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Abstract 

Cronobacter sakazakii is in the Cronobacter genus (previously known as 

Enterobacter sakazakii), which consists in total of seven species. C. 

sakazakii strains in the clonal complex 4 (CC4), including sequence type 4 

(ST4), have been strongly associated with neonatal meningitis. In recent 

years, research on this organism has made substantial progress using 

improved identification and molecular methods including multilocus 

sequence typing. A number of virulence traits have been proposed but 

have not been studied to date with respect to detailed aspects of the 

virulence potential and host response.  

Therefore this project compared 34 isolates of C. sakazakii made up of 

clonal complex 4 (CC4; 21 isolates) and non-clonal complex 4 (13 

isolates) strains for their virulence potential, and investigated whether 

CC4 strains have the ability to overcome the host barriers more than the 

other sequence types. The attachment and invasion of mammalian 

intestinal and brain cells by these strains were evaluated using colorectal 

adenocarcinoma epithelial cells (Caco-2), human brain microvascular 

endothelial cells (HBMEC), and rat brain capillary endothelial (rBCEC4) cell 

lines. Furthermore, the ability of the organism to translocate through 

different cell lines, including Caco-2 and HBMEC, was assessed. The 

project also studied the survival of C. sakazakii strains in human 

macrophages (U937) and human microglial cell lines, and the response of 

these cells in eliminating the infection as a part of the immune response. 

In addition, it examined the host response to C. sakazakii infection. 

C. sakazakii strains were motile except for three strains 1223, 1224, and 

680. Moreover, the majority of the strains were able to produce iron 

siderophores except for strains 6 and 520. Additionally, a group of C. 

sakazakii strains were able to withstand serum-mediated killing, whereas 

strains 6 and 680 were sensitive. The previous traits are important for 

bacterial growth and survival inside the host. C. sakazakii strains showed 

the ability to adhere and invade the Caco-2, HBMEC, and rBCEC4 cell 

lines, especially CC4 strains (Caco-2 0.29%, HBMEC 0.13, rBCEC4 0.02%) 

that displayed the highest invasion levels compared to non-CC4 strains  
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(Caco-2 0.16%, HBMEC 0.1, rBCEC4 0.016%), supporting the clinical 

evidence that it can overcome the intestinal and brain barriers. 

Furthermore, C. sakazakii strains, including CC4 strains, were able to 

translocate through the intact monolayers of the Caco-2 and HBMEC cell 

lines, and CC4 strains (HBMEC translocation 4.92%) were higher in 

translocation compared to non-CC4 strains (HBMEC translocation 1.67%). 

The translocation through Caco-2 and HBMEC is a crucial sign of their 

invasiveness. The test isolates were able to survive and multiply inside 

macrophages and microglia. This process is advantageous for the 

bacterium to survive within the host and evade the immune system. 

The test strains, including CC4 strains, triggered the HBMEC cell line to 

produce iNOS that could lead to elevated levels of NO production leading 

to cell line permeability. Additionally, the organism was able to induce 

apoptosis in HBMEC and microglial cells and two markers were detected, 

caspase-3 and annexin V. Inducing apoptosis in the blood brain barrier 

cells and microglia is a major threat to the central nervous system (CNS). 

A number of cytokines were produced by HBMEC and microglial cell lines 

as a result of C. sakazakii exposure. These cytokines included the pro-

inflammatory IL-1β, TNF-α, IL-6, and IL-8 in addition to GM-CSF and the 

anti-inflammatory IL-10 and IL-4. These might contribute to increased 

blood brain barrier permeability and host damage.  
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Chapter 1: Literature review 

1.1. Background 

The Cronobacter genus is a member of the Enterobacteriaceae family. It 

comprises a distinct group of Gram-negative bacilli that are catalase-

positive, oxidase-negative, non-spore forming, facultatively anaerobic, 

and motile via peritrichous flagella (Baldwin et al.  2009, Kucerova et al.  

2010, Tall et al.  2014). The biotyping of this genus was based on many 

methods including methyl red production, indole test, and production of 

gas from D-glucose (Iversen and Forsythe  2004, Baldwin et al.  2009). 

Cronobacter was previously known as the species Enterobacter sakazakii. 

It was first defined by Farmer et al. (1980), and named to honour the 

Japanese bacteriologist Riichi Sakazaki. At that time, DNA-DNA 

hybridisation showed that E. sakazakii was 41-54% ‘related’ to species in 

two distinct genera, Enterobacter cloacae and Citrobacter freundii. 

However, as they were phenotypically and genotypically closer to E. 

cloacae, they were placed in the Enterobacter genus (Iversen et al.  2007, 

Joseph et al.  2012a).  

Additional phenotypic analysis demonstrated that E. sakazakii comprises 

15 biogroups, and biogroup 1 was the most common. A polyphasic 

taxonomic study using 16S rRNA gene sequencing, ribotyping, 

fluorescent-amplified fragment length polymorphism (f-AFLP) and DNA–

DNA hybridisation showed that the E. sakazakii species consist of at least 

five genomogroups (Iversen et al.  2007, Iversen et al.  2008). 

Subsequently in 2007 the Cronobacter genus was first defined, and 

further revised in 2008 and 2012. Following the new definition of this 

genus, genotypic analysis, such as multilocus sequence typing (MLST), 

was used to distinguish between the newly identified Cronobacter species. 

Currently the genus contains seven species including Cronobacter 

condimenti, Cronobacter dublinensis, Cronobacter malonaticus, 

Cronobacter muytjensii, Cronobacter sakazakii, Cronobacter turicensis, 

and Cronobacter universalis (Fig.1.1). C. sakazakii isolates represent 
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72.1% of the total strains of Cronobacter genus (Joseph et al.  2012a, 

Brady et al.  2013).  

 

 

 

 

 

 

 

 

 
 

Fig.1.1 Population snapshot of the Cronobacter MLST database generated 
using the GoeBURST algorithm, indicating the clonal complexes and the 

diversity of the sources of the strains. From Joseph and Forsythe (2012c). 
 

Cronobacter is an emerging opportunistic pathogen that is a concern for 

the food industry and has been reported as a severe hazard for premature 

neonates and immunocompromised patients by the International 

Commission of Microbiological Specifications for Food (ICMSF  2002, 

Farber and Forsythe  2008). Some C. sakazakii infections of neonates 

have been linked to intrinsically or extrinsically contaminated powdered 

infant formula (PIF; Caubilla-Barron et al.  2007). There are many 

principles that control risk management of the PIF industry, which should 

be applied to control the contamination, such as the control of levels in 

raw materials on receipt, avoiding post-processing contamination, and the 

application of microbiological criteria such as the number of bacteria in 10 

g of PIF. Many batches of formula have been recalled around the world 

because of contamination (Iversen and Forsythe  2003). 
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1.2. Source and transmission 

As given above, Cronobacter can be isolated from PIF. However, it is more 

widespread and can be found in several environmental and food samples 

especially from plant-related ingredients. These samples include corn, soy, 

rice, wheat, cheese, meat, and vegetables (Iversen and Forsythe  2003, 

Iversen and Forsythe  2004, Baumgartner et al.  2009). Furthermore, 

food might be contaminated via rats and flies such as the Mexican fruit fly 

and the stable fly (Iversen and Forsythe  2003, Mramba et al.  2007). Also 

Cronobacter Spp. can be isolated from follow up formula (Chap et al.  

2009). PIF is a non-sterile product, and several microbial tests for 

organisms such as Escherichia coli (E. coli), Salmonella, and Cronobacter 

should be applied to each production batch to be compared with specific 

microbiological measures. Before 2004 the permitted number of 

Enterobacteriaceae, except for Salmonella, in PIF was <100 cfu/g. 

Nonetheless, after the growing concern regarding Cronobacter severe 

infections these microbiological measures changed such that any member 

of Cronobacter genus should not be detectable in 10 g test samples of 

PIF. The values of these measures are set by the Codex Alimentarius 

Commission and company-company agreements. Cronobacter 

contamination detection protocol includes pre-enrichment in buffered 

peptone water (BPW), enrichment in Enterobacteriaceae broth (EE), 

selection on Druggan Forsythe Iversen agar (DFI), and API20E 

biochemical profiling (Iversen and Forsythe  2003, Forsythe  2005, 

Commission  2008, Forsythe et al.  2014). 

In 1960, E. sakazakii was isolated from dried milk, which indicates that 

the organism has been present in these products for decades (Farmer et 

al.  1980, Forsythe  2005). According to Muytjens et al. (1988), 14% of 

141 PIF samples were found to be contaminated with this organism. 

These samples were collected from thirteen countries. The range of 

contamination was between 0.36 and 66 colony-forming units (cfu) per 

100 grams (Muytjens et al.  1988, Forsythe  2005).  

A more recent study, using a specific chromogenic agar to isolate 

Cronobacter, reported that 3 out of 102 PIF samples were contaminated 
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(Iversen and Forsythe  2004). There is no definitive evidence explaining 

the route of contamination. It could be through people working in the 

processing factories or other possible sources. The cleaning process of 

feeding bottles might be one of the modes of transmission as the 

bacterium was isolated from a cleaning brush (Forsythe  2005). 

Cronobacter has the ability to grow at a range of temperatures starting 

from 6 to 45˚C, and form biofilms (Kim and Loessner  2008). Moreover, 

this organism is highly resistant to heat (72°C) and osmotic pressure. 

These factors are fundamental for the organism to be successfully 

transmitted (Nazarowec-White and Farber  2003, Kim and Loessner  

2008).   

1.3. Epidemiology 

Cronobacter spp. was first isolated in 1950 from dried milk powder (C. 

sakazakii NCIMB 8272), whereas the earliest clinical isolate (C. sakazakii 

NCTC 9238) was deposited in 1953 (Farmer et al.  1980, Baldwin et al.  

2009). The first two Cronobacter spp. (undefined species) neonatal 

meningitis cases were reported by Urmenyi and Franklin (1961) when the 

organism was then still classified as pigmented strains of E. cloacae. 

Biering et al. (1989) has reported 3 cases of meningitis due to the same 

organism that caused one death and resulted in brain damage in the two 

survivors . Another case reported by Emery and Weymouth (1997) was a 

68-year old patient, who had urosepsis and brain atrophy, who died as a 

result of Cronobacter spp. infection. Two other cases of adult infections 

have been reported by Lai (2001) for a 73-year and 83-year old women 

who died from biliary sepsis and septicaemia correspondingly. Although 

infection might occur in adulthood, neonates especially those with low 

birth weight remain the most susceptible.  

Over 100 cases of neonatal Cronobacter spp. infections have been 

published between 2000 and 2008. The mortality rate of these infections 

was 26.9%. Moreover, the mortality rate of Cronobacter-induced 

meningitis and necrotising enterocolitis (NEC) were 41.9% and 19% 

respectively (Friedemann  2009). In 2009, CDC reported 2 cases of C. 

sakazakii neonatal infection. The first case showed C. sakazakii positive 
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cerebrospinal fluid (CSF) culture and was discharged with severe brain 

damage. The other case was for a 7-month male infant. The post-mortem 

investigation showed the presence of C. sakazakii in blood culture 

(Baumbach et al.  2009). C. sakazakii was isolated from nine infants in 

the United States (US) in 2011, five of these isolates were from CSF. One 

patient died as a result of the infection, and two patients suffered from 

brain infarction and brain abscess (Hariri et al.  2013). Table.1.1 below 

summarises the cases of Cronobacter spp. neonatal infections that were 

published between 2000 and 2013. 

A recent study by Patrick et al. (2014) investigated the incidence of the 

confirmed Cronobacter spp. infections and the characteristics of infected 

individuals in 6 US states. They identified 544 cases in 11 different age 

groups from 1 day to 100 years, 37% (198) were >70 years and 4% (22) 

were infants. Urine was the most frequent source of Cronobacter spp. 

isolation by 221 (41%) isolates. It was found that infants were the most 

susceptible for invasive infections (6 27% of cases) followed by children 

1-4 years of age (5 22% of cases), and among adult age groups urine 

isolates were the most prevalent. The highest incidence rate of invasive 

infections was among infants 0.49 cases per 100,000 population, followed 

by patients ≥80 years old (0.33/100,000). 
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Table.1.1: Cronobacter neonatal infection published 2000-2013 adapted from Friedemann (2009). 
 

 

 

 

 

 

 

 

 

 

NEC: necrotising enterocolitis. NC: neurological complications. 1: Ray et al. (2007). 2: Caubilla-Barron et al. (2007). 3: Van Acker et al. (2001). 4: FAO/WHO 
(2008). 5: Burdette and Santos (2000). 6: Bar‐ Oz et al. (2001). 7: Stoll et al. (2004). 8: Himelright et al. (2002). 9: RASFF (2002). 10: Barreira et al. (2003). 

11: Jarvis (2005). 12: Coignard et al. (2006). 13: RASFF (2004). 14: Suijkerbuijk (2008). 15: Pavcnik-Arnol et al. (2007). 16: Aguirre Conde et al. (2007). 17: 
Mange et al. (2006). 18: Friedemann (2009). 19: RASFF (2007). 20: Friedemann (2009). 21: Kim and Loessner (2008). 22: Baumbach et al. (2009). 23: Hariri 
et al. (2013). 
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Several outbreaks of C. sakazakii infections have been reported around 

the world. In 1994, four infants died in a neonatal intensive care unit 

(NICU) in France. Three cases were attributed to C. sakazakii infections 

and the fourth was due to E. cloacae. They suffered from different forms 

of infection including NEC and meningitis (Caubilla-Barron et al.  2007, 

Townsend et al.  2008). PIF was used to feed the infants through enteral 

perfusion every four to six hours. C. sakazakii strains were isolated from 

17 neonates including sputum, faeces, skin, peritoneal fluid, and 

conjunctivae. API20E was performed to identify the pathogen followed by 

gas production from glucose as a confirmatory test. Caubilla-Barron et al. 

(2007) examined this incident and used additional techniques to confirm 

the identity of the pathogens and differentiate between the strains. The 

techniques used in the aforementioned paper included 16S rRNA gene 

sequence analysis, and pulsed-field gel electrophoresis (PFGE). There 

were three different pulsetypes isolated from neonatal samples and PIF. 

Pulsetype 2 (strains 695, 701, and 767) was linked to three fatal cases 

(Table.1.3). Hence, this pulsetype was considered more virulent than the 

others. The antibiograms of strains 695, and 767 exhibited extended 

spectrum β-lactamase (ESBL) patterns, which might be acquired through 

horizontal transfer from other Enterobacteriaceae, since it was not found 

in the other strains of pulsetype 2 (Caubilla-Barron et al.  2007). 

A follow-up study was conducted by Townsend et al. (2008) to investigate 

the in vitro virulence ability of the stains recovered from the French NICU 

outbreak. All strains from each pulsetype showed significant attachment 

and invasion to Caco-2 cells, at different levels. In addition, after 24 hours 

incubation period within U937 macrophages, a high number of C. 

sakazakii strains were recovered indicating that they were able to persist 

inside these cells. Pulsetype 2 (strains 695, 701, and 767) from fatal NEC 

and meningitis, and pulsetype 4 (strain 716) from PIF showed higher 

intracellular survival than the other pulsetypes strains. Within the 

outbreak there was one death due to meningitis. Thus, rat brain capillary 

endothelial cells (rBCEC4) were utilised to examine the ability of C. 

sakazakii strains to invade these cells, which comprise a part of the blood 

brain barrier (BBB). Strain 767 from pulsetype 2, which was isolated from 
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the fatal meningitis case, showed remarkable invasion of rBCEC4. The 

study suggested that the ability of the organism to invade intestinal 

epithelial cells is a strong marker of its virulence. Moreover, the organism 

might be able to overcome the host immune system by surviving and 

replicating within macrophages. In addition, C. sakazakii showed the 

ability to invade capillary endothelial cells, which indicates that it might 

gain access to the brain by passing through the normally impassable BBB 

using specific virulence mechanisms (Townsend et al.  2008). 

In 1998, 12 neonatal NEC cases were reported at the NICU of Ziekenhis 

Vrije University hospital in Belgium. All neonates had low birth weight and 

they were fed orally with infant formula prior to the development of NEC. 

Surgical intervention was required for 4 neonates suffering from NEC 

stage III. Cronobacter spp. was isolated from 6 out of the 12 patients, 

and there was a significant correlation between the development of NEC 

and the consumption of the PIF. It was reported that the molecular typing 

using arbitrarily  primed PCR (AP-PCR) confirmed the similarity between 

the PIF isolates and three patient isolates (van Acker et al.  2001). 

Another outbreak has been reported by Bar‐ Oz et al. (2001) and Block et 

al. (2002) in Hadassah University Hospital in Israel. C. sakazakii was 

isolated from blood and CSF samples of a baby girl who had brain 

infarction developing through liquefaction, necrosis, and cavitation. The 

patient had mild neurological problems and was discharged with two 

ventriculo-peritoneal shunts at age 3 months. Another patient who had 

upper gastrointestinal haemorrhage showed positive blood culture for C. 

sakazakii. The organism was also isolated from stool samples of three 

additional asymptomatic patients. 

The previously reviewed cases and outbreaks highlight the significant 

consequences and the severe outcomes that can be caused by such an 

organism. Therefore, understanding the behaviour of this organism is 

important and might provide further insights on the mechanism by which 

C. sakazakii acts and thus will be discussed in the following section. 
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1.4. Necrotising enterocolitis (NEC)  

NEC is the most common gastrointestinal condition in NICU. It is the 

disease that primarily affects premature infants. Moreover, it is a common 

cause of death among 20-40% of neonates who have the disease and 

require surgical intervention (Holman et al.  2006). The earliest cases of 

NEC in the United States were reported in the early 1960s. The estimated 

fatality rate ranged from 10% to 50% among NEC cases. This disease has 

different stages NEC I, II, and III (Table.1.2), and it could lead at its final 

stages to marked abdominal distension, deterioration of vital signs, septic 

shock, gastrointestinal haemorrhage, and intestinal failure (Bell et al.  

1978, Henry and Lawrence Moss  2010, Iben and Rodriguez  2011). 

Although NEC is a well-recognised medical condition, the pathogenesis 

and aetiology of it remain poorly understood. This disease is 

multifactorial, and therefore the attempts to design an experimental 

model or early diagnostic measures were unsuccessful (Iben and 

Rodriguez  2011). The factors involved in NEC pathogenesis include 

bacterial colonisation, intestinal injury, cytokine production, and NO 

toxicity (Hackam et al.  2005, Henry and Lawrence Moss  2010, Iben and 

Rodriguez  2011). It was found that interleukin-1β (IL-1β) plays an 

important role in NEC by stimulating the production of matrix 

metalloproteinase (MMP), which contributes in the degrading of the 

extracellular matrix. Moreover, the pathological specimens of NEC patients 

showed intestinal cell apoptosis, production of tumour necrosis factor-α 

(TNF-α) and IL-8, and the expression of iNOS. The excess production of 

iNOS induces a high production of NO that leads to cellular damage and 

intestinal barrier failure. Additionally, the cytokine production that is 

triggered by bacterial components, such as lipopolysaccharide (LPS), 

might be involved in the disruption of the tight junctions leading to 

bacterial translocation. Furthermore, LPS of the Gram-negative bacteria 

promotes the release of NO and IFN-γ that are signaling molecules, which 

might cause inhibition of intestinal restitution (Petrosyan et al.  2009, 

Henry and Lawrence Moss  2010, Iben and Rodriguez  2011).  
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The hypothesis regarding NEC pathogenesis was proposed by Hackam et 

al. (2005) and Iben and Rodriguez (2011). Under perinatal stress such as 

systemic hypoxia or respiratory distress, the premature infant undergoes 

a period of intestinal ischemia that results in mucosal injury. Once PIF 

feeding is introduced to the neonate, the pathogenic enteric bacteria 

colonise the intestinal mucosal surfaces. These bacteria take advantage of 

the mucosal injury and translocate through it. This translocation activates 

macrophages and other cells to produce several inflammatory mediators 

that could lead to systemic sepsis and then NEC. 

A wide range of enteric pathogens are recognised as causative agents of 

NEC, including Cronobacter. It was proposed by Hunter et al. (2009) that 

the organism plays a major role in initiating the onset of NEC. They 

showed that oral feeding of Cronobacter spp. could induce NEC in a rat 

pup model. Furthermore, it has been demonstrated that the attachment of 

the bacterium to the enterocytes of the infected animal led to enterocyte 

apoptosis. Nonetheless, the mechanism by which Cronobacter could cause 

apoptosis of the intestinal epithelial cells is still unknown. They suggested 

that NO is a vital mediator in Cronobacter-mediated NEC, and its toxic 

metabolite ONOO- might contribute in the apoptosis induction of rat 

enterocytes (Hunter et al.  2009).  

The study by Kim and Loessner (2008) that utilised colon originated 

human Caco-2 cells, showed that Cronobacter can invade human 

intestinal cells. The entry of the organism into Caco-2 cells might be 

receptor mediated, and the invasion process depends on bacterial de novo 

protein synthesis. Moreover, the organism can disrupt the tight junctions 

of the cells, which are important in host cell polarity and prevent 

molecules from passing freely through the gaps between cells. This 

disruption requires actin microfilaments, and in turn facilitates and 

enhances the invasion mechanism. Cytochalasin D (CyD) has the ability to 

prevent G-actin polymerisation and disrupt F-actin in a concentration-

dependent manner. This might inhibit bacterial entry or movement that 

requires F-actin. It was shown that the invasion of Cronobacter was 

increased in CyD-treated Caco-2 monolayers. This invasion was due to the 
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disruption of the tight junctions that requires, in the case of Cronobacter, 

actin filaments (Kim and Loessner  2008). 

Emami et al. (2011) has implicated the role of dendritic cells (DC) in 

Cronobacter-induced NEC. The study showed the ability of Cronobacter to 

disrupt the tight junctions of Caco-2 cell line and pass through the 

monolayers. This translocation depends on three factors including DC 

recruitment to lamina properia upon infection that is responsible for 

intestinal barrier dysfunction, TGF-β secretion by DCs that is involved in 

tight junction disruption and apoptosis induction in enterocytes, and 

OmpA expression in Cronobacter that is important in the pathogenesis of 

NEC. 

As mentioned previously, a number of C. sakazakii outbreaks have been 

recorded worldwide. In 1994 two C. sakazakii NECII and meningitis fatal 

neonatal infections and one severe NECII were recorded at NICU in France 

(Caubilla-Barron et al.  2007). The isolates showed significant attachment 

and invasion to Caco-2 cell line (Townsend et al.  2008). van Acker et al. 

(2001) reported 12 neonatal NEC cases in the NICU of Ziekenhis Vrije 

University hospital in Belgium who required surgical intervention. Another 

outbreak was reported by Bar‐Oz et al. (2001) and Block et al. (2002) in 

Hadassah University Hospital in Israel. C. sakazakii was isolated from CSF 

of a patient with brain infarction and from a blood of another patient with 

upper gastrointestinal haemorrhage. These outbreaks highlight the role of 

C. sakazakii in causing severe and fatal infections including NEC. From the 

information acquired from the previous out breaks it was notable that the 

patients with brain infections did not suffer from NEC and the isolates 

were able to pass through gut tissues and reach the brain without 

inducing significant damage. On the other hand, there is no available 

information about the ability of NEC isolates to cause brain infections. This 

suggests that some C. sakazakii strains might have a tropism to certain 

cells. 
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Table 1.2: Modified Bell’s staging of NEC. From Brooks et al. (2013). 
 

 

 

 

 

 

 

1.5. Meningitis  

Bacterial meningitis is the inflammation of the meninges following an 

infection of the central nervous system (CNS), which affects the pia mater 

(the innermost of the three meninges covering the brain and spinal cord) 

and the arachnoid and subarachnoid space (O'rahilly and Möller  1986, 

van de Beek et al.  2004, Barichello et al.  2013). It is one of the 

important causes of mortality and morbidity around the world, primarily in 

neonates and children (Grandgirard and Leib  2010), with a mortality rate 

ranging between 10% and 15% (Gaschignard et al.  2011). 30% to 50% 

of the survivors are left with neurological abnormalities (Dawson et al.  

1999, Grimwood et al.  2000, Kim  2003). Over 7 million deaths were 

reported between 2000 and 2010 that occurred in children younger than 5 

years old, 64% (4.879 million) of these cases were attributed to infectious 

agents and 5.2% (0.393 million) of them were linked to sepsis or 

meningitis (Liu et al.  2012a, Barichello et al.  2013). In neonatal 

meningitis, the main pathogens that can cause meningitis are 

Streptococcus agalactiae and E. coli K1, while in young children and adults 

the main causes are Streptococcus pneumoniae and Neisseria meningitidis 

(Barichello et al.  2013). 

 

The BBB is a highly specialised brain endothelial structure and represents 

a diffusion barrier that is important to biological functions of the CNS. It is 

composed of brain microvascular endothelial cells that work in concert 
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with pericytes, astrocytes, and microglia to separate blood components 

from neurons (Ballabh et al.  2004, Zlokovic  2008). The endothelial cells 

of the BBB have highly intact tight junctions that regulate the passage of 

different molecules and ions into and out of the CNS. Moreover, they limit 

the paracellular flux of hydrophilic molecules throughout the BBB. In 

contrast, small lipophilic substances diffuse freely through plasma 

membranes (Rubin and Staddon  1999, Kim  2003, Ballabh et al.  2004). 

Bacteria can cross the BBB using transcellular or paracellular mechanisms, 

or inside phagocytes such as macrophages (Fig.1.2), which is known as 

the Trojan horse mechanism (Barichello et al.  2013). 

 

 

 

 

 

 

 

 

Fig.1.2 Trojan horse invasion mechanism whereby C. sakazakii strains 
might migrate through tissues and blood and avoid host response. 

 

Once bacteria migrate across this barrier, they can multiply within the 

subarachnoid space concurrently with the release of bacterial components, 

such as cell wall fragments, which are highly immunogenic and can 

increase the inflammatory response of the host (Sellner et al.  2010, 

Barichello et al.  2013). These products are recognised by pattern-

recognition receptors, such as Toll-like receptors (TLRs), of the antigen-

presenting cells (Mook-Kanamori et al.  2011). There are 11 different TLRs 

belong to the TLR family that have been defined in human cells (Hanke 
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and Kielian  2011). Astrocytes express TLRs 2, 3, and 9, while 

oligodendrocytes express TLRs 2 and 3. Moreover, TLRs 3, 7, 8, and 9 are 

expressed in neurons, whereas microglia express TLRs 1 to 9 (Mitchell et 

al.  2010). These TLRs (Tables. 1.3-4) are crucial for the initiation of the 

immune response during meningitis, promoting the production of 

important inflammatory mediators (Fig.1.3), such as NFκB, which is 

responsible for the activation of IL-1β, TNF-α, and iNOS that are involved 

in meningitis pathogenesis (Koedel et al.  2000, Kastenbauer et al.  2004, 

Hanke and Kielian  2011).  

Table.1.3: TLRs and their ligands in bacterial infection adapted. From 
Kawai and Akira (2011) and Moresco et al. (2011). 

 

 

 

 

Table.1.4: TLRs functions in CNS injury. From Hanke and Kielian (2011). 
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Fig.1.3 TLR intracellular signalling of bacterial infection and inflammation. 
From Moresco et al. (2011). 

 

In addition to the previous mediators, NO and caspases play an important 

role in BBB permeability during bacterial meningitis. Increased BBB 

permeability supports plasma leakage into the CNS leading to the 

development of an inflammatory exudate, cerebral oedema, elevation of 

intracranial pressure, and alteration of cerebral blood flow (Tunkel and 

Scheld  1993, Pfister et al.  1994, van Furth et al.  1996). Moreover, it 

leads to the migration of white blood cells, especially neutrophils, through 

the BBB and this process is called pleocytosis (Pfister et al.  1994, Braun 

et al.  1999, Scheld et al.  2002, Kim  2003). Krebs et al. (2005) studied 

54 neonates who underwent lumbar puncture, 30 patients had meningitis 

and CSF samples showed high levels of TNF-α, IL-1β, and IL-6. 

Additionally, IL-8 was detected in the sera and CSF samples of 45% of 

tested patients suffering from meningococcal meningitis and bacteraemia. 
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Furthermore, it was shown in the same study that IL-8 levels peaked after 

TNF-α and IL-1 induction and at the same time as with IL-6 (Halstensen 

et al.  1993). Furthermore, IL-1β contributes in increasing iNOS induction 

and subsequently NO production, which in turn disrupts the tight junctions 

and initiates apoptosis in endothelial cells (Firestein et al.  2012). In 

addition, it was reported that the meningococcus triggers apoptosis in 

brain endothelial cells via NO that initiates the caspases cascade leading 

to caspase-3 activation (Schubert-Unkmeir et al.  2007).  The previously 

mentioned mediators and mechanisms have a major impact on the BBB 

that facilitates the passage of bacteria and immune cells leading to severe 

complications to the host.  

Different types of brain cells, including endothelial cells and microglia, 

have the ability to produce inflammatory mediators (Kronfol and Remick  

2000, Scheld et al.  2002). Microglial cells were recognised in the late 19th 

century by the psychiatrist Nissl who named them “rod cells” (Tambuyzer 

et al.  2009). He suggested that they are neuroglia, which have migration 

and phagocytosis abilities. Moreover, these cells have a fundamental role 

in iron storage (as ferritin) and detoxification. Later in the 1970s another 

function was assigned, to blood-borne monocytes that invaded the injured 

CNS (Barron  1995). Recent reviews indicated that this unique population 

of cells are CNS resident macrophages, which respond rapidly to the 

presence of the pathogens and brain damage. Furthermore, they perform 

phagocytosis, antigen presentation, and are responsible for cytokine 

secretion. Microglial cells are able to migrate to the injured brain tissues 

to clear the damaged cells. Some bacterial fractions, such as LPS and 

DNA, are responsible for the stimulation of microglial cells to produce 

cytokines (Polazzi and Monti  2010). Therefore, a human microglial cell 

line was used in this project to investigate the role of microglia in C. 

sakazakii-induced meningitis. 

C. sakazakii is responsible for high mortality and morbidity rates due to 

meningitis. This condition is often linked to severe symptoms such as 

brain abscess formation and impaired sight and hearing. This kind of 
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infection will affect the CNS leading to mental and physical abnormalities 

(Muytjens et al.  1983, Mittal et al.  2009).  

Research reported by Townsend et al. (2007b), assessed the 

inflammatory response against C. sakazakii using intracranial inoculation 

of neonatal rats to describe the progression of brain inflammation. This 

study showed that C. sakazakii strain 2 (C. sakazakii ST3; Table.1.7) was 

able to establish chronic-pattern inflammation and meningitis in 83% of 

rat neonates, while strain 1 (C. sakazakii ST8), which was throat isolate 

and was not linked to meningitis infection, showed attenuated 

inflammatory response. Furthermore, it demonstrated that C. sakazakii 

strain 658 (ST1; Table.1.7) led to meningitis in 33% of rat pups. 

Additionally, strain 57 (C. turicensis ST5) induced chronic-pattern 

inflammation (33%) and meningitis (50%) in rat pups. Neonatal rats that 

had been inoculated with strain 2 suffered from ventriculitis and 

meningitis three days post-inoculation. Although strain 658 was linked to 

a fatal meningitis case, its ability to establish chronic-pattern 

inflammation and meningitis in rat pups was lower than that of strain 2 

that has unknown source and clinical presentation. The organism must 

cross the BBB to initiate meningitis, and this aspect remains controversial 

due to lack of a proper in vivo model (Townsend et al.  2007b). 

The gentamicin protection assay was performed to reveal endothelium 

invasion in vitro. This assay showed that C. sakazakii strains were able to 

invade rat capillary endothelial cells and possible cause CNS infection 

(Townsend et al.  2007b). The previous study involved the examination of 

Cronobacter to survive within U937 human macrophage cell line and to 

induce cytokine production, which highlights the ability of this organism to 

withstand phagocytosis and activate the immune response. This also 

suggests that this organism might be able to survive within microglial cells 

and induce them to produce inflammatory mediators that might contribute 

to the pathogenesis of meningitis. All strains were able to persist in 

macrophages for up to 96 hours, however the extent of persistence 

differed between strains. Strain 2 (C. sakazakii ST3; Table.1.7) has the 

ability of significant replication inside the macrophages while strains 1 (C. 
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sakazakii ST8), 57 (C. turicensis ST5), and 84 (C. dublinensis ST43) 

showed a modest level of replication, whereas strain 3 (C. muytjensii 

ST28) exhibited higher sensitivity to macrophage killing among C. 

sakazakii strains (Townsend et al.  2007b).  

Since macrophages are key regulators of the innate immunity, which 

trigger a number of inflammatory responses (Fig.1.4), including adaptive 

immunity, the secreted cytokines were examined using enzyme linked 

immunosorbent assay (ELISA) following Cronobacter infection. Although 

the levels of TNFα were stable from 6 to 24 hours, the strain NTU84 (C. 

dublinensis ST43) induced secretion of high levels of TNFα. The levels of 

IL-6 were elevated and the strain NTU84 generated the most robust 

response. This is an indication of a strong inflammatory response evoked 

from macrophages in response to the infection. IL-10 and IL-6 expression 

was detected also in the sera of neonatal rats as a response to C. 

sakazakii strain 2 infection. (Townsend et al.  2007b). 

 

 

 

 

 

 

 

 

Fig.1.4 Functional properties of activated macrophage showing M1 

polarisation that is derived by IFN-Υ, LPS, and TNF. From Mantovani et al. 
(2004). 

 
A previous study by Giri et al. (2011) examined the ability of C. sakazakii 

strains to invade and translocate through Caco-2 and HBMEC cell lines. It 

was shown that C. sakazakii strains can successfully accomplish this and 
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that the Caco-2 translocation occurred within 2 hours of incubation and 

noticeably increased after 4 hours. In addition, strain 1588, which was an 

environmental isolate, was found to be the most invasive strain for 

HBMEC cells. Moreover, the organism exhibited the ability of translocating 

through HBMEC cells whilst C. sakazakii strain 1590, which demonstrated 

low invasion of this cell line, was the lowest in translocation ability. In 

contrast, strain 1588 demonstrated highest translocation capability, 

whereas the negative control E. coli HB101 was not able to translocate 

through the intact monolayer (Giri et al.  2011). The previous study 

showed the ability of the organism to invade Caco-2 and HBMEC cell lines 

and pass through them. Nevertheless, most of the tested strains included 

in this study were food and environmental isolates. 

Citrobacter koseri is a member of the Enterobacteriaceae family and is 

also closely related to Cronobacter spp. (Joseph et al.  2012c). It is a 

Gram-negative facultative anaerobic bacillus that colonises the 

gastrointestinal tract and causes urinary tract infections and intra-

abdominal infections. Furthermore, it is a common cause of meningitis in 

neonates. This organism has the ability to invade brain microvascular 

endothelial cells, and persist inside the macrophages by avoiding 

phagocyte killing. In addition, it triggers the inflammatory responses of 

microglial cells leading to the establishment of a severe Cit. koseri CNS 

infection (Ribeiro et al.  1976, Rose  1979, Doran  1999, Pollara et al.  

2011). Therefore, due to its ability to cause CNS infection especially in 

neonates and intracellular survival, it represents a convenient positive 

control to be used in brain cell invasion assays of this project in addition 

to phagocytosis survival within macrophages and microglia.  

1.6. Pathogenicity and virulence 

Cronobacter is an opportunistic pathogen, which is associated with a 

number of clinical presentations in neonates, especially with those who 

have underlying conditions such as prematurity and low weight at birth. 

Moreover, the infection is not limited to neonates, it can occur in several 

age groups with less severity (Caubilla-Barron et al.  2007, Patrick et al.  

2014). 
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Pagotto et al. (2003) indicated that Cronobacter isolates are able to 

produce enterotoxins, and the toxin was lethal to suckling mice. In 

addition, Townsend et al. (2007b) proposed that the organism is able to 

survive within human macrophages, and penetrate rat capillary 

endothelial cells. Furthermore, a study by Adegbola and Old (1983) 

reported that it has the ability to produce mannose-sensitive 

haemaglutinin associated with type I pilus, which participates in the 

adhesion process (Kim and Loessner  2008).  

It has also been reported that the outer membrane protein A (OmpA) of 

Cronobacter spp. has a role in the colonisation of the gastrointestinal tract 

(GIT)., This might help in the invasion of human intestinal, which 

subsequently leads to the survival in the blood, and then invasion of the 

brain endothelial cells to cause meningitis (Franco et al.  2011b). 

Moreover, it was demonstrated recently that the outer membrane proteins 

OmpA and OmpX were required for the basolateral invasion of enterocyte-

like human epithelial cells by C. sakazakii (Kim et al.  2010). Additionally, 

Singamsetty et al. (2008) demonstrated that the entry of Cronobacter 

spp. into human brain microvascular endothelial cells (HBMEC) requires 

OmpA expression and depends on microtubule condensation in these cells. 

It was shown by Mohan Nair et al. (2009) that OmpA of Cronobacter spp. 

is considered as a major fibronectin-binding protein that promotes the 

invasion of HBMEC of the BBB. 

Bacterial cell attachment to surfaces might be followed by growth and 

biofilm formation (Kumar and Anand  1998). Biofilm refers to immobile 

communities of bacterial cells attached to each other or to a surface and 

embedded in polymeric substance produced by bacteria. Biofilm formation 

following the attachment of the organism to biotic or abiotic surfaces 

enhances the ability of the organism to resist environmental stress and 

provides protection against any bactericidal effect (Marshall  1992, Kim et 

al.  2006). It was reported by Kim et al. (2006) that Cronobacter spp. can 

form biofilms on enteral feeding tubes and stainless steel. Hartmann et al. 

(2010) have implicated the role of two open reading frames (ORFs), 

ESA_00281 and ESA_00282, of C. sakazakii in the adhesion to Caco-2 
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cells and biofilm formation. It was also shown in the same study that the 

flagella of C. sakazakii aid the adherence to this biotic surface and 

contribute in biofilm formation. Flagella are primarily responsible for 

motility in bacteria. It was shown that C. sakazakii mutants of flhE, fliD, 

and flgJ genes that had lost the ability to express flagella or have shorter 

ones demonstrated low levels of adherence to Caco-2 cell line and biofilm 

formation (Hartmann et al.  2010).  

