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ABSTRACT 

It has been theorised that self-perception is integral to the regulation of exercise 

and production of an optimal performance.  This concept has not been examined in an 

anterior cruciate ligament (ACL) reconstructed population where the consequences of 

injury and surgery may provide a substantive perturbation to perceptual capabilities. 

Ratings of perceived exertion (RPE) have previously been shown to enable prediction 

of exercise task duration (TD) during running and cycling activities in healthy 

individuals, but this has yet to be explored in intermittent and isolated muscle exercise 

that is typically utilised during resistance training and ACL rehabilitation.  Accordingly, 

this thesis investigated: i) the relationship between self-perceived knee function and 

objective measures of musculoskeletal performance at a range of time-points across the 

ACL-rehabilitation period; ii) the relationship between two paradigms of self-perception 

(RPE; perceived TD) and TD in healthy individuals during an intermittent isometric 

fatigue task (IIF) under various conditions of increasing exercise stress. 

Self-perceived knee function measured via subjective rating scales was only 

moderately correlated with objective performance towards the latter stages of the 

rehabilitation period, highlighting a disparity between perceived and actual capabilities 

during the early to intermediate stages of recovery (pre-surgery to 24 weeks).  In 

contrast to previous research in running and cycling exercise, the investigation of self-

perception and TD during an IIF revealed evidence of both linear and curvilinear trends 

in perceptual response.  Linear trends were observed at exercise intensities of 60% to 

80% of baseline volitional peak force, whilst curvilinear patterns of response were 

apparent at intensities of 60% peak force, and under conditions of exercise-induce 

muscle damage.  Evidence of a negatively accelerating curvilinear response may reflect 

an underestimation of performance, and questions the utility of self-perception to 
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predict TD in isolated muscle exercise.  These combined findings highlight a need for 

further research before confirming the efficacy of self-perception with regard to 

regulating exercise during rehabilitative-type activities. 
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Chapter 1: Introduction 
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CHAPTER 1: INTRODUCTION 

1.1. SELF-PERCEPTION AND EXERCISE REGULATION 

The regulation of work-rate and energy expenditure in sport and exercise has 

previously been described as a pacing strategy (Abbiss and Laursen, 2008).  It has been 

theorised that a performer’s rating of perceived exertion (RPE) is integral to this process 

(St Clair Gibson et al., 2006).  In this context, RPE would result from the interpretation 

of multiple sensory cues and is subsequently matched against a ‘template RPE’ that 

represents the performer’s expectations of the exercise bout (Tucker, 2009).  This 

template is based on previous experience of the exercise mode and the associated 

psychological and physiological afferent inputs (Tucker, 2009).  To provide support to 

this theory, RPE has previously been observed to increase linearly in relation to task 

duration (TD) during running and cycling tasks (Horstman et al., 1979; Noakes, 2004; 

Eston et al., 2007; Crewe et al., 2008).  In these exercise modes, RPE may have the 

capability to act as a predictor of TD (Horstman et al., 1979; Eston et al., 2007), and 

enable the adjustment of work-rate in order to preserve homeostasis whilst optimising 

exercise performance (Ulmer, 1996).  In addition, Swart et al. (2009) observed that an 

increased linearity of RPE responses was associated with a concomitant increase in 

power output during cycling time trials, suggesting the adoption of a more effective 

pacing strategy. 

Given the important role of prior experience in the generation of RPE (Noble 

and Robertson, 1996; Tucker, 2009), a novel and unaccustomed exercise task would 

result in a limited ‘template RPE’.  Consequently, inaccurate judgments regarding 

perceived workload during a given exercise bout may result in the subconscious 

selection of an inappropriate ‘template RPE’ against which to compare the perceived 

demands of the task.  This may therefore have associated implications for the 

relationship between RPE and TD.   If this relationship deviates from linearity, then the 
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use of RPE in a predictive capacity would provide an inaccurate estimation of TD (as 

illustrated in Figure 1.1).  A worst case-scenario of inaccurate RPE and workload 

production could predispose an overestimation of capabilities that might expose 

performers to fatigue-related impairments in neuromuscular performance, such as 

decreased strength (Zebis et al., 2011), speed of force generating capabilities, delayed 

muscle response times (Minshull et al., 2007), and sub-optimal movement skill 

execution (McLean and Samorezov, 2009).  Conversely, an underestimation of 

capabilities might lead to premature cessation of the exercise bout resulting in a sub-

optimal level of performance.  Whilst the majority of previous research has focused on 

cycling and running activities, the relationship between RPE and TD has yet to be 

explored in novel and intermittent exercise tasks.  Activities of this nature may have 

application within a rehabilitation environment where patients are progressively re-

introduced to dynamic exercise following surgery (Grodski and Marks, 2008; van 

Grinsven et al., 2010), or a team sport environment where performers are exposed to 

regular variations in training stimuli to optimise progression (Gamble, 2006). 
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Figure 1.1  a) Theoretical overestimation of TD; b) Theoretical underestimation of TD.  
The dashed lines highlight the disparity between RPE and TD, based on a 
prediction from the RPE responses obtained during the early stages of the 
exercise task.  
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1.2. SELF-PERCEIVED FUNCTION DURING REHABILITATIVE 

EXERCISE 

Injury to the anterior cruciate ligament (ACL) is a serious and potentially career-

threatening injury for many athletes, with up to 250,000 ACL injuries estimated to 

occur annually (Griffin et al., 2006). Injury to the ACL is common in multi-sprint sports, 

such as basketball, soccer and American Football (Magnussen et al., 2009), whereby 

deceleration during landing or cutting movements places the knee under severe 

translational and rotational stress (Griffin et al., 2006).  With most cases of ACL rupture 

requiring reconstructive surgery to restore knee function (Hurd et al., 2008), the 

consequences of injury include substantial costs (surgery and associated rehabilitation 

estimated at over $17,000; Paxton et al., 2010) and a lengthy recovery period (estimated 

at 6-9 months; Beynnon et al., 2005).  Reconstructive surgery creates an inevitable 

disruption to the knee joint, due to the harvesting of donor tissue from the patient’s 

patella tendon or semitendinosus tendon (Wright et al., 2010).  Post-operative 

rehabilitation requires patients to redevelop range-of-motion, strength and conditioning 

of the surrounding musculature, and optimal movement patterns in order to restore knee 

function (Grodski and Marks, 2008; van Grinsven et al., 2010),  Throughout this 

rehabilitation period, most patients will have limited access to specialist supervision 

(Coppola and Collins, 2009).  This places added importance on accurate self-perception 

of exertion, as patients seek to optimally pace and produce work during their recovery 

without jeopardising the integrity of the replacement graft (Marumo et al., 2005).  An 

ACL-reconstructed population also faces the added challenge of coping with a 

considerable perturbation to the knee joint as a consequence of the surgical procedure.  

This disturbance includes weakening of the donor tendon and associated musculature 

(Yasuda et al., 1992; Forster and Forster, 2005) and neuromuscular inhibition resulting 

from pain and swelling (Hopkins and Ingersoll, 2000; Rice and McNair, 2010).  These 
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disruptions could potentially impact upon the efficacy of self-perceived capabilities.  

Inaccurate self-perception of knee function may have associated implications for 

patients’ ability to self-regulate exercise as they progress to a return to full activity. If 

individuals cannot correctly perceive their capabilities during exercise and rehabilitation 

tasks and modify their work-rate accordingly, then this may ultimately increase the risk 

of re-injury to the involved limb.  Indeed, a fear of re-injury and lack of confidence in 

the reconstructed knee have been attributed as possible explanations as to why as many 

of 67% of patients have not returned to competitive sport as long as 12 months post-

surgery (Webster et al., 2008; Ardern et al., 2011b).  This lack of self-efficacy may lead 

to patients applying a cautious strategy to effort production during their rehabilitation, 

resulting in sub-optimal performance during exercise sessions.  Failure to achieve the 

required goals of a given phase of rehabilitation will prevent the patient from advancing 

onto the subsequent stage (van Grinsven et al., 2010), thus delaying their progress and 

extending the recovery period.  Implications of this eventuality are increased 

physiotherapy costs and an extended period of absence from competitive sport.  This 

highlights the need for accurate self-perceived knee-function to provide an accurate 

reflection of objective capabilities.  In addition, exploring the nature of self-perceived 

knee function during ACL rehabilitation may help to identify any periods during the 

recovery process where there is a large disparity between self-perceived and objective 

measures of performance.  This could then provide the basis for further investigation 

into patients’ pacing and self-regulation during these critical stages of rehabilitation and, 

therefore, optimise the rehabilitation process. 
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1.3. SELF-PERCEPTION DURING INTERMITTENT ISOMETRIC 

EXERCISE 

Whilst the linear relationship between RPE and TD has previously been 

established in running and cycling tasks, it is yet to be investigated in resistance training 

or static and isolated muscle work that might generate different sensations of pain and 

fatigue and provide different perceptual cues (Noble and Robertson, 1996).  Such 

activities form an important component of post-surgical rehabilitation programmes to 

reduce risk of re-injury and optimise progress (Grodski and Marks, 2008; van Grinsven 

et al., 2010).  It is, therefore, of potential benefit to explore the relationship between 

self-perception and TD in a mode of activity that could be incorporated into many types 

of exercise programmes and, in particular, translate to a rehabilitative setting.  

A range of perceptual scales have previously been utilised in investigations that 

have explored the concept of pacing and exercise regulation.  These include the Borg 

15-point RPE scale (Noakes, 2004; Eston et al., 2007; Crewe et al., 2008; Davies et al., 

2009), a category-ratio 0-10 RPE scale (Albertus et al., 2005; Joseph et al., 2008; Swart 

et al., 2009), and an estimated time limit (ETL) scale (Garcin et al., 1999; Garcin et al., 

2004).  It is necessary to explore the most appropriate scales that could be applied to 

intermittent isolated muscle exercise, and to establish the efficacy and reliability of 

these scales.  It is also of value to conduct exploratory investigations of this topic in an 

asymptomatic population, in order to establish typical perceptual responses that can 

then provide the basis from which to make future comparisons. 

Given the potential importance of an accurate ‘template RPE’ in exercise 

regulation and pacing (Tucker, 2009), it is important for performers to detect changes in 

workload in order to make accurate judgements concerning the demands of the exercise 

bout.  Variations in resistance training intensity of 10% have been shown to provoke 

significant changes in power output (Thomas et al., 2007) and in the number of 
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repetitions performed (Shimano et al., 2006). For example, a performer undertaking a 

resistance training programme who is unable to detect a 10% increase in intensity may 

find themselves unexpectedly struggling to complete the desired number of repetitions 

of a given exercise.  The withholding of precise exercise intensity from participants may 

therefore prompt a variation in RPE that results from a mismatch between the initially 

anticipated and actual workloads (Baden et al., 2005).  This in turn may cause an 

inappropriate ‘template RPE’ to be selected, resulting in a misjudgement of task 

demands, consequently reducing the effectiveness of the pacing strategy.  If participants 

are unable to detect subtle changes in exercise intensity, then this may have implications 

for their judgement of how long they can perform a given task, and possibly for their 

ability to select appropriate workloads as they undertake novel exercise during 

unsupervised training sessions.  

A further challenge for the precise self-perception of exercise stress could 

involve increasing exercise stress and activities provoking exercise-induced muscle 

damage (EIMD).  This increase in exercise stress potentially reflects that experienced 

by ACL patients as they are re-introduced to dynamic exercise during rehabilitation.  

Typically resulting from a bout of unaccustomed exercise (McHugh et al., 1999), EIMD 

is characterised by soreness in the involved musculature (Proske and Morgan, 2001), 

and is accompanied by substantive reductions in neuromuscular performance (Minshull 

et al., 2012) and reduced proprioceptive capabilities (Torres et al., 2010). The sensations 

of localised pain in the involved musculature, coupled with the impairments to 

performance capability, could impact upon a performer’s RPE and the associated 

relationship with TD. 
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1.4. RESEARCH AIMS 

In order to examine the issues described above, two main strands of 

investigation were designed and conducted concurrently.  The first strand explores 

relationships between self-perceived measures of knee function and objective indices of 

musculoskeletal performance in an ACL-reconstructed population during key stages of 

the post-operative rehabilitation process.  This involves assessing ACL-reconstructed 

patients at five separate time points, scheduled at pre-surgery, and at 6 weeks, 12 weeks, 

24 weeks and at an anticipated completion of rehabilitation at 48 weeks post-surgery 

(study 1, detailed in Chapter 3).  Analysis of these findings aims to identify the stages of 

the ACL rehabilitation process where there is the greatest disparity between the 

patients’ perceptual measures and their objective measures of knee function. The 

resulting findings can then form the basis for potential future investigations into the 

relationship between self-perception responses and TD during rehabilitation-type 

activities. 

The second strand of research focuses on investigating the patterns of perceptual 

response in relation to TD during a novel intermittent isometric fatigue task (IIF) that 

reflects the types of static isolated muscle exercise that are incorporated within a typical 

ACL rehabilitation protocol (van Grinsven et al., 2010).  In order to achieve this, the 

reliability and reproducibility of two perceptual scales first need to be established (study 

2, detailed in Chapter 4).  These two scales each represent a separate paradigm of effort 

perception: i) measurement of perceived; ii) measurement of perceived percentage of 

completed TD.  Ascertaining a level of measurement precision for these perceptual 

scales in an asymptomatic population is necessary to provide a basis from which 

judgements can be made regarding experimental outcomes in subsequent studies.  These 

subsequent studies explore the capability of the perceptual scales to relate to TD, in 

order to establish their validity and potential utility in regulating performance during 
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intermittent and static muscle activities.  Firstly, the relationship between measures of 

self-perception (perceived exertion; perceived task duration) and TD is explored during 

an IIF in an asymptomatic population (study 3, detailed in Chapter 5).  Establishing the 

nature of this relationship is important in order to determine the efficacy of self-

perception to act as an accurate predictor of TD, and consequently have the potential to 

regulate work-rate.  In addition, the capability of the two assessment paradigms to 

reflect a 10% change in work intensity is also investigated.  In accordance with the 

theory of exercise regulation outlined by Tucker (2009), an inability to accurately 

perceive variations in intensity during the performance of isolated muscle exercise tasks 

might provoke the selection of an inappropriate ‘template RPE’ against which to 

compare the demands of the task, and possibly lead to an inaccurate estimation of 

capabilities based on the assigned training load.  In real terms, this could either result in 

the performer unexpectedly struggling to complete a bout of exercise, or conversely 

being able to continue for far longer than anticipated.  The inconclusive findings from 

study 3 necessitated further investigation, as it transpired that a greater differential 

between IIF work intensities was required in order to help establish the responsiveness 

of the perceived exertion scale.  As such, the subsequent study aimed to evaluate the 

capability of the two perceptual assessment paradigms (perceived exertion; perceived 

task duration) to reflect a 20% differential in work intensity (study 4, detailed in 

Chapter 6).   

A final study examines the effects of EIMD upon the relationship between TD 

and the two perceptual assessment paradigms (perceived exertion; perceived task 

duration) (study 5, detailed in Chapter 7).  As a consequence of this disturbance, 

sensory cues may be influenced by the presence of EIMD in the involved musculature, 

and thus alter the nature of the relationship between self-perception and TD.  Moreover, 

this perturbation to neuromuscular function mirrors the introduction of unaccustomed 



 
11 

exercise during an ACL rehabilitation programme, thus providing an ecologically valid 

method of disrupting the neuromuscular system.  Investigation into the impact of EIMD 

upon the relationship between self-perception and TD may, therefore, have considerable 

relevance to patient populations. 

Ultimately, the intention for the direction of this research was to eventually 

combine the two strands of investigation, by exploring the utility of the two perceptual 

assessment paradigms during an IIF in an ACL-reconstructed population.  This would 

have been investigated during the stages of rehabilitation that displayed the greatest 

disparity between the patients’ perceptual measures and their objective measures of 

knee function, as dictated by the findings from the initial empirical study. 
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Chapter 2: Literature Review 
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CHAPTER 2: LITERATURE REVIEW 

2.1. PACING IN EXERCISE 

In sport and exercise, an effective performance requires the individual to 

complete a given task at an optimal work-rate with optimal energy consumption (Ulmer, 

1996).  The term ‘pacing’ has been used to encapsulate how a performer distributes 

work and energy expenditure with regard to producing an optimal performance (Abbiss 

and Laursen, 2008).  A performer pacing a given task too quickly would be unable to 

finish because of the early onset of fatigue. However, pacing too slowly would result in 

a sub-optimal performance. It is hypothesised that pacing strategies enable athletes to 

regulate their work rate to enable an optimal performance whilst preventing potentially 

harmful physiological changes, such as dangerously reduced muscle glycogen levels 

(Tucker, 2009).  In addition to a competitive sporting environment, this principle can 

also be applied to an exercise and training context, where a sub-optimal performance 

may produce a lack of desired results (Glass and Stanton, 2004) and consequently have 

a negative impact upon long-term adherence to a training programme (Focht, 2007).  

Furthermore, continued sub-optimal performance during injury rehabilitation may limit 

the effectiveness of the recovery process, which in turn would result in increased costs 

and a delayed return to sport (van Grinsven et al., 2010).  For example, a return to full 

activity following anterior cruciate ligament (ACL) reconstruction is forecast at 6-9 

months (Beynnon et al., 2005), but figures indicate that a substantial proportion of 

patients (~67%) are still to return to full activity by12 months post-surgery (Ardern et 

al., 2011b).  

2.1.1. Pacing Strategies 

Pacing typically refers to self-paced exercise, requiring performers to make 

judgments regarding the adjustment of work-rate in order to achieve an optimal 
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performance and preserve homeostasis (Tucker and Noakes, 2009).  However, this 

concept can also be applied to exercise at a fixed pace or fixed intensity, whereby the 

performer is required to adjust their work-rate in order to maintain pace, or ultimately 

decide to terminate the exercise bout (Tucker, 2009).  Pacing strategies are commonly 

utilised when undertaking activities such as swimming, rowing, running and cycling 

that are performed over a known distance and completed as quickly as possible in 

competition with an opponent or against the clock (Abbiss and Laursen, 2008; Tucker 

and Noakes, 2009).  Although there are potentially infinite variations of pacing 

strategies (St Clair Gibson et al., 2006), the selected strategy will depend on the type of 

activity performed (St Clair Gibson et al., 2006; Abbiss and Laursen, 2008; Tucker and 

Noakes, 2009).  For example, short duration activities (typically <4 minutes; Tucker 

and Noakes, 2009) are characterised by a ‘positive’ or ‘all-out’ pacing strategy, 

characterised by a fast start with a progressively gradual reduction in power output 

(Abbiss and Laursen, 2008).  This can be seen in sprint cycling and running, where the 

highest speeds are achieved early in the event (Ferro et al., 2001; Ansley et al., 2004).  

In contrast, longer duration activities (>4 minutes; Tucker and Noakes, 2009) 

commonly exhibit a ‘negative’ pacing strategy whereby there is a significant increase in 

speed towards the end of the event (Abbiss and Laursen, 2008) frequently referred to as 

an ‘end-spurt’ (Marino et al., 2004; Tucker and Noakes, 2009).  In addition to these 

repetitive activities involving reciprocal patterns of muscle activation, pacing strategies 

can also be applied to more complex and intermittent modes of sport and exercise.  

Multi-sprint sports, which are characterised by intermittent periods of high-intensity 

exercise, involve unpredictable demands that necessitate a different pacing approach to 

cycling or running against the clock. For these types of activity, a hypothetical multi-

level pacing model has been proposed (Edwards and Noakes, 2009) involving an overall 

pacing plan for the entire match (macro-pacing), a pacing plan for each half (meso-
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pacing), and a pacing plan to adapt their overall match pace to the impact of acute bouts 

of activity during the game (micro-pacing).  To the author’s knowledge, pacing has yet 

to be explored in intermittent tasks that may have application to resistance training or 

rehabilitation activities.  Whilst not directly referred to as ‘pacing’, the importance of 

judging the maintenance of power output during resistance exercise has previously been 

emphasised (Naclerio et al., 2011).   

2.1.2. Anticipation of fatigue 

It is of value for a pacing strategy to be formulated in anticipation of increasing 

levels of fatigue and to help self-regulate work-rate accordingly.  Fatigue has been 

described as "an acute impairment of performance that includes both an increase 

perceived effort necessary to exert a desired force and an eventual inability to provide 

this force” (Enoka and Stuart, 1992, p. 1631). In broader terms, the concept of fatigue 

reflects an exercise-induced impairment of performance (Knicker et al., 2011), 

manifested by decreased strength levels (Zebis et al., 2011), a reduction in muscle 

response times and speed of force generating capabilities (Minshull et al., 2007), and 

sub-optimal movement skill execution (McLean and Samorezov, 2009).  In addition, a 

greater incidence of injuries has been reported in the latter stages of match-play and 

training sessions in multi-sprint sports such as rugby and soccer (Gabbett, 2000; 

Gabbett, 2003; Price et al., 2004) that could also be fatigue-related (Gleeson et al., 

1998). The combination of these factors may provide a potential link between fatigue 

and increased risk of injury. An athlete’s capability to implement an effective pacing 

strategy may be important in minimising injury risk in conjunction with optimising 

performance.  In order to gain a better understanding of the concept of pacing, it is, 

therefore, necessary to explore the potential mechanisms that govern the perception of 

exercise stress and regulation of exercise performance.  
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2.2. REGULATION OF EXERCISE PERFORMANCE 

There is some disagreement concerning the underlying mechanisms governing 

the regulation of exercise performance, with recent debate focusing on the role of the 

brain during physical activity (Weir et al., 2006; Marcora, 2008; Tucker and Noakes, 

2009; Shephard, 2009; Marino, 2010; Noakes, 2011).  The traditional catastrophe model 

of exercise regulation – recently termed the cardiovascular/anaerobic/catastrophe 

(CAC) model (Weir et al., 2006), stipulates that fatigue and the termination of exercise 

is due to the accumulation of metabolites or energy substrate depletion and the 

associated loss of homeostasis (Edwards, 1983; Weir et al., 2006; Shephard, 2009).  

This fatigue may result from changes to the muscle cells (peripheral fatigue) and/or 

reduced activity from the central nervous system (central fatigue) (Westerblad and 

Allen, 2002).  Peripheral fatigue may involve depletion of intramuscular energy stores 

in addition to the accumulation of anaerobic metabolites such as potassium (Bangsbo et 

al., 1996) and inorganic phosphate (Nordlund et al., 2004).  Central fatigue, via reflex 

inhibition of spinal motorneurons or inhibition of volitional supraspinal commands, 

may be induced as a consequence of hydrogen ion accumulation and associated 

stimulation of nociceptors resulting in perceived discomfort in the involved muscles 

(Stackhouse et al., 2001; Westerblad and Allen, 2002).  More recently, it has been 

argued that fatigue is actually a sensation arising from the conscious perception of these 

subconscious physiological processes, rather than simply a physical event (Noakes et al., 

2005; Noakes 2011).  This differing viewpoint challenges existing paradigms 

concerning fatigue and exercise regulation, and forms the basis for the argument behind 

the governing of pacing strategies. 

In more recent years, the Central Governor Model (CGM) has gained favour as 

an alternate theory to describe the regulation of exercise, and suggests the brain 

interprets afferent feedback arising from exercise and applies this information to make 
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strategic decisions regarding the adjustment of work-rate and ultimately to terminate 

exercise before homeostasis is disrupted (Lambert et al., 2005; Noakes et al., 2005; 

Noakes 2011).  Advocates of the CGM hypothesise that a pace is selected at the start of 

an exercise task, resulting from the interpretation of sensory feedback derived from a 

range of sensory receptors and matched against an anticipated outcome or ‘end-point’ 

(Noakes and St Clair Gibson, 2004; St Clair Gibson et al., 2006). An integral part of this 

process involves the interpretation of numerous physiological and psychological cues to 

enable the generation of a subjective rating of perceived exertion (RPE) (Tucker and 

Noakes, 2009).  This RPE1 is subsequently compared against a ‘template RPE’ that is 

based on prior experience of the mode of exercise (Tucker, 2009). The selected pace is 

then constantly re-calculated in an ongoing process that has been previously defined as 

teleoanticipation (Ulmer, 1996; St Clair Gibson et al., 2006) and is illustrated in Figure 

2.1.   

 

                                                

1 The term RPE has evolved in recent years, from originally being attributed as 

the title of a scale of measurement (Noble and Robertson 1996; Borg, 1998; Robertson, 

2001) to more recently being used as a generic term to describe the psychological 

construct of perceived exertion (Tucker, 2009; Eston, 2012).  
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Figure 2.1.  The teleoanticipatory process of exercise regulation (adapted from 
Lambert et al., 2005) 

 

An alternative psychological-motivational model of exercise regulation has been 

proposed that disassociates RPE from the sensory feedback resulting from exercise 

(Marcora, 2008).  This model theorises that RPE is created as a consequence of efferent 

commands to the involved muscles (Marcora, 2009). During prolonged sub-maximal 

exercise at a constant work-load, an increase in fatigue requires a compensatory 

increase in central motor commands to the involved musculature and the respiratory 

system (Marcora, 2008).  The resulting corollary discharges are forwarded to the 

sensory cortex where a conscious RPE is generated (Marcora, 2008).  This theory is 

based upon previous evidence that demonstrates that RPE is maintained or increased in 

the absence of afferent feedback from the involved muscles (due to epidural 

anaesthesia; Smith et al., 2003), the heart (due to beta-adrenergic blockade; Myers et al., 

1987), and the lungs (due to anaesthesia of the airway; Winning et al., 1988). 
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2.2.1. Implications of popular models for pacing 

The different theoretical models outlined above have different implications 

when applied to the concept of pacing.  It has been suggested that an ‘all-out’ approach 

to an event such as the 100m sprint is evidence of a rapid implementation of a pacing 

strategy, thus supporting the CGM theory (Noakes et al., 2005). Conversely, Weir et al. 

(2006) argue that patterns of work characterised by initial acceleration, maintenance of 

maximum velocity, and an eventual decrease in velocity towards the end of a short 

duration event, such as that described by Noakes et al. for the 100m sprint actually 

provides evidence of a lack of pacing strategy.  With regard to longer duration activities, 

Noakes, (2011) postulates that exercise regulated solely by the CAC model would not 

permit an increase in work-rate towards the end of a longer duration event (as seen by 

the ‘end-spurt’ phenomenon) and indeed would only enable one type of pacing for 

exercise of all modes and duration. In accordance with the CGM model, the changes in 

work-rate associated with a pacing strategy would therefore occur as part of an 

anticipatory regulatory strategy to prevent damage to bodily structures (Noakes et al., 

2005).  A counter-argument from Shephard (2009) acknowledges that the brain is 

involved in selecting a pace at a level where minimal lactate accumulates in the working 

muscles, thus enabling an end-spurt to fully exploit the athlete’s anaerobic capacity.  

However, Shephard theorises that whilst psychological factors including motivation and 

arousal can sustain or enhance an individual’s exercise performance, the primary 

limiting factors are physiological, such as maximal anaerobic power and capacity, 

maximal aerobic power and capacity, and the availability of energy substrates, minerals 

and water.  A key argument used in support of the CGM involves the role of sensory 

feedback in enabling the brain to select an appropriate pace and preserve homeostasis 

(Noakes, 2004).  Reports of a linear relationship between RPE and exercise duration 

have prompted the theory that RPE is informed by a subconscious glycogen-based 
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signal during exercise (Noakes, 2004).  It is hypothesised that exercise limited solely by 

energy substrate depletion would be characterised by a rapid increase in RPE towards 

the end of the exercise bout when glycogen stores are critically low, as opposed to the 

observed gradual increase in RPE with a concomitant reduction of glycogen (Tucker, 

2009).  This finding has been provided as evidence of an adjusted work-rate resulting 

from the brain’s conscious interpretation of afferent feedback (Noakes, 2004).   

2.2.2. The role of the brain in exercise regulation 

The different theories of exercise regulation have prompted debate regarding the 

precise role of the brain in the process of exercise regulation (Spurway et al., 2012; 

Amann and Secher, 2010; Marcora, 2009).  Considerable focus has been placed upon 

attempting to determine the limiting factor(s) in exercise performance, with evidence 

both for and against the concept of a central governor.  For example, it is suggested that 

exercise performance in the heat is limited by the body reaching a critical internal 

temperature that threatens homeostasis (Gonzalez-Alonso et al., 1999).  In self-paced 

exercise in the heat, a reduction of power output has been found to occur before the 

body reaches this critical internal temperature, suggesting that increases in RPE may 

prompt a centrally-governed regulation of performance (Nybo and Nielsen, 2001).  

Moreover, a study by Morrison et al. (2004) that involved a series of maximal isometric 

contractions performed at progressively increasing core temperatures from 37.5°C to 

39.5°C reported a corresponding gradual decrease in muscle force. It has been proposed 

that to be consistent with the CAC model, force would instead have remained constant 

until the core temperature reached critical levels (Tucker and Noakes, 2009).  However, 

in extreme cases, a failure of homeostasis as a result of a critical increase in core 

temperature can manifest itself as risk of death from heat stroke in sports such as 

American Football (Mueller, 2003) and endurance running (Roberts, 2007).  In these 
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instances, death from hyperthermia would represent an extreme example of a failure of 

the CGM to limit exercise performance. 

Additional evidence has been presented in support of the respective models of 

exercise regulation.  For instance, an investigation into repeated sprint activity by 

Gaitanos et al. (1993) revealed a curvilinear rate of decline in performance before 

stabilising after approximately 50% of the trials. It is suggested that if metabolite 

accumulation or substrate depletion were the sole limiting factor behind the decline in 

performance, then a continued linear rate of decline would have been evident until the 

participants reached complete exhaustion (St Clair Gibson et al., 2001).  However, this 

theory does not consider the important role of hydrogen ion buffering capacity in 

repeated sprint ability (Bishop et al., 2004) that may provide some explanation for the 

plateau effect observed after 50% of the trials.  Other supporting evidence for the CGM 

has been provided with the observation that individuals have been found to terminate 

exhaustive exercise at altitude with lower rates of cardiac output and lactate 

accumulation when compared to values obtained at sea level (Sutton et al., 1988).  In 

contrast, it has been highlighted that reduced spinal reflex activity, as measured during 

perturbation to the ankle joint, is evident following fatiguing exercise (Jackson et al., 

2009).  Given that spinal reflexes are independent of supraspinal control and are not 

addressed by the CGM, it is, therefore, theorised that the CGM theory cannot fully 

explain all aspects of fatigue and exercise regulation (Weir et al., 2006).  

Addressing the issue of exercise regulation is necessary to appreciate the 

underpinning theory behind the concept of pacing.  It has been argued that each of the 

different regulatory models cannot fully explain the concept of fatigue in all exercise 

scenarios, and therefore attempting to find one theory that encapsulates all possible 

explanations is a somewhat futile endeavour (Weir et al., 2006). Despite the various 

arguments, there appears to be a certain level of agreement that the brain does fulfil 
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some role in regulating exercise, both in terms of perception of physiological status and 

prior experience of exercise stresses (Lambert et al., 2005; Weir et al., 2006; Shephard, 

2009; Noakes 2011; Spurway et al., 2012).  In practical terms, the issue of primary 

concern for this thesis centres on whether self-perception of exertion and exercise 

demands provides an accurate indication of a performer’s capabilities, and thus act as a 

predictor of exhaustion time in a given exercise task.  From the arguments outlined 

above, it is conceivable that an individual’s exercise regulation and pacing is based 

upon two key factors: i) the self-perception of their physiological state at any given 

moment, based on their conscious interpretation of integrated sensory feedback and/or 

efferent commands; ii) the judgment of how long they can maintain the current work-

rate, based on those perceptions.  It is, therefore, worthwhile to identify the various 

factors that contribute to self-perception of physiological state, and the various 

perceptual scales that enable measurement of this construct. 

2.3. SELF PERCEPTION OF EXERCISE DEMANDS 

Perceived exertion is a psychological construct that refers to the interpretation of 

sensations arising from physical activity (Noble and Robertson, 1996), integrating 

afferent cues from peripheral muscles and joints, and the cardiovascular, respiratory and 

central nervous systems (Borg, 1990).  A global explanatory model of perceived 

exertion encompasses a multitude of physiological and psychological factors that 

contribute to a conscious RPE (Noble and Robertson, 1996).  This model proposes that 

changes in physiological function in response to an exercise stimulus provide an initial 

perceptual cue.  Consequently, any requirement to increase tension in respiratory, 

skeletal or cardiac muscle would involve a concomitant increase in efferent commands. 

The resulting corollary discharges are subsequently transmitted to the sensory cortex 

where they are integrated with afferent feedback arising from the exercise task. This 
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perceptual signal is then matched against the individual’s prior experience and 

psychological characteristics in a perceptual-cognitive reference filter. A perceptual 

response is then produced that can be differentiated to the respiratory system, the 

involved limbs, or nonspecific mediators (examples of these are provided in Table 2.1). 

Alternatively, these signals can be combined to produce an overall perceptual response 

for the entire body.   

Cues arising from changes in physiological function have previously been 

categorised as central or local (peripheral) factors (Pandolf, 1978; Mihevic, 1981; Watt 

and Grove, 1993).  Central cues encompass cardio-respiratory sensations, whereas local 

cues relate to feelings of tension in the involved muscles and joints (a more detailed list 

of these perceptual cues is presented in Table 2.1).  In addition, non-specific cues (for 

example, skin and core temperature, and carbohydrate availability) and psychological 

cues (such as motivation and personality disposition) may also influence RPE (Noble 

and Robertson, 1996).  Although strong relationships have been found between RPE 

and factors such as heart rate and blood lactate, correlational evidence does not imply 

causality (Watt and Grove, 1993; Hampson et al., 2001).  Indeed, it has been proposed 

that RPE cannot be consistently explained by any isolated physiological variable, and 

that it results from the integration of multiple sensations (Hampson et al., 2001).  The 

mode and intensity of exercise may dictate which of the different mediators provides the 

dominant contribution to perception in any given situation.  For example, minute 

ventilation and heart rate only become significant predictors of RPE when exercise 

intensity is greater than 75% VO2max (Noble et al., 1986). 
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Table 2.1  Evidence relating to the impact of perceptual cues upon RPE 
Perceptual cue   Evidence 

Central Cues   

Heart rate Supporting 
evidence 

• High correlation between heart rate (HR) and RPE (Skinner 
et al., 1973; Stamford and Noble, 1974) 

  Conflicting 
evidence 

• Pharmacological manipulation of HR does not affect RPE 
(Ekblom and Goldbarg, 1971; Davies and Sargeant, 1979) 

• Eccentric exercise associated with higher RPE than 
concentric exercise at equivalent HR (Pandolf et al., 1978) 

• Cycling at equivalent power outputs produced lower HR but 
higher RPE at a lower cadence (40rpm) in comparison to a 
higher cadence (60 or 80rpm) (Pandolf and Noble, 1973) 

Oxygen uptake Supporting 
evidence 

• Patients receiving beta-blockade demonstrate reduced HR 
but RPE at given percentage of VO2max is not significantly 
different (Ekblom and Goldbarg, 1971) 

  Conflicting 
evidence 

• Eccentric exercise associated with higher RPE than 
concentric exercise at equivalent VO2 (Pandolf et al., 1978) 

• Cycling at equivalent power outputs produced similar VO2 
but higher RPE at a lower cadence (40rpm) in comparison to 
a higher cadence (60 or 80rpm) (Pandolf and Noble, 1973) 

Ventilation and 
respiratory rate 

Supporting 
evidence 

• Respiratory rate and RPE found to be higher at slower vs. 
faster pedalling rates (Robertson et al., 1979) 

  Conflicting 
evidence 

• Higher RPE at a lower cadence (40rpm) vs. higher cadence 
(60rpm), but no change in minute ventilation (Stamford and 
Noble, 1974) 

Local Cues   

Blood lactate level Supporting 
evidence 

• Increase in exercise intensity associated with concomintant 
increases in lactate and RPE (Gamberale, 1972)  

• Comparison of treadmill and cycle ergometer exercise 
reported similar RPE at varying blood lactate levels, despite 
differences in HR and VO2 (Hetzler et al., 1991)  

• RPE values at lactate threshold unchanged after 10-week 
training programme, despite increases in and VO2 work-rate 
(Boutcher et al., 1989) 

  Conflicting 
evidence 

• Lactatc responses during cycling at various cadences did not 
correlate with RPE (Lollgen et al., 1980)  

Blood and/or 
muscle pH 

Supporting 
evidence 

• Lower RPE values reported in alkalotic vs. control 
conditions (Robertson et al., 1986)  

Strain Supporting 
evidence 

• Significantly higher RPE at lower cycling cadence (40rpm) 
in comparison to higher cadences (Pandolf and Noble, 1973; 
Stamford and Noble, 1974) 

• Eccentric exercise produced higher RPE than concentric 
exercise at equivalent HR and VO2 (Pandolf et al., 1978) 
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Muscle damage Supporting 
evidence 

• RPE values reported to be higher at a lower relative 
metabolic cost following muscle damaging exercise (Twist 
and Eston, 2009) 

Non-specific Cues   

Temperature Supporting 
evidence 

• Concomitant increases in RPE and skin temperature evident 
during cycling in hot, neutral and cool conditions (Maw et 
al., 1993) 

Carbohydrate 
availability 

Supporting 
evidence 

• Participants ingesting carbohydrate reported lower RPE 
values during 100-140 mins of cycling in comparison to 
participants ingesting placebo (Kang et al., 1996) 

Catecholamine 
secretion 

Supporting 
evidence 

• RPE found to positively correlate with levels of 
norepinephrine (r = 0.63) and epinephrine (r = 0.54) (Skrinar 
et al., 1983) 

Psychological Cues  

Situational Supporting 
evidence 

• Males found to provide higher RPE responses in the 
presence of a female experimenter (Boutcher et al., 1988) 

• Cyclists provided higher RPE responses when riding at 50% 
VO2max alone in comparison to riding alongside a coactor 
riding at 25% VO2max (Hardy et al., 1986) 

Dispositional Supporting 
evidence 

• Levels of extroversion found to share an inverse relationship 
with RPE (-0.62 to -0.71) (Morgan, 1973) 

• Strong positive correlations observed between associative 
thinking (focusing attention on sensory feedback) and RPE 
during exercise (Schomer, 1986)  

 

One issue evident within this topic area is a degree of ambiguity associated with 

the precise definition of RPE. Traditionally, perceived exertion has been defined as 

including “feelings of effort, strain, discomfort, and/or fatigue experienced during both 

aerobic and resistance exercise” (Robertson, 2001, p. 191). A more recent contrasting 

theory of perceived exertion is provided by Marcora (2009), who postulates that RPE is 

generated by efferent commands and is independent of sensory feedback. Termed the 

‘Corollary Discharge Model’, this has been based on observations of RPE measures 

being maintained or elevated in the absence of afferent cues, as described previously 

(Myers et al., 1987; Winning et al., 1988; Smith et al., 2003).  However, this theory is in 

its relative infancy and a need for further research has been acknowledged (Marcora, 

2009).  In some cases, the terms ‘exertion’ and ‘effort’ appear to be used 

interchangeably (Marcora, 2009; Amann and Secher, 2010; Smirmaul Bde, 2012).   
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Noble and Robertson (1996) provide a distinction between the terms ‘perceived 

exertion’ and ‘perceived effort’. They clarify their interpretation of the term ‘exertion’ 

as the perceived discomfort or strain experienced when performing a given exercise task, 

as opposed to exertion being solely a reflection of effort exerted during physical activity.  

