submits short jobs (of around
20 seconds duration) every 15 seconds for 5 minutes, then
sleeps for 2 minutes before continuing, leading to varying
queue times.

Experiment 1. The results for non-adaptive and adaptive ex-
ecution for the linear workflow are presented in Figure 5,
which shows that the adaptive workflow mapper performs
much better than the non-adaptive one. With the adaptive
mapper, adaptation occurs twice around the times when jobs
with Job IDs 3 and 7 are executing, respectively, giving rise
to the gap in execution whilst data is moved around and the
workflow is resubmitted to the grid sites. The adaptations
occur early in the execution as knowledge about the workflow
execution environment is gained. The gain made by adapting
easily makes up for the cost of adapting.

Experiment 2. The results for non-adaptive and adaptive ex-
ecution for the Montage workflow are presented in Figure
6, which again shows that the adaptive workflow mapper
performs better than the non-adaptive one. In this case, the
adaptive workflow mapper adapts once early in workflow
execution. The significant gap in execution for the adaptive
case results from the fact that job queue and execution times
are shown only for completed jobs. During this experiment,
adaptation wasn’t triggered until jobs from the loaded ES 1

began execution, and these were not able to complete before
the adaptation occurred. After the large queue times were
detected, the resulting assignment maps the majority of the
remaining jobs to ES 2.

D. Profit Utility Experiments

The aim of the second set of experiments is to compare
the Standard Pegasus non-adaptive approach, the response
time utility approach (U(RT)) and the profit utility (U(Profit))
approach with respect to their ability to maximize profit.
Profit is maximized by meeting response time targets without

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

01:15:00

01:30:00

01:45:00

02:00:00

02:15:00

 5 10 15 20 25 30 35 40 45

T
im

e
 (

h
r:

m
in

:s
e

c)

Job ID

Non-Adaptive

Key
Job Queued

Job Executing

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

01:15:00

01:30:00

01:45:00

02:00:00

02:15:00

 5 10 15 20 25 30 35 40 45

T
im

e
 (

h
r:

m
in

:s
e

c)

Job ID

Adaptive

Key
Job Queued

Job Executing

Fig. 5. Experiment 1: Workflow progress plots, showing when each job is
queued and executed, for non-adaptive execution and the response time utility
approach with a linear workflow.

resorting to the use of unnecessarily expensive resources.
In the experiments, the target response time is varied, with
relatively high (easy to meet), medium (somewhat challenging
to meet) and low (very challenging to meet) values for target
response time. For each target response time, three separate
runs are performed under the same environmental conditions
as in Experiments 1 and 2 (that is, a load is applied to ES 1

as described in Section IV-C).

As profit is a cost-based metric, the (monetary) cost of
executing jobs on resources and the reward for meeting a target
response time must be known. For these experiments, the costs
of executing jobs on each site were chosen on the basis of their
characteristics – the faster site is also the more expensive. The
cost of executing a single job on ES 1 is 1 unit of currency and

225

00:00:00

00:03:00

00:06:00

00:09:00

00:12:00

00:15:00

00:18:00

00:21:00

00:24:00

00:27:00

00:30:00

00:33:00

 5 10 15 20 25

T
im

e
 (

h
r:

m
in

:s
e
c)

Job ID

Non-Adaptive

Key
Job Queued

Job Executing

00:00:00

00:03:00

00:06:00

00:09:00

00:12:00

00:15:00

00:18:00

00:21:00

00:24:00

00:27:00

00:30:00

00:33:00

 5 10 15 20 25

T
im

e
 (

h
r:

m
in

:s
e
c)

Job ID

Adaptive

Key
Job Queued

Job Executing

Fig. 6. Experiment 2: Response time utility and Montage workflow.

on ES 2 is 2 units of currency. These costs are only incurred
for jobs that have partially or completely run on a site, and
not for jobs that are only queued. The reward for meeting the
target response time is 100 units of currency.