Nitric oxide (NO) is an endogenously produced molecule that has a critical 

role in defending against infection. It is a lipophilic and a hydrophilic 

natural gas that can cross membranes readily. NO has the capacity to 

react with oxygen and superoxide spontaneously to produce nitrogen and 

oxygen intermediates to form various antimicrobial intermediates. The 

latter become biologically significant when the concentration of NO 

exceeds 1 μM. At such concentrations, reactive nitrogen oxide species 

(RNOS) could lead to oxidative and nitrosative damage by altering DNA, 

inhibiting enzyme function, and inducing lipid peroxidation that are 

responsible for antimicrobial properties. On the other hand, at low NO 

concentrations (<1 μM) it acts as a signaling molecule that promotes the 

growth and activity of immune cells (Schairer et al.  2012). 

 

NO, which is a short-lived highly reactive molecule, has an essential role 

in the pathogenesis of the failure of the intestinal barrier in NEC. It is an 

inflammatory mediator, which can induce enterocyte apoptosis and 

necrosis and alter the tight junctions (Chokshi et al.  2008). NO is 

produced by three isoforms of NO synthase (NOS). Endothelial NOS 

(eNOS) and neuronal NOS (nNOS) are expressed at low levels. The last 

isoform, inducible NOS (iNOS), is not produced under normal conditions. 

Nonetheless, it is significantly elevated during inflammation leading to 

high levels of NO production. Clinical samples from infants with NEC 

demonstrated increased levels of iNOS (Hackam et al.  2005, Henry and 

Lawrence Moss  2010, Iben and Rodriguez  2011). Moreover, as 

mentioned previously, bacteria can induce endothelial cells to produce NO 

that collaborates in BBB permeability allowing bacterial cells to migrate to 

the CNS (Kim  2003). 
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It was suggested by Hunter et al. (2009) that Cronobacter stimulates NO 

production, which leads to apoptosis of rat intestinal epithelial cells (IEC-

6) in vitro and enterocytes in vivo. Overexpression of NO or its toxic 

metabolite ONOO- may promote gut barrier failure and mucosal injury. 

The inhibition of NO production by using small interfering RNA (siRNA) to 

iNOS suppressed Cronobacter-induced apoptosis indicating that NO is 

required for Cronobacter-induced apoptosis of IEC-6 cells (Hunter et al.  

2009). 

1.7. Genome studies and identification of putative virulence    

factors 

The first sequenced genome of Cronobacter genus was for C. sakazakii 

strain ATCC BAA-894 (658; Table.1.7), and was published by Kucerova et 

al. (2010). Strain ATCC BAA-894 was isolated from a formula tin 

associated with an NICU outbreak by Himelright et al. (2001). The 

sequence was used for comparative genomic hybridisation (CGH) analysis 

of physiological and virulence related features against 10 strains represent 

five different recognised species of Cronobacter genus. The sequencing 

showed that the genome is composed of 1 chromosome (4.36837 Mb) and 

two plasmids; pESA2 (31kb, 38 genes) and pESA3 (131 kb, 127 genes).  

CGH analysis revealed 21 distinctive genes for C. sakazakii, which were 

not found in C. malonaticus, C. muytjensii, C. turicensis, and C. 

dublinensis. These genes encoded two protein clusters involved in pilus 

assembly, pilin FimA proteins, porin PapC, and the chaperone PapD. 

Moreover, these genes also included the proteins of phosphotransferase 

system, a putative sialic acid transporter, N-acetylneuraminate lyase and 

RelB from a toxin/antitoxin system. In addition, the analysis 

demonstrated that C. sakazakii BAA-894 genome encoded for genes that 

might contribute in HBMEC invasion including the gene encoding OmpA. 

Additionally, cusC, which is a part of a group of genes encoding a copper 

and silver resistance cation efflux system, was present. This gene is 

synonymous to ibeB gene that could be associated with the invasion of 

BBB and can be found in neonatal meningitic E. coli K1 (Huang et al.  
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1999, Kucerova et al.  2010). The complete cation efflux system cusA, 

cusB, cusC, cusF, and its regulatory gene cusR was identified in strains 

isolated from neonatal infections including strains 701 and 767 (Kucerova 

et al.  2010).  

The genes that were found to be shared among three strains linked to C. 

sakazakii infections in NICUs (BAA-894, 701, 767; Table.1.7) were 

compared with the type strain (ATCC 29544; strain 1; Table.1.7). The 

latter showed decreased virulence potential in tissue culture studies 

compared to strains 701 and 767 (Townsend et al.  2007b). One hundred 

and forty four genes were absent in the type strain based on BAA-894 

annotation. These genes are involved in oxidative stress resistance, a type 

VI secretion system, serum resistance, and multidrug efflux components 

(Kucerova et al.  2010, Franco et al.  2011b). 

As mentioned previously, the whole genome sequencing of C. sakazakii 

BAA-894 showed that the strain carries two plasmids; pESA2 and pESA3 

(Kucerova et al.  2010). Several virulence gene clusters are encoded on 

pESA3 including iron acquisition loci; a homologue of an ABC transporter-

mediated iron uptake and siderophore biosynthesis system eitCBAD 

operon and a siderophore iron acquisition system iucABCD/iutA operon 

(Franco et al.  2011a). There are two ORFs upstream of the cronobactin 

gene iucA, named shiF and viuB. The putative protein encoded by viuB 

has a significant similarity to ViuB and YqjH encoded by Vibrio cholerae 

and E. coli. These two proteins are accountable for reducing the iron form 

ferric state to ferrous state leading to the loss of affinity of the ferrous 

iron for the siderophore. Moreover, in silico identification of putative Fur 

boxes and expression of the genes under iron-depleted conditions suggest 

that most of these iron transport systems form part of the Fur regulon 

(Grim et al.  2012). By using Chrome Azurol S (CAS) agar diffusion 

(CASAD) assay, the strains showed the production of active siderophores 

(Franco et al.  2011a). Iron is a cofactor for important enzymes that are 

involved in many essential cell functions such as electron transfer, cellular 

respiration, and superoxide metabolism. Iron also is a fundamental 

element for bacterial pathogenesis. The human body limits iron availability 
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through iron-binding proteins as a part of the innate immune system and 

this in turn by reducing free iron levels will not support bacterial growth. 

In Gram-negative bacteria, during iron starvation conditions, bacteria 

construct high-affinity iron binding molecules, such as siderophores, to 

scavenge iron from the environment (Franco et al.  2011a). The iron 

siderophore complexes are taken into the bacterial cell by specific 

transport systems consisting of an outer membrane receptor, periplasmic 

binding protein and ABC transporter formed by a permease, and ATPase 

proteins (Köster  2001, Faraldo-Gómez and Sansom  2003).  

It was determined, by using in silico analysis, that pESA3 encodes an 

outer membrane protease related to proteins belonging to the omptin 

family. These omptins include a group of proteases, which are surface 

orientated outer membrane proteins expressed by many members of the 

Enterobacteriaceae. Most of the known omptins act as proteases, 

adhesins, or invasins (Franco et al.  2011b). Based on amino acid 

sequence analysis of these omptins, it has been found that they consist of 

two groups. The first group is called Pla subfamily, which includes PgtE of 

Salmonella Enteritidis, Pla of Yersinia pestis, and PlaA of Erwinia spp. The 

second subfamily is OmpT, which consists of OmpT and OmpP of E. coli 

and SopA of Shigella flexneri (Kukkonen and Korhonen  2004, Haiko et al.  

2009). Pla and PgtE have a role in the conversion of human proenzyme 

plasminogen to plasmin, inactivation of plasmin inhibitors α2 antiplasmin 

(α2-AP), and plasminogen activator inhibitor 1 (PAI-1; Kukkonen et al.  

2001, Lähteenmäki et al.  2005b, Haiko et al.  2010, Franco et al.  

2011a).  

Plasmin is a broad-specificity serine protease which can activate other 

proteolytic enzymes, including MMPs that have the ability to degrade the 

tight junction components of microvascular endothelial cells (Lähteenmäki 

et al.  2005). This function is crucial for plasmin-mediated mechanism of 

intercellular migration, which allows the bacteria to cross the vasculature 

into either the peripheral tissue or advantaged compartment such as the 

CNS. Inactivation of α2-AP by Pla provides uncontrolled proteolysis that 

contributes in the invasion of the bacteria by altering complement-
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dependent killing (Franco et al.  2011b). Furthermore, Pla and PgtE are 

able to degrade some serum proteins, including circulating complement 

providing the protection of Y. pestis and S. enterica against complement-

dependent serum killing (Sodeinde et al.  1992, Ramu et al.  2007). The 

alignment of the amino acid sequence of C. sakazakii outer membrane 

protease with different omptin family members shows that the protease 

belongs to Pla subfamily. As a result of that, the outer membrane 

protease was named Cronobacter plasminogen activator (Cpa). Cpa of C. 

sakazakii may provide resistance to bactericidal activity of serum through 

cleaving complement components C3 and C4b beside the activation of 

plasminogen and inactivation of α2-AP (Franco et al.  2011b). According 

to Joseph et al. (2012b), the gene encoding Cpa was found in C. sakazakii 

strains 696 and 701, whereas it was absent in strain 680. Moreover, the 

other species of Cronobacter lacked the presence of this gene except for 

C. universalis.  

A study by Joseph et al. (2012b) showed that the comparison of three C. 

sakazakii genomes with other Cronobacter species revealed 408 ORFs that 

are unique within this species. Strain 696 and 701 (Table.1.7) were found 

to have a number of unique regions. C. sakazakii strain 680 (Table.1.7) 

had unique genes encoding a region that is responsible for iron 

siderophore fecRABCDE that is possibly plasmid-borne in addition to 

arsenate resistance. On the other hand, compared to the reference 

genome C. sakazakii BAA-894, this strain is missing large regions 

including flagella synthesis genes. Moreover, the wza gene cluster that 

encodes for the exopolysacchride colanic acid was found in all Cronobacter 

strains used in the previous study (Joseph et al.  2012b). Furthermore, 

haemolysin and haemolysin-related genes were found in all Cronobacter 

strains except for C. sakazakii strain 701 and C. malonaticus strain 507. 

Furthermore, all Cronobacter genomes were found to encode macrophage 

survival gene sodA, and metallprotease zpx genes. C. sakazakii genomes 

encoded for important gene cluster nanAKTRC that is linked to the uptake 

and utilisation of sialic acid. Moreover, these genomes encoded for the 

putative sugar isomerase YhcH. The nan cluster was found to be adjacent 

to the starvation gene homologue sspA, hence this cluster might be 



Chapter 1: Literature review 

 26 

responsive to the environmental nutrient levels. (Joseph et al.  2012b). In 

another study by Joseph et al. (2013), it was found that nanAKTRC and 

yhcH were found only in C. sakazakii genomes. The ability of this 

organism to acquire exogenous sialic acid might have a major role in C. 

sakazakii colonisation of the host. Human body has three different sources 

rich in sialic acid the gastrointestinal tract, the brain, and human milk. 

Thus the utilisation of sialic acid could be a virulence factor that could 

contribute in gut and brain infections, as the bacterium has a history of 

association with NEC and meningitis infections (Joseph et al.  2012b, 

Joseph et al.  2013). Table.1.5 below shows the presence/absence of 

some important virulence genes in C. sakazakii based on Joseph et al. 

(2012b).  

Table.1.5: Presence/absence of some important virulence genes in C. 

sakazakii. From Joseph et al. (2012b). 
 

 

 

 

 

 

 

 

 

 

 

The previous discussion illustrates how aggressive this pathogen can be 

and the deleterious consequences that might result from the infection. 

Although the virulence potential and the pathogenicity of the organism 
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have been extensively researched over the recent years, none of the 

studies reported in the literature have examined the host response and its 

role in the pathogenesis of meningitis. There are still a number of issues 

currently limiting obtaining the complete picture of the mechanism by 

which C. sakazakii could overcome host barriers and evade immune 

response. Therefore, further understanding of the factors that might 

contribute in the severity of the infection and could lead to host damage is 

required. 

1.8. Multilocus sequence typing  

A multilocus sequence typing scheme (MLST) of Cronobacter spp. has 

been constructed, initially for C. sakazakii and C. malonaticus, by Baldwin 

et al. (2009) which now covers all seven Cronobacter species and is 

available online at http://www.pubMLST.org/cronobacter. This typing 

scheme is based on DNA sequence variation of seven loci; atpD, fusA, 

glnS, gltB, gyrB, infB, and ppsA (Baldwin et al.  2009, Joseph and 

Forsythe  2012c).  

Joseph and Forsythe (2011) investigated the association between the 

severity of the infection and the sequence type (ST) profile. A total of 41 

clinical isolates of C. sakazakii from seven countries were included in the 

study. The sequence analysis was compared with the Cronobacter MLST 

database. It demonstrated that the test clinical isolates were in 10 of the 

25 STs identified for C. sakazakii (Table.1.7). Moreover, it showed that 20 

strains were ST4, and the others were ST8 (7), ST1 (4), ST12 (3), ST3 

(2) and single strains in ST13, ST15, ST18, ST31, and ST41. Nine ST4 

strains were meningitis isolates, and five ST4 strains were isolated from 

CSF samples. However, there were only two meningitis strains from ST1. 

It was proposed that ST4 is a highly stable clone as it was isolated from 

seven different countries over fifty years. In addition, the most virulent 

strains that caused fatal infections, meningitis in particular, belong to ST4. 

The study concluded that further studies to investigate the clonal nature 

of ST4 and virulence are warranted (Joseph and Forsythe  2011). 

 



Chapter 1: Literature review 

 28 

Table.1.6: C. sakazakii STs and their sources. From Joseph and Forsythe 
(2011). 

 

 

 

 

 

ST: sequence type. 
CSF: cerebrospinal fluid. 
EFT: enteral feeding tube. 
PF: peritoneal fluid. 
SF: spinal fluid. 
AP: abdomen pus. 

 

A follow-up study showed that eBURST analysis exhibited 13 single locus 

variant clonal complexes among the 115 identified STs of Cronobacter 

genus. The clonal complex where strains are identical in 3 or more loci, 

and C. sakazakii is represented in nine of these clades (Forsythe et al.  

2014). Clonal complex 4 (CC4) contains C. sakazakii STs 4, 15, 97, 107, 

108, and 109, and as mentioned previously ST4 is the most frequent 

clinical ST (Fig.1.5). ST 15 has one isolate from a Canadian clinical case. 

The study revealed the high clonality of CC4 strains and their association 

with neonatal meningitis cases (Joseph and Forsythe  2011, Joseph and 

Forsythe  2012c). Another study by Joseph et al. (2012d) included 325 

strains across the Cronobacter genus. It was found that C. sakazakii 

comprises seventeen STs, and ST4 was most prevalent with 78 isolates. It 

was also shown that C. sakazakii was the predominant species from 

clinical sources, and ST4 was the most prevalent ST of meningitis cases 

and CSF isolates (Joseph et al.  2012d, Forsythe et al.  2014). 
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Fig.1.5 C. sakazakii and C. malonaticus with major clonal lineages 
highlighted using 7-loci Splits Network of 298 sequence types from the 

Cronobacter genus. From Forsythe et al. (2014) 
 

Hariri et al. (2013) investigated 15 Cronobacter isolates received from the 

Centers for Disease Control and Pervention (CDC), which were collected 

during 2011. Most (14) were C. sakazakii and 1 C. malonaticus meningitis 

isolate. Nine samples were clinical isolates from neonates or infants. The 

CSF isolates (5) were either ST4 or within CC4. The study concluded that 

this investigation supports the conclusion that C. sakazakii CC4 is the 

predominant clonal complex in CSF isolates among Cronobacter species.  
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Table 1.7: C. sakazakii strains of clinical importance commonly referred 
to in the literature. 

Strain Year 
Clinical 

presentation 
ST 

Presence of 

ESBL 
Reference 

658a 2001 Meningitis 1 Unknown 1 & 4 

2b Unknown Unknown 3 Unknown 1 

695 1994 Fatal NEC II 4 Present 2 

701 1994 Fatal NEC III 4 Unknown 2 

767 1994 Fatal meningitis 4 Present 2 & 4 

20 2004 Unknown 4 Unknown 2 & 3 

1c 1980 Unknown 8 Unknown 3 & 4 

696 1994 NECII 12 Unknown 2 & 3 

680d 1977 Unknown 8 Uknown 4 & 5 
ST: Sequence type. 
NEC: Necrotising enterocolitis. 
ESBL: Extended spectrum β-lactamase. 
1: (Townsend et al.  2007b). 
2: Caubilla-Barron et al. (2007). 
3: Joseph and Forsythe (2011). 
4: Kucerova et al. (2010). 
5: Joseph et al. (2012b) 
a: ATCC BAA-894 
b: ATCC 12868 
c: ATCC 29544 & NCTC 11467. 
d: CDC 996-77. 

 

1.9. Aims 

The former discussion has shown that C. sakazakii can be isolated from 

different sources and that it is associated with severe and fatal cases of 

NEC and meningitis in neonates and infants. It is clear that the organism 

has a group of virulence traits that can influence its ability to cause 

deleterious clinical outcomes. It was reported that C. sakazakii was the 

dominant species from clinical sources across the Cronobacter genus 

(Joseph and Forsythe  2012c, Joseph et al.  2012d, Forsythe et al.  2014), 

and C. sakazakii CC4 was the most prevalent clonal complex of meningitis 

and CSF isolates (Joseph and Forsythe  2011, Joseph et al.  2012d, 

Forsythe et al.  2014). Although there have been huge advancements in 

the genome studies of the organism, the host response and its role in 

outcome remains unclear. It is hypothesised that the C. sakazakii is able 

to pass through the host intestinal barrier by altering the tight junctions to 

reach the bloodstream. Additionally, this pathogen might be capable of 

surviving within human phagocytes and of withstanding serum-mediated 

killing. Thus, it could cause bacteraemia and spread throughout the body 

reaching the BBB. It is also proposed that the organism can alter the tight 

junctions of the BBB and stimulate the host response resulting in the 
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release of inflammatory mediators. Such mediators might increase the 

permeability of the BBB thus allowing a subsequent migration of the 

infected phagocytes. In addition, it can trigger apoptosis of HBMEC and 

microglial cells that could affect the integrity of the BBB barrier.  

Therefore, the initial aim of this project is to assess the virulence potential 

of C. sakazakii CC4 and non-CC4 clinical strains from different sources 

(e.g. CSF, blood, faeces) and clinical outcomes (e.g. meningitis, NEC, 

unknown). The first step to achieve that is studying the organism’s ability 

to attach, invade, and translocate through a set of cell lines. The research 

also aims to examine the cytotoxicity of the bacterium and its ability to 

survive serum-mediated killing and phagocytosis. Following from this, the 

impact of C. sakazakii infection on human brain cells in vitro will be 

investigated. In addition, the host response to the infection will be 

analysed to clarify whether the severe outcomes are attributed to it or if 

they are entirely caused by the bacterium per se. This work will involve a 

range of phenotypic and molecular assays in order to provide accurate 

assessment and evaluation of the host response. 
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Chapter 2: Materials and Methods 

The following chapter contains the common methods that were used in 

this project. Specific protocols will be detailed in the relevant chapter 

where appropriate.   

2.1. Safety considerations 

All experiments and protocols in this project were carried out in 

accordance to health and safety code of practice for microbiology level 2 

containment laboratories at Nottingham Trent University. All protocols and 

materials’ preparation were assessed and appropriate COSHH forms were 

completed. According to tissue culture laboratories health and safety 

regulations, Hepatitis B antibodies and vaccination were checked before 

conducting any tissue culture experiments. Waste was disposed according 

to the recommended procedures and material safety data sheets.  

2.2. Sterilisation and aseptic techniques 

All equipment, buffers, media, and solutions were sterilised by autoclave 

sterilisation at 121°C for 15 minutes, sprayed with 70% v/v ethanol, or 

filtered using 0.2 μm pore size filters (Fisher Scientific, UK) as 

appropriate. All protocols were carried out using aseptic techniques 

including use of a class II MSC hood to avoid contamination. 

2.3. Reagents, buffers, and culture media  

All reagents, media, and buffers used in this study are listed in Tables. 

2.1-2 and were purchased either from Sigma Aldrich, UK or Fisher 

Scientific, UK unless otherwise specified. 
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Table.2.1: Reagents and buffers used in this project. 
Reagents and buffers Preparation method 

Phosphate buffered saline 

(PBS) 

2 tablet of PBS (Sigma Aldrich, UK) was dissolved in 400 

ml of distilled water (dH2O) and autoclaved. 

Saline solution (0.85% v/v) 1 tablet of saline (Fisher Scientific, UK) was dissolved in 

500 ml of dH2O and autoclaved. 

Triton X-100 (1% v/v) 1 ml of Triton X-100 (Fisher Scientific, UK) was added to 

99 ml of dH2O and autoclaved then stored at room 

temperature.  

Glycerol (20% v/v)  2 ml of glycerol (Fisher Scientific, UK) was added to 80 ml 

of dH2O, mixed, and autoclaved then stored at room 

temperature. 

1X Tris-acetate-EDTA (TAE) 20 ml of 50X TAE buffer (Geneflow, UK) was mixed in 980 

ml of dH2O. 

Iron III solution  

(1 mM FeCl3–6H2O, 10 mM 

HCl) 

83 μl of concentrated HCl (12 M; Fisher Scientific, UK) 

were added into 100 ml of dH2O to make 10 mM HCl. 

Then, 27 mg of FeCl3 (Sigma Aldrich, UK) were dissolved 

in 1 L of dH2O. To Make 10 ml of mM iron III solution, 9 

ml of 10 mM HCl were mixed with 1 ml of FeCl3 solution. 

3-(4,5-dimethylthiazol-2-yl)-

2,5 diphenyltetrazolium 

bromide (MTT; 5 mg/ml) 

0.01 g of MTT (Sigma Aldrich, UK) was dissolved in 20 ml 

of PBS and then filtered through 0.2 μm pore size filter. 

Giemsa stain (5% v/v) 10 ml of Giemsa stain (Life Technologies, UK) were diluted 

in 200 ml of sterile PBS at the time of the assay. 

  

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Table.2.2: Culture media used in this project. 

 

2.4. Bacterial strains 

Thirty-four C. sakazakii strains were used in this research. These isolates 

were selected from Nottingham Trent University culture collection 

including the control strains S. Enteritidis NTU 358 (+ve), Cit. koseri NTU 

48 (+ve), and E. coli K12 NTU 1230 (-ve; Table.2.3). The strains were 

chosen according to their sequence type, source, and clinical outcomes. 

This included a group of well-characterised strains from the 1994 French 

outbreak (Caubilla-Barron et al.  2007). Strains were stored in TSB 

(Oxoid, UK) containing 20% v/v glycerol at -20°C and -80°C. They were 

grown on TSA (Oxoid, UK) under aerobic conditions at 37°C for 18 hours. 

Up-to-date information and details about the isolates can be found at 

http://www.pubmlst.org/cronobacter. 

  

Culture media Preparation method 

Tryptone soya agar 

(TSA) 

40 g of TSA powder (Oxoid, UK) was dissolved in 1 L of 

dH2O and then autoclaved before cooling to 50°C. The 

medium was then poured into Petri dishes, dried, and 

was stored at 4°C. 

Tryptone Soya broth 

(TSB) 

15 g of TSB powder (Oxoid, UK) was dissolved in 500 

ml of dH2O and then autoclaved before cooling to 60°C 

and was stored at room temperature. 

Luria-Bertani broth (LB) 25 g of LB powder (Sigma Aldrich, UK) was dissolved in 

1 L of dH2O and then autoclaved before cooling to 60°C 

and was stored at room temperature. 
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Table.2.3: C. sakazakii strains used in this research. 

ST: sequence type.  
NEC: necrotising enterocolitis.  
CSF: cerebrospinal fluid.  
a: French outbreak strains (Caubilla-Barron et al. 2007, Townsend et al. 2008). 
b: Part of clonal complex 4, which contains STs 4, 15, 97, 107, 108 and 109.(Forsythe et al.  2014). 
c: BAA-894 the first C. sakazakii strain sequenced (Kucerova et al. 2010). 
d: Alternative culture collection code HPB-3290. 
(1): Exeter, unpublished. 
(2): Life Technologies (Joseph et al.  2012b) 
(3): Washington (Kucerova et al. 2010). 

 

For the PhD stage, thirteen C. sakazakii strains (ST4 and non-ST4) were 

selected based on several criteria obtained from the MPhil stage such as 

the site of isolation and the nature of infection, the high invasiveness and 

translocation, macrophage persistence, and iNOS induction. More 

information about these strains is listed in Table.2.4. 

 

 

Strain ST Source Clinical presentation Country Genome 
sequenced 

6 4 b Clinical - Unknown Unknown Canada Yes (1) 
20 4 b Clinical - Unknown Unknown Czech Republic Yes (1) 

553 4 b Clinical - Unknown Unknown Netherlands Yes (1) 
557 4 b Clinical - Unknown Unknown Netherlands Yes (1) 
558 4 b Clinical - Unknown Unknown Netherlands Yes (1) 
695a 4 b Clinical - Trachea Fatal NEC II France Yes (1) 
721 4 b Clinical - CSF Unknown USA Yes (1) 
730a 4 b Clinical - Unknown NEC I France Yes (1) 
767a 4 b Clinical - Trachea Fatal meningitis France Yes (1) 

1219 4 b Clinical - CSF Fatal meningitis USA Yes (1) 
1220 4 b Clinical - CSF Brain abscess, not fatal USA Yes (1) 

1221 4 b Clinical - CSF Meningitis USA Yes (1) 
1222 4 b Clinical - Blood Fever USA No 
1223 4 b Clinical - Blood Unknown USA No 
1224 4 b Clinical - Blood Fever USA No 

1225 4 b Clinical - Blood Fatal meningitis USA Yes (1) 
1231 4 b Clinical - Faeces Meningitis New Zealand Yes (1) 
1240 4 b Clinical - CSF Fatal meningitis USA Yes (1) 
1242 4 b Clinical - Brain Fatal meningitis USA No 
1465 4 b Infant formula Unknown Saudi Arabia No 
1587 109b Clinical - CSF Brain damage Israel Yes (1) 

4 15b Clinical - Unknown Unknown Canada Yes (1) 

1249 31 Clinical - Unknown Fatal infant isolate UK Yes (1) 
12 1 Clinical - Faeces Unknown Czech Republic No 
555 1 Clinical - Unknown Unknown Netherlands No 
658c 1 Non-infant formula Meningitis USA Yes (3) 

1019d 1 Clinical - CSF Meningitis USA No 
1241 1 Clinical - Blood Unknown USA No 

1 8 Clinical - Throat Unknown USA Yes (1) 

5 8 Clinical - Unknown Unknown Canada Yes (1) 
680 8 Clinical - CSF Unknown USA Yes (2) 
520 12 Clinical - Unknown Unknown Czech Republic Yes (1) 
696a 12 Clinical - Faeces NEC II France Yes (2) 
580 18 Clinical - Unknown Unknown UK No 
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Table.2.4: C. sakazakii strains selected for detailed analysis. 

 
Strain ST Source Clinical presentation Country Genome 

Sequenced 

6 4 Clinical Unknown Canada Yes (1) 
20 4 Clinical - Faeces Unknown Czech Republic Yes (1) 
558 4 Clinical Unknown Netherlands Yes (1) 
695a 4 Clinical - Trachea Fatal NEC II France Yes (1) 
767a 4 Clinical - Trachea Fatal meningitis France Yes (1) 

1221 4 Clinical - CSF Meningitis USA Yes (1) 
1240 4 Clinical - CSF Fatal meningitis USA Yes (1) 
1242 4 Clinical - Brain Fatal meningitis USA No 
1587 109b Clinical - CSF Brain damage Israel Yes (1) 

1249 31 Clinical Fatal infant isolate UK Yes (1) 
658c 1 Non-infant formula Meningitis USA Yes (3) 

680 8 Clinical - CSF Unknown USA Yes (2) 
696a 12 Clinical - Faeces NEC II France Yes (2) 

ST: sequence type. 
NEC: necrotising enterocolitis.  
CSF: cerebrospinal fluid.  
a: French outbreak strains (Caubilla-Barron et al. 2007, Townsend et al. 2008). 
b: New CSF isolate that was received during the project period and added to the strains in the final 
stage of this study. Part of clonal complex 4, which contains STs 4, 15, 97, 107, and 108 (Joseph et 
al.  2012d). 
c: BAA-894 the first C. sakazakii strain sequenced (Kucerova et al. 2010). 
(1): Exeter, unpublished. 
(2): Life Technologies (Joseph et al. 2012b). 
(3): Washington (Kucerova et al. 2010). 

2.5. C. sakazakii virulence 

2.5.1 Motility test 

Four grams of microbiology nutrient agar No.2 (Fluka, UK) and thirty 

grams of TSB (Oxoid, UK) in 1 L of water mixture were prepared and 

autoclaved to make soft agar plates. Strains were grown in LB broth and 

incubated at 37°C for 18 hours with shaking (180rpm). The samples were 

then diluted to 10-4 in PBS before inoculating by stabbing into the soft 

agar plate at 3 μl of bacterial suspension. The test was undertaken twice 

with three inoculations each. The motility was determined by measuring 

the zone of growth around the inoculation spot after 18 hours growth at 

37°C. 

2.5.2. Iron siderophore detection  

Chrome Azurol S (CAS) agar diffusion (CASAD) assay was used to detect 

iron siderophore production. The experiment was prepared as described 

previously (Shin et al.  2001). Initially, 60.5 mg of CAS (Sigma Aldrich, 

UK) was dissolved in 50 ml deionised water and then mixed with 10 ml of 

iron III solution (Table.2.1). The mixture was added with stirring into 72.9 
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mg of Hexadecyltrimethylammonium (HDTMA; Sigma Aldrich, UK) in 40 

ml of water. This dark solution was autoclaved and mixed with a second 

autoclaved solution containing 900 ml water, 15 g agarose (Sigma Aldrich, 

UK), 30.24 g PIPES (Sigma Aldrich, UK), and 12 g of NaOH solution (50% 

w/v in water). The mixture was poured in petri dishes and left to solidify. 

Wells were cut in the plates with a 5 mm diameter gel plug cutter and 

stored at 4°C. 

 

Bacterial strains were grown on TSA at 37°C for 18 hours incubation. Five 

colonies were inoculated in 10 ml of LB broth containing 200 μM 2, 2’- 

Dipyridyl (Sigma Aldrich, UK) and incubated with shaking at 200 rpm at 

37°C for 18 hours. The tubes were then centrifuged at 5000 rpm 

(Megafuge 16R-Thermo Scientific, UK) for 10 minutes. Cell free 

supernatant of 70 μl of each sample was added into the 5 mm holes that 

were cut in the agar and plates incubated for 4-8 hours at 37°C. a volume 

of 70 μl of PBS was added into some wells as a negative control. 

 

2.5.3. C. sakazakii sensitivity to human serum 

The sensitivity of C. sakazakii strains to active human serum was 

conducted as described previously by Hughes et al. (1982) with slight 

modification. Bacterial cultures were grown for 18 hours in LB at 37°C 

with shaking at 200 rpm then centrifuged for 10 minutes at 1300 rpm 

(Mikro 200-Hettik). The pellet was then re-suspended to 106 cfu/ml in 5 

ml of phosphate buffered saline (PBS; Sigma Aldrich, UK). A volume of 

0.5 ml of the suspension was added into 1.5 ml of undiluted active human 

serum (Sigma Aldrich, UK). The samples were loaded into a 24-well plate 

and incubated at 37°C with shaking (200 rpm).  Viable counts were 

obtained at 4 different time points (0, 1, 2, and 3 hours) after serial 

dilution in PBS and plating on TSA for 18 hours at 37°C. Each strain was 

tested in triplicate, and the mean results were stated as percent survival 

of inoculum. 
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2.5.4. Comparative genomic analysis for C. sakazakii virulence 

genes 

A group of genes of interest were chosen according to the literature and 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) database (Ogata et 

al.  1999, Franco et al.  2011a, Franco et al.  2011b, Grim et al.  2012). 

These genes were linked to important virulence traits such as serum 

resistance and iron acquisition.  
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Table.2.5: Putative virulence genes that were investigated in this project. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A: Cronobacter sakazakii strain 658, the first Cronobacter sequenced strain (Kucerova et al. 2010). B: Cronobacter sakazakii strain ES15 (Shin et al.  2012). 
C: E. coli O157:H1. D: E. coli APECO1. E: S. enterica serovar Typhimurium LT2. F: Y. pestis CO92. 
1: (Kucerova et al.  2010). 2: Joseph et al. (2012b). 3: Franco et al. (2011a). 4: Grim et al. (2012).  5: Bogard and Oliver (2007). 6: Franco et al. (2011b).  
7: Gottesman et al. (1985). 8: Ismail et al. (2003). 9: Badger et al. (2000). 10: Peng et al. (2012). 11: Ernst et al. (1999). 12: Blanc‐ Potard and Groisman 

(1997). 13: Yamamoto et al. (1996). 14: Townsend et al. (2007b). 
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2.5.4.1. Screening of C. sakazakii plasmid associated serum 

resistance and iron acquisition genes    

Plasmid extraction, primer design, and the PCRs were all conducted 

according to Franco et al. (2011a) with some modifications. 

2.5.4.1.1. Plasmid DNA extraction 

Plasmid extraction was carried out according to the manufacturer’s 

instructions using QIAprep Spin Miniprep Kit (Qiagen, UK). Bacterial 

strains were grown on TSA (Oxoid, UK) from frozen cultures at -20°C. A 

single colony from each strain was inoculated in 3 ml of LB broth and 

incubated at 37°C for 18 hours with shaking (180 rpm). A volume of 2 ml 

of overnight (18 hours) culture was centrifuged at 8000 rpm (Mikro 200-

Hettich) for 3 minutes at room temperature, and then the pellet was re-

suspended in 250 μl of Buffer P1 and transferred to a micro-centrifuge 

tube. Next, 250 μl of Buffer P2 were added and mixed 4-6 times by 

inverting, until the solution became clear. Afterwards, 350 μl of Buffer N3 

were pipetted into the tube and mixed immediately 4-6 times by 

inverting. The tube then was centrifuged for 10 minutes at 13000 rpm in a 

table-top micro-centrifuge (Mikro 200-Hettich). The supernatant was then 

decanted to a QIAprep spin column before centrifugation at 13000 rpm 

(Mikro 200-Hettich) for 60 seconds. Next, the column was washed by 500 

μl of Buffer PB and centrifuged at 13000 rpm (Mikro 200-Hettich) for 60 

seconds. Following centrifugation, the column was washed by adding 750 

μl of Buffer PE and centrifuged for 60 seconds at 13000 rpm (Mikro 200-

Hettich) before discarding the flow-through. The column was centrifuged 

again at 13000 rpm (Mikro 200-Hettich) for 60 seconds to remove the 

residual wash buffer. The column was then transferred to a clean 1.5 ml 

collection tube. Finally, 50 μl of Buffer EB were added to the centre of the 

QIAprep spin column and incubated for 60 seconds to elute DNA before 

centrifugation at 13000 rpm (Mikro 200- Hettich) for 60 seconds.          

2.5.4.1.2. Polymerase chain reaction (PCR) protocol 

PCR primers were designed to target cpa, iucC, and eitA loci on the large 

C. sakazakii plasmid pESA3. GoTaq® DNA Polymerase kit (Promega, UK) 

was used for all PCR reactions’ preparation (Table.2.6.). Information 



Chapter 2: Materials and Methods 

 41 

about PCR reactions is listed in Table.2.7. The PCR products were 

analysed using agarose gel electrophoresis. 

Table.2.6: PCR master mix components and volumes. 

Constituent Volume Final concentration 

GoTaq® reaction buffer, 5X 5 μl 1X 

MgCl2 2 μl 1.5 mM 

dNTP mix 1 μl 0.2 mM each dNTP 

Upstream primer* 2.5 μl 10 μM 

Downstream primer* 2.5 μl 10 μM 

Taq polymerase 1 μl 1.25 Unit Taq 

DNA template 1 μl ~ 10 ng 

Nuclease-Free Water 10 μl NA 

NA: not applicable 
*: Purchased from Eurofin, UK. 

 

Table.2.7: PCR primers and reactions used in this study (Franco et al.  
2011a). 

 

 

 

 

 

 

 

 

 

 

1 All reactions started with 3 minutes at 94°C followed by 25 cycles including denaturation 

step at 94°C for 30 seconds. 
s: seconds. 

 

2.5.4.1.3. DNA separation using agarose gel electrophoresis 

All amplified PCR products were visualised using a 1% w/v agarose gel. To 

prepare 1% (w/v) agarose gel, 0.5 g of agarose (Fisher Scientific, UK) 

were mixed with 50 ml of 1X TAE buffer (Geneflow, UK; Table.2.1). The 

mixture then was heated in the microwave oven until the agarose was 

completely dissolved. Next, 5 μl (0.1 μl/ml v/v) of SYBER® Safe DNA gel 

stain (Life Technologies, UK) was added into the mixture and mixed well 

before it was poured into the gel tray and left to set.  
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The gel was then submerged in a horizontal running tank, Mini-Sub® Cell 

GT (Bio-Rad Laboratories Ltd., UK), containing 1X TAE buffer. Afterwards, 

5 μl of each PCR product was loaded into each well, and 5 μl 1 kb DNA 

ladder (Promega, UK) was loaded to determine the size of the DNA 

fragments. The gel was then run at 100V for 40 minutes. Finally, using 

InGenius® gel documentation system (Syngene; UK), the gel was 

examined under ultraviolet (UV) to view the DNA bands. 

2.5.4.2. Genome comparisons for the presence/absence of 

possible C. sakazakii virulence genes 

To investigate the presence and the absence of the key genes, genome 

comparisons were applied to find out the unique regions of interest that 

may contribute to the virulence of the organism. This comparative 

analysis was done using Artemis genome browser to investigate the 

presence/absence of desired genes and Artemis comparison tool 

(WebACT) for genome pairwise alignments (Rutherford et al.  2000, 

Carver et al.  2005). Moreover, BLAST genome search was applied to 

strains using the sequence of each gene to find out if they are present or 

not. The BLAST search was at http://www.pubmlst.org/cronobacter. 