Abbiss and Pfeiffer (2010) suggest that whilst perceived exertion may reflect sensations 

of discomfort, perceived effort may be influenced by previous experience and self-

efficacy in performing an exercise task.  They propose that an ‘end-spurt’ in the latter 

stages of a race would see an increase in perceived effort despite a pre-existing high 

level of perceived exertion.  Conversely, some authors (Marcora, 2009; Smirmaul Bde, 

2012; Swart et al., 2012) have made a distinction between the sensation of exertion and 

the associated feelings of pain and discomfort. In this example, an athlete approaching 

the end of an exhaustive task would simultaneously experience high levels of exertion 

and discomfort.  Immediately upon completion of the task, the level of exertion would 

be minimal whereas the sensation of discomfort would still be elevated.  From 

reviewing this recent literature, a lack of consistency in terminology and clear definition 

of RPE is apparent.  For the purpose of this thesis, use of the term RPE will encompass 

sensations of effort and discomfort arising from exercise, although certain distinctions 

will be made where appropriate. 

2.4. MEASUREMENT OF SELF-PERCEIVED EXERCISE CAPABILITIES 

A number of scales have been developed to enable measurement of RPE. These 

typically require the performer to select a numerical value that corresponds to the 

sensations of effort, discomfort, and possibly fatigue that they are experiencing at that 

moment (Robertson, 2001). However, more recent developments have involved the 

design of scales that request the participant to consciously estimate the time remaining 
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to exhaustion (Garcin et al., 1999) and that to differentiate between exertion and effort 

(Swart et al., 2012). 

2.4.1. 15-point Borg Scale 

The most commonly used measure of RPE is the 15-point scale developed by 

Borg (1982).  This scale was designed to grow linearly in relation to heart rate and 

exercise intensity (Borg, 1990), with the starting value of 6 corresponding to an 

estimated adult resting heart rate of 60 (Borg, 1998).  Numerical values of 6-20 are 

accompanied by various verbal descriptors ranging from ‘no exertion at all’ to ‘maximal 

exertion’.  The scale has been used in numerous studies to provide estimates of RPE in a 

range of exercise modalities. A meta-analysis investigated the validity of relationships 

between the 15-point Borg scale and six physiological variables identified as mediators 

of RPE (Chen et al., 2002).  Mean validity coefficients were reported for heart rate 

(0.62), blood lactate (0.57), VO2max (0.64), VO2 (0.63), ventilation (0.61), and 

respiration rate (0.72).  Given the positive relationship that the 15-point Borg scale 

enjoys with these physiological variables, it has been utilised extensively in exercise 

prescription as a method of monitoring exercise intensity (Noble and Robertson, 1996) 

and also in terms of producing a level of exertion as a guide for the intensity of a 

training programme (Robertson, 2004).   Whilst the scale has also been utilised in 

resistance exercise (Eston and Evans, 2009; Tiggeman et al., 2010; Row et al., 2012), its 

deployment in this setting is limited in comparison to endurance-based exercise, such as 

running or cycling. 

2.4.2. Category-Ratio Scale (CR-10) 

The original purpose of Borg’s category-ratio scale (CR-10) was to provide a 

measure that represented the positively accelerating, non-linear growth function 

associated with the combination of perceived exertion and pain (Borg, 1998). As such, 



 
28 

this scale is recommended for use in exercise that may produce sensations of exertion 

and discomfort in a specific muscle group or area of the body (Buckley and Eston, 

2007).  The numerical 0-10 scale is also accompanied by verbal descriptors, whereby 10 

is defined as “extremely strong” and represents the strongest exertion the participant has 

experienced. A novel feature of this scale in comparison to the 15-point Borg scale is 

the inclusion of a higher ‘maximal’ value.  Whilst this enables participants to select 

ratings of 11, 12 or higher, should the combined sensation of exertion, pain and 

discomfort be greater than experienced previously, this feature could also affect the 

efficacy of inter-individual comparisons, as differences in prior experience could be 

reflected in a wide range of ‘maximal’ responses.  Accordingly, deployment of this 

scale should be restricted to a homogenous sample population, with clear instructions 

provided during its administration.  In order to improve its utility, elements of the CR-

10 scale have been adapted in recent years, such as the re-wording of descriptors to help 

increase understanding for participants (Lloyd et al., 1991; Pincivero et al., 2003a). 

2.4.3. Pictorial RPE scales 

The utility of the 15-point Borg scale in a child population is reliant on a 

combination of age, reading ability, prior experience and level of conceptual 

understanding (Faulkner and Eston, 2008). This has prompted the development of scales 

with a limited numerical range and more common descriptors, such as the Children’s 

Effort Rating Table (Williams et al., 1994) and the pictorial OMNI scales (Robertson et 

al., 2000; Utter et al., 2002). More recently, this theme has been expanded with the 

development of Cart and Load Effort Rating (CALER) and Bug and Bag Effort (BABE) 

rating scales (Parfitt et al., 2007).  With these scales, the inclusion of an accompanying 

pictorial system provides more meaningful references for children that may increase 

understanding and aid in the regulation of exercise intensity (Robertson, 2004).  An 
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additional benefit of the OMNI scale over the 15-point Borg scale is the simplified 

numerical rating range of 0 to 10 that increases ease of understanding (Robertson, 2004).  

Despite being originally designed for children, mode-specific versions of the OMNI 

scale have been validated for use with both children and adults in various forms of 

endurance exercise (Robertson et al., 2004; Utter et al., 2004; Robertson et al., 2005b; 

Mays et al., 2010) and resistance exercise (Robertson et al., 2005a; Lagally and 

Robertson, 2006; Colado et al., 2010). However, Faulkner and Eston (2008) have 

queried which aspect of the pictorial scale (the picture, the location of the picture or the 

magnitude of the number) is afforded the greatest attention by the participant during 

exercise tasks, thus questioning the need for mode-specific OMNI scales. 

2.4.4. Estimated Time Limit Scale 

Rather than employ RPE as a predictor of exercise duration, Garcin et al. (1999) 

focused on whether or not participants could consciously predict exhaustion time.  This 

led to the development of a logarithmic Estimation of Time Limit (ETL) scale.  The 

application of the scale involves participants being asked the question “how long would 

you be able to perform an exercise at this intensity up to exhaustion?” and then 

recording their responses on a scale consisting of values between 1 and 20 ranging from 

“more than 16 hours” (scale point 1) to “2 minutes” (scale point 19).  Since its 

development, utility of the ETL scale has been explored in running (Garcin et al., 2004), 

cycling (Garcin et al., 2011) and in both self-paced and fixed-paced exercise (Garcin et 

al., 2008).  Support has been provided for the test-retest reliability of the ETL scale 

through the use of Pearson correlation coefficients (r=0.95) (Garcin et al., 2003).  

However, this approach of establishing reliability has been criticised as the use of 

correlation coefficients only provide a measure of association as opposed to an 

indication of variability (Lamb et al., 1999).  Establishing the validity of the ETL has 

proved more problematic, with findings indicating a lack of capability of the scale to 
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predict exhaustion time (Garcin et al., 2004; Coquart and Garcin, 2007).  More recently, 

evidence to support the validity of the ETL in a prescriptive context has been provided, 

due to the similarity in work performed during estimation and production tests (Garcin 

et al., 2012).  However, the utility of the ETL scale as a method of prescribing exercise 

intensity is in contrast to its original intended purpose of providing a prediction 

exhaustion time in a given exercise task. 

2.4.5. Task, Effort and Awareness Scale 

More recently, Swart et al. (2012) devised a task, effort and awareness scale 

(TEA) that attempted to distinguish between the sensations arising from exercise and 

the awareness of effort required to perform an exercise task.  The TEA scale requires 

participants to rate the psychological effort required to perform an exercise bout at a 

given intensity.  The authors differentiate this from the traditional 15-point Borg RPE 

scale by instructing participants to provide RPE responses that reflected the physical 

sensations resulting from the exercise as opposed to the psychological demand of 

continuing the task.  In order to enable direct comparison to the 15-point Borg scale, the 

TEA scale employs a 15-point system that ranges from -4 to 10.  The selection of a 

rating of -4 indicates a lack of awareness of any mental effort required to continue the 

exercise task, and therefore an absence of sensations informing the participant to “slow 

down”.  In contrast, a 10 equates to a constant awareness of a severe effort required to 

maintain the current pace that will require the participant to “slow down” (J. Swart, 

personal communication, June 19, 2012).  

 

The TEA and modified 15-point Borg RPE scales were used concurrently during 

both a maximal-effort 100km cycling bout and a sub-maximal 100km cycling bout, 

each containing a series of maximal effort 1km sprints.  Whilst the TEA scale responses 
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were close to maximal (10) following each individual sprint, the RPE responses 

increased progressively with each sprint.  This finding may offer evidence that the TEA 

scale provides a measure of effort that is separate from the physical sensations resulting 

from exercise, which is measured by RPE.  However, this distinction is achieved in part 

by altering the characteristics of the 15-point Borg RPE scale to isolate afferent 

sensations from the efferent commands required to generate ‘effort’.  As such, this 

creates difficulties in comparing these results with other studies that have utilised the 

15-point Borg RPE scale. 

2.5. PERCEIVED EXERTION AND EXERCISE REGULATION 

Whilst the scales described in Section 2.4 have been used in a variety of settings 

to monitor RPE, their utility has also extended to a prescriptive context as a method of 

regulating work-rate (Dunbar et al., 1992; Dishman, 1994; Noble and Robertson, 1996).  

In these instances, performers undertake an estimation-production procedure, whereby 

RPE values are assigned to corresponding intensities in a graded exercise task 

(estimation), and then used to prescribe workloads during subsequent exercise bouts 

(production) (Faulkner and Eston, 2008).  The benefits of this approach to exercise 

regulation are that no costly physiological monitoring equipment is required, and that 

the estimation-production production process is relatively simple for performers to learn 

(Dunbar et al., 1992). Additionally, in instances where an individual has considerable 

experience of a given exercise mode, a production-only method has also been 

recommended that directs the performer to train within a designated ‘training zone’ as 

dictated by their RPE (Robertson, 2004).  The RPE estimation-production paradigm has 

previously been explored in a variety of exercise modes, including cycle ergometry 

(Dunbar et al., 1992; Robertson et al., 2002; Hartshorn and Lamb, 2004), treadmill 

exercise (Dunbar et al., 1992; Green et al., 2002; Kang et al., 2003; Parfitt et al., 2012; 
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Faulkner et al., 2012), stepping (Yelling et al., 2002), resistance training (Row et al., 

2012), and isolated static muscle exercise (Pincivero et al., 2003b).  In addition, this 

method has been recommended for deployment in both clinical (Noble, 1982; Noble 

and Robertson, 1996) and asymptomatic populations (Buckley and Eston, 2007).  

Despite the widespread usage of RPE in the prescription and regulation of exercise, its 

efficacy has been questioned due to a lack of research-based evidence supporting the 

method’s level of reliability (Hartshorn and Lamb, 2004).  Indeed, the RPE production 

paradigm is yet to be recommended by the American College of Sports Medicine as a 

primary method of prescribing exercise intensity, with their position stand highlighting 

a need for greater supporting evidence (Garber et al., 2011).  Hartshorn and Lamb 

(2004) observed unfavourable levels of test-retest reliability for the RPE production 

method across 4 identical effort production cycling trials.  The authors reported an 

unacceptably high coefficient of variation (>10%) that failed to improve with repeated 

trials.  In practical terms, this meant that a power output produced in response to a 

prescribed RPE level on a given day could vary by ±10% in a subsequent trial.  It is 

plausible, however, that the heterogeneous nature of the sample (male and female 

participants of differing fitness levels) may have contributed to the level of variability in 

response.  Notwithstanding these concerns, the RPE estimation-production method has 

been shown to promote gains in cardiovascular fitness.  Parfitt et al. (2012) reported 

significant improvements to VO2max, mean arterial pressure, total cholesterol, and body 

mass index in a sedentary group following 8 weeks of training at an exercise intensity 

equivalent to an RPE value of 13.   

Although the estimation-production paradigm of regulating work-rate can be 

utilised during self-paced exercise, the performance of constant-load tasks requires 

different considerations.  These considerations involve the performer having to estimate 

their RPE at any given point in time, and then making accurate judgements as to how 
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long they can maintain the current work-rate, based on those perceptions.  It is, 

therefore, necessary to explore the existing literature with regard to identifying patterns 

of perceptual response in relation to exercise duration.  This will help to determine the 

capacity of the various perceptual scales for predicting end-point during exercise tasks, 

and consequently provide some indication as to the utility of these scales in the 

regulation of performance during constant-load exercise. 

2.6. SELF-PERCEPTION AS A PREDICTOR OF EXERCISE DURATION 

Numerous studies have reported patterns of change in RPE in response to 

exercise duration (examples of these investigations are summarised in Table 2.2).  A 

linear relationship between RPE and exercise duration in both incremental and constant 

load exercise tasks was first discovered in the 1970s (Morgan and Borg, 1976; 

Horstman et al., 1979).  In practical terms, this would mean that an RPE value selected 

during the early stages of the exercise bout could be used to predict the duration of the 

task.  This concept is of considerable benefit, as establishing a reliable method of 

predicting exercise duration would enable performers to optimise performance in 

anticipation of increasing levels of fatigue, whilst maintaining homeostasis and 

potentially minimising injury risk.  In more recent years, several studies have reported 

further evidence to support a linear relationship between RPE and exercise duration 

(Noakes, 2004; Albertus et al., 2005; Eston et al., 2007; Crewe et al., 2008; Faulkner et 

al., 2008; Joseph et al., 2008; Davies et al., 2009).  However, when examining these 

studies in greater detail it is apparent that a variety of approaches have been adopted to 

explore the patterns of RPE response.  It is beneficial to present some detailed examples 

of these different methods, in order to provide scope for comparing investigations and 

evaluating key findings. 
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Table 2.2  Approaches to the exploration of exercise duration in relation to self-perception measures 
 

Authors Participants Familiarisation/ 
pre-testing session(s) Exercise protocol Scale Key findings 

Morgan and 
Borg (1976) 

30 adult males 
(no description of 
training background) 

No details of 
familiarisation procedures 

Incremental cycling task 
performed to volitional 
exhaustion 

Borg 15-point 
RPE scale 

Linear increase of RPE as a function of 
increase in work (R = 0.65). 

Horstman et 
al. (1979) 

26 adult males  
(no description of 
training background) 

Participants familiarised 
with treadmill walking and 
running prior to testing 

Maximal walking and running 
trials performed at 80% VO2max to 
volitional exhaustion  

Borg 15-point 
RPE scale 

Early pattern of RPE can be used as a 
predictor of exhaustion time (linearity 
observed via descriptive statistics). 

Garcin et al. 
(1999) 

51 male athletes 
(no detail of sporting 
background) 

No details of 
familiarisation procedures 

Incremental cycling task 
performed to volitional 
exhaustion 

Borg 15-point 
RPE scale 
and ETL scale 

ETL was linearly related to time up to VT (r = 
0.99). 
Trend analysis revealed a steeper rise in ETL 
response above VT. 
ETL recommended in conjuction with RPE to 
predict VT. 
 

Garcin et al. 
(2004) 

20 endurance-trained 
males (8 high fitness 
level; 12 moderate 
fitness level) 

Incremental VO2max test 
performed on running 
track 

Constant speed running trial to 
volitional exhaustion  (regulated 
by pacing cyclist) 

Borg 15-point 
RPE scale 
and ETL scale 

No significant differences in RPE or ETL 
response between groups. 
Linear extrapolation of RPE and ETL values 
obtained at minutes 2 and 4 did not predict 
exhaustion time. 
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Authors Participants Familiarisation/ 
pre-testing session(s) Exercise protocol Scale Key findings 

Noakes, (2004) 
{using data 
from Baldwin 
et al., 2003} 

7 endurance-trained 
males 

No familiarisation session 2 constant load cycling tasks 
performed to volitional 
exhaustion in (i) a glycogen 
loaded state, and (ii) a glycogen 
depleted state 

Borg 15-point 
RPE scale 

Linear increase of RPE with time (linearity 
observed via descriptive statistics). 

Albertus et al. 
(2005) 

15 competitive 
endurance-trained 
male cyclists 

Cycle ergometer test to 
determine peak power 
output and separate 
familiarisation of time-trial 

4 cycling time-trials with varied 
deception of distance feedback 

CR-10 scale Deception of distance feedback had no 
significant effect on RPE. 
Linear increase of RPE with time (r = 0.96). 

Marcora and 
Bosio (2007) 

24 male and 6 female 
participants with 
background in 
distance running 

VO2max test 2 running time-trials 
with participants randomly 
assigned to a muscle damage or 
control condition 

Borg 15-point 
RPE scale 

Muscle damage had no significant effect on 
RPE. 
Linear increase of RPE with time (linearity 
observed via visual inspection of data - not 
discussed by authors). 

Eston et al. 
(2007) 

10 physically active 
males 

Incremental exercise test 
performed prior to first 
cycling task 

3 constant load cycling tasks to 
exhaustion performed in fatigued 
(x1) and control (x2) conditions  

Borg 15-point 
RPE scale 

No significant difference in the rate of increase 
of RPE between fatigue and control conditions 
when time is expressed as %. 
RPE concluded as exhibiting a scalar time 
property 

Crewe et al. 
(2008) 

7 well-trained male 
cyclists 

Cycle ergometer test to 
determine peak power 
output 

5 constant load cycling tasks 
performed to volitional 
exhaustion in hot (x2) and cool 
conditions (x3) 

Borg 15-point 
RPE scale 

Linear increase in RPE predicts duration of 
exercise to exhaustion at a fixed workrate in 
different ambient conditions (r = 0.97). 
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Authors Participants Familiarisation/ 
pre-testing session(s) Exercise protocol Scale Key findings 

Faulkner et al. 
(2008) 

5 males and 4 females Laboratory-based 
incremental treadmill test 

Competitive half marathon race 
and 7-mile race  

Borg 15-point 
RPE scale 

No significant differences in RPE between races 
when time is expressed as %. 
Linear relationship between RPE and time. 

Joseph et al. 
(2008) 

i) 10 well-trained 
recreational cyclists (7 
male, 3 female) 
 
ii) 10 well-trained 
recreational cyclists (7 
male, 3 female) 

i) Incremental VO2max test 
and practice cycling time-
trials at 2.5, 5 and 10km 
 
ii) Incremental VO2max test 
and practice 5km cycling 
time-trial 

i) Cycling time-trials over 2.5, 5 
and 10km 
 
ii) 3 5km cycling time-trials 
performed in blinded hypoxic 
(x2) and control (x1) conditions 

 CR-10 scale No significant differences in RPE at any relative 
distance within any trial. 
RPE concluded as exhibiting a scalar time 
property (observed via visual inspection of 
data).  

Davies et al. 
(2009) 

10 physically active 
males 

Incremental VO2max 
cycling test 

Cycle task to exhaustion both 
prior to and 48 hours subsequent 
to an eccentric muscle damaging 
protocol 

Borg 15-point 
RPE scale 

No significant differences in RPE between 
conditions when time is expressed as %. 
Evidence to support the scalar-linear 
relationship between RPE and exercise duration 
(observed via visual inspection of data). 

Swart et al. 
(2009) 

i) 12 well-trained 
competitive cyclists 
 
ii) 6 well-trained 
recreational cyclists 

Incremental VO2max 
cycling test and 
familiarisation with RPE 
scales   

i) 5 40km cycling time-trials: 
feedback withheld during trials 1-
4 except for completed distance;  
all feedback during trial 5 
withheld until final km 
 
ii) 4 time-trials over 5, 10, 40 and 
100km 

i) Borg 15-point 
RPE scale 
 
ii) CR-10 scale 

i) Increase in linearity of RPE over time across 
first 4 trials. Reduced linearity in Trial 5 
attributed to withheld feedback. 
 
ii) RPE during 5km trial was significantly 
higher than during 40 and 100km trials. 



 
37 

Authors Participants Familiarisation/ 
pre-testing session(s) Exercise protocol Scale Key findings 

Pereira et al. 
(2011) 

8 male team games 
players (basketball, 
football and 
volleyball) 

Participants established 
maximum jump height and 
performed practice test of 
40 jumps and familiarised 
with RPE scale 

3 jumping tasks performed on 
separate days, with designated 
rest periods of  s, 5 s and 6 s 

Borg 15 point 
RPE scale 

Linear relationship reported between adjusted 
RPE data and jumps completed (based on 
comparison of linear and quadratic regresseion 
models). 

Swart et al. 
(2012) 

7 trained competitive 
male cyclists 

Incremental VO2max 
cycling test, familiarisation 
time-trial and 
familiarisation with RPE 
and TEA scales   

2 100km time-trials: i) self-paced 
maximal time-trial incorporating 
5 maximal effort 1km sprints; ii) 
submaximal (70% peak power) 
100km time-trial incorporating 5 
maximal effort 1km sprints 

Borg 15 point 
RPE scale and 
TEA scale 

Linear increase in RPE during maximal time-
trial (observed via visual inspection of data). 
TEA scores were disassociated from RPE scores 
following maximal effort sprints. 
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Noakes (2004) analysed data from a previously published study by Baldwin et al. 

(2003), whereby participants performed two submaximal cycling trials to volitional 

exhaustion in both a glycogen-depleted and glycogen-loaded state.  Although 

participants were able to cycle for 34% longer in the glycogen-loaded state, the linear 

relationship between RPE and task duration was evident in both conditions.  In addition, 

when the RPE data points were re-plotted as a proportion of the total trial duration, the 

linear relationships for both trials overlapped.  From visual inspection of the scatter-

plots, linearity appeared to be established via a linear regression of the group mean data, 

although no specific method of statistical analysis was reported.  A key conclusion 

emanating from this study focused on the potential impact of a subconscious glycogen 

signal informing the conscious RPE response. It has been postulated that if exercise was 

solely limited by the depletion of energy substrates, then RPE responses in fixed work-

rate tasks of this nature would be characterised by a rapid increase towards the end of 

the exercise bout when glycogen stores were depleted to critically low levels (Tucker, 

2009).  As such, these findings were provided as evidence in support of the CGM theory 

of exercise regulation (Noakes, 2004).  

 

A study by Eston et al. (2007) explored the influence of antecedent fatigue on 

RPE responses in a subsequent cycling task.  Participants were required to complete a 

total of three constant load cycling trials to volitional exhaustion, the first of which was 

performed in a fatigued state, with participants having undertaken a prior bout of 

exhaustive exercise. The remaining two trials were performed at the same workload, but 

in a non-fatigued state.  Raw RPE values were regressed against time for the three trials, 

and revealed the rate of RPE increase to be significantly higher in the fatigued condition. 

Similarly to the findings of Noakes, no significant differences in perceptual responses 

were observed between conditions when time was expressed as a proportion of the total 
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duration. This led the authors to conclude that RPE was set at the beginning of the 

exercise task using a scalar internal timing mechanism, and that RPE could therefore be 

used to predict the duration of an exercise bout.  The analysis of the raw RPE data for 

all participants was in contrast to the mean values utilised by Noakes (2004). As such, 

an appreciation of the pattern and spread of data can be gleaned from visual inspection 

of the scatter plots.  However, the authors did not indicate as to whether alternative 

models such as a polynomial regression were tested in order to establish the most 

appropriate fit.  Furthermore, there was a degree of ambiguity regarding the precise 

method used to establish the scalar time property of RPE, as the authors describe 

regressing the RPE values for each individual, yet appear to present a regression based 

on the group responses. 

Whilst the studies by Noakes (2004) and Eston et al. (2007) centred on 

relationship between RPE and exercise duration, Garcin et al. (1999) focused on 

whether or not participants could consciously predict exhaustion time, by utilising the 

ETL scale in addition to RPE during an incremental cycling task to volitional 

exhaustion.  Linear regressions revealed that ETL values rose linearly up to the 

ventilatory threshold (VT) (r = 0.99; p < 0.01), but a steeper rate of increase in ETL 

response was observed above the VT.  As such, the ETL scale was deemed 

inappropriate for incremental exercise above the VT.  However, no statistical results 

were reported for ETL responses above VT, and the relationship between RPE and 

duration was not discussed. Based on previously observed RPE values at VT, the 

authors proposed an expected lower limit of RPE and ETL values that would be 

expected at this time point (RPE ≤ 14; ETL ≤ 8). When comparing the values at VT, 

21.5% of participants recorded RPE of ≤ 14, whereas 15.6% recorded ETL of ≤ 8.  

However, when the two scales were combined, less than 10% of participants recorded 

values of ≤ 14 (RPE) and ≤ 8 (ETL).  The authors therefore concluded that the 
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combination of RPE and ETL could provide a more precise detection of the VT than 

either measure used in isolation. However, the practical application of this proposal is 

unclear. It is plausible that, at a given time point, a performer may simultaneously 

provide contrasting RPE and ETL responses in relation to the respective values 

expected at VT (for example, RPE > 14 and ETL < 8).  In this instance, it is not clear 

which scale would provide the best detection of VT, and therefore whether the 

perception of exertion should supersede the estimation of time remaining, or vice versa. 

Moreover, the different rates of increase between RPE and ETL, and their respective 

relationships with time, may create further problems when attempting to use both 

measures in conjunction to predict VT. 

Further investigation into the utility of the ETL scale studied the effect of fitness 

levels on RPE and ETL responses obtained at 2-minute intervals throughout a constant 

speed running task to exhaustion (Garcin et al., 2004).  In addition, the authors sought to 

explore whether RPE and ETL responses in the early stages of the trial (recorded at 2 

and 4 minutes) could be used to predict exhaustion time.  Despite a degree of ambiguity 

in the presentation of some results significant correlations were evident between the 

proportion of task duration and RPE (r = 0.54 to 0.84; p < 0.01) and ETL (r = 0.58 to 

0.61; p < 0.01).  However, linear extrapolation of RPE and ETL values obtained at 

minutes 2 and 4 of the running trial were not found to predict exhaustion time.  This 

finding contrasts with the conclusions presented by Noakes (2004) and Eston et al. 

(2007), which postulate that RPE responses could be utilised to predict the end-point of 

an exercise task.  In addition, the findings of Garcin et al. (2004) have received less 

attention in related literature, and possibly detract from the argument in support of the 

CGM model of exercise regulation. 

Whilst the vast majority of previous literature has focused on prolonged running 

and cycling tasks, Pereira et al. (2011) explored patterns of RPE response in an 
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intermittent vertical jumping protocol.  The participants performed three vertical 

jumping tasks, involving repeated jumps at 95% of their maximal jump height until they 

were unable to reach the target.  RPE was recorded throughout and plotted as a 

proportion of the total exercise duration.  In order to establish the most appropriate fit to 

their data, the authors applied both a linear and quadratic regression model to their 

findings. With the linear model demonstrating the best fit, a comparison of the 

regression slopes showed no significant difference between conditions. The authors then 

opted to combine the data to produce one slope for all three conditions. This was then 

re-plotted as ‘adjusted’ data that illustrated a linear relationship. It was therefore 

concluded that RPE could act as a predictor of duration in intermittent jumping 

activities.  However, the manipulation of the data creates some confusion with regard to 

this key finding. The linear slopes presented on the ‘adjusted’ data conflict with visual 

inspection of the ‘raw’ data, which suggests a more curvilinear trend for two of the 

jumping tasks.  In addition, no method was used to establish whether significant 

differences were evident for the RPE values obtained at each time point across the three 

conditions. Moreover, it was not specified whether other regression models were tested 

for goodness of fit alongside the linear and quadratic models. Indeed, had a higher order 

polynomial regression provided a better fit than the quadratic function, much of the 

subsequent analysis would have been rendered superfluous.  In addition, although team 

games players were recruited for this study, the participants had received no specific 

training in jumping activities.  Unaccustomed exercise involving repeated eccentric 

muscle activations, such as multiple jump landings, is typically associated with 

increased muscle damage (McHugh et al., 1999).  As such, the performance of ~100 

jumps during the task may well have induced muscle damage in some of the 

participants.  Whilst each testing session was separated by a minimum of 72 hours, this 

may have been insufficient time for the associated performance impairments and 
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symptoms of muscle soreness to subside (Marginson et al., 2005) and may have 

consequently impacted upon both jump performance and RPE responses. 

 

An alternative approach to analysing patterns of RPE response was provided in 

an analysis of five 40 km self-paced cycling time-trials (Swart et al., 2009).  During the 

first four trials, all feedback except for completed duration was withheld from the 

participants.  During, the fifth trial, all feedback including completed distance was 

withheld until the participants had completed 39 km, when they were informed that they 

had 1 km remaining to complete (unknown time-trial [UTT]).  Significant differences in 

RPE response were reported between trial one (T1) and trial four (T4) and also between 

T4 and UTT.  The RPE values for the first four time-trials demonstrated a non-linear 

pattern of increase in relation to distance completed, with all trials exhibiting a 

noticeably steeper increase in RPE during the latter stages of each trial. Given the self-

paced nature of the time-trial, this late burst is consistent with the end-spurt 

phenomenon described previously.  In addition, the observed pattern of increase of RPE 

during T4 differed from that observed for UTT.  In an attempt to quantify the extent of 

linearity of these relationships, the authors calculated and plotted a linear regression line 

to the data for each of the five trials. In addition, they plotted a 4th order polynomial 

regression (determined as the most appropriate fit for RPE vs. time) over the linear 

regression line. A ‘linearity score’ was achieved by calculating the sum of residuals 

(root of differences squared) of the deviation of the polynomial curve from the linear 

regression (thus a lower score indicating greater linearity). Linearity was found to 

improve with experience, with progressively lower scores reported from T1 to T4. 

However, a substantial reduction in linearity was evident from T4 to UTT, attributed to 

the increased uncertainty of the completed distance. The linearity scores also 

demonstrated a significant relationship with mean power output of the time-trials (r = 
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0.95; p < 0.01).  These findings led the authors to conclude that greater linearity resulted 

from increased experience of the task, leading to the implementation of a more effective 

pacing strategy that in turn enabled a better performance.  This would appear to provide 

additional support for the CGM theory of exercise regulation, and is further borne out 

by the reduced linearity reported for UTT, where all feedback was withheld from 

participants until the final 1 km. This would suggest that the uncertainty led to a more 

conservative pacing strategy, and therefore a sub-optimal time.   

2.6.1. Conclusions from research into the predictive capacity of RPE 

It is evident from the current literature that there is a lack of a consistent method 

for establishing the capacity of perceptual measures to predict exercise duration.  Whilst 

some studies provide basic correlations in conjunction with visual inspection of the data 

in order to establish relationships between the variables (Noakes, 2004; Crewe et al., 

2009), other studies adopt a more complex approach, utilising various regression 

analyses to explain findings (Eston et al., 2007; Faulkner et al., 2008; Pereira et al., 

2011).  Additionally, some studies compared raw data from all participants (Eston et al., 

2007; Faulkner et al., 2008), whereas others opted to analyse group mean data (Noakes, 

2004; Crewe et al., 2009; Swart et al., 2009). Moreover, there is also a degree of 

ambiguity when comparing the descriptions of some statistical methods with the 

eventual results, and a lack of consistent terminology is apparent between studies.  

Although some of the methods outlined in Table 2.2 may demonstrate greater 

complexity in their analysis, this does not necessarily translate into a clearer message 

that enables greater ease of understanding.  When deciding upon the most appropriate 

method of data analysis, it is therefore important to remember the primary research 

question.  In practical terms, the area of focus within this thesis is concerned with 

whether self-perception can accurately predict exercise duration.  In this respect, it can 

be argued that the more complex methods of analysis outlined above do not provide any 
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additional insight over and above visual inspection of the descriptive data.  For example, 

whilst the manipulation of data in the study by Pereira et al. (2011) allowed the authors 

to report findings that were consistent with established concepts presented by much of 

the related literature, their approach arguably provides a simplified and somewhat 

misleading picture of the nature of the relationship between RPE and exercise duration 

during intermittent jumping exercise. 

Despite the methodological differences between studies, an overriding theme 

evident across all of the reported findings is the potential capacity of perceptual 

measures to predict exercise duration.  The bulk of existing research to explore this 

relationship has focused on prolonged running and cycling tasks, with majority of 

findings appearing to support the concept of self-perception as a predictor of time to 

exhaustion.  However, this has not been supported by all studies, as evidenced by the 

findings from Garcin et al. (2004).  In addition, the recent study of vertical jumping 

(Pereira et al., 2011) tasks has also produced some questionable findings in this regard.  

Many of the studies outlined in Table 2.2 used endurance-trained participants, or failed 

to specify training background.  It is plausible that performers with greater prior 

experience of a certain mode of training may be more adept at utilising self-perception 

to regulate performance.  As a consequence of their prior experience, endurance trained 

participants will potentially have greater familiarity with the sensations of exertion 

arising from prolonged cycling or running activity than recreational athletes or team 

games players.  It could therefore be argued that studies involving endurance-trained 

participants performing a relatively familiar endurance-based task would exhibit a 

stronger linear relationship between RPE and exercise duration than if the study had 

been conducted with novice performers.  Indeed, Swart et al. (2009) demonstrated that 

even well-trained cyclists produce an increasingly linear pattern of RPE responses as 

they benefit from greater experience of a cycling time-trial.   
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Although Garcin et al. (2004) concluded that fitness level did not impact upon 

the capability of self-perception to predict exercise duration, it should be noted that 

fitness level is not necessarily reflective of prior experience.  As such, the strength of 

this relationship in novel or alternative modes of exercise has yet to be established.  

Furthermore, given the wide-ranging factors that contribute to RPE (Noble and 

Robertson, 1996), it is plausible to expect that manipulation of one or more factors 

could lead to a subsequent disruption of exercise regulatory capabilities. Studies that 

have manipulated glycogen levels (Noakes, 2004), fatigue levels (Eston et al., 2007), 

environmental conditions (Crewe et al., 2009), muscle damage (Marcora and Bosio, 

2007; Davies et al., 2009) and deception of distance feedback (Albertus et al., 2005) 

were found to have no effect on the observed linear relationship between RPE and 

duration, suggesting that, in these instances, the performers were able to accurately 

interpret afferent feedback and adapt pacing accordingly. However, this list is far from 

exhaustive, and other examples could provide greater disturbance to perceptual 

capabilities.  An instance of synovial joint injury such as an ACL rupture could provide 

a heightened example of a disturbance to perceptual mechanisms, where the 

combination of injury, surgery and associated de-conditioning of the surrounding 

musculature may disrupt homeostasis and thus provide altered sensory feedback. 

