
1



Computational Intelligence for

Fault Diagnosis in Gearbox

Systems

HASAN ALKHADAFE

A thesis submitted in partial fulfilment of the requirements of

Nottingham Trent University for the degree of

Doctor of Philosophy

March 2015

mailto:Hasan.alkhadafe@ntu.ac.uk


To my beloved mother with great gratitude for her lifelong sacrifice

for the whole family. Undoubtedly, without her prayers, endless love

and encouragements this thesis would have been impossible. Thank

you mom for every beautiful thing you did to make our life beautiful.



Acknowledgements

The work described in this thesis was carried out at Nottingham Trent

University between March 2010 and July 2014, while the researcher

was working as a full-time doctoral research student.

First and foremost, all praise and thanks are due to the almighty

Allah, for his blessings, help and mercy along this journey and I render

this and future work for His sake.

I owe my sincere appreciations and gratitude to my respectable di-

rector of studies, Dr. Ahmad Lotfi, for his guidance over the last four

years. His office was always open for me for any inquiry despite his

many responsibilities. Also, his relentless effort and extensive sugges-

tions around my work were indispensable to the accomplishment of

this research. I would like to extend a huge thank to Dr. Amin Al-

Habaibeh, for her advice, support, feedback and knowledge through-

out the development of my thesis. I would like also to thank my third

supervisory Prof. Daihzong Su, for his help throughout the course of

this project work.

Moreover, I want really to show appreciation to my sponsor, Ministry

of Higher Education of Libya for awarding me this Scholarship. With-

out this precious opportunity, the graduate study would have been



impossible. The financial support of School of Science and Technol-

ogy at Nottingham Trent University to participate in various interna-

tional conferences is also most appreciated. The test rig provided by

Chemineer Ltd. for research is also gratefully acknowledged.

Thanks are extended to my extended family, mother, brothers and

nephews. Your prayers and faith have inspired and encouraged me to

continue with this study. In particular, I owe a huge debt of gratitude

to my brothers for huge support. Without your precious guidance,

insights, and generosity, the graduate study would have been very

difficult. Thanks also should gone to friends and colleagues in the

School of Science and Technology in Nottingham Trent University.

In addition, I would like to pay tribute to my family for their dedi-

cations, support, sympathy, and patience throughout the journey of

this study. In particular, I would like to say big thanks to my wife

and our courageous son and lovely daughters, your wonder and love

have always inspired me during the happiness and sorrow of the last

four years

Hasan Alkadafe



Abstract

Employing an efficient condition monitoring system in industrial ap-

plications is an important factor in improving the quality of produc-

tion and increasing the operational life of machines by revealing ma-

chine faults at the earlier stage. Damage in gearbox system is one of

the most catastrophic failures in machineries. Any defects related to a

gearbox will influence the performance of an entire mechanical system.

A reliable and efficient fault diagnosis system is required to reduce the

maintenance cost and downtime, thereby preventing machinery per-

formance degradation and failure. Many condition monitoring and

fault diagnosis systems are investigated in the literature for gearbox

fault detection and diagnosis. However, there are still many challenges

to tackle mainly due to the complex nature of gearbox structure, lim-

ited access to the component to be monitored and the low signal-to-

noise ratio experienced especially when operating machineries under

fault conditions.

The aim of this research is to develop a systematic methodology for

the design of condition monitoring systems for gearbox faults by in-

vestigating sensor selection, sensor location, and sensory features to

be able to diagnose a fault accurately. Therefore, the goal is to select

reliable techniques at each stage in order to improve the reliability



of the fault diagnosis system. Different sets of experiments based on

gearbox conditions are conducted using several sensors including vi-

bration, acoustic emission, speed, and torque. Measured signals are

analysed using conventional and advanced signal processing and data

analysis methods including time, frequency and time/frequency do-

mains such as Fast Fourier Transform (FFT), Short Time Fourier

Transform (STFT), and Wavelet analysis (WT). Several statistical

and mathematical techniques have been proposed as features extrac-

tion methods to reduce the dimensionality and select appropriate in-

formation. For this research, a single stage gearbox system with two

main type of faults (pitting and broken teeth) with various degrees of

damage in helical gear are used to evaluate the proposed approach.