2.5.5. Tissue culture-based virulence studies 

2.5.5.1. Mammalian cell lines 

Cell lines used in this project (Table.2.8) were preserved in liquid nitrogen 

until they were required. To grow the cell line, a vial of the appropriate 

cell line was taken from liquid nitrogen and kept in ice. A volume of 20 ml 

of pre-warmed tissue culture growth medium (see Table.2.9) was added 

to 75-cm3 tissue culture flask. The cell line vial then was thawed quickly 

and pipetted into the culture flask before incubation at 37°C in 5% CO2 for 

up to 24 hours. Afterwards, the growth medium was replaced by 20 ml of 

fresh medium to remove the residues of cell line preservatives. The flask 

was incubated for 48-72 hours to achieve a confluent monolayer of cells. 

The cells then were detached using 5 ml of TrypLe™ express (Life 

Technologies, UK) and centrifuged for 3 minutes at 1500 rpm using LMC-

3000 centrifuge (Grant-bio, UK). The supernatant was discarded and the 

pellet re-suspended in growth medium before transferring into a new flask 
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containing 20 ml of fresh growth medium. The cell lines were maintained 

and split two times a week to keep continuity of growth. 

Table.2.8: Cell lines used in this project. 

 
Cell line Passages Reference No. Source 

Colorectal adenocarcinoma 

epithelial cells (Caco-2) 

17-45 ECACC 

#86010202 

European Collection 

of Cell Cultures 

Human brain microvascular 

endothelial cells (HBMEC) 

2-25 #P10354 Inooprot, Spain 

Macrophage cell line (U937) 12-28 ATCC#CRL-

1593.2 

American Type 

Culture Collection 

Human microglial cell line 

(HMGC) 

3-17 #HMG030 Inooprot, Spain 

Rat brain capillary endothelial 

cell line (rBCEC4) 

21-36 - I. E. Blasig* 

*: Forschungsinstitut für Molekulare Pharmakologie – Berlin, Germany. 

 Table.2.9: Tissue culture media used in this project. 
 

 

 

 

 

 

 

 

Cell line Growth medium Infection medium 

Caco-2 Minimum Essential Medium (MEM) 

supplied with 10% (v/v) foetal calf serum 

(FCS), 1% (v/v) non-essential amino acid 

(NEAA), and 1% (v/v) penicillin-

streptomycin (Sigma Aldrich, UK). 

Minimum Essential Medium 

(MEM) supplied with 10% (v/v) 

FCS, and 1% (v/v) non- NEAA 

(Sigma Aldrich, UK). 

HBMEC Dulbecco’s modified Eagle’s medium 

(DMEM) with 10% (v/v) FCS and 1% (v/v) 

penicillin-streptomycin (Sigma Aldrich, 

UK) 

Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% 

(v/v) FCS (Sigma Aldrich, UK) 

rBCEC4 Dulbecco’s modified Eagle’s medium 

(DMEM) with 10% (v/v) FCS and 1% (v:v)  

penicillin-streptomycin (Sigma Aldrich, 

UK) 

Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% 

(v/v) FCS (Sigma Aldrich, UK) 

U937 RPMI medium containing 10% (v/v) FCS, 

1% (v/v) NEAA, and 1% (v/v) penicillin-

streptomycin (Sigma Aldrich, UK) 

RPMI medium containing 10% 

(v/v) FCS and 1% (v/v) NEAA 

(Sigma Aldrich, UK). 

HMGC Basal medium containing 10% (v/v) FCS, 

10% (v/v) microglial growth supplement, 

and 1% (v/v) penicillin-streptomycin 

(Innoprot, Spain). 

Basal medium containing 10% 

v/v FCS, and 1% (v/v) 

microglia growth supplement 

(MCGS) (Innoprot, Spain). 
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2.5.5.2. Preparing bacterial inocula   

A single colony of each test strain was inoculated into 5 ml of LB (Oxoid, 

UK) and grown aerobically at 37°C for 18 hours prior to infection with 

shaking at 200 rpm. On the day of the assay, 120 μl of overnight (18 

hours) cultures were added into 5 ml of infection medium (Table.2.9) 

before being incubated at 37°C with shaking at 200 rpm for 1.5 hours to 

achieve an optical density (OD) of 0.3 - 0.5 at 600nm using the 

spectrophotometer (JENWAH, UK). The bacterial suspension was then 

diluted in infection medium to obtain 4x106 cfu/ml, which is multiplicity of 

infection of 100 (MOI 100) for Caco-2, HBMEC, and rBCEC4 cell lines. For 

U937 and HMGC cell lines, bacterial suspension was diluted to 4x105 

cfu/ml (MOI 10).     

2.5.5.3. Bacterial cytotoxic activity to human cell lines (MTT) 

This assay is based on the reduction of MTT (Sigma Aldrich, UK) by viable 

cells to its insoluble form formazan, which has a purple colour. This 

experiment was applied as described previously (Kielian et al.  2004, 

Krzymińska et al.  2009, Liu and Kielian  2009, Travan et al.  2009) with 

some modifications. Human cells, Caco-2, human brain microvascular 

endothelial cells (HBMEC), and human microglial cells (HMGC), were 

grown in 24-well plates at 4x104 cell/well. The plates were then incubated 

for 48 hours at 37°C in 5% CO2. Bacterial suspensions were prepared by 

growing bacteria for 18 hours prior to infection. These were then added to 

the wells at 4x106 cfu/well MOI 100 and 4x105 cfu/well MOI 10 for HMGC. 

The plates were then incubated in 5% CO2 at 37°C for 1 and 3 hours. The 

wells were then washed three times using PBS before adding 0.5 ml fresh 

tissue culture infection medium. A volume of 50 μl of MTT at a 

concentration of 5 mg/ml (w/v; Table.2.1) was added to each well. The 

plates were then incubated in 5% CO2 for 1 and 3 hours at 37°C. Next, 

the medium containing MTT was removed and formazan was solubilised in 

dimethyl sulfoxide (DMSO; Fisher Scientific, UK). The plates were then 

shaken for 10 minutes before measuring the absorbance at 600nm using a 

plate reader (BioTek, UK). The negative control for the assay consisted of 

uninfected cells. 
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2.5.5.4. C. sakazakii attachment and invasion assays 

The experiment was carried out to assess the ability of the isolates to 

attach and invade human cells. This assessment was determined in vitro 

by applying the gentamicin protection assay using Human colonic 

carcinoma epithelial cells (Caco-2) passages 17 to 45 acquired from the 

European Collection of Cell Cultures (ECACC #86010202), human brain 

microvascular endothelial cells passages 2 to 25 (HBMEC; ref. #HMG030 

Inooprot, Spain) and rat brain capillary endothelial cell line (rBCEC4) 

passages 21 to 36, which was obtained from I. E. Blasig 

(Forschungsinstitut für Molekulare Pharmakologie – Berlin, Germany; 

Table.2.8). The tissue culture media used in this assay are listed in 

Table.2.9. All experiments used consistent conditions of time, 

temperature, cell line passage, mammalian cell concentration, and 

bacterial suspension densities. Salmonella Enteritidis strain NTU 358 was 

used as positive control for the Caco-2 cell line, while Citrobacter koseri 

strain NTU 48 was the positive control for HBMEC and rBCEC4 cell lines. 

Escherichia coli K12 strain NTU 1230 was the negative control for all cell 

lines. Control strains were from the NTU strain collection.   

2.5.5.4.1. Bacterial attachment to mammalian cells 

This experiment was as described previously by Townsend et al. (2008) 

with slight modifications. Mammalian cells were grown as mentioned 

previously in Section 2.5.5.1. and then seeded in 24-well plates (Sarstedt, 

Germany) at 4x104 cell/well in growth medium (Table.2.9) for 48 hours in 

5% CO2 at 37°C to achieve a confluent monolayer. C. sakazakii strains 

were grown as described in Section 2.5.5.2. The suspensions were then 

added to the wells at 4x106 cfu/well MOI 100, and incubated in 5% CO2 at 

37°C for 2 hours. The wells were then washed three times using PBS 

(Sigma Aldrich, UK), and lysed with 1% (v/v) Triton X-100 (Fisher 

Scientific, UK; Table.2.1). The lysates were serially diluted in PBS and 

then plated on TSA for 18 hours at 37°C to determine the viable count. 

Data are presented as the percentage efficiency of attachment. 
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2.5.5.4.2. Bacterial invasion of mammalian cells  

The method was as per bacterial attachment above. However, following 

the washing three times by PBS, 0.5 ml of infection medium (Table.2.9) 

supplied with 125 μg/ml of gentamicin, which is the lethal concentration 

for Cronobacter (Sigma Aldrich, UK) was added and incubated in 5% CO2 

at 37°C for 1 hour. The wells were then washed once with PBS (Sigma 

Aldrich, UK) before lysing by 1% (v/v) Triton X-100 (Fisher Scientific, UK; 

Table.2.1), and plated on TSA at 37°C for 18 hours incubation after serial 

dilution in PBS to obtain viable count. Data are presented as the 

percentage efficiency of invasion. 

 

 

2.5.5.5. Translocation assay  

2.5.5.5.1. Translocation assay using Caco-2 cell line 

Translocation assay was performed as previously described (Burns et al.  

2001, Giri et al.  2011). However, 0.8 ml of growth medium (Table.2.9) 

was added to the basolateral chamber of Millicell-24 cell culture plate 

(Millipore, UK). Caco-2 cells, at 4x104 cell/well in 0.4 ml/well of growth 

medium, were seeded onto a 3 μm pore polycarbonate transwell 

membrane in the apical chamber of the tissue culture plate and incubated 

in 5% CO2 at 37°C. The medium in the apical and the basolateral 

chambers was changed every 3 days. Millicell ERS-2 Volt-Ohm Meter 

(Millipore, UK) was used to measure the transepithelial electrical 

resistance (TEER). According to the literature, the Caco-2 cell line required 

up to 21 days to form intact polarised monolayers with TEER 300-850 

Ωcm-2 (Finlay and Falkow  1990, Burns et al.  2001, Giri et al.  2011).  

On the day of the assay, the medium in the basolateral chamber was 

replaced with infection medium (Table.2.9). The medium in the apical 

chamber was removed, and the membrane was washed two times using 

0.4 ml of PBS (Sigma Aldrich, UK). Bacterial suspensions was prepared as 

described previously in Section 2.5.5.2, then 0.4 ml of each suspension 

containing 4x106 cfu (MOI 100) or medium alone as control was added to 

the apical chamber. At each time point of incubation (1, 3, and 5 hours), 
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the basolateral chamber was sampled for viable count after serial dilution 

in PBS and inoculated on TSA. After sampling the medium in the 

basolateral chamber was replaced by  fresh medium.  

 

 

The transepithelial electrical resistance (TEER) was measured at four 

different time points (0, 1, 3, 5 hours) using a Millicell ERS-2 Volt-Ohm 

Meter (Millipore, UK) (Fig.2.1). Data are presented as the percentage 

efficiency of translocation. 

2.5.5.5.2. Translocation assay using HBMEC cell line 

This assay was carried out using the protocol described previously (Nizet 

et al.  1997, Badger et al.  1999, Giri et al.  2011). The basolateral 

chambers of the 24-well plate were filled with 0.510 ml/well of growth 

medium (Table.2.9). Cells, with a concentration of 4x104 cell/well in 0.375 

ml growth medium (Table.2.9), were seeded onto the apical part of 

collagen-coated polytetrafluoroethylene (PTFE) membrane with a pore size 

of 0.4 μm (Transwell-COL; Corning, USA), and incubated in 5% CO2 at 

37°C. The medium in the apical chamber was changed every 3 days. The 

transendothelial electrical resistance (TEER) was measured using Millicell 

ERS-2 Volt-Ohm Meter (Millipore, UK). According to electrical resistance 

measurements, the HBMEC cell line required 5 to 8 days to form intact 

polarised monolayers with TEER 300-600 Ωcm-2 (Kim  2003, Giri et al.  

2011).  

Prior to infecting the cell line, the filter was washed twice with 0.375 

ml/well PBS, and the medium in the basolateral part was replaced by 

infection medium (Table.2.9). The cell line was infected with 0.375 ml per 

well bacterial suspension prepared as previously mentioned in Section 

2.5.5.2. with MOI of 100. The basolateral chamber was sampled and 

serially diluted in PBS at three time points of incubation (1, 3, and 5 

hours) and then plated for viable count on TSA at 37°C before replacing 

with fresh infection medium. Data are presented as the percentage 

efficiency of translocation.  
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The electrical resistance of the monolayers was also measured at 0, 1, 3, 

and 5 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1 Steps of translocation assay. 

 

2.5.5.6. Uptake and survival assays inside phagocytic cells 

Uptake and survival assays were applied to investigate the ability of C. 

sakazakii strains to survive after being phagocytised by human 

macrophages and microglial cells. Macrophage cell line (U937) passage 12 

was obtained from American Type Culture Collection (ATCC; #CRL-

1593.2), and human microglial cell line passage 3 was obtained from 

Innoprot Technologies (Ref.# P10354). The media used in these 

experiments are listed in Table.2.9. 
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2.5.5.6.1. C. sakazakii persistence in human macrophages 

As previously described by Townsend et al. (2007) with slight 

modifications, macrophages were grown as described in Section 2.5.5.1. 

and then treated with growth medium (Table.2.9) containing 2 mM L-

glutamine, 10 mM HEPES, and 1 mM sodium pyruvate (Sigma Aldrich, UK) 

for maturation. Before seeding the 24-well plates, phorbol 12-myristate 

13-acetate (PMA; Sigma Aldrich, UK) at a concentration of 0.1 μg/ml was 

added to cell suspensions to promote cell adhesion. The cells were then 

plated into 24-well plates at 4x104 cell/well and incubated in 5% CO2 at 

37°C for 72 hours to produce confluent monolayers. 

Macrophages were infected with overnight (18 hours) bacterial 

suspensions prepared as described in Section 2.5.5.2, however the 

concentration of bacterial cells was 4x105 cfu/ml (MOI 10). The plates 

were then incubated 1 hour in 5% CO2 at 37°C. After incubation, the 

medium was aspirated and replaced with infection medium (Table.2.9) 

containing 125 μg/ml of gentamicin, which is the lethal concentration for 

Cronobacter, and incubated in 5% CO2 at 37°C for 1 hour. Four plates 

were then washed 3 times with PBS before addition of infection medium 

(Table.2.9) containing 50 μg/ml of gentamicin followed by further 

incubation (6 h, 24 h, 48 h, and 72 h). After each time point of incubation, 

the plates were washed twice with PBS before cells were lysed by addition 

of 0.120 ml of 1% (v/v) Triton X-100, and then serially diluted in PBS 

before plating on TSA to enumerate the intracellular bacteria at different 

time points (uptake, 6 h, 24 h, 48 h, and 72 h). Data are displayed as 

percentage of uptake and persistence at each time point.  

 

 

2.5.5.6.2. C. sakazakii persistence in human microglial cells 

As previously described by Liu and Kielian (2009) with slight 

modifications, microglial cells were grown as stated in Section 2.5.5.1. 

using basal medium (Table.2.9) for three days in 75 cm3 tissue culture 

flask. The cells then were seeded into four 24-well plates at 4x104 

cell/well and incubated in 5% CO2 at 37°C for 48 hours to achieve 
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confluency. Next, the cells were infected with overnight (18 hours) 

bacterial suspensions prepared as explained in Section 2.5.5.2, however 

the bacterial cells were added at MOI of 10. Afterwards, the plates were 

incubated for 1 hour in 5% CO2 at 37°C. The medium was then aspirated 

and replaced by infection medium (Table.2.9) containing 125 μg/ml of 

gentamicin, which is the lethal concentration for Cronobacter, and 

incubated in 5% CO2 at 37°C for 1 hour after washing 3 times by PBS. 

Three plates were then washed 3 times with PBS and supplied with 

infection medium (Table.2.9) containing 50 μg/ml of gentamicin for 

further incubation (24 h, 48 h, and 72 h). At the end of each time point of 

incubation, the cells were washed twice with PBS before cells were lysed 

by addition of 0.120 ml of 1% (v/v) Triton X-100, and plated on TSA after 

being serially diluted in PBS to obtain the intracellular bacteria at different 

time points. Data are displayed as percentage of uptake and persistence 

at each time point.  

 

 

2.5.6. Visualisation of bacterial interaction with host cells 

2.5.6.1. Adhesion assay 

This assay was as described previously by Mange et al. (2006) and Wieler 

et al. (2011) with slight modifications. Caco-2 and HBMEC cells were 

seeded at 4x104 cell/well in 6-well plates containing glass cover slips 

sterilised by heat, which were used to aid visualisation, and incubated at 

37°C in 5% CO2 for 48 hours to achieve confluency before infection. The 

test strains were prepared as described previously in Section 2.5.5.2. The 

cells then were infected with the bacterial suspension at 4x106 cfu/well 

(MOI 100) and incubated for 2 hours at 37°C in 5% CO2. After washing 3 

times with PBS, cells were fixed using absolute methanol for 15 minutes. 

The cells were washed 3 times with PBS, and stained with 5% (v/v) 

Giemsa stain (Life Technologies, UK) for 45 minutes at room temperature 

before washing 3 times by PBS. Light microscopy was used to examine 

the cells under oil immersion. 
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2.5.6.2. Invasion assay 

This assay was conducted as previously described in the adhesion assay, 

however one step was added before staining with 5% Giemsa. After 

washing the cells following the infection step, infection medium containing 

125 μg/ml gentamicin, which is the lethal concentration for Cronobacter, 

was added to the wells and incubated in 5% CO2 at 37°C for 1 hour to kill 

the extracellular bacteria. In this assay, HMGC cell line was examined in 

addition to the Caco-2 and HBMEC cell lines to visualise the up-taken 

bacterial cells. 

2.5.6.3. The effect of C. sakazakii infection on human cells over 

time 

Human cells including Caco-2, HBMEC, and HMGC cell lines were grown as 

stated in Section 2.5.5.1, and then seeded at 4x104 cell/well for 48-72 

hours in 5% CO2 at 37°C to produce confluent monolayers. C. sakazakii 

strains were prepared as explained previously in Section 2.5.5.2. The 

suspension was then added to the wells at 4x106 cfu/well (MOI 100) for 

Caco-2 and HBMEC cell lines and 4x105 cfu/well (MOI 10) for microglial 

cells. The plates then were incubated in 5% CO2 at 37°C for 1, 3, and 5 

hours. The cells were then examined using an inverted microscope. 

2.6. Host response to bacterial infection 

2.6.1. Human total iNOS immunoassay 

This assay was performed according to manufacturer’s instructions (R&D 

Systems Europe). HBMEC cells were grown as mentioned in Section 

2.5.5.1. and then seeded into each well of a 96-well plate at a 

concentration of 4x104 cell/well. The plate was then incubated for 48 

hours at 37°C in 5% CO2 until cells formed confluent monolayer. The 

following day, cells were infected with bacterial suspension for 3 hours at 

4x106 cfu/ml (MOI 100) prepared as described in Section 2.6.2. Then, the 

cells were fixed using 4% formaldehyde and incubated overnight at 2-8°C.  

Afterwards, the cells were washed 3 times using the washing buffer 

provided by the kit manufacturer. The quenching buffer was added 

afterwards and the plate was incubated 20 minutes at room temperature. 
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After washing 3 times with the washing buffer, the blocking buffer was 

added and left for 1 hour at room temperature. The primary antibody 

mixture was added to each well after washing 3 times with the washing 

buffer, and incubated overnight at 2-8°C. The wells were washed and the 

secondary antibody was added for 2 hours at room temperature. Two 

substrates F1 (HRP) and F2 (AP) were added, and the plate reading was 

performed at two different wavelengths 450nm and 600nm, using a 

fluorescence plate reader (FLUOstar OPTIMA, BMG LABTECH Germany; 

Fig.2.2). The readings at 600nm represent the total amount of iNOS, 

whereas the readings at 450nm represent the total amount of GADPH. The 

two readings were used to get normalised values for the wells. Control 

wells with no primary antibody were included to calculate the relative 

fluorescence units (RFUs) by subtracting their values from sample wells to 

remove the fluorescence background. Normalised results were obtained 

by dividing the total iNOS fluorescence by the total GAPDH fluorescence in 

each well. The normalised duplicate readings for each sample were then 

averaged.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2 Human total iNOS immunoassay protocol using HBMEC cell line.  
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2.6.2. Apoptosis marker detection  

This assay was conducted according to manufacturer’s instructions 

(PromoKine, USA) with slight modifications. HBMEC and HMGC cells were 

seeded into 8-well BD Falcon culture slides (BD Biosciences, UK) with a 

concentration of 4x104 cells/well. The slides were then incubated for 2 to 3 

days at 37°C in 5% CO2 to obtain confluent monolayer. After incubation, 

chambers were washed 3 times using PBS before inducing apoptosis by 

infecting cells with a bacterial suspension at 4x106 cfu/ml (MOI 100) for 

HBMEC and 4x105 cfu/ml (MOI 10) for HMGC, prepared as previously 

stated in Section 2.5.5.2, positive control cells were treated with 1 μM 

(final concentration) staurosporine (Sigma Aldrich, UK) for 3 hours to 

induce apoptosis. Next, the slides were incubated for 3 hours at 37°C in 

5% CO2. Afterwards, the cells were washed 3 times before staining by 1 μl 

DEVD-FMK conjugated to FITC for Caspase-3 activity and 5 μl of 

fluorescent conjugate of Annexin V-Cy3 for Annexin V activity. The cells 

were then washed with wash buffer provided by the kit manufacturer 

before fixing by 2% v/v formaldehyde and incubated overnight at 2-8°C in 

a dark box. Following incubation, cells were observed under a 

fluorescence microscope. For caspase-3 activity, FITC filter was used. 

Caspase-3 positive cells appear to have brighter green signals, whereas 

caspase-3 negative cells show much weaker signal. For annexin V activity, 

rhodamine filter was used. Cells that have bound annexin V showed red 

staining. 

2.6.3. Cytokine production detection and profiling 

This experiment was conducted using the Luminex® platform. The kit used 

in this assay was designed to measure 10 analytes simultaneously using 

10-plex magnetic beads compatible with Bio-Plex® 200 platform (BIO-

RAD, UK). This kit can detect 10 human cytokines including GM-CSF, IFN-

γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and TNF-α.  

2.6.3.1. Collecting C. sakazakii-infected cell lines’ supernatants 

HBMEC and HMGC cell lines were grown as described previously in Section 

2.5.5.1. and seeded in 24-well plates at 4x104 cell/well. The plates were 

then incubated for 48-72 hours at 37°C in 5% CO2 to obtain confluent 
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monolayers. C. sakazakii strains’ suspensions were prepared as detailed 

previously (refer to Section 2.5.5.2.) prior to infection. The suspension 

was then added to the wells at 4x106 cfu/well (MOI 100) for HBMEC and 

4x105 cfu/well (MOI 10) for HMGC, and then incubated in 5% CO2 at 37°C 

for 5 hours. Tissue culture medium was then collected in 1 ml eppendorfs 

tubes and centrifuged for 10 minutes at 13000 rpm (Mikro 200-Hettich). 

Next, supernatants were transferred to new 0.5 ml eppendorfs tubes and 

stored at -80°C until the time of the experiment. 

2.6.3.2. Cytokine production  

The assay was applied and the solutions were prepared according to the 

manufacturer’s instructions (Life Technologies, UK). The plate preparation 

and reading were performed at Nottingham City Hospital by Dr. Ian 

Spendlove, Faculty of Medicine and Health Sciences, University of 

Nottingham. The wells of the 96-well plate were pre-wetted by adding 200 

μl of working wash solution and then the liquid was removed. The 1X 

antibody bead solution was vortexed and sonicated and then added to 

each well at 25 μl/well. Next, 200 μl of working washing solution was 

added to each well and the beads left to soak for 30 seconds. The wells 

were then washed 2 times with working washing solution before adding 50 

μl of incubation buffer into each well. Afterwards, 50 μl of assay diluent 

was pipetted into the wells followed by 50 μl of the sample. The plate was 

then incubated at room temperature for 2 hours with shaking on an orbital 

shaker at 500-600 rpm after wrapping with aluminium foil to protect the 

assay from light.  

After incubation, the liquid was removed from wells before washing the 

wells 2 times with 200 μl of working washing solution. The beads were left 

to soak for 30 seconds. Then, 100 μl of 1X biotinylated detector antibody 

were added to each well and left at room temperature for one hour with 

shaking at 500-600 rpm. The liquid was then removed from wells before 

washing the wells 2 times by 200 μl of working washing solution, and the 

beads were left to soak for 30 seconds. Next, 100 μl of 1X streptavidin-

labeled with R-Phycoerythrin (RPE) were pipetted into each well and the 

plate was incubated for 30 minutes at room temperature with shaking at 
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500-600 rpm. Afterwards, the liquid was removed from wells and the 

wells were washed 2 times with 200 μl of working washing solution. The 

beads were allowed to soak for 30 seconds. The liquid was then replaced 

by 125 μl of working washing solution in each well before shaking the 

plate on an orbital shaker for 2-3 minutes at 500-600 rpm to re-suspend 

the beads. Next, the plate was uncovered and inserted into Bio-Plex® 200 

to analyse the samples. The results are presented as pg/ml. 

2.7. Statistical analysis 

Data were assessed for normality using Kolmogorov-Smirnov test and 

normality histograms. The normally distributed data were analysed using 

the parametric One-way Analysis of Variance test (ANOVA) with Tukey’s 

post-hoc test, and were expressed as mean values and the standard error 

of mean (Mean±SEM). Data that were not normally distributed were 

subjected to Kruskal-Wallis test, the non-parametric equivalent of the 

parametric ANOVA, and were expressed as mean values and the standard 

deviation (Mean±SD). Tukey’s post-hoc analysis was performed as a 

single step multi-comparison test to compare the significance of the 

means of every C. sakazakii strain in relation to other strains as pairwise 

comparisons. A P-value of <0.05 was considered statistically significant. 

For the motility, serum resistance, attachment, invasion, and translocation 

assays, data analysis was performed using Kruskal-Wallis test, as their 

data were not normally distributed and were difficult to transform. On the 

other hand, MTT, persistence in macrophages, persistence in microglia, 

and cytokine production assays were found to be normally distributed and 

therefore were analysed using ANOVA. Computer statistical analysis 

software was used to perform the analysis (IBM SPSS version 22.0, 

Chicago, IL, USA). 
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Chapter 3: Cronobacter sakazakii virulence 

3.1. Introduction 

The colonisation of the mucosa by Gram-negative bacteria begins 

immediately after birth. 52-83% of neonates in neonatal intensive care 

units (NICUs) become colonised by these organisms 1-2 week post 

delivery. It was reported that most infants in NICUs were found to be 

colonised with Gram-negative rods including E. coli, Klebsiella, 

Enterobacter, and Citrobacter (Almuneef et al.  2001, Parm et al.  2011). 

C. sakazakii is an enteric Gram-negative pathogen that can be found in 

PIF and associated with NICU infections. It can cause NEC, bacteraemia, 

and meningitis resulting in a 40-80% mortality rate among infected 

infants and 20% of the survivors also develop serious neurological 

disorders (Bowen and Braden  2006, Mange et al.  2006, Caubilla-Barron 

et al.  2007, Giri et al.  2011). In 1994, 3 infants died in a NICU in France 

as a result of C. sakazakii infections. They suffered from different forms of 

infection including NEC (i.e. strain 695) and meningitis (i.e. strain 767; 

Caubilla-Barron et al.  2007). 

For some organisms to establish an infection they must adhere to the host 

cell, translocate to the underlying tissues, and then disseminate 

throughout the body. The epithelium has an important role in protecting 

the body against bacterial invasion. Once this layer loses its integrity the 

invading organism will find its way to infect the tissue beneath (Wilson et 

al.  2002). The ability of C. sakazakii to invade the intestinal epithelium 

and brain endothelium is considered as a crucial step for pathogenesis. It 

was shown previously that the organism has the ability to produce an 

enterotoxin and to adhere to epithelial and endothelial cells in vitro such 

as Caco-2 and HBMEC cell lines (Pagotto et al.  2003, Mange et al.  2006). 

A study by Townsend et al. (2008) used a group of isolates from the 

French outbreak in 1994, and showed that C. sakazakii strains are able to 

adhere and invade Caco-2 and rBCEC4 cell lines. Moreover, the organism 

was able to persist and multiply within the human macrophage U937 cell 

line (Townsend et al.  2007b). Furthermore, another study by Giri et al. 
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(2011) showed that some C. sakazakii strains have the ability to invade 

INT407, Caco-2, and HBMEC cell lines.   

Translocation of the organism follows the attachment and invasion. It is 

the step that initiates pathogenesis in the next levels of tissues after 

passing through the epithelium layer. It was reported by Townsend et al. 

(2007a) that the presence of LPS in PIF increases the permeability of 

tissue barriers leading to the translocation of intestinal bacteria including 

C. sakazakii. Giri et al. (2011) showed that the invasive C. sakazakii 

strains were able to translocate through the intact monolayers of Caco-2 

and HBMEC cell lines. This suggests that the bacterium is able to 

overcome the physical host barriers in the intestines and CNS. 

Attachment, invasion, and translocation need bacterial virulence traits 

such as motility, iron acquisition, serum resistance, and cytotoxicity that 

could assist the organism to overcome host barriers. The cytotoxicity of 

the bacterium might collaborate in the translocation through the intact 

monolayers of the cell lines by inducing cell death, which leads to cell line 

permeability. Cytotoxicity assays are commonly used for in vitro 

assessment of mammalian cell viability following exposure to a toxic 

substance, and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium 

bromide (MTT) transformation is one of the assays that is used widely to 

assess cell viability. MTT is a water-soluble tetrazolium salt that can be 

transformed to its insoluble purple formazan form. This is as a result of 

the reduction of the tetrazolium ring by succinate dehydrogenase inside 

mitochondria. Formazan is impermeable and therefore can not cross the 

cell membrane, and this leads to the accumulation of formazan crystals in 

healthy cells. On the other hand, dead cells that have lost their membrane 

integrity lose formazan and display a less intense purple colour as a result 

of low MTT reduction (Fotakis and Timbrell  2006, Sharma et al.  2009, 

Travan et al.  2009).  

Several genes have been linked to the virulence of Cronobacter species. 

However, the severity of virulence among strains is varied. These genes 

encode many virulence factors including those involved in adhesion and 

invasion of epithelial cells, persistence in macrophages, motility, iron 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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acquisition, and serum resistance (Bowen and Braden  2006, Kucerova et 

al.  2010, Franco et al.  2011a, Cruz-Córdova et al.  2012). A recent study 

based on whole genome sequencing revealed that C. sakazakii BAA-894 

carries two plasmids; pESA2 and pESA3 (Kucerova et al.  2010, Joseph et 

al.  2012b). Many virulence gene clusters are encoded on the large 

plasmid pESA3 including two iron acquisition loci; eitCBAD and 

iucABCD/iutA. Moreover, pESA3 encodes the viuB gene that that has a 

putative role in the aerobactin siderophore system and might have a role 

in serum resistance in addition to the product of cpa gene (Bogard and 

Oliver  2007, Grim et al.  2012). Iron has a vital role in bacterial 

pathogenesis. At the time of infection, the innate immune system in the 

human body reduces the free iron levels, which leads to the inhibition of 

bacterial growth. This drives the bacteria to produce iron siderophores, 

which in turn scavenge iron from iron-limited environments (Franco et al.  

2011a, Grim et al.  2012). 

It was also reported that pESA3 encodes for the outer membrane protease 

Cpa, which is responsible for serum resistance. This protease of 

Cronobacter provides resistance against complement-dependent killing of 

serum by cleaving complement components C3 and C4b. Moreover, it has 

a major role in converting plasminogen to plasmin, which leads to the 

activation of other proteolytic enzymes, including matrix 

metalloproteinases, resulting in degradation of the tight junctions of 

microvascular endothelial cells. This will allow the bacteria to migrate to 

peripheral tissue and invade the CNS (Lähteenmäki et al.  2005, Franco et 

al.  2011b). Avoiding serum-mediated killing together with the persistence 

within macrophages and other phagocytic cells gives the organism an 

advantage so it can survive in the blood stream, multiply, cause 

bacteraemia, and potentially reach vital organs such as the brain and the 

meninges. Furthermore, degrading the components of the tight junctions 

will result in the migration of the bacterial cells leading to more damage to 

the infected organ or tissue. 

With regard to motility, the flagellum is the primary bacterial organelle 

that is responsible for motility and chemotaxis. Moreover, it can play 
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several roles other than motility including aiding adhesion, and biofilm 

formation (Hartmann et al.  2010, Amalaradjou and Venkitanarayanan  

2011). C. sakazakii is a motile bacterium that uses peritrichous flagella for 

motility. It was shown recently that the flagella of this organism 

contribute in the attachment to Caco-2 cells and collaborate in biofilm 

formation (Hartmann et al.  2010). Moreover, C. sakazakii mutants that 

lacked flagella or had shorter flagella showed reduced biofilm formation 

and decreased adhesion to Caco-2 cells (Hartmann et al.  2010, Haiko and 

Westerlund-Wikström  2013). Furthermore, flagella are able to trigger the 

production of the pro-inflammatory cytokines such as IL-8 and TNF-α in 

addition to the anti-inflammatory cytokine IL-10 in monocytes, 

polymorphonuclear, dendritic, and epithelial cells (Honko and Mizel  2005, 

Cruz-Córdova et al.  2012). Hence, flagella expression is a very important 

virulence factor, which aids the adhesion to surfaces and mammalian cells 

in addition to their role in triggering the host immune responses. 

Moreover, the genome analysis of C. sakazakii revealed that the organism 

encodes ompA and ompX genes that were found to promote invasion of 

Caco-2 and HBMEC cell lines by Cronobacter spp. (Mohan Nair et al.  

2009, Kim et al.  2010, Joseph et al.  2012b). 

A multilocus sequence typing scheme (MLST) of Cronobacter spp. has 

been constructed, initially for C. sakazakii and C. malonaticus, by Baldwin 

et al. (2009) which now covers all seven Cronobacter species and is 

available online at http://www.pubMLST.org/cronobacter. Joseph and 

Forsythe (2011) investigated the association between the severity of the 

infection and the sequence type (ST) profile. That study found that ST4 

contains the most virulent strains that caused fatal neonatal NEC and 

meningitis infections including the French outbreak strains 695 and 767. A 

follow-up study by Joseph and Forsythe (2012c) using eBURST analysis 

showed that Cronobacter genus exhibited 13 single locus variant clonal 

complexes among the 115 identified STs. The clonal complex where 

strains are identical in 3 or more loci, and C. sakazakii is represented in 

nine of these clades (Forsythe et al.  2014). Clonal complex 4 (CC4) 

contains C. sakazakii STs 4, 15, 97, 107 108, and 109, and as mentioned 

previously ST4 is the most frequent clinical ST (Forsythe et al.  2014). 
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Another study by Hariri et al. (2013) examined 15 Cronobacter isolates 

that had been received from CDC. These strains were isolated in 2011 in 

the United States. The study found that 5 CSF isolates were either 

belonging to ST4 or CC4. This supports the previous conclusion (Joseph 

and Forsythe  2011, Joseph and Forsythe  2012c) that C. sakazakii CC4 is 

the predominant clonal complex in CSF isolates among Cronobacter 

species. Therefore, it is important to investigate the virulence potential of 

this clonal complex and to compare it with other sequence types of C. 

sakazakii.  

Kim (2003) reported the possible pathogenic pathway of bacterial-induced 

meningitis for several organisms including E. coli K1. Based on this 

review, the hypothesis of this project with regard to the pathogenic 

pathway is that C. sakazakii adheres, invades and then translocates 

through the intestinal epithelium to the underlying tissue and blood 

stream. Then, it persists, multiplies, and disseminates throughout the 

body causing bacteraemia that could lead to septicaemia. Subsequently, it 

can attach, invade, and then translocate through the brain endothelium 

and cross the blood brain barrier (BBB) to cause meningitis. 

C. sakazakii has many potential virulence factors that allow the bacterium 

to grow, survive, cause infections, and support pathogenesis. The 

presence of these factors has major implications on the host that might 

lead to severe outcomes. The aim of this chapter is to examine the 

virulence factors of interest that help the organism to establish a 

successful infection and avoid host protective responses. Moreover, it 

aims to investigate the ability of C. sakazakii strains, especially clinical 

strains, from different sequence types including CC4 to adhere, invade 

and translocate through a group of cell lines including Caco-2, HBMEC, 

rBCEC4 cell lines. Moreover, it will discuss their potential to persist and 

replicate within phagocytic cells using U937 and HMGC cell lines in 

addition to their cytotoxicity. The experiments in this chapter well help to 

understand the pathogenic pathway of C. sakazakii-induced meningitis by 

using clinical strains that were isolated from meningitis cases and CSF 

isolates. These strains are expected to be invasive and able to translocate 
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through different cell lines in addition to their ability to avoid phagocytosis 

and serum-mediated killing by the host. 

3.2. Materials and Methods overview 

A group of C. sakazakii strains were tested for their virulence potential 

and their ability to overcome host barriers. The motility test was applied 

to investigate the ability of C. sakazakii clinical strains to move, which 

might prove the presence of flagella. The plasmid of the test strains was 

extracted and examined for the presence of the iron acquisition and 

serum resistance genes. Moreover, genome comparisons using Artemis, 

WebACT, and BLAST search were used to confirm the presence and the 

absence of virulence genes of interest in the sequenced strains. Iron 

siderophore production using CASAD and the sensitivity to human serum 

assays were conducted to confirm the ability of the bacterium to produce 

iron siderophores and to survive in human confirming these activities in 

the presence of the genes that might be responsible for these phenotypes.  

Different tissue culture techniques were used in this chapter, and the aim 

was to examine the ability of the organism to overcome the host barrier at 

different levels starting from the gut epithelium layer, disseminating to 

the blood stream, and reaching the CNS. The MTT test was applied to 

clarify the cytotoxic effect of C. sakazakii strains on host cells in vitro. 

Moreover, C. sakazakii clinical strains including CC4 meningitis and CSF 

isolates were tested for their ability to attach and invade Caco-2, HBMEC, 

and rBCEC4 cell lines. In addition, they were examined for their 

translocation potency through the intact monolayers of Caco-2 and 

HBMEC cell lines. Furthermore, their ability to survive and multiply within 

phagocytic cells was examined. Additionally, the integrity of the 

monolayer cell lines was tested using the TEER measurement. The 

methods, media, chemical reagents, cell line maintenance, and culture 

preparation were described previously in Chapter 2 (Materials and 

methods).  