2.7. THE IMPACT OF INJURY AND SURGERY ON SELF-PERCEIVED 

KNEE-JOINT PERFORMANCE 

ACL injury is prevalent in multi-sprint sports including basketball, soccer and 

American Football (Magnussen et al., 2009), with a rupture typically occurring during 

athletic movements such as landing or changing direction, where the knee is placed 

under extreme translational and rotational stress (Griffin et al 2006; Quatman et al., 

2010).  Evidence suggests that the majority of individuals who have suffered an ACL 
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injury will experience knee instability upon their return to previous activity levels and 

will, therefore, require surgery (Hurd et al., 2008).  There are an estimated 80,000-

250,000 ACL injuries (Griffin et al., 2006) and approximately 100,000 ACL 

reconstructive surgeries performed annually in the US (Brown and Carson, 1999).  The 

cost of ACL reconstructive surgery and associated rehabilitation has been estimated at 

over $17,000 (Paxton et al., 2010), with total costs of surgery approaching an estimated 

$1 billion per year (Flynn et al., 2005).  Although return to full activity is estimated at 

6-9 months following surgery (Beynnon et al., 2005), a study by Ardern et al. (2011b) 

identified that 67% of patients have not returned to competitive sport by 12 months 

post-surgery.  In order to achieve an optimal recovery time, a patient is required to 

adhere to a progressive rehabilitation schedule, comprised of a variety of exercise 

modalities (an example schedule of rehabilitation is presented in Figure 2.2).  Given that 

most ACL-reconstructed patients will only benefit from limited contact time with a 

physiotherapist (Coppola and Collins, 2009), it therefore becomes important for patients 

to be able to accurately self-perceive changes in physical capability.  If a patient’s self-

perceived knee function provides an underestimation of their functional capabilities, 

then this might lead to an overly cautious approach to their rehabilitation and possibly 

prompt a sub-optimal performance due to premature cessation of discrete exercise bouts.  

The cumulative effect of multiple sub-optimal sessions performed over a sustained 

period may result in an extended rehabilitation and ultimately delay return to sport.  

Considering the implications of increased treatment costs and extended absence from 

competitive sport, it is desirable for patients to optimise their rehabilitation and 

accelerate the recovery process whilst avoiding re-injury to the knee.  However, the 

process of initial trauma, through to the surgical intervention and rehabilitation creates 

an inevitable disruption to the knee joint that might subsequently impact upon self-
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perceived capabilities and the associated implications for exercise regulation.  These 

potential disruptions are detailed in subsequently. 

2.7.1. Impact of surgical intervention 

2.7.1.1. Method of reconstructive surgery 

There are a number of available methods for ACL reconstructive surgery, with 

the choice of replacement graft depending on factors such as the patient’s activity levels 

and the expertise and preference of the surgeon (West and Harner, 2005).  The most 

common surgical methods involve the harvesting of donor tissue from the patella 

tendon or semitendinous tendon (Wright et al., 2010).  The patella tendon is the 

common tendon for the quadriceps muscle group (comprising the rectus femoris vastus 

lateralis, vastus medialis and vastus intermedius muscles) that act as extensors of the 

knee joint (Floyd, 2007).  A bone-patella tendon-bone (BPTB) graft utilises the central 

third of the patella tendon with adjacent bone blocks from the tibia and femur (Kousa et 

al., 1995). It is suggested that the bone-to-bone fixation promotes an increased rate of 

healing in comparison to semitendinosus grafts (Carmichael and Cross, 2009).  One 

drawback to this procedure is evidence of a trend towards patellofemoral joint pain in 

patients (Forster and Forster, 2005). In addition, the disruption to the patella can lead to 

incidences of pain when kneeling (Aune et al., 2001).  The semitendinosus is part of the 

hamstrings muscle group (also comprising the biceps femoris and semimembranosus 

muscles) that acts to flex and also medially rotate the knee (Hamill and Knutzen, 2003).  

A semitendinosus graft may be less painful than the BPTB graft (Goldblatt et al., 2005). 

However, reduced power in the hamstring musculature has been reported in patients 

who have undergone this method of reconstruction (Forster and Forster, 2005).  Given 

the important role fulfilled by the semitendinosus in reducing tibial translation and 

rotation, this procedure is less favoured for athletes who require dynamic stability of the 

knee during sporting actions (Carmichael and Cross, 2009).  Whilst there is agreement 
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that BPTB and semitendinosus grafts provide similar functional outcomes (Forster and 

Forster 2005; Herrington et al., 2005; Krych et al., 2008), both procedures provide an 

inevitable disturbance to the respective donor tendon, and also weakness in the involved 

musculature (Yasuda et a., 1992; Forster and Forster, 2005).  The patient has to interpret 

any subsequent changes in afferent feedback relating to tension and pain, and integrate 

these with other perceptual cues in order to form a perceptual response from which to 

make accurate judgments pertaining to work-rate and pacing. 

2.7.1.2. Changes to ACL sensory function 

A number of mechanoreceptors are present in an intact ACL that serve to 

provide sensory feedback, and help to inform decisions about positioning and 

movement of the knee joint (Solomonow, 2006).  Activation of these nerve fibres 

(detailed in Table 2.3) may influence activity in the surrounding musculature to help 

provide stability (Duthon et al., 2006).   

Table 2.3  Sensory receptors present in the ACL 

Receptor Description 

Ruffini receptors Sensitive to stretching and provide information on 
static joint position, intra-articular pressure and 
amplitude and velocity of joint rotations (Enoka, 
2002). 

Golgi Tendon-like receptors Located near the attachments of the ACL, and provide 
information on changes in tension, particularly at 
extremes ranges of movement (Schultz et al., 1984). 

Vater-Pacini receptors  Sensitive to rapid movements and are therefore able to 
detect acceleration and deceleration of a joint 
(Solomonow and Krogsgaard, 2001). 

Free-nerve endings (nociceptors) React to abnormal deformation of tissues, such as 
compression and stretching, and provide sensations of 
pain (Solomonow and Krogsgaard, 2001). 

 

Although receptors present in the ACL only form a small proportion of the total 

number of mechanoreceptors found in the entire knee joint (Hogervorst and Brand, 

1998), there is evidence to suggest that they fulfil an important role in producing a 
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ligamento-muscular protective reflex. Pulling the ACL has previously been found to 

elicit an excitatory reflex in animal hamstring muscles (Solomonow et al., 1987; 

Miyatsu et al., 1993; Raunest et al., 1996). In human cases, direct electrical stimulation 

of the ACL has been found to produce an excitatory response in the hamstring muscles, 

with an estimated latency ranging between 50-180 ms (Dyhre-Poulsen and Krogsgaard, 

2000; Tsuda et al., 2001).  In other instances, the application of anterior tibial shear 

force has also been found to elicit a muscular response from the hamstrings (Beard et al., 

1993; Friemert et al., 2009).  It has been theorised that the latency of this reflex 

response is too slow to produce sufficient muscular force to prevent injury (Dyhre-

Poulsen and Krogsgaard, 2000; Duthon et al., 2006). It is therefore proposed that the 

sensory input from the mechanoreceptors in the ACL act as part of a feed-forward 

motor control mechanism, comprised of afferent information from a range of sources 

that could include the involved musculature and visual feedback (Krogsgaard et al., 

2002).  Whilst it difficult to differentiate the contribution of the ACL from the afferent 

feedback provided by other knee joint structures and the surrounding musculature 

(Friemert et al., 2009), individuals with ruptured ACLs have displayed significantly 

increased reflex latencies, with mean values of 98.8 ms vs. 52.7 ms for injured and non-

injured limbs, respectively (Beard et al., 1993).  More pertinently, it has been suggested 

that a reconstructed ACL is not fully re-innervated and that the ligamento-muscular 

reflex is not restored to its pre-injury level (Krogsgaard et al., 2011). 

The reduced sensory feedback from a replacement graft may also be linked with 

changes in joint position sense that have been reported in ACL-reconstructed knees 

following reconstructive surgery (Katayama et al., 2004).  These changes suggest an 

impaired ability to replicate joint angles, which may have associated implications for 

the performance of sport-specific movement skills such as landing and changing 
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direction.  However, the clinical relevance of the magnitude of the errors in angle 

replication has recently been questioned (Gokeler et al., 2012). 

2.7.2. Post-operative rehabilitation 

Post-operative rehabilitation needs to strike the correct balance between 

restoring knee joint and muscle function, without compromising the integrity of the 

reconstructed ACL as it undergoes the lengthy process of ligamentisation (Marumo et 

al., 2005).  This healing process consists of initial necrosis of the donor tissue, followed 

by revascularisation and remodelling of the graft (Ntoulia et al., 2011).  Immediately 

post surgery, the replacement graft has a tensile strength greater than that of the original 

ACL (Grodski and Marks, 2008).  However, the graft then progressively weakens as a 

consequence of tissue degeneration and micro-ruptures due to a lack of blood supply 

(Tohyama et al., 2009). Revascularisation commences with the formation of new blood 

vessels evident at 8-weeks post-surgery (Clancy et al., 1981).  This prompts a 

remodelling phase that enables the graft to develop biological and biomechanical 

characteristics that resemble an intact ACL, in a process that may take longer than 2 

years (Janssen et al., 2011).  It is hypothesised that the combination of the 

revascularisation process and the progressive increase in stress provided by the 

rehabilitation programme causes the new graft to adapt and increase in strength 

(Beynnon, 2005).  However, if a rehabilitation programme is too aggressive, it could 

compromise the integrity of the ACL graft, resulting in increased knee laxity (Marumo 

et al., 2005).  The challenge for the patient is to therefore optimise the rehabilitation 

process in order to achieve an expeditious return to full activity whilst minimising 

undue strain to the reconstructed ACL.   

An example post-operative ACL rehabilitation programme is presented in Figure 

2.2. During the early post-operative stages, a primary aim is to commence quadriceps 
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and hamstring exercise in order to limit muscle atrophy (Kvist, 2004; Grodski and 

Marks, 2008; van Grinsven et al., 2010).  This is initially achieved through isometric 

(static) closed chain (0° to 60° knee flexion) and open chain (40° to 90° knee flexion) 

exercises without additional loading, performed in a restricted range of motion in order 

to minimise strain on the graft (Grodski and Marks, 2008; van Grinsven et al., 2010). 

Another important aim of early post-operative rehabilitation is to reduce swelling and 

inflammation around the knee (van Grinsven et al., 2010).  Swelling has been 

implicated in muscle atrophy, potentially due to producing an inhibitory mechanism 

(Hopkins and Ingersoll, 2000; Rice and McNair, 2010). Additionally, inflammation 

provokes stimulation of free nerve endings resulting in an increased pain response that 

may also contribute to muscle inhibition (Rice and McNair, 2010).  Attention is also 

focused on the restoration of range of motion during this initial phase of rehabilitation, 

due to proposed benefits in reducing pain and patellofemoral problems, and enabling a 

normal gait pattern (van Grinsven et al., 2010).  Achievement of the required goals of a 

given phase is a prerequisite for advancing onto the subsequent stage of rehabilitation, 

with increases in intensity determined by the patient’s response to training and the 

levels of pain and swelling that they experience (van Grinsven et al., 2010).  As knee 

function is gradually restored, exercise becomes progressively more dynamic with a 

return to straight-line running within 2 to 3 months (Kvist, 2004).  However, at this 

corresponding phase of rehabilitation, the ACL graft has yet to complete the 

revascularisation process (Ntoulia et al., 2011) and demonstrates substantially increased 

laxity (Beynnon et al., 2005).  A risk during this stage is that an increased level of 

patient confidence in their knee function may prompt an overly aggressive approach to 

their rehabilitation, thus compromising the integrity of the graft by exposing it to 

avoidable trauma (Stanish and Lai, 1993).  Conversely, a fear of re-injury evident 

amongst some patients may prompt an avoidance of more dynamic modes of exercise 
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and ultimately result in a sub-optimal approach to their rehabilitation (Heijne et al., 

2007).  A further consideration is that changes in knee function following ACL surgery 

are not immediately perceived by patients, but are instead noticed subsequent to 

‘testing’ the knee in functional activities (Gleeson et al., 2008a).  Given that self-

perceived performance capabilities may be integral to the pacing process, latency in 

acknowledging functional improvements may also prompt the application of an 

inappropriate pacing strategy to rehabilitative tasks. 
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! 

Figure 2.13  Timeline of example post-operative ACL rehabilitation schedule (adapted from R.J.A.H. Orthopaedic and District NHS Trust, 2007) 
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2.7.2.1. Re-education of muscle recruitment patterns and motor skills 

It has been theorised that low levels of hamstring activity allied to high levels of 

quadriceps activity during landing and cutting activities may produce displacement of 

the tibia and consequently increase risk of ACL injury (Griffin et al., 2006).  With 

increased hamstring activation having been demonstrated to reduce strain on the ACL 

(Fleming et al., 2005), a coordinated co-activation of the hamstrings and quadriceps 

muscles may therefore be important in reducing potentially harmful motions and 

loadings on the knee joint (Alentorn-Geli et al., 2009).  Video analysis has estimated 

that ACL injuries occur <50ms following initial ground contact (Krosshaug et al., 2007).  

Consequently, it has been proposed that this time-frame is insufficient for individuals to 

generate force, and that instead muscles are recruited in anticipation of a given 

movement using a feedforward mechanism (Hewett et al., 2005).  During post-operative 

ACL rehabilitation, focus is given to the re-education of optimal muscle recruitment 

patterns and motor skills, with the aim of developing anticipatory hamstring muscle 

activation prior to jump landing activities (Fagenbaum and Darling, 2003).  Indeed, 

athletes with a history of ACL injury have been shown to exhibit increased hamstring 

activation during landing and direction changing, attributed to subconscious adaptations 

to motor programs and muscle recruitment patterns (Riemann and Lephart, 2002).  

Several intervention studies support the notion that re-educating the knee joint and 

developing optimal movement patterns may substantially reduce risk of ACL injury 

(Myklebust et al., 2003; Mandelbaum et al., 2005; Olsen et al., 2005).   

The selection of surgical procedure, as discussed previously, may present 

additional implications for the patient with regard to muscle recruitment and motor skill 

development.  Given their role in reducing anterior translation and lateral rotation of the 

tibia, a semitendinosus tendon graft may compromise the effectiveness of the 

hamstrings as dynamic stabilisers of the knee joint (Bonci, 1999).  Ultrasonic 
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investigations have found that the semitendinosus tendon is only fully regenerated after 

18 months post surgery (Papandrea et al., 2000).  Moreover, there is some disagreement 

over the nature of restored hamstring function following ACL surgery, with the 

suggestion that this is due to increased hypertrophy of the bicep femoris and 

semimembranosus muscles, thus compensating for a weakened semitendinosus 

(Nikolaou et al., 2007).  As a consequence, the precise contribution of each of the 

hamstring muscles to various joint actions may differ between the reconstructed and 

contralateral limb, thus prompting individual muscles to fatigue at a different rate.  It is 

therefore important for the patient to be able to accurately interpret the resulting sensory 

feedback from the knee joint in order to adjust work-rate prior to any potential 

disruption to homeostasis. 

As previously highlighted, performance decrements as a consequence of fatigue 

are implicated in an increased risk of injury. This risk is exacerbated during 

rehabilitation from ACL-reconstructive surgery, due to the laxity of the replacement 

graft throughout the intermediate stages of the recovery process.  Previous research has 

shown jump landing techniques to be adversely affected by fatigue, with the implication 

that the resulting sub-optimal knee and hip biomechanics could potentially increase 

ACL injury risk (McLean and Samorezov 2009).  This is further supported by evidence 

of increased anterior tibial translation subsequent to fatiguing exercise of the knee 

musculature (Wojtys et al., 1996).  Furthermore, acute fatiguing activity has also been 

shown to significantly reduce hamstring muscle activity in direction-changing 

manoeuvres (Zebis et al., 2011). It has also been postulated that fatigue compromises 

the proprioceptive capabilities of the knee joint (Hiemstra et al., 2001), as evident in 

reduced knee joint position sense following an acute bout of fatiguing exercise (Givoni 

et al., 2007; Ribeiro et al., 2007; Ribeiro et al., 2011). Moreover, there is the suggestion 
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that the fatigue-induced impairments to knee joint kinematics may still be evident 

following forty minutes of recovery (Tsai et al., 2009). 

A study by Borotikar et al. (2008) explored the effects of fatigue upon single-leg 

landings, by alternating landings with a series of squats.  This process was continued 

until the participants were unable to perform three consecutive squats unassisted (task 

failure).  Whilst technique was found to be significantly impaired at the point of task 

failure, similar impairments were evident at 50% of the trial duration. This finding 

indicates that a reduction in performance and an associated increase in ACL injury risk 

occur considerably earlier than the point of task failure, and further emphasises the need 

for patients to be able to accurately anticipate the onset of fatigue, and pace their 

rehabilitation accordingly. In this regard, the prediction of exercise duration may be 

important to identify a critical point at which fatigue begins to significantly impair 

performance.  

Given the risk of impaired knee joint mechanics and muscle recruitment as a 

consequence of fatigue, it is especially important for a patient to able to pace their 

rehabilitation and anticipate these reductions in performance, particularly in view of the 

altered sensory feedback that may be provided by the ACL-reconstructed knee in 

comparison to the contralateral limb.   

2.7.2.2. The re-introduction of dynamic exercise 

The re-introduction of dynamic exercise into an ACL rehabilitation programme 

may result in exercise-induced muscle damage (EIMD), whereby acute microtrauma is 

sustained to the involved musculature (McHugh et al., 1999).  The associated changes 

to contractile and neural components of muscle performance may affect RPE during 

subsequent exercise endeavours.  EIMD results from eccentric muscle activations 

during exercise that is either unaccustomed or of substantially increased intensity or 

duration (Byrne et al., 2004), and has been observed following bouts of resistance 
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training (Paul et al., 1989; Yamamoto et al., 2008), and plyometrics (Tofas et al., 2008; 

Twist et al., 2008) and running (Eston et al., 1995; Howatson and Milak, 2009).  

Progressive manipulation of these exercise variables and modalities is commonplace 

during an ACL rehabilitation programme (van Grinsven et al., 2010).  EIMD is 

accompanied by elevated symptoms of soreness in the involved musculature (Proske 

and Morgan, 2001) that may provide an altered perception of exertion (Marcora and 

Bosio, 2007).  These symptoms are caused by an inflammatory response that initiates 

the regeneration process (Aoi et al., 2004; Byrne et al., 2004), whereby the breakdown 

of damaged tissue is thought to stimulate nociceptors and produce a sensation of pain 

(Proske and Morgan, 2001).  The time-course of perceived soreness is typically 

characterised by minimal symptoms immediately following the exercise, with a 

subsequent increase in soreness that peaks between 24-48 hours before beginning to 

subside after approximately 72 hours (Marginson et al., 2005; Twist and Eston, 2005; 

Torres et al., 2010; Minshull et al., 2012).  However, EIMD provokes an impairment to 

neuromuscular performance that follows a different temporal pattern, with reductions in 

strength and power evident prior to the onset of soreness (Byrne et al., 2001; Minshull 

et al., 2012).  These findings would therefore suggest that perceived soreness does not 

always provide an accurate reflection of reduced neuromuscular performance 

capabilities, and may provide misleading feedback to the performer.  An inability to 

accurately interpret the afferent cues resulting from muscle damage may have 

associated implications for self-regulating exercise.   

Proske and Morgan (2001) theorise that the muscle damaging process begins 

with the over-stretching of sarcomeres during an eccentric activation.  Eccentric muscle 

activations are capable of producing greater force (Westing et al., 1991; Webber and 

Kriellaars, 1997), yet exhibit lower motor unit recruitment (Bigland-Ritchie and Woods, 

1976) in comparison to concentric activations.  This places greater stress on the actin-
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myosin cross bridges, predisposing these structures to damage (Enoka, 1996).  Whilst 

the myofilaments in the majority of sarcomeres are able to re-interdigitate, a small 

number will be terminally damaged (Proske and Morgan, 2001).  The combination of 

non-functioning sarcomeres and damage to the excitation-contraction coupling system 

consequently results in a reduced ability to generate tension in the muscle (Morgan and 

Allen, 1999).  This is evidenced by immediate and prolonged reductions in peak 

isometric force ranging between 25% and 70% (Rinard et al., 2000; Byrne et al., 2001; 

Brown et al., 2010; Minshull et al., 2012) and reductions in power output ranging 

between 15% and 65% (Byrne and Eston, 2001; Marginson et al., 2005; Minshull et al., 

2012).  It is theorised that impaired force production capabilities resulting from the 

onset of EIMD may lead to a subsequent reduction in dynamic joint stability, and 

potentially result in an increased risk of injury (Minshull et al., 2012).  It is therefore 

important for individuals to perceive these changes in performance in order to regulate 

their training load and effectively manage the risk of injury.  In accordance with the 

anticipatory CGM model of exercise regulation (Tucker, 2009), an inability to 

accurately judge levels of force during a given exercise bout may result in the 

subconscious selection of an inappropriate ‘template RPE’ against which to compare 

exercise demands.  This may therefore have associated implications for the capability of 

RPE to predict exercise duration.  Indeed, there is some evidence to suggest that the 

ability to accurately perceive levels of force production is impaired as a consequence of 

muscle damage.  A study exploring the impact of EIMD on force replication ability of 

the forearm flexors discovered that participants overestimated the amount of force they 

were producing with the exercise-damaged arm (Saxton et al., 1995).  However, when 

the force produced was express as a proportion of their daily peak force, it emerged that 

participants were generating the same relative force in comparison to their baseline 

measures.  Comparable results were discovered by Proske et al. (2004), who observed 
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similar errors in force replication following EIMD that were consistent in direction and 

magnitude with the previous literature. A study by Torres et al. (2010) also observed 

significantly impaired force replication capabilities in the knee extensors subsequent to 

EIMD.  However, the direction of the error was not reported in this instance.  These 

findings suggest that errors in the estimation of force production may be evident in the 

presence of EIMD.  

The combination of reduced force production capacity and attenuated 

proprioceptive capabilities as a consequence of EIMD could have implications for 

dynamic joint stability and potential risk of re-injury during ACL rehabilitation. This 

places added importance on the ability to accurately interpret these changes in order to 

anticipate the onset of fatigue and regulate work-rate accordingly. 

2.8. CONCLUSIONS 

There is a growing body of research which suggests that RPE increases linearly 

in relation to exercise duration, and thus can be utilised as a predictor of end-point 

during incremental, constant work-load, and self-paced exercise.  However, the range of 

methodologies and inconsistent terminology employed across these studies creates 

issues when attempting to compare results and establish the robustness of the findings.  

The majority of existing research has focused on running and cycling tasks, but it 

remains to be confirmed whether the predictive capacity of RPE is still evident in more 

novel and intermittent tasks that may have greater specificity to resistance training or 

rehabilitative exercise.  The potential disruptions to perceptual cues subsequent to ACL 

reconstructive surgery also highlight the importance of being able to accurately self-

perceive physical performance capabilities in order to regulate exercise with regard to 

optimising the rehabilitation process. 
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It has also been demonstrated that sensations of effort required to continue 

performing an exercise task can be separated from perceptions of exertion arising from 

the task (Swart et al., 2012).  This distinction highlights a capability to produce an 

increased effort despite experiencing severe symptoms of exertion, as evident during an 

end-spurt in the latter stages of an endurance event (Abbiss and Pfeiffer, 2010).  In this 

regard, it is plausible that a conscious prediction of the remaining task duration 

throughout an exercise bout may produce a different pattern of response in comparison 

to RPE.  It is therefore worthwhile to explore different paradigms of self-perception 

(RPE and perceived task duration) in order to determine which scale provides the most 

accurate reflection of task duration during intermittent isolated muscle exercise.  The 

resulting findings would then have implications for the regulation of exercise 

performance during resistance training and rehabilitative activities. 
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Chapter 3:  

Relationships between self-perceived knee 

function and indices of musculoskeletal 

performance in an ACL-reconstructed 

population 
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CHAPTER 3: RELATIONSHIPS BETWEEN SELF-PERCEIVED KNEE 
FUNCTION AND INDICES OF MUSCULOSKELETAL PERFORMANCE 
IN AN ACL-RECONSTRUCTED POPULATION 

3.1. ABSTRACT 

The aim of this study was to explore the relationships between self-perceived 

measures of knee function and objective indices of musculoskeletal performance in an 

ACL-reconstructed population during various stages of post-operative rehabilitation, 

ranging from pre-surgery through to an anticipated completion of rehabilitation at 48 

weeks post-surgery.  Thirty-one ACL-reconstructed patients were assessed on five 

separate assessment sessions undertaken at pre-surgery, and 6 weeks, 12 weeks, 24 

weeks and 48 weeks post-surgery.  Self-perceived knee function was measured via the 

International Knee Documentation Committee (IKDC) Subjective Knee Evaluation 

Form and the Performance Profile (PP). Indices of musculoskeletal performance, 

including anterior tibio-femoral displacement (ATFD), peak force (PF) and rate of force 

development (RFD) of the knee extensors (KE) and the knee flexors (KF), and a single 

leg hop (HOP) for distance were also obtained.  Correlation coefficients (Spearman rank 

and Pearson product-moment) revealed lack of significant correlations between self-

perceived (IKDC and PP) and objective measures (ATFD, PF, RFD and HOP) 

throughout the early to intermediate stages (pre-surgery to 24 weeks) of post-operative 

ACL rehabilitation.  However, significant positive correlations between IKDC and 

various indices of neuromuscular performance (PFKF, RFDKE, RFDKF, HOP) became 

evident at 48 weeks (r>0.41; p<0.05).  This disparity between self-perceived and actual 

knee function may reflect a lack of efficacy of the self-reported inventories (IKDC and 

PP), or possibly a misplaced level of confidence in the capabilities of the reconstructed 

knee.   
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3.2. INTRODUCTION 

Rupture of the ACL is a serious and potentially career-threatening injury for 

sports performers that invariably requires reconstructive surgery to restore knee 

function (Hurd et al., 2008).  The consequences of a performer sustaining an ACL 

injury involve incurring considerable hospital and physiotherapy costs (Paxton et al., 

2010), coupled with an extended period of absence from competitive sport estimated at 

between 6 to 9 months (Beynnon et al., 2005).  Despite this projected recovery process, 

an estimated 67% of patients do not return to competitive sport within 12 months of 

surgery, yet 85% of patients demonstrate normal or nearly normal knee function as 

rated by the IKDC (Ardern et al., 2011a).  Possible reasons for this prolonged absence 

include a lack of confidence in the knee (Webster et al., 2008) and a fear of re-injury 

(Heijne et al., 2007; Ardern et al., 2011a).  Indeed, perceived future self-efficacy of 

knee function (measured using a knee self-efficacy scale prior to surgery) has been 

reported as a strong predictor of long-term outcomes (Thomee et al., 2008).  

Considering that individuals with lower self-efficacy have been found to report higher 

levels of RPE during exercise tasks (Hu et al., 2007), it is plausible that these 

psychological factors may prompt an overly cautious approach to the recovery process 

by the patient, resulting in sub-optimal exercise regulation during rehabilitative exercise.  

The cumulative effect of multiple sub-optimal exercise sessions may preclude the 

patient from reaching required training goals, thus delaying progress onto the 

subsequent phase of rehabilitation (van Grinsven et al., 2010).  This is an important 

consideration given that most patients will only benefit from limited contact time with a 

physiotherapist (fewer than 20 session during a post-operative ACL rehabilitation 

period that may last as long as 9 months), and will therefore have to perform the 

majority of rehabilitative exercise without specialist supervision (Coppola and Collins, 

2009). 
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The process of ACL reconstructive surgery creates a substantial and necessary 

disturbance to various structures of the knee joint that may subsequently produce novel 

physical sensations for the patient.  The most common approaches to ACL 

reconstruction involve the use of autografts utilising either the patient’s patella tendon 

or semitendinosus tendon (Wright et al., 2010).  The selected procedure will provide a 

substantial disruption to the donor tendon and associated weakness and atrophy in the 

quadriceps and hamstrings (Yasuda et al., 1992; Forster and Forster, 2005).  Additional 

issues that may produce novel sensations can include altered sensory feedback from the 

replacement graft (Krogsgaard et al., 2011) and inhibited neuromuscular performance 

due to pain and swelling (Hopkins and Ingersoll, 2000; Rice and McNair, 2010).  Prior 

experience is potentially an integral component in the generation of RPE and exercise 

regulation (Noble and Robertson, 1996; Tucker, 2009), with repeated exposure to an 

exercise task having been shown to result in an increased linearity in perceptual 

response accompanied by a concomitant increase in power output (Swart et al., 2009).  

In the instance of ACL injury and surgery, any novel physical sensations resulting from 

altered knee function might, therefore, create difficulties in accurately judging the 

demands of a given exercise task, and regulating work-rate accordingly.  Self-regulation 

of work-rate is particularly important for patients undertaking rehabilitation sessions in 

the absence of specialist supervision.  Given that many patients will only have periodic 

contact with a physiotherapist, the ability to accurately self-perceive physical 

capabilities is important in gauging progress towards a return to pre-injury activity 

levels.  Indeed, self-reported measures of knee function are routinely used in a clinical 

environment to help monitor the progress of rehabilitation (Adams et al., 2012).  It is, 

therefore, important to establish whether patients’ self-perceived knee function relates 

to objective indices of their musculoskeletal performance.  
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There are a variety of rating scales and questionnaires designed to measure self-

perceived knee function that typically require the patient to report their symptoms and 

functional limitations.  These include the Cincinnati Knee Rating System (Borsa et al., 

1998; Barber-Westin et al., 1999; Marx et al., 2001), the Lysholm Knee Rating System 

(Borsa et al., 1998; Marx et al., 2001), the Knee Outcome Survey Activities of Daily 

Living (Marx et al., 2001; Harreld et al., 2006), the International Knee Documentation 

Committee Subjective Knee Evaluation Form (IKDC) (Harreld et al., 2006; Gleeson et 

al., 2008a; Gleeson et al., 2008b), and the Knee Injury and Osteoarthritis Outcome 

Score (KOOS) (Thomee et al., 2007).  Methods of validating these measures have 

included comparisons with previously validated scales (Higgins et al., 2007), the use of 

expert opinion from clinicians (Marx et al., 2001), and evaluation against clinical 

outcomes (Barber-Westin et al., 1999).  Limited research has focused on precisely how 

these inventories relate to various objective measures of functional performance, such 

as muscle strength and unilateral jumping ability which are viewed as integral to 

successful rehabilitation and judging return to full activity.  These indices of 

performance are often expressed in terms of the capabilities of the injured limb in 

relation to the non-injured limb, referred to as a limb symmetry index LSI (Borsa et al., 

1998; Hopper et al., 2002; Ardern et al., 2011b; Thomee et al., 2011). Recommended 

LSI values include 85% (Ardern et al., 2011b), 90% Ageberg et al., 2008) and 

100%Ardern et al., 2011b(Thomee et al., 2011), and those patients who demonstrate an 

acceptable level are more likely to return to sport (Fitzgerald et al., 2000; Ageberg et al., 

2008; Ardern et al., 2011b).  These objective measures, therefore, provide a relevant 

marker against which to compare self-perceived knee function.   

Research into the relationships between self-reported and objective performance 

has tended to focus either on long-term outcomes of >12 months post-surgery (Ageberg 

et al., 2008; Ardern et al., 2011b) or relatively narrow periods within the rehabilitation 
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process (Reid et al., 2007; Gleeson et al., 2008a; Gleeson et al., 2008b).  For example, 

Ageberg et al. (2008) assessed patients in a long-term follow-up raging from 2 to 5 

years (mean ± SD of 3 ± 0.9 years) after sustaining ACL injury.  The authors reported 

low to moderate correlations (0.25–0.43) between self-perceived function (as measured 

through the KOOS inventory) and objective performance (knee extension, knee flexion, 

leg press and hop test score). Baseline pre-operative measures were not available for 

comparison, thus providing no scope for establishing how self-perceived function 

altered over the course of the rehabilitation in order to gauge progress.  In contrast, Reid 

et al. (2007) examined relationships between the change scores for self-reported lower 

extremity function and single leg hop performance over a 6-week period, with baseline 

measures taken at 16 weeks post-surgery and a re-test performed at 22 weeks post-

surgery.  Similarly, low to moderate correlations (0.26 and 0.41) were again observed 

between the self-perceived function and the range of hop tests.  Ardern et al. (2011b) 

highlighted a disparity between objective and self-reported measures, and the 

association with rates of patients returning to sport at 12 months post-surgery.  Patients 

who displayed an acceptable LSI of >85% (n = 423; 84% of sample population) were 

found to be more likely to return to sport than those exhibiting an insufficient LSI of 

<85% (n = 80; 16% of sample population).  However, patients reporting normal or 

nearly normal knee function via an IKDC (n = 468; 93% of sample population) were 

found to be no more likely than patients reporting poor function (n = 35; 7% of sample 

population) to attempt a return to competitive sport.  The inconclusive results from 

these previous studies have implications for the validity of these self-reported 

inventories over the limited timescales utilised.  This highlights a potential need for 

further investigation into the efficacy of these measures at additional time-points 

throughout the rehabilitation process, and also into possible alternative scales for self-

reporting knee function. 
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The performance profile (PP) technique provides an alternative method of 

measuring self-perceived knee function (Doyle et al., 1998; Gleeson et al., 2008a; 

Gleeson et al., 2008b).  Originally devised for use by athletes, coaches and sports 

psychologists (Butler and Hardy, 1992), the PP has since been adapted for use in a 

clinical setting with ACL-deficient and reconstructed individuals (Doyle et al., 1998; 

Gleeson et al., 2008a; Gleeson et al., 2008b).  This method is based around selected 

principles of Personal Construct Theory (Kelly, 1955), which postulates that each 

individual’s perception and understanding of events is generated by their unique set of 

personal experiences.  The PP process requires the patient to identify and rate a number 

of key ‘constructs’ that they deem important markers of knee function. These terms and 

their associated meaning are unique to the patient, therefore, removing the potential 

problem of different interpretations between individuals.  It is suggested that this 

method of recording self-perception of knee function may offer an effective tool to 

allow patients to monitor their own rehabilitation (Gleeson et al., 2008a), consequently 

increasing self-awareness of their rehabilitation and potentially improving adherence to 

programme.  Indeed, PPs have been found to demonstrate significant positive 

correlations with important indicators of musculoskeletal performance, such as knee 

laxity and peak force, both prior to ACL-reconstructive surgery (r = 0.68 to 0.85) and 8 

weeks subsequent to surgery (r = 0.72 to 0.82) (Gleeson et al., 2008b).  The strength of 

these relationships would suggest that the PP is a viable alternative in comparison to 

traditional self-reported measures of knee function such as the KOOS or IKDC 

inventories.  However, the efficacy of this technique has yet to be evaluated over a 

longer duration and at different stages throughout the ACL rehabilitation process. 

The purpose of the present longitudinal study was to explore the relationships 

between self-perceived measures of knee function (IKDC and PP) and objective indices 

of musculoskeletal performance in an ACL-reconstructed population during various 
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stages of post-operative rehabilitation, ranging from pre-surgery through to an 

anticipated completion of rehabilitation at 48 weeks post-surgery.  

3.3. METHODS 

3.3.1. Participants 

An ACL-reconstructed population were recruited through the National Centre 

for Sports Injury Surgery (NCSIS), Robert Jones and Agnes Hunt Orthopaedic and 

District Hospital in Oswestry (n = 31). Twenty-seven males (age 31.6 ± 8.7 years; 

height 178 ± 6.9 cm; body mass 82.3 ± 10.7 kg) and four females (age 41 ± 4.8 years; 

height 166.5 ± 9.2 cm; body mass 74.4 ± 11.8 kg) gave their informed consent to 

participate in the study.  Participants were selected sequentially from patients presenting 

with arthroscopically verified unilateral ACL rupture randomly admitted to the hospital 

over a 34-month period commencing in May 2007 through to March 2010. 

Approximately 70% of the ACL ruptures were sustained via non-contact mechanisms.  

The majority of injuries (~85%) occurred in a multi-sprint team sport environment, with 

the remaining 15% occurring during skiing.  On average, participants had waited 12.4 ± 

5.7 months following the initial injury before undergoing reconstructive surgery.  

Participants were scheduled to undergo one of two reconstructive surgery procedures 

(as determined by the orthopaedic surgeon): i) central third, bone-patella tendon-bone 

graft (n = 9); ii) semitendinosus and gracilis graft (n = 22).  All surgical procedures 

were performed by the same consultant orthopaedic surgeon.  Assessment protocols 

were approved by the Ethics Committees for Human Testing of Robert Jones and Agnes 

Hunt Orthopaedic and District Hospital NHS Trust. 
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3.3.2. Experimental procedures and design 

Participants were assessed on five separate occasions.  The first assessment 

session was scheduled prior to reconstructive surgery in order to establish baseline 

measures.  Subsequent assessment sessions were undertaken at 6 weeks, 12 weeks, 24 

weeks and 48 weeks following surgery.  These post-operative assessments were 

scheduled to encompass key stages of progression across the rehabilitation programme.  

At each assessment session, participants completed self-perceived measures of knee 

function (detailed in section 3.2.3).  Assessments of musculoskeletal performance, 

including anterior-posterior knee laxity, peak force (PF) and rate of force development 

(RFD) of the knee extensors (KE) and the knee flexors (KF), and a single leg hop for 

distance were obtained following completion of the inventories.  Testing was performed 

on both the injured (INJ) and non-injured (NON) limbs, in a randomly-assigned 

counterbalanced order. 