This research investigated the relationship between sensor location

and detecting the fault in gearbox system. A methodology has been

proposed for locating indirect monitoring sensors such as acoustic

emission and vibration on gearbox to obtain high quality informa-

tion regarding the behaviour of machine condition. The methodology

is designed to evaluate the optimum sensor positioning for detecting

faults in the gearbox system.

A novel gearbox monitoring approach named an Automated Sensor

and Signal Processing Selection for Gearbox system (ASPSG) has

been applied to select the most reliable and sensitive sensors, fea-

tures and signal processing methods based on optimal sensor loca-

tion. The ASPSG approach is based on simplifying complex sensory

signals into a group of Sensory Characteristic Features (SCFs) and



evaluating the sensitivity of these SCFs in detecting gearbox faults.

The aim of this approach is to enhance the performance of monitoring

system of gearbox fault detection and to reduce the number of sensors

required in the overall system and reduce the cost. To implement the

suggested ASPSG approach two strategies are proposed: automated

system based on Taguchi’s orthogonal arrays and stepwise system us-

ing (Linear Regression (LR), Fuzzy Rule Based System (FRBS) and

Principal Component Analysis (PCA), techniques ). To evaluate both

strategies, four different classification models are employed using su-

pervised and unsupervised neural networks. Both strategies have been

implemented to prove the capability of the suggested approach. A cost

reduction is performed based on removing the least utilised sensors

without losing the performance of the condition monitoring system.

The results show that the ASPSG approach can provide a systematic

design methodology for condition monitoring systems for gearboxes

and that it is capable of detecting faults in a gearbox system with less

cost and reduced number of experiments. Consequently, the findings

of this research prove that the sensor location could have significant

effect on the design of the condition monitoring system and its per-

formance.
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Chapter 1

Introduction

1.1 Introduction

Condition monitoring and fault detection systems are becoming essential

for a wide range of industrial sectors, in order to detect faults and to

avoid machine performance degradation, breakdown, and failure (Zhan

and Makis, 2006). The information gained from monitoring is also used

to establish a maintenance plan based on early caution or detection of

machine faults. This procedure is considered to be of great value for me-

chanical applications such as aircrafts, wind turbines, and power plants,

where an unexpected disruption could have serious economic and environ-

mental consequences (Mehrjou et al., 2011).

Gearbox systems are an essential part of machinery and they play signifi-

cant role in a number of industrial applications, for example in production

machines and power plants. Gearbox systems are designed to work for a
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sustained period of time without any unscheduled stops or failures. An un-

expected failure has the potential to cause a chain of problems to the entire

machinery, which results in high maintenance costs due to the decrease in

production rates and unexpected and unscheduled maintenance. To guar-

antee the efficient working of machinery, a reliable condition monitoring

system is required to detect faults at an earlier stage than the complete

shutdown. Bartelmus and Zimroz (2009) stated that the failures in gear-

boxes are mainly caused by faults with gears (60% of gearbox defects and

24% failures), which are a result of unsuccessful maintenance. For this rea-

son, gearbox system condition monitoring and fault diagnosis is essential

in order to reduce the occurrence of failure and ensure that the machines

are working effectively.

If the gearbox is operating ineffectively it becomes easy to develop defects

with areas such as the shaft, bearing and gears. Bearing defects in gearbox

systems have been researched extensively (Yang et al., 2005) and (Barszcz

and JabLonski, 2011). Vibration analysis has been the method for ma-

chinery maintenance in rotating parts such as gearbox systems. Vibration

signals are measured from a gearbox; in order to analyse the condition of

the system and identify defects without interfering with its operation. The

most common technique utilised for testing machine vibration is called

Spectral Analysis. (Zhan, 2005). Vibration measurement is frequently ap-

plied for fault diagnosis in rotating machines. It carries useful information

about mechanical parts, such as signals from a combination of frequency

components (Zhan and Makis, 2006). The maximum of these frequencies

are associated with rotational movements of machines. Energy of vibration
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is changed when a part of the machine becomes loose or broken. To analyse

the vibration signals, a number of methods are used such as time domain,

frequency domain or even time-frequency domain (Ebersbach, 2006).

Nowadays, Acoustic Emission (AE) technology has received great attention

for monitoring rotating machines. AE is an efficient method for discovering

initial damage in a more advanced way compared with oil debris measure-

ment and vibration measurement. However, a majority of research that

has used AE in gearbox diagnosis have been conducted on bearings and

spur gears with low speed (Mba and Rao, 2006). This study proposes to

further investigate gearbox condition monitoring system, by applying both

AE and vibration measurement technologies on helical gear damage.