For the statistical analysis, data were assessed for normality using 

Kolmogorov-Smirnov test and normality histograms. The normally 
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distributed data were analysed using the parametric One-way Analysis of 

Variance test (ANOVA) with Tukey’s post-hoc test, and were expressed as 

mean values and the standard error of mean (Mean±SEM). Data that 

were not normally distributed were subjected to Kruskal-Wallis test, the 

non-parametric equivalent of the parametric ANOVA, and were expressed 

as mean values and the standard deviation (Mean±SD). Tukey’s post-hoc 

analysis was performed to compare the significance of the means of every 

C. sakazakii strain in relation to other strains as pairwise comparisons. A 

P-value of <0.05 was considered statistically significant. For the motility, 

serum resistance, attachment, invasion, and translocation assays, data 

analysis was performed using Kruskal-Wallis test, as their data were not 

normally distributed and were difficult to transform. On the other hand, 

MTT, persistence in macrophages, and persistence in microglia assays 

were found to be normally distributed and therefore were analysed using 

ANOVA.  

3.3. Results 

3.3.1. C. sakazakii motility 

3.3.1.1. Motility test 

The experiment was repeated two times in triplicate. The motility of C. 

sakazakii strains was measured by the diameter of growth around the 

inoculation area in millimetres (mm) in the motility medium as described 

in Section 2.5.1. Varying motility zones were recorded for the organism 

(see Fig.3.1). All C. sakazakii strains were motile when inoculated in soft 

agar except for strains 1223 (ST4), 1224 (ST4), and 680 (ST8), which 

showed significantly smaller migration zones (<5 mm; P<0.001), and 

were considered as non-motile. CC4 Strains 695, 721, 767, and 1587 in 

addition to strains 1249 (ST31) 696 (ST12) showed highest motility  (zone 

diameter >15 mm). The other strains demonstrated a lower motility 

ability with a zone diameter <15 mm. Refer to Table.3.3 for summary of 

results. 
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Fig.3.1 C. sakazakii motility test after overnight incubation at 37°C in soft 

agar. The diameters of the motility zones were measured in mm, and the 
data are presented as the mean±standard deviation of the replicates of 

two independent experiments. The asterisks above the bars indicate 
statistically significant differences between C. sakazakii strains in this 
experiment (*P<0.001; Kruskal-Wallis). 

ST: Sequence type. 
CC4: clonal complex 4. 

 

3.3.1.2. Flagellar genes  

A BLAST genome search was applied to test the presence of fli genes that 

are linked to flagella expression and movement in C. sakazakii (Kucerova 

et al.  2010, Joseph et al.  2012b). All strains in this project (n=24) that 

have their genomes sequenced showed the presence of fliA, fliC, fliD, fliS, 

fliT, fliY, and fliZ genes (Table.3.1). Ninety two percent of the strains 

shared the presence of fliN, fliO, fliP, and fliQ whereas strains 680 (ST8) 

and 520 (ST12) were negative for these genes. All strains were positive 

for fliE, fliF, fliG, fliH, fliI, fliJ, fliK, fliL, and fliM except for the non-motile 

strains 680 (ST8) that lacked these genes. This suggests that the 

annotated flagellar genes that are absent in the genome of strain 680 and 

present in the genomes of the motile strains are essential for flagella 

expression and movement.  

 



Chapter 3: Cronobacter sakazakii virulence 

 64 

Table.3.1: Presence/absence of flagellar genes in sequenced genomes of C. sakazakii strains. 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
Flagellar gene loci; fliA: ESA_01300. fliC: 01288. fliD: ESA_01287. fliE: 01261. fliF: ESA_01260. fliG: ESA_01259. fliH: ESA_01258. fliI: ESA_01257. fliJ: 

ESA_01256. fliK: ESA_01255. fliL: ESA_01254. fliM: ESA_01253. fliN: ESA_01252. fliO: ESA_01251. fliP: ESA_01250. fliQ: ESA_01249. fliR: ESA_01248. fliS: 
ESA_01286. fliT: ESA_01285. fliY: ESA_01302. fliZ: ESA_01301. 
ST: Sequence type.  Yes: Motile. No: Non-motile. +: Present. -: Absent.  
*: Part of clonal complex 4, which contains STs 4, 15, 97, 107, and 108 (Joseph et al.  2012d). 
1: Exeter. 2: Washington. 3: Life Technologies. 
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3.3.2. Iron acquisition 

3.3.2.1. Iron siderophore detection using CASAD 

Almost all C. sakazakii strains were able to produce iron siderophores with 

CAS agar showing orange halo around the wells, however strains 6 (ST4) 

and 520 (ST12), the plasmid-less strains, were negative (P<0.001). 

Strains 1223 (ST4) and 1 (ST8) produced the highest siderophore levels 

based on the orange halo diameter measurements of 21 and 21.5 mm 

respectively (Fig.3.2). The rest of the strains produced halo diameters 

between 9 and 18.75 mm (Fig.3.2). The results are summarised in 

Table.3.3. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.2 Iron siderophore production by C. sakazakii strains using the 
CASAD assay. Results presented as mean±standard deviation of two 

independent experiments. 
ST: Sequence type. 
CC4: clonal complex 4. 

 

 

3.3.2.2. Iron acquisition genes 

The two iron acquisition loci eitCBAD and iucABCD/iutA are encoded on 

the pESA3 plasmid of C. sakazakii strains. These were investigated 

according to Franco et al. (2011a) using PCR primers for eitA and iucC 

genes. The results are displayed in Table.3.2. The gene eitA is a 
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component of a transporter whose homologues are involved in transport 

and promote the translocation of ferric iron, siderophores, and haem, 

while iucC  is a part of iucABCD iron uptake system, which is responsible 

for cronobactin biosynthesis and transport, that mediates Cronobacter 

spp. growth under iron limiting conditions (Franco et al.  2011a, Grim et 

al.  2012). Ninety one percent of C. sakazakii strains (n=34) were positive 

for eitA and iucC. The presence of eitA and iucC genes was confirmed in 

91% and 95% respectively of CC4 strains (n=22). With regard to ST1, all 

strains were eitA positive while 80% were positive for the iucC gene. All 

ST8 strains in addition to strains 1249 (ST31), 696 (ST12) and 580 

(ST18) were positive for both genes. On the other hand, the plasmid-less 

strains 6 (ST4) and 520 (ST12) lack both of the iron acquisition regions. 

All strains that were positive for iron acquisition genes showed positive 

results for iron siderophore production (Fig.3.2). Strain 557 (ST4) was 

negative for eitA and positive for iucC, and strain 12 (ST1) was positive 

for eitA and negative for iucC. This, however, did not affect their ability to 

produce iron siderophores, and this might be attributed to the presence 

other siderophore-related genes that were not examined in this project 

(Table3.2 and Fig.3.2). 

In addition to PCR, the genomes of the sequenced strains were explored 

for the presence of iron acquisition genes (Table.3.2). Eighty eight percent 

of the sequenced strains in this project (n=24) encoded the eitA gene, 

while 92% encoded iucC. Strain 557 (ST4) lacked the presence of eitA 

gene. The plasmid-less strains 6 (ST4) and 520 (ST12) lacked eitA and 

iucC genes. Moreover, 88% of these strains were positive for viuB gene 

that has a putative role in the aerobactin siderophore system according to 

Grim et al. (2012). However strains 6 (ST4), 520 (ST12), and 696 (ST12) 

were negative. Strains 6 (ST4), 520 (ST12) lacked the presence of the 

plasmid and did not show the presence of the iron acquisition genes in 

their genomes. This is in agreement with the results that were obtained 

previously in the iron siderophore detection assay using CASAD, as the 

strains were not able to produce iron siderophores (Fig.3.2).   
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3.3.3. Serum resistance  

3.3.3.1. C. sakazakii sensitivity to human serum 

The majority of C. sakazakii strains in this experiment (n=13) showed up 

to 60% decrease in their viable count after the first hour of incubation 

with human serum except for strain 558 (ST4) that demonstrated a slight 

increase. After the second hour of incubation, it was noted that 85% of 

the strains showed an increase in their numbers, however strains 6 (ST4) 

and 680 (ST8) displayed a decrease in their numbers showing 20-80% 

reduction in their viability. The vast majority of the strains from different 

sequence types were able to survive in human serum and showed 

significant increases of upto 400% in their initial numbers after the third 

hour of incubation. Strains 20 (ST4), 1242 (ST4), 1249 (ST31), and 696 

(ST12) showed highest serum tolerance.  In contrast, strains 6 (ST4) and 

680 (ST8) were serum sensitive and their viability in serum declined over 

the assay period (P<0.05).  

S. Enteritidis and Cit. koseri, which were used as the positive control 

strains for tissue culture experiments, showed increased growth yields 

indicating their tolerance to human serum. On the other hand, E. coli K12, 

which was the negative control strain, exhibited reduced growth levels, 

which is a sign of serum sensitivity (P<0.05; Fig.3.3). A summary of the 

previous results is provided in Table.3.3.  
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Fig.3.3 Sensitivity of C. sakazakii to human serum over 3 hours of 
incubation showing the difference in growth among strains overtime. Most 
of the strains showed increases in their viable counts including Cit. koseri 

and S. Enteritidis, and strains 6 (ST4), 680 (ST4), and E. coli K12 showed 
significantly reduced viability. The displayed data are the mean±standard 

deviation of survival % (106 cfu/ml initial inoculum) compared to time 0 of 
two independent experiments. The asterisks above the bars indicate 
statistically significant differences between C. sakazakii strains in this 

experiment (*P<0.05; Kruskal-Wallis). 
ST: Sequence type. 

 
3.3.3.2. Genes responsible for serum resistance 

Based on the research of Franco et al. (2011b), the outer membrane 

protease Cpa of Cronobacter is responsible for serum resistance. All C. 

sakazakii strains were tested for the presence of the cpa gene. By PCR 

85% of the test strains (n=34) were confirmed positive for this gene. The 

vast majority of CC4 strains (86%; 19 out of 22 strains) harboured the 

cpa gene. All ST1 strains (n=5) encoded the gene in addition to strains 

1249 (ST31), 696 (ST12) and 580 (ST18). Regarding ST8 (n=3), 2 strains 

were positive for the cpa gene and strain 680 was negative. Moreover, 

Strains 6 (ST4) and 520 (ST12) were negative for this gene as they lack 

the pESA3 plasmid (Table.3.2). With regard to the genomes of the 

sequenced strains, 88% of the strains (n=24) were cpa positive, and 

strains 6 (ST4), 680 (ST8), and 520 (ST12) were negative (Table.3.2). 



Chapter 3: Cronobacter sakazakii virulence 

 69 

The regulator genes of capsule synthesis encoded in the locus rcs were 

reported to control exopolysccharide colanic acid production. These genes 

including rcsA, which was considered as a positive regulator of colanic acid 

biosynthesis, have been identified previously in E. coli K12 (Gottesman et 

al.  1985, Allen et al.  1987). It was reported that the mucoid appearance 

of E. coli K12 at 37°C was attributed to the presence of the rcsA gene 

product (McCallum and Whitfield  1991). It has been shown recently that 

colanic acid provides protection against the bactericidal effect of human 

serum in E. coli (Li et al.  2005, Miajlovic et al.  2014). Moreover, colanic 

acid can be used by serum-resistant E. coli strains as a shield while 

repairing the damaged to the cell wall caused by bactericidal serum 

factors (Miajlovic and Smith  2014). It was found that about 92% of C. 

sakazakii sequenced strains (n=24) that were used in this research have 

rcsA gene in their genomes (Table.3.2). Fifty four percent of these strains 

(n=13) were tested for serum resistance and 84% (n=11) of them were 

resistant to human serum killing (Fig.3.3). Strain 6 (ST4) that was 

positive for rcsA and negative for cpa showed serum sensitivity. In 

addition, strain 680 (ST8) that lacked both cpa and rcsA genes was serum 

sensitive. These results suggest that cpa has an important role in serum 

resistance and its absence could affect the ability of the bacterium to 

survive human serum-mediated killing.  
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Table.3.2: Presence/absence of virulence genes on the pESA3 plasmid and the sequenced genomes of C. sakazakii 
strains. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ST: Sequence type.  +: Present.  -: Absent. N/S: Not sequenced. *: Plasmid-less strains. Y: Yes. (1): Exeter. (2): Washington. (3): Life Technologies. 
**: Part of clonal complex 4, which contains STs 4, 15, 97, 107, 108, and 109 (Forsythe et al.  2014). 
Genes’ loci, eitA: ESA_pESA3p05518. iucC: ESA_pESA3p05549. viuB: ESA_pESA3p05545. cpa: ESA_pESA3p05434. rcsA: ES15_1478. apaH: ECs0054. ompA: 
ESA_02391. ompX: ESA_02526. ygdP: APECO1_3675. ppk1: APECO1_4068. phoP: STM1231. phoQ: STM1230. pmrA: ESA_03574. pmrB: ESA_03575. pmrE: 
ESA_01534. mgtB: STM3763. gsrA: YPO3382. sodA: ESA_03843. 
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3.3.5. Tissue culture cell-based virulence studies 

3.3.5.1. C. sakazakii cytotoxic activity to human cell lines (MTT) 

Cytotoxicity is crucial for bacteria to induce cell death in eukaryotic cells. 

By causing cell death, bacteria can disrupt the tight junctions of the 

polarised cell lines leading to their translocation to the underlying tissues. 

. C. sakazakii strains were tested for their ability to induce cytotoxicity for 

Caco-2, HBMEC, and HMGC cell lines using the MTT test (Fig.3.4), where 

the viability of eukaryotic cells was indicated by absorbance OD600. In this 

experiment an additional washing step with PBS was added before adding 

the MTT to minimise the number of extracellular bacterial cells in the wells 

to avoid false positive results. 

 

 

 

 

 

 

 

 

 

 

Fig.3.4 Cytotoxicity assay using MTT method. The example pictures show 

the effect of C. sakazakii strains on the Caco-2 cell line over time. (A) The 
patterns of MTT reduction 1 hour post infection showing accumulated 
purple colour in the vast majority of wells indicating that the cells are 

viable. (B) After 3 hours of infection, MTT reduction levels declined as 
shown by a pale purple colour indicating increasing cell death as a result 

of the infection.  
 

For the Caco-2 cell line, most of the strains showed MTT reduction 1 hour 

after infection. However strains 6 (ST4), 558 (ST4), 680 (ST8), and E. coli 

K12 (the negative control for tissue culture experiments) were low in 

cytotoxicity (showed high levels of MTT reduction) as low as the assay’s 

negative control (uninfected cells). Strains 20 (CC4), 695 (CC4), 1587 

(CC4), and 658 (ST1) demonstrated significantly higher cytotoxicity levels 

(lower MTT reduction levels) more than other tested strains (P<0.05). 
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Compared to 1-hour infection period, after 3 hours of infection some 

changes in cytotoxicity were noticed. Strains 20 (CC4), 1242 (CC4), 1587 

(CC4), 658 (ST1), and S. Enteritidis (tissue culture positive control) 

caused significantly lower MTT conversion (P<0.05) indicating their high 

cytotoxic ability (Fig.3.5). Although most CC4 strains showed high 

cytotoxicity, strains 6 and 558 were less cytotoxic suggesting that they 

have low virulence potential that might affect their ability of translocating 

through mammalian cell lines. The cytotoxic activity is crucial in the 

translocation process through this cell line, which will be discussed later in 

this chapter, and it appears to be due to the attachment and invasion 

ability of the organism.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.5 Cytotoxicity of C. sakazakii strains on Caco-2 up to 3 hours of 
incubation. MTT reduction was used to measure the cytotoxicity levels of 
C. sakazakii strains where only the viable Caco-2 cells are able to reduce 

MTT to its insoluble purple form formazan, the higher absorbance (OD600) 
the higher in MTT reduction (low toxicity) and vice versa. The negative 

control used was uninfected cells treated using the same protocol with no 
bacteria added. The data presented in mean±standard error of mean of 
three independent experiments. The asterisks above the bars indicate 

statistically significant differences between the strains in this experiment 
(*P<0.05; ANOVA).  
ST: Sequence type. 

 

With regard to the HBMEC cell line, it showed resistance to the 

cytotoxicity of C. sakazakii in addition to that of S. Enteritidis, Cit. koseri, 
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and E. coli K12 over 1 hour of infection. The absorbance in most wells 

remained high or demonstrated a slight decrease when compared with the 

assay’s negative control. However, strain 1249 (ST31) and Cit. koseri 

produced the highest cytotoxicity values. On the other hand, a prolonged 

infection period for 3 hours led to an increase in cytotoxicity with 69% of 

strains. CC4 strains 20, 695, 767, 1221, 1240, and 1587 in addition to 

658 (ST1), 696 (ST12), and Cit. koseri showed significantly higher 

cytotoxicity (P<0.05), while strains 6 (CC4), 558 (CC4), 1242 (CC4), 680 

(ST8), and E. coli K12 caused the lowest cytotoxicity (Fig.3.6). The ability 

of this cell line to be more resistant to the cytotoxicity of C. sakazakii for a 

prolonged incubation period might play an essential role in translocation 

resistance by maintaining the integrity of the cell monolayer. This will be 

discussed later in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.6 Cytotoxicity of C. sakazakii strains on HBMEC up to 3 hours of 

incubation. MTT reduction was used to measure the cytotoxicity levels of 
C. sakazakii strains where only the viable HBMEC cells are able to reduce 
MTT to its insoluble purple form formazan, the higher absorbance (OD600) 

the higher in MTT reduction (low toxicity) and vice versa. The negative 
control used was uninfected cells treated using the same protocol with no 

bacteria added. The data presented in mean±standard error of mean of 
three independent experiments. The asterisks above the bars indicate 
statistically significant differences between the strains in this experiment 

(*P<0.05; ANOVA). 
ST: Sequence type. 
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For the HMGC cell line, 1 hour after infection there was no significant 

increase compared to the assay’s negative control in the cytotoxicity for 

the strains 6 (CC4), 558 (CC4), 1242 (CC4), 658 (ST1), 680 (ST8), and E. 

coli K12, the negative control for tissue culture experiments, showing high 

absorbance levels with values nearly similar to the assay’s negative 

control indicating that the human cells were viable and able to reduce 

MTT. Nonetheless, CC4 strains 20, 695, 767, 1221, 1240, 1587 in addition 

to strains 1249 (ST31), 696 (ST12), and Cit. koseri (the positive control 

for tissue culture experiments) showed a significant effect on HMGC cells 

showing the highest cytotoxicity among strains (P<0.01). On the other 

hand, when the infection period was extended to 3 hours, increased 

cytotoxicity levels were recorded indicating an increase in HMGC cell 

death. CC4 strains 20, 695, 767, 1221, 1240, and 1587 in addition to Cit. 

koseri exhibited the highest cytotoxicity activity (P<0.001). Strains 6 

(CC4), 558 (CC4), 680 (ST8), and E. coli K12 maintained a low level of 

cytotoxicity, while strains 1242 (CC4), and 658 (ST1) were moderately 

cytotoxic (Fig.3.7). CC4 strains 6 and 558 were the lowest in cytotoxicity 

among all strains from the same sequence type. Cytotoxicity for this kind 

of cell might help the organism to avoid phagocytosis and induce cell 

death, which leads to its survival. The previous results are summarised in 

Table.3.4 below. 

 

 

 

 

 

 

 

 



Chapter 3: Cronobacter sakazakii virulence 

 75 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.7 Cytotoxicity of C. sakazakii strains on HMGC up to 3 hours of 

incubation. MTT reduction was used to measure the cytotoxicity levels of 
C. sakazakii strains where only the viable HMGC cells are able to reduce 
MTT to its insoluble purple form formazan, the higher absorbance (OD600) 

the higher in MTT reduction (low toxicity) and vice versa. The negative 
control used was uninfected cells treated using the same protocol with no 

bacteria added. The data presented in mean±standard error of mean of 
three independent experiments. The asterisks above the bars indicate 
statistically significant differences between the strains in this experiment 

(*P<0.01 and (**P<0.001; ANOVA).  
ST: Sequence type. 

 

Table.3.3 below summarises the cytotoxicity of C. sakazakii strains for 

different cell lines and the clinical presentation of each strain. 

Table.3.3: C. sakazakii cytotoxicity and strains clinical presentation. 
 

 

 

 

 

*: Part of clonal complex 4 
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3.3.5.2. C. sakazakii attachment and invasion assays 

3.3.5.2.1. Attachment 

Three cell lines were used in this experiment, Caco-2, HBMEC, and 

rBCEC4. All strains were able to adhere to these cell lines, however ST4 

(part of CC4) strains 20, 695, 721, 767, and 1465 showed highest 

attachment levels to Caco-2 cell line, while the other ST4 strains displayed 

moderate levels. Moreover strains 557, 558, and 4 exhibited the lowest 

attachment levels among CC4 strains. Strain 696 (ST12) showed a high 

attachment level to Caco-2 cell line whereas the other STs’ strains 

displayed moderate levels of attachment. Strains 1 and 5 had the lowest 

attachment values among non-CC4 strains (see Fig.3.8). Overall, strains 

695 (ST4), 1465 (ST4), 696 (ST12), and S. Enteritidis, the positive 

control, showed the most significant adherence among the strains tested 

(P<0.05).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.8 C. sakazakii attachment assay using Caco-2 cell line after 1-hour 
incubation showing the differences in attachment levels among strains. 

The displayed data are the mean±standard deviation of attachment 
efficiency as % of the initial inoculum (106 cfu/ml) of two independent 

experiments in triplicate. The asterisks above the bars indicate statistically 
significant differences between the strains in this experiment (*P<0.05; 
Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  

 



Chapter 3: Cronobacter sakazakii virulence 

 77 

Regarding the HBMEC cell line, the majority of CC4 strains showed high 

attachment levels, while strains 553, 557, 558, and 4 exhibited moderate 

attachment within CC4. However, strain 6 was the lowest in attachment 

within the same clonal complex. On the other hand, non-CC4 strains 

showed moderate attachment levels, except for strain 696 (ST12) that 

displayed a higher adhesion level. Strain 767 (ST4) and Cit. koseri the 

positive control for the cell line showed the highest attachment levels 

among all of the test strains (P<0.05; see Fig.3.9).  

These results indicate that ST4 (CC4) strains generally have the ability to 

adhere to cell lines more than the non-ST4 strains, nonetheless strain 696 

(ST12) also showed a level of adhesion similar to some ST4 strains (695 

and 1242). The attachment process indicates their ability to interact and 

potentially invade these cell lines. However, the invasion assay 

determined whether they are able to invade or not.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.9 C. sakazakii attachment assay using HBMEC cell line after 1-hour 
incubation showing the differences in attachment levels among strains. 

The displayed data are the mean±standard deviation of attachment 
efficiency as % of the initial inoculum (106 cfu/ml) of two independent 
experiments in triplicate. The asterisks above the bars indicate statistically 

significant differences between the strains in this experiment (*P<0.05; 
Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  
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Microscopic examination of C. sakazakii-infected Caco-2 and HBMEC cell 

lines was applied to confirm the adherence ability of the organism 

(Fig.3.10 and Fig.3.11). 

 

  

 

 

 

 

 

 

 

 

 
 

 
Fig.3.10 C. sakazakii-infected Caco-2 cell line for 1 hour, fixed with 100% 
methanol, stained by 7% Giemsa stain, and examined using oil immersion 

(100x). The arrows point to bacterial cells attached to Caco-2 cells. (a) 
Non-specific adherence pattern of strain 6 (ST4) that showed moderate 

adhesion to Caco-2 cell line. (b) Localised adherence pattern of strain of 
strain 696 (ST12) that demonstrated high attachment level.  
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Fig.3.11 C. sakazakii strains adhered to HBMEC, which were infected for 

1 hour, fixed with 100% methanol, stained by 5% Giemsa stain, and 
examined using oil immersion (100x). The arrows point to clusters of 

bacteria attached to the cells. (a) Shows localised adherence where the 
bacterial clusters attached to the cells in certain sites (strain 20). (b) 
Aggregative adherence where the bacteria covered all around the cells 

(strain 696). (c) Non-specific adherence pattern (strain 6). (d) Diffused 
adherence where the bacterial cells surround the cell (strain 695). 

 
With regard to rat brain microvascular endothelial cell line rBCEC4, all the 

strains were able to attach to these cells (Fig.3.12). CC4 strains 767, 

1221, 1587, and strain 696 (ST12) showed highest attachment among the 

strains tested (P<0.01), whereas strains 6 (ST4), 558 (ST4), 680 (ST8), 

and the E. coli K12 (negative control) showed the lowest adherence. 

Although most ST4 strains showed high ability to attach to this cell line, 
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strains 6 and 558, however, were low in attachment indicating their low 

virulence potential (Fig.3.12).  

  

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig.3.12 C. sakazakii attachment assay using rBCEC4 cell line after 1-
hour incubation showing the difference in attachment levels among 

strains. The displayed data are the mean±standard deviation of 
attachment efficiency as % of the initial inoculum (106 cfu/ml) of two 
independent experiments in triplicate. The asterisks above the bars 

indicate statistically significant differences between the strains in this 
experiment (*P<0.01; Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  

 

3.3.5.2.2. Invasion (gentamicin protection assay) 

The invasion assay, using gentamicin protection to kill the extracellular 

bacteria, was then used to assess the ability of the bacteria to invade 

Caco-2 and HBMEC cell lines. For the Caco-2 cell line, CC4 strains 

displayed moderate invasion values, whereas strains 695 (P<0.05) and 

767 were able to invade at the highest levels compared with the other 

strains of all STs. Strains 6 (ST4), 730 (ST4), and 4 (ST15) showed the 

lowest level of invasion within CC4. On the other hand, the non-CC4 

strains showed moderate invasion levels, however strains 12 (ST1), 1019 

(ST1), 1 (ST8), and 5 (ST8) showed low invasion levels (see Fig.3.13). 
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Fig.3.13 C. sakazakii gentamicin protection assay (GPA) using Caco-2 cell 

line over 3 hours of incubation showing the differences in invasion levels 
among strains. The displayed data are the mean±standard deviation of 
invasion efficiency as % of the initial inoculum (106 cfu/ml) of two 

independent experiments in triplicate. The asterisks above the bars 
indicate statistically significant differences between the strains in this 

experiment (*P<0.05; Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  

 

With regard to the HBMEC cell line, most of CC4 strains showed higher 

invasion levels than other strains, while strain 730 exhibited a moderate 

invasion level (Fig.3.14). Strains 553, 557, 558, 1465, and 4 displayed 

the lowest levels amongst CC4, whereas strain 6 from CC4 was not able to 

invade the cell line. Non-CC4 generally strains showed low invasion values 

except for strain 696 (ST12), which showed the highest level among the 

isolates tested. Strains 1249 (ST31), 658 (ST1), 1241 (ST1), 520 (ST12) 

and 580 (ST18) were moderate with regard to invasion. Cit. koseri, the 

positive control for the cell line, in addition to strain 767 (ST4) exhibited a 

significant increase in their ability to invade the HBMEC cell line when 

compared to other strains (P<0.01; see Fig.3.14). 
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Fig.3.14 C. sakazakii gentamicin protection assay (GPA) using HBMEC 
cell line over 3 hours of incubation showing the differences in invasion 

levels among strains. The displayed data are the mean±standard 
deviation of invasion efficiency as % of the initial inoculum (106 cfu/ml) of 
two independent experiments in triplicate. The asterisks above the bars 

indicate statistically significant differences between the strains in this 
experiment (*P<0.01; Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  
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C. sakazakii invasion of Caco-2 and HBMEC cell lines was examined using 

microscopy following staining with Giemsa to visualise the invaded 

bacterial cells. The images are displayed in Fig.3.15 below.  

 

 

 

 

 

 

 

 

 

 

Fig.3.15 C. sakazakii-infected Caco-2 and HBMEC cell lines for 3 hours, 
followed by washing with PBS, addition of gentamicin for 1 hour. Cells 

were then fixed with 100% methanol, stained with 5% Giemsa stain, and 
examined using oil immersion (100x). The arrows point to intracellular 
bacterial cells. (a) Intracellular bacterial cells of strain 695 (ST4), which 

has high invasion ability, inside Caco-2 cells. (b) Invasion of C. sakazakii 
strain 767 (ST4) to HBMEC cells that showed high invasion ability for this 

cell line. 
 

Regarding the invasion of rBCEC4, strain 1221 (CC4), 1587 (CC4), 696 

(ST12), and the positive control showed significantly higher invasion 

levels compared to other isolates tested (P<0.05). On the other hand, 

strains 6 (ST4), 558 (ST4), 658 (ST1), and 680 (ST8) exhibited low 

invasion levels. With regard to the other strains, they were moderate in 

their invasion (Fig.3.16). This experiment showed that ST4 strains have 

the potential for the attachment and invasion more than the other STs 

similar to their behaviour with the Caco-2 and HBMEC cell lines. However, 

the invasion levels for rBCEC4 were lower than those of the human cell 

lines. For strain 696 (ST12), which does not belong to CC4, showed high 

invasion levels with all cell lines. 
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Fig.3.16 C. sakazakii gentamicin protection assay GPA using rBCEC4 cell 
line over 3 hours of incubation showing the difference in invasion levels 

among strains. The displayed data are the mean±standard deviation of 
invasion efficiency as % of the initial inoculum (106 cfu/ml) of two 
independent experiments in triplicate. The asterisks above the bars 

indicate statistically significant differences between the strains in this 
experiment (*P<0.05; Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  

 
It was notable that strains 6, 553, 557, 558, and 4 did not show the same 

attachment and invasion abilities of CC4. Strains 557, 558, and 4 showed 

low attachment to Caco-2 and HBMEC cell lines. Moreover, these strains in 

addition to 6 and 553 demonstrated low invasion to the same cell lines. 

Additionally, it was clear that strain 1465 (ST4) showed high attachment 

to Caco-2 cell line and low invasion, suggesting that the ability to attach 

to human cells does not reflect the invasion ability, and this strain could 

be considered as a low invader.  

Strains showing high levels of invasiveness might have the potential to 

induce more host responses and cause more damage to the infected 

organs. Therefore, the next experiments used translocation assays to 

assess the ability of C. sakazakii strains to pass through the intact 

monolayers of the Caco-2 and HBMEC cell lines. 
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3.3.5.2.3. Invasion-associated genes in C. sakazakii 

A group of genes were found to have a role in the invasion potential of 

Salmonella and E. coli (Farr et al.  1989, Badger et al.  2000, Bessman et 

al.  2001, Ismail et al.  2003, Peng et al.  2012). These genes differ in 

their functions and the types of mammalian cells that they mediate the 

invasion of. The invasion genes that were tested in this project were 

apaH, ompA, ompX, ygdP, and ppk1. The gene apaH was found to 

promote invasion to human epithelial cells in S. Typhimurium and E. coli, 

while ompA is required for Caco-2 cell line invasion. Moreover, ompA, 

ompX, ygdP, and ppk1 were associated with HBMEC invasion by E. coli K1 

(Badger et al.  2000, Singamsetty et al.  2008, Mohan Nair et al.  2009, 

Kim et al.  2010, Peng et al.  2012). 

C. sakazakii sequenced strains used in this research (n=24) were 

analysed for the presence of apaH, ompA, ompX, ygdP, and ppk1 genes in 

their genomes (Table.3.2). All strains investigated carried invasion-

associated genes, yet showed varied invasion phenotypes suggesting that 

some of these genes might not be expressed or that different genes are 

involved in invasion in different strains.  

3.3.5.3. Translocation assay 

3.3.5.3.1. Translocation assay using the Caco-2 cell line 

Translocation is the process whereby the bacterium invades and passes 

through a polarised monolayer of a cell line. During the first hour of the 

experiment, the translocation level was low for all strains except for strain 

695 (ST4) and S. Enteritidis, the positive control, which showed higher 

translocation than the other strains (Fig.3.17). Different levels of 

translocation were detected after three hours, however the levels 

remained low for the majority (94%) of the strains. Strains 695 (ST4), 

730 (ST4), and the positive control demonstrated the highest 

translocation after 3 hours (P<0.01). At the fifth hour, most of the CC4 

strains translocated to high levels and strain 695 showed highest 

translocation (P<0.01), whereas strains 20 and 553 showed low 

translocation levels. Strain 6 (ST4) was not able to translocate over the 5 

hours of incubation. With regard to non-CC4 strains, they also showed 



Chapter 3: Cronobacter sakazakii virulence 

 86 

increasing translocation over time especially strains 658 (ST1), 520 

(ST12), and 696 (ST12) that showed moderate translocation after 5h.. In 

addition,  strain 680 (ST8) showed a very low level of translocation , while 

strains 1019 (ST1), 1 (ST8), 5 (ST8), and E. coli K12, the negative 

control, were not able to translocate (see Fig.3.17). 

The transepithelial electrical resistance (TEER) of the Caco-2 monolayers 

was measured over the period of the assay to monitor the disruption of 

the tight junctions of the cells. TEER declined in monolayers infected with 

strains that were able to pass through the intact monolayers, indicating 

the disruption of the tight junction of the cell line. Moreover, the levels of 

decline were directly proportional to the capability of the bacterial cells to 

translocate through this cell line. On the other hand, for the other non-

translocating strains the resistance remained steady or only showed a 

slight decrease (Fig.3.18). A group of C. sakazakii strains were able to 

translocate through Caco-2 monolayers without notable changes in TEER. 

These strains include CC4 strains 20, 730, 1219, 1221, 1231, 1240, 1242 

in addition to 1019 (ST1), 680 (ST8), and 580 (ST18). These strains 

might use different translocation mechanism other than the disruption of 

the tight junctions.  

As previously mentioned in Section 3.3.5.1, a group of C. sakazakii strains 

were tested for their cytotoxicity for the Caco-2 cell line. It was noted that 

strains 695 (ST4), 696 (ST12), and S. Enteritidis that showed high 

translocation in addition to strains 1242 (ST4) and 658 (ST1), which were 

moderate in translocation showed high cytotoxicity to Caco-2. This 

suggests that cytotoxicity helps the bacterium to abolish the integrity of 

the cell monolayer by causing cell death leading to the translocation and 

decreased TEER levels.   
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Fig.3.17 Translocation assay using C. sakazakii-infected Caco-2 cell line for up to 5 hours of incubation showing the 
differences in translocation ability among strains. The displayed data are the mean±standard deviation of 

translocation efficiency as % of the initial inoculum (106 cfu/ml) of two independent experiments. The asterisks above 
the bars indicate statistically significant differences between the strains in this experiment (*P<0.01; Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  
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Fig.3.18 Transepithelial electrical resistance (TEER) of Caco-2 monolayers over 5 hours of incubation, showing the 

changes in electrical resistance. (0 h) is the TEER measurement of uninfected Caco-2 monolayer. 
 
.
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The effect of C. sakazakii strain 695 on Caco-2 cell line was documented 

using microscopic examination. The images below demonstrate the effect 

of the organism on the cell line over 5 hours of infection (Fig.3.19). The 

cells started to die 3 hours following infection and the rounded cells can 

be seen. After 5 hours, the majority of cells were dead and made floating 

clumps. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.19 Microscopic examination of C. sakazakii-infected Caco-2 cell line 
using strain 695 (ST4). The images show the effect of the infection on the 

cell line over 5 hours of infection. The arrows point to the dead cells. (a) 
The image shows confluent monolayer of Caco-2 cell line. (b) After 3 hour 
of infection, cells started to die and the changing in shape (rounded cells) 

is clear. (c) 5 hours post infection most of the cells were dead and 
aggregated into floating clumps. 

 

3.3.5.3.1. Translocation assay using the HBMEC cell line 

The HBMEC cell line was used for the second translocation assay. During 

the initial 4 hours of the incubation period, no strains translocated through 

the intact monolayer and the cell line exhibited resistance against 

translocation shown by stable TEER over time (data not shown). After 5 

hours of incubation, strains 6 (ST4), 553 (ST4), 558 (ST4), 1465 (ST4), 4 

(ST15), 12 (ST1), 1 (ST8), 5 (ST8), and the negative control E. coli K12 

were not able to pass through the polarised monolayer of the cell line 

(Fig.3.20). Another group of strains including 557 (ST4), 730 (ST4), 1242 

(ST4), 1249 (ST31), 555 (ST1), 658 (ST1), 1019 (ST1), 1241 (ST1), 680 

(ST8), 520 (ST12) and 580 (ST18) showed low translocation levels. 
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Furthermore, CC4 strains 721, 1224, 1225, and 1231 translocated more 

when compared with the previous group of strains. Moreover, CC4 strains 

20, 695, 1219, 1220, 1221, 1222, 1223, and 1240 in addition to strain 

696 (ST12), showed significantly elevated translocation among the strains 

tested (P<0.01). Strain 767, and Cit. koseri, the positive control, 

demonstrated the most significant elevation in translocation (P<0.001; 

Fig.3.20).  

The electrical resistance of the cell line was mostly steady with slight 

changes with some strains during the first 4 hours of infection (data not 

shown). The drops in resistance were noticed after 5 hours of incubation 

in the wells infected with translocating strains indicating their ability to 

disrupt the tight junctions and pass through the membrane to the 

basolateral compartment (Fig.3.21). 