Following a standardised warm-up of five minutes cycle ergometry (~60 W, as 

tolerated by the participants depending on the progress of their rehabilitation) and an 

additional five minutes of stretching of the involved musculature, participants were 

secured in a seated position on a custom built dynamometer (Gleeson et al., 2008). The 

lever arm of the dynamometer was attached to the tested leg of the participant via a 

padded ankle cuff secured just proximal to the lateral malleolus and the lever arm was at 

an angle perpendicular to the tibia (Figure 3.1).  The muscle action was localised 

through the use of adjustable strapping across the torso, pelvis and anterior thigh 

proximal to the knee joint.  Throughout testing, the knee position was maintained at a 

functionally relevant angle of 25° (0.44 rad) (0° = full extension) which has been 

associated with the greatest mechanical strain on the ACL and a position of injury 

vulnerability during sports participation (Li et al., 1999) and identified for each 

participant during activation of the involved musculature using a goniometry system.  
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Participants were sat in an upright position with the knee of the opposite limb left 

unsecured at approximately 90° (1.57 rad) in order to reduce leverage during activation 

of the musculature of the tested limb (see Figure 3.1). 

 

Figure 3.1  Schematic of participant and dynamometer orientation (adapted from 
Gleeson et al., 2008a) 
*Measurement of ACL laxity 
†Measurement of neuromuscular performance 

 

3.3.3. Assessment of musculoskeletal performance 

3.3.3.1. Knee laxity 

Assessment of anterior tibio-femoral displacement (ATFD) to provide an 

estimate of knee laxity was performed using a custom built device (Gleeson et al., 

1996).  The orientation of the apparatus and participant are illustrated in Figure 3.1.  
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The device consisted of two linear inductive displacement transducers incorporating 

spring-loaded plungers (DCT500C, RDP Electronics Ltd., Wolverhampton, UK; 25 mm 

range).  Both transducers were positioned perpendicular to the patella and tibial 

tuberosity and secured to the skin surface using tape to restrict movement to the 

anterior-posterior plane relative to the supporting framework.  An anterior translation 

force was applied to the tibia via an instrumented force-handle incorporating a load cell 

(Model 31E500N0, RDP Electronics Ltd.; range 500 N).  This device was positioned 

behind the leg at a level 20 mm inferior to the tibial tuberosity, with force applied in the 

sagittal plane in a perpendicular direction relative to the tibia.  The transducers were 

interfaced to a computerised data acquisition system, with data sampled at 2.5 kHz 

(Cambridge Electronic Design Ltd., UK).  An anterior tibial translation force of 160N 

was manually applied in the sagittal plane at a rate of 67 ± 7 N·s−1 (mean ± SD).  During 

each measurement, participants were instructed to relax the musculature of the involved 

limb.  This was verified by visual inspection of electromyographic (EMG) activition of 

m. biceps femoris and m. vastus lateralis via a computer monitor.  ATFD was calculated 

as the mean of three intra-trial replicates of the net displacement of the patella and tibial 

tuberosity transducers. 

3.3.3.2. Maximal voluntary muscle activation (MVMA) 

Following a series of sub-maximal warm-up muscle activations an auditory 

signal was delivered randomly within 1-4 seconds cuing the participant to flex or extend 

their knee as rapidly and forcefully as possible against the immovable restraint provided 

by the apparatus.  Another auditory signal was then given to the participant after 

approximately 3 seconds of maximal voluntary muscle activation (MVMA) to cue 

muscular relaxation.  Three trials were performed, each separated by a minimum of 10 

seconds.  Static peak force (PF) was recorded as the mean response of three intra-trial 

replicates in which the highest force was recorded in each trial. The rate of force 
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development (RFD) was calculated for each intra-trial replicate as the average rate of 

force increase between 25% and 75% and reported as the mean response of the three 

replicates.  Performance of KE and KF were assessed in a randomised order.  

3.3.3.3. Single leg hop for distance  

Single leg hop tests (HOP) are widely used by physiotherapists and have been 

found to provide a reliable assessment tool during ACL rehabilitation (rI = 0.92 to 0.98; 

Hopper et al., 2002; Reid et al., 2007).  Participants were required to start from a single 

leg stance on their assessed limb, before producing a hop for maximum distance with a 

controlled landing in a stable position.  No restriction was placed on arm movement, in 

order to provide assistance with balance if required.  Distance was measured in 

centimetres from the toe at the start position to the heel at the landing position.  

Following two to three practice attempts, participants performed three maximal efforts, 

with the mean of the inter-trial replicates subsequently used for analysis. 

3.3.4. Self-perceived knee function 

3.3.4.1. Performance profile (PP) 

The PP technique has been employed in a clinical environment with ACL-

reconstructed patients (Doyle et al., 1998; Gleeson et al., 2008a; Gleeson et al., 2008b), 

with a level of reliability established through coefficient of variation ranging from 

±9.2% to ±13.3% (95% confidence intervals) (Gleeson et al., 2005).  Participants 

considered the question “What, in your opinion, are the elements of your knee in need 

of rehabilitation or improvement to obtain full recovery?”  In conjunction with the 

researcher and physiotherapist, participants then generated up to 10 individual 

‘constructs’ that they perceived to be important markers of their knee function.  The 

individual constructs were subsequently mapped onto a PP (example illustrated in 

Figure 3.2). Participants completed the PP by considering the question “How does your 

injured limb feel at the present time compared to your non-injured limb on each of the 
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qualities you have listed?” Responses were recorded by shading an area of the PP 

corresponding to the scale ranging from “extremely different to non-injured limb” (1) to 

“the same as my non-injured limb” (10). The participant’s perceived score was then 

calculated as a percentage of the optimal score (10) to provide the basis for analysis. 

Mean PP scores across all constructs were calculated to negate inter-individual 

differences. 

 

Figure 3.2  Example completed Performance Profile 

3.3.4.2. International Knee Documentation Committee (IKDC) Subjective Knee 
Evaluation Form 

The IKDC Subjective Knee Evaluation form is a short survey designed to allow 

the patient to subjectively evaluate their knee function over different categories ranging 

from daily living to sporting and recreational activities (an example form is provided in 
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Appendix A).  In addition to several Likert-style questions on various aspects of knee 

function, the form contains questions that require the patient to state the highest level at 

which he/she could use his/her knee without exhibiting one of the key symptoms (for 

example pain, swelling, giving-way). Reliability of the IKDC survey has previously 

been reported as >0.87 (Higgins et al., 2007). Participants completed an IKDC form at 

each assessment session prior to musculoskeletal testing.  IKDC scores were calculated 

as a percentage of the optimal score for subsequent analysis. 

3.3.5. Statistical analysis 

All statistical analyses were performed using PASW v18.0 (SPSS Inc. Chicago, 

Il, USA).  The effect of reconstructive surgery and rehabilitation upon musculoskeletal 

performance (ATFD, PF, RFD and HOP) was assessed using separate two (limb: INJ; 

NON) by five (time: pre-surgery; 6 weeks; 12 weeks; 24 weeks; 48 weeks) fully 

repeated-measures ANOVAs.  Changes in self-perceived knee function (IKDC and PP) 

during the surgical and rehabilitative process were analysed across the five assessment 

sessions using a single factor, repeated measures ANOVA.  Greenhouse-Geisser 

corrections were applied where assumptions of sphericity were violated, as indicated by 

GG.  Post hoc analysis using paired sample t-tests were performed in order to confirm 

significant differences between limbs for specific time points, with an adjustment made 

via the Holm-Bonferroni procedure (Abdi, 2010) to protect against type 1 error.   

Correlation coefficients (Spearman rank and Pearson product-moment) were 

calculated to explore relationships between self-perceived (IKDC and PP) and objective 

measures (ATFD, PF, RFD and HOP) for each of the five time-points.  Musculoskeletal 

measures (ATFD, PF, RFD and HOP) for the injured limb were expressed as a 

percentage of the corresponding value for the non-injured limb in order to produce a 

limb symmetry index (LSI) (Thomee et al., 2011) based on a percentage scale of 100 
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([INJ/NON] x 100).  PP and IKDC data was reported as a percentage of the maximal 

possible score.  Relationships were also investigated to determine if improved knee-

joint performance was only perceived subsequent to effectively ‘testing’ the new 

capabilities during functional activities, thus indicating a latency period before self-

perceived measures would be able to reflect objective performance.  As such, 

correlation coefficients were also calculated between musculoskeletal LSIs assessed at 6 

weeks, 12 weeks and 24 weeks with IKDC and PP scores at 12 weeks, 24 weeks and 48 

weeks, respectively.  In addition, the percentage change between assessment sessions in 

terms of absolute performance measures was also determined, in order to ascertain 

whether any patterns of change were evident that were not detected by the other 

analyses.  As such, correlation coefficients were calculated to establish if significant 

relationships were evident between the patterns of change for objective and perceived 

measures. 

All data were analysed using standard descriptive statistics (mean ± SD), and 

statistical significance was accepted at p<0.05. 

3.4. RESULTS 

Patterns of change across the rehabilitation period are illustrated in Figures 3.3 

to 3.9 (PP and IKDC, ATFD, KE-PF, KF-PF, KE-RFD, KE-RFD, and HOP, 

respectively).  Group mean data for indices of self-perceived knee function and 

musculoskeletal performance are presented in Appendix B.  The results of the one-way 

ANOVAs revealed significant main effects across time for both PP (F [4,120] =65.5, 

p<0.001) and IKDC (F [2.8,84.7 GG] =163, p<0.001), demonstrating significant 

improvements in self-perceived knee function as the rehabilitation progresses.  

Repeated-measures ANOVAs revealed significant interactions between limb and time 

for ATFD (F [1.3,38.1 GG] =550.5, p<0.001), indicating a progressive decrease in knee 
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laxity across time for the injured limb.  Repeated-measures ANOVAs also revealed 

significant interactions between limb and time for KE PF (F [1.3,38.9 GG] =56.8, p<0.001), 

KF PF (F [1.2,36.7 GG] =24.2, p<0.001), KE RFD (F [1.6,48.9 GG] =20.7, p<0.001), KF RFD 

(F [1.8,54.7 GG] =22.1, p<0.001), and hop data (F [2,60.9 GG] =38.3, p<0.01).  These typically 

reflected a decrease in performance following surgery, accompanied by a progressive 

restoration of performance over time.  The percentage changes in performance between 

time-points and associated effect sizes (ES) as calculated via Cohen’s d ([mean1 – 

mean2] / SD) are presented for all self-reported and objective indices of performance in 

Table 3.1. 
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Figure 3.3  PP and IKDC responses across the rehabilitation period (group mean ± 
SD) 
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Figure 3.4  ACL laxity (as measured via anterior tibio-femoral displacement) across 
the rehabilitation period (group mean ± SD) 
*Significant difference between INJ and NON (p<0.001) 
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Figure 3.5  Knee extensor PF performance across the rehabilitation period (group 
mean ± SD) 
*Significant difference between INJ and NON (p<0.001) 
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Figure 3.6  Knee flexor PF performance across the rehabilitation period (group mean 
± SD) 
*Significant difference between INJ and NON (p<0.001) 
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Figure 3.7  Knee extensor RFD performance across the rehabilitation period (group 
mean ± SD) 
*Significant difference between INJ and NON (p<0.001) 
‡ Significant difference between INJ and NON (p<0.01) 
† Significant difference between INJ and NON (p<0.05) 
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Figure 3.8  Knee flexor RFD performance across the rehabilitation period (group 
mean ± SD) 
*Significant difference between INJ and NON (p<0.001) 
‡ Significant difference between INJ and NON (p<0.01) 
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Figure 3.9  Single-leg hop performance across the rehabilitation period (group mean ± 
SD) 
*Significant difference between INJ and NON (p<0.001) 
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Table 3.1  Percentage change (effect size) in self-perceived function and 
musculoskeletal performance between time-points during rehabilitation 
period 

 Rehabilitation period 
Index Pre-op to 6 weeks 6 to 12 weeks 12 to 24 weeks 24 to 48 weeks 

PP 1.1 (0.0) 26.6 (0.7)* 14.8 (0.6)* 14.6 (0.9)* 
IKDC -20.5 (1.0)* 65.8 (1.5)* 20.2 (0.8)* 8.7 (0.6)† 
ATFD 
INJ -56.5 (1.7)* 4.8 (0.2)‡ -45.7 (1.6)* -22.3 (0.8)* 
NON -4.5 (0.2)* 65.1 (1.7)* -47.5 (1.8)* 15.4 (0.6)* 
PF 
INJKE -35.3 (1.2)* 25.8 (0.8)* 7.4 (0.3)* 10.8 (0.4)* 
NONKE 2.5 (0.1)* 6.1 (0.2)* -8.2 (0.3)* 4.0 (0.1)* 
INJKF -26.9 (0.8)* 29.7 (0.7)* 12.8 (0.4)* 4.5 (0.1)* 
NONKF 3.7 (0.1)* 2.9 (0.1)* 1.8 (0.1)† -0.2 (0.0) 
RFD 
INJKE -1.1 (0.0) 23.8 (0.4)* 15.4 (0.3)* -18.2 (0.4)* 
NONKE -2.7 (0.1) -4.8 (0.1)‡ 11.2 (0.2)* 7.3 (0.1)† 
INJKF -2.1 (0.0) 23.1 (0.4)* 17.7 (0.3)* -20.0 (0.4)* 
NONKF -2.5 (0.0) -5.5 (0.1)‡ 9.8 (0.2)* 9.0 (0.2)† 
HOP 
INJ -15.3 (0.5)* 16.0 (0.5)* 12.5 (0.4)† -2.4 (0.1)‡ 
NON 14.1 (0.5)* -6.6 (0.3)* -2.4 (0.1) 7.5 (0.3)* 

*Significantly different from previous assessment (p<0.001) 
†Significantly different from previous assessment (p<0.01) 
‡Significantly different from previous assessment (p<0.05) 

 

 

Group mean LSI for each estimate of musculoskeletal performance are 

presented in Table 3.2. Correlation coefficients between musculoskeletal LSIs and PP 

and IKDC are presented in Table 3.3 and Table 3.4, respectively.  The latent 

correlations between musculoskeletal LSIs and PP and IKDC are presented in Table 3.5 

and Table 3.6, respectively.  Correlations between percentage change in 

musculoskeletal performance and PP and IKDC are presented in Table 3.7 and Table 

3.8, respectively. 
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Table 3.2  Limb symmetry indices (group means ± SD) 
 Assessment Session 
Index Pre-surgery +6 weeks +12 weeks +24 weeks +48 weeks 
ATFD 494.8 ± 57.6 224.6 ± 38.1 142.0 ± 19.2 148.2 ± 34.1 98.9 ± 17.7 
PFKE 93.1 ± 34.2 56.6 ± 1.0 67.0 ± 1.9 78.7 ± 2.8 83.8 ± 2.4 
PFKF 96.1 ± 33.1 66.6 ± 4.3 83.7 ± 6.1 93.1 ± 6.9 97.2 ± 8.0 
RFDKE 83.7 ± 40.2 77.0 ± 7.1 100.2 ± 6.8 104.8 ± 9.0 80.5 ± 9.8 
RFDKF 84.0 ± 40.4 76.3 ± 7.8 99.4 ± 7.6 107.5 ± 10.1 79.7 ± 10.9 
HOP 84.9 ± 19.3 64.1 ± 3.8 79.3 ± 5.2 91.6 ± 5.3 83.4 ± 6.2 

 

Table 3.3  Limb symmetry index correlations with PP 
 Assessment Session 
Index Pre-surgery +6 weeks +12 weeks +24 weeks +48 weeks 

ATFD -0.12 0.07 0.16 0.13 0.00 
PFKE 0.33 0.26 0.22 0.18 -0.34 
PFKF 0.16 -0.22 -0.33 -0.11 -0.40‡ 
RFDKE 0.29 -0.15 -0.10 -0.07 -0.33 
RFDKF 0.29 -0.06 -0.04 -0.08 -0.36 
HOP 0.22 -0.14 -0.07 0.00 -0.41‡ 

‡Significant correlation (p<0.05) 
 

 

Table 3.4  Limb symmetry index correlations with IKDC 
 Assessment Session 
Index Pre-surgery +6 weeks +12 weeks +24 weeks +48 weeks 

ATFD -0.25 -0.20 -0.27 -0.18 -0.15 
PFKE -0.21 0.08 -0.20 -0.23 0.22 
PFKF 0.03 0.23 0.26 0.37‡ 0.45‡ 
RFDKE 0.10 0.24 0.13 0.20 0.57† 
RFDKF 0.10 0.24 0.12 0.17 0.56† 
HOP 0.07 0.18 0.04 0.11 0.45‡ 

†Significant correlation (p<0.01) 
‡Significant correlation (p<0.05) 
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Table 3.5  Limb symmetry index latent correlations with PP 
 Assessment Session 

Index +6 weeks vs PP (+12 
weeks) 

+12 weeks vs PP (+24 
weeks) 

+24 weeks vs PP (+48 
weeks) 

ATFD 0.22 -0.02 -0.10 
PFKE 0.00 0.26 0.08 
PFKF -0.36‡ -0.19 -0.31 
RFDKE -0.19 0.04 -0.19 
RFDKF -0.14 0.09 -0.15 
HOP 0.08 -0.08 0.06 

‡Significant correlation (p<0.05) 
 

Table 3.6  Limb symmetry index latent correlations with IKDC 
 Assessment Session 

Index +6 weeks vs IKDC (+12 
weeks) 

+12 weeks vs IKDC (+24 
weeks) 

+24 weeks vs IKDC (+48 
weeks) 

ATFD -0.26 -0.26 -0.15 
PFKE 0.00 -0.22 -0.37‡ 
PFKF 0.25 0.33 0.67† 
RFDKE 0.18 0.31 0.41‡ 
RFDKF 0.16 0.26 0.34 
HOP 0.07 -0.05 0.13 

†Significant correlation (p<0.01) 
‡Significant correlation (p<0.05) 

 

Table 3.7  Correlations between percentage change in PP and musculoskeletal 
performance between time-points during rehabilitation period 

 Assessment Session 

Index Pre-surgery to +6 
weeks 

+6 weeks to +12 
weeks 

+12 weeks to +24 
weeks 

+24 weeks to +48 
weeks 

ATFD -0.14 -0.05 -0.03 0.18 
PFKE -0.20 0.36‡ -0.25 0.32 
PFKF -0.45‡ -0.11 -0.10 0.32 
RFDKE 0.03 -0.02 -0.17 0.36‡ 
RFDKF 0.02 -0.04 -0.17 0.36‡ 
HOP -0.03 -0.25 -0.02 0.37‡ 

‡Significant correlation (p<0.05) 
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Table 3.8  Correlations between percentage change in IKDC and musculoskeletal 
performance between time-points during rehabilitation period 

 Assessment Session 

Index Pre-surgery to +6 
weeks 

+6 weeks to +12 
weeks 

+12 weeks to +24 
weeks 

+24 weeks to +48 
weeks 

ATFD 0.10 0.01 0.13 -0.18 
PFKE -0.24 0.09 -0.21 0.16 
PFKF -0.35 0.09 -0.10 0.17 
RFDKE 0.09 0.13 -0.09 0.23 
RFDKF 0.09 0.12 -0.08 0.23 
HOP 0.08 0.05 0.11 0.12 

 
 

3.5. DISCUSSION 

The aim of this study was to compare self-perceived measures of knee function 

with indices of musculoskeletal performance in order to identify stages of the ACL 

rehabilitation process where there is the greatest disparity between perceived and 

objective measures. Significant and anticipated changes to musculoskeletal performance 

were evident following surgery. Knee laxity was significantly reduced, as measured by 

a 56.5% improvement in ATFD from pre-surgery to 6 weeks, reflective of the new 

restraint in the form of the replacement graft.  Furthermore, impairments to KE PF 

(35.3%), KF PF (26.9%) and HOP performance (15.3%) were apparent at 6 weeks post-

surgery.  Although RFD performance was minimally affected following surgery, the 

corresponding baseline values were substantially lower than the equivalent values for 

the non-injured limb (as indicated by the sub-optimal limb symmetry indices in Table 

3.3).  Following these initial impairments, ATFD, PF and HOP displayed gradual 

improvements across the rehabilitation phase. RFD performance followed a slightly 

different pattern, with increases in performance from week 6 to week 24, followed by 

an unanticipated reduction at 48 weeks.  A caveat for the interpretation of RFD results 

is evidence of typically greater intra-session variability in test-retest conditions when 

compared to other indices of neuromuscular performance (~27%; Minshull et al., 2009).  
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This may provide some explanation as to the differing patterns of RFD performance 

across the rehabilitation period.  Whilst some fluctuations in performance were evident 

for the non-injured limb across the rehabilitation period, these were typically small 

effect sizes (<0.4). 

Although a lack of significant correlations were evident throughout the majority 

of the rehabilitation period, an increase in the strength of the relationship between 

IKDC and various indices of neuromuscular performance (PFKF, RFDKE, RFDKF, HOP) 

became evident at 48 weeks.  These findings highlight a discrepancy between self-

reported and objective measures during the early to intermediate stages of rehabilitation 

(pre-surgery to 24 weeks).  A lower self-perceived level of function in relation to 

musculoskeletal capabilities may represent a lack of confidence in the knee, and thus 

prompt a more cautious approach to rehabilitation.  Conversely, if self-perceived 

function overestimates the current performance of the knee, then an overly aggressive 

strategy may be adopted.  This issue is of particular concern during early stages of 

recovery (6 to 12 weeks), as the replacement graft is undergoing a process of 

ligamentisation and is in a weakened state due to a lack of vascularisation (Tohyama et 

al., 2009).  This weakening of the graft contrasts with the progressive increases in 

dynamic exercise that characterise the accompanying phase of the rehabilitation 

programme (van Grinsven et al., 2010).  A mismatch between perceived and actual 

capabilities at this stage may result in an inappropriately aggressive pacing strategy, 

which may in turn compromise the integrity of the graft (Marumo et al., 2005). 

The objective assessments included in this current study were selected to 

encompass a range of important indicators of knee function, including integrity of the 

replacement graft, capacity for force generation, and dynamic stability.  Changes in 

these various aspects of knee joint performance should theoretically impact upon 

functional tasks.  As such, it could be expected that improvements in musculoskeletal 
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function would be reflected by a concomitant increase in PP and IKDC ratings.  

However, the relationships between objective LSIs and PP would suggest otherwise 

(Table 3.3).  These current findings contrast with those observed by Gleeson et al. 

(2008b), who reported significant positive relationships between PP and ATFD (r 

values of 0.68, 0.72 and 0.70 at pre-surgery, 8 weeks post and 10 weeks post, 

respectively), and between PP and PF (r values of 0.85 and 0.82 at pre-surgery and 8 

weeks post, respectively).  However, in a separate study, Gleeson et al. (2008a) 

identified a potential latency period before self-perceived knee function correlated with 

musculoskeletal performance, whereby changes in objective performance capabilities in 

ACL-reconstructed individuals are only perceived after being ‘tested’ during functional 

tasks. In this instance, PP correlated with ATFD (r = 0.68) and RFD (r = 0.65) only 

after a two-week latency period (PP scores from 10 weeks post correlated with ATFD 

and RFD at 8 weeks post).  These findings were not mirrored in the results from the 

current study, as a low negative correlation between KF PF at week 6 and PP at week 

12 was the only result of any significance.  This may have been due to the longer 

duration between assessment sessions (≥ 6 weeks) that was perhaps too great to reveal a 

latency effect, as levels of performance will have made greater improvements across 

this period and thus not be detected.  A possible explanation for the different findings 

reported by the two previous studies utilising PP (Gleeson et al., 2008a; Gleeson et al., 

2008b) is the slight change in focus of the inventory.  Whereas one investigation 

required the patients to focus on the qualities they perceived to be important for the 

optimal functioning of their knee (Gleeson et al., 2008a), the other placed greater 

emphasis on psychological aspects by specifically focusing on the emotions experienced 

by each patient since being injured (Gleeson et al., 2008b).  The only notable 

correlations between PP and musculoskeletal performance were evident when 

examining percentage change scores, with significant positive correlations observed 
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with KE PF (r = 0.36) for the period between week 6 and week 12, and also with KE 

RFD (r = 0.36), KF RFD (r = 0.36) and HOP (r = 0.37) between week 24 and week 48. 

The relationships between IKDC and musculoskeletal performance follow a 

slightly different pattern to those exhibited by PP.  A lack of strong correlations were 

evident at the early to intermediate stages (pre-surgery to 24 weeks) that were in 

agreement with results observed by Gleeson et al. (2008b).  However, significant 

positive correlations were evident at 48 weeks with KF PF (r = 0.45), KE RFD (r = 

0.57), KF RFD r = 0.56) and HOP (r = 0.45).  In addition, significant positive 

correlations were observed between IKDC at week 48 and KF PF (r = 0.67) and KE 

RFD (r = 0.41) at week 24.  The observation of an increasing strength of relationship 

between self-perceived and objective measures towards the latter stages of the 

rehabilitation period may be congruent with the concept of a learning effect, whereby 

patients have had time to become accustomed to the various sensations arising from 

their reconstructed knee after testing the joint during functional activities.  This premise 

is consistent with the CGM theory of exercise regulation that postulates that selected 

RPE is matched to a ‘template RPE’ against which the anticipated task demands can be 

compared (Tucker, 2009).  In the context of ACL rehabilitation, the patient exhibits 

insufficient experience of the sensations arising from the reconstructed limb, and is 

therefore unable to generate an accurate ‘template’.  As such, the lack of strong 

correlations for the majority of the rehabilitation period questions the capacity of self-

perceived knee function to accurately reflect functional performance capabilities.  This 

might have associated implications for the self-regulation of discrete rehabilitative 

exercise tasks, as described previously.  It is not possible to determine if the current 

findings are due to a misperception of functional capabilities, or due to a lack of utility 

of the measurement scales.  The PP technique enables patients to personalise the scale 

by generating individual ‘constructs’ that they deem to be important indicators of knee 
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function, and has previously been deployed in a clinical environment (Doyle et al., 

1998; Gleeson et al., 2008a; Gleeson et al., 2008b).  In addition, the IKDC inventory 

was selected as a measure of self-perceived knee function because of its widespread 

usage in a clinical environment (Harreld et al., 2006; Higgins et al., 2007; Ardern et al., 

2011b), and due to its previous application in conjunction with PP (Gleeson et al., 

2008a; Gleeson et al., 2008b), as this would enable a comparison with previous research.  

Given that neither scale offered sufficient utility in terms of providing an indication of 

objective knee function during the early to intermediate stages of rehabilitation (pre-

surgery to 24 weeks post-surgery), other self-reported measures of knee function, such 

as the Cincinnati Knee Rating System (Borsa et al., 1998), Lysholm Knee Rating 

System (Marx et al., 2001) or Knee Injury and Osteoarthritis Outcome Score (Thomee 

et al., 2007), might have provided a more accurate reflection of objective capability 

throughout the recovery process.  However, whilst self-reported measures of knee 

function are widely used in a rehabilitation setting (Adams et al., 2012), their relevance 

has previously been questioned (Zarins, 2005; Gleeson et al., 2008a).  An alternative 

consideration is that the indices of musculoskeletal performance selected for assessment 

possibly lack suitability.  However, as previously highlighted, the selected measures 

represent a range of important indicators of objective knee function, and similar 

assessments are widely used to monitor the progress of ACL rehabilitation (Barber-

Westin and Noyes, 2011).  Moreover, the single-leg hop test is arguably a physical 

manifestation of self-perceived capabilities, whereby performance is likely to be highly 

determined by the patient’s level of confidence in their knee.  A lack of confidence or 

perception of poor knee function might plausibly prompt a smaller hop distance.  As 

such, it could have been anticipated that this index of performance would have shared a 

stronger relationship. 
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RPE is derived from the integration of numerous sensations (Hampson et al., 

2001). The dominant sensations that mediate the RPE response may vary depending on 

the mode and intensity of the exercise (Noble and Robertson, 1996).  Similarly, self-

perceived knee function will also be a product of multiple afferent signals and corollary 

discharges arising as a consequence of ACL-reconstructive surgery.  Contributing 

factors may include pain and swelling, instability, limited range of motion, and impaired 

muscular strength and power.  In this scenario, the most influential mediators may 

depend not only on the mode and intensity of exercise, but also on the phase of 

rehabilitation.  For example, exercise during the early stages of rehabilitation focuses 

primarily on restoring muscle function whilst operating through a limited range of 

movement (Bailey et al., 2003; Kvist, 2004).  This stage of recovery is distinguished by 

the biggest improvement in knee laxity (a reduction of 56.5% from pre-surgery to 6 

weeks).  However, the restrictive nature of the exercise tasks is important to place 

minimal stress on the replacement graft as it strengthens during the revascularisation 

process (Grodski and Marks, 2008), and consequently the dominant factors contributing 

to self-perceived knee function may be centred around sensations of pain, swelling and 

muscle weakness, as opposed to stability of the knee joint. For instance, stimulation of 

nociceptors may also have an inhibitory effect upon force generating capabilities (Rice 

and McNair, 2010), and an elevated pain response may supercede perceptual cues from 

other mechanoreceptors within the knee joint.  As more dynamic exercise such as 

running and plyometrics is typically re-introduced between weeks 9 and 16 post-surgery 

(van Grinsven et al., 2010), an increased demand is placed upon the dynamic restraints 

to protect the joint, necessitating greater rapidity of force generation and coordination of 

muscle recruitment patterns (Alentorn-Geli et al., 2009).  By these latter stages of 

rehabilitation, symptoms of pain and swelling have typically subsided (Cappellino al., 

2012), and the dynamic nature of the exercise may stimulate increased self-awareness of 
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the performance of the surrounding musculature.  This may provide some explanation 

as to the relationships observed between IKDC and PFKF, RFD, and HOP performance 

at 48 weeks.   

3.6. CONCLUSION 

The current findings reveal a lack of significant relationships between self-

perceived and objective measures of musculoskeletal performance during the early to 

intermediate stages (pre-surgery to 24 weeks) of post-operative ACL rehabilitation.  

This disparity between self-perceived and actual function may reflect a lack of efficacy 

of the self-reported inventories, or possibly a misplaced level of confidence in the 

capabilities of the reconstructed knee.  Considering the suggestion that a performer’s 

level of self-efficacy regarding an exercise task could impact upon their RPE, it is 

plausible that the mismatch between perceived and actual capabilities might prompt the 

generation of an inaccurate RPE and consequently have implications for exercise 

regulation during discrete rehabilitative activities.  It would be, therefore, of interest to 

explore if the previously reported linear relationship between RPE and exercise duration 

(as detailed in Chapter 2.5) is affected by the combination of injury and surgery during 

early to intermediate phases of ACL rehabilitation.  This will help to ascertain whether 

or not patients are able to utilise RPE and their self-perceived exercise capabilities to 

help regulate their work-rate and accelerate their return to full activity.  Before this can 

be investigated in a clinical setting, it is necessary to first test these principles in an 

asymptomatic population during an exercise mode that relates to rehabilitative activities.  

The use of a healthy population would enable greater experimental control whilst 

minimise inter-individual variations in performance.  The first stage of this process 

involves determining the appropriate perceptual measurement tools and establishing the 

level of reliability and reproducibility of the selected inventories. 
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Chapter 4: 
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task 



 
95 

CHAPTER 4: REPRODUCIBILITY AND RELIABILITY OF TWO 
PERCEPTUAL SCALES DURING AN INTERMITTENT ISOMETRIC 
FATIGUE TASK 

4.1. ABSTRACT 

The aim of this chapter was to assess the reliability of two perceptual 

measurement scales during a novel intermittent isometric fatigue task (IIF): i) 

measurement of perceived exertion using the category-ratio RPE scale (CR-10); ii) 

measurement of perceived percentage of completed task duration (PTD) using a visual 

analog scale. Eight recreationally active males were required to attend two assessment 

sessions, each of which required the participants to perform an entire IIF task at 60% 

baseline peak force (PF), through to termination. Measures of perceived exertion (CR-

10) and perceived task duration (PTD) were recorded at 10% intervals across the 

relative duration of each IIF task.  Inter-day reliability and variability of the CR-10 and 

PTD scales were established via calculation of intra-class correlation coefficients (ICC) 

and coefficient of variation (V%), respectively.  Composite inter-day ICC scores were 

0.82 (p < 0.001) and 0.85 (p < 0.001) for PTD and CR-10, respectively, suggesting a 

good level of agreement between trials for both PTD and CR-10.  Composite V% values 

were 21.3 ± 15.4% and 22.7 ± 10.0% for PTD and CR-10, respectively, indicating 

greater intra-individual variability than reported in previous studies.  Moreover, an 

intra-individual variability in CR-10 response of 33.1% was observed at 10% completed 

IIF duration, equating to 0.9 absolute units of measurement on a CR-10 scale.  In order 

to reflect any variation in work intensity in the early stages of an IIF, CR-10 responses 

would, therefore, have to exceed this magnitude of 0.9 units. 
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4.2. INTRODUCTION 

The findings in Chapter 3 identified a disparity between self-perceived and 

objective measures of knee function during the early to intermediate stages (pre-surgery 

to 24 weeks) of post-operative ACL rehabilitation.  Given that self-efficacy of exercise 

performance has been shown to influence RPE (Hu et al., 2007), misplaced expectations 

concerning perception of knee function might plausibly have an associated impact upon 

the relationship between RPE and exercise task duration (TD).  Various researchers 

have reported linear relationships between RPE and TD in cycling (Noakes, 2004; Eston 

et al., 2007; Crewe et al., 2008), running (Faulkner et al., 2008) and jumping activities 

(Pereira et al., 2011), suggesting a utility for RPE to act as a predictor of TD (Horstman 

et al., 1979; Eston et al., 2007).  The potential practical benefit of this linear relationship 

is the application of RPE as a method of helping individuals regulate their pacing 

strategy to help produce an optimal performance.  However, the relationship between 

RPE and TD is yet to be confirmed in intermittent isolated muscle activities that may 

have application to resistance training and rehabilitative exercise.  Furthermore, with a 

variety of perceptual measurement scales having been utilised by the previous research 

(for an overview of methodologies, see Table 2.2), it is important to identify scales that 

may provide the greatest utility and reliability for measuring self-perceived capabilities 

during intermittent isolated muscle exercise. 

Previous research investigating RPE in relation to TD have used measurement 

methods including both the Borg 15-point scale (Noakes, 2004; Eston et al., Crewe et 

al., 2008; Faulkner et al., 2008; Davies et al., 2009; Pereira et al., 2011) and the CR-10 

scale (Albertus et al., 2005; Joseph et al., 2008; Swart et al., 2009). Whereas the 15-

point Borg scale was designed to increase linearly with heart rate and exercise intensity 

(Borg, 1990), the CR-10 scale was developed to reflect the positively accelerating 

increase in lactate production associated with increasing exercise intensity (Noble et al., 
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1983).  Thus, the CR-10 scale has been recommended in preference to the 15-point 

Borg scale for use in exercise that produces sensations of exertion and discomfort in a 

specific muscle group or area of the body (Borg and Kaijser, 2006; Buckley and Eston, 

2007).  Accordingly, the CR-10 scale has been deployed as a method of monitoring 

RPE in a variety of muscle-specific tasks, including grip strength (Demura and Yamaji 

2009), trunk strength (Gruther et al., 2009), isolated knee extension and flexion 

(Pincivero et al., 2000; Pincivero et al., 2003a; Pincivero et al., 2003b), and also during 

cycling (Romer et al., 2002), walking (Chiu and Wang, 2007) and soccer training 

(Casamichana and Castellano 2010).  Pincivero et al. (2000) reported a linear increase 

in CR-10 values in response to 10% incremental increases in intensity during isometric 

knee extensions.  Participants were required to perform isometric activations at 

intensities ranging from 10% to 90% PF in a randomised order, and assign a CR-10 

rating to each activation.  The resulting group mean CR-10 responses at each work 

intensity were significantly different from those responses at the subsequent intensity, 

suggesting that the scale demonstrated sufficient measurement sensitivity to detect 10% 

variations in force.  This led the authors to recommend the CR-10 scale in a prescriptive 

capacity as a method of regulating workload in resistance exercise.  In the context of 

pacing, CR-10 responses have also been reported to demonstrate a linear increase 

during cycling exercise when plotted as a proportion of the completed exercise duration 

(Albertus et al., 2005; Joseph et al., 2008).   

Test-retest reproducibility and reliability of the CR-10 scale has previously been 

investigated, yielding a coefficient of variation (V%) ranging from 14.5% to 17% 

(Elfving et al., 1999; Day et al., 2004) and intra-class correlation coefficients (ICC) of 

0.84 to 0.95 (Elfving et al., 1999; Day et al., 2004; McGuigan et al., 2004).  However, it 

has been acknowledged that the capability of the CR-10 scale to reflect changes in 

exercise intensity may differ under varying levels of fatigue (Pincivero et al., 2000).  It 
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is therefore important to establish the level of precision afforded by the CR-10 during 

acute fatigue, in order to understand the implications for using the scale to predict TD 

and help to regulate exercise performance. 