The key steps involved in the diagnosis of machinery fault are pattern

recognition, feature selection and classification. These involve classifying

characteristic features such as vibration signals and acoustic emission into

different categories. There exist a number of methods for data analysis

that have been used in engineering industries to detect faults from vibra-

tion features, such as aural, tactile, and visual inspection. These are basic

condition monitoring methods for fault diagnosis, and can involve sensory

enhancement devices (such as microphones or stroboscopes) to aid mon-

itoring (Stevens et al., 1996). However, these approaches are not always

reliable when the extracted features are contaminated by noise, specifically

when data is collected in a noisy environment. It is difficult for an expert

to deal with the contradicting symptoms if multiple features are measured.

Therefore, new analytical tools are required, that can adequately deal with
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time and frequency, such as statistical and computational intelligent tech-

niques.

1.2 Problem Definition

Nowadays, smart condition monitoring, diagnosis and prognosis technolo-

gies are essential in most industries, especially in industries where mechani-

cal equipment such as gearbox systems are used. These technologies help to

achieve optimum service availability, to maintain the safety of equipment

and to reduce maintenance budget. The gearbox is the most essential part

of a mechanical system. The failures in gearboxes are critical in relation

to failure rates and mean downtime of machinery (Ahmad and Kamarud-

din, 2012). Fault diagnoses in gearbox systems are a challenging task due

to the complexity of their structure and the rotating parts generating vi-

brations. Therefore, an unexpected failure can potentially cause a major

economic loss. The challenge of processing vibration signals is the issue of

the low ratio of signal-to-noise. Background noise interferes with the mea-

sured signals. In a majority of cases, sensors have to be installed remotely

due to limited access, which can potentially increase the risk of collecting

an overwhelming amount of data. A high volume of data will contain a cer-

tain amount of redundant information. In order to differentiate between

the noise and operating conditions, advanced methods of data extraction

would be required.
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1.3 Overview of the Research

Rotating machinery that has moving parts produces vibration signals and

noise. The setting up and operating of each machine emits individual vi-

bration signals (Tian et al., 2003). Therefore, an alteration in the vibration

signal results in a change in the machines condition. This signal can be used

to detect a fault before it turns critical. This is the main idea behind the

condition monitoring system for diagnosing faults. The information gained

from the signal is used to detect defects at earlier stage (Tian et al., 2003;

Wang et al., 2007). The condition monitoring process is split into three ma-

jor stages. Firstly, a relevant physical quantity is measured. Secondly, the

captured signal is processed and features of the machines condition are ex-

tracted. The obtained features are taken from the reference values in order

to detect and/or predict the defect. Lastly, the information obtained from

the previous steps is used for predictive maintenance and decision-making.

Furthermore, the method of condition monitoring systems can be used to

detect other types of defects. The signals obtained from the machines often

interfere with other signals, as well as noise. Thus, the challenge for con-

dition monitoring is to identify the signal content that is associated with

the condition of the monitored component (D’Elia, 2008).

Vibration analysis is a powerful technique used for monitoring the condi-

tion of rotating machinery. Vibration analysis is based on techniques such

as time-domain and frequency-domain. These methods have limitations in

that they are only convenient for stationary vibration signals. However, a

majority of rotating machinery has non-stationary vibration signals. Time-
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frequency analysis and wavelet transformer analysis is used to overcome

these difficulties. A wide range of research has been conducted into con-

dition monitoring of gearbox systems. In reality, the gearbox system is

operated systematically by changing the operating conditions of load and

speed, but the different types of faults have not been investigated in de-

tail. A large body of research has explored gearbox condition monitoring

at fixed loads or fixed speeds, with sensors often mounted on the gear-

box casing. Meanwhile, other research has not specified detail about the

conditions of load, speed, or position (Price, 2001).

The location of sensors plays an important role in designing an effective

condition monitoring system. Previous research has used different types

of direct and indirect sensors (Papadimitriou and Au, 2000). These are

located separately from components in the gearbox, and comprise of vi-

bration and acoustic emission sensors. However, research that investigates

the most effective placement of sensors is still relatively new. A signifi-

cant amount of research has attempted to develop a condition monitoring

for predicting early faults in the gearbox system. Different types of sen-

sors have been used, as well as different methods of signal processing and

feature extraction, but there still exists the issue of extracting the cor-

rect sensory data and signal processing in order to adequately predict the

gearbox faults. In order to determine the problems of current practice of

condition monitoring systems, it is important to characterise the structure

of such systems. These must provide information for:

1. The selection of suitable sensory signals.
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2. The selection of suitable signal processing methods.