The cytotoxic effect of C. sakazakii strains was investigated as mentioned 

previously in Section 3.3.5.1. CC4 strains 20, 695, 767, and 1240 in 

addition to 696 (ST12), which translocated to a higher level through the 

HBMEC cell line, showed significantly higher cytotoxicity to this cell line 

after 3 hours of infection when compared to the negative control of that 

assay. This correlates with the results of translocation and the decline in 

TEER, which suggests that cytotoxicity could increase the permeability of 

this cell line allowing more bacterial cells to pass through. However, this is 

an apparent contradiction of the results of the previous translocation 

experiment using Caco-2 cell line, as this cell line was highly susceptible 

to translocation of the invasive strains. 
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Fig.3.20 C. sakazakii translocation assay using the HBMEC cell line after 5 

hours of incubation showing the differences in translocation ability among 
strains. The displayed data are the mean±standard deviation of 
translocation efficiency as % of the initial inoculum (106 cfu/ml) of two 

independent experiments. The asterisks above the bars indicate 
statistically significant differences between the strains in this experiment 

(*P<0.001, ** P<0.01; Kruskal-Wallis). 
ST: sequence type. 
CC4: clonal complex 4.  
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Fig.3.21 Transendothelial electrical resistance (TEER) of the HBMEC cell line over 5 hours of incubation, showing 
changes in resistance over time. 
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The effect of C. sakazakii strain 1221 on HBMEC cell line was investigated 

using microscopic examination. The images below show the effect of the 

bacterium on the cell line over time (Fig.3.22). After 3 hours of infection, 

the cells were essentially unchanged, while a higher number of dead cells 

appeared after 5 hours incubation with C. sakazakii 

 

 

 

 

 

 

 

 

 

 
 
Fig.3.22 Microscopic examination of C. sakazakii-infected HBMEC cell line 

using strain 1221 (ST4). The images show the effect of the infection on 
the cell line over time. The arrows point to the dead cells. (a) HBMEC cells 

showed normal appearance after 1 hour of infection. (b) HBMEC cells 
showed low susceptibility for bacterial killing 3 hours after infection. (C) A 
number of dead HBMEC cells started to appear 5 hours post infection.  

 

3.3.5.4. Uptake and survival assays inside phagocytic cells 

3.3.5.4.1. C. sakazakii persistence in human macrophages 

Selected C. sakazakii strains were examined for the uptake and the 

survival within human macrophages represented by U937 cell line. These 

strains represent different sequence types and they vary in their invasion 

ability of Caco-2 and HBMEC cell lines. Most of the strains persisted in 

macrophages for 72 hours after the uptake excluding strain 558 (ST4), 

680 (ST18) and the negative control E. coli K12 that was killed rapidly 

following uptake (Fig.3.23).  

All strains were taken up by macrophages 1-hour post infection. After 6 

hours of incubation, most of the strains showed a slight increase in their 

numbers except for strains 6 (ST4), 558 (ST4), 680 (ST18), and the 

negative control that displayed a slight decrease.  
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After 24 hours of incubation, ST4 strains 20, 695, 767, and 1221 in 

addition to strains 658 (ST1), 696 (ST12), and the positive control Cit. 

koseri were able to multiply significantly compared to other strains 

(P<0.05). On the other hand, strains 6 (ST4), 558 (ST4), and 680 (ST18) 

exhibited a drop in their numbers (>50%), while strains 695 (CC4), 1240 

(CC4), 1242 (CC4), and 1587 (CC4) were able to multiply and 

demonstrated moderate survival rates. Strain 1249 (ST31) showed only a 

slight change in viability on incubation with U937 cells over the first 24 

hours of incubation. 

All strains displayed slight declines in their intracellular survival after 48 

hours of incubation, whereas strains 558 (ST4), 680 (ST18), and the 

negative control declined significantly (P<0.05) losing more than 70% of 

their numbers. The survival rate after 72 hours post infection was high for 

strains 695 (ST4), 767 (ST4), 1221 (ST4), and the positive control, 

whereas the other strains declined significantly (P<0.001), specifically 

strains 6 (ST4), 558 (ST4), 680 (ST18), and the negative control 

(Fig.3.23). 
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Fig.3.23 C. sakazakii uptake and persistence assay using U937 cell line 

over 72 hours of incubation showing the differences in survival among 
strains. The displayed data are the mean±SEM for uptake and persistence 

efficiency as % of the initial inoculum (105 cfu/ml) of three independent 
experiments. The asterisks above the bars indicate statistically significant 
differences between the strains in this experiment (*P<0.05, **P<0.001; 

ANOVA).  
ST: sequence type. 
CC4: clonal comlex 4. 

 

3.3.5.4.2. C. sakazakii persistence in human microglial cells 

C. sakazakii is linked to fatal meningitis cases, and therefore it is 

important to show its ability to resist phagocytosis and withstand killing 

inside the brain. This experiment was conducted to assess the ability of C. 

sakazakii to survive within microglial cells, the brain resident 

macrophages, and multiply intracellularly.  

All strains were taken up by microglia 1-hour post infection (Fig.3.25). 

Twenty-four hours post infection, most of the strains showed decreased 

survival levels especially strains 6 (ST4), 558 (ST4), 680 (ST8), 696 

(ST12), and the negative control E. coli K12 that declined markedly 

showing more than 50% decrease in their numbers. On the other hand, 

CC4 strains 20, 695, 767, 1221, 1240, and 1587 in addition to strain 1249 

(ST31) and Cit. koseri, the positive control, demonstrated significant 

survival and multiplication levels (P<0.01) scoring more than 10% 
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increase in their levels. All strains showed decreased persistence levels 

(up to 40%) 48 hours following infection except for strain 767 (ST4) and 

the positive control, which showed significantly higher persistence levels 

(P<0.05). After 72 hours of incubation, the strains continued to show a 

decrease in their intracellular numbers (>50%), however the survival 

levels of strain 20 (ST4) and the positive control remained significantly 

higher (P<0.01; Fig.3.25). 

About 77% of the strains were able to survive within microglia for 72 

hours, which indicates their virulence potency. Fifty six percent of CC4 

strains, some of which were linked to meningitis cases, have the highest 

ability to survive and multiply inside these phagocytic cells. This 

mechanism is important to evade the immune response and these cells 

could potentially act an incubator in vivo to produce more bacterial cells 

and causing more damage to the brain during infection. There was a 

correlation between the survival ability and the cytotoxic effect of some 

strains (Fig.3.7), as the higher in cytotoxicity the higher in survival. 

Fig.3.24 below demonstrates the uptake of strain 1240 (ST4) by microglial 

cells. A summary of the previous results in this section is provided in the 

tables below (Table.3.4-5).  

 

 

 

 

 

 

 

 

 

 

Fig.3.24 Uptake of C. sakazakii cells by HMGC cells. The cells were 

infected with strain 1240 (ST4) for 1 hour followed by addition of 
gentamicin for 1 hour, fixation with 100% methanol and staining with 5% 
Giemsa, and examined using oil immersion (100x). Arrows point to 

engulfed bacterial cells. 
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Fig.3.25 C. sakazakii uptake and persistence assay using HMGC cell line 
over 72 hours of incubation showing the differences in survival among 

strains. The displayed data are the mean±SEM for uptake and persistence 
efficiency as % of the initial inoculum (105 cfu/ml) of three independent 
experiments. The asterisks above the bars indicate statistically significant 

differences between the strains in this experiment (*P<0.001, **P<0.05; 
ANOVA). 
ST: sequence type. 
CC4: clonal comlex 4. 
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The effect of C. sakazakii strain 767 on HMGC cell line was investigated 

using microscopic examination. Fig.3.26 shows the effect at three 

different time points (Fig.3.26). The dead rounded microglial cells started 

to appear 3 hours post infection, and were aggregated in clumps of dead 

cells after 5 hours.  

 

 

 

 

 

 

 

 

 

Fig.3.26 Microscopic examination of C. sakazakii-infected HMGC cell line 
using strain 767 (ST4). The images show the effect of the infection on the 

cell line over 5 hours of infection. The arrows point to the dead cells. (a) 
HBMEC cells showed normal adherent cells after 1 hour of infection. (b) A 
number of detached dead cells started to appear after 3 hours post 

infection. (C) A group of dead HBMEC cells aggregated into clumps 5 
hours after infection.  

 

3.3.5.4.1. Phagocytosis resistance-associated genes 

It was shown that the PhoP/PhoQ regulatory system of S. Typhimurium 

and Y. pestis and their regulated genes including pmrABE and mgtB play a 

critical role in phagocytosis survival (Ernst et al.  1999, Grabenstein et al.  

2006). Moreover, gsrA of Y. enterocolitica was shown to provide 

protection against oxidative stress killing by macrophages (Yamamoto et 

al.  1996). Additionally, the product of the sodA gene, superoxide 

dismutase (SOD), protects bacteria against phagocytosis as the first 

contact occurs at the surface of the phagocyte. This is by the conversion 

of the reactive superoxide radicals into molecular oxygen (Beaman and 

Beaman  1984, Cox et al.  2003). This reaction is important to C. 

sakazakii strains to avoid effects of phagocytosis by macrophages and 

microglia.  
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All sequenced strains used in this project (n=24) have phoP, phoQ, 

pmrABE, and sodA genes in their genomes (Table.3.2) Moreover, 87% of 

strains (n=24) encode the mgtB gene, while ST4 strains 6 and 557 in 

addition to strain 520 (ST12) were negative for this gene. Strain 6 (ST4) 

that lacks the mgtB gene was not able to survive within macrophages and 

microglial cells (Fig.3.23 and Fig.3.25). On the other hand, strains 558 

(ST4) and 680 (ST8) that are positive for the mgtB gene also displayed 

the same behaviour as strain 6 (ST4) in the survival ability inside 

macrophages and microglial cells. Although strains 658 (ST1) and 696 

(ST12) were positive for all genes investigated, they were able to multiply 

within macrophages but not in microglial cells (Fig.3.23 and Fig.3.25). All 

other strains were positive for the tested phagocytosis-resistance related 

genes and showed the ability to persist and multiply within macrophages 

and microglial cells (Fig.3.23 and Fig.3.25). 

Table.3.4-5 summarise the results obtained in this chapter. 
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Table.3.3: Results summary of motility, iron siderophore production, serum resistance, rBCEC4 attachment and 
invasion, and the source and clinical presentation of strains. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST: sequence type. +: able to produce. -: Not able to produce. ND: not done. CSF: Cerebrospinal fluid. NEC: Necrotising enterocolitis.  
rBCEC4: rat brain endothelial cells. *: BAA-894 the first C. sakazakii strain sequenced (Kucerova et al. 2010). **: Alternative culture collection code HPB-3290. 
a: French outbreak strains (Caubilla-Barron et al. 2007, Townsend et al. 2008). 
 b: Part of clonal complex 4, which contains STs 4, 15, 97, 107, 108, and 109 (Forsythe et al.  2014). c: Plasmid-less strains.  
1: Fig.3.1. 2: Fig.3.2. 3: Fig.3.3. 4: Fig.3.12. 5: Fig.3.16. 
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Table.3.4: Results summary of cytotoxicity, attachment, invasion, translocation, and phagocytosis survival. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ST: sequence type. ND: not done. P/M: persisted/multiplied. P/K: persisted/killed. HBMEC: human brain microvascular endothelial cells cell line.  
U937: human macrophage cell line. HMGC: human microglial cell line. 
*: BAA-894 the first C. sakazakii strain sequenced (Kucerova et al. 2010). **: Alternative culture collection code HPB-3290. 
a: French outbreak strains (Caubilla-Barron et al. 2007, Townsend et al. 2008). b: Part of clonal complex 4, which contains STs 4, 15, 97, 107, 108, and 109 
(Forsythe et al.  2014). c: The attachment, invasion, and translocation through Caco-2 cell line in addition to attachment and invasion of HBMEC cell line 
experiments were performed with another group of strains and the results can be found in Appendix.1. 
1: Fig.3.5. 2: Fig.3.8. 3: Fig.3.13. 4: Fig.3.17. 5: Fig.3.6. 6: Fig.3.9. 7: Fig.3.14. 8: Fig.3.20. 9: Fig.3.23. 10: Fig.3.7. 11: Fig.3.25. 
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3.4. Discussion 

The Cronobacter genus contains 7 different species including C. 

condimenti, C. dublinensis, C. malonaticus, C. muytjensii, C. sakazakii, C. 

turicensis, and C. universalis (Joseph et al.  2012a, Brady et al.  2013, 

Holý and Forsythe  2014, Jackson et al.  2014). C. sakazakii isolates 

represent 72.1% of the total Cronobacter genus isolates, and the 

organism was linked to several severe and fatal NEC and meningitis cases 

around the world. Moreover, it contains different clonal complexes (CC) 

including CC4 that contains sequence type 4 (ST4) and was the most 

frequent clonal complex isolated from CSF and meningitis cases (Forsythe 

et al.  2014).  

The motility of the bacterium is important for its adherence and passage 

through the invaded tissues. Moreover, it is important for the organism to 

acquire nutrients such as iron that allow its continuous growth and 

multiplication and could help in its virulence. Evading host response, such 

as serum resistance, is an essential strategy for the survival of C. 

sakazakii strains inside the body. All the previous factors are crucial to the 

organism to maintain cellular activity, cause cytotoxicity, and invade and 

translocate through host tissues. The previously mentioned bacterial 

effects were examined in this chapter to assess the virulence potential of 

C. sakazakii strains and clarify their behaviours.  

3.4.1. Motility  

Flagella are the bacterial organelles that are responsible for motility, 

aiding adherence, and helping in bacterial cell translocation. It was 

reported by Cruz-Córdova et al. (2012) that the flagella of C. sakazakii 

play an important role in triggering the host immune response and the 

production of cytokines such as IL-8 and TNF-α. Furthermore, flagella help 

in the adhesion to the mammalian cells such as Caco-2 (Hartmann et al.  

2010). The study of Cruz-Córdova et al. (2012) used the strains C. 

sakazakii ATCC BAA-894 (ST1) and C. sakazakii ATCC 29004 (ST4) in 

their experiments. It showed the ability of the flagellated strains to adhere 

and invade the mammalian cells and trigger cytokine secretion, which was 
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mentioned previously. According to Hartmann et al. (2010), the absence 

of flagella in Cronobacter mutants led to a significant reduction in 

adhesion capacity to the Caco-2 cell line. This suggests that the presence 

of flagella, as one of the virulence factors, have an essential role in 

pathogenesis. 

Most of C. sakazakii strains that were used in this project were motile 

except for strains 1223 (ST4), 1224 (ST4), and 680 (ST8). The motility 

suggests the presence of flagella in the motile strains that gives them the 

advantage to move and aid adherence to abiotic surfaces and the 

eukaryotic cells. It was found that about 96% of sequenced strains have 

all the fli genes (Table.3.1) that are responsible for flagella expression and 

movement according to previous studies (Kucerova et al.  2010, Joseph et 

al.  2012b). Strain 520 (ST12) was the only motile strain that was 

negative for fliN, fliO, fliP, fliQ, and fliR genes indicating that they do not 

have a critical role in motility. On the other hand, although strain 680 

(ST8) has a group of fli genes in its genome, this however did not show 

motility in the laboratory experiment (Fig.3.1, Table.3.4). Moreover, it 

was the only strain that showed the absence of fliE, fliF, fliG, fliH, fliI, fliJ, 

fliK, fliL, and fliM genes (Table.3.1). This confirms the predicted 

annotation based on whole genome sequencing that these genes might be 

those essential for the expression and the movement of the flagella as 

their absence affected the ability of the strain to be motile (Fig.3.1, 

Table.3.4). However, the lack of functional genomic analysis studies 

regarding this organism keeps the functions of several genes unresolved 

and further testing is needed to clarify their roles.  

Motility is important for the bacteria to aid the invasion of the tissues in 

order to overcome the host barriers. Moreover, it contributes to the 

translocation of strains through the damaged tissues to infect the healthy 

ones, which causes more damage to the host. The non-motile ST4 strains 

1223 and 1224 showed moderate levels of attachment, invasion, and 

translocation through Caco-2 and HBMEC cell lines. However, strain 1223 

showed higher translocation level through the HBMEC cell line indicating 

that this strain is capable of infecting this cell line even with the lack of 
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ability to move, and the strain might depend on non-flagellar mediated 

motility using different bacterial traits such as fimbriae (twitching 

motility), which indicates the virulence potential of this strain. Strains 

1223 and 1224 were clinical isolates from blood, however they were not 

linked to fatal cases and they did not translocate through BBB to the brain 

in vivo, as there were no meningitis cases reported (Table.3.4). On the 

other hand, strain 680 is a CSF isolate though not associated with fatal 

infection, and was expected to have a high virulence potential based on 

the site of isolation. However, this strain showed low attachment, 

invasion, and translocation through Caco-2 and HBMEC cell lines. 

Furthermore, it demonstrated low attachment and invasion for rBCEC4 cell 

line. Strain 680 (ST8) was rapidly killed by macrophages and microglia. 

The low attachment and invasion profiles of this strain might be due to the 

lack of flagellar motility that aids adherence and invasion (Table.3.4-5). 

Thus, the presence of functional flagella that allows the organism to move 

is one of the important traits that contributes to C. sakazakii virulence. 

3.4.2. Iron siderophore detection 

Iron is an important microelement and it is essential for many bacterial 

cellular processes. These include cellular respiration and superoxide 

metabolism in addition to its role in pathogenesis (Tanaka et al.  1994, 

Yoshida et al.  1995, Bishop et al.  2011). As a part of the immune 

response, the human body reduces the iron availability to decrease the 

free iron levels that will limit bacterial growth (Parrow et al.  2013). 

Moreover, as a part of acute-phase response (APR), which is initiated by 

the innate immunity, a striking change in iron metabolism occurs in 

response to infection. The aim of APR is to eliminate the source of 

infection and minimise the damage (Epstein et al.  1999). Moreover, 

during APR the intracellular storage of iron in ferritin is increased as in 

some cells including microglia and macrophages. Additionally, under 

aerobic conditions, iron is present as insoluble and biologically inaccessible 

ferric hydroxide (Fe3+). In such iron-limited environments, bacteria 

produce high-affinity iron binding molecules, such as siderophores, to 

acquire iron from these environments. By forming water-soluble 

hexadentate ferric complexes, siderophores can bind to the 6 coordinate 
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sites of ferric ions, as siderophores are usually classified by the ligands 

used to chelate the ferric iron. There are 3 major groups of siderophores 

including catecholates-phenolates such as enterobactin, hydroxamates 

such as aerobactin, and carboxylates such as citric acid (Neilands  1981, 

Yoshida et al.  1995, Miethke and Marahiel  2007, Franco et al.  2011a, 

Grim et al.  2012, Parrow et al.  2013). The presence of different iron 

acquisition systems and iron transporters is important for pathogens, 

including C. sakazakii, to enable efficient iron acquisition to survive in 

iron-limited environments in various niches, which could support bacterial 

pathogenesis (Grim et al.  2012). Moreover, this might help the bacteria 

to uptake the iron from the iron-rich cells in human brain such as 

microglia (Barron  1995). 

In this research, C. sakazakii strains were tested using CASAD for their 

ability to produce iron siderophores that could help in iron acquisition, 

which in turn is a virulence factor. All the strains showed an ability to 

produce these molecules, except for the plasmid-less strains 6 (ST4) and 

520 (ST12; Fig.3.2). The ability to produce such molecules gives the 

advantage to the bacteria to survive in the human body and support 

pathogenesis, as iron is an important biological cofactor.  

The C. sakazakii genome encodes for iron acquisition genes including eitA, 

iucC, and viuB. The gene eitA is a part of eitCBAD operon that shows 

homology with ABC transporters involved in iron, siderphore, and haem 

uptake, while iucC that is a part of iucABCD iron uptake system, which is 

responsible for cronobactin biosynthesis and transport that mediates 

Cronobacter spp. growth under iron limiting conditions. The gene viuB has 

a role in the aerobactin system as a siderophore exporter (Franco et al.  

2011a, Grim et al.  2012). Although the majority of strains harboured 

these genes, the plasmid-less strains 6 (ST4) and 520 (ST12) were 

negative for them. The plasmid PCR profile showed that these strains lack 

these genes because they do not have the large pESA3 C. sakazakii 

plasmid. Moreover, the genomic comparison confirmed the absence of 

these genes in their genomes and their presence in the other strains 

(Table.3.2). The analysed strains harbouring eitA, iucC, and viuB have the 
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ability to acquire iron from iron limited environment by producing iron 

siderophores, which help in the survival in the host and overcome the 

immune response that aims to limit the iron levels at the time of infection 

(Franco et al.  2011a, Grim et al.  2012). The production of siderophore 

was confirmed using CASAD (Fig.3.2). On the other hand, strain 557 

(ST4) was negative for eitA and positive for iucC, and strain 12 (ST1) was 

positive for eitA and negative for iucC. In addition, strain 696 lacked the 

presence of viuB gene. This, however, did not affect their ability to 

produce iron siderophores (Table3.2 and Fig.3.2). This might be attributed 

to the presence other siderophore-related genes that were not examined 

in this project  

3.4.3. C. sakazakii sensitivity to human serum 

Invasive microorganisms have protective mechanisms against serum-

mediated killing. Bacterial structures including outer membrane proteins 

and proteases were identified for their roles to avoid this bactericidal 

action (Taylor  1983, Rautemaa and Meri  1999, Schwizer et al.  2013). A 

recent study by Franco et al. (2011b) showed that the Cronobacter outer 

membrane protease (Cpa) is a plasminogen activator that plays an 

essential role in serum resistance. Moreover, it was reported that the 

mucoid appearance of E. coli K12 at 37°C was attributed to the presence 

of the rcsA gene product (McCallum and Whitfield  1991). It has been 

shown recently that colanic acid provides protection against the 

bactericidal effect of human serum in E. coli (Li et al.  2005, Miajlovic et 

al.  2014). 

A group of C. sakazakii strains in this research (n=13) were tested for 

their ability to resist human serum. About 85% of strains were regarded 

as resistant and able to replicate in human serum and they appear to be 

completely refractory to serum killing as were Cit. koseri and S. Enteritidis 

the positive controls. C. sakazakii strains 6 (ST4), 680 (ST8) and E. coli 

K12 the negative control were sensitive and underwent significant 

reduction in viability (P<0.05; Fig.3.3). Withstanding serum killing is an 

important factor that leads to the survival in the host blood and might 

participate in causing bacteraemia. 
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A previous study by Franco et al. (2011b) showed that the cpa mutant of 

strain 658 (ST1; BAA-894) was serum sensitive compared with the wild 

type. In this project, C. sakazakii clinical strains, including meningitis 

isolates, were examined for their ability to survive in human serum in the 

presence and absence of cpa and rcsA genes that might confer serum 

resistance in C. sakazakii. Eighty five percent of the strains that were 

tested for serum sensitivity and encode the cpa gene (n=11) were able to 

resist serum bactericidal activity, whereas the strains that were negative 

for cpa (n=2) showed serum sensitivity (Fig.3.3 and Table.3.2). Another 

gene, rcsA, responsible for colanic acid production was detected in all 

sequenced strains except for strains 680 (ST8) and 520 (ST12; 

Table.3.2). The expression of colanic acid confers serum resistance in E. 

coli as reported previously (McCallum and Whitfield  1991, Li et al.  2005). 

Strain 680 (ST8) that is serum sensitive lacks cpa and rcsA genes that are 

possible genes responsible for serum resistance (Fig.3.3 and Table.3.2). 

On the other hand, strain 6 (ST4) is another serum sensitive strain that 

encodes the rcsA gene but lacks the cpa gene. Despite the presence of the 

rcsA gene that might be responsible for serum resistance, it showed 

serum sensitivity. Moreover, Bogard and Oliver (2007), reported that the 

viuB gene has an important role in serum resistance in Vibrio vulnificus, 

as the resistance is influenced by serum iron availability. They found that 

the strains positive for viuB showed significant serum resistance, while 

strains lacking this gene were sensitive. In the case of C. sakazakii, the 

presence of viuB by itself does not affect serum resistance, as strain 680 

(ST8) harboured viuB and lacked cpa and showed serum sensitivity 

(Fig.3.3). On the other hand, the strains that have both genes such as 

strains 767 (ST4) and 658 (ST1), and strain 696 (ST12) that has cpa and 

lacked viuB displayed resistance to human serum, suggesting that cpa 

gene has the leading role in the resistance (Fig.3.3). 

The previous results suggest that cpa is an important key factor in C. 

sakazakii serum resistance. Although the data showed that the serum 

resistance was linked to the presence of cpa gene, they do not 

nevertheless indicate that the resistance is a property exclusively 
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dependent on this gene. There might be other factors that contribute to 

the resistance.  

3.4.4. Bacterial cytotoxic activity to human cell lines (MTT) 

Cytotoxicity is an indicator of the virulence of the organism. This can help 

the organism to overcome the physical barriers of the host by causing cell 

death, hence altering the tight junctions and making more passages for 

more bacterial cells to invade. MTT assay is one of the tests that can 

measure the cytotoxic effect on eukaryotic cells. It shows the ability of the 

mitochondria of the healthy cells to reduce MTT to its insoluble purple 

form formazan (Fotakis and Timbrell  2006, Sharma et al.  2009, Travan 

et al.  2009). In this experiment a washing step with PBS was added 

before adding the MTT to remove the unattached extracellular bacterial 

cells to minimise the possibility of false positive results.  

A group of C. sakazakii strains in this project (n=13) were tested for their 

cytotoxic impact using MTT assay. All those strains were able to induce 

cell death of the Caco-2 cell line, as the assay displayed declined 

absorbance levels after 3 hours of incubation indicating low MTT 

conversion (the lower absorbance the higher cytotoxicity). CC4 strains 20, 

695, 1242, 1587 in addition to 658 (ST1) and S. Enteritidis were the most 

cytotoxic strains tested (P<0.05; Fig.3.5). This suggests that CC4 strains 

(average absorbance after 3 hours of infection 0.177) were able to induce 

cytotoxicity more than the non-CC4 strains (average absorbance after 3 

hours of infection 0.198) used in this experiment, indicating their 

virulence potential for this cell line. Moreover, all these strains showed the 

ability to translocate through the Caco-2 cell line and translocation was 

accompanied by severe drops in the transepithelial electrical resistance 

due to disruption of the tight junctions (Fig3.17-19 and Table.3.5). It is 

proposed that the ability of these strains to cause cytotoxicity of the Caco-

2 cell line might alter the tight junctions and facilitate their translocation 

through the intact monolayer. This process mimics the mechanism that 

the organism might use to invade the intestinal epithelial barrier in vivo. 

This could lead to a loss in the integrity of the intestinal mucosa leading to 

the permeability of this barrier allowing the bacterium to migrate through 
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this disrupted layer to the tissues beneath. This could then cause more 

damage to the healthy tissues of the gut and allow the organism to reach 

the blood vessels. One C. sakazakii strain known to cause a fatal NEC II 

case in the French outbreak in 1994 (Caubilla-Barron et al.  2007), which 

is 695 (ST4), was able to induce cell death and translocate through Caco-

2 cell line suggesting its ability to overcome intestinal barriers in vitro and 

in vivo. On the other hand, strain 6 (ST4) showed low cytotoxicity and 

was not able to translocate through Caco-2 cell line. In addition, strain 

558 (ST4) exhibited low cytotoxicity and translocation suggesting that the 

ability of the organism to cause cytotoxicity is important to allow invasion 

of the Caco-2 cell line (Table.3.3).  

With regard to the HBMEC cell line, it did not show susceptibility to 

cytotoxicity over the first hour of the assay in contrast to Caco-2 cells; 

nevertheless after prolonged incubation for 3 hours the cytotoxic effect 

appeared to be increased. CC4 strains 20, 695, 767, 1221, 1240, and 

1587 in addition to strains 658 (ST1), 696 (ST12) and Cit. koseri 

demonstrated high cytotoxicity when compared with the negative control 

(P<0.05; Fig.3.6). These strains except strain 1587 were only able to pass 

through the polarised monolayer of HBMEC cell line 5 hours after 

infection, indicating that this cell line is less susceptible to translocation 

than Caco-2. Additionally, the transendothelial resistance displayed a 

decline after 5 hours of incubation (Fig.20-22 and Table.3.5). Despite the 

fact that the decrease in TEER levels was not significant, it indicates that 

there was a disruption in the tight junction that might be attributed to the 

cytotoxicity of these strains for the HBMEC cell line. Strain 767 (ST4) that 

was linked to a fatal neonatal meningitis case (Caubilla-Barron et al.  

2007) showed high cytotoxicity and translocation ability through the 

HBMEC cell line. On the other hand, ST4 strains 6 and 558 were low in 

cytotoxicity and translocation indicating their low virulence potential 

(Table.3.5). 

Although the strains were ultimately cytotoxic for the cell line, the 

mechanism of initial HBMEC resistance to cytotoxicity remains unknown. 

Hence, it is important to understand the factors beyond this mechanism. 



Chapter 3: Cronobacter sakazakii virulence 

 110 

Ramegowda et al. (1999) showed that HBMEC treatment with TNF-α and 

IL-1β resulted in increased expression of the toxin-binding glycolipid 

globotriaosylceramide and made the cells sensitive for Shigella 

cytotoxicity. Another study by Eisenhauer et al. (2001) reported that 

HBMEC cells become more sensitive to Shiga toxin and susceptible to the 

damage in response to elevated TNF-α levels. Shigella and C. sakazakii 

belong to the Enterobacteriaceae family, and C. sakazakii strains might 

induce similar responses in HBMEC cells by the stimulation of TNF-α 

production, which in turn makes the cell line more susceptible to C. 

sakazakii cytotoxicity. Cruz-Córdova et al. (2012) reported that C. 

sakazakii flagella were able to induce TNF-α production. Moreover, HBMEC 

cell line was induced to produce TNF-α by C. sakazakii, and the induction 

of this cytokine was detected over 5 hours of infection (data will be shown 

later in Section 4.3.3.1 Fig.4.5). This increase in TNF-α might potentiate 

the susceptibility of these cells to cytotoxic killing by C. sakazakii as 

shown above (Fig.3.6). 

Regarding the HMGC cell line, most of C. sakazakii strains were able to 

cause a significant cytotoxic effect and cell death (P<0.01) including CC4 

strains 20, 695, 767, 1221, 1240, and 1587 in addition to strains 1249 

(ST31), 696 (ST12) and Cit. koseri. These strains showed the ability to 

multiply and survive within microglia especially the CC4 strains and 1249 

(ST31), which showed the highest survival and multiplication (Fig.3.25). 

The CC4 strains (average absorbance after 3 hours of infection 0.15) 

showed higher cytotoxicity for HMGC than the non-CC4 strains (average 

absorbance after 3 hours of infection 0.172). It is important to understand 

the mechanism whereby C. sakazakii could cause this massive cytotoxic 

effect to HMGC. This is currently unknown due to the lack of publications 

showing the bacterial effect on this unique type of immune cells. C. 

sakazakii might also be able to cause such an effect as a result of the 

survival within these cells and production of toxins intracellularly, and 

therefore would not need any toxin receptors on the cell surface.  

It was shown by Kim et al. (1995) that pneumococci are toxic to microglia 

and this toxicity is likely to be mediated by the pneumococcal cell wall. 
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Although, C. sakazakii is a Gram-negative bacterium in contrast to S. 

pneumoniae, which is Gram-positive, it is speculated that C. sakazakii 

LPS, as an outer membrane component, might play a role in inducing 

cytotoxicity and cell death via apoptosis. It was proposed by Liu et al. 

(2001) that over activation of rat microglia by a high concentration of LPS 

resulted in apoptotic death of rat microglia shown by DNA fragmentation, 

phosphatidylserine expression, and caspase-3 activation. In addition, they 

showed using the MTT assay that LPS-induced cytotoxicity to microglia 

was concentration- and time-dependent. They demonstrated that the 

exposure of rat microglia to a high concentration of LPS led to decreased 

microglial viability after 1 hour, whereas a low concentration of LPS such 

as 1 ng/ml did not affect the viability over 24 hours (Liu et al.  2001) 

Moreover, the cytokines released at the time of the infection might 

contribute to inducing cell death. All these mechanisms need to be 

examined and clarified in order to understand the behaviour of the 

organism in this phenomenon, as the ability to induce cytotoxic killing in 

this kind of cells is a major threat to the human CNS.  

In contrast, strains 6 (ST4), 558 (ST4), 680 (ST8), and E. coli K12 were 

the least cytotoxic among all tested cell lines. These strains showed very 

low invasive and translocation abilities, and low phagocytosis survival 

when incubated with human cell lines indicating their low cytotoxicity 

(Table.3.4 and Table.3.5). 

3.4.5. C. sakazakii attachment, invasion, and translocation assays 

Tissue culture assays were applied to examine the bacterial-host 

interaction and to assess the ability of C. sakazakii strains to overcome 

human intestinal and brain barriers represented by Caco-2 and HBMEC 

cell lines. Moreover, it tested the ability of these strains to attach and 

invade rat brain microvascular endothelial cells represented by the 

rBCEC4 cell line. These experiments included attachment and invasion 

(gentamicin protection) assays in addition to translocation assay.  

C. sakazakii showed the ability to attach to the three cell lines that were 

used in this research indicating its virulence potential. Some strains such 

as 696 (ST12) and CC4 strains 695, 767, and 1465 exhibited higher levels 
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of attachment to Caco-2 cells (P<0.05), whereas strain 696 (ST12) in 

addition to CC4 strains 695, 767, and 1221 showed elevated attachment 

levels to HBMEC cells (P<0.05). Furthermore, C. sakazakii strains showed 

the ability to attach to rBCEC4 cell line and CC4 strains 20, 695, 767, 

1221, and 1587 in addition to 1249 (ST31) and 696 (ST12) showed 

highest attachment among strains (P<0.01). The attachment ability of the 

organism to this line was examined to demonstrate whether the bacterium 

will behave similarly with rat and human cells. The ability of C. sakazakii 

strains to attach to rat brain cells was slightly higher than for human cells; 

this however does not indicate that the invasion ability will be higher. The 

number of bacterial cells of CC4 strains (average attachment efficiency for 

HBMEC 2.4% and rBCEC4 2.9%) attached to both cell lines was higher 

than those of non-CC4 strains (average attachment efficiency for HBMEC 

1.5% and rBCEC4 2.6%) indicating their potential to invade these cell 

lines. A previous study by Townsend et al. (2008) applied the attachment 

assay on a group of strains including 695 (ST4), 767 (ST4), and 696 

(ST12) using the Caco-2 cell line. Their results confirmed the ability of the 

strains to attach to the cell line, but the attachment levels for these 

strains were 25-75% lower when compared with the results obtained in 

this research. Although these results showed the ability of these strains to 

attach to Caco-2 and HBMEC cell line, this however does not necessarily 

indicate their invasion ability.  

The attachment process is the first step of the invasion process, thus the 

invasion assay was conducted to investigate their ability to invade the 

previously mentioned cell lines. All the strains were able to invade Caco-2 

cells albeit that some strains displayed different invasion levels. For 

example, strain 695 (ST4), which showed high cytotoxicity for Caco-2 

cells (Table.3.5 and Fig.3.5), showed highest invasion (P<0.05), whereas 

strains 6 (ST4), 4 (ST15), 12 (ST1), 1 (ST8), and 5 (ST8) showed the 

lowest invasion levels. The other strains showed moderate invasion 

capacity (Table.3.4 and Fig.3.13). The invasion results were compared to 

the results obtained by Townsend et al. (2008), and the invasion levels for 

the strains 695 (ST4; P<0.05), 767 (ST4), and 696 (ST12) were higher by 

15-85% than the levels published in that previous study. The differences 
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in the results of the attachment and invasion experiments obtained from 

this research and the previously published study by Townsend et al. 

(2008) might be because of the differences in strains growth conditions, 

as the study grew the strains tested on TSA plates and then harvested 

them directly from the plate in tissue culture medium. Moreover 

conditions such as cell line confluency, the passage number of the cell 

line, the incubation conditions, and the concentrations of the reagents 

used such as the concentration of Triton X-100 solution might contribute 

to obtaining different results, but both confirmed the ability of the strains 

to attach and invade the cell line. 

With reference to HBMEC cell line invasion, most of the strains showed 

moderate invasion and strain 767 (CC4) displayed a significantly higher 

invasion level (P<0.01). Nevertheless, strain 6 (ST4) was not able to 

invade while the other strains such as CC4 strains 553, 557, 558, 1465, 

and 4, in addition to 12 (ST1), 555 (ST1), 658 (ST1), 680 (ST12), and 1 

(ST8) showed low invasion levels (Table.3.4 and Fig.3.14). Regarding 

rBCEC4 cell line invasion, strains 1221 (CC4), 1587 (CC4), and 696 

(ST12) showed highest invasion (P<0.05), whereas strains 6 (CC4), 558 

(CC4), 658 (ST1), and 680 (ST8) showed the lowest levels (Table.3.5 and 

Fig.3.15). It was notable that the invasion of HBMEC is 10 times higher 

than the invasion of rBECE4 cells suggesting that the organism has the 

tendency to invade human cells more that the rat ones. Townsend et al. 

(2007b) examined the ability of Cronobacter strains to invade the rBCEC4 

cell line. This corresponds with our results, however strain 658 was more 

invasive in the previous published work. CC4 strains (average invasion 

efficiency for HBMEC 0.13% and rBCEC4 0.02%) were able to invade 

HBMEC and rBCEC4 cell lines at high levels in comparison to non-CC4 

strains (average invasion efficiency for HBMEC 0.1% and rBCEC4 

0.016%). Nevertheless, the ability of strains to invade human cells was 

much higher than rat cells (Table.3.5).  

A group of invasion-related genes were examined for their presence in C. 

sakazakii genomes of the sequenced strains analysed in this project. 

These genes include apaH, ompA, ompX, ygdP, and ppk1. ApaH is a 
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dinucleoside polyphosphate hydrolase that cleaves Ap4A producing 2-

adenosine diphosphate (2ADP). It was reported that apaH has a role in 

the invasion of human epithelial cells by S. Typhimurium, and apaH 

mutants showed 2-fold reduction in their invasion (Ismail et al.  2003). 

Additionally, it was shown that the deletion of apaH resulted in reduced 

motility in E. coli (Farr et al.  1989, Ismail et al.  2003). It was reported 

that the outer membrane protein A (OmpA) of Cronobacter spp. has 88% 

similarity to that of E. coli K1 at the protein level. This protein promotes 

the invasion ability of E. coli K1 to human intestinal and brain 

mircovascular endothelial cells in vitro (Singamsetty et al.  2008, Mohan 

Nair et al.  2009). It was also shown that the expression of OmpA is 

critical for Cronobacter spp. invasion of HBMEC and is required for 

microtubule condensation, PI3-kinase, and PKC-α activation (Singamsetty 

et al.  2008). Kim et al. (2010) demonstrated that OmpA and OmpX are 

essential for Cronobacter basolateral invasion of host cell including Caco-2 

and INT407 cells, and the movement into deeper organs. Additionally, the 

invasion levels of ompA and ompX Cronobacter mutants to Caco-2 cell line 

were decreased compared to the wild type. However, the invasion of 

ompX mutant was higher than ompA mutant suggesting that OmpA has a 

dominant role in Caco-2 invasion.  