RPE scales are designed for a performer to rate the sensations of effort and 

discomfort experienced when performing a given exercise task (Noble and Robertson, 

1996).  However, Swart et al. (2012) have recently provided evidence that the 

perception of effort can be isolated from the sensations of pain and discomfort arising 

from exercise, by utilising separate scales to distinguish between exertion and effort 

during 100km cycling trials that included 5 maximal sprints performed at pre-

determined intervals across the duration of the task.  The resulting findings 

demonstrated high levels of perceived effort following each maximal sprint, whilst 

perceived exertion was shown to increase as the time-trial progressed.  This distinction 

highlights the capability to perform maximal efforts in the absence of severe symptoms 

of exertion, and also that it is possible to summon an increased effort whilst in a pre-

existing state of severe exertion, such as an end-spurt in the latter stages of a race 

(Abbiss and Pfeiffer, 2010).  In accordance with this principle, it is plausible that 

performers could generate a high RPE, yet simultaneously perceive that they are 

capable of continuing the exercise bout for a sustained period.  In this regard, a direct 

prediction of a performer’s self-perceived time-to-exhaustion over the course of an 

exercise bout might plausibly produce a different response in comparison to RPE.  It is, 

therefore, of interest to explore whether or not a direct prediction of exhaustion time 

would share a stronger relationship with TD than RPE.  This concept has previously 

been investigated with the design of an estimated time limit (ETL) scale that requires 

the performer to make a conscious prediction of time remaining in an endurance 

exercise task (Garcin et al., 1999; Garcin et al., 2004).  The ETL scale requires 

performers to consider the question “how long would you be able to perform an 
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exercise at this intensity up to exhaustion?” and requires them to provide a response on 

a 1-20 scale with accompanying descriptors ranging from “more than 16 hours” to “2 

minutes”.  Although the ETL scale attempts to address the issue of obtaining a direct 

prediction of remaining TD, there is insufficient evidence to support its utility in 

isolated muscle exercise.  Firstly, the timescale incorporated within the ETL is 

inappropriate for a shorter bout of intermittent isolated muscle activity that may be 

performed during a discrete rehabilitation session.  In addition, although reliability of 

the ETL has been provided via Pearson correlations ranging from 0.74 to 1 (Coquart 

and Garcin, 2007), it has been argued that correlation coefficients merely provide a 

measure of association as opposed to an estimate of the size of within-subjects 

variability (Lamb et al., 1999).  Moreover, the construct validity of this scale is 

questionable, with ETL responses obtained at 2 and 4 minutes into a cycling task 

demonstrating a lack of accuracy in predicting TD (Garcin et al., 2004).  It is apparent 

that the ETL scale would have limited application to shorter duration intermittent and 

isolated muscle activity that is reflective of resistance or rehabilitative exercise.  

However, this does not discount the potential merits of obtaining conscious predictions 

of TD with regard to regulating exercise performance.  Indeed, if an appropriate scale is 

found to share a relationship with TD, then this could provide substantial benefits in 

regulating exercise performance in both resistance training and clinical settings. 

The aim of this chapter is to assess the reliability of two perceptual measurement 

scales during a novel intermittent isometric fatigue task (IIF): i) measurement of RPE 

using the CR-10 scale; ii) measurement of perceived percentage of completed task 

duration (PTD) using a visual analog scale. 
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4.3. METHODS   

4.3.1. Participants 

Eight recreationally active males (age 24.1 ± 4.1 years; height 179.6 ± 7.5cm; 

body mass 89.3 ± 11.6kg) provided written informed consent to participate in the study.  

All participants were asymptomatic of injury and were instructed to abstain from 

strenuous physical activity for the 24 hours preceding each testing session.  The sample 

size was reduced from an initial sample of 16, as some participants failed to complete 

the full testing schedule while others were omitted due to a lack of adherence to the 

activity restrictions.  Assessment protocols were approved by the Nottingham Trent 

University Ethical Committee for Human Testing.  

4.3.2. Experimental Procedures and Design 

Participants were required to attend the laboratory on a total of three occasions, 

each separated by 48-72 hours.  The first occasion involved familiarisation and 

accommodation to rapid maximum voluntary muscle activation (MVMA) of the 

quadriceps, and perceptual measures (described below).  Also included was a brief 

exposure to an intermittent isometric fatigue task (IIF) for a total of 8 sets at an intensity 

of 60% baseline peak force (PF).  Occasions two and three served as assessment 

sessions, each of which required the participants to perform an entire IIF task at 60% 

baseline PF, through to termination.  Estimates of static volitional neuromuscular 

performance were obtained prior to each IIF.  

Following a standardised warm-up of five minutes cycle ergometry performed at 

90 W, and an additional five minutes of stretching of the involved musculature, 

participants were secured in a seated position on a custom built dynamometer (Minshull 

et al., 2011).  The lever arm of the dynamometer was attached to the involved leg of the 

participant via a padded ankle cuff secured just proximal to the lateral malleolus and the 
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lever arm was at an angle perpendicular to the tibia (Figure 4.1).  The muscle action was 

localised through the use of adjustable strapping across the torso, pelvis and anterior 

thigh proximal to the knee joint.  Throughout testing, the knee position was maintained 

at a functionally relevant angle of 25° (0.44 rad) which has been associated with the 

greatest mechanical strain on key ligaments (Li et al., 1999) and identified for each 

participant during activation of the involved musculature using a goniometry system.  

The hip angle was 60° (0° = full extension) and the non-involved limb rested on a 

padded surface in order to reduce leverage during activation of the musculature of the 

involved limb. 

 

 

Figure 4.1.  Participant and dynamometer orientation 

4.3.3. Intermittent Isometric Fatigue task (IIF) 

An IIF consisting of sets of ten sub-maximal muscle activations of the knee 

extensors was performed in time to an audible sound-track of bleeps that cued a 
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work:rest ratio of 1s:1s.  This work:rest ratio has previously been utilised in isometric 

knee extension and flexion (Gleeson et al., 2008) and isometric hand-grip tasks 

(Shoemaker et al., 1999). The participant was able to observe their efforts on a 

computer monitor to ensure their attainment of the target force (see Figure 4.2 for 

example data).  After each set, a rest period of ten seconds enabled the participant to 

record their perceptual measures (described below).  In order to minimise any influence 

of participants’ previous scores on their current perception, blank recording sheets were 

provided after every set.  Termination criterion for the IIF were defined by: the 

participant’s inability to maintain target force for three consecutive efforts in any set; 

when the majority of the efforts within the set did not reach the target force, or; at the 

point of volitional exhaustion.  All participants were verbally encouraged during periods 

of muscle activation. 

 

Figure 4.2.  Example force trace illustrating IIF work:rest ratios 
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4.3.4. Perceptual measures 

4.3.4.1. Perceived Exertion: CR-10 Scale 

A modified version of the CR-10 scale was used to measure RPE (Borg, 1998).  

This version omitted the numerical ratings 0.3, 0.5, 1.5 and 2.5 (Lloyd et al., 1991; 

Allman and Rice, 2003; Pincivero et al., 2003a, Pincivero et al., 2003b; Day et al., 

2004; McGuigan et al., 2004) and the verbal descriptors were modified from ‘weak’ and 

‘strong’ to ‘light’ and ‘hard’, respectively (Pincivero et al., 2003a).  In addition, the 

‘maximal’ rating with the facility to select numbers above 10 was also omitted (Lloyd et 

al., 1991; Allman and Rice, 2003; Pincivero et al., 2003b; McGuigan et al., 2004; Yoon 

et al., 2007; Testa et al., 2012).  These modifications were made following extensive 

pilot testing, in order to maximise participant understanding and improve application of 

the scale (modified scale illustrated in Figure 4.3).  High and low reference anchors 

were applied to provide a context through which participants could evaluate their RPE 

and provide the scope to differentiate between work intensities (Noble and Robertson, 

1996).  The low anchor was applied during the passive recovery period prior to the pre-

IIF MVMA, with participants instructed to “think about the feelings in your working 

muscles during this recovery period and to assign a rating of 0 to those feelings.”  The 

high anchor was applied immediately following each pre-IIF MVMA, by instructing the 

participants to “think about the feelings in your working muscles during the maximal 

effort and assign a rating of 10 to those feelings.”  This anchoring procedure has 

previously been employed in isometric fatigue tasks (Allman and Rice, 2003; 

McGuigan et al., 2004; Yoon et al., 2007).  CR-10 responses were obtained during each 

inter-set rest period during the IIF.  Participants were asked to consider the question 

“Think about the feelings in your working muscles during your last effort, and rate 

those feelings” (defined as the last repetition in the preceding set).  Participants selected 

a response by circling the appropriate number from the scale, and were permitted to 
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select fractional values if required.  It was emphasised to participants that they should 

provide honest responses regarding their perceived exertion, as opposed to recording 

erroneous values to conform to perceived expectations. 

 

Figure 4.3.  Modified CR-10 scale (adapted from Pincivero et al., 2003b).  Participants 
selected their rating in response to the statement “Think about the feelings 
in your working muscles during your last effort and rate those feelings.” 

4.3.4.2. Perceived percentage of completed task duration (PTD) 

Visual analog scales (VAS) provide a very quick and simple method for a 

variety of functions such as measuring pain (Katz and Melzack, 1999) or self-efficacy 

(Turner et al., 2008).  Test-retest reliability of VAS scales has previously been reported 

with ICC values ranging from 0.82 to 0.97 (Le Resche et al., 1988; Vieira et al., 2005; 

Shmueli et al., 2008).  A VAS was selected for the estimation of PTD as this could be 

applied to all participants and mitigate against heterogeneity of task duration.  Units of 

measurement were omitted from the VAS to as there is the suggestion that these 

additional elements can affect the distribution of responses (Huskisson 1983).  
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Measures of PTD were obtained using a VAS with ‘beginning’ and ‘end’ anchors 

placed at either end of a 100mm line (illustrated in Figure 4.4). The 100mm length scale 

has previously been recommended above other lengths (50 and 200mm) due to 

providing smaller measurement errors (Seymour et al., 1985).  Participants considered 

the question “Based on your last set of efforts and brief recovery, how far from the end 

of the test do you think you are?” and marked the line with their response accordingly.  

Responses were measured with a ruler and converted into percentages for subsequent 

analysis. 

 

Figure 4.4.  VAS scale 

4.3.5. Assessment of neuromuscular performance 

Following a series of sub-maximal warm-up muscle activations an auditory 

signal was delivered randomly within 1-4 seconds cuing the participant to extend their 

knee as rapidly and forcefully as possible against the immovable restraint provided by 

the apparatus.  Another auditory signal was then given to the participant after 

approximately 3 seconds of maximal voluntary muscle activation (MVMA) to cue 

muscular relaxation.  Three trials were performed, each separated by a minimum of 10 

seconds.  Static peak force (PF) was recorded as the mean response of three intra-trial 

replicates in which the highest force was recorded in each trial. Rate of force 

development (RFD) was calculated for each intra-trial replicate as the average rate of 
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force increase between 25% and 75% and reported as the mean response of the three 

replicates. 

4.3.6. Statistical analysis 

All statistical analyses were performed using PASW v18.0 (SPSS Inc. Chicago, 

Il, USA).  Perceptual measures were obtained at 10% intervals of the completed task 

duration (CTD), with CR-10 and PTD scores at 10% to 100% of the IIF task 

subsequently used for analysis.  For those individuals whose scores did not fall on a 

10% interval, a cubic spline function enabled interpolation of a value that was 

subsequently used for analysis (Keele, 2008). 

Intra-class correlation coefficients (ICC) were calculated to establish reliability 

and provide an indication of the degree of association between inter-day measures 

(Bruton et al., 2000).  ICCs were calculated for inter-day IIF duration, neuromuscular 

performance, and perceptual measures. 

Coefficient of variation (V%) (SD/mean) across the inter-day trials was also 

calculated for each individual to establish the reproducibility of each measure, as this 

index provides an estimate of variability that is independent from the inter-subject 

heterogeneity (Mercer and Gleeson, 2002). A correction for V% for small sample bias 

was calculated according to the expression (SD/mean) × (1+[1/4n]) × 100 (Sokal and 

Rohlf, 1981).  Outliers were detected at 95% significance using the Dixon Q-test 

(Rorabacher, 1991).  Due to two participants exhibiting a learning effect not evident in 

the remainder of the sample, the decision was taken to Winsorise the relevant data, by 

replacing the errant data points with neighbouring values (Sokal and Rohlf, 1981).  

Winsorised PTD V% values were imputed for two participants across a combined total 

of six time points. A Winsorised CR-10 V% value was imputed for one participant at a 

single time point. 
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Paired samples t-tests were used to explore inter-day differences in IIF duration.  

IIF set values were log transformed (log 10) to satisfy assumptions of normality.  Paired 

t-tests were also employed to establish significant differences between neuromuscular 

performance measures (PF, RFD, EMDVL, EMDVM), and between corresponding 

perceptual measures at equivalent time points at each 10% of relative TD. 

All data were analysed using standard descriptive statistics (mean ± SD), and 

statistical significance was accepted at p<0.05. 

4.4. RESULTS 

Composite V% values (mean and SD calculated from the sum of the average 

V% values from each CTD time point) were 21.3 ± 15.4% and 22.7 ± 10.0% for PTD 

and CR-10, respectively.  Composite ICC values (range comprising all CTD time 

points) were 0.82.  Composite inter-day ICC scores (range comprising all CTD time 

points) were 0.82 (p < 0.001)  and 0.85 (p < 0.001) for PTD and CR-10, respectively. 

Both PTD and CR-10 inter-day ICC scores exceeded an acceptable level of agreement 

of 0.80 (Currier, 1984).  Group mean data (± SD) for PTD and CR-10 responses 

measured over the duration of the IIF1 and IIF2 trials, along with corresponding V% 

and ICC values are presented in Table 4.1 and Table 4.2, respectively.  Group mean 

data for IIF duration and indices of neuromuscular performance, along with 

corresponding V% and ICC values are presented in Table 4.3.  ICCs indicated high 

levels of agreement across the inter-day trials for all neuromuscular performance 

measures (ICC > 0.84; p < 0.001).  Paired t-tests revealed no significant differences for 

IIF duration, neuromuscular performance measures, or perceptual measures between 

day 1 and day 2. 
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Table 4.1  CR-10 responses during IIF1 and IIF2 (group means ± SD), with 
corresponding V% and ICC 

% of 
CTD 

CR-10 
IIF1 IIF2 V% ICC 

10 2.4 ± 1.4 3.1 ± 1.5 33.1 ± 27.0 0.84† 
20 3.3 ± 1.7 4.4 ± 1.8 34.8 ± 27.3 0.53 
30 4.5 ± 1.9 5.5 ± 1.8 29.0 ± 26.4 0.26 
40 5.3 ± 2.3 6.8 ± 2.4 31.3 ± 37.8 0.42 
50 6.8 ± 1.9 7.6 ± 1.9 19.2 ± 13.6 0.14 
60 7.7 ± 1.5 8.4 ± 2.1 18.3 ± 19.9 0.31 
70 8.6 ± 1.7 8.9 ± 1.9 20.0 ± 25.2 -2.14 
80 9.3 ± 0.9 9.3 ± 1.5 11.9 ± 15.0 -0.80 
90 9.9 ± 0.3 9.6 ± 0.9 3.0 ± 4.2 -0.29 

100 10.0 ± 0.0 10.0 ± 0.0 n/a n/a 

†Significant ICC (p<0.01) 

 

Table 4.2  PTD responses during IIF1 and IIF2 (group means ± SD), with 
corresponding V% and ICC  

% of 
CTD 

PTD 
IIF1 IIF2 V% ICC 

10 20.4 ± 11.7 30.4 ± 17.7 46.9 ± 30.9 0.11 
20 33.1 ± 18.6 41.9 ± 22.2 34.3 ± 31.8 0.46 
30 43.7 ± 23.4 50.8 ± 21.4 41.9 ± 31.2 0.08 
40 53.7 ± 23.7 61.5 ± 20.1 24.2 ± 15.4 0.25 
50 63.7 ± 24.9 69.0 ± 18.6 19.2 ± 12.5 0.35 
60 74.6 ± 21.2 77.8 ± 15.6 14.7 ± 12.4 0.16 
70 82.3 ± 23.8 83.4 ± 14.9 15.4 ± 10.2 -0.46 
80 92.2 ± 7.9 89.2 ± 10.8 9.7 ± 8.9 -0.17 
90 96.7 ± 6.2 92.4 ± 9.2 5.3 ± 4.9 -0.28 

100 98.3 ± 2.6 95.5 ± 7.7 1.5 ± 1.6 0.02 

 

Table 4.3  IIF duration and indices of neuromuscular performance for day 1 and day 
2 (group means ± SD), with corresponding V% and ICC 

Index  Day 1 Day 2 V% ICC 
IIF# (sets) 22.5 30.1 36.8 ± 30.2 0.57 
PF (N) 660.7 ± 137.5 664.9 ± 146.7 4.9 ± 1.3 0.99* 
RFD (N.s-1) 3053 ± 912 3092 ± 1046 21.1 ± 7.2 0.94* 
EMDVL (ms) 36.7 ± 12.6 31.4 ± 4.7 17.2 ± 9.8 0.84* 
EMDVM (ms) 34.9 ± 7.3 33.6 ± 7.0 17.2 ± 5.7 0.85* 

#IIF values reverse log transformed 
*Significant ICC (p<0.001) 
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4.5. DISCUSSION 

The results of the current study demonstrate that the composite V% and ICC 

values for the PTD and CR-10 scales possess similar overall levels of measurement 

reliability during performance of an IIF.  The composite V% values for perceptual 

measures were slightly higher than previously reported values for CR-10 in isometric 

and isotonic resistance exercise (14.5% to 17%: Elfving et al., 1999; Day et al., 2004).  

When evaluated separately for each 10% increment in exercise duration, a greater 

relative intra-individual variability in perceptual responses were evident during the early 

stages of the IIF, as indicated by V% values (Tables 4.1 and 4.2).  The smaller relative 

errors towards the end of the IIF may be due to a ‘clamping’ effect from the uppermost 

value of the respective scales. They may also reflect the participants’ improvement in 

using the rating scales due to their learning through the feedback they obtained during 

the test.  However, the inclusion of a separate familiarisation session within the current 

study was designed to accommodate and habituate the participants to the exercise task 

and procedures, and minimise learning effects between IIF1 and IIF2.  An intra-

individual variability in CR-10 response of 33.1% was observed at 10% CTD, equating 

to 0.9 absolute units of measurement on a CR-10 scale.  In order to reflect any variation 

in work intensity in the early stages of an IIF, CR-10 responses would, therefore, have 

to exceed this magnitude of 0.9 units. 

Composite ICC values were comparable to those previously reported for the CR-

10 (0.84 to 0.95: Elfving et al., 1999; Day et al., 2004; McGuigan et al., 2004).  

However, when the data was explored for each separate 10% increment in exercise 

duration, the ICC relationships were noticeably weaker (Table 4.1 and Table 4.2 for 

CR-10 and PTD, respectively).  It is possible that grouping subsets of data at discrete 

time points creates a more homogeneous sample by reducing the between-subjects 

variance, resulting in a weaker correlation (Bruton et al., 2000).  These findings mirror 
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those reported by Pincivero et al. (2003), who discovered relatively weak ICCs for CR-

10 values (-0.50 to 0.46) that were obtained in response to a range of isometric muscle 

activations performed at intensities ranging from 10% through to 90% MVMA 

separated by 10% intervals.  Other research has grouped CR-10 responses that were 

obtained after performing resistance exercise across a range of intensities (Day et al., 

2004; McGuigan et al., 2004) or that were recorded at a range of time points throughout 

the duration of an isometric fatiguing muscle activation (Elfving et al., 1999).  This 

approach provides a single ICC value, and creates a more heterogeneous sample and a 

higher level of reliability.  It can be argued that grouping of data across the full 

spectrum of time points provides a clearer indication of the reliability of the perceptual 

responses, and is consistent with approaches adopted in previous research. 

The IIF was selected because the static nature of the task mimics muscle 

exercise performed by an ACL-reconstructed population during the early stages of 

rehabilitation when dynamic exercise is restricted (Grodski and Marks, 2008).  In 

addition, the isolated nature of the task removed the potential variable of differing levels 

of technical ability between participants, such as might be expected in the performance 

of a more complex multiple-joint exercise such as a free-weight squat.  Extensive pilot 

testing was undertaken in order to devise a protocol that provoked a fatiguing response 

within a manageable timeframe that replicated the duration of a bout of intermittent 

resistance exercise, yet still afforded participants sufficient time to consider their 

perceptual responses during inter-set rest periods.  The inclusion of a separate 

familiarisation session within the current study was designed to accommodate and 

habituate the participants to the exercise task and procedures, and minimise learning 

effects between IIF1 and IIF2. Pincivero et al. (2003) previously reported a low level of 

inter-day reliability in CR-10 response, that was attributed in part to a lack of 

habituation to the testing procedures, and significant difference in PF force values 
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between assessment sessions.  In the current study, the low variability of inter-day PF 

(4.9%) indicates that participants performed the IIF tasks at similar absolute target 

forces on each occasion.  Moreover, the inclusion of a habituation procedure meant the 

proportion of error attributable to learning effects is likely to be comparably less than 

that reported in previous related research.  Whilst there was no significant difference in 

duration between IIF1 and IIF2, the V% of 36.8 ± 30.2 indicates a substantial intra-

individual variability with regard to performance of the IIF tasks.  However, 

considerable intra-individual variability has also been previously reported in a more 

traditional constant load cycling test (V% = 21 to 26.6: Hill and Rowell, 1996; 

Jeukendrup et al., 1996).   

The CR-10 scale was selected to provide a measure of RPE due to its application 

to localised muscle exercise (Noble et al., 1983; Pincivero et al., 2000).  From the 

current research, it is impossible to determine whether the level of test-retest reliability 

(22.7%) of the CR-10 was solely due to an altered ‘template RPE’ as a consequence of 

increased experience of the IIF task, or partly influenced by the limited range of 

available numerical responses afforded by the CR-10 scale (0-10).  The less commonly 

used CR-100 scale might have provided an alternative method given its greater 

measurement sensitivity and the added benefit of its association to a percentage scale 

(Borg and Kaijser, 2006).  However, use of the CR-10 scale in the context of pacing and 

exercise regulation (Albertus et al., 2005; Joseph et al., 2008; Swart et al., 2009) would 

enable results of future studies to be compared against this existing research.  In an 

attempt to provide continuity with the methods used to establish self-perceived 

capabilities in an ACL-reconstructed population (Chapter 3), a truncated PP utilising 3 

constructs was trialled during the pilot-testing phase ahead of the current study.  

However, feedback from participants indicated that insufficient time was available 

during the IIF inter-set rest periods to enable appropriate consideration to be given to 
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the PP and provide appropriate ratings for each construct.  A VAS was ultimately 

employed to provide a measure of PTD, as the lack of objective units within this scale 

enabled application to an exercise task of any duration, and therefore negated any inter-

individual differences in IIF performance.  The ETL scale described by Garcin et al. 

(1999) has limited relevance to shorter duration activity (< 5 minutes) due to the 

inclusion of objective units of time.  In addition, the ETL scale employs a question in 

which participants are asked “how long would you be able to perform an exercise at this 

intensity up to exhaustion?”  In contrast, the VAS required participants to consider the 

question “how far from the end of the test do you think you are?” This required 

participants to estimate their performance not only in terms of time remaining, but also 

with regard to the amount of work completed.  Although the question employed to 

obtain PTD potentially prompts a different cognitive challenge to that posed by the ETL 

scale, it is postulated that afferent feedback relating to the rate of muscle glycogen 

depletion during exercise is involved in the generation of a conscious RPE (Tucker, 

2009), implying that performers do consider the amount of work already undertaken 

when making judgements concerning the regulation of exercise performance. 

Whilst a robust approach was taken to minimise learning effects by the inclusion 

of a familiarisation session, the participants’ prior experience of isometric exercise 

might still be limited in comparison to more common activities involving reciprocal 

patterns of muscle activation such as running and cycling.  As such, the variation in 

both intra- and inter-individual perceptual response may be due in part to the nature of 

this novel exercise task. In order to establish the reliability of a measurement tool and 

the typical variability of responses, it is first important to ensure that the objects being 

measured are as stable as possible with respect to the attribute being measured.  With 

regard to RPE, the importance of establishing reliability under identical repeated testing 

conditions has previously been emphasised (Lamb et al., 1999).  The difficulty in 
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exploring the current research question involves striking the correct balance between 

providing sufficient habituation without diminishing the relative novelty of the task.  

Given that prior experience is integral to both the generation of RPE (Noble and 

Robertson, 1996) and the subsequent selection of an appropriate pacing strategy 

(Tucker, 2009), the implementation of multiple testing sessions would theoretically 

increase experience and potentially alter the selected RPE values.  Therefore, whilst 

repeated testing conditions may be identical, a performer’s experience of a given 

exercise task and its associated perceptual cues will increase with repetition, thus 

modifying the perceptual-cognitive reference filter (Noble and Robertson, 1996) and 

altering the ‘template RPE’ (Tucker, 2009). For example, a learning effect has 

previously been demonstrated by Swart et al. (2009), who provided evidence of an 

increasingly linear RPE response accompanied by a concomitant increase in power 

output over the course of repeated cycling trials.  In the current study, individuals with a 

training background that more closely mimics the metabolic demands of the IIF may, 

therefore, have been better placed to accurately interpret the associated afferent signals 

that contribute to RPE.  Insufficient familiarity of the IIF would likely result in 

substantial learning effects and subsequently alter the ‘template RPE’ that would 

compromise the reliability of the perceptual measures. Alternatively, repeated exposure 

to the IIF task may produce a progressively more consistent and reliable RPE, but 

arguably provides less ecological validity with regard to resistance or rehabilitative 

exercise.  In these environments, frequent manipulations of training variables are 

considered an integral component of programme design (Gamble, 2006; Grodski and 

Marks, 2008; van Grinsven et al., 2010), and the athlete or patient will, therefore, have 

limited exposure to a given mode of exercise before changes to intensity and/or duration 

are implemented.  The familiarisation and habituation strategy in the current study was 

selected to minimise learning effects, yet provide a realistic scenario from which to 
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ascertain the capability of self-perception measures to relate to TD in intermittent and 

isolated muscle exercise that may have application to rehabilitative or resistance 

training.  In future studies, the inclusion of an IIF task performed to completion in the 

familiarisation session would possibly help to strike the correct balance between 

preserving the relative novelty of the exercise task whilst minimising any potential 

learning effects. 

The logistics of participant recruitment and retention dictated that data collection 

for the current study was undertaken concurrently with that for the subsequent study 

(detailed in Chapter 5).  Although the total time commitment for the current study was 

not excessive, participants were required to attend the laboratory on three occasions and 

to restrict their activity levels prior to assessment sessions.  The original sample size of 

16 was reduced to 8, due to participants failing to complete the assessment schedule or 

failing to adhere to the activity restrictions necessary to preserve the quality of data.  On 

reflection, and given the importance of the current chapter in relation to the three 

subsequent studies (as detailed in Chapters 5 to 7), it would have been preferable to 

ensure greater numbers of participants completed the current study in order to improve 

its statistical power. 

4.6. CONCLUSION 

The purpose of the study was to evaluate the reliability of scales designed to 

measure RPE (via the CR-10 scale) and PTD during the performance of a novel 

intermittent isolated muscle exercise task.  Whilst the composite V% measures indicate 

greater intra-individual variability than reported in previous studies, the composite ICC 

values suggest a good level of agreement between trials for both PTD and CR-10. 

Having established a level of measurement precision to the CR-10 and PTD 

scales, this will now enable judgements to be made regarding experimental outcomes in 
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subsequent studies described in Chapters 5 to 7.  The capability of these scales to relate 

to TD can be therefore be explored in order to establish their validity and potential 

utility in regulating intermittent and static muscle exercise.  

 



 
116 

Chapter 5: 

Congruency and responsiveness of perceived 

exertion and task duration during an intermittent 

isometric fatigue task 
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CHAPTER 5: CONGRUENCY AND RESPONSIVENESS OF PERCEIVED 
EXERTION AND TASK DURATION DURING AN INTERMITTENT 
ISOMETRIC FATIGUE TASK 

5.1. ABSTRACT 

The aims of this study were (i) to investigate the relationship between measures 

of self-perception (perceived exertion; perceived task duration) and completed task 

duration in an intermittent isometric fatigue trial (IIF), and (ii) to evaluate the capability 

of two assessment paradigms (perceived exertion; perceived task duration) to reflect 

changes in IIF intensity.  Fifteen participants performed two IIF tasks of the knee 

extensors at intensities of 60% and 70% of daily peak force, each separated by 48-72 

hours.  Ordering of the tasks was counter-balanced and participants were blinded to the 

precise intensity of each IIF.  A category-ratio scale (CR-10) and visual analogue scale 

were used during each IIF task to record measures of perceived exertion and perceived 

task duration (PTD), respectively.  Measures were recorded at 10% intervals across the 

relative duration of each IIF task.  Pearson product-moment correlation coefficients 

revealed strong positive correlations (r=0.99; p<0.01) between completed task duration 

and both perceptual scales at the two IIF intensities.  Visual inspection of the data 

revealed linear patterns of perceptual response in both IIF trials for both perceptual 

scales.  Separate two-way repeated measures ANOVAs of CR-10 and PTD responses 

revealed significant main effects for time only (F[2.2,30.1] = 126.8; p<0.001; F[2.6,36.8]= 

117.2; p<0.001, CR-10 and PTD, respectively).  The results suggest that perceived 

exertion and perceived task duration are equally effective predictors of IIF end-point.  

However, neither measure was sufficiently responsive to discriminate between 10% 

changes in exercise intensity. 
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5.2. INTRODUCTION 

Previous research has reported that RPE increases linearly in relation to TD 

during constant intensity running and cycling tasks (Horstman et al., 1979; Noakes 

2004; Eston et al., 2007; Crewe et al., 2008).  RPE might, therefore, be a useful 

predictor of TD (Eston et al., 2007), and cue the optimal adjustment of work-rate to 

enable both the preservation of homeostasis and achievement of the exercise task 

(Ulmer 1996).  

While the relationship between RPE and TD has predominantly been 

investigated in running and cycling tasks, it is yet to be explored in resistance training 

or static and isolated muscle work that might generate different sensations of pain and 

fatigue and provide different perceptual cues (Noble and Robertson 1996).  Isometric 

(static) exercises are commonly utilised during rehabilitation following reconstructive 

joint surgery, in order to minimise atrophy (Grodski and Marks, 2008) whilst 

simultaneously limiting movement and the transmission of excessive forces to the 

biologic tissue that has undergone surgical repair (Bailey et al., 2003; van Grinsven et 

al., 2010).  Given the lack of current research involving isometric modes of exercise, it 

is unclear whether or not RPE would provide an accurate indicator of TD in these 

activities. 

Accuracy in judging exercise pace is also a function of aptitude in 

discriminating between variations in work intensity.  The anticipatory CGM theory 

stipulates that exercise is regulated by the generation of a conscious RPE that is 

subsequently matched against a ‘template RPE’, prompting any necessary adjustments 

in work-rate (Tucker, 2009).  In accordance with this theory, an inability to accurately 

perceive variations in intensity during the performance of isolated muscle exercise tasks 

might provoke the selection of an inappropriate ‘template RPE’ against which to 

compare the demands of the task, and possibly result in a misinterpretation of 
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capabilities and/or elicit the selection of an unsuitable training load.  This might, in turn, 

exacerbate fatigue-related impairments to neuromuscular performance, such as 

decreased strength (Zebis et al., 2011), speed of force generating capabilities, delayed 

muscle response times (Minshull et al., 2007), and sub-optimal movement skill 

execution (McLean and Samorezov 2009).  For example, previous research requiring 

participants to perform isometric knee extensions at a perceived intensity of 75% 

maximal voluntary contraction demonstrated relative errors in judgement of 

approximately 15% (West et al., 2005).  Given that variations in relative work intensity 

of just 10% have been shown to result in significant changes to in power output 

(Thomas et al., 2007) and the number of repetitions performed (Shimano et al., 2006) 

during resistance training activities, a misperception of capabilities might plausibly 

impact upon PTD and expose performers to the unanticipated onset of fatigue. 

A worst case-scenario of inaccurate perception could predispose an 

overestimation of capabilities that might expose athletes to fatigue-related impairments 

in neuromuscular performance that could potentially compromise dynamic joint 

stability (Minshull et al., 2012).  Conversely, an underestimation of capabilities may 

lead to a sub-optimal level of performance. For example, novice weight trainers have 

been found to self-select training loads that are insufficient to promote health and fitness 

benefits typically associated with resistance training, such as increases in hypertrophy 

and strength (Glass and Stanton, 2004; Focht, 2007).  The cumulative effect of repeated 

sub-optimal training sessions over a sustained period will result in a failure to achieve 

the desired exercise goals.  For example, it is suggested that a lack of improvement in 

muscular conditioning due to sub-optimal resistance training may negatively impact 

upon long-term adherence to an exercise programme (Focht 2007).  In a clinical context, 

such as a patient recovering from ACL-reconstructive surgery, a prolonged period of 

sub-optimal rehabilitation may provide inadequate stress to promote restored knee 
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function and adaptation of the new graft (Marumo et al., 2005).  This could result in 

increased physiotherapy costs and a delayed return to full activity, and may also lead to 

a lack of adherence to the programme.  

Given the lack of current research involving isometric modes of exercise, it is 

unclear whether or not perceived exertion would provide an accurate indicator of TD in 

these types of activities.  Before exploring this issue in an ACL-reconstructed 

population, it is of benefit to examine typical responses in an asymptomatic population, 

in order to provide a baseline from which to make future comparisons. The primary aim 

of this study was, therefore, to investigate the relationship between self-perception and 

TD in an intermittent isometric fatigue task (IIF) involving an isolated muscle group.  A 

secondary aim was to evaluate the capability of two perceptual assessment paradigms 

(RPE; PTD) to discriminate between changes in work intensity.  

5.3. METHODS   

5.3.1. Participants 

Fifteen recreationally active males (age 23.1 ± 3.7 years; height 181.3 ± 7.1cm; 

body mass 87.9 ± 9.3kg) provided written informed consent to participate in the study.  

All participants were asymptomatic of injury and were instructed to abstain from 

strenuous physical activity for the 24 hours preceding each testing session. The sample 

size was reduced from an initial sample of 23, as some participants failed to complete 

the full testing schedule while others were omitted due to a lack of adherence to the 

activity restrictions.  Assessment protocols were approved by the Nottingham Trent 

University Ethical Committee for Human Testing.  Sample participant information, 

consent form and health screen are included in Appendix C. 
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5.3.2. Experimental procedures and design 

This was a controlled split-half cross-over blinded deception trial design.  

Participants were required to attend the laboratory on a total of four occasions, each 

separated by 48-72 hours.  The first occasion involved familiarisation and 

accommodation to rapid maximum voluntary muscle activation (MVMA) of the 

quadriceps, and perceptual measures (described below).  Also included was a brief 

exposure to an intermittent isometric fatigue task (IIF) for a total of 8 sets at an intensity 

of 60% daily peak force (PF).   Occasion two served as a further familiarisation and 

habituation session whereby participants completed an entire IIF task at 60% daily PF, 

through to termination.  These familiarisation sessions were included to provide 

exposure to and knowledge of the IIF, and to minimise any learning effects in 

subsequent testing sessions.  The two remaining occasions served as assessment 

sessions, in which the participants were required to perform two conditions presented in 

a randomised counterbalanced order: i) IIF at 60% daily PF (IIF60) and ii) IIF at 70% 

daily PF (IIF70).  Information regarding the precise intensity of each task was withheld 

from participants in order to explore whether the 10% difference in workload could be 

accurately perceived.  This difference in exercise intensity exceeds the typical inter-

session variability (V%) associated with indices of thigh muscle strength ( Gleeson et 

al., 2002; Minshull et al., 2009; Chapter 4.3).  Estimates of static volitional 

neuromuscular performance were obtained both prior to and immediately following the 

IIF. 

5.3.3. Intermittent isometric fatigue task 

The IIF protocol was performed in accordance with the description detailed in 

Chapter 4.2.3.  Participants were ‘blinded’ to the precise magnitude of the target force 
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(60% or 70% baseline PF), but were able to observe and monitor in real-time how their 

efforts were matching the target line. 

5.3.4. Perceptual measures 

With the level of reliability for perceptual measures during an IIF having been 

established in Chapter 4, the utility of the relevant scales could therefore be investigated 

with regard to establishing their efficacy in providing an accurate prediction of TD.  As 

such, measures of perceived exertion (CR-10) and perceived completed task duration 

(PTD) were recorded during each IIF inter-set rest period in accordance with the 

methods outlined in Chapter 4.2.4.  

5.3.5. Assessment of neuromuscular performance 

Participants performed 3 MVMAs in accordance with the procedures described 

in Chapter 4.2.5.  Static peak force (PF) was recorded as the mean response of three 

intra-trial replicates in which the highest force was recorded in each trial. Rate of force 

development (RFD) was calculated for each intra-trial replicate as the average rate of 

force increase between 25% and 75% and reported as the mean response of the three 

replicates. 