3. The extraction of useful features from suitable signal processing meth-

ods.

4. The improvement of a classification system strategy.

1.4 Research Aim and Objectives

Gearbox plays an important role to transmit power. Its health state is very

critical for maintaining the normal operational of whole industrial applica-

tion. However, the problems associated with the gearbox could potentially

affect the performance of the entire system. Also, the condition monitoring

of gearbox system is very difficult because of its complex structure.

The aim of this research is to investigate advanced computational tech-

niques for diagnosing and predicting faults in gearbox systems. The de-

veloped system should provide high performance while reducing the cost

of sensors and number of experiments. It will complete this by exploring

different systems for monitoring the condition of the gearbox, and will

identify the most effective techniques for predicting rotating mechanical

systems. This research proposes to use sensory data including vibration,

acoustic emission, speed and torque. The objectives of research project are

as follows:

• To identify appropriate sensors, which are used effectively, to collect

useful information about the status of gearbox.
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• To determine the most appropriate features extraction and signal

processing techniques that can be used to analyse the sensory signal

and simplify the incorporated information into a form suitable for

classification model.

• To investigate different type of defects such as pitting and broken

tooth on helical gear individually, and distinguish the differences be-

tween them in terms of characteristics of defect signature.

• To explore the relationship between sensor location and fault detec-

tion in order to obtain high quality information about the behaviour

of the gearbox. This will be done by in indirect sensors such as acous-

tic emission and vibration sensors.

• To develop systematic approach (ASPSG) to select the most appro-

priate sensory data and associated featrures that are sensitive to the

faults in order to reduce cost and development time.

1.5 Major Contribution of The Thesis

• This study attempts to use the acoustic emission and vibration sig-

nals captured from several locations, with varying speed and load

conditions, to explore the stages of fault development in gearbox sys-

tem. The impact of collected vibration signals at different locations

following the path of gearbox structure are examined and compared

with other vibration signals. The effect of pitting and broken tooth

faults are investigated at different stages; for pitting defect at (25%,
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50%, 75% and 90%) and for broken tooth at (25%, 50% , 75% and

100% full tooth missing). Sensory signals are investigated by collect-

ing all signals at different shaft speeds, from 100, 200, 350, 500 and

750 RPM and at different loads ranging from 2, 4, 6 and 8 Nm.

• A new approach is proposed to investigate the optimum sensors posi-

tioning in order to enhance the gearbox condition monitoring system.

New research is established to investigate the relationship between

sensor location and detecting the fault in a gearbox system. A new

methodology is also proposed for locating indirect monitoring sensors

such as acoustic emission and vibration on the gearbox in order to

obtain effective information regarding the behaviour of the machine.

Experiments are designed to evaluate the optimum sensors position

for detecting faults in the gearbox system.

• Novel proposed approach ASPSG for gearbox system is introduced.

The ASPSG is applied in this research to collect the most suitable

sensory data, reliable features and signal processing methods in or-

der to minimise cost and time. Sensory characteristic features are

calculated and used to measure sensitivity, but can also be related

to healthy and unhealthy conditions in gearbox systems using a wide

range of signal analysis.

• Two procedures are proposed to develop the ASPSG approach, which

will ensure a high quality of information from sensory signals, in or-

der to develop a reliable condition monitoring for gearbox fault diag-

noses systems. The first procedure of ASPSG, is based on a holistic
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approach that uses a Taguchi technique based on an orthogonal ar-

ray. The holistic approach provides a general picture of sensitivity

for each sensor, relying on changing values of speed and load. Four

types of neural networks are used to evaluate this procedure. The

second procedure of ASPSG, is based on a stepwise method that

uses three techniques: Linear Regression (LR), Fuzzy Rule Based

System (FRBS) and Principal Component Analysis (PCA). Nine ex-

periments are conducted based on varying degrees of parameters of

the gearbox (speed and load). The stepwise procedure is used to mea-

sure sensor sensitivity in order to examine the relationship between

sensor sensitivity with speed and load.