It has been demonstrated by Badger et al. (2000) that the ygdP gene 

might be involved in HBMEC invasion by E. coli K1. Their results showed 

that ygdP mutant showed decreased HBMEC invasion compared with the 

wild type. YgdP has been identified as a member of the superfamily of 

Nudix hydrolases that catalyses the hydrolysis of the diadenosine 

polyphosphates Ap4A, Ap5A, and Ap6A. These molecules are involved in 

cellular responses, and the concentration of these molecules can increase 

100-fold over their regular levels following heat shock or oxidative stress. 

It was hypothesised that YgdP might function by decreasing the 

concentration of these signaling molecules during the invasion process 

(Bessman et al.  2001).  

Polyphosphate kinase 1 (PPK1) that is encoded by the ppk1 gene is an 

enzyme responsible for the synthesis of the inorganic polyphosphate from 
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adenosine triphosphate (ATP). In addition, it was found to be important in 

stress adaptation and the expression of the virulence genes of E. coli K1 

including ompA. It was shown that the deletion in ppk1 in the mutant led 

to a decrease in the adhesion and invasion of HBMEC, meningitis 

development, and TNF-α and IL-1β production in a newborn rat model 

(Peng et al.  2012).  

All C. sakazakii sequenced strains in this research (n=24) were positive 

for apaH, ompA, ompX, ygdP, and ppk1 (Table.3.2). Despite the presence 

of these genes the strains vary in their invasion ability (Fig3.13 and 

Fig.3.14). ST4 strains 6, 721 in addition to strains 1 (ST8), and 5 (ST8) 

showed low invasion levels to Caco-2 cell line (Fig.3.13). Furthermore, 

ST4 strains 553, 557, 558, and 730 in addition to strains 4 (ST15), 658 

(ST1), 1 (ST8), 5 (ST8), 680 (ST8), and 520 (ST12) were low in invasion 

to HBMEC cell line (Fig.3.14).  

The presence/absence of these genes does not correlate with the variable 

invasion profiles indicating that these genes are not essential for C. 

sakazakii invasion to HBMEC. The invasion process is multifactorial and 

involves different bacterial traits such as flagella. This can be seen in the 

case of strains 695 and 767 (CC4; Fig.3.13-14 and Table.3.5) that were 

positive for all invasion genes and demonstrated high invasion capacity in 

addition to being associated with fatal NEC and fatal neonatal meningitis 

respectively (Caubilla-Barron et al.  2007). On the other hand, other 

strains such as 6 (CC4) and 558 (CC4) that are positive for invasion genes 

showed low invasion levels (Table.3.5). 

As highlighted before, some CC4 strains did not follow the same behaviour 

of attachment and invasion of the clonal complex. Strain 1465 (CC4) that 

was isolated from powdered infant formula showed high attachment to 

Caco-2 and HBMEC cell lines and low invasion, indicating that the ability to 

attach might not necessarily lead to high invasion. Moreover, strains 6, 

553, 557, 558, and 4 exhibited low attachment, invasion, and 

translocation levels. Although these strains are clinical isolates, their 

association with any clinical presentations and isolation sources are 

unknown. They might not be associated with severe infections or may be 
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from faecal samples indicating their colonisation of the gut. Additionally, 

they might harbour non-functional virulence genes that require further 

examination using functional genomics’ tools. Furthermore, it was noted 

that some clinical isolates behaved differently when examined in vitro and 

showed low virulence compared with the deleterious clinical outcomes of 

the patients. For example, strain 1019 (ST1) and the non-motile C. 

sakazakii strain 680 (ST8), which are CSF isolates, demonstrated low 

invasion and translocation ability for Caco-2 and HBMEC cell lines. In 

addition strain 680 (ST8) was sensitive to human serum and showed low 

phagocytosis survival. Furthermore, during the period of this project a C. 

malonaticus clinical isolates was received from the CDC. This strain (1569 

ST112) was isolated in 2011 from the blood of <1-month-old infant who 

died as a result of fatal meningitis infection (Joseph and Forsythe  2012c). 

It is the first neonatal meningitis case that has been attributed to this 

species. The low attachment, invasion, and translocation results in vitro of 

this strain did not correlate with the severe outcome of the infection (for 

results refer to Appendix.1). This suggests that some strains could behave 

differently inside the host and this might be attributed to some host 

factors that could be unavailable in vitro.  

Overall, the invasion results indicated that the majority of the strains were 

able to invade the cell lines and therefore potentially translocate towards 

the underlying tissues and blood stream, especially CC4 strains, leading to 

the dissemination of the organism all around the body. Hence, 

translocation assays using the same human cell lines were applied to 

investigate the ability of the organism to translocate through these cell 

lines. Most of the strains, including those of CC4, were able to translocate 

through Caco-2 cells especially strains 695 (CC4), 658 (ST1), and 696 

(ST12) that displayed significantly higher translocation ability (P<0.01; 

Fig.3.17). These strains were also highly cytotoxic for Caco-2 cells, which 

could lead to an increase in the cell line permeability causing more 

bacterial translocation as mentioned previously. Nonetheless, strains 6 

(CC4), 1019 (ST1), 1 (ST8), and 5 (ST8) were not able to translocate, 

and strain 6 (CC4) showed low cytotoxicity (Table.3.5 and Fig.3.5). Thus, 

the translocating isolates potentially have the advantage to overcome the 
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gut barriers and cause more damage to the host, whereas the non-

translocating strains lack this advantage. Strain 695 (ST4) accounted for a 

fatal neonatal NEC infection while strain 696 (ST12) was previously linked 

to neonatal NECII infection (Caubilla-Barron et al.  2007). The invasion 

and translocation results correlate with the virulence potential of these 

strains and their ability to cause that type of disease.  

The transepithelial electrical resistance declined when using the invasive 

strains, especially the strains that were able to cause high cytotoxicity; 

strains 695 (CC4), 658 (ST1), and 696 (ST12). This explains the 

mechanism of translocation for the strains where they can migrate in 

between the cells. TEER, however, remained steady when using the non-

translocated isolates. However, a group of strains were able to translocate 

through Caco-2 monolayers without any notable change in TEER. These 

strains include CC4 strains 20, 553, 557, 558 730, 1219, 1221, 1231, 

1240, 1242, 1465 in addition to 680 (ST8), and 580 (ST18). They might 

use different translocation mechanism other than the disruption of the 

tight junctions. The translocation might be transcellular, whereby the 

bacterial cells invade and pass through mammalian cells to basolateral 

compartment, as suggested previously by Giri et al. (2011). Thus, it is 

proposed that C. sakazakii could translocate through Caco-2 monolayers 

using two different mechanisms; paracellular (between cells) and 

transcellular (through cells). Most of the CC4 and non-CC4 strains were 

able to accomplish the translocation process through Caco-2 monolayers 

indicating their ability to overcome the physical barriers of the human gut, 

and there was no advantage for CC4 strains over the non-CC4 ones. 

The above experiments suggested that some bacterial strains were able to 

disrupt the tight junctions of Caco-2 cells that helped in their 

translocation. Most of them were able to induce cytotoxic killing, which 

illustrates the impact of cytotoxicity on the cell line (Table.3.5 and Fig. 

3.5). The cytotoxicity and translocation might trigger the onset of NEC, 

and could lead to the spread of the bacteria in the blood stream. This 

dissemination of the organism suggested that it would be able to reach 

the brain microvascular endothelium and invade its cells. The results of 
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the invasion assay support the proposed theory, and therefore the 

translocation assay using HBMEC cell line was initiated to investigate 

whether the organism has the ability to translocate through these cells or 

not. CC4 strains 20, 695, 767, 1219, 1220, 1221, 1222, 1231, and 1240 

in addition to strain 696 (ST12) exhibited the highest translocation levels 

(P<0.01), while CC4 strains 6, 553, 558, and 1465, and 4 in addition to 

12 (ST1), 1 (ST8), and 5 (ST8) did not translocate. The other strains 

showed low to moderate translocation ability.  

Strains 695 (CC4), 767 (CC4), and 696 (ST12), which were the highly 

translocated strains showed high cytotoxicity to HBMEC cells (Table.3.5 

and Fig. 3.6), and were linked to severe and fatal infant infections in the 

French outbreak in 1994 (Caubilla-Barron et al.  2007). Strain 767 (CC4) 

was associated with a fatal meningitis case and strain 695 (CC4) was 

responsible for fatal NEC II infection. However, strain 696 (ST12) was 

linked to a non-fatal NEC II infection (Caubilla-Barron et al.  2007). 

Strains such as 1465 (CC4) from infant formula, 12 (ST1) from faeces 

sample, and 1 (ST8) from throat sample are non-translocating isolates 

and were not linked to any fatal neonatal infections (Table.3.4). It was 

clear that the most of the translocating strains belong to CC4, which is the 

lineage that is linked to the most neonatal meningitis cases worldwide 

(Joseph and Forsythe  2011). These stains (average translocation 

efficiency for HBMEC 4.92%) were able to translocate through HBMEC 

cells more than the non-CC4 strains (average translocation efficiency for 

HBMEC 1.67%). ST4 strains such as 767, 1221, 1240, and 1242 among 

CC4 strains were invasive and highly translocated isolates and were 

responsible for fatal meningitis infections. This might indicate their 

potential to translocate through BBB in vivo and cause meningitis. It is 

important to study these strains and discover their role in the triggering 

the host response and its outcome.  

The HBMEC transendothelial electrical resistance (TEER) was largely stable 

during the first 4 hours of incubation, indicating the stability of the tight 

junctions and the integrity of the cell line (Fig.3.21). However, after 5 

hours of infection TEER showed declined levels with some strains that 
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were able to translocate such as strain 767 (CC4), which translocated to 

the highest level among C. sakazakii strains (P<0.001; Fig3.20). The 

drops in TEER are attributed to the deterioration of endothelial integrity 

that could be accredited to the cytotoxic killing of the HBMEC cell line that 

was caused by those strains. According to the TEER results it is proposed 

that HBMEC cell line is less susceptible to cytotoxicity than the Caco-2 cell 

line, as the latter showed considerable decrease in resistance values 

(Fig.3.18).  

The translocated strains might need a longer infection period to 

accomplish the translocation process, as the translocation was noted 5 

hours post infection, while in Caco-2 it was after 1 hour with some strains. 

Moreover, they could use different mechanisms of invasion to overcome 

this barrier that is a part of the BBB. One of the possible mechanisms that 

might assist the strains to translocate is the bacterial cytotoxicity that 

initiates cell death in the cell line via apoptosis or necrosis. Moreover, the 

cytokines released by the cells may play a role in the same process by 

making the cell line permeable. High levels of NO are a potential factor 

that might contribute to the permeability of the cell line. The translocation 

of these strains indicated their potential to pass through towards the brain 

tissues triggering the host response, which could result in brain 

inflammation and tissue damage. 

In a previously published study by Giri et al. (2011), non-clinical C. 

sakazakii isolates were examined and showed their ability to invade and 

translocate through Caco-2 and HBMEC cell lines. However, the 

translocation results obtained in our research demonstrated higher ability 

of C. sakazakii strains to invade and translocate through the same cell 

lines. Most of the strains that were used in our research were from clinical 

sources and were linked to severe and fatal cases (Table.3.4). This 

indicates the virulence potential of the clinical strains over the non-clinical 

ones and this will enable us to apply more assays to investigate the 

impact of our clinical strains on the host and to elucidate the host cell 

response to infection. 
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Choosing human cell lines is important to focus on the impact of C. 

sakazakii infection on the human host and its outcome, as the bacterium 

showed a greater capacity to invade those cells over the rat ones. This 

could help to clarify the pathogenesis of the diseases that are caused by 

this organism and might aid the treatment. Moreover knowing the history 

of C. sakazakii strains could help in understanding their virulence 

potential. The strains that showed moderate to high invasive ability were 

isolated from clinical sources and were linked to severe cases (Table.3.4-

5). Most of these strains belong to CC4, which includes STs such as ST4, 

ST15 and ST109. For example, strain 695 (ST4) and 767 (ST4) accounted 

for fatal NEC II and neonatal meningitis infections respectively. On the 

other hand, strain 1465 (ST4), which was isolated from PIF, displayed low 

invasion and was not linked to any of the serious clinical presentations 

such as meningitis or NEC. Moreover, there were some clinical strains 

such as ST4 strains 6 and 558 that were isolated from clinical sources and 

showed low invasion and translocation ability. However, the clinical 

presentation of these strains was unknown. One of the reasons behind 

their decreased virulence might be accredited to losing some virulence 

genes as in the case of strain 6, which showed the absence of large C. 

sakazakii plasmid pESA3 that harbours a group of important virulence 

genes such as cpa that confer serum resistance (Table.3.2). The history of 

these strains could provide a solid base for expanding the research and 

include new experiments that in turn will provide a clearer picture about 

the relationship of the isolates and the host response in terms of infection. 

3.4.6. Uptake and survival assays inside phagocytic cells 

The survival studies were conducted to investigate the ability of the test 

strains to survive and multiply within macrophages and microglia that are 

types of immune cells. C. sakazakii strains used in the survival 

experiments (n=13) showed the ability to persist within human 

macrophages cell line U937 cell line for up to 72 hours of incubation. 

Moreover, CC4 strains 20, 695, 767, and 1221 in addition to 658 (ST1) 

were able to survive and multiply significantly compared to other C. 

sakazakii strains (P<0.05). The survival results were compared to the 

results obtained previously by Townsend et al. (2008). The results 
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obtained in this project partly confirmed the results that were reported in 

the previous publication. Strains 767 (CC4) and 696 (ST12) showed 

similar persistence and multiplication levels as the C. sakazakii strains 

used in that research. However, Townsend et al. (2008) reported that 

strain 695 (CC4) was able to survive but could not multiply within 

macrophages. These results are in contrast to those obtained in this 

project as strain 695 (CC4) showed the ability to survive and multiply in 

U937 cells. Our results correlate the virulence potential of the strain with 

the attachment, invasion, and translocation profiles, as it was an invasive 

strain for both Caco-2 and HBMEC cell lines. Moreover, it is a clinical strain 

that was responsible for a fatal NEC infection (Table.3.4). This suggests 

that this strain was able to establish a successful infection and has the 

required tools for this process including avoiding phagocytic killing.  

The survival and multiplication within macrophages could help the 

organism to use macrophages as a vehicle to invade the other body 

organs. This mechanism that is called “Trojan horse” is where the 

organism translocates through tissues inside macrophages (Fig.2.3). This 

mechanism allows the bacterium to hide inside the phagocytic cells, 

escape from the immune response, and reach the other body organs such 

as the brain. Some cytokines secreted by the infected tissues attract 

phagocytic cells and make these tissues permeable and leaky to allow this 

kind of the immune cells to migrate to the site of infection, and help in 

increasing the number of the invading organism. The damage can be 

indicated by the host response induced by the bacterium. Moreover, the 

persistent strains were confirmed to be serum resistant (Table.3.4 and 

Fig.3.4), and these two characteristics could enhance their ability to avoid 

the host immune response and cause bacteraemia, which could be 

advantageous for the organism to migrate through the BBB endothelium. 

Microglia are brain resident innate immune cells that are responsible for 

phagocytosis besides their ability to produce inflammatory mediators such 

as NO and TNF-α. The ability of these cells to eliminate C. sakazakii CNS 

infection in vitro has not yet been examined. It was shown in this research 

that the majority of C. sakazakii test strains were able to persist in human 
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microglia, as represented by the HMGC cell line, for 72 hours. Moreover, 

CC4 strains 20, 767, 1221, 1240, and 1587 in addition to 1249 (ST31), 

which were highly toxic to HMGC (Table.3.5, Fig.3.7, and Fig.3.26), 

multiplied significantly in this cell line (P<0.01). Although these strains 

showed the ability to multiply within microglia, they nevertheless showed 

declined levels of persistence afterwards. This might be related to the high 

cytotoxicity that led to the death of microglia causing low viable count at 

the last two time points of the assay (48 and 72 hours; Fig.3.25). On the 

other hand, the strains that were not able to multiply and were killed 

rapidly such as strains 6 (ST4), 558 (ST4), and 680 (ST8) were low in 

cytotoxicity (Table.3.5). A correlation was found between the cytotoxicity 

of the organism and the ability to survive and multiply. It was found that 

the strains that showed high cytotoxicity to the HMGC cell line such as 

CC4 strains 767 and 1587 were high in persistence and multiplication 

within microglia (Table 3.5, Fig.3.7, and Fig.3.25). Sixty seven percent of 

the replicating strains belong to CC4, which is the lineage responsible for 

most of the CNS infections among C. sakazakii isolates (Joseph and 

Forsythe  2011). It was notable that the multiplication of the strains, 

which showed high cytotoxicity, was followed by a remarkable drop in 

their viable counts. Thus, it is proposed that this drop could be attributed 

to the cell death due to high cytotoxicity that might have led to the loss of 

the bacterial cells that were in those cells after the washing step. The 

ability to reproduce intracellularly in these phagocytic cells by this 

pathogen indicates their virulence potential allowing them to withstand 

the bactericidal activity of microglia and evade the host immune response.  

Research by Liu and Kielian (2009) showed the ability of Cit. koseri to 

survive and multiply within microglia and U937 cell lines. Therefore, this 

organism that is responsible for fatal CNS infections was used as a 

positive control for this experiment. It showed high ability to survive and 

multiply in HMGC cells, which confirmed the survival potential reported in 

the previous research. On the other hand, C. sakazakii strains such as 

strain 6 (ST4) and 680 (ST8) were killed rapidly following uptake, proving 

the killing ability of microglia. As highlighted before, strain 6 is avirulent in 

the sense that it was serum sensitive, unable to produce iron siderophore, 
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and low in cytotoxicity and invasiveness for Caco-2, HBMEC, and HMGC 

cell lines and that might explain its low survival rates. 

A group of genes were found to confer phagocytosis survival in bacteria. 

PhoP and PhoQ belong to a large family of two-component regulatory 

systems that allow the bacteria to sense and respond to environmental 

changes by altering gene expression. Phosphorylated PhoP binds to a 

specific promoter to repress or induce the expression of more than 40 

genes. PhoQ is an integral membrane protein demonstrating histidine 

kinase activity that responds to the signals by transferring phosphate to a 

conserved residue in the amino-terminus of PhoP. It was shown that a 

single point mutation of phoQ resulted in increased PhoP phosphorylation 

leading to the expression of PhoP-activated genes (Miller et al.  1989, 

Gunn et al.  1996, Ernst et al.  1999). It was also demonstrated that 

increase Mg2+ and Ca2+ concentrations could repress the kinase activity of 

PhoQ leading to decreased expression of PhoP-activated genes. Thus, the 

displacement of these divalent cations from PhoQ inside the phagocytic 

cell environment could lead to expression of PhoP-activated genes (Garcıa 

Véscovi et al.  1996, Garcıa Véscovi et al.  1997, Ernst et al.  1999).  

These activated genes were found to play a major role in Salmonella 

pathogenesis including resistance to host defence cationic antimicrobial 

peptides and low pH, and macrophage survival. The PhoP-activated genes 

include high-affinity Mg2+ transporter encoded by mgtB gene and proteins 

required for the resistance to host antimicrobial peptides of the polymyxin 

class encoded by pmrA/B genes. The latter genes are involved in the 

modification of the outer membrane structure by making structural 

changes in the lipid A of LPS to avoid the attack by the antimicrobial 

peptides (Ernst et al.  1999). Moreover, low pH levels could induce the 

expression of pmrA and pmrB genes that regulate the resistance to 

polymyxin via stimulating the expression of pmrE, which is predicted to 

encode UDP-glucose dehydrogenase (Gunn et al.  1998, Ernst et al.  

1999). Moreover, it was demonstrated by Blanc‐ Potard and Groisman 

(1997) that mgtB mutants of S. Typhimurium showed a low replication 
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rate inside macrophages compared with the wild type indicating the 

importance of this transporter in low Mg2+ adaptation within macrophages. 

In Y. pestis, PhoP-regulated genes are required for LPS modification and 

the adaptation of low Mg2+ levels in the phagosome that mediates the 

survival within macrophages. Moreover, PhoP plays an important role in Y. 

pestis to prevent the delivery of cathepsin D to its vacuole in 

macrophages (Grabenstein et al.  2004, Grabenstein et al.  2006). 

Cathepsin D is an acid-acting macrophage lysosomal protease that 

provides bacterial killing (Bewley et al.  2011). In addition, it was shown 

that phoP mutant of Y. pestis was unable to grow on Mg2+–depleted solid 

medium compared with the wild type, indicating the importance of the 

magnesium transporters that are regulated by PhoP such as MgtB 

(Snavely et al.  1991, Oyston et al.  2000). Furthermore, it was reported 

by Yamamoto et al. (1996) that GsrA protein is important in the 

intracellular survival within macrophages by Y. enterocolitica. It serves as 

a stress protein that degrades the abnormal stress peptides before their 

accumulation to toxic levels in the periplasmic space. The same study 

showed that the mutation of the gsrA gene resulted in inability of the 

organism to survive within macrophages that is attributed to the increased 

sensitivity to oxidative stress. 

Therefore, it is proposed that PhoQ of C. sakazakii is activated following 

the oxidative stress, low pH, and Mg2+ limitation applied by phagocytic 

cells as a defensive mechanism, which could lead to the phosphorylation 

of PhoP. As a consequence, this will activate PhoP-regulated gene 

expression including pmrABE and mgtB genes. This allows the organism to 

avoid killing by the antimicrobial peptides and acquire Mg2+. Moreover, the 

presence of gsrA and sodA, which is responsible for SOD production, could 

provide a protection against oxidative stress killing by phagocytic cells. 

This might afford a mechanism, which C. sakazakii strains could utilise to 

survive phagocytosis. 

It was shown previously in this research that strain 6 (ST4), which is 

negative for the mgtB gene, was taken up and killed rapidly by 

macrophages and microglial cells indicating its high susceptibility for 
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phagocytosis (Fig.3.23 and Fig.3.25). This indicates that the presence of 

mgtB gene might be required for the survival within phagocytic cells. 

However, strains 558 (ST4) and 680 (ST8) that are positive for the mgtB 

gene also displayed low survival and multiplication inside macrophages 

and microglial cells in spite of the presence of all tested genes required for 

phagocytosis survival. Moreover, even though ST4 strains 6 and 558 in 

addition to strain 680 (ST8) showed the presence of the phagocytosis 

survival-associated genes in their genomes, apart from mgtB gene in 

strain 6, these genes might not be functional in those strains or other 

genes are also involved in the phagocytosis survival. In addition, although 

strains 658 (ST1) and 696 (ST12) were positive for all these genes, they 

were able to multiply within macrophages but not inside microglial cells 

(Fig.3.23 and Fig.3.25). This proposes that the mechanism of macrophage 

killing might differ from the one for microglial cells and requires the 

expression of different genes. All other strains that encode the tested 

phagocytosis-related genes were able to survive and multiply within 

macrophages and microglial cells, indicating their ability to avoid 

phagocytosis in addition to long-term survival within these cells and this 

might increase their virulence (Fig.3.23 and Fig.3.25). The previous 

mechanisms need further investigations especially at the functional 

genomic levels. 

A study by Townsend et al. (2007b) has tried to link the expression of 

SOD by Cronobacter strains to the survival within human macrophages. 

Although some of SOD expression results correlated with the survival 

results, on the other hand, strain NTU3, which is Cronobacter muytjensii 

(ATCC 51329), showed high SOD activity but low survival. This, however, 

can not rule out the function of sodA, as this gene shows a degree of 

expression variability according to the same study. 

This chapter discussed some aspects regarding C. sakazakii virulence that 

support the infection and the pathogenic process. Although it did not 

investigate all virulence factors, the ones that were examined gave a part 

of the information needed to understand the strategies whereby the 

organism could overcome the host barriers. The genome of C. sakazakii 
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encodes a group of virulence genes. Possessing these genes is vital for the 

organism to survive within the host. The genome of C. sakazakii needs 

functional genomic studies that could help in finding the functional genes 

and study their role in infection and pathogenesis in the laboratory.  

The invasion potential is important for C. sakazakii to establish a 

successful infection. This step leads to the translocation of the bacterium 

to the underlying tissues causing more damage and allowing the organism 

to reach the blood flow. Most C. sakazakii strains were serum resistance 

and therefore they are able to survive in blood by avoiding serum-

mediated killing. Moreover, the organism is able to survive and multiply 

inside macrophages, which allow it to cause bacteraemia by intracellular 

reproduction and the dissemination throughout the body. Furthermore, 

the bacteraemia could provide a suitable increased intracranial pressure 

for the pathogen to cross the BBB by the translocation through the brain 

endothelium and resist phagocytosis by microglia in the brain 

parenchyma. This, however, needs further clarification by exploring the 

host response and its role in the outcome. 
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Chapter 4: Host Response 

4.1. Introduction 

The Gram-negative bacterium C. sakazakii has been linked to a number of 

confirmed meningitis cases worldwide and has been known to cause 

sepsis and meningitis among neonates in particular, in addition to NEC 

and bacteraemia (Joker et al.  1965, Lai  2001, Joseph and Forsythe  

2011). Contaminated PIF was associated with neonatal outbreaks, which 

resulted in severe clinical outcomes (Muytjens et al.  1983, Biering et al.  

1989, Himelright et al.  2002, Townsend et al.  2007b). Urmenyi and 

Franklin (1961) reported the first two Cronobacter spp. neonatal 

meningitis cases, and the organism was then still classified as pigmented 

strains of Enterobacter cloacae. A study by Muytjens et al. (1983) showed 

that newborns with Cronobacter spp. meningitis have a poor prognosis, 

and the fatality rate in that study was 80% (Muytjens et al.  1983). 

Another study reported 3 cases of meningitis caused by the same 

organism which resulted in one death and brain damage in the two 

survivors (Biering et al.  1989).  

The case-fatality rate of neonates due to C. sakazakii infection was 

reported to be 50% with half of the patients dying within one week of 

diagnosis. C. sakazakii-induced meningitis has a tendency to result in 

brain infarction and severe neurologic impairment (Jiménez and Giménez  

1982, Howkins et al.  1991, Lai  2001). Despite the growing reported 

incidence of neonatal meningitis caused by C. sakazakii, there is still 

incomplete understanding of the pathogenesis, pathophysiology, and the 

role of the host response in this disease. Factors such as NO secretion, 

apoptosis induction, and cytokine production might contribute, as part of 

the host response, in the pathogenesis leading to severe outcomes (Iben 

and Rodriguez  2011, Barichello et al.  2013). Although most of the 

studies were focusing on the role of Cronobacter isolates in necrotising 

enterocolitis (NEC) and the impact of the host response on the onset of 

the disease, there was insufficient knowledge about C. sakazakii-induced 

meningitis and the host response towards the infection despite the 

growing numbers of the severe cases of meningitis and brain infections. 
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Nitric oxide (NO) is a small free-radical gas that promptly diffuses in cells 

and cell membranes where it interacts with molecular targets (Gross and 

Wolin  1995). It is synthesised after enzyme activation by NO synthases, 

and the toxic molecule of NO is synthesised primarily by inducible nitric 

oxide synthase (iNOS) that is found in the fully activated mammalian cells 

such as macrophages and endothelial cells. The cytotoxicity is usually 

linked to NO produced by iNOS and not to the products of the other NO 

synthases (Kröncke et al.  1997, Aktan  2004). The expression of iNOS 

during inflammation increases the production of NO significantly (Hunter 

et al.  2009). NO was found to play a major role in pathophysiological 

conditions including neurodegeneration and chronic inflammation. 

Moreover, it is a cytotoxic effector molecule that displays cytotoxic activity 

in vivo. It is utilised by the immune system to fight invading pathogens, it 

can however be toxic to host tissues if overproduced and might contribute 

to cell damage or death (Gross and Wolin  1995, Kröncke et al.  1997, 

Mayer and Hemmens  1997, Aktan  2004). 

It was reported that Cronobacter was able to induce iNOS expression in 

human and mice intestinal cells that would lead to increased NO 

production, which in turn triggers apoptosis that might alter the tight 

junctions (Hunter et al.  2009, Emami et al.  2012, Liu et al.  2012b). To 

the author’s knowledge, none of the published studies has examined the 

ability of C. sakazakii strain to induce iNOS and NO production in human 

brain micovascular endothelial cells (HBMEC) despite the fact that iNOS 

can be produced by these cells leading to increased NO production that 

cause cytotoxicity. Therefore, it is important to assess iNOS induction, 

which might contribute to alteration of the tight junctions of this cell line 

besides triggering apoptosis. 

Apoptosis is programmed cell death that is characterised by morphological 

alterations and a set of cellular changes including cell shrinkage, 

chromatin condensation, nuclear DNA cleavage, and membrane blebbing 

(Cohen et al.  1992, Dimmeler and Zeiher  1997). Inducing cell death via 

apoptosis in human cell lines might collaborate in the permeability of 

these cell lines by contributing to the disruption of the tight junctions. It 
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has a major impact on the integrity of the gut barrier, as it is a 

characteristic feature of NEC that will lead to the translocation of the 

invading microorganism through the permeable infected layer (Hunter et 

al.  2008, Liu et al.  2012b, Hunter and Bean  2013). According to Liu et 

al. (2012b) C. sakazakii strains were able to induce apoptosis of human 

Caco-2 cells and rat IEC-6 cells. Due to the lack of research concerning C. 

sakazakii-induced HBMEC cell line apoptosis, it is important to assess the 

ability of C. sakazakii to trigger this response. HBMEC monolayers were 

used to represent the brain endothelium in vitro and inducing apoptosis in 

these cells might lead to the disruption of the integrity of the monolayer, 

which in vivo could lead to the migration of the organism towards the 

human brain. 

C. sakazakii infection triggers a group of immune responses, such as 

cytokine and chemokine production. Different inflammatory molecules are 

involved in the pathogenesis including TNF-α and IL-6 (Hunter et al.  

2008). A study by Townsend et al. (2007b) showed that C. sakazakii  

strains were able to stimulate the human macrophage cell line U937 to 

produce TNF-α, IL-6, and IL-10, however it did not suggest the role of 

these cytokines in infection. It was reported by Cruz-Córdova et al. (2012) 

that flagella of C. sakazakii play an important role in triggering the host 

immune response and the activation of cytokine production such as IL-8 

and TNF-α by macrophage and HEK293 cell lines. Although all these 

studies showed the ability of the organism to initiate cytokine production, 

they however did not propose any mechanism of action of the detected 

cytokines. Moreover, most Cronobacter cytokine studies were applied on 

animal cells or tissues and did not use human cell lines that are more 

relevant in increasing knowledge regarding human infections.  

As mentioned previously, the vast majority of the available host response 

studies have only investigated the role of the C. sakazakii infection in gut 

damage especially in NEC, and most of them used animal models and 

animal cell lines. To date there are no publications that have used human 

brain cells and indeed the human brain microvascular endothelial cells 

(HBMEC) cell line (as a component of the BBB), and human microglial 
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cells (HMGC) cell line (as a part of innate immunity of the brain) to 

investigate the ability of C. sakazakii strains to induce iNOS production, 

apoptosis, and cytokine secretion by these cells. Moreover, microglia have 

a crucial role in the clearance of infection as a part of innate immunity 

(Polazzi and Monti  2010). Thus, understanding the role of these 

responses and molecules can be useful to evaluate the pathogenic 

process. The functions of the cytokines produced by endothelial cells and 

microglia in C. sakazakii-induced meningitis could help to clarify the 

mechanism of the brain infection and the factors that affect the host 

barriers including cell line permeability and chemoattraction. Therefore, 

this current research aims to study the host response to C. sakazakii brain 

infection in vitro and the impact of the infection on BBB. Moreover, it will 

assess the potential role of this response in pathogenesis and whether it 

contributes in the disease or not.  

4.2. Materials and Methods overview  

In this chapter, C. sakazakii strains were examined for their ability to 

induce iNOS production by HBMEC cells using a human total iNOS 

immunoassay. Moreover, the strains were investigated for their ability to 

induce apoptosis to HBMEC and HMGC cell lines using fluorescence-tagged 

stains. In addition, cytokine production by these cell lines as a response of 

C. sakazakii infection was tested by Bio-Plex® ELISA. The methods, media, 

cell line maintenance, and culture preparation were described previously 

in Chapter 2 (Materials and Methods) Section 2.6.  

For statistical analysis, data were assessed for normality using 

Kolmogorov-Smirnov test and normality histograms. The normally 

distributed data were analysed using the parametric One-way Analysis of 

Variance test (ANOVA) with Tukey’s post-hoc test, and were expressed as 

mean values and the standard error of mean (Mean±SEM). Tukey’s post-

hoc analysis was performed to compare the significance of the means of 

every C. sakazakii strain in relation to other strains as pairwise 

comparisons. A P-value of <0.05 was considered statistically significant. 
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4.3. Results 

4.3.1. Human total iNOS immunoassay 

The production of iNOS leads to elevated NO levels, which increases the 

cell line permeability, thus helping the bacteria to migrate into the site of 

infection. The levels of iNOS were detected using human total iNOS 

immunoassay. Most of the CC4 strains showed the capacity to induce 

elevated levels of iNOS, while strains 553 and 1465 generated modest 

levels. However, strains 6 and 558 showed the lowest induction levels of 

iNOS. For the non-CC4, strains 1249 (ST31), 555 (ST1), 1019 (ST1), 

1241 (ST1), 680 (ST8), 520 (ST12), and 696 displayed high iNOS 

induction levels. Nonetheless, strains 12 (ST1), 658 (ST1), 1 (ST8), 5 

(ST8), 580 (ST18) and the negative control (E. coli K12) (control wells 

with no primary antibody- no bacteria used for calculations- materials & 

methods) exhibited the lowest levels of iNOS production (Fig.4.1).  

The strains that showed low iNOS induction levels such as strain 6 (ST4) 

and 558 (ST4) were not able to translocate through HBMEC cell 

monolayers or demonstrated declined translocation levels e.g. strain 658 

(ST1; Table.4.1-2 and Fig.3.20). These results support the role of NO in 

translocation, as the high levels of iNOS leads to elevated NO levels 

(Hunter et al.  2009), which might contribute in the translocation assay by 

causing cell line permeability. However, strains 553 (ST4), 557 (ST4), 

1249 (ST31), 555 (ST1), 1019 (ST1), 1241 (ST1), 680 (ST8), and 520 

(ST12) were high in iNOS induction and showed low translocation ability  

(see Fig.3.20, Fig.4.1, and Table.4.1). These anomalies suggest that these 

strains might not be NO-dependent isolates in terms of translocation, and 

the translocated strains might use other mechanisms such as apoptosis 

induction or cytokine-dependent translocation in which the bacterium 

triggers the cell line to produce cytokines that could cause cell line 

permeability.  
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Fig.4.1. C. sakazakii induced iNOS expression in human cells. Human 
brain microvascular endothelial cells (HBMEC) were cultured in 96-well 

microplates and infected with C. sakazakii strains for 3 hours. After 
fixation of cells in the wells, iNOS levels were determined using human 
total iNOS cell-based ELISA standardised using GADPH. Values represent 

mean±range of normalized duplicate determinations. 
RFUs: relative fluorescence units. 
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Table.4.1: Summary of HBMEC translocation and iNOS induction results. 
 

Strain ST HBMEC 
invasion1 

HBMEC 
translocation2 

iNOS 
induction3 

Source Clinical 
presentation 

695 4 Moderate High High Trachea Fatal NEC II 
767 4 High High High Trachea Fatal meningitis 
696 12 High High High Faeces NEC II 
20 4 Moderate High High Clinical Unknown 

1221 4 High High High CSF Meningitis 

1240 4 High High High CSF Fatal meningitis 

1249 31 Moderate Low High Clinical Fatal isolate 
1242 4 High Low High Brain Fatal meningitis 
658 1 Low Low Low NIF Unknown 

680 8 Low Low High CSF Unknown 

558 4 Low None Low Clinical Unknown 

6 4 No None Low Clinical Unknown 

553 4 Low None Moderate Clinical Unknown 
557 4 Low Low High Clinical Unknown 
721 4 Moderate Moderate High CSF Unknown 

730 4 Low Low High Clinical NEC I 
1219 4 Moderate High High CSF Fatal meningitis 
1220 4 Moderate High High CSF Brain abscess 
1222 4 Moderate High High Blood Fever 
1223 4 Moderate High High Blood Unknown 
1224 4 Moderate Moderate High Blood Fever 
1225 4 Moderate Moderate High Blood Fatal meningitis 

1231 4 Moderate Moderate High Faeces Meningitis 
1465 4 Low None Low PIF Unknown 

4 15a Low None High Clinical Unknown 
12 1 Low None Low Faeces Unknown 

555 1 Low Low High Clinical Unknown 
1019 1 Low Low High CSF Fatal meningitis 
1241 1 Moderate Low High Blood Unknown 

1 8 Low None Low Throat Unknown 
5 8 Low None Low Clinical Unknown 

520 12 Low Low High Clinical Unknown 
580 18 Low Low Low Clinical Unknown 

ST: sequence type. a: part of  clonal complex 4 (CC4). 
CSF: cerebrospinal fluid PIF: powdered infant formula. ND: not done. 
NIF: non-infant formula. NEC: necrotising enterocolitis. 
1: Fig.3.14 Chapter.3. 2: Fig.3.20 Chapter.3. 3: Fig.4.1. 
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4.3.2. Apoptosis marker detection 

C. sakazakii strains were tested for their ability to induce apoptosis in 

HBMEC and human microglial (HMGC) cell lines over 3 hours of 

incubation. Fluorescence stains for caspase-3 and annexin V were applied 

to test the infected cells. The majority of C. sakazakii strains that were 

used showed the ability to trigger apoptosis in the infected cell lines and 

high fluorescence signals were detected in all samples for caspase-3 and 

annexin V. These high signals indicated high concentrations of the two 

tested apoptotic markers. The apoptotic cells appeared to be shrunken 

and rounded (Fig.4.2). Cells incubated with ST4 strains 767 and 1240, 

which showed high levels of translocation through HBMEC cells and 

persistence and multiplication in HMGC (Fig.3.20, Fig.3.25, and Table 

4.2), displayed more intense signals, while signals generated in cells 

incubated with the other strains were slightly lower (Fig.4.3.). On the 

other hand strains 6 (ST4), 658 (ST1), and 680 (ST8) demonstrated low 

fluorescence signals indicating low induction levels of caspase-3 and 

annexin V. These strains did not translocate (6) through HBMEC cell line 

or showed low translocation (658 and 680) and were killed by microglia 

(Fig.3.20, Fig.3.25, and Table.4.2). Although strain 658 (ST1) generated a 

low fluorescence intensity, the signals obtained from the cells infected 

with this strain were higher than those generated by strains causing low 

levels of apoptosis  (Fig.4.3). Inducing apoptosis is potentially important 

for the organism to overcome host physical barriers by causing cell line 

permeability. Moreover, it is a sign to indicate that the host response to C. 

sakazakii infection likely has a role in pathogenesis by triggering cell death 

that could contribute in more damage to the host. 
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Fig.4.2. Fluorescence microscope images of C. sakazakii-infected HBMEC 

and HMGC cell lines. (a and b) HBMEC cell line infected with C. sakazakii 
strain 767 (ST4) stained by caspase-3 (a) and annexin V (b) fluorescence 

stains, showing intense green (a) and red (b) signals, and the cells that 
have morphological changes indicated by the arrows. (c and d) Negative 

control images control of induced cells without adding the primary 
antibody. (e and f) HMGC cell line infected with C. sakazakii strain 1240 
(ST4) stained by caspase-3 (c) and annexin V (d) fluorescence stains, 

showing intense green (c) and red (d) signals, and the cells that have 
morphological changes indicated by the arrows. (g and h) Negative 

control images control of induced cells without adding the primary 
antibody. 
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Fig.4.3. Fluorescence microscopy analysis of apoptosis profile of C. 
sakazakii-infected HBMEC and HMGC cell lines. C. sakazakii strains were 

tested for their ability to induce caspase-3 and annexin V production in 
these cell lines. The strains were taken as representatives to demonstrate 
apoptosis induction by C. sakazakii infection. HBMEC and HMGC cell lines 

showed low fluorescence signals when infected with strains 6 (ST4) and 
658 (ST1), indicating their low ability to induce apoptosis. On the other 

hand, the other strains showed high fluorescence signals demonstrating 
high caspase-3 and annexin V concentrations in those samples as the 
higher signal the higher concentration and vice versa. The negative 

control images are for induced cells stained with secondary antibody with 
no primary antibody added. The Positive control images are for induced 

cells using staurosporine.  
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4.3.3. Cytokine production detection and profiling 

Cytokine production assay was conducted using C. sakazakii-infected 

HBMEC and HMGC cell line supernatants over 5 hours of incubation based 

on results of the translocation assay, as the strains were able to 

translocate after 5 hours of infection. The kit used was designed to detect 

10 human cytokines including GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-

6, IL-8, IL-10 and TNF-α.  