Electromyographic activity (EMG) was recorded from the m. vastus lateralis and 

m. vastus medialis during MVMAs using bipolar rectangular surface electrodes (self-

adhesive, Ag/AgCl; 10 mm diameter, Unilect UK) that were positioned over the belly of 

the respective muscles.  The inter-electrode distance was 30mm and a reference 

electrode was placed 30mm lateral and equidistant from the recording electrodes.  The 

raw EMG signals were passed through a differential amplifier (1902 Mk IV; Cambridge 

Electronic Design, UK), input impedance 10,000 MΩ, CMRR 100 dB, gain 1000, and 

filtered (Butterworth [2nd order]; 1 kHz cut-off frequency).  The signal, which 

incorporated minimal intrusion from induced currents associated with external electrical 
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and electromagnetic sources and noise inherent in the remainder of the recording 

instrumentation, was analogue-to-digitally converted at 2.5 kHz sample rate, ensuring a 

significant margin of reserve between the highest frequency expected in the EMG signal 

and the Nyquist frequency and minimal intrusion from aliasing errors (Gleeson 2001). 

Standardised skin preparation methods yielded inter-electrode impedance of less than 5 

kΩ.  Electromechanical delay, defined as the time delay between the onset of electrical 

activity in the muscle and the onset of force production was calculated for the m. vastus 

lateralis and m. vastus medialis (EMDVL; EMDVM, respectively).  The onset of electrical 

activity and muscle force were defined as the first point in time at each signal exceeded 

consistently the 95% confidence limits associated with the background electrical noise 

amplitude in quiescent muscle  (Minshull et al., 2007). 

5.3.6. Statistical analysis 

All statistical analyses were performed using PASW v18.0 (SPSS Inc. Chicago, 

Il, USA).  A paired samples t-test was used to explore differences in task duration 

between the two work intensities (IIF60 and IIF70).  IIF duration values were log 

transformed (log 10) to satisfy assumptions of normality.  Separate two (trial: IIF60; 

IIF70) by two (time: pre; post) fully repeated-measures ANOVAs were used to evaluate 

the effects of the IIF on each index of performance (PF, RFD, EMDVL and EMDVM).  

Perceptual measures were obtained at 10% intervals of the completed task 

duration (CTD), with CR-10 and PTD scores at 10% to 100% of the IIF task 

subsequently used for analysis.  For those individuals whose scores did not fall on a 

10% interval, a cubic spline function enabled interpolation of a value that was 

subsequently used for analysis (Keele, 2008).  Changes in CR-10 and PTD over the 

duration of the task under each condition of exercise intensity were analysed separately 

using two (trial: IIF60; IIF70) by ten (time: 10%; 20%; 30%; 40%; 50%; 60%; 70%; 



 
124 

80%; 90%; 100%) fully repeated-measures ANOVAs. Greenhouse-Geisser corrections 

were applied where assumptions of sphericity were violated, as indicated by GG. Pearson 

product-moment correlation coefficients were used to explore the relationships between 

group mean perceptual responses (CR-10 and PTD) and completed task duration (CTD) 

at both work intensities. All data were analysed using standard descriptive statistics 

(mean ± SD), and statistical significance was accepted at p<0.05. 

5.4. RESULTS 

5.4.1. Perceptual measures 

Group mean (± SD) and 95% confidence intervals (CI) for CR-10 and PTD 

responses measured over the duration of the IIF trials are presented in Table 5.1 and 

Table 5.2, respectively.  Changes in CR-10 and PTD responses across time for both IIF 

tasks for both IIF tasks are illustrated in Figure 5.1 and Figure 5.2, respectively.  A 

significant main effect for time revealed that both CR-10 responses (F[2.2,30.1] = 126.8, 

p<0.001) and PTD responses (F[2.6,36.8] = 117.2, p<0.001) progressively increased during 

both IIF60 and IIF70.  There were no significant interaction effects or main effects for 

trial. Pearson product-moment correlation coefficients revealed strong positive 

correlations between CR-10 and CTD during both IIF60 (r=0.990, p<0.01) and IIF70 

(r=0.997, p<0.01), and also between PTD and CTD during both IIF60 (r=0.993, p<0.01) 

and IIF70 (r=0.996, p<0.01). 
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Table 5.1  CR-10 responses (group means ± SD) and 95% CI during IIF60 and IIF70 
(group means ± SD) 

% of CTD IIF60 IIF70 
Mean ± SD 95% CI Mean ± SD 95% CI 

10 2.8 ± 1.8 1.9-3.7 2.1 ± 1.3 1.5-2.8 
20 3.8 ± 2.2 2.7-4.9 3.2 ± 1.8 2.3-4.1 
30 4.9 ± 1.9 3.9-5.9 4.1 ± 2.1 3.1-5.1 
40 5.7 ± 2.1 4.6-6.7 4.9 ± 2.1 3.8-6.0 
50 7.0 ± 1.9 6.1-8.0 5.8 ± 2.2 4.7-7.0 
60 7.8 ± 1.5 7.0-8.5 6.8  ± 2.2 5.6-7.9 
70 8.4 ± 1.4 7.6-9.1 7.7 ± 2.3 6.5-8.8 
80 9.2 ± 1.2 8.6-9.8 8.5 ± 2.2 7.4-9.6 
90 9.7 ± 0.5 9.5-10.1 9.1 ± 1.6 8.2-9.9 

100 10.0 ± 0.0 n/a 9.6 ± 0.8 9.2-10.0 

 

 

Table 5.2  PTD responses (group means ± SD) and 95% CI during IIF60 and IIF70 
(group means ± SD) 

% of CTD IIF60 IIF70 
Mean ± SD 95% CI Mean ± SD 95% CI 

10 23.6 ± 21.1 13.0-34.3 21.4 ± 13.1 14.8-28.1 
20 33.9 ± 23.0 22.2-45.5 32.2 ± 18.2 23.0-41.4 
30 43.9 ± 20.2 33.6-54.1 41.0 ± 20.5 30.6-51.4 
40 55.4 ± 23.6 43.5-67.4 48.8 ± 21.3 38.0-59.6 
50 64.0 ± 24.7 51.5-76.5 58.2 ± 22.2 47.0-69.5 
60 73.2 ± 21.1 62.6-83.9 67.6  ± 21.9 56.5-78.7 
70 79.0 ± 20.4 68.6-89.3 76.5 ± 22.6 65.0-87.9 
80 87.8 ± 13.6 80.9-94.7 84.9 ± 22.1 73.7-96.1 
90 93.6 ± 9.7 88.4-98.2 90.7 ± 16.4 82.3-99.0 

100 97.5 ± 4.8 95.1-99.9 96.0 ± 8.3 91.8-100.2 
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Figure 5.1  CR-10 responses during IIF60 and IIF70 (group mean ± SD) 

 

Figure 5.2  PTD responses during IIF60 and IIF70 (group mean ± SD) 
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5.4.2. Effects of the IIF intervention 

A paired t-test revealed IIF60 duration to be significantly longer than IIF70 (t= 

[14] 2.5, p<0.05) (reverse log transformed group mean set durations of 39.5 and 27.6 for 

IIF60 and IIF70, respectively).  Group mean data for pre- and post-IIF indices of 

neuromuscular performance are presented in Table 5.3.  A significant interaction for PF 

data (F [1,14] =9.7, p<0.01) revealed that both IIF tasks elicited significant reductions 

over time in PF compared to baseline levels, but these reductions were evident to a 

greater extent in the IIF60 task compared to the IIF70 task (group mean pre- to post-IIF 

PF reductions of 17.7% and 10.1%, respectively). Impairments to RFD performance 

were similar across both fatigue tasks (F[1,14] =14.9, p<0.05) (group mean RFD 

reductions of 23.4%).  Performance of EMDVL was improved following IIF60 (12.4%) 

but impaired following IIF70 (14.2%) (F[1,14] =7.4, p<0.05).  No significant changes to 

EMDVM performance were observed following either IIF task. 

Table 5.3  Indices of neuromuscular performance for IIF60 and IIF70 (group means 
± SD) 

  IIF60 IIF70 

Index  Pre Post 
% 

change Pre Post 
%  

change 

PF (N) 657.7 ± 111.8 545.2 ± 106.5 -17.1 641.5 ± 102.4 577 ± 
105.9‡ -10.1‡ 

RFD (N.s-1) 3240 ± 1100 2420 ± 1120 -25.3 3370 ± 1260 2640 ± 1400 -21.6 

EMDVL (ms) 37.9 ± 12.6 33.2 ± 8.0 -12.4 31.0 ±5.5 35.4 ± 8.8‡‡ +14.2 

EMDVM (ms) 35.4 ± 10.2 33.5 ± 7.5 -5.4 33.1 ± 6.2 36.2 ± 10.3 +9.4 

‡Significant interaction between time and IIF intensity for PF (p<0.05) 
‡‡Significant interaction between time and IIF intensity for EMDVL (p<0.05) 

 

5.5. DISCUSSION 

The aim of this study was primarily to investigate the relationship and patterns 

of change between two different paradigms of self-perception involving RPE and PTD 

during an IIF, in order to establish the efficacy of these measures in predicting TD.  The 
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IIF provoked significant fatigue as evidenced by 17.7% and 10% loss of strength 

following IIF60 and IIF70, respectively, and >23% reduction in RFD compared to 

baseline. The magnitude of these performance decrements is similar to those seen in 

sporting environments (Zebis et al., 2011).   

During conditions of acute muscle fatigue, both CR-10 and PTD were observed 

to increase linearly in relation to CTD (r=0.95, p <0.01).  This finding is consistent with 

previous research reporting a linear relationship between perceived exertion and CTD in 

cycling and running activities (Horstman et al., 1979; Noakes 2004; Eston et al., 2007; 

Crewe et al., 2008).  The novel finding of a linear relationship during fatiguing activities 

in an isolated muscle group indicates that both perceptual scales have equal efficacy in 

predicting cessation of exercise.  Inspection of the 95% CI ranges reveals a substantial 

variance in response for both the CR-10 and PTD scales (Table 5.2 and Table 5.3, 

respectively).  It is, therefore, important to acknowledge that at any given point 

throughout the task a participant’s perception may actually provide an under or over 

estimation of CTD.  This has implications for accurately anticipating the development 

of fatigue and managing the associated decrements in performance.  Although similar 

levels of variance have been evident in CR-10 responses obtained throughout cycling 

time trials (Albertus et al., 2005; Swart et al., 2009), it is not possible to directly 

compare the findings from the current study with much of the previous related literature 

due to the lack of consistency in the reporting of results. 

This study also investigated the responsiveness of both models of perceptual 

assessment to a subtle but ecologically meaningful change in exercise intensity.  In 

order to address this research question effectively, a controlled, blinded and deception 

trial design was employed with a split-half cross-over of exposure to the two levels of 

exercise intensity in order to ensure the minimisation of any carry-over effects.  A 

concealed 10% difference in intensity between IIFs reflected what has previously been 
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demonstrated in the literature as capable of provoking significant changes in exercise 

performance (Shimano et al., 2006; Thomas et al., 2007), and exceeds the inter-day 

random biological and technological variability reported for the isometric assessment of 

knee extension strength (4.9% to 6.6%: Gleeson et al., 2002; Chapter 4.3).  Whilst this 

difference in intensity was sufficient to provoke statistically significant differences in 

the volume of exercise completed and decrements to PF, the results showed that there 

were no differences in either CR-10 or PTD between the two IIF tasks.  Theoretically, a 

successful interpretation of a change in work intensity would see the pattern of PTD 

remain the same between tasks.  In this respect, the group mean PTD responses during 

IIF60 and IIF70 demonstrated an equal utility in predicting TD in the current study.  

Conversely, if the CR-10 scale were to offer appropriate responsiveness, then a 10% 

change in work intensity should theoretically also provoke a concomitant change in 

RPE at the beginning of the IIF.  However, the lack of significant difference in either 

CR-10 or PTD in the current study suggests that both approaches to the assessment of 

self-perception were unresponsive to relatively small changes in work intensity.  This 

contrasts with previous research intimating that perceptions of effort using the CR-10 

scale are capable of discriminating between 10% variations in work intensity during 

isometric knee extensor tasks (Pincivero et al., 2000).  From the current findings, it is 

impossible to determine if the perceptual scales lacked sufficient sensitivity, or the 

participants were unable to perceive the change in intensity.  Given that the inter-day 

variability of the CR-10 at 10% CTD of the IIF equated to 0.9 absolute measurement 

units (as discussed in Chapter 4), a greater differential between IIF work intensities may 

well be needed in order to establish the responsiveness of the scale. 

The differences evident in neuromuscular performance in response to the altered 

work intensity were complex and potentially determined by the volume of work 

completed.  The reductions in force were significantly greater in the lower intensity task 
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(17.7% and 10.1%, for IIF60 and IIF70, respectively).  This finding may be partly 

explained by evidence of greater reductions in voluntary activation following low 

intensity vs. high intensity fatiguing activity (Behm and St-Pierre, 1997; Yoon et al., 

2007).  As such, fatigue at higher intensities has been primarily attributed to peripheral 

mechanisms within the muscle (Yoon et al., 2007). These may include depletion of 

intramuscular energy stores in conjunction with the accumulation of anaerobic 

metabolites such as inorganic phosphate (Nordlund et al., 2004) and potassium 

(Bangsbo et al., 1996).  In contrast, a greater proportion of fatigue at lower intensities 

has been attributed to central mechanisms including inhibition resulting from the 

stimulation of group III and IV afferents (Garland, 1991) and reduced excitability of the 

motor neuron pool (Yoon et al., 2007).  As such, the implementation of the twitch-

interpolation technique via superimposed magnetic or electrical stimulation of the 

muscle nerve may have offered an insight into the potential contributions of peripheral 

and central fatigue (Paillard et al., 2005), and also help to provide an indication as to 

whether participants are fully motivated at the conclusion of each IIF trial.  The 

interpolated twitch technique was pilot tested in an attempt to provide an indication as 

to the relative contributions of central and peripheral fatigue (Enoka, 2002).  However, 

the pilot testing revealed that this technique was unable to be reliably reproduced, 

resulting in this assessment being omitted from the protocol. With the majority of 

participants having been recruited from a competitive rugby background, the group 

mean body mass index values were situated in the overweight category (>26), and could 

indicate greater levels of muscle tissue and/or body fat in some individuals.  Increased 

fat tissue has been shown to reduce the capability to achieve supra-maximal responses 

during magnetically-evoked stimulation (Tomazin et al., 2011) and, therefore, may have 

contributed to some of the issues encountered in the current study.  Additional 

methodological issues concerned with the interpolated twitch technique have previously 
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been documented (Folland and Williams, 2007).  Whilst force reductions were 

accompanied by similar impairments to RFD following both tasks (23.4%), the 

capability to initiate force, as estimated by EMD, showed a 12.4% improvement at the 

cessation of IIF60, versus a 14.2% impairment following IIF70.  It has been previously 

theorised that isometric activations may induce reactive hyperaemia and associated 

distention of the involved muscle, which may result in decreased compliance of the 

series elastic component and thus preserve EMD performance (Minshull et al., 2007).  

Given that increased hyperaemia has been reported following isometric exercise both of 

increased duration (Osada et al., 2003) and increased intensity (Hunter et al., 2006), it is 

impossible to determine from the current results which of these factors may have 

provided a greater influence on EMD. 

It should be noted that some elements of perceptual data violated assumptions of 

normality.  These violations were only evident in a small proportion of the perceptual 

responses that were provided in the early and latter stages of the IIF, and consequently 

represented values at the lowest and highest points of the perceptual scales.  The fixed 

end-points of the perceptual scales may have led to the skewing of this data and, 

therefore, caused this issue.  Data transformations were unable to correct this problem, 

due to the fact that only a small minority of elements were non-normally distributed.  

Given that the current and subsequent studies represent exploratory investigations that 

focus on novel aspects of psycho-physiological fitness, the application of parametric 

statistics with a robustness to minor violations of underpinning assumptions was 

deemed an acceptable approach, given their greater experimental power in comparison 

to equivalent non-parametric methods (Rasch and Guiard, 2004). 
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5.6. CONCLUSION 

In summary, the current findings suggest that RPE (measured through CR-10) 

and PTD increase linearly in relation to CTD during an intermittent isometric fatiguing 

task performed at both 60% and 70% daily PF.  However, the variance of the group 

responses have possible implications for the utility of the scales in predicting CTD 

during this mode of exercise on an individual basis.  The lack of any significant 

difference between the CR-10 values obtained during IIF60 and IIF70 would suggest 

that the scale was not sufficiently responsive to discriminate between a 10% change in 

exercise stress.  Indeed, the level of sensitivity of the CR-10 scale may be limited to 

detecting force differentials of a greater magnitude.  A greater differential between IIF 

work intensities may, therefore, be required in order to help establish the responsiveness 

of the CR-10 scale.  This larger IIF target force differential would still retain ecological 

validity in the context of rehabilitative exercise, considering the changes in PF values 

from pre-surgery to 6-weeks post-surgery in an ACL-reconstructed limb (group mean 

reductions of ~27% to 35%: results detailed in Chapter 3.3), and also the disparity 

between PF values attributed to the ACL-reconstructed limb and the uninvolved limb 

(uninvolved limb ~33% to 43% stronger: results detailed in Chapter 3.3). 
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Chapter 6: 

Effect of a substantial variation in work intensity 

on perceived exertion and ask duration during an 

intermittent isometric fatigue task 
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CHAPTER 6: EFFECT OF A SUBSTANTIAL VARIATION IN WORK 
INTENSITY ON PERCEIVED EXERTION AND TASK DURATION 
DURING AN INTERMITTENT ISOMETRIC FATIGUE TASK 

6.1. ABSTRACT 

The aim of this study was to evaluate the capability of two perceptual 

assessment paradigms (perceived exertion; perceived task duration) to reflect a 20% 

differential in IIF work intensity, and if this variation in target force impacts upon the 

relationship and pattern of perceptual response in relation to task duration.  Eighteen 

university level male rugby players performed two conditions, each separated by 1 hour 

and presented in a randomised counterbalanced order: i) intermittent isometric fatigue 

trial (IIF) at 60% baseline peak force (IIF60); ii) IIF at 80% baseline peak force (IIF80).  

A category-ratio scale (CR-10) and visual analogue scale were used during each IIF task 

to record measures of perceived exertion and perceived task duration, respectively.  

Measures were recorded at 10% intervals across the relative duration of each IIF task.  

A two-way repeated measures ANOVA revealed a significant interaction between trial 

and time, with CR-10 responses across the first three sets of IIF80 found to be 

significantly higher and increase at a faster rate in comparison to the equivalent 

responses for IIF60 (F[2,34] =4.7; p<0.05), thus reflecting the 20% differential between 

target forces.  However, visual inspection of the data revealed an apparent curvilinear 

trend in perceptual responses throughout the IIF60 trial that contrasts with previous 

findings.  These findings question the accuracy of self-perception to act as a predictor of 

task duration during intermittent isometric exercise tasks. 
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6.2. INTRODUCTION 

The previous investigation (Chapter 5) discovered that both RPE (utilising a CR-

10 scale) and perceived completed task duration (PTD) exhibited a linear relationship 

with the percentage of completed task duration (CTD) during an IIF in the knee 

extensors.  These findings are in support of previous research using different exercise 

modalities, which shows ratings of perceived exertion to increase linearly in relation to 

TD during constant intensity running, walking and cycling tasks (Morgan and Borg 

1976; Horstman et al., 1979; Noakes 2004; Eston et al., 2007; Crewe et al., 2008; 

Davies et al., 2009).  These paradigms of self-perception may, therefore, be able to act 

as predictors of TD in intermittent static muscle activity, and have potential application 

for the self-regulation of performance during rehabilitative and resistance exercise.  

However, some caution should be applied when adopting these conclusions due to the 

large standard deviations evident in the group responses.  Indeed, similar levels of 

variance have been evident in CR-10 responses obtained at discrete time-points during 

cycling time trials (Albertus et al., 2005; Swart et al., 2009).  

Whilst a 10% variation in IIF intensity was sufficient to cause a significant 

difference in task duration in the previous investigation detailed in Chapter 5, it 

appeared to have minimal influence on the reported self-perception values.  As such, 

both the CR-10 and PTD scales demonstrated equal efficacy in reflecting TD at both 

exercise intensities.  However, a 10% increase in work intensity was expected to have 

provoked a greater RPE and thus a higher CR-10 response at the beginning of IIF70 in 

comparison to IIF60.  The lack of significant difference in CR-10 responses between 

trials implies that the 10% differential in magnitude during the present exercise task was 

insufficient to be detected by the participants.  This contrasts with previous research 
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reporting that the CR-10 scale can reflect 10% changes in muscle activation intensity 

during isometric knee extensions (Pincivero et al., 2000).  

Considering the recommendation of RPE in exercise prescription as a method of 

monitoring workload (Noble and Robertson, 1996; Pincivero et al., 2000), it is 

especially important for performers to be able to accurately perceive intensity.  This 

ability has been tested in a research setting through studies designed to deceive 

participants and withhold precise exercise information (Hampson et al., 2004; Yunoki et 

al., 2009; Pires and Hammond, 2012).  When performers are misinformed regarding 

exercise task demands, it is theorised that any change in RPE would result from a 

mismatch between the initially anticipated and newly imposed workload (Baden et al., 

2005).  Given the potential importance of RPE in regulating exercise performance 

(Tucker, 2009; Noakes, 2011), a misjudgement may prompt the selection of an 

inappropriate ‘template RPE’ against which the perceived demands and anticipated 

duration of a given exercise task are compared, ultimately compromising the adopted 

pacing strategy.  There is, however, conflicting evidence as to the impact upon RPE 

resulting from the withholding of information or deliberate deception concerning 

exercise intensity.  Hampson et al. (2004) reported a tendency towards elevated RPE in 

runners who were deceived into anticipating a harder level of activity than actually 

performed.  Conversely, RPE was found to be unaffected in cyclists who were misled 

into expecting an easier level of activity than they were subsequently required to 

perform (Yunoki et al., 2009). Pires and Hammond (2012) reported similar findings, 

after deceiving participants that they would be cycling at a lower intensity than the 

actual workload.  There is the possibility that social factors within a testing environment 

may prompt the participant to under-report their exertion in order to appear more 

capable (Lewthwaite 1990).  However, the findings from Yunoki et al. (2009) and Pires 

and Hammond (2012) suggest that participants were able to interpret the afferent cues 
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associated with performing exercise at a higher intensity, and formulate an appropriate 

RPE response that reflected the demands of the task.   

In practical terms, the ability to detect changes in work intensity is particularly 

important for individuals who may have to perform an exercise programme without 

specialist supervision.  For example, a review by Coppola and Collins (2009) into the 

relative merits of supervised physiotherapy versus predominantly unsupervised home 

exercise highlighted that even those patients benefitting from regular supervision only 

received up to 20 sessions during a post-operative ACL rehabilitation period that may 

last as long as 9 months. The majority of patients recovering from ACL-reconstructive 

surgery will, therefore, have limited contact time with a physiotherapist, and will be 

required to self-regulate much of their rehabilitation. Post-operative ACL rehabilitation 

programmes are characterised by progressive increases in intensity and a gradual re-

introduction of dynamic exercise in order to optimise recovery and prepare the patient 

for a return to full activity (van Grinsven et al., 2010).  The patient will thus be 

prescribed a variety of rehabilitation exercises and sessions, and must accurately 

interpret the sensations of exertion to make judgements concerning intensity and 

appropriate pacing during isolated muscle exercise, commensurate with the advice of 

the physiotherapist.  It is prudent to first establish whether an asymptomatic population 

has the capacity to detect changes in work intensity and utilise this perception in 

predicting TD, before applying this principle to a patient population.  

Results from the previous study (Chapter 5) showed that a 10% differential in 

exercise intensity was not distinguishable by the CR-10 scale.  However, there is still 

merit in assessing the measurement sensitivity of the CR-10 by employing a larger IIF 

target force differential.  An increase in the magnitude of the work intensity differential 

has relevance to a clinical setting, where patients may have experienced substantial 

impairments to neuromuscular performance following surgery.  Indeed, changes in PF 
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as a consequence of ACL-reconstructive surgery are characterised by significant 

reductions in the reconstructed limb from pre-surgery to 6-weeks post-surgery (~27% to 

35%: results detailed in Chapter 3.3).  In addition, there is a substantial disparity 

between the strength levels of the reconstructed limb and the uninvolved limb of ~33% 

to 43% (Chapter 3.3).  In this situation it is important for the patient to be able to 

accurately detect the capabilities of their reconstructed limb, in order to implement this 

information with a view to predicting and regulating their exercise performance.  

The aim of this study was to evaluate the capability of each assessment 

paradigm (RPE; PTD) to reflect a 20% differential in IIF work intensity, and if this 

greater variation in target force impacts upon the relationship and pattern of perceptual 

response in relation to TD. 

6.3. METHODS 

6.3.1. Participants 

Eighteen university level male rugby players (age 20.6 ± 1.9 years; height 176.8 

± 6.1cm; body mass 82.9 ± 11.4kg) gave their written informed consent to participate in 

the study.  The decision to select participants from a similar athletic population was 

taken in an attempt to increase the homogeneity of the sample.  All participants were 

asymptomatic of injury and were instructed to abstain from strenuous physical activity 

for the 24 hours preceding each testing session. The sample size was reduced from an 

initial sample of 23, as some participants failed to complete the full testing schedule 

while others were omitted due to a lack of adherence to the activity restrictions.  

Assessment protocols were approved by the Nottingham Trent University Ethical 

Committee for Human Testing.   
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6.3.2. Experimental procedures and design 

The study was a controlled split-half cross-over blinded deception trial design.  

Participants were required to attend the laboratory on a total of two occasions.  The first 

occasion involved familiarisation and accommodation to rapid maximum voluntary 

muscle activation (MVMA) of the quadriceps, and perceptual measures (described 

below).  Also included was an exposure to the IIF, whereby participants completed an 

entire IIF at 60% baseline peak force (PF), through to termination. This familiarisation 

session was incorporated to provide exposure to and knowledge of the assessment 

protocols and IIF task to ensure minimisation of any systematic and learning effects in 

the subsequent assessment session.  The remaining laboratory visit was performed 48 

hours subsequent to familiarisation and served as the assessment session.  This session 

required the participants to perform two conditions, each separated by 1 hour and 

presented in a randomised counterbalanced order: i) IIF at 60% baseline PF (IIF60); ii) 

IIF at 80% baseline PF (IIF80).  Information regarding the precise intensity of each task 

was withheld from participants in order to explore whether or not the 20% difference in 

workload could be accurately perceived.  Following a standardised warm-up of five 

minutes cycle ergometry performed at 90 W, and an additional five minutes of 

stretching of the involved musculature, participants were secured in a seated position on 

a custom built dynamometer in accordance with the specifications outlined in Chapter 4.  

Estimates of magnetically evoked and volitional neuromuscular performance were 

obtained both prior to and immediately after each IIF. 

6.3.3. Intermittent isometric fatigue task 

The IIF protocol was performed in accordance with the description detailed in 

Chapter 4. Participants were ‘blinded’ to the precise magnitude of the target force (60% 
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or 80% baseline PF), but were able to observe in real-time how their efforts were 

matching the target line. 

6.3.4. Perceptual measures 

Measures of perceived exertion (CR-10) and perceived percentage of completed 

task duration (PTD) were recorded during each IIF inter-set rest period in accordance 

with the methods outlined in Chapter 4.2.4. Presentation of the scales was randomised 

in order to minimise any influence of the order on the participants’ current perception. 

6.3.5. Assessment of neuromuscular performance 

Magnetically-evoked twitch responses from the knee extensors were obtained 

from supra-maximal magnetic stimulation of the femoral nerve achieved by means of 

double wound coil powered by two Magstim 200 stimulators connected via a Bi-Stim 

module with zero inter-pulse interval (Magstim Co. Ltd., Whitland, Dyfed, Wales). The 

optimum site for stimulation of the nerve was defined as the site that elicited the largest 

twitch force and M-wave amplitude.  The magnetic coil was placed in the femoral 

triangle just lateral to the femoral artery, then small iterative positional changes of the 

coil were made that were commensurate with increasing size of responses during a 

series of discrete stimulations. The optimised coil position was then maintained 

manually throughout the duration of the testing.  The protocol deployed to elicit and 

verify supra-maximal stimulation was in accordance with the methodology described 

previously by Minshull et al. (2007) whereby supra-maximal stimulation was defined as 

the intensity of stimulation at which there was subsequently no more than a 5% increase 

in M-wave peak amplitude and peak twitch force despite a 10% or greater increase in 

the intensity of stimulation. Supra-maximal stimulation was verified by 

contemporaneous visual inspection of the data during a sequence of seven discrete 

stimulations of increasing intensity that commenced at 40% of the Magstim 200’s 



 
141 

maximal capacity output with subsequent increments of 10% to 100% of capacity and 

by retrospective analyses of M-wave. Each stimulation in the sequence was separated 

by at least 10 s to ensure sufficient neuromuscular recovery (Moore and Kukulka 1991). 

Indices of magnetically-evoked neuromuscular performance were obtained from three 

supra-maximal stimulations.  Supra-maximal stimulation was not obtainable in all cases. 

This may have been due to greater levels of fat tissue present in some individuals 

(Tomazin et al., 2011).  As such, data from 15 participants is presented. 

Following a series of sub-maximal warm-up muscle activations an auditory 

signal was delivered randomly within 1-4 seconds cuing the participant to extend their 

knee as rapidly and forcefully as possible against the immovable restraint provided by 

the apparatus.  Another auditory signal was then given to the participant after 

approximately 3 seconds of maximal voluntary muscle activation (MVMA) to cue 

muscular relaxation.  Three trials were performed, each separated by a minimum of 10 s.   

Volitional static peak force (PFV) and magnetically-evoked peak twitch force 

(PTFE) were recorded as the mean response of three intra-trial replicates in which the 

highest force was recorded in each trial. Volitional rate of force development (RFD) 

was calculated for each intra-trial replicate as the average rate of force increase between 

25% and 75% PFV. Magnetically-evoked rate of force development (RFDE) was 

calculated for each intra-trial replicate as the average rate of force increase between the 

onset of force production and PTFE.  The mean response of the three replicates was used 

to describe performance. 

Electromyographic activity (EMG) was recorded from the m. vastus lateralis and 

m. vastus medialis during MVMAs in accordance with the procedures outlined in 

Chapter 4. Volitional (EMDVL; EMDVM) and magnetically evoked (EMDVLE; EMDVME) 

electromechanical delay were defined as the time delay between the onset of electrical 

activity in the muscle and the onset of force production. The onset of electrical activity 
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and muscle force were defined as the first point in time at each signal exceeded 

consistently the 95% confidence limits associated with the background electrical noise 

amplitude in quiescent muscle (Minshull et al., 2007). 

6.3.6. Statistical analysis 

All statistical analyses were performed using PASW v18.0 (SPSS Inc. Chicago, 

Il, USA).  Perceptual measures were obtained at 10% intervals of the completed task 

duration (CTD), with CR-10 and PTD scores at 10% to 100% of the IIF task 

subsequently used for analysis.  For those individuals whose scores did not fall on a 

10% interval, a cubic spline function enabled interpolation of a value that was 

subsequently used for analysis (Keele, 2008).   Changes in CR-10 and PTD over the 

duration of the IIF task (measures obtained at 10% intervals throughout the relative 

duration of the IIF, from 10% to 100% of the IIF) under each exercise intensity were 

analysed separately using two (trial: IIF60; IIF80) by ten (time: 10%; 20%; 30%; 40%; 

50%; 60%; 70%; 80%; 90%; 100%) fully repeated-measures ANOVAs. Greenhouse-

Geisser corrections were applied where assumptions of sphericity were violated, as 

indicated by GG.  Post hoc analysis using paired sample t-tests were performed in order 

to confirm significant differences between trials for specific time points, with an 

adjustment made via the Holm-Bonferroni correction to protect against type 1 error.  

Pearson product-moment correlation coefficients were used to explore the relationships 

between group mean perceptual responses (CR-10 and PTD) with the percentage of 

completed task duration (CTD) at each work intensity (IIF60 and IIF80). 

It was evident that the shorter duration of IIF80 would typically provide fewer 

than 10 opportunities to obtain perceptual responses, which would offer limited data 

that could be used for subsequent analysis (for example, the first opportunity to record a 

perceptual response during IIF80 may equate to a relative time-point of 25% CTD).  It 
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was, therefore, necessary to use an alternative method of analysis in order to investigate 

the initial CR-10 response to the change in work intensity.  CR-10 measures from the 

first three sets of each IIF trial were analysed using a two (trial: IIF60; IIF80) by three 

(sets: 1; 2; 3) fully repeated-measures ANOVA. Post hoc paired sample t-tests with 

Holm-Bonferroni corrections were again performed in order to confirm significant 

differences between trials for specific sets. 

Separate two (trial: IIF60; IIF80) by two (time: pre; post) fully repeated-

measures analyses of variance (ANOVA)s were used to evaluate the effects of the IIF 

on each index of performance (PF; RFD; EMDVL; EMDVM; PTFE; RFDE; EMDVLE; 

EMDVME).  A paired samples t-test was used to explore differences in IIF trial duration 

between the two work intensities (IIF60 and IIF80). 

All data were analysed using standard descriptive statistics (mean ± SD), and 

statistical significance was accepted at p<0.05. 

6.4. RESULTS 

6.4.1. Perceptual measures 

Initial CR-10 responses for the first three sets of IIF60 and IIF80 trials are 

illustrated in Figure 6.1.  Analysis revealed a significant interaction between trial and 

time, with CR-10 responses for IIF80 to be significantly higher and increase at a faster 

rate in comparison to the equivalent responses for IIF60 (F[2,34] =4.7; p<0.05). 
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Figure 6.1  Initial CR-10 responses during IIF60 and IIF80 (group means ± SD) 
*Significant difference between IIF60 and IIF80 (p<0.001) 
†Significantly different to Set 1 and Set 3 (p<0.001) 
‡Significantly different to Set 1 and Set 2 (p<0.001) 

 
 

Group mean (± SD) and 95% confidence intervals (CI) for PTD responses 

measured over the duration of the IIF60 and IIF80 trials are presented in Table 6.1.  

Changes in PTD across both IIF60 and IIF80 trials are illustrated in Figure 6.2.  

Analyses revealed a significant main effect for both time (F[2.5,43.3 GG] =257.1; p<0.001) 

and trial (F[1,17] =7.6; p<0.05) with PTD responses for IIF60 consistently higher than the 

corresponding values for IIF80 throughout the entire trial. Pearson product-moment 

correlation coefficients revealed strong positive correlations between PTD and CTD 
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during both IIF60 (r=0.977; p<0.001), and IIF80 (r=0.997; p<0.001) indicating strong 

linear relationships. 

 

Table 6.1 PTD responses (group means ± SD) and 95% CI during IIF60 and IIF80 

% of CTD 
IIF60 IIF80 

Mean ± SD 95% CI Mean ± SD 95% CI 

10 22.9 ± 12.9 16.9-28.9 18.0 ± 12.4 12.2-23.7 
20 38.9 ± 19.5 29.8-47.9 27.7 ± 14.6 21.0-34.5 
30 50.6 ± 23.2 39.9-61.3 37.5 ± 17.9 29.2-45.7 
40 62.3 ± 22.1 52.1-72.6 45.2 ± 18.3 36.7-53.6 
50 69.6 ± 22.8 59.1-80.1 53.3 ± 18.3 44.9-61.7 
60 78.2 ± 17.2 70.2-86.1 62.7  ± 18.4 54.2-71.2 
70 86.0 ± 10.8 81.1-91.0 69.3 ± 18.4 60.8-77.8 
80 90.7 ± 9.2 86.5-94.9 74.4 ± 18.2 66.0-82.8 
90 94.4 ± 6.5 91.4-97.5 81.3 ± 14.4 74.6-87.9 

100 98.3 ± 3.6 96.6-100.0 89.3 ± 13.0 83.3-95.4 
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Figure 6.2  PTD responses during IIF60 and IIF80 (group means ± SD) 
*Significant difference between IIF60 and IIF80 (p<0.05) 

 

Group mean (± SD) and 95% confidence intervals (CI) for CR-10 responses 

IIF60 and IIF80 are presented in Table 6.2.  Figure 6.3 illustrates the change in CR-10 

responses across time for both IIF60 and IIF80 trials. Analyses revealed a significant 

main effect for both time (F[2.2,38.2 GG] =188.1; p<0.001) and trial (F[1,17] =7.3; p<0.05) 

with CR-10 responses for IIF60 higher than the corresponding values for IIF80 when 

expressed at 10% intervals of CTD.  Pearson product-moment correlation coefficients 

revealed strong positive correlations between CR-10 and CTD during both IIF60 

(r=0.957; p<0.001), and IIF80 (r=0.996; p<0.001) indicating strong linear relationships. 
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Table 6.2 CR-10 responses (group means ± SD) and 95% CI during IIF60 and IIF80 

% of CTD 
IIF60 IIF80 

Mean ± SD 95% CI Mean ± SD 95% CI 
10 3.2 ± 1.4 2.6-3.8 3.1 ± 1.7 2.4-3.9 
20 4.8 ± 1.9 3.9-5.7 3.9 ± 1.6 3.2-4.6 
30 6.1 ± 2.1 5.1-7.1 4.9 ± 1.7 4.1-5.6 
40 7.3 ± 2.0 6.2-8.0 5.7 ± 1.6 4.9-6.4 
50 7.9 ± 1.7 7.1-8.6 6.4 ± 1.6 5.7-7.1 
60 8.4 ± 1.6 7.7-8.4 7.2 ± 1.6 6.4-7.9 
70 9.0 ± 1.0 8.5-9.4 7.9 ± 1.3 7.3-8.5 
80 9.4 ± 0.8 9.0-9.8 8.5 ± 1.2 7.9-9.0 
90 9.7 ± 0.7 9.3-10.0 9.0 ± 1.0 8.6-9.5 
100 9.8 ± 0.7 9.5-10.2 9.6 ± 0.7 9.2-9.9 

 

 

 

Figure 6.3  CR-10 responses during IIF60 and IIF80 (group means ± SD) 



 
148 

6.4.2. Effects of the IIF intervention 

The results of the paired t-test revealed IIF60 duration to be significantly longer 

than IIF80 (group mean IIF durations of 27.2 ± 22.1 and 6.3 ± 2.9 sets for IIF60 and 

IIF80, respectively; 76.7% fewer sets completed in IIF80) (t= [17] 4.2, p<0.001). 