Both profit and response times are reported for each work-
flow run. Profit is calculated as follows:

Profit(w) = (TargetMet(w) ∗ reward) − Cost(w)

where TargetMet is either 1 or 0 depending on whether the
workflow execution meets the target response time or not;
reward is 100 units of currency; and Cost is the overall
financial cost of running the workflow, calculated after it has
completed (this is, essentially, the number of tasks run on ES

1 plus two times the number of tasks run on ES 2).

Experiment 3. The profit and response time results for linear
workflow runs are reported in Figures 7 and 8, respectively.
In this experiment, the High response time target is 3 hours
(10800 seconds), the Mid target response time is 2 hours (7200
seconds) and the Low target response time is 1 hour (3600

-100

-80

-60

-40

-20

 0

 20

 40

 60

High Mid Low

P
ro

fit

Response Time Target

Key
Standard

U(RT)
U(Profit)

Fig. 7. Profit comparison for Experiment 3

 0

 2000

 4000

 6000

 8000

 10000

High Mid Low
R

e
sp

o
n
se

 T
im

e
 (

S
e
co

n
d
s)

Response Time Target

Key
Standard

U(RT)
U(Profit)

Fig. 8. Response Time comparison for Experiment 3

seconds).

For the High response time target, all three strategies meet
the target, and return a profit. The utility response time strategy
completes with the lowest response time, but obtains the good
response time by making extensive use of (expensive) ES

2. The utility profit approach provides the slowest response
time but the highest profit, by only using ES 2 when this
was strictly necessary to meet the response time target. The
non-adaptive approach allocates jobs evenly between the two
execution sites, and thus comes in between the two utility
approaches in terms of both response time and profit.

It can be seen from the response time results in Figure 8
that the non-adaptive and utility response time strategies yield
the same response times in all cases, as neither explicitly seeks
to meet response time targets.

For the Mid response time target, the non-adaptive approach
fails to meet the target, and thus yields a significant loss. Both
utility strategies meet the response time target, and yield a
profit, but the profit is greater for the utility profit approach.
This is because the utility profit approach, although using ES

2 more than for the High response time target, manages to
meet the response time target while using the inexpensive ES

1 more than the utility response time approach.

For the Low response time target, none of the approaches
meet the target, and thus all make a loss. However, the utility
profit strategy makes the smallest loss because, realising that
the response time target is not going to be met, it avoids
extensive use of ES 2.

226

-60

-40

-20

 0

 20

 40

 60

 80

High Mid Low

P
ro

fit

Response Time Target

Key
Standard

U(RT)
U(Profit)

Fig. 9. Profit comparison for Experiment 4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

High Mid Low

R
e
sp

o
n
se

 T
im

e
 (

S
e
co

n
d
s)

Response Time Target

Key
Standard

U(RT)
U(Profit)

Fig. 10. Response Time comparison for Experiment 4

Experiment 4. The profit results for the standard Pegasus
non-adaptive approach, the response time utility approach
and profit utility approach with varying target response times
for a Montage workflow are presented in Figure 9. The
corresponding response times are presented in Figure 10. For
this experiment, the High target response time is 40 minutes,
the Mid target response time is 30 minutes and the Low target
response time is 20 minutes.

Experiment 4 confirms the results of Experiment 3 with a
different type of workflow. All three approaches succeed in
meeting the high target response time. However, the profit
utility approach consistently adapts in a way that yields the
best profit (or smallest loss), while never improving on the
response time of the utility response time approach.

E. Summary

Experiments 3 and 4 show the clear differences between
the approaches when costs are associated with the use of
resources, and indicate the power of utility functions. As
the non-adaptive approach is unaware of response times or
resource costs, it is consistently least competitive with respect
to response time. By contrast, the response time utility ap-
proach consistently achieves the lowest response times, though
at the cost of using the most expensive resources. In both
experiments, the profit-based utility approach successfully
trades off the costs and the benefits of the resources to yield
the best financial results.