C. sakazakii strains were able to trigger the secretion of seven cytokines; 

IL-1β, IL-6, GM-CSF, TNF-α, IL-4, IL-8, and IL-10. Six C. sakazakii strains 

(CC4 and non-CC4) were included in this experiment based on several 

criteria obtained from the previous experimental results and the clinical 

history of these strains such as the site of isolation and the nature of 

infection, the invasiveness and translocation ability, and phagocytosis 

survival. These strains include low invasion and translocation, and 

plasmid-less strain from ST4 (strain 6) and two invasive and translocated 

strains, 767 and 1240, from the same ST that was linked to most of the 

meningitis cases among C. sakazakii STs (Joseph and Forsythe  2011). 

Additionally, strain 658 (ST1), which was isolated from non-infant formula 

and was the first sequenced strain, was included to the test strains. 

Moreover, strain 696 (ST12), which was linked to NECII infection in the 

French NICU outbreak in 1994. This will permit a rational comparison of C. 

sakazakii strains from different STs and isolation sources. Moreover, this 

could add further information about the behaviour of the strains that were 

able to cause meningitis and if it is different from those that did not cause 

meningitis. In addition, this assay will evaluate the response of HBMEC to 

C. sakazakii infection in the absence of flagella by using the non-motile 

fliC - negative strain 680. Cit. koseri is a Gram-negative bacterium that 

was associated with several cases of neonatal meningitis (Ribeiro et al.  

1976, Rose  1979, Doran  1999, Pollara et al.  2011). This organism was 

the positive control for the brain cell lines (endothelial cells and 

microglia), thus it was included to investigate if responses of these cell 

lines to Cit. koseri and C. sakazakii were similar. 
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4.3.3.1. Cytokine production of C. sakazakii-induced HBMEC cells 

Since HBMEC cells represent the first layer of the BBB that provides the 

protection against any invading microorganisms coming from the blood, 

cytokine secretion from these cells was assessed via Bio-Plex® ELISA 

following C. sakazakii inoculation.  

C. sakazakii strains showed the capacity to induce IL-1β secretion and 

strains 767 (ST4), 1240 (ST4), and 680 (ST8) caused high levels of IL-1β  

production (test sensitivity <5 pg/ml). Strains 658 (ST1), and 696 (ST12) 

induced significantly higher concentrations of IL-1β compared to the other 

strains tested (>50 pg/ml; P<0.05), while Cit. koseri induced the highest 

level of IL-1β  (P<0.001). In contrast, C. sakazakii strain 6 (ST) the non-

invasive and non-translocating strain induced a low level of IL-1β 

secretion (Fig.4.4). 

With regard to TNF-α, different induction trends were recorded among C. 

sakazakii strains (test sensitivity <1 pg/ml). Strain 767 (ST4) generated 

the most robust response among strains (>70 pg/ml; P<0.001), and 

strain 1240 (ST4) also showed significant levels of TNF-α induction 

compared to the other strains tested (>23 pg/ml; P<0.05). Strains 658 

(ST4), 696 (ST12), and Cit. koseri showed lower levels of TNF-α induction, 

while strains 6 (ST4) and 680 (ST8) caused the lowest TNF-α production 

(<10 pg/ml; Fig.4.5). 
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Fig.4.4. C. sakazakii induced IL-1β expression in human cells. Human 

brain microvascular endothelial cells (HBMEC) were cultured in 24-well 
plates and infected with C. sakazakii strains for 5 hours. After collection of 

cell supernatants, IL-1β levels were determined using Bio-Plex® ELISA. 
Values represent mean±SEM of triplicate determinations of two 
experiments. Significant differences of the mean values of IL-1β 

production between the strains in this experiment are denoted with 
asterisks (*P<0.05, **P<0.001; ANOVA).  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.5. C. sakazakii induced TNF-α expression in human cells. Human 
brain microvascular endothelial cells (HBMEC) were cultured in 24-well 

plates and infected with C. sakazakii strains for 5 hours. After collection of 
cell supernatants, TNF-α levels were determined using Bio-Plex® ELISA. 
Values represent mean±SEM of triplicate determinations of two 

experiments. Significant differences of the mean values of TNF-α 
production between the strains in this experiment are denoted with 

asterisks (*P<0.05, **P<0.001; ANOVA).  
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C. sakazakii strains generally induced high IL-6 production though for 

strain 680 (ST8) a much lower response was detected (<450 pg/ml; test 

sensitivity <1 pg/ml). Strain 6 (ST4) displayed moderate induction, 

whereas IL-6 levels induced by strain 767 (ST4) and Cit. koseri were 

higher (>1200 pg/ml). In addition, strain 696 (ST12) showed a 

significantly elevated level of IL-6 induction (P<0.05), while strains 1240 

(ST4) and 658 (ST1) caused production of the highest levels of IL-6 

(>1500 pg/ml) (P<0.001; Fig.4.6). 

IL-8 induction levels were the highest among all secreted cytokines tested 

in this experiment showing concentrations >3500 pg/ml (test sensitivity 

<5 pg/ml). Strain 696 (ST12), and Cit. koseri induced significantly 

increased levels of IL-8 after 5 hours of incubation (P<0.05), whereas ST4 

strains 767 and 1240 induced the highest levels detected (>3900 pg/ml; 

P<0.01). Strains 6 (ST4), 658 (ST1), and 680 (ST8) showed the lowest 

levels of IL-8 induction (Fig.4.7). 

 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 
 

Fig.4.6. C. sakazakii induced IL-6 expression in human cells. Human 
brain microvascular endothelial cells (HBMEC) were cultured in 24-well 

plates and infected with C. sakazakii strains for 5 hours. After collection of 
cell supernatants, IL-6 levels were determined using Bio-Plex® ELISA. 
Values represent mean±SEM of triplicate determinations of two 

experiments. Significant differences of the mean values of IL-6 production 
between the strains in this experiment are denoted with asterisks 

(*P<0.05, **P<0.001; ANOVA).  
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Fig.4.7. C. sakazakii induced IL-8 expression in human cells. Human 

brain microvascular endothelial cells (HBMEC) were cultured in 24-well 
plates and infected with C. sakazakii strains for 5 hours. After collection of 

cell supernatants, IL-8 levels were determined using Bio-Plex® ELISA. 
Values represent mean±SEM of triplicate determinations of two 
experiments. Significant differences of the mean values of IL-8 production 

between the strains in this experiment are denoted with asterisks 
(*P<0.05, **P<0.01; ANOVA). 

 

IL-10 was secreted in very low concentrations (<5 pg/ml) when compared 

to the other cytokines (test sensitivity <1 pg/ml). Strain 658 (ST1) 

caused a significant increase in induction (P<0.05), whereas there was no 

significant difference in IL-10 induction between the other strains over 5 

hours of incubation (Fig.4.8). The vast majority of C. sakazakii strains 

induced significantly elevated levels of IL-4  (>120 pg/ml; P<0.001; test 

sensitivity <1 pg/ml), and strain 680 (ST8) induced the lowest level 

detected. Strain 6 (ST4) did not show any IL-4 induction after 5 hours, 

while Cit. koseri displayed a significantly high level of IL-4 induction 

(P<0.05; Fig.4.9).  
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Fig.4.8. C. sakazakii induced IL-10 expression in human cells. Human 

brain microvascular endothelial cells (HBMEC) were cultured in 24-well 
plates and infected with C. sakazakii strains for 5 hours. After collection of 

cell supernatants, IL-10 levels were determined using Bio-Plex® ELISA. 
Values represent mean±SEM of triplicate determinations of two 
experiments. Significant differences of the mean values of IL-10 

production between the strains in this experiment are denoted with 
asterisks (*P<0.05; ANOVA). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.9. C. sakazakii induced IL-4 expression in human cells. Human 

brain microvascular endothelial cells (HBMEC) were cultured in 24-well 
plates and infected with C. sakazakii strains for 5 hours. After collection of 
cell supernatants, IL-4 levels were determined using Bio-Plex® ELISA. 

Values represent mean±SEM of triplicate determinations of two 
experiments. Significant differences of the mean values of IL-4 production 

between the strains in this experiment are denoted with asterisks 
(*P<0.05, **P<0.001; ANOVA). 
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Regarding GM-CSF, it was notable that the induction levels of C. sakazakii 

strains were high except for strain 6 (ST4) (test sensitivity <0.5 pg/ml). 

ST4 strains 767 and 1250 in addition to 680 (ST8) showed significantly 

elevated levels (P<0.05), while strains 658 (ST1), 696 (ST12) in addition 

to Cit. koseri induced the highest levels (>45 pg/ml; P<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.10. C. sakazakii induced GM-CSF expression in human cells. Human 

brain microvascular endothelial cells (HBMEC) were cultured in 24-well 
plates and infected with C. sakazakii strains for 5 hours. After collection of 
cell supernatants, GM-CSF levels were determined using Bio-Plex® ELISA. 

Values represent mean±SEM of triplicate determinations of two 
experiments. Significant differences of the mean values of GM-CSF 

production between the strains in this experiment are denoted with 
asterisks (*P<0.05, **P<0.001; ANOVA). 
 

4.3.3.2. Cytokine production of C. sakazakii-induced HMGC cells 

Since microglial cells, as brain-resident macrophages, are a part of the 

innate immune response and responsible for phagocytosis, cytokine 

secretion from the HMGC cell line was assessed via Bio-Plex® ELISA 

following C. sakazakii infection.  

The test strains were able to induce IL-1β production at different levels 

(test sensitivity <5 pg/ml). ST4 strains 6 and 1240 in addition to 658 

(ST1), 696 (ST12), and Cit. koseri showed moderate induction levels. 

However, strain 767 (ST4) induced the highest IL-1β level among the 

strains tested in this experiment (P<0.05; Fig.4.11).  
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Fig.4.11. C. sakazakii induced IL-1β expression in human cells. Human 
microglial cells (HMGC) were cultured in 24-well plates and infected with 

C. sakazakii strains for 5 hours. After collection of cell supernatants, IL-1β 
levels were determined using Bio-Plex® ELISA. Values represent 
mean±SEM of triplicate determinations of two experiments. Significant 

differences of the mean values of IL-1β production between the strains in 
this experiment are denoted with asterisks (*P<0.05; ANOVA). 

 

C. sakazakii strains showed different levels of TNF-α induction. ST4 strains 

6 and 1240 induced lowest levels, while strain 696 (ST12) and Cit. koseri 

caused moderate induction. Strain 767 (ST4) caused highest levels of 

production (>120 pg/ml) (P<0.05; Fig.4.12). With regard to IL-6, the 

HMGC cell line was stimulated to produce high concentrations (>1600 

pg/ml) (test sensitivity <1 pg/ml). All C. sakazakii strains were able to 

induce IL-6 responses at high levels except for strain 6 (ST4) that induced 

a very low concentration when compared to the other strains. Strains 

1240 (ST4), 658 (ST1), 696 (ST12) and Cit. koseri induced significantly 

higher levels of IL-6 production (P<0.01), whereas strain 767 (ST4) 

induced the highest level of IL-6 amongst the strains tested in this 

experiment (>1200 pg/ml) (P<0.001; Fig.4.13).  
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Fig.4.12. C. sakazakii induced TNF-α expression in human cells. Human 

microglial cells (HMGC) were cultured in 24-well plates and infected with 
C. sakazakii strains for 5 hours. After collection of cell supernatants, TNF-
α levels were determined using Bio-Plex® ELISA. Values represent 

mean±SEM of triplicate determinations of two experiments. Significant 
differences of the mean values of TNF-α production between the strains in 

this experiment are denoted with asterisks (*P<0.05; ANOVA). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.13. C. sakazakii induced IL-6 expression in human cells. Human 

microglial cells (HMGC) were cultured in 24-well plates and infected with 
C. sakazakii strains for 5 hours. After collection of cell supernatants, IL-6 

levels were determined using Bio-Plex® ELISA. Values represent 
mean±SEM of triplicate determinations of two experiments. Significant 
differences of the mean values of IL-6 production between the strains in 

this experiment are denoted with asterisks (*P<0.01, **P<0.001; 
ANOVA). 
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IL-8 was secreted by the HMGC cell line at the highest concentrations 

among detected cytokines (>3000 pg/ml; test sensitivity <5 pg/ml). 

Different levels of induction were noticed among C. sakazakii strains. 

Significant IL-8 induction was found with strains 1240 (ST4) and 696 

(ST12; P<0.05), while strains 767 (ST4), 658 (ST1), and Cit. koseri 

induced the highest levels >2500 pg/ml (P<0.001). Strain 6 (ST4) caused 

the lowest induction <500 pg/ml (Fig.4.14). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.14. C. sakazakii induced IL-8 expression in human cells. Human 
microglial cells (HMGC) were cultured in 24-well plates and infected with 

C. sakazakii strains for 5 hours. After collection of cell supernatants, IL-8 
levels were determined using Bio-Plex® ELISA. Values represent 

mean±SEM of triplicate determinations of two experiments. Significant 
differences of the mean values of IL-8 production between the strains in 
this experiment are denoted with asterisks (*P<0.05, **P<0.001; 

ANOVA). 
 

Among all detected cytokines in this experiment, IL-10 was induced at the 

lowest levels at concentrations of <3.5 pg/ml (test sensitivity <1 pg/ml). 

Although different levels of induction were noticed, there were no 

significant differences in induction among strains. However, ST4 strains 

767 and 1240 showed the highest concentrations secreting >3 pg/ml 

(Fig.4.15). 
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Fig.4.15. C. sakazakii induced IL-10 expression in human cells. Human 

microglial cells (HMGC) were cultured in 24-well plates and infected with 
C. sakazakii strains for 5 hours. After collection of cell supernatants, IL-10 

levels were determined using Bio-Plex® ELISA. Values represent 
mean±SEM of triplicate determinations of two experiments. 
 

Most of C. sakazakii strains induced IL-4 production (test sensitivity <1 

pg/ml). ST4 strains 767 and 1240 in addition to strain 658 (ST1) induced 

highest levels (>100 pg/ml), while strain 6 ST (4) induced the lowest 

level. Strain 696 (ST12) and Cit. koseri displayed moderate induction 

levels (Fig.4.16). With regard to GM-CSF, no significant differences were 

noticed between strains. However, ST4 strains 767 and 1240 and strain 

658 (ST1) induced the highest levels. Strain 696 (ST12) and Cit. koseri 

caused moderate stimulation, whereas strain 6 (ST4) showed a low level 

of induction (Fig.4.17).  
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Fig.4.16. C. sakazakii induced IL-4 expression in human cells. Human 

microglial cells (HMGC) were cultured in 24-well plates and infected with 
C. sakazakii strains for 5 hours. After collection of cell supernatants, IL-4 

levels were determined using Bio-Plex® ELISA. Values represent 
mean±SEM of triplicate determinations of two experiments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.17. C. sakazakii induced GM-CSF expression in human cells. Human 
microglial cells (HMGC) were cultured in 24-well plates and infected with 

C. sakazakii strains for 5 hours. After collection of cell supernatants, GM-
CSF levels were determined using Bio-Plex® ELISA. Values represent 
mean±SEM of triplicate determinations of two experiments. 
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A summary of the previous cytokine results in addition to invasion, 

translocation, and phagocytosis survival results using HBMEC and HMGC 

cell lines are provided in the tables below (Table.4.2-4). 

 

Table.4.2: Summary of invasion, translocation, and phagocytosis survival 

results of C. sakazkii strains using HBMEC and HMGC cell lines. 
 

Strain ST HBMEC 
invasion1 

HBMEC 
translocation2 

Microglia 
persistence3 

Source Clinical 
presentation 

Risk of 
meningitis 

20 4 High High P/M Clinical Unknown High 

695 4 High High P/M Trachea Fatal NEC II High 
721 4 High Moderate ND CSF Unknown High 
767 4 High High P/M Trachea Fatal meningitis High 
1219 4 High High ND CSF Fatal meningitis High 
1220 4 Moderate High ND CSF Brain abscess High 

1221 4 Moderate High P/M CSF Meningitis High 
1222 4 High High ND Blood Fever High 
1223 4 Moderate High ND Blood Unknown High 
1231 4 High High ND Faeces Meningitis High 
1240 4 High High P/M CSF Fatal meningitis High 
1587 109 High ND P/M CSF Brain damage High 
696 12 High High P/K Faeces NEC II High 

730 4 Moderate Moderate ND Clinical NEC I Moderate 
1224 4 Moderate Moderate ND Blood Fever Moderate 
1225 4 Moderate Moderate ND Blood Fatal meningitis Moderate 

1242 4 Moderate Low P/M Brain Fatal meningitis Moderate 
1249 31 Moderate Low P/M Clinical Fatal isolate Moderate 
1019 1 Moderate Low ND CSF Meningitis Moderate 

6 4 None None Killed Clinical Unknown Low 
553 4 Low None ND Clinical Unknown Low 
557 4 Low Low ND Clinical Unknown Low 
558 4 Low None P/K Clinical Unknown Low 
1465 4 Low None ND PIF Unknown Low 

4 15a Moderate None ND Clinical Unknown Low 
12 1 Low None ND Faeces Unknown Low 
555 1 Low Low ND Clinical Unknown Low 
658 1 Moderate Low P/K NIF Unknown Low 
1241 1 Moderate Low ND Blood Unknown Low 

1 8 Low None ND Throat Unknown Low 
5 8 Moderate None P/K Clinical Unknown Low 

680 8 Moderate Low ND CSF Unknown Low 
520 12 Moderate Low ND Clinical Unknown Low 
580 18 Moderate Low ND Clinical Unknown Low 

ST: sequence type. a: part of  clonal complex 4 (CC4). 
ND: not done. CSF: cerebrospinal fluid PIF: powdered infant formula. 
NIF: non-infant formula. NEC: necrotising enterocolitis. 
P/M: persisted/multiplied. P/K: persisted/killed. 
1: Fig.3.14 Chapter.3. 
2: Fig.3.20 Chapter.3. 
3: Fig.3.25 Chapter.3. 
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Table.4.3: Summary of the cytokine concentrations (pg/ml) recovered 
from C. sakazakii-induced HBMEC. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Values represent mean±SEM of triplicate determinations of two experiments. 

ST: Sequence type. 
IL: Interleukin. 
TNF: Tumour necrosis factor. 
GM-CSF: Granulocyte-macrophage colony stimulating factor. 
TS: Test sensitivity. 
pg/ml: Picogram/millilitre. 
NA: Not applicable. 
 

 
Table.4.4: Summary of the cytokine concentrations (pg/ml) recovered 

from C. sakazakii-induced HMGC. 
 

 

 

 

 

 

 

 

 

 
 
Values represent mean±SEM of triplicate determinations of two experiments. 
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TS: Test sensitivity. 
pg/ml: Picogram/millilitre. 
NA: Not applicable. 
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4.4. Discussion 

4.4.1. Human total iNOS immunoassay   

Nitric oxide (NO) is an inflammatory mediator that has a fundamental role 

in pathogenesis and can induce apoptosis and necrosis by altering the 

tight junctions of the cells. Inducible nitric oxide synthase increased 

significantly during the inflammation process leading to increased NO 

production (Chokshi et al.  2008). Thus, human total iNOS immunoassay 

was carried out to measure the amount of iNOS secreted by C. sakazakii-

infected HBMEC cell line. Most of C. sakazakii strains, including ST4 

strains, were able to stimulate the cells to produce high levels of iNOS. 

However, ST4 strains 6, 558, and 1465 in addition to strains 4 (ST15), 12 

(ST1), 658 (ST1), 1 (ST8), and 5 (ST8) showed the least iNOS induction. 

The strains that caused high levels of iNOS production showed moderate 

to high translocation levels through HBMEC cell line especially ST4 strains, 

while the strains with decreased induction demonstrated low or no 

translocation e.g. strains 6 (ST4; no translocation) and 658 (ST1; low 

translocation). However there were some anomalies in the results, as ST4 

strains 553 and 557 in addition to strains 1249 (ST31), 555 (ST1), 1019 

(ST1; meningitis case), 1241 (ST1), 680 (ST8), and 520 (ST12) caused 

high iNOS induction, whereas the translocation levels were low suggesting 

that these strains did not utilise NO to invade and translocate through the 

HBMEC cell line (see Fig.4.1 and Table.4.1). The anomalies that were 

noticed in this assay might be attributable to the differences in the strains’ 

behaviour in host attachment and invasion. Moreover, as C. sakazakii is a 

new emerging pathogen there is not a rich literature on the detail of the 

strategies this organism uses to alter host barriers and avoid immune 

responses which consequently limits interpretation of the data obtained. 

Hunter et al. (2009) reported that Enterobacter sakazakii (Cronobacter 

species not determined) was able to induce NO production in the rat IEC-6 

cell line in vitro and rat enterocytes in vivo, which triggered apoptosis in 

these cells. The study showed that the inhibition of NO production using 

siRNA resulted in suppressed E. sakazakii-induced apoptosis of IEC-6 cells 

indicating that NO is accountable for triggering cell death via apoptosis. 

Another study by Emami et al. (2012) suggested that mice enterocyte 
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apoptosis was attributed to intestinal iNOS expression that led to elevated 

NO production following C. muytjensii infection. Moreover, it was shown 

that infected Caco-2 and IEC-6 cell lines expressed significantly elevated 

levels of iNOS when infected with C. muytjensii human isolates. 

Consequently, the strains were able to disrupt the tight junctions of 

intestinal epithelial cells (Liu et al.  2012b). 

The aforementioned studies provided information regarding the induction 

of iNOS expression using human, rat, and mice intestinal cells. Moreover, 

they focused mainly on the effect of iNOS in the onset of NEC (Hunter et 

al.  2008, Hunter et al.  2009, Emami et al.  2012). As C. sakazakii is 

known for its ability to cause neonatal meningitis, it is important to 

investigate the effect of this organism on HBMEC cells as a component of 

the BBB. Unlike the previous studies, this research is the first that 

reported the ability of clinical and non-clinical C. sakazakii strains to 

induce iNOS production in HBMEC that could potentially lead to excessive 

production of NO at the site of inflammation. This in turn could lead to the 

apoptosis or necrosis of the cell line leading to alteration of the tight 

junctions of these cells and subsequently cause the translocation of the 

organism. Hence, facilitating bacterial migration to the brain parenchyma. 

In addition to the MTT test, this experiment gave strong evidence for the 

ability of C. sakazakii strains to cause a cytotoxic effect and induce cell 

death in vitro, suggesting that they may be able to cross host barriers 

using these mechanisms in vivo. 

4.4.2. Apoptosis marker detection 

Previous studies have shown that C. sakazakii strains were able to induce 

apoptosis in different cell lines and infection models. These include human 

Caco-2 and rat IEC-6 cell lines in addition to mice and rats as infection 

models (Hunter et al.  2008, Emami et al.  2012, Liu et al.  2012b). 

Although these studies were able to demonstrate the ability of the 

organism to induce apoptosis, they nevertheless focused mainly on animal 

gut injury and NEC models. Moreover, Hunter et al. (2008) and Emami et 

al. (2011) used a miss-assigned strain (C. muytjensii strain 51239). The 

information regarding C. sakazakii apoptosis induction in human brain cell 
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lines is not available in the literature and this research is the first to 

discuss this behaviour.  

All C. sakazakii strains that were used in this experiment exhibited the 

ability to induce apoptosis in HBMEC and HMGC cell lines, however strains 

6 (ST4) and 658 (ST1) showed low fluorescence signals indicating low 

induction levels. Two different apoptotic markers were detected; caspase-

3 and annexin V (Fig.4.2 and Fig.4.3). Caspase-3 is known as an 

important factor in apoptosis that is responsible for the proteolytic 

cleavage of many essential proteins including the nuclear enzyme poly 

ADP-ribose polymerase (PARP) (Cohen  1997). Moreover, activated 

caspase-3 is able to cleave and inactivate the inhibitor of caspase 

activated DNase (ICAD) allowing caspase activated DNase (CAD) to enter 

the nucleus and degrade chromosomal DNA (Gao and Kwaik  2000). 

Annexin V is an early apoptosis detection marker. It is a calcium-

dependent phospholipid-binding protein that binds phosphatidylserine 

(PS) in the plasma membrane with high affinity. In early apoptosis, 

apoptotic cells lose their phospholipid membrane asymmetry and 

translocate PS rapidly to the outer leaflet of the plasma membrane where 

annexin V can bind (van Engeland et al.  1996, Zhang et al.  1997). The 

detection of this marker is an indication of the induction of apoptosis in 

the cell lines due to the changes in their plasma membrane. 

The above mentioned results demonstrated that C. sakazakii is able to 

induce apoptosis in human brain cell lines (HBMEC and HMGC). This 

however did not explain the mechanism and the role of the host factors in 

this phenomenon. Gram-negative bacteria use different strategies by 

which they exploit host responses in order to cause damage. It was 

reported that Chlamydia pneumoniae was able to cause neuronal death 

via apoptosis through the induction of microglial TNF-α and IL-6 secretion, 

and by using neutralising antibody against TNF-α and IL-6, rat neuronal 

death was reduced by 50% (Boelen et al.  2007). Moreover, it was shown 

that the pathogenic strains of Neisseria meningitidis were able to induce 

TNF-α production in human epithelial cells, which activates the TNF 

receptor TNFR1 that induces apoptosis via triggering the caspase cascade 
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leading to the activation of caspase-3 induction (Gao and Kwaik  2000, 

Deghmane et al.  2009). In addition, the meningococcus induced cell 

death of HBMEC cells through NO and the signs of apoptosis including 

caspase-3 activation, DNA fragmentation, and phosphatidylserine 

translocation were observed in these cells (Schubert-Unkmeir et al.  

2007). Escherichia coli K1 is another organism that is known for its ability 

to cause neonatal meningitis. It was reported recently that the Hcp1 

protein that is secreted by a type VI secretion system was able to induce 

apoptosis in HBMEC cells via the activation of caspase-8 and subsequently 

caspase-3 in addition to causing IL-6 and IL-8 production (Zhou et al.  

2012) Furthermore, Klebsiella pneumoniae was able to induce apoptosis in 

neurons through the up-regulation of IL-1β, IL-6, and TNF-α production 

by microglia, and the down regulation of these cytokines via melatonin 

administration decreased apoptosis and engendered neuroprotection (Wen 

et al.  2007, Wu et al.  2011, Parthasarathy and Philipp  2012). 

Induction of apoptosis in HBMEC and HMGC cells suggest that this 

mechanism may be important for the organism to overcome the host 

barrier of the endothelium, and avoid the immune response in the brain 

associated with microglia. It was shown in this project that HBMEC and 

HMGC cell lines were able to produce TNF-α as a result of C. sakazakii 

infection (Table.4.3-4). Moreover, it was demonstrated that the organism 

was able to induce apoptosis and caspase-3 induction was detected 

(Fig.4.3). The proposed mechanism of C. sakazakii-induced apoptosis is 

that the TNF-α, which was produced by the endothelial and microglial cell 

lines binds TNFR, which in turn triggers the caspase cascade leading to 

the activation of caspase-3 that cleaves ICAD allowing CAD to degrade 

chromosomal DNA. Another potential mechanism, utilises the Fas ligand 

that is produced by activated killer cells of the adaptive immune system 

such as T cytotoxic lymphocyte to bind Fas, which is a member of the TNF 

receptor family, on the surface of the infected cell. This binding activates 

Fas leading to triggering of the caspase cascade allowing the activation of 

the executer caspase-3 that triggers cellular DNA degradation. 

Furthermore, the up-regulation of IL-1β, TNF-α, IL-6, and IL-8 expression 

induces acute inflammatory responses, such as the activation of immune 
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cells including macrophages, that might trigger apoptosis in HBMEC and 

HMGC cell lines in vitro and neurons in vivo. However, the aforementioned 

mechanisms are speculations that are not proven yet, and therefore 

future research is required to identify the exact mechanisms involved.  

4.4.3. Cytokine production detection and profiling 

Cytokine production by the infected host cells is important in order to 

eliminate bacterial infection. It works as an alarm system to recruit the 

immune system cells and components to fight this kind of invasion to 

protect the host. Many cytokines and chemokines can be secreted at the 

time of infection, depending on the site of the infection and the type of 

the invading organism. Moreover, each cytokine has its function in 

clearing the infectious agent and regulating the host responses. Any bias 

in these responses might contribute to an inability to eliminate the 

pathogen and might also increase the damage to the host tissues. HBMEC 

and HMGC cell lines were tested for cytokine production induction by C. 

sakazakii strains. The response of these cell lines towards the infection in 

vitro might help to understand the response of the host in vivo in case of 

central nervous system (CNS) infection that could lead to meningitis. 

The experiment was designed initially to detect 10 human cytokines 

including GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and 

TNF-α. Encouragingly, C. sakazakii strains were able to trigger the 

secretion of seven cytokines; IL-1β, IL-6, GM-CSF, TNF-α, IL-4, IL-8, and 

IL-10, which indicates that the organism triggered selective responses 

that can be advantageous to understand the host response during C. 

sakazakii CNS infection.  

C. sakazakii strains demonstrated different levels of cytokine induction in 

HBMEC and HMGC cell lines. Regarding HBMEC cells, it was notable that 

there were no significant differences in cytokine induction with regard to 

the ST of the strains, as the strains from different STs showed similar 

behavaiour. Despite this similarity among all STs, ST4 strains 767 and 

1240 showed highest levels of TNF-α induction, while strains 6 (ST4) and 

680 (ST8) consistently induced low levels of most of the detected 

cytokines.   
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With regard to HMGC cells, although the significance in cytokine induction 

in this experiment was not linked to any specific ST, strain 767 (ST4) the 

strain that was responsible for a fatal meningitis case showed the most 

significant levels of induction for most of the detected cytokines. 

Moreover, the cytokines detected as a result of C. sakazakii infection were 

the same in both HBMEC and HMGC cell lines indicating that the organism 

triggered a selective host response, which in turn might cause severe 

consequences to the host. 

IL-1β is one of the important pro-inflammatory cytokines that has a 

pivotal role in host defense against infectious agents and the pathogenesis 

of numerous inflammatory diseases. It is synthesised as an inactive form 

of cytoplasmic precursor that is proteolytically activated to the mature 

form in response to several pro-inflammatory stimuli such as caspase-1 

(Franchi et al.  2006). Moreover, it is the only inflammatory cytokine that 

is closely related to TNF-α biologically (Dinarello  1993). It was reported 

that IL-1β and TNF-α were found mostly in bacterial meningitis not in 

aseptic or viral meningitis, which means that these cytokines are triggered 

by bacterial infection, and they are supposed to distinguish bacterial 

meningitis from viral (Leist et al.  1988, Nadal et al.  1989). Furthermore, 

they have a major role in the inflammation of the brain endothelium, and 

the inflammatory processes modify the metabolism and the dynamics of 

the cerebrospinal fluid (CSF), which leads to increased neurological 

damage (Ohga et al.  1994). According to Firestein et al. (2012), IL-1β is 

responsible for an increase in iNOS induction that could lead to increase 

NO production in tissues. This increase has a major impact on the cell line 

integrity and can result in cell line permeability by altering the tight 

junctions and initiating apoptosis.  

Moreover, both IL-1β and TNF-α have roles in expression of endothelium 

adhesion molecules. They can up-regulate the expression of the 

intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion 

molecule 1 (VCAM-1) that are not normally expressed on the surface of 

non-stimulated endothelial cells. These molecules facilitate the adhesion 

of the leukocytes at the endothelium of the inflamed tissue and allow the 



Chapter 4: Host Response 

 157 

migration of these cells from blood to the site of infection (Ockenhouse et 

al.  1992, Bevilacqua  1993, Jersmann et al.  2001). It was shown by 

Jersmann et al. (2001) that TNF and the lipopolysaccharide (LPS) of 

Gram-negative bacteria work synergistically to increase the adhesive 

properties of endothelial cells. Furthermore, these inflammatory mediators 

have the ability to induce ICAM-1 and VCAM-1 expression significantly. 

A previous study showed that activated macrophages play a major role in 

IL-1β activation and acute inflammatory response in Shigella infection, 

and the apoptotic macrophages release active IL-1β that in turn triggers 

the inflammatory cascade and its cytokines such as TNF-α, IL-6, and IL-8 

in addition to IL-1β (Zychlinsky and Sansonetti  1997).  

It was shown previously in this research that the ability of C. sakazakii to 

induce apoptosis and caspase-3 activity was detected in HBMEC and 

HMGC cell lines that represent two barriers of the human brain. Moreover, 

it was demonstrated that some C. sakazakii strains were able to survive 

and avoid phagocytosis within human microglial cells, which are brain 

resident macrophages. Thus, it is proposed that C. sakazakii strains can 

activate HMGC cells inside the brain leading to the synthesis of IL-1β and 

TNF-α in addition to endothelial cells activation. Moreover, these strains 

are able to translocate through HBMEC cells, infect resident microglia, and 

avoid phagocytosis. This process could lead to apoptosis in these cells, as 

shown previously, and subsequently release the activated IL-1β that in 

turn triggers the acute inflammatory response. Additionally, inducing IL-

1β production is another indication of apoptosis in these cells, as it needs 

apoptosis induction in order to activate caspase-1, and consequently 

activates IL-1β. Moreover, IL-1β and TNF-α expression by both endothelial 

cells and microglia enhances leukocyte adhesion to BBB endothelium, 

which is the step that comes before their migration to the CNS.  

A study by Emami et al. (2012) examined the ability of a strain of C. 

muytjensii (strain ATCC 51239) to induce IL-1β and TNF-α production in 

mice fed with the bacterium using sera and intestinal homogenates. The 

results showed that the organism was able to stimulate the animal to 

produce these cytokines at high concentrations (>1000 pg/ml). However, 
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this study claimed that they used a C. sakazakii strain, and this might 

affect the validity of the results and the comparison. Moreover, those 

results were obtained from animal samples that had experimental NEC, 

while the results that were acquired from this research used human brain 

cell lines (endothelial cells and microglia). Townsend et al. (2007b) 

reported that Cronobacter was able to induce TNF-α expression and strain 

NTU84 (C. dublinensis ST43) induced high levels (500 pg/ml after 24 

hours) from human macrophages. In this research, C. sakazakii strain 767 

(ST4) was the most robust in TNF-α induction over 5 hours of incubation 

secreting >70 pg/ml with HBMEC and >120 pg/ml with HMGC. Although 

this project used two different cell lines than the one used in the previous 

publication, the results of the human macrophage cell line support the 

virulence potential of Cronobacter to stimulate the host to produce this 

pro-inflammatory cytokine that has a major adverse impact on the host 

infected tissues.  

Cruz-Córdova et al. (2012) suggested that the flagella of C. sakazakii 

have the ability to trigger different immune responses in the host. The 

study used human macrophage cell line supernatants exposed to flagella 

and flagellin for 24 hours. TNF-α expression was detected, and the highest 

concentration was more than 400 pg/ml. This is another confirmation of 

the ability of the organism to induce severe host response that could in 

turn adversely affect the host tissues. Cytokines produced by 

macrophages will increase endothelium adhesion molecules expression 

that leads to the adhesion and migration of the leukocytes to the site of 

infection. This in turn might allow more bacterial cells to translocate with 

the white blood cells, allowing more bacterial load at the infected area. 