6.4.2.1. Volitional neuromuscular performance 

Group mean data for pre- and post-IIF indices of volitional neuromuscular 

performance are presented in Table 6.3.  A significant interaction associated with the 

two-way repeated measures ANOVA for PF data (F [1,17] =7.9; p<0.05) revealed that 

both IIF tasks elicited reductions in PF compared to baseline levels, but to a greater 

extent in the IIF60 task compared to the IIF80 task (group mean pre- to post-IIF PF 

reductions of 16.5% and 10.1%, respectively.  Compared to baseline levels, both IIF 

tasks led to similar reductions in RFD (F[1,17] =10.3; p<0.01) (group mean pre- to post-

IIF RFD reductions of 20.9%).  No significant changes to EMDVL or EMDVM 

performance were observed following either IIF trial. 

 

Table 6.3  Indices of volitional neuromuscular performance for IIF60 and IIF80 
(group means ± SD) 

Index  IIF60 IIF80 
 Pre Post % change Pre Post % change 

PF (N) 618.4 ± 144.9 516.6 ± 139.6 -16.5 614.8 ± 144.1 552.6 ± 147.9 -10.3* 
RFD (N.s-1) 3931 ± 1522 3129 ± 1497 -20.4 4150 ± 1549 3262 ± 1302 -21.4 
EMDVL (ms) 35.4 ± 6.1 34.1 ± 4.6 -3.7 35.6 ± 6.5 35.5 ± 5.5 -0.3 
EMDVM (ms) 33.6 ± 5.6 31.9 ± 3.6 -5.1 33.6± 7.7 32.9 ± 4.3 -2.1 
*Significant interaction between time and IIF intensity (p<0.05) 
 

6.4.2.2. Evoked neuromuscular performance 

Group mean data for pre- and post-IIF indices of evoked neuromuscular 

performance are presented in Table 6.4.  The two-way repeated measures ANOVA for 

PTFE data, (F[1,14] =8.7; p<0.01) revealed that both IIF tasks led to improvements in PTFE 

but to a greater extent following the IIF80 task compared to the IIF60 task (group mean 



 
149 

pre- to post-IIF PTFE increases of 24.7% and 51.1%, for IIF60 and IIF80 respectively). 

A similar interaction was evident in the results for RFDE, with greater increases evident 

following IIF80 in comparison to IIF60 (F[1,14] =5.8; p<0.05) (group mean pre- to post-

IIF RFD increases of 83.5% and 120.9%, for IIF60 and IIF80 respectively). Significant 

main effects for time were evident for both EMDVLE (F[1,14] =19.2; p<0.001) (group 

mean pre- to post-IIF performance improvements of 6%) and EMDVME (F[1,14] =11.2; 

p<0.01) (group mean pre- to post-IIF performance improvements of 5.8%). 

 

Table 6.4  Indices of evoked neuromuscular performance for IIF60 and IIF80 (group 
means ± SD) 

Index 
 IIF60 IIF80 
 Pre Post % change Pre Post % change 

PTFE (N) 94.8 ± 25.5 118.2 ± 31.6 +24.7 87.7 ± 22.6 132.5 ± 32.6 +51.1* 

RFDE (N.s-1) 1329 ± 379 2439 ± 799 +83.5 1261 ± 332 2786 ± 862 +120.9† 

EMDVLE (ms) 15.9 ± 1.5 15.1 ± 1.7 -5.0 16.0 ± 1.6 14.9 ± 1.0 -6.9 

EMDVME (ms) 14.6 ± 1.6 14.0 ± 1.7 -4.1 14.6 ± 1.6 13.5 ± 0.9 -7.5 

*Significant interaction between time and IIF intensity (p<0.01) 
†Significant interaction between time and IIF intensity (p<0.05) 

 

6.5. DISCUSSION 

A key finding from this study was that the initial CR-10 responses (as recorded 

following the first three IIF sets) were higher during IIF80 versus IIF60, reflecting the 

greater exercise intensity (illustrated in Figure 6.1).  Thus, it appears as though the CR-

10 is sufficiently sensitive to detect the 20% differential between work intensities in the 

current exercise modality.  Moreover, the rate of increase of CR-10 response was also 

significantly greater in the initial stages of the IIF80 trial, thus reflecting the higher 

intensity of this shorter duration task.  The conscious perception of variations in work 

intensity should theoretically enable the subconscious selection of an appropriate 

‘template RPE’, against which to compare the various afferent cues and anticipated task 
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demands.  In the context of the current investigation, the results would suggest that 

participants were able to perceive the larger 20% variation in IIF intensity, and thus 

provide a more accurate basis from which to inform their subsequent judgments 

pertaining to CTD. 

Strong positive correlations between each paradigm of self-perception and CTD 

were evident in both the IIF60 and IIF80 tasks (r=0.96; p < 0.001), suggesting that both 

RPE and PTD may provide an accurate indication of exhaustion time.  However, 

significant differences in perceptual responses were evident between trials, with both 

CR-10 and PTD values during IIF60 higher than the responses recorded during IIF80 at 

the equivalent percentage of CTD.  Furthermore, visual inspection of the IIF60 mean 

responses would suggest a trend towards a curvilinear relationship in comparison to the 

IIF80 task (Figures 3 and 4). This finding is contrary to results from the previous study, 

whereby group mean perceptual responses appeared to increase linearly in relation to 

CTD.  The linear relationship with CTD has been provided as evidence in support of the 

role of RPE in anticipatory regulation of exercise (Noakes, 2004; Tucker, 2009).  The 

generation of RPE at the beginning of an exercise bout is used to establish a work-rate 

that is continually re-calculated based on the interpretation of afferent feedback with 

regard to the anticipated end-point (St Clair Gibson et al 2006).  In accordance with this 

theory, RPE may act as a useful predictor of task duration (Eston et al., 2007; Noakes, 

2008).  However, in the presence of a curvilinear relationship such as that observed in 

the IIF60 trial, self-perception would provide an underestimation of TD, potentially 

leading to premature termination of the exercise task and therefore contributing to a 

sub-optimal performance.  The linear patterns of response during IIF80 are consistent 

with those observed in the previous study.  However, in the case of PTD, the greater 

linearity of the data does not necessarily equate to an improved capacity to predict TD, 

as the group mean response at completion was only 89.3% PTD, suggesting that 
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participants reached the termination point of the task 10% earlier than expected.  The 

magnitude of this differential exceeds the intra-individual variability of PTD at 

cessation of IIF (1.5%) as reported in Chapter 4.  This unanticipated onset of task failure 

could be accompanied by unexpected fatigue-related impairments to neuromuscular 

performance and a potential increase in injury risk.  The experimenter noted that some 

participants expressed disappointment following their performance in the IIF80 trial, 

suggesting that they perceived the task to be more difficult than their previous 

experiences in the IIF60 familiarisation and assessment trials  (as indicated by the 

higher CR-10 responses at the beginning of the IIF).  In these instances, the participants 

appeared to attribute the cause of the shorter duration IIF80 to a deficiency in their own 

performance as opposed to acknowledging that the trial was being performed at a higher 

exercise intensity.  It is impossible to determine whether or not the inaccurate PTD 

responses at termination of IIF80 imply an ineffective pacing mechanism or represent 

an under-reporting of values in an attempt to appear consistent with previous 

endeavours (Lewthwaite 1990). 

The variations in intensity and duration between the two trials will have 

subjected the participants to different physiological and psychological demands.  As 

such, the resulting afferent cues used to formulate perceptions of exertion and end-point 

may also have differed substantially.  Golgi tendon activity has been proposed as a 

primary mechanism contributing to perceived exertion (Mihevic, 1981). However, an 

increase in muscle force is accompanied by a concomitant increase in a number of other 

variables that may impact upon perception of exertion, including blood lactate, heart 

rate and skin temperature (Temfemo et al., 2011).  The significantly longer duration of 

IIF60 (27.2 ± 22.1 sets) in relation to IIF80 (6.3 ± 2.9 sets) will have potentially 

exposed participants to prolonged sensations of discomfort resulting from anaerobic 

metabolism.  Elevated muscle lactate concentrations result in an increase in metabolic 
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acidosis that stimulates nociceptors, resulting in sensations of pain in the involved 

muscle (Mihevic, 1981).  It is postulated that sensory feedback of this nature may act as 

a protective mechanism that causes the individual to reduce work-rate or cease exercise 

in order to prevent damage to bodily structures (Hampson et al., 2001).  In this instance, 

increased discomfort in response to elevated muscle acidity may have prompted a 

higher CR-10 or PTD response, consequently resulting in an underestimation of 

capabilities during the IIF60 trial.  Whilst an underestimation of TD may potentially 

lead to a sub-optimal performance, it is arguably favourable to an overestimation of 

capabilities that could result in the unanticipated onset of fatigue and an associated 

potential risk of injury, as suggested by the PTD responses during the IIF80 trial. 

Both IIF trials induced fatigue, as characterised by significant decreases in pre- 

to post-IIF PF and RFD.  Interestingly, the significantly greater reductions in PF 

observed subsequent to the lower intensity IIF task were commensurate with those 

reported in the previous study detailed in Chapter 4. In contrast, volitional EMD 

performance was unaffected by fatigue.  Estimates of magnetically-evoked 

neuromuscular performance were included in the current study with the aim of 

providing an indication of the relative contributions of central and peripheral fatigue to 

the termination of the IIF task.  Analysis of evoked performance revealed a potentiated 

PTFE response following both IIF trials, but to a significantly greater extent following 

IIF80 (pre- to post-IIF increases of 83.5% and 120.9% for IIF60 and IIF80, 

respectively).  Potentiated responses were also evident for RFDE and EMDE.  Increasing 

intensity during volitional isometric muscle actions has been shown to produce greater 

potentiation of evoked twitch responses (Miyamoto et al., 2011). A potentiation of 

evoked responses following muscle fatiguing exercise may provide an indication of a 

‘reserve capacity’ of unused motor units that could be recruited in an emergency 

situation such as threat of injury (Minshull et al., 2007).  Considering the fatiguing 
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nature of the IIF tasks in the current study, it is pertinent to acknowledge that 

mechanisms of fatigue and post-activation potentiation have been shown to coexist in 

skeletal muscle (Rassier and MacIntosh, 2000). The extent to which PTFE is suppressed 

by fatigue or enhanced by potentiation depends on the number and type of muscle fibres 

recruited during the preceding activity (Miyamoto et al., 2011).  Fast type II fibres have 

previously demonstrated increased potentiation in comparison to type I fibres, but are 

also more susceptible to fatigue (Hamada et al., 2003).  In accordance with the size 

principle of motor unit recruitment (Henneman, 1985), the greater amount of larger type 

II motor units likely to have been employed to perform the higher intensity IIF80 trial 

may have contributed to the greater potentiation of PTFE in comparison to IIF60.  As 

previously highlighted, evidence of fatigue due to the IIF trials is provided by 

reductions in pre- to post-IIF volitional PF measures.  However, due to the increased 

twitch response subsequent to both IIF trials, it is not possible to quantify the extent to 

which fatigue suppressed any potentiation effect on PTFE, and thus enable any 

estimation of the relative contributions of central and peripheral fatigue. It is important 

to address that the group mean body mass index values were situated in the overweight 

category (>26), and could indicate greater levels of body fat in some individuals that 

may have reduced the capability to achieve supra-maximal responses during 

magnetically-evoked stimulation (Tomazin et al., 2011).  As a result, supra-maximal 

stimulation was attempted but could not be achieved in a number of participants, 

limiting the number of data sets available for analysis. 

6.6. CONCLUSIONS 

This study revealed that the CR-10 responses recorded during the initial stages 

of IIF80 were significantly higher than the corresponding values for IIF60, thus 

reflecting the 20% differential between target forces.  However, visual inspection of the 
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scatterplots revealed an apparent curvilinear trend in perceptual responses throughout 

the IIF60 trial that contrasts with much of the previously published research and with 

the findings of the previous study (detailed in Chapter 5).  Whilst existing literature 

promotes a utility for RPE as a regulator of pacing strategies and predictor of running or 

cycling performance, the negatively accelerating curvilinear response during IIF60 

would suggest an underestimation of capabilities.  Although the perceptual responses 

during IIF80 exhibited a linear relationship with CTD, the PTD values provided an 

overestimation of capabilities, with a group mean response of 89.3% at the equivalent 

point of 100% CTD.  These findings question the precise role of self-perception as a 

regulator of work-rate during intermittent isometric exercise tasks, and highlight a need 

for further investigation before concluding its utility during novel and intermittent 

exercise.  

The second stage of this current investigation (as described in Chapter 7) was 

designed to provide a potentially greater disruption to perceptual mechanisms by 

incorporating a bout of eccentric muscle damaging exercise.  This type of disturbance to 

neuromuscular function mirrors the introduction of unaccustomed exercise during a 

resistance training or injury rehabilitation programme. In these scenarios, sensory cues 

may be influenced by the presence of EIMD as a carry-over effect from prior exercise.  

This will, therefore, provide an ecologically valid method of disrupting the 

neuromuscular system and will enable further investigation into the relationship 

between self-perception and TD that might also be applicable to patient populations. 
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Chapter 7: 

Effect of exercise-induced muscle damage on 

perceived exertion and task duration during an 

intermittent isometric fatigue task 
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CHAPTER 7: EFFECT OF EXERCISE-INDUCED MUSCLE DAMAGE ON 
PERCEIVED EXERTION AND TASK DURATION DURING AN 
INTERMITTENT ISOMETRIC FATIGUE TASK 

7.1. ABSTRACT 

The aim of this study was to examine the effects of exercise-induced muscle 

damage (EIMD) upon the relationship between task duration and two perceptual 

assessment paradigms (perceived exertion; perceived task duration) during an 

intermittent isometric fatigue trial (IIF).  Eighteen university level male rugby players 

were randomly assigned to perform either an eccentric muscle damaging protocol 

(EIMD group) or a control condition (CON) comprising of rest of equivalent duration to 

the EIMD intervention.  Participants performed IIFs at 60% baseline peak force 1hr pre- 

(IIF1) and 24 hours post-condition (IIF2).  A two-way ANOVA revealed significantly 

greater perceived soreness in the EIMD group on the second assessment day compared 

to the CON group (F [1,16] =30.7; p<0.001).  Although analyses revealed perceived 

exertion (CR-10) responses during IIF2 to be significantly higher than the 

corresponding values for IIF1 across the first three sets of the trial (F[1,16] =6.5; p<0.05), 

there were no significant effects for condition.  In addition, EIMD was revealed to have 

had no effect on CR-10 or perceived task duration (PTD) responses during IIF2, 

suggesting that any disruptions as a consequence of increased muscle soreness did not 

impact upon the ability of the perceptual scales to act as a predictor of task duration.  

However, visual inspection of the data revealed curvilinear patterns of perceptual 

response in both IIF trials, thus questioning the efficacy of the two paradigms of self-

perception (RPE; PTD) to act as predictors of task duration in isolated muscle exercise. 
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7.2. INTRODUCTION 

The previous investigation (Chapter 6) discovered that participants’ RPE 

responses (utilising a CR-10 scale) successfully discriminated between two IIF tasks 

involving a 20% differential in exercise intensity.  Considering that RPE has been 

proposed as integral in the regulation of exercise (Tucker and Noakes, 2009), the 

detection of a 20% work intensity differential should theoretically have provided the 

basis from which the participants could make accurate judgements concerning TD and 

exercise capabilities.  However, contrary to the previous findings (outlined in Chapter 

5), both CR-10 and perceived completed task duration (PTD) displayed a negatively 

accelerating curvilinear trend during an IIF60, suggesting an underestimation of 

exercise capabilities.  In an unsupervised exercise environment, elevated perceived 

demands during the early stages of an exercise bout may prompt the premature 

cessation of the task, resulting in a sub-optimal performance.  In contrast, the perceptual 

responses during IIF80 exhibited a linear relationship with the percentage of completed 

task duration (CTD).  However, the predictive capacity of PTD is questionable, due to 

group mean ratings of 89.3% at the equivalent point of 100% CTD.  This finding 

suggests an overestimation of performance capabilities, with participants reaching the 

point of task failure sooner than anticipated.  

The second stage of the investigation was to progressively increase the level of 

disruption to the participants by incorporating a bout of eccentric muscle damaging 

exercise.  An incidence of EIMD typically occurs as a consequence of performing a 

bout of unaccustomed eccentric exercise, or exercise of a considerably increased 

volume and/or intensity (McHugh et al., 1999; Byrne et al., 2004).  Examples of such 

scenarios could include an athlete returning to pre-season training following a period of 

relative inactivity, or a patient re-introducing unaccustomed dynamic exercise during 
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rehabilitation from injury.  Indeed, EIMD is evident following running (Eston et al., 

1995; Howatson and Milak, 2009), plyometrics (Tofas et al., 2008; Twist et al., 2008) 

and resistance training (Paul et al., 1989; Yamamoto et al., 2008), all of which are 

incorporated into rehabilitation programmes for lower limb injuries (van Grinsven et al., 

2010; Bailey et al., 2003) and in pre-season training programmes for multi-sprint sports 

(Burger and Burger, 2006; Corcoran and Bird, 2009; Holmberg, 2010).  An acute bout 

of eccentric muscle damaging exercise has been shown to provoke substantial 

reductions in strength performance (Rinard et al., 2000; Byrne et al., 2001; Brown et al., 

2010; Minshull et al., 2012), with associated symptoms of muscle soreness that 

typically peak 24-48 hours following the activity (Marginson et al., 2005; Twist and 

Eston, 2005; Torres et al., 2010; Minshull et al., 2012).  The combination of reduced 

force production capability and localised pain may disrupt perceptual acuity, and 

subsequently impact upon pacing capabilities.  For example, previous research has 

reported reduced proprioception subsequent to EIMD, with participants displaying a 

tendency to overestimate their level of force production (Saxton et al., 1995; Proske et 

al., 2004).  A further issue of potential concern is that whilst perceived soreness may 

provide a sensory cue to minimise subsequent exercise stress and limit exposure to high 

injury-risk scenarios, it does not necessarily provide an accurate reflection of 

performance capabilities.  Reductions in strength and power occur prior to the onset of 

soreness, and soreness symptoms can begin to dissipate before neuromuscular 

capabilities are fully restored (Byrne et al., 2004). 

In addition to the impairment to neuromuscular performance and proprioceptive 

capabilities resulting from EIMD, disruption to sensory afferents may also be evident.  

For example, it is postulated that the onset of inflammation results in heightened 

sensitivity of group III and IV afferents, leading to increased sensations of pain that may 

inhibit muscle performance (Rice and McNair, 2009).  This may lead to elevated levels 
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of RPE during subsequent exercise (Davies et al., 2008) and consequently impact upon 

self-perception to act as a predictor of TD during exercise tasks.  However, initial 

research exploring the impact of EIMD upon RPE and TD suggests there is a limited 

effect.  Davies et al. (2009) recruited participants to perform a constant load cycle task 

to exhaustion both prior to and 48 hours subsequent to a muscle damaging protocol 

consisting of 100 squats with an external load of 70% body weight.  Whilst exercise 

duration was significantly shorter and RPE was significantly elevated following muscle 

damage, the linear relationship between RPE and TD was unchanged from the pre-

EIMD cycling trial.  Marcora and Bosio (2007) conducted an investigation into the 

effects of EIMD on running performance, whereby participants were randomly assigned 

to an EIMD condition (consisting of 100 drop jumps) or control condition, and 

performed 30-minute time-trials prior to and 48 hours subsequent to the assigned 

condition.  Whilst the EIMD condition provoked a 4% reduction in distance covered, no 

significant difference in RPE was observed, suggesting that participants perceived a 

similar level of exertion despite performing less work.  In addition, the linear increase in 

RPE over time in all trials was consistent with other reported findings (Noakes, 2004; 

Eston et al., 2007; Crewe et al., 2008) and led the authors to conclude that EIMD did 

not impact upon the adopted pacing strategy (Marcora and Bosio, 2007).  These 

findings provide some evidence to suggest that individuals are able to interpret the 

various altered sensory cues resulting from a bout of EIMD and make accurate 

judgments pertaining to levels of exertion, thus preserving the capability of RPE to act 

as a predictor of TD.  However, the impact of EIMD on the relationship between effort 

perception and TD has yet to be explored in intermittent isometric exercise.  

If judgements concerning perceived exertion and perceived task duration are 

affected by EIMD, then this will have implications for exercise pacing capabilities for 

athletes returning to activity following a bout of inactivity, and for patients being 
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introduced to novel exercise modes during rehabilitation.  The aim of this current study 

was, therefore, to examine the effects of EIMD upon the relationship between TD and 

two assessment paradigms (RPE; PTD). 

7.3. METHODS 

7.3.1. Participants 

Eighteen university level male team rugby players (as detailed in Chapter 6.2.1) 

gave their written informed consent to participate in the study and were randomly 

assigned to either an EIMD group (n = 9; age 20.3 ± 2.3 years; height 174.0 ± 5.3cm; 

body mass 81.0 ± 11.7kg) or control group (n = 9; age 20.8 ± 1.5 years; height 179.6 ± 

5.7cm; body mass 84.8 ± 11.5kg).  The participant sample had also been utilised in the 

previous study (Chapter 6), having undertaken IIF60 and IIF80 trials as part of the 

previous study protocol.  The data from the IIF60 trial from this previous protocol was 

utilised within the current study.  All participants were asymptomatic of injury and were 

instructed to abstain from strenuous physical activity for the 24 hours preceding each 

testing session.  Assessment protocols were approved by the Nottingham Trent 

University Ethical Committee for Human Testing.  Sample participant information, 

consent form and health screen are included in Appendix D. 

7.3.2. Experimental procedures and design 

This was a mixed-model repeated measures design.  Participants were required 

to attend the laboratory on a total of three occasions.  The first occasion involved 

familiarisation and accommodation to rapid maximum voluntary muscle activation 

(MVMA) of the quadriceps, and perceptual measures.  Also included was an exposure 

to the intermittent isometric fatigue task (IIF), whereby participants completed an entire 

IIF at 60% baseline peak force (PF), through to termination. This familiarisation session 
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was incorporated to provide an exposure to and knowledge of the IIF and perceptual 

measures, and to minimise any learning effects in subsequent testing sessions.  

The two remaining laboratory visits served as assessment sessions, with the first 

assessment session performed 48 hours subsequent to familiarisation.  Fingertip blood 

samples and perceived soreness (described in section 7.2.7.2) were obtained at the 

beginning of each session. Following a standardised warm-up of five minutes cycle 

ergometry performed at 90 W, and an additional five minutes of stretching of the 

involved musculature, participants were secured in a seated position on a custom built 

dynamometer in accordance with the specifications outlined in Chapter 4.2.2.  Estimates 

of evoked and volitional neuromuscular performance were obtained in order to establish 

baseline values.  Participants were then required to perform an IIF at an intensity of 

60% baseline PF (procedure as previously described in Chapter 6.2.2).  Estimates of 

magnetically evoked and volitional neuromuscular performance were again obtained 

immediately after the IIF.  Each participant was then randomly assigned to perform 

either an eccentric muscle damaging protocol (EIMD group) (protocol detailed in 

section 7.2.6) or a control condition comprising of rest of equivalent duration to the 

EIMD intervention.  Assessment session two was performed 24 hours subsequent to the 

cessation of the EIMD or control tasks (± 1 hour), and required participants to perform 

one IIF at an intensity of 60% baseline PF (calculated from PF values obtained during 

session one).  Estimates of static volitional neuromuscular performance were again 

obtained both prior to and immediately following the IIF. 

7.3.3. Intermittent isometric fatigue task 

The IIF protocol was performed in accordance with the description detailed in 

Chapter 4.2.3. Participants were ‘blinded’ to the precise magnitude of the target force 
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(60% baseline PF), but were able to observe in real-time how their efforts were 

matching the target line. 

7.3.4. Perceptual measures 

Measures of perceived exertion (CR-10) and perceived percentage of completed 

task duration (PTD) were recorded during each IIF inter-set rest period in accordance 

with the methods outlined in Chapter 4.2.4. Presentation of the scales was randomised 

in order to minimise any influence of the order on the participants’ current perception. 

7.3.5. Assessment of neuromuscular performance 

Estimates of volitional and evoked neuromuscular performance were obtained 

and calculated in accordance with the procedures detailed in Chapter 4.2.5 and Chapter 

6.2.5, respectively. Supra-maximal stimulation was not obtainable in all cases. As such, 

evoked neuromuscular performance data is presented from 14 participants (CON: n = 8; 

EIMD: n = 6).  Furthermore, unforeseen technical issues hindered the collection of 

EMG data, and thus limited the calculation of EMD in some cases.  EMDVL and 

EMDVLE data is presented from 11 participants (CON: n = 5; EIMD: n = 6).  

7.3.6. Exercise induced muscle damage 

The eccentric muscle damaging protocol was adapted from those utilised by 

Byrne et al. (2001) and Minshull et al. (2012). Pilot testing revealed that this protocol 

provoked significant reductions in PF (~30%), and provided a substantial muscle-

damage response commensurate with the previous research.  The protocol consisted of a 

warm up (5 submaximal and 5 maximal eccentric activations) followed by 10 sets (each 

separated by 2 minutes) of 10 repetitions of maximal eccentric activations of the knee 

extensors on an isokinetic dynamometer (Biodex, New York, USA). Each eccentric 

activation was performed at 60 deg·s-1 through a movement range of 10º to 90º of knee 
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flexion (0º = full extension) and was followed by a passive return to the start position 

that was performed by the experimenter. Participants were able to observe their efforts 

in real time via a computer monitor, and verbal encouragement was provided to ensure 

that maximal effort was produced throughout.  

7.3.7. Indirect markers of muscle damage 

Prior to testing on both assessment sessions, subjective assessments of soreness 

of the involved knee extensors and fingertip blood samples for analysis of creatine 

kinase (CK) concentration were obtained.  

7.3.7.1. Perceived soreness (visual analog scale) 

Participants were required to stretch and actively extend the knee of their 

involved limb and rate their soreness on a 10cm visual analog scale (adapted from 

Minshull et al., 2012). The statements read: ‘my muscles don’t feel sore at all’ and ‘my 

muscles feel so sore that I don’t want to move them’, which corresponded to numerical 

ratings of 0 and 10, respectively, and that were shielded from the participants.  

7.3.7.2. Creatine kinase (CK) 

Blood samples were obtained via fingertip capillary puncture.  A fingertip was 

cleaned with a sterile alcohol swab and allowed to dry. Capillary puncture was 

performed with a safety lancet and a sample of fresh blood was collected in a 500 µl 

microvette.  Serum was separated from the blood cells by centrifugation at 13,000 rpm 

for 15 minutes and frozen at -80°C until analysis. Each sample was analysed in 

duplicate via an ABX Pentra 400 system (Horiba Instruments Inc., Irvine CA, USA), 

with the average value of the two measures used for subsequent statistical analysis.  

7.3.8. Statistical analysis 

All statistical analyses were performed using PASW v18.0 (SPSS Inc. Chicago, 

Il, USA). 
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Indirect markers of muscle damage (perceived soreness and CK concentrations) 

were assessed by separate two (time: day one; day two) by two (condition: EIMD; 

CON) mixed-model ANOVAs with repeated measures on first factor.  A two (trial: 

IIF1; IIF2) by two (condition: EIMD; CON) mixed-model ANOVA with repeated 

measures on first factor was used to explore differences in IIF trial duration.  Log 

transformations (log10) were applied where appropriate to satisfy assumptions of 

normality.  Separate two (trial: IIF1; IIF2) by two (condition: EIMD; CON) mixed-

model ANOVAs were used to analyse effects of the muscle damage intervention on 

baseline PF and PTFE data, in order to ascertain whether there were any carry-over 

effects.  Effects of the IIF on each index of neuromuscular performance were evaluated 

by using separate two (trial: IIF1; IIF2) by two (time: pre; post) by two (condition: 

EIMD; CON) mixed-factorial ANOVAs.  Differences in CR-10 measures over the first 

three sets of the IIF1 and IIF2 trial were analysed using a two (trial: IIF1; IIF2) by three 

(sets: 1; 2; 3) by two (condition: EIMD; CON) mixed-model ANOVA.  Perceptual 

measures were also obtained at 10% intervals of the completed task duration (CTD), 

with CR-10 and PTD scores at 10% to 100% of the IIF task subsequently used for 

analysis.  For those individuals whose scores did not fall on a 10% interval, a cubic 

spline function enabled interpolation of a value that was subsequently used for analysis 

(Keele, 2008).  Changes in CR-10 and PTD over the duration of the IIF tasks (measures 

obtained at 10% intervals throughout the relative duration of the IIF, from 10% to 100% 

of the IIF) under each exercise intensity were analysed using separate two (trial: IIF1; 

IIF2) by ten (time: 10%; 20%; 30%; 40%; 50%; 60%; 70%; 80%; 90%; 100%) by two 

(condition: EIMD; CON) mixed factorial ANOVAs. Greenhouse-Geisser corrections 

were applied where assumptions of sphericity were violated, as indicated by GG.  

Pearson product-moment correlation coefficients were used to explore the relationships 

between group mean perceptual responses (CR-10 and PTD) with the percentage of 
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completed task duration (CTD) for the EIMD and CON groups during each trial (IIF1 

and IIF2).  All data were analysed using standard descriptive statistics (mean ± SD), and 

statistical significance was accepted at p<0.05. 

7.4. RESULTS 

7.4.1. Effects of eccentric muscle damaging protocol 

Group mean data for baseline measures from assessment day 1 and assessment 

day 2 are presented in Table 7.1.  A significant interaction associated with the two-way 

ANOVA for perceived soreness (F [1,16] =30.7; p<0.001) revealed a significantly greater 

soreness values in the EIMD group on the second assessment day compared to the CON 

group (increases of 471.1% vs. 8.6% for EIMD and CON groups, respectively). Despite 

an apparently greater increase in the EIMD group data, no significant differences for 

CK concentrations were found between conditions (reverse log transformed values 

presented in Table 7.1).  A significant interaction associated with the two-way mixed-

model ANOVA for IIF duration (F [1,16] =12.9; p<0.01) revealed that 49% fewer sets 

were performed in IIF2 versus IIF1 by the EIMD group (34 ± 24.3 sets vs. 17.3 ± 20.3 

sets for IIF1 and IIF2, respectively), whilst the CON group performed 35.3% more sets 

during IIF1 versus IIF2 (20.4 ± 18.7 sets vs. 27.7 ± 19.7 sets for IIF1 and IIF2, 

respectively).  Analysis of PF data revealed a significant main effect for day only (F 

[1,16] =23.6; p<0.001).  No significant changes to PTFE were observed as a consequence 

of day or condition. 
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Table 7.1 Effects of muscle damaging protocol on baseline measures for assessment 
days 1 and 2 (group means ± SD) 

Index   Day 1 Day 2 % change 
Perceived soreness (VAS) CON 2.5 ± 1.2 2.7 ± 1.0 +8.6 
  EIMD 1.0 ± 1.3 5.7 ± 2.1 +471.1* 
CK (U/L) CON 499 ± 385  572 ± 416 +15.0 
  EIMD 360 ± 185 631 ± 341 +83.2 
IIF duration (sets) CON 20.4 ± 18.7 27.7 ± 19.7 +35.3 
  EIMD 34.0 ± 24.3 17.3 ± 20.2 -49.0† 
PF (N) CON 660.8 ± 142.3 620.9 ± 120.6 -6.0 
  EIMD 576.0 ± 142.6 502.9 ± 147.8 -12.7 
PTFE (N) CON 98.4 ± 24.2 100.4 ± 18.8 +1.7 
  EIMD 94.6 ± 28.6 89.2 ± 19.0 -5.3 
*Significant interaction between day and condition (p<0.001) 
†Significant interaction between day and condition (p<0.01) 
 

7.4.2. Perceptual measures 

Initial CR-10 responses for the first three sets of IIF1 and IIF2 trials are 

illustrated in Figure 7.1.  Analyses revealed a significant main effect for both trial 

(F[1,16] =6.5; p<0.05) and sets (F[1.3,21.5 GG] =32.9; p<0.001) with CR-10 responses during 

IIF2 consistently higher than the corresponding values for IIF1 across the first three sets 

of the trial.  There were no significant interaction effects. 
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Figure 7.1 Initial CR-10 responses during IIF1 and IIF2 for EIMD and CON groups 
(group means ± SD) 

Group mean data (± SD) and 95% CI for PTD responses during IIF1 and IIF2 

are presented in Table 7.2.  Changes in PTD across time for the IIF1 and IIF2 trials are 

illustrated in Figure 7.2a and Figure 7.2b for CON and EIMD, respectively.  Analyses 

revealed a significant main effect for time only (F[1.2,29.1 GG] =151.4; p<0.001). The 

interaction effect between trial and time approached significance but just exceeded the 

specified alpha level provided by the Greenhouse-Geisser correction (p=0.061).  

Pearson product-moment correlation coefficients revealed strong positive correlations 

between PTD and CTD for EIMD during both IIF1 (r=0.963; p<0.001) and IIF2  
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(r=0.973; p<0.001), and for CON during both IIF1 (r=0.986; p<0.001) and IIF2  

(r=0.97; p<0.001). 

 

Table 7.2  PTD responses (group means ± SD) and 95% CI for EIMD and CON 
groups during IIF1 and IIF2 

% of 
CTD 

IIF1 IIF2 
EIMD CON EIMD CON 

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI 

10 23.3 ± 11.2 16.0-30.7 22.5 ± 15.1 12.6-32.3 39.3 ± 20.7 25.8-52.9 32.5 ± 13.7 23.5-41.5 

20 42.4 ± 19.6 29.6-55.2 35.3 ± 19.9 22.3-48.4 51.0 ± 21.9 36.7-65.3 45.2 ± 14.9 35.5-55.0 

30 54.3 ± 25.9 37.4-71.2 46.9 ± 20.9 33.2-60.5 62.1 ± 24.7 45.9-78.2 59.7 ± 16.8 48.8-70.7 

40 66.6 ± 24.6 50.5-82.6 58.1 ± 19.1 45.1-71.1 69.3 ± 22.8 54.4-84.2 66.8 ± 16.9 55.8-77.8 

50 75.0 ± 26.0 58.0-91.9 64.2 ± 19. 51.8-76.7 75.5 ± 19.6 62.7-88.3 77.9 ± 13.7 68.9-86.9 

60 80.3 ± 21.4 66.3-94.3 76.0 ± 12.6 67.8-84.2 81.1 ± 17.3 69.8-92.4 81.3 ± 15.0 71.5-91.1 

70 88.6 ± 12.5 80.4-96.7 83.5 ± 8.7 77.8-89.2 87.3 ± 13.0 78.8-95.8 87.0 ± 13.4 78.2-95.7 

80 91.1 ± 10.8 84.0-98.2 90.3 ± 7.8 85.2-95.4 91.1 ± 9.7 84.8-97.4 90.5 ± 9.3 84.5-96.6 

90 95.3 ± 6.3 91.2-99.4 93.6 ± 7.0 89.0-98.2 93.5 ± 6.6 89.1-97.8 96.1 ± 4.9 92.9-99.3 

100 98.7 ± 1.9 97.4-99.9 97.9 ± 4.9 94.7-10.1 96.0 ± 5.3 92.5-99.5 98.9 ± 1.7 97.8-100.0 
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Figure 7.2 a) PTD responses during IIF1 and IIF2 for CON group (group means ± 
SD); b) PTD responses during IIF1 and IIF2 for EIMD group (group 
means ± SD) 
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Group mean (± SD) and 95% CI for CR-10 responses during IIF1 and IIF2 are 

presented in Table 7.3.  Changes in CR-10 across time for the IIF1 and IIF2 trials are 

illustrated in Figure 7.3a and Figure 7.3b for CON and EIMD, respectively.  Analyses 

revealed a significant main effect for time only (F[1.9,30.4 GG] =111.8; p<0.001). Pearson 

product-moment correlation coefficients revealed strong positive correlations between 

CR-10 and CTD for EIMD during both IIF1 (r=0.953; p<0.001) and IIF2  (r=0.958; 

p<0.001), and for CON during both IIF1 (r=0.957; p<0.001) and IIF2 (r=0.954; 

p<0.001). 