V. CONCLUSION

This paper presents a utility-based approach for adaptive
workflow execution, which has been used in an autonomic
computing framework and tested in the context of the Pegasus
workflow management system. Our results demonstrate that
the design of appropriate utility functions can enable optimiza-
tion for different QoS targets in Grid workflow execution. As
opposed to bespoke approaches to address similar problems,
the main lesson from our work is that utility-based approaches
allow adaptive workflow management system developers to
cast the problems in a systematic way that can be addressed
with well founded mathematical optimization techniques. In
future work, we aim to expand our experiments, targeting
multiple QoS targets and concurrently running workflows.

REFERENCES

[1] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy. Task scheduling strategies for workflow-based applications
in grids. In CCGrid’05, pages 759–767, 2005.

[2] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific
workflows in the ASKALON grid environment. In SIGMOD Record,
34(3), 2005.

[3] E. Deelman et al. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming, 13(3):219–
237, 2005.

[4] T. Heinis, C. Pautasso, and G. Alonso. Design and evaluation of
an autonomic workflow engine. In 2nd International Conference on
Autonomic Computing, pages 27–38. IEEE Computer Society, 2005.

[5] R. Duan, R. Prodan, and T. Fahringer. Run-time optimisation of grid
workflow applications. In Proc. Intl. Conference on Grid Computing,
pages 33–40. IEEE Press, 2006.

[6] Z. Yu and W. Shi. An adaptive rescheduling strategy for grid workflow
applications. In IPDPS, pages 1–8. IEEE Press, 2007.

[7] R. Sakellariou and H. Zhao. A low-cost rescheduling policy for
efficient mapping of workflows on grid systems. Scientific Programming,
12(4):253–262, 2004.

[8] K. Lee, R. Sakellariou, N. W. Paton, and A. A. A. Fernandes. Workflow
adaptation as an autonomic computing problem. In Proc. 2nd Workshop
on Workflows in Support of Large-Scale Science, pages 29–34. ACM
Press, 2007.

[9] J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing.
IEEE Computer, 36(1):41–50, 2003.

[10] J.O. Kephart and R. Das. Achieving self-management via utility
functions. IEEE Internet Computing, 11(1):40–48, 2007.

[11] K. Lee, N.W. Paton, R. Sakellariou, E. Deelman, A. A. A. Fernandes,
and G. Metha. Adaptive workflow processing and execution in pegasus.
In 3rd Intl Workshop on Workflow Management and Applications in Grid
Environments (WaGe08), in Proc. 3rd Intl. Conf. on Grid and Pervasive
Computing Symposia/Workshops, pages 99–106. IEEE Press, 2008.

[12] C. Audet and J. E. Dennis. Mesh adaptive direct search algorithms
for constrained optimization. SIAM J. on Optimization, 17(1):188–217,
2006.

[13] M. Wieczorek, A. Hoheisel, and R. Prodan. Towards a general model of
the multi-criteria workflow scheduling on the grid. Future Generation
Computer Systems, 25(3):237–256, 2009.

[14] J. Yu and R. Buyya. Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms. Scientific
Programming, 14:217–230, 2006.

[15] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das. Utility functions in
autonomic systems. In Proc. ICAC, pages 70–77. IEEE Press, 2004.

[16] M.N. Bennani and D.A. Menasce. Resource allocation for autonomic
data centres using analytic performance models. In Proc. 2nd ICAC,
pages 229–240. IEEE Press, 2005.

[17] M. A. Abramson, C. Audet, and J. E. Dennis. Nonlinear programing
with mesh adaptive direct searches. SIAG/Optimization Views-and-News,
17(1):2–11, 2006.

[18] J. Frey, T. Tannenbaum, M. Livny, I. T. Foster, and S. Tuecke. Condor-
G: A computation management agent for multi-institutional grids. In
HPDC, pages 55–63, 2001.

227