Moreover, the last study (Cruz-Córdova et al.  2012) reported that 

reducing the concentration of the flagella and flagellin led to a decrease in 

the concentration of different cytokines including IL-8, IL-10, and TNF-α, 

suggesting that the absence of flagella could lead to a weak host 

response. Their study did not include any non-motile strains, however in 

this research the non-motile strain 680 (ST8) was used to infect HBMEC 

cell line. The induction levels of TNF-α (<9 pg/ml; Fig.4.5) and IL-8 (<280 

pg/ml; Fig.4.7) as a response to the exposure of this strain were >50% 
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lower when compared with the invasive motile strains, such as 767 (ST4), 

in this project. In addition, 680 did not exhibit significant induction of the 

anti-inflammatory cytokine IL-10 (<4 pg/ml; Fig.4.8). These findings 

suggest that flagella might play a critical role in host inflammatory 

response stimulation.  

As stated in Ohga et al. (1994), the range of IL-1β levels were 80 – 5550 

pg/ml in the CSF samples of 15 patients with bacterial meningitis. 

Moreover, the range of TNF-α levels of 20 patients suffered from bacterial 

meningitis were 0 – 8034 pg/ml (Dulkerian et al.  1995). The expression 

levels of IL-1β (Fig.4.4 and Fig.4.11) and TNF-α (Fig.4.5 and Fig.4.12) 

that were detected in this project in vitro are in concordance with the 

biological levels of these cytokines that were detected in cases of bacterial 

meningitis, suggesting that the in vitro data reflects the effects seen in C. 

sakazakii-induced meningitis.  

IL-6 is a multifunctional cytokine that is locally produced in tissues as a 

response to different stimuli including bacterial infection. It has an 

essential role in immunity generation against intracellular infections 

(Kishimoto et al.  1992, Xing et al.  1998). IL-6 is essentially produced by 

endothelial cells, astrocytes, and monocytes in response to IL-1, and it 

can be present in CSF for longer periods than the other cytokines. IL-6 

has predominantly pro-inflammatory effects, and it is a potent inducer of 

fever, acute-phase proteins, leukocytosis, clotting cascades, and 

complement activation (Hirano et al.  1990, Leib and Täuber  1999). A 

study by Hunter et al. (2008) demonstrated that C. muytjensii strain 

ATCC 51239 was able to induce IL-6 expression in IEC-6 cells  and 

infected rat pups. The results showed IL-6 secretion in rat pups four days 

post infection (<150 pg/ml), while the highest concentration recovered 

from IEC-6 supernatants was after 12 hours of infection (<10 pg/ml). 

Moreover, the results obtained in this project of IL-6 production using 

HBMEC and HMGC cell lines were very high (>300 pg/ml; Fig.4.6 and 

Fig.4.13) compared with the results obtained by C. muytjensii induction. 

Townsend et al. (2007b) showed that Cronobacter strains were able to 

stimulate human macrophages to secrete IL-6, and strain NTU84 (C. 
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dublinensis ST43) induced highest secretion >1100 pg/ml. As reported by 

Azuma et al. (1997), the range of IL-6 levels in CSF samples of 8 patients 

who suffered from bacterial meningitis were 209 to > 3500 pg/ml. This is 

in agreement with the data obtained in this research, which showed 

concentrations exceed 1700 pg/ml for HBMEC cell line and 1400 pg/ml for 

HMGC cell line (Fig.4.6 and Fig.4.13). These results suggest that C. 

sakazakii strains are capable of stimulating different host cells to induce 

acute inflammatory responses. This is potentially as a result of IL-6 

induction that has a predominant pro-inflammatory effect and could cause 

leukocytosis at the site of the infection, as it is mainly produced locally in 

tissues. IL-6 might have destructive effects in cases of C. sakazakii-

induced meningitis, as the organism was linked to severe meningitis cases 

including fatal infections (Caubilla-Barron et al.  2007, Joseph and 

Forsythe  2011). The induction of IL-6 expression might be attributed to 

IL-1β secretion of endothelial cells and microglia as a response to C. 

sakazakii infection suggesting that the infection is able to trigger a 

cascade of host responses that are involved in destructive effects. 

IL-8 is an inflammatory mediator and a well-known member of a large 

family of chemokines that are broadly studied because of their primary 

activity to stimulate and attract leukocytes to the site of inflammation. It 

is produced by endothelial cells, macrophages, microglia, monocytes, and 

neurons as a response to bacterial products, IL-1β, and TNF-α stimulation 

(Baggiolini et al.  1993, Baggiolini et al.  1995, Sprenger et al.  1996). 

Moreover, IL-8 boosts neutrophil adhesion to endothelial cells as a 

prerequisite for leukocyte invasion into the brain and allows their 

migration (Leib and Täuber  1999, Täuber and Moser  1999). It was 

reported by Halstensen et al. (1993) that IL-8 was detected in the sera 

and CSF samples of 45% of tested patients suffered from meningococcal 

meningitis and bacteraemia. Furthermore, it was shown by the same 

study that IL-8 levels peaked after TNF and IL-1 induction and 

simultaneously with IL-6. Sansonetti et al. (1999) suggested that IL-8 is 

responsible for the trans-epithelial translocation of Shigella in rabbits 

besides its function in attraction of PMNs. Another study by Galanakis et 

al. (2006) reported that meningitis-causing E. coli K1 was able to up-
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regulate IL-8 induction in HBMEC cells but not in human umbilical vein 

endothelial cells indicating that BBB endothelial cells show a unique 

response to meningitis-causing pathogens, as the non meningitis-causing 

E. coli strain HB101 did not show the same response. 

There is only one publication that investigated the ability of C. sakazakii 

flagella of two different strains to trigger IL-8 in human macrophages cell 

line (Cruz-Córdova et al.  2012). It however did not investigate the host 

response using the live bacterial cells. It was shown previously in this 

research that C. sakazakii strains were able to induce IL-8 expression and 

it was the cytokine secreted in highest concentrations by HBMEC and 

HMGC cell lines. According to Sprenger et al. (1996), the  average of the 

biological levels of IL-8 in the CSF  samples of 14 patients with bacterial 

meningitis was 706 pg/ml, and the levels detected in this project exceed 

those levels (Fig.4.7 and Fig.4.14). Therefore, we speculate that IL-8 is 

produced as a response to the production of the pro-inflammatory 

cytokines IL-1β and TNF-α by endothelial cells and microglia. This 

induction of IL-8 aids the adhesion of leukocytes, and neutrophils in 

particular, to brain endothelium and allows their migration to the brain. 

During this process, bacterial cells in the blood stream could take 

advantage of the permeable endothelium and translocate to the CNS. IL-

8, as a part of the host response, plays a critical role in the progression of 

C. sakazakii-induced meningitis by contributing to BBB permeability. This 

suggests that the severity of the brain infection caused by the organism 

might be attributable to the host response and not only to the virulence 

potential of the bacterium.  

IL-10 is an anti-inflammatory cytokine that plays an important role in 

infection and inflammation. IL-10 is able to inhibit IL-8, IL-6, IL-1β, and 

TNF-α production in vitro and attenuates brain oedema during meningitis 

(París et al.  1997, Couper et al.  2008). Moreover, IL-10 decreases 

macrophage cytokine release, inhibits iNOS induction, and opposes the 

inflammatory effects of IL-1β and TNF-α, which can lead to reduced 

adhesion molecule expression, major histocompatibility complex (MHC), 

and matrix metalloproteinases (MMPs) release (Firestein et al.  2012). 

http://en.wikipedia.org/wiki/Histocompatibility
http://en.wikipedia.org/wiki/Metalloproteinase
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Townsend et al. (2007b) showed the ability of Cronobacter strains to 

induce IL-10 production especially C. sakazakii strain 658 (ST1), which 

showed the highest secretion at 6 (>400 pg/ml) and 24 hours (>700 

pg/ml) using human macrophages cell line. These findings, however do 

not correlate with the results obtained from this research, as strain 658 

(ST1) in addition to the other strains failed to induce such high 

concentrations of IL-10 (<4 pg/ml) in HBMEC and HMGC cells over 5 

hours of exposure when compared to the previous study (Fig.4.8 and 

Fig.4.15). This suggests that the anti-inflammatory effects of IL-10 in this 

project on C. sakazakii infection is weak, thus it could not attenuate the 

acute inflammatory responses caused by the pro-inflammatory cytokines 

including IL-1β, TNF-α, IL-6, and IL-8. This potentially keeps the 

inflammatory cascade active and able to induce more damaging 

responses. 

IL-4 is one of the cytokines that has a dual role in immune response. It is 

a potent B lymphocytes activator and is involved in T helper 2 (Th2) 

lymphocyte and maturation. Moreover, it contributes in eosinophil 

migration and endothelial activation. On the other hand, it has an anti-

inflammatory role that helps in decreasing Th2 cell and B cell apoptosis 

and suppressing IL-1β, and TNF-α production (Keelan et al.  2003, 

Dinarello  2007, Firestein et al.  2012). The lack of publications concerning 

the ability of C. sakazakii strains to induce IL-4 production did not help in 

explaining the role of this cytokine in infection. According to the results 

that were obtained from this research (Fig.4.9 and Fig.4.16), it is 

suggested that IL-4 did not affect the expression of IL-1β and TNF-α, 

which means that it was not capable of suppressing the pro-inflammatory 

process and it has weak anti-inflammatory response. Moreover, it might 

contribute in the activation of the BBB endothelium and facilitate the 

adhesion and the migration of leukocytes making the barrier permeable. 

Hence, the host response in the case of  IL-4 contributes to the damage of 

the infected tissue rather than clearing the infection. 

GM-CSF is a glycoprotein that has diverse effects on immune and non-

immune cells. Moreover, it has the ability to stimulate T lymphocytes and 
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endothelial cells. It initiates the differentiation and proliferation of 

granulocytes and macrophages (Burgess and Metcalf  1980, Ruef and 

Coleman  1990). It is a cytokine that stimulates the antibacterial function 

of neutrophils and monocytes (Carr et al.  2003). It can be produced by 

endothelial cells as a response to IL-1 production to activate 

polymorphonuclear cells (PMNs) and allow their adhesion to endothelial 

surfaces (Hamilton  2002). Our research is the first to examine the ability 

of C. sakazakii to induce GM-CSF production. The concentrations of GM-

CSF that were produced by HBMEC and HMGC cells were not high (<55 

pg/ml; Fig.4.10 and Fig.4.17). It is proposed that this cytokine contributes 

in the activation and proliferation of macrophages and microglia at the 

time of C. sakazakii infection. Moreover, as a response of IL-1β production 

by endothelial cells, it might collaborate in the adhesion of PMNs to 

endothelial surfaces and facilitate their trans-endothelial migration that 

can be exploited by the organism to translocate to the CNS. Moreover, the 

activation of PMNs could cause a harmful effect on the host brains cells if 

they are recruited to eliminate the infection without a controlled 

inflammatory response.  

In summary, C. sakazakii strains were able to induce pro-inflammatory 

responses in HBMEC and HMGC cell lines by stimulating the secretion of 

IL-1β, TNF-α, IL-6, and IL-8. Moreover, the anti-inflammatory cytokines 

including IL-10 were secreted at low concentrations and failed in their role 

to suppress the inflammatory process. It was notable that ST4 strains 767 

and 1240 were the most significant inducers for the pro-inflammatory 

cytokines especially with HMGC cells. These strains were associated with 

two fatal meningitis cases (Table.4.2). However, strain 6 (ST4) did not 

follow the same pattern of induction as the previous strains suggesting its 

low virulence potency. This strain showed low invasion, translocation and 

phagocytosis survival levels (Table.4.2). Although strains 658 (ST1) and 

696 (ST12) showed significant patterns of induction, those were not 

consistent through all cytokines and cell lines. They demonstrated low 

TNF-α and IL-8 induction with HBMEC, and low IL-1β and TNF-α induction 

with microglia, which was not noted with ST4 strains 767 and 1240. 

Additionally, strain 680 (ST8) the non-motile strain, induced low levels 
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cytokines supporting the importance of flagella in triggering the host 

response. Although strain 680 is a CSF isolate, it did not however show 

significantly elevated induction of the pro-inflammatory cytokines from 

HBMEC cells. Furthermore, strain 767 (ST4 CSF and fatal meningitis 

isolate) induced higher levels of pro-inflammatory cytokines than Cit. 

koseri, which is known for causing neonatal meningitis (Pollara et al.  

2011). This suggests that C. sakazakii is able to induce some similar host 

responses as the meningitis-causing Cit. koseri, which might contribute to 

the pathogenesis of the disease. Generally, C. sakazakii ST4 meningitis 

strains 767 and 1240 were able to induce a greater pro-inflammatory 

response in the HBMEC and HMGC cells than the other strains from 

different STs.  

Cytokine production is part of the inflammatory response at the site of 

infection. These molecules play an important role in controlling and 

clearing the infection. However, uncontrolled secretion by the mammalian 

cells could contribute to severe inflammatory response causing more 

damage to the organs and the infected tissues. According to the results 

obtained previously, the pro-inflammatory response out weigh the anti-

inflammatory one, as the anti-inflammatory cytokines including IL-4 and 

IL-10 did not inhibit the pro-inflammatory ones such as IL-1β, IL-6, IL-8, 

and TNF-α. In addition, granulocyte-macrophage colony stimulating factor 

(GM-CSF) was induced by C. sakazakii strains. This cytokine could be 

involved in the activation of macrophages and microglia, which might lead 

to elevated induction of the inflammatory cytokines. The pro-inflammatory 

cytokines were detected in patients with bacterial meningitis indicating 

that they have a major impact on the CNS. They are involved in the 

adhesion of the leukocytes especially neutrophils to the endothelial 

surfaces and allow their migration to brain parenchyma by causing 

endothelium permeability. Moreover, they activate and attract the 

immune cells to eliminate the source of the infection. All these processes 

are intended to protect the host and eradicate the infectious agent. 

Nevertheless, they might help the bacteria to gain access through the BBB 

and reach the brain to cause massive damage. Furthermore, they induce 

other responses that include fever and CSF biological changes that could 
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lead to neuronal damage. This strategy of the host defense ends by 

harming the host instead of fighting the infection and making the host 

response an important factor that contributes in host damage in addition 

to the bacterial traits. 
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Chapter 5: General discussion 

5.1. Justifications and summary of work 

Thirty-four C. sakazakii strains from different sources have been analysed 

many of which were previously studied primarily with respect to 

phylogeny and to a lesser extent pathogenicity (Caubilla-Barron et al.  

2007, Townsend et al.  2007b, Giri et al.  2011, Joseph and Forsythe  

2012c). These strains represent different sequence types and were taken 

from clinical samples such as CSF and blood in addition to non-clinical 

samples such as PIF (Table.2.3-4). Most of the clinically important strains 

are within clonal complex 4 (CC4; Joseph and Forsythe  2012c). The 

experiments were performed on all CC4 and non-CC4 strains using 

consistent methodologies to permit rational comparisons. . 

Townsend et al. (2007b) examined the pathogenicity and virulence of C. 

sakazakii strains, but that study did not include the HBMEC line to assess 

the ability of the organism to penetrate the BBB. These virulence studies 

were on a group of strains belonging to the French outbreak in 1994 and 

did not use strains from any other cases of severe infection. . In addition, 

although Giri et al. (2011) showed in their research the ability of C. 

sakazakii to invade and translocate through Caco-2 and HBMEC lines, they 

did not propose any mechanism that might affect the integrity of the 

polarised monolayers of these cell lines. Additionally, the vast majority of 

the strains used in that study were from environmental and food sources 

and the clinical isolates did not show significant virulence potential. 

Another study (Liu et al.  2012b) examined the induction of monolayer 

permeability and apoptosis of intestinal epithelial cells in vitro, but this 

research used mostly environmental or food isolates. They also included 

three improperly assigned C. malonaticus strains and one C. dublinensis 

strain as C. sakazakii strains; both issues might affect the validity of their 

findings and compromise the reliability of their study, at least to some 

extent. The clonal complexity of Cronobacter spp. was investigated in 

several studies using MLST (Joseph and Forsythe  2011, Joseph et al.  

2012b, Joseph and Forsythe  2012c), and it was found that most of the 

sequence types (STs) belong to C. sakazakii, with the majority of the 
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clinical strains belonging to CC4. However, there were no follow-up 

studies that examined the differences in pathogenicity and virulence 

among C. sakazakii STs. Host response to C. sakazakii infection, including 

iNOS and cytokine production, and apoptosis induction, has been 

investigated previously (Hunter et al.  2009, Emami et al.  2012), but the 

organism was not C. sakazakii as reported; it was in fact C. muytjensii 

(strain 51239). Another study (Cruz-Córdova et al.  2012) tested the 

ability of C. sakazakii strains to induce human macrophage cells (U937) to 

produce cytokines, using flagella and flagellin for their experiments. The 

discussion above shows that the literature does not currently give a clear 

picture about the pathogenicity and virulence of C. sakazakii. Additionally, 

aspects regarding host response to infection demand further investigation. 

Moreover, most of the studies of host response to C. sakazakii infection 

did not use the correct organism and strains, despite what appears in the 

published literature.  They also did not include human brain cells such as 

HBMEC and microglial lines to investigate the impact of, and response to 

infection. 

Therefore, the work described in Chapter 3 aimed to examine the 

virulence potential of C. sakazakii strains using a range of tissue culture 

and non-tissue culture assays including molecular techniques, which 

enabled the detailed evaluation of the potential ability of the organism to 

establish a successful infection and overcome the host’s intestinal barrier 

and blood brain barrier (BBB). The results of those virulence studies 

revealed a group of virulence traits that might increase pathogenicity. 

Although some strains were non-motile, the presence of functional flagella 

in motile strains might allow the bacterium to attach to abiotic surfaces 

and aid the adhesion to Caco-2 and HBMEC cells in addition to biofilm 

formation (Fig.3.1 and Table 3.1). The iron acquisition system encoded in 

the genome of the sequenced strains, along with the ability of the 

organism to produce iron siderophores, are important to maintain its 

growth in vitro and might support the growth in vivo (Fig.3.2 and Table 

3.2). Despite the fact that some strains were sensitive to human serum 

and rapidly killed by phagocytes in vitro, some other strains were serum 

resistant and able to survive and multiply within phagocytes. Withstanding 
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serum-mediated killing and resisting phagocytosis might promote the 

survival of some strains in the bloodstream and might be advantageous 

for causing bacteraemia (Fig.3.3, 23, and 25 and Table 3.2-5). 

The cytotoxicity of C. sakazakii strains can affect the integrity of cell 

monolayers, as the strains showing higher cytotoxicity for Caco-2 and 

HBMEC lines were found to be highly translocated through these cell lines 

and led to a decreased transepithelial resistance (TEER), an indication of 

tight junction disruption (Table.3.5, Fig.3.18, and Fig.21). Additionally, C. 

sakazakii cytotoxicity might have a major impact on the immune response 

when the organism crosses the BBB, as it was shown that the high 

cytotoxicity led to a decrease in the number of viable microglial cells 

(Table.3.5 and Fig.3.7). The organism demonstrated the ability to attach 

to Caco-2, HBMEC, and rBCEC4 lines, and the strains of CC4 (Caco-2 

2.55%, HBMEC 2.42%, and rBCEC4 2.9%) showed higher attachment 

than non-CC4 strains (Caco-2 2.05%, HBMEC 1.59%, and rBCEC4 2.6%), 

which could be of assistance for some strains in invading these cell lines 

(Fig.8, 9, and 12). The invasive ability of C. sakazakii strains was also 

demonstrated in this study, and CC4 strains (Caco-2 0.29%, HBMEC 

0.13%, and rBCEC4 0.02%) were more invasive in comparison with non-

CC4 strains (Caco-2 0.16%, HBMEC 0.1%, and rBCEC4 0.015%; Fig.12, 

14, and 16). The bacterium also demonstrated the ability to translocate 

through the Caco-2 and HBMEC monolayers. There were no differences in 

the translocation ability between CC4 and non-CC4 strains with regard to 

the Caco-2 cell line, while most of the strains that translocated at high 

levels through HBMEC cells were in the CC4 group (HBMEC 4.92%, non-

CC4 1.67%; Fig.3.17 and Fig.3.20). Although most of the invasive and 

highly translocated strains belong to CC4, there were some CC4 strains 

that only invaded and translocated to a lower degree (Table.3.4). This 

might be attributed to genetic variation in the strains in this clonal 

complex, but it is also possible that these strains lost their virulence traits 

as a result of the subculture process or conditions in the laboratory. The 

translocation of the organism through intact polarised monolayers of 

Caco-2 and HBMEC in vitro might be an indication of the ability of C. 

sakazakii to overcome host physical barriers in the gut and brain in vivo. 
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This translocation might also play a major role in the pathogenesis of NEC 

and meningitis by inducing inflammatory mediators that might contribute 

to tissue damage.  

In addition, C. sakazakii strains were able to survive within human 

macrophages and microglial cells (Fig.3.23 and Fig.3.25). Although some 

strains survived the first impact with these cells, they were killed rapidly 

following uptake. Despite that, other strains were able to survive and 

multiply within these phagocytes, and some of these strains were linked 

to severe and fatal neonatal infections (Himelright et al.  2002, Caubilla-

Barron et al.  2007). The ability to withstand phagocytosis provides a 

shelter within phagocytes for C. sakazakii strains by which they might 

evade immune responses and that could support their virulence and 

pathogenicity. The earlier summary suggested that C. sakazakii strains 

have a group of virulence traits and pathogenic mechanisms whereby they 

could invade the host and avoid protective barriers within the body. They 

also might influence the pathogenesis of the diseases that could be caused 

by the organism including NEC and meningitis. 

The research that was described in Chapter 4 aimed to assess the host 

response to C. sakazakii infection using human brain cell lines. C. 

sakazakii strains were able to induce HBMEC cells to produce iNOS. 

Although there were some anomalies, the strains that produced high iNOS 

levels were highly translocated strains through HBMEC cell line (Fig.4.1). 

This highlights the role of iNOS production that could lead to high NO 

levels that might contribute to cell line permeability (Henry and Lawrence 

Moss  2010, Iben and Rodriguez  2011). The organism was also able to 

induce apoptosis in HBMEC and microglial cells. Two apoptotic markers 

were found, caspase-3 and annexin V (Fig.4.3). Inducing apoptosis in the 

BBB endothelium might allow further bacterial migration as the barrier 

loses its integrity. Induction of apoptosis in microglial cells might also 

reduce their ability to clear or attenuate the infection. A group of 

cytokines were produced by HBMEC and microglial cell lines as a result of 

C. sakazakii infection. Although 10 cytokines were tested, only 7 of these 

cytokines were detected. These include IL-1β, IL-6, GM-CSF, TNF-α, IL-4, 
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IL-8, and IL-10 (Table.4.3-4). The importance of these cytokines and their 

functions were discussed previously in the same chapter. These cytokines, 

as a part of the host response, might contribute to the host damage by 

mediating BBB permeability, leukocyte migration into the brain, the 

inflammation of the brain endothelium, and neurological injury. It was 

notable that the anti-inflammatory function of IL-10 failed to regulate the 

high concentrations of the inflammatory cytokines such as IL-6 and IL-8 in 

vitro. This suggests that the inflammatory process out weigh the anti-

inflammatory one, and this could cause deleterious outcomes. However, in 

vivo more types of cells might be involved in the inflammatory response 

and further examination of the potential interactions of different cell types 

and the cytokines they generate is required to allow more accurate 

evaluation. The preceding summary proposed that C. sakazakii infection 

was able to stimulate the host to produce inflammatory mediators, which 

might contribute to the pathogenesis of meningitis. This could be via the 

increased levels of the inflammatory mediators and apoptosis induction. It 

also suggests that the pathogenesis of meningitis might be attributed to 

uncontrolled host response not the organism per se.  

These data suggest that the ability of C. sakazakii to cause serious 

infection is likely to involve several bacterial virulence factors acting at 

different stages of the disease process. The strains analysed in this thesis 

show variability in traits which may contribute to disease and the data 

suggest that in some cases, different strains may use alternative 

mechanisms to achieve the same result, for example translocation across 

cell monolayers.  Identification of the specific factors that account for the 

apparent increased virulence of strains in CC4 still requires further study. 

However, based on the data obtained to date, Fig.5.1 summarises the 

variability in strain behaviour observed in assays modelling the proposed 

sequential steps of C. sakazakii-host interactions during the pathogenesis 

of C. sakazakii-induced meningitis. 
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Fig.5.1. The proposed sequential steps of C. sakazakii-host interactions during the 
pathogenesis of C. sakazakii-induced meningitis and variable behaviour of C. sakazakii 

strains. (1) Paracellular translocation of bacterial cells through the disrupted tight 
junctions (of Caco-2 cells) that might have been affected by the cytotoxicity induced by C. 

sakazakii (strains 695, 721, 767, 1220, 1222, 1223, 1224, 1225, 4, 1249, 12, 658, 1241, 
and 696), the translocation of these strains was accompanied by a notable decrease in 
TEER. (2) Transcellular translocation of bacterial cells (strains 20, 553, 557, 558 730, 
1219, 1221, 1231, 1240, 1242, 1465, 680, and 580) by invasion of gut cells (Caco-2) and 
translocation through them without a notable change in TEER. OmpA might play an 

important role in this step. (3) C. sakazakii (strains 20, 558, 695, 767, 1221, 1240, 1242, 
1587, 1249, 658, and 696) survival in the bloodstream by avoiding complement-
dependent killing of serum - possibly mediated through cleaving complement components 
C3 and C4b, by the cpa gene product. Moreover, some other factors such as iron uptake 
could support the survival of C. sakazakii in the host environment. (4) Intracellular 
survival and multiplication of C. sakazakii (strains 20, 695, 767, 1221, 1240, 1242, 1587, 
1249, 658, and 696) in blood macrophages that help the bacterium to evade the immune 

response and work as a vehicle to transport the intracellular bacteria to other body sites. 
Gene products such as SodA might have an important role in this process. (5) C. sakazakii 
attachment and invasion (strains 20, 695, 721, 767, 1219, 1220, 1221, 1222, 1223, 1224, 

1225, 1231, 1240, 1242, 1249, 1241, and 696) of brain endothelium (HBMEC cells) might 
lead to the release of some inflammatory mediators such as IL-1β, TNF-α, IL.6, IL-8, GM-
CSF, and iNOS (that could lead to increased NO production). These might contribute to cell 

line permeability and the migration of several immune cells such as neutrophils and 
macrophages (pleocytosis). The cell line permeability might facilitate the translocation of 
C. sakazakii into the brain. (6) Two ways of C. sakazakii translocation into the brain are 
suggested; paracellular translocation (strains 20, 695, 721, 730, 767, 1219, 1220, 1221, 
1222, 1223, 1224, 1225, 1231, 1240, 1242, 1249, 1241, and 696) by altering the tight 
junctions through cytotoxicity and apoptosis (caspase-3) induction, and by (7) using 
Trojan horse mechanism inside macrophages. (8) The translocated C. sakazakii strains 

could be phagocytised by microglia (HMGC cells) inside the brain and then survive and 
multiply (strains 20, 695, 767, 1221, 1240, 1242, 1587, and 1249). The activated 
microglia produce inflammatory cytokines such as IL-1β, TNF-α, IL-6, IL-8 and GM-CSF, 
which might contribute to brain endothelium (HBMEC cells) permeability and by attracting 
more immune cells to migrate to the brain. The inflammatory process inside the brain 

might lead to neuronal death, increased intracranial pressure, and severe inflammation of 
the meninges. Strains in red belong to CC4 and strains in blue belong to non-CC4.  
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5.2. Limitations and future work 

As discussed, C. sakazakii strains showed the ability to translocate 

through Caco-2 and HBMEC cell lines. Although the mechanism of the 

translocation was not clear, it was suggested in this project that the 

mechanism might include altering the tight junctions. Using electron 

microscopy to visualise the translocation process could provide further 

understanding of this process. Moreover, due to the lack of an 

experimental model that resembles human barriers, using a multilayer 

translocation assay, by which different human cells can be grown as 

layers to investigate the ability of the organism to pass through different 

host barriers, is required. Further optimisation for the translocation assays 

is recommended to eliminate any conditions that might affect results such 

as increasing the infection period, avoiding contamination, maintaining 

cell line integrity, and obviating the acidification of the infection medium. 

However, good translocation results were obtained from this project that 

showed a correlation between the invasiveness of the strains and the 

translocation ability. 

The survival and multiplication of C. sakazakii strains within phagocytes 

was shown in Chapter 3, and this probably contributes to the 

pathogenicity of the organism. The strains showed persistence within 

macrophages up to 72 hours following their uptake. Despite some strains 

showing reduced numbers with time, the other strains were able to 

multiply and showed increased numbers. Other immune cells including 

polymorphonuclear leukocytes (PMNs) could be used to examine the 

survival of C. sakazakii strains. Also, increasing the frequency of sampling 

during assays might provide further knowledge about the survival rates of 

these strains. The working time regulations and safety considerations at 

the laboratory prevented the possibility of adding more testing time points 

to the experiment, and alternative experimental design might help to 

overcome this issue. The survival within microglia by test strains was 

demonstrated in the same chapter. Although some strains were rapidly 

killed, some strains were able to persist and replicate. The massive 

reduction in viability of some strains following the uptake by microglia 

needs further investigation to clarify the mechanism by which the 
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organism was eradicated (Fig.3.25 and Table.3.4). However, it was 

suggested in this research that this reduction might be attributed to the 

high cytotoxicity induced by the organism in these cells, which might led 

to their death and the release of the intracellular bacteria into the 

medium, which were then lost in the washing step of the assay. Moreover, 

it is important to investigate the genes responsible for the phagocytosis 

survival, and studying the ability of C. sakazakii strains to form a spacious 

phagosome that was previously found to mediate phagocytosis survival in 

Y. pestis is required (Oyston et al.  2000, Kukkonen et al.  2001, 

Grabenstein et al.  2006, Pujol et al.  2009). Nonetheless, this research 

suggested a group of genes that might promote phagocytosis survival 

(Table.3.2). 

C. sakazakii strains were able to induce iNOS production in the HBMEC cell 

line, and this induction might lead to NO synthesis that could contribute to 

cell line permeability as discussed previously in Chapter 4. Investigating 

the amount of NO production at the time of infection and linking it to the 

levels of iNOS induction is needed to elucidate its role in the increase of 

NO production during infection. Although there were some anomalies, it 

was displayed in this project that the strains that induced high iNOS levels 

showed moderate and high translocation capacity through the HBMEC cell 

line. Inducing apoptosis in HBMEC cells affects the integrity of this line 

and allow further migration of bacterial cells. Investigating the apoptosis 

pathways that can be induced by the organism including additional 

apoptotic markers, such as poly-ADP ribose polymerase (PARP) and p53, 

is required to give a clear picture about the mechanism by which the 

organism could induce apoptosis. In addition further study of the ability of 

the organism to cause necrotic cell death that has an adverse effect on 

host tissues is needed. It was shown previously in Chapter 4, that C. 

sakazakii strains induced apoptosis in HBMEC and HMGC cell lines, and 

two apoptotic markers were detected including caspase-3. It was 

proposed that the induction of caspase-3 might result from the activation 

of TNFR by TNF-α, which leads to trigger the caspases pathway leading to 

caspase-3 induction (Gao and Kwaik  2000, Deghmane et al.  2009). 

Evaluation of the inflammatory process during the infection is important in 
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order to investigate the role of the host response in this process and its 

contribution in tissue damage. In Chapter 4, as formerly described it was 

shown that C. sakazakii infection triggered the production of 7 cytokines. 

The role of these cytokines in pathogenesis needs further investigation. 

Using antibodies to block the activity of these cytokines could be beneficial 

if applied in the translocation assay to determine their effect on cell line 

permeability. Moreover, examining the function of the anti-inflammatory 

cytokines in controlling the inflammatory process in addition to the role of 

the pro-inflammatory ones in attracting leukocytes is required. However, 

the preceding suggestions in this research proposed that these cytokines 

have a role in pathogenesis. The high levels of IL-8 induction in HBMEC 

and microglial cell lines resulted from the infection of the invasive and 

highly translocated strains indicating its impact on the cell line integrity. 

Brain endothelial cells are positioned and specially modified to perform the 

functions of BBB. These functions are aided by the polarisation of BBB 

properties such as protein receptors, lipid receptors, and lipid 

transporters. The latter are distributed unevenly and uniquely between 

luminal and abluminal membranes of brain endothelial cells. Thus, these 

cells have the potential to receive signals from one side e.g. blood and 

secrete to another e.g. brain and vice versa. This behaviour could mimic 

the in vivo conditions of the BBB including the presence of the tight 

junctions and the polarised transporters (Betz and Goldstein  1978, Deli et 

al.  2005, Verma et al.  2006). Therefore, it is important to study the 

response of polarised HBMEC cells to C. sakazakii infection that could 

illustrate the role of these polarised cells in infection and pathogenesis. 

Moreover, lipopolysaccharide (LPS) could be a potent inducer for cytokine 

production and might affect the permeability of the HBMEC cell line (Xaio 

et al.  2001, Verma et al.  2006). Hence, examining C. sakazakii LPS and 

its effects on HBMEC cells could clarify its role in the permeability of the 

BBB.  

Due to the sensitivity of the cell lines used in this project and the high 

cost of analysis, which had affected the total budget towards the end of 

the project, limited options of assessment tests were used. Therefore, a 

possible improvements in future work could be the use of further 
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assessment assays incorporating appropriate negative and positive 

controls for the host response. These assays might include apoptotic 

markers detection and quantification via flowcytometry and 

immunoassays. They might also involve animal models to investigate C. 

sakazakii infection and host response in vivo. 

5.3. Final summary and conclusions 

This study has made clear that C. sakazakii has several virulence traits 

that allow it to establish a successful infection and evade host immune 

response. Moreover, the organism showed the ability to attach and invade 

a set of mammalian cell lines and induce cytotoxicity among them. 

Additionally, it was demonstrated that the organism was able to 

translocate through two human cell lines—Caco-2 and HBMEC—

representing the gut and brain barriers respectively. Furthermore, the 

capacity of the bacterium to survive within macrophages and microglia, 

which indicates its ability to avoid phagocytosis, was observed. The 

organism was able to induce inflammatory mediators and apoptosis. It 

was proposed that host response could be an influential factor that might 

cause major damage to the tissues and support pathogenesis. It was also 

shown that CC4 strains have higher invasion and translocation abilities to 

HBMEC cells in vitro (HBMEC invasion 0.13%, HBMEC translocation 

4.92%) compared to non-CC4 strains (HBMEC invasion 0.1%, HBMEC 

translocation 1.67%). This supports the previous conclusion that C. 

sakazakii CC4 was the most prevalent clonal complex of meningitis and 

CSF isolates (Joseph and Forsythe  2012c, Forsythe et al.  2014). 

In summary, this study has provided evidence from a range of virulence 

and pathogenicity assessments that C. sakazakii is a virulent pathogen 

that can overcome host barriers, evade immune response, and survive 

phagocytosis. Hence, it can be a risk factor for neonates and 

immunocompromised patients. Moreover, host response assessments 

have highlighted the uncontrolled response that can be responsible for 

deleterious outcomes resulting from the infection. This highlights the need 

of effective therapeutic strategies that could control the host response 

during the infection and subsequently controlling the progressive damage 
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of the CNS caused by C. sakazakii infection. It was shown previously that 

dexamethasone could be used as an adjunctive therapy with antibiotics to 

reduce the concentration of IL-1β and TNF-α and consequently reduce the 

degree of meningeal inflammation. This also was found to improve the 

long-term outcome in infants and children with meningitis (Odio et al.  

1991, Tunkel et al.  2004). It was also reported that using 

immunoglobulins and inhibitors of inflammatory cytokines might help to 

minimise neuronal damage and improve the host immune response. 

Moreover, the inactivation of caspase-3 using brain-derived neurotrophic 

factor might result in reducing neuronal apoptosis (van de Beek et al.  

2006, Prasad et al.  2012). Therefore, designing a diagnostic and 

therapeutic plan for C. sakazakii infection could help in eliminating the 

consequences of the infection and reducing the damage resulted from the 

host response. Importantly, the outcomes of this project have also 

proposed possible areas of future research to follow that may broaden 

knowledge of the pathogenicity of the organism, host response 

consequences, and therapeutic strategies. 
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Appendix.1 

A.1. Tissue culture experiments for C. sakazakii strain 1587 

C. sakazakii strain 1587 (ST109) is a CSF isolate that belongs to CC4 and 

was associated with neonatal meningitis infection that led to brain 

damage. It showed the ability to attach and invade the Caco-2 cell line 

(P<0.05 and P<0.01 respectively; Fig.A.1-2). Moreover, it was able to 

translocate through the same cell line significantly (P<0.001) over 5 hours 

of incubation (Fig.A.3). Furthermore, it adhered to HBMEC cells and 

showed significant invasion (P<0.001; Fig.A.4-5). The results of these 

experiments suggest that this is strain has invasion potential in addition to 

that it is a clinical isolates. Hence, it was added to the list of strains used 

at the final stage of this project (Table.2.4). 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.1 C. sakazakii strain 1587 attachment assay using Caco-2 cell line 

over 3 hours of incubation showing the difference in attachment levels 
among strains. The displayed data are the mean±standard deviation of 
two independent experiments in triplicate. The asterisks above the bars 

indicate statistically significant differences between the strains in this 
experiment (*P<0.05). 
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Fig.A.2 C. sakazakii strain 1587 invasion assay using Caco-2 cell line over 
3 hours of incubation showing the difference in invasion levels among 
strains. The displayed data are the mean±standard deviation of two 

independent experiments in triplicate. The asterisks above the bars 
indicate statistically significant differences between the strains in this 

experiment (*P<0.01). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.3 C. sakazakii strain 1587 translocation assay using Caco-2 cell line 
over 5 hours of incubation showing the difference in translocation ability 
among strains. The displayed data are the mean±standard deviation of 

two independent experiments. The asterisks above the bars indicate 
statistically significant differences between the strains in this experiment 

(*P<0.001). 
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Fig.A.4 C. sakazakii strain 1587 attachment assay using HBMEC cell line 

over 3 hours of incubation showing the difference in attachment levels 
among strains. The displayed data are the mean±standard deviation of 

two independent experiments in triplicate. The asterisks above the bars 
indicate statistically significant differences between the strains in this 
experiment (*P<0.01). 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.A.5 C. sakazakii strain 1587 invasion assay using HBMEC cell line over 

3 hours of incubation showing the difference in invasion levels among 
strains. The displayed data are the mean±standard deviation of two 
independent experiments in triplicate. The asterisks above the bars 

indicate statistically significant differences between the strains in this 
experiment (*P<0.001). 