 

Table 7.3 CR-10 responses (group means ± SD) and 95% CI for EIMD and CON 
groups during IIF1 and IIF2 

% of 
CTD 

IIF1 IIF2 
EIMD CON EIMD CON 

Mean ± 
SD 

95% CI Mean ± 
SD 

95% CI Mean ± 
SD 

95% CI Mean ± 
SD 

95% CI 

10 3.2 ± 1.3 2.4-4.0 3.2 ± 1.6 2.1-4.2 4.4 ± 1.9 3.2-5.7 3.8 ± 1.7 2.7-5.0 

20 5.2 ± 1.9 4.0-6.5 4.4 ± 1.9 3.2-5.7 5.7 ± 2.0 4.4-7.0 5.1 ± 1.8 3.9-6.3 

30 6.4 ± 2.4 4.9-8.0 5.8 ± 1.8 4.5-7.0 6.9 ± 2.3 5.4-8.3 6.5 ± 1.8 5.3-7.6 

40 7.3 ± 2.2 5.9-8.8 6.9 ± 1.8 5.8-8.1 7.6 ± 2.0 6.3-8.9 7.6 ± 1.6 6.5-8.6 

50 8.0 ± 2.2 6.6-9.4 7.8 ± 1.2 7.0-8.6 8.1 ± 1.7 7.0-9.2 8.2 ± 1.3 7.3-9.1 

60 8.5 ± 1.9 7.3-9.7 8.4 ± 1.4 7.5-9.3 8.8 ± 1.2 8.1-9.6 8.6 ± 1.0 8.0-9.3 

70 9.1 ± 1.1 8.4-9.7 8.9 ± 0.9 8.3-9.5 9.4 ± 0.6 9.0-9.8 9.1 ± 0.8 8.6-9.6 

80 9.5 ± 0.8 9.0-10.0 9.3 ± 0.9 8.7-9.9 9.8 ± 0.3 9.5-10.0 9.5 ± 0.5 9.2-9.9 

90 9.8 ± 0.4 9.6-10.1 9.5 ± 1.0 8.9-10.1 9.8 ± 0.4 9.6-10.1 9.6 ± 0.4 9.4-9.9 

100 10.0 ± 0.0 n/a 9.7 ± 1.0 9.0-10.3 9.9 ± 0.3 9.7-10.1 10.0 ± 0.0 n/a 

!
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Figure 7.3 a) CR-10 responses during IIF1 and IIF2 for CON group (group means ± 
SD); b) CR-10 responses during IIF1 and IIF2 for EIMD group (group 
means ± SD) 
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7.4.3. Effects of the IIF intervention 

7.4.3.1. Volitional neuromuscular performance 

Group mean data for pre- and post-IIF indices of volitional neuromuscular 

performance are presented in Table 7.4.  There were no significant three-way 

interactions (time by trial by condition).  A significant interaction between trial and 

condition revealed a lower overall PF in the EIMD group for IIF2 (F[1,16] =7.7; p<0.05).  

A significant interaction between trial and time indicated that both IIF tasks led to 

reductions in PF, but to a greater extent following the IIF1 task compared to the IIF2 

task (F[1,16] =9.5; p<0.01) (group mean pre- to post-IIF PF reductions of 16.3% and 

9.4%, for IIF1 and IIF2, respectively).  A significant main effect for time revealed that 

both IIF trials led to similar reductions in RFD (F[1,16] =8.4; p<0.01) that was also 

similar between conditions (combined group mean pre- to post-IIF RFD reductions of 

20.6%). A main effect for condition revealed EMDVL values to be significantly higher 

for the EIMD group versus CON (F[1,9] =8.8; p<0.05).  No significant effects were 

observed for EMDVM. 

 

Table 7.4  Indices of volitional neuromuscular performance for IIF1 and IIF2 trials 
(group means ± SD) 

   IIF1 IIF2 
Index   Pre Post % 

change Pre Post % 
change 

PF (N) CON 660.8 ± 142.3 536.3 ± 145.3 -18.8 620.9 ± 120.1 561.3 ± 128.5*† -9.6 

  EIMD 576.0 ± 142.6 496.8 ± 139.4 -13.7 502.9 ± 147.8 456.9 ± 133.8 -9.2 

RFD (N.s-1) CON 4190 ± 1703 3574 ± 1646 -14.7 3803 ± 1539 3162 ± 1390 -16.9 

  EIMD 3673 ± 1369 2684 ± 1267 -26.9 3696 ± 1162 2799 ± 1262 -24.3 

EMDVL (ms) CON 32.4 ± 5.3 32.2 ± 7.75 -0.6 31.8 ± 5.0 26.7 ± 3.8 -16.0 

  EIMD 41.2 ± 5.9 35.3 ± 3.63 -14.3 39.0 ± 9.1 38.5 ± 5.2 -1.28 

EMDVM (ms) CON 30.8 ± 3.2 31.2 ± 4.2 +1.3 31.4 ± 4.8 32 ± 6.2 +1.9 

  EIMD 36.3 ± 6.3 32.6 ± 3.0 -10.2 38.5 ± 12.2 31.7 ± 3.2 -17.7 

*Significant interaction between trial and time (p<0.01) 
†Significant interaction between trial and condition (p<0.05) 
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7.4.3.2. Evoked neuromuscular performance 

Group mean data for pre- and post-IIF indices of evoked neuromuscular 

performance are presented in Table 7.5.  A significant interaction between trial and 

condition revealed greater PTFE in the CON group for IIF2 (F[1,12] =5.9; p<0.05).  

Compared to baseline levels, both IIF tasks led to significant increases in PTFE in both 

the EIMD and CON groups (F[1,12] =18.1; p<0.001) (combined group mean pre- to post-

IIF performance improvements of 29.1%).  Pre- to post-IIF increases were similarly 

evident for RFDE in both the EIMD and CON groups following both IIF trials (F[1,12] 

=44.3; p<0.001) (group mean pre- to post-IIF RFD performance improvements of 

94.2%).  Results for both EMDVLE (F[1,9] =15; p<0.01) and EMDVME (F[1,12] =5.8; 

p<0.05) revealed significant main effects for time only, with similar improvements pre- 

to post-IIF evident in both conditions (group mean pre- to post-IIF improvements of 

9.8% and 4.6% for EMDVLE and EMDVME, respectively).  

Table 7.5  Indices of evoked neuromuscular performance for IIF1 and IIF2 trials 

Index 
  IIF1 IIF2 
  Pre Post % 

change 
Pre Post % 

change 
PTFE (N) CON 98.4 ± 24.2 117.0 ± 33.2 +18.9 100.4 ± 18.8 137.3 ± 34.4* +36.7 
  EIMD 94.6 ± 28.6 122.3 ± 34.2 +29.4 89.2 ± 19.0 117.2 ± 21.4 +31.3 
RFDE (N.s-1) CON 1419 ± 394 2434 ± 816 +71.5 1409 ± 285 2979 ± 1051 +111.3 
  EIMD 1281 ± 364 2414 ± 887 +97.9 1294 ± 260 2539 ± 620 +96.1 
EMDVLE (ms) CON 15.8 ± 2.0 14.5 ± 0.8 -8.2 15.8 ± 1.7 14.3 ± 1.4 -9.5 
  EIMD 16.4 ± 1.7 14.2 ± 1.6 -13.4 16.0 ± 1.1 14.7 ± 1.4 -8.1 
EMDVME (ms) CON 14.6 ± 1.7 14.3 ± 1.8 -2.0 14.4 ± 1.1 14.2 ± 1.5 -1.4 

  EIMD 14.0 ± 0.9 13.2 ± 1.5 -5.7 14.3 ± 0.9 13.0 ± 1.0 -9.1 
*Significant interaction between trial and condition (p<0.05) 

 

7.5. DISCUSSION 

The major finding from the current study is that EIMD did not impact upon the 

relationships between CTD and self-perception measures (CR-10 and PTD) during 
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intermittent static muscle exercise.  The eccentric muscle damaging protocol was 

sufficient to produce a significantly greater increase in perceived soreness (471.1% vs. 

8.6% for EIMD and CON, respectively).  However, whilst elevated CK levels are 

typically evident following intense exercise and are commonly used to provide an 

indication of muscle damage (Brancaccio et al., 2007), CK concentrations in the current 

study were not significantly different between conditions.  This could be attributed to 

the high level of inter-individual variability of CK that has previously been reported to 

range between <100 U/L and 3000 U/L (Hartmann and Mester, 2000).  In the context of 

the current investigation, the participants’ self-perceived soreness is arguably of greater 

interest, as it confirms that the EIMD group experienced conscious sensations of pain 

and discomfort that were not encountered to the same extent by the CON group.  

Comparison of the first three sets of each IIF indicated that group mean CR-10 

responses during the early stages of the IIF2 trial were higher than the equivalent 

responses during IIF1 for both the EIMD and CON groups.  This perceived increase in 

demand reflects the significant reduction in PF between the pre-IIF1 and pre-IIF2 

baseline values (12.7% and 6% for the EIMD and CON groups, respectively).  Previous 

investigation of force replication tasks performed in muscles symptomatic of EIMD has 

observed a tendency for participants to underestimate the required target force, and thus 

produce lower levels of muscle force than required (Saxton et al., 1995; Proske et al., 

2004).  The current findings would suggest that participants were able to interpret their 

reduced force production capabilities and greater relative task demands in the IIF2 trial 

(Figure 7.1).  The volitional PF reductions experienced by the EIMD group (12.7%) 

were not significantly different to those present in the CON group (6%), suggesting that 

there may have been some form of carry-over effect from the IIF trials completed on the 

previous day.  When examining typical responses of the knee extensors to muscle 

damaging protocols, the baseline PF reductions experienced by the EIMD group were 
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consistent with some previously reported findings (Marcora and Bosio, 2007), but lower 

in comparison to other research (Byrne and Eston, 2001; Paschalis et al., 2007; 

Trombold et al., 2011).  No significant reductions in evoked PTFE were found between 

the IIF1 and IIF2 trials.  This may indicate a centrally-mediated reduction in volitional 

performance for both CON and EIMD groups, potentially attributed to inhibition 

resulting from activity of group III and IV afferents in response to muscle soreness 

(Racinais et al., 2008).  Moreover, a significantly greater increase in overall PTFE 

(combined pre- and post-IIF values) was evident for the CON group compared to the 

EIMD group for IIF2.  This finding may point towards additional peripheral 

impairments experienced in the EIMD group. 

While the eccentric exercise protocol provoked considerable changes to IIF 

duration (a 49% reduction for EIMD vs. a 35.3% increase for CON), no significant 

differences in CR-10 or PTD response could be attributed to the EIMD condition.  

However, an apparent curvilinear relationship with CTD was evident for both 

paradigms of effort sense in all trials. As previously highlighted, the elevated responses 

in the early stages of both IIF trials may represent an under-estimation of capabilities 

that could translate to a sub-optimal performance or early cessation of exercise.  In 

Chapter 6 it was hypothesised that the extended duration of IIF60 in comparison to 

IIF80 may have subjected participants to prolonged sensations of discomfort resulting 

from stimulation of nociceptors due elevated metabolic acidosis (Mihevic, 1981).  

Indeed, this may be exacerbated under conditions of EIMD due to an increased rate of 

glycogen utilisation as a consequence of greater recruitment of fast type II fibres 

(Gleeson et al., 1998).  Pain sensations may consequently act as a protective mechanism 

to influence the individual to reduce work-rate (Hampson et al., 2001), and in the 

context of the current study may, therefore, have prompted selection of relatively higher 

perceptual ratings.  Although the IIF2EIMD trial was substantially shorter in comparison 
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to IIF2CON, the activation of nociceptors in response to muscle damage (Racinais et al., 

2008) may have acted in a similar protective capacity, and provoked elevated CR-10 

and PTD responses.  

It is possible that EIMD-related changes to glycogen utilisation may have been a 

cause of the significantly shorter duration of the IIF2EIMD trial.  An acute bout of muscle 

damage may inhibit glycogen synthesis (O’Reilly et al., 1987).  In addition, although 

fast type II fibres may be more susceptible to EIMD (Brockett et al., 2002), there may 

be additional damage to some type I oxidative fibres that results in an increased demand 

placed upon glycolytic energy production (Tee et al., 2007).  This may in turn have 

impacted upon the perceptual responses in relation to CTD.  The linear relationship 

between RPE and TD during other exercise modalities has prompted the theory that a 

subconscious glycogen-based signal is used to inform RPE during exercise (Noakes, 

2004).  It is postulated that if exercise was solely limited by the depletion of energy 

substrates, then RPE responses in these fixed work-rate tasks would be characterised by 

a rapid increase towards the end of the exercise bout when glycogen stores were 

depleted to critically low levels (Tucker, 2009).  Instead, RPE values have previously 

been shown to demonstrate a progressive increase as glycogen levels are gradually 

depleted (Noakes, 2004).  Despite the substantially reduced IIF2EIMD duration and 

potential stresses on glycogen synthesis and utilisation following muscle damage, the 

group mean perceptual responses between the EIMD and CON groups were similar.  

The lack of differences in perceptual response between the EIMD and CON groups 

across the duration of the IIF tasks would suggest that participants were able to interpret 

any changes in afferent feedback resulting from muscle damage and any potential carry-

over effects from the previous IIF, and form their perceptual responses accordingly.  

However, this apparent recognition of the relatively increased demands of IIF2 did not 

improve the capacity of the PTD and CR-10 scales to predict CTD. 
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7.6. CONCLUSIONS 

Whilst the effects of EIMD upon the relationship between self-perception and 

TD appear to be negligible, it is difficult to properly ascertain the precise impact due to 

the unanticipated carry-over effects of the preceding IIF task.  CR-10 responses were 

higher during the early stages of IIF2 in comparison to the corresponding stages of IIF1, 

thus reflecting the greater demands of the IIF2 task as a consequence of the impaired 

force production capabilities.  This would suggest that disruptions to the involved 

musculature resulting from the preceding day’s activity were interpreted by the 

participants and reflected in an elevated perceptual response.  However, this altered 

RPE did not contribute to an accurate prediction of TD, as visual inspection of the 

scatterplots revealed curvilinear patterns of perceptual response in both the IIF1 and 

IIF2 trials (similar to those reported in Chapter 6), which reflect an underestimation of 

capabilities that could potentially translate to a sub-optimal performance.  Furthermore, 

the suggestion of a trend towards elevated PTD responses at the beginning of IIF2 may 

also point to an underestimation of capabilities, with participants perceiving that they 

had completed >30% of the IIF task, when in reality they had only completed 10% of 

the total duration. 

The combined results from an asymptomatic population as described in Chapters 

6 and 7 appear to suggest that the self-perception responses share an apparent 

curvilinear relationship with TD during an IIF performed at 60% PF, and thus question 

the ability of the two paradigms of self-perception (RPE; PTD) to act as predictors of 

TD in isolated muscle exercise.  Based on these findings, these perceptual scales would 

appear to have limited utility in a clinical population, where the combination of injury, 

surgery and de-conditioning may further increase inter-individual variation in response. 
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Chapter 8: 

General Discussion and conclusions 
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CHAPTER 8: GENERAL DISCUSSION AND CONCLUSIONS 

8.1. INTRODUCTION  

The research described in this thesis has examined if self-perception of physical 

capabilities can be used to provide an accurate indication of objective performance 

outcomes.  This was undertaken with the aim of determining the utility of perceptual 

scales can be used to assist with the self-regulation of isolated, intermittent muscle 

exercise such as that performed during resistance training regimes and also during 

structured rehabilitation following ACL-reconstructive surgery.  The present chapter 

will discuss the main findings of this research with regard to the implications for 

optimising performance and preventing re-injury.  It will then review the methods 

adopted and identify potential improvements that could be applied to further 

investigations in this area, and provide indications as to the possible direction of this 

future research.  Finally, this general discussion will consider potential applications for 

the present findings, with reference to the scope and limitations of the research. 

8.2. REVIEW OF FINDINGS 

The general proposition that RPE rises linearly during running and cycling has 

been addressed in detail in Chapter 2.  Much of the research reviewed examined the 

performance of endurance-trained participants during continuous running and cycling 

exercise.  However, the findings from these sporting activities undertaken by 

asymptomatic athletes have limited application to the intermittent and isolated modes of 

exercise that characterise resistance training and early-stage post-operative ACL 

rehabilitation.  It was therefore necessary to explore the pattern of perceptual responses 

in an appropriate context that could have implications for a clinical environment.  In 

addition, ACL-reconstructed patients face the additional challenge of progressing their 

rehabilitation at an optimal rate without jeopardising the integrity of the replacement 
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graft (Marumo et al., 2005).  Although physical therapy is an integral component of the 

recovery process, often the limited available contact time with a clinician dictates that a 

substantial amount of exercise performance and progression is undertaken in the 

absence of specialist supervision following advice from the physiotherapist (Coppola 

and Collins, 2009).  A positive functional outcome has to be achieved in the presence of 

a considerable perturbation to the knee joint as a consequence of the injury and required 

surgery (Forster and Forster, 2005; Krogsgaard et al., 2011).  This disturbance may 

subsequently produce novel sensations to which the patient is unaccustomed, thus 

providing a potential disadvantage when attempting to accurately judge the progress of 

rehabilitative exercise.  Chapters 3 to 7 reported a series of empirical studies that were 

designed to explore the relationships between self-perceived and objective aspects of 

knee-joint performance.  The aims and key findings from these studies are presented in 

Table 8.1 
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Table 8.1  Aims and key findings of empirical chapters 

Study Aims and Key Findings  

Study 1: Relationships 
between self-perceived knee 
function and indices of 
musculoskeletal performance 
in an ACL-reconstructed 
population (Chapter 3) 

Aims 

• Explore the relationships between self-perceived measures of knee 
function and objective indices of musculoskeletal performance in an 
ACL-reconstructed population during various stages of post-operative 
rehabilitation, ranging from pre-surgery through to an anticipated 
completion of rehabilitation at 48 weeks post-surgery. 

Key Findings 

• Analyses revealed a lack of significant correlations between self-
perceived and objective measures throughout the early to intermediate 
stages (pre-surgery to 24 weeks) following surgery. 

• Relationships between self-perceived and objective knee function 
became stronger in the latter stages of rehabilitation (48 weeks). 

Study 2: Reproducibility and 
reliability of two perceptual 
scales during an intermittent 
isometric fatigue task 
(Chapter 4) 

Aims 

• Assess the reliability of two perceptual measurement scales during a 
novel intermittent isometric fatigue task (IIF): 

i. Measurement of perceived exertion using the category-ratio RPE 
scale (CR-10). 

ii. Measurement of perceived percentage of completed task duration 
(PTD) using a visual analog scale. 

Key Findings 

• Composite inter-day ICC scores suggested a good level of agreement 
between trials for both scales. 

• Composite V% values indicated greater intra-individual variability than 
reported in previous studies. V% of 33.1% was observed at 10% 
completed IIF duration, equating to 0.9 absolute units of measurement. 

Study 3: Congruency and 
responsiveness of perceived 
exertion and task duration 
during an intermittent 
isometric fatigue task 
(Chapter 5) 

Aims 

• Investigate the relationship between measures of self-perception (RPE; 
PTD) and completed task duration in an IIF 

• Evaluate the capability of two assessment paradigms (RPE; PTD to 
reflect a 10% change in IIF intensity. 

Key Findings 

• Visual inspection of the data revealed linear patterns of perceptual 
response in both IIF trials for both CR-10 and PTD scales. 

• CR-10 responses did not reflect the 10% differential in IIF intensity. 

Study 4: Effect of a 
substantial variation in work 
intensity on perceived 
exertion and task duration 
during an intermittent  
isometric fatigue task 
(Chapter 6) 

Aims 

• Evaluate the capability of two perceptual assessment paradigms (RPE; 
PTD) to reflect a 20% differential in IIF work intensity 

• Determine if the variation in target force impacts upon the relationship 
and pattern of perceptual response in relation to task duration. 

Key Findings 

• Initial CR-10 responses reflected 20% differential in IIF work intensity. 

• Curvilinear patterns of perceptual response evident in both IIF trials. 
Study 5: Effect of exercise-
induced muscle damage on 
perceived exertion and task 
duration during an 
intermittent isometric fatigue 
task (Chapter 7) 

Aims 

• Examine the effects of exercise-induced muscle damage (EIMD) upon 
the relationship between task duration and two perceptual assessment 
paradigms (RPE; PTD) during an IIF 

Key Findings 

• EIMD was revealed to have had no effect on CR-10 or PTD responses. 

• Curvilinear patterns of perceptual response evident in both IIF trials. 
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Chapter 3 was a longitudinal study conducted over a 34-month period that 

examined a cohort of ACL-reconstructed patients as they completed a 48-week 

rehabilitation programme.  This process involved monitoring the progression of 

important markers of objective musculoskeletal fitness alongside two measures of self-

perceived knee function (PP and IKDC).  The findings revealed patterns of change in 

objective measures that were generally characterised by an initial deterioration of 

performance in the injured limb following surgery, followed by gradual improvement 

over the course of the rehabilitation period.  In particular, the greatest improvements in 

neuromuscular capabilities were observed between weeks 6 and 12, which corresponds 

with a progression in resistance exercise both in terms of increased intensity and range 

of motion (see Figure 2.2).  Self-perceived knee function, however, typically provided a 

poor reflection of musculoskeletal performance.  Indeed, it was only at week 48 that 

self-perceived measures (via IKDC response) began to provide any noticeable 

indication of the patients’ objective capabilities.  This may point to a possible latency 

period, whereby a patient’s self-perceived function begins to reflect the objective 

capabilities subsequent to having ‘tested’ the knee during functional activities.  The lack 

of any strong relationships between perceived and objective measures across the early 

to intermediate phases of rehabilitation could suggest the disparity is, in part, driven by 

patient confidence in their functional capabilities.  Indeed, a lack of confidence 

following ACL reconstruction has been proposed as an explanation for extended 

absence from full activity (Webster et al., 2008).  Considering that individuals with 

lower self-efficacy regarding performance of an exercise task have been observed to 

report higher RPE values (Hu et al., 2007), a lack of confidence in the reconstructed 

knee might, therefore, have implications for the utility of RPE in the self-regulation of 

exercise during rehabilitation.  The relationships observed at 48 weeks may provide 

some justification for the use of PP and IKDC as indicators of knee function at the end 
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stages of the rehabilitation.  However, the discrepancy between self-reported and 

objective function questions the efficacy of PP and IKDC as tools for monitoring and 

regulating exercise progression throughout the early to intermediate post-operative 

phases of rehabilitation, and highlighted a need for further investigation into perceived 

capabilities during this period.  Concurrent with recruitment and testing during this 

longitudinal study, a series of investigations (Chapters 4 to 7) explored two paradigms 

of self-perception (RPE; PTD) related to TD during isolated intermittent muscle 

exercise, such as that might be performed during the early to intermediate stages of 

rehabilitation.   

Before relationships between self-perception and TD could be investigated, it 

was necessary to establish the efficacy and reliability of measurement scales used to 

provide estimates of RPE and PTD.  Chapter 4 provided a justification for the selection 

of a CR-10 scale (Borg, 1998) and a visual analog scale to measure RPE and PTD, 

respectively.  In addition, a level of test-retest reliability was established for both 

measures, with composite V% and ICC values providing an indication of the levels of 

intra-session variability and the degree of association for each of the perceptual scales.  

Significant ICCs (>0.82) were comparable to previously reported values obtained 

during isometric (Elfving et al., 1999) and isotonic resistance exercise (Day et al., 2004; 

McGuigan et al., 2004), whilst V% values (~22%) were slightly higher than those 

previously observed in isometric (Elfving et al., 1999) and isotonic resistance exercise 

(Day et al., 2004).  Separate calculations of V% values for perceptual responses at each 

10% interval of CTD enabled a more precise indication of the accuracy of the scales 

across the different stages of the IIF task.  An inter-day variability in CR-10 response of 

33.1% was evident at 10% of CTD, equating to 0.9 absolute measurement units on the 

CR-10 scale.  Therefore, CR-10 responses at the beginning of an IIF task would have to 

exceed this margin in order to reflect any variation in exercise intensity.  Having 
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identified a level of reliability for the RPE and PTD measures, the validity of the scales 

could then be investigated with regard to establishing their utility in providing an 

accurate prediction of TD. 

Chapter 5 explored the relationship that the two paradigms of self-perception 

(RPE; PTD) shared with percentage of completed task duration (CTD) during an IIF.  

This chapter also examined the effect of withholding information regarding a 10% 

differential in IIF target force, to test whether or not the change in intensity could be 

detected by participants and consequently reflected in their perceptual responses.  An 

inaccurate perception of work intensity would potentially compromise a performer’s 

ability to select an appropriate ‘template RPE’, and subsequently impact upon their 

judgements regarding the anticipated demands of the exercise task (Tucker, 2009).  RPE 

and PTD were found to increase linearly in both the IIF60 and IIF70 tasks, thus 

supporting previous findings of a linear relationship between RPE and CTD in cycling 

and running activities (Horstman et al., 1979; Noakes 2004; Eston et al., 2007; Crewe et 

al., 2008).  However, the 95% confidence intervals for RPE and PTD indicated a large 

variance in the group response, highlighting a need for caution before recommending 

the utility of the scales in predicting CTD during isolated muscle exercise.  Furthermore, 

the lack of significant change in perceptual response as a consequence of the varied IIF 

intensity, coupled with the high inter-day variability in CR-10 response at 10% of CTD 

(33.1%; Chapter 4), led to the conclusion that the CR-10 scale did not provide sufficient 

sensitivity to detect a 10% differential in target force.   

Given the novel and exploratory nature of the series of studies described in 

Chapters 4 to 7, it was not possible to routinely calculate the appropriate sample size 

necessary to avoid a Type II error.  The practicalities of participant recruitment and 

retention, coupled with the availability and access to laboratory facilities, necessitated 

additional methods of improving the experimental design sensitivity.  As such, 



 
185 

participants for subsequent investigations (Chapters 6 and 7) were recruited from a 

similar population of competitive university level rugby players (as opposed to general 

team games players) in an attempt to increase the homogeneity of the sample, in 

addition to employing a larger IIF work intensity differential. 

Chapter 6 developed the theme of the previous investigation by increasing the 

IIF target force differential to 20%.  The results demonstrated that the CR-10 responses 

obtained during the first three sets of each IIF task did reflect the increase in intensity.  

However, in contrast to the previous study, the pattern of responses across the duration 

of IIF60 revealed a negatively accelerating growth curve, whereby a higher rate of 

increase in perceptual response is evident in the early stages of the exercise task.  In this 

instance, the continuation of a linear trend based on the initial perceptual responses 

would predict an early cessation of the exercise task (for a theoretical example, see 

Figure 1.1b).  In practical terms, the elevated perceptual responses during the first half 

of IIF60 represent an underestimation of capabilities, as the participants were able to 

continue the exercise task for substantially longer than expected.  In an unsupervised 

environment, this misperception may prompt the premature termination of the exercise 

bout, and thus result in a sub-optimal performance.  Conversely, whilst the group 

responses during IIF80 demonstrated a linear trend, PTD values of ~89% at 100% CTD 

suggested an unexpected onset of task failure due to an overestimation of capabilities.  

In an applied setting, a misjudgement of this nature would expose participants to 

unanticipated fatigue-related performance decrements, and might have associated 

implications for a potential increased risk of injury.  The different patterns of response 

may be linked to the duration of the IIF tasks (27.2 ± 22.1 sets vs. 6.3 ± 2.9 sets for 

IIF60 and IIF80, respectively), whereby the extended duration of IIF60 may have 

caused prolonged sensations of discomfort resulting from the stimulation of nociceptors 
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as a consequence of metabolic acidosis ((Mihevic, 1981), thus elevating the perceptual 

responses. 

Chapter 7 provided the participants with a progressive increase in perturbation to 

the neuromuscular system in the form of an eccentric muscle damaging exercise 

protocol.  The inclusion of a bout of EIMD was designed to mimic the exercise stresses 

caused by the re-introduction of dynamic exercise during the rehabilitation programme.  

Despite provoking significant changes to IIF duration, the EIMD group demonstrated 

no difference in perceptual response throughout the task.  However, unforeseen carry-

over effects of the preceding IIF task (as evidenced by impaired neuromuscular 

performance in the CON group) created difficulties in establishing the precise impact of 

EIMD.  In addition, further evidence was provided for the curvilinear trend in the IIF60 

trial described in Chapter 6.  An observed trend in elevated PTD responses at the 

beginning of IIF2 revealed that participants perceived that they had completed >30% of 

the IIF task at an equivalent of only 10% CTD, thus suggesting an underestimation of 

capabilities.  The combined findings from an asymptomatic population question the 

utility of RPE and PTD to act as predictors of TD in isolated muscle exercise, and 

would, therefore, suggest that the scales would have limited application in a clinical 

population. 

8.3. IMPLICATIONS FOR PERFORMANCE 

The collective findings from the research presented in this thesis question the 

efficacy of self-perception to provide an accurate reflection of various aspects of knee-

joint performance.  The combination of linear and curvilinear trends in CR-10 and PTD 

group responses questions the utility of these scales as accurate predictors of exhaustion 

time during intermittent isolated muscle exercise.  Indeed, it can be argued that the 

existing evidence highlighting a linear relationship between RPE and TD in other 
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exercise modalities is not wholly conclusive, given the range of methods of data 

analysis utilised in these previous studies (as detailed in Chapter 2).  For example, the 

finding that RPE and ETL responses were unable to predict end-point (Garcin et al., 

2004) conflicts with evidence purporting that RPE can provide an accurate prediction of 

exhaustion time during running and cycling (Horstman et al., 1979; Eston et al., 2007; 

Crewe et al., 2008). 

Despite a lack of conclusive evidence to support the concept that RPE scales 

linearly with time, the current findings do not necessarily negate that self-perception 

fulfils some role in regulating exercise performance.  Whilst a perfect linear relationship 

would represent an optimal prediction of exhaustion time, a negatively accelerating 

curvilinear relationship (as reported during IIF60 in Chapters 6 and 7) suggests an 

underestimation of capabilities that could be construed as evidence of a protective 

mechanism employed to preserve homeostasis.  In an unsupervised exercise 

environment, the sensations that influence the elevated levels of RPE and PTD in the 

early stages of the IIF60 task may prompt an overly cautious approach to the exercise 

bout and, therefore, result a sub-optimal performance.  However, this element of caution 

is preferable to an overestimation of performance that may lead to an unexpected onset 

of task failure, as reflected in the PTD responses during the IIF80 task (Chapter 6).  

Although the higher intensity and shorter duration IIF80 did provoke inaccurate PTD 

responses, implying an overestimation of performance capability, the reaction of 

disappointment apparent in some participants may suggest that they were unaware of 

the higher IIF target force.  It is plausible that participants may have under-reported of 

self-perception in a bid to appear more capable in the presence of the experimenters 

(Lewthwaite 1990).  Further research is therefore required before concluding if these 

PTD responses provide an example of inaccurate judgement, or are instead caused by 

this situational factor. 
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When considering the current findings in the context of previous literature, 

patterns of perceptual response during exercise may be specific to both the mode and 

intensity of the task.  RPE scales and prediction of TD may provide greater benefit in 

optimising performance during closed-loop endurance events such as running or cycling, 

where participants have considerable experience in performing the tasks and the 

associated perceptual cues arising from the activity.  More research is required before 

establishing the efficacy of self-perception with regard to providing an accurate 

indication of exercise duration in isolated muscle activity.  Based on these current 

findings, these perceptual scales would appear to have limited utility in a clinical 

population, where the disruption resulting from injury, surgery and de-conditioning 

could likely increase inter-individual variation in response. 

8.4. RECOMMENDATIONS FOR FUTURE RESEARCH 

Due to the inherent problems associated with exploring the efficacy of RPE 

during novel exercise tasks (as highlighted in section 8.3.1), it may be more pertinent to 

refine the research question and adopt an alternative approach.  Given that sub-optimal 

knee and hip biomechanics during jump landings have been implicated in a fatigue-

related increase in ACL injury risk (McLean and Samorezov 2009), an alternative 

direction for future research could focus on performers’ ability to accurately perceive an 

impairment of technique as a consequence of fatigue.  Significant impairments to knee 

and hip biomechanics during single-leg landings have previously been observed at the 

conclusion of a repeated squatting task (Borotikar et al., 2008).  Interestingly, 

biomechanics were similarly impaired at 50% of the duration of the squatting task, 

suggesting that injury risk may increase considerably earlier than task failure.  Although 

previous research has explored RPE as a predictor of duration during repeated jumping 

tasks, attention was focused on achieving a specified jump height with no reference 



 
189 

made to deterioration of landing technique.  In this regard it may be worthwhile to 

investigate whether performers can perceive deterioration in technique as they are 

exposed to increasing levels of fatigue.  The ability to identify a critical point at which 

technique becomes significantly impaired may assist in the self-regulation of exercise in 

terms of minimising injury risk. 

8.5. CONCLUDING REMARKS 

Much of the previous literature related to the issue of pacing and self-regulation 

of exercise has focused on continuous running and cycling activities, utilising trained 

and competitive endurance athletes.  However, the concept of optimising performance 

and maintaining homeostasis is equally important in rehabilitative scenarios, where 

patients aim to accelerate a return to competitive sport and minimise risk of re-injury.  

A considerable amount of rehabilitation will be undertaken without the benefit of 

specialist supervision, thus relying on the judgement of the patient to self-regulate their 

recovery.  Whereas endurance athletes will be well trained and highly familiar with the 

sensory cues arising from their specific mode of exercise, ACL-reconstructed patients 

will be relatively unfamiliar with various components of rehabilitation, especially 

following extended periods of restricted activity.  Moreover, the consequences of 

surgery provide the additional challenge of a severe perturbation to the knee joint, 

resulting in changes to afferent feedback mechanisms. 

The research reported in this thesis has questioned the utility of self-perceived 

capabilities, both in regard to estimating knee function and also providing an accurate 

indication of task duration during novel and intermittent isolated muscle exercise that is 

commonplace during recovery from reconstructive surgery.  Given the current findings, 

further investigation is required before self-perception measures can be recommended 

to assist with monitoring and self-regulating exercise progressions during rehabilitation.  
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Appendix A 

International Knee Documentation Committee Subjective Knee Evaluation 

Form 
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Appendix B 

Indices of self-perceived function and musculoskeletal performance 

during ACL rehabilitation period (group means ± SD) 

 

 

  Assessment Session 

Index  Pre-surgery +6 weeks +12 weeks +24 weeks +48 weeks 

Self-Perceived Measures      
PP (%) 54.7 ± 14.1 55.3 ± 18.3 70.1 ± 18.4 80.5 ± 15.2 92.3 ± 7.8 
IKDC (%) 51.4 ± 8.9 40.9 ± 9.4 67.8 ± 15.2 81.5 ± 14.8 88.6 ± 9.0 
Musculoskeletal Performance     
ATFD (mm)      
INJ  13.3 ± 2.7 5.8 ± 1.6 6.0 ± 1.1 3.3 ± 1.0 2.7 ± 0.5 
NON  2.7 ± 0.5 2.6 ± 0.5 4.3 ± 0.5 2.2 ± 0.5 2.6 ± 0.6 
PF (N)      
INJKE  408.4 ± 122.2 264.2 ± 71.3 332.4 ± 90.8 357.0 ± 97.3 395.6 ± 104.8 
NONKE  455.5 ± 124.9 466.8 ± 125.6 495.2 ± 131.5 454.5 ± 124.2 472.9 ± 128.5 
INJKF  238.0 ± 94.1 174.0 ± 56.0 225.7 ± 73.4 254.7 ± 81.6 266.0 ± 85.1 
NONKF  251.9 ± 77.6 261.4 ± 82.2 269.0 ± 83.8 273.8 ± 86.1 273.2 ± 83.7 
RFD (N.s-1)      
INJKE  2900 ± 1428 2869 ± 1583 3552 ± 1830 4099 ± 2136 3354 ± 1674 
NONKE  3820 ± 1920 3715 ± 1929 3537 ± 1759 3933 ± 2042 4220 ± 2129 
INJKF  2930 ± 1446 2868 ± 1604 3530 ± 1813 4155 ± 2158 3324 ± 1645 
NONKF  3845 ± 1930 3751 ± 1950 3543 ± 1756 3891 ± 2034 4241 ± 2140 
HOP (cm)      
INJ  110.5 ± 40.5 93.7 ± 24.7 108.6 ± 30.0 122.2 ± 32.1 119.2 ± 30.7 
NON  128.7 ± 35.1 146.8 ± 40.3 137.1 ± 36.0 133.9 ± 36.3 144.0 ± 39.2 
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Appendix C  

Participant Information for studies 2 and 3 (Chapters 4 and 5) 
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Appendix D 

Participant Information for studies 4 and 5 (Chapters 6 and 7) 
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