1.6 Thesis Outline

The report is organized into nine chapters as following:

Chapter 1: This chapter provides an introduction into the work. The back-

ground of this study is provided, followed by a summary of current prob-

lems in gearbox condition monitoring systems. The specific aims and ob-

jectives are also outlined.

Chapter 2: This chapter provides a literature review and background of

the research, starting with a summary about maintenance strategies. It

also gives a brief explanation of condition monitoring methods that have

been developed and/or that are used in industry. It explains the problems

with current monitoring methods in order to gain an understanding of the
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current research on gearbox condition monitoring systems. It provides an

overview of gear, followed by details about gear failure modes.

Chapter 3: The overall methodology of this research is presented by de-

scribing the ASPSG approach and its technicalities. This chapter outlines

the key steps of the proposed methodology and examines the assumptions.

The chapter also provides a description of the framework for the subse-

quent chapters.

Chapter 4: This chapter provides a detailed description of the experimental

set-up that is used to conduct the investigation. It also describes the tools

and the specification for the components that are used such as sensors,

related hardware and the data acquisition system. The chapter concludes

by describing the fault simulation.

Chapter 5: This chapter presents a new methodology for sensor location

optimisation. It provides a description of how locating indirect monitoring

sensors such as acoustic emission and vibration on gearbox can improve

the quality of information regarding the behaviour of the machine. The

methodology evaluates the optimum sensor position for detecting faults in

the gearbox system. This chapter also investigates the relationship between

sensor location and detecting the fault in the gearbox system.

Chapter 6: This chapter provides a description of the implemented ASPSG

approach and the way it can be used to systematically develop a condition

monitoring system for multi-sensors. The ASPSG approach is based on a

holistic procedure using Taguchi method in order to detect gradual gear

damage. This approach is explained in details, and expanded in order to

11
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demonstrate how to use the association matrix to evaluate the combination

of signal processing methods and statistical techniques that can be used as

independent features for condition monitoring design. The neural networks

technique is also used to evaluate the design process.

Chapter 7: This chapter introduces stepwise procedure of ASPSG ap-

proach. It includes a description of how the ASPSG approach based on

stepwise can be used to detect gearbox fault by using several sensors. The

ASPSG approach is also expanded in this chapter to show how to con-

struct the Associated Matrix (ASM) using three techniques which are LR,

FIS and PCA. This chapter shows how the ASM matrix can be applied

to evaluate sensory characteristic features and signal processing methods.

The chapter provides also some suggestions on how the ASPSG approach

can be used to improve the condition monitoring design to optimise cost

and performance.

Chapter 8: Conclusion and recommendations for future work for this re-

search are given.

12



Chapter 2

Literature Review

2.1 Introduction

The rapid developments in condition monitoring technologies are receiving

much attention from industrial societies in order to improve productivity,

quality and reduce the cost of maintenance. Condition monitoring can be

defined as process of observing a state of parameters for the purpose of

tracking important changes that could cause a fault (Ran and Penman,

2008). It is a process of assessing machine degradation in terms of physical

defect, such as pitting, cracking in tooth gear and increase in resistance

or performance degradation from deviation of the systems operation. A

condition monitoring system should allow a maintenance program to be

arranged precisely on time in order to caution the failure before it happens.

Machinery parts can be observed by using appropriate monitoring system

equipment so that any abnormal condition of these parts can be identified
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by measuring parameters such as vibration, temperature and sound (Ran-

dall, 2011b). This chapter will present a review of condition monitoring

systems.

2.2 Maintenance and Condition Monitoring

System

Since the industrial revolution, machine maintenance has gained impor-

tance due to the cost of equipment, machinery and infrastructure. Dhillon

(2006) stated that the USA industry consumes annually hundreds billion of

dollars on plant maintenance and reform. The majority of this huge amount

of money has been spent on treating frequent and catastrophic failures in

machines. Even though frequent failures may be small, concealed and take

place more regularly. They are sometimes more costly than catastrophic

failures. However, the catastrophic failures are much rarer occurrences.

Both kinds of defect can stop production, lower product quality, increase

cost, and increase risk to machine operators. Periodic maintenance can de-

crease downtime by reducing failures occurrence and increase productivity.

The most utilised methods of managing maintenance are reactive, preven-

tive and predictive maintenance. In the past, industrial plant used two

types of maintenance to repair faults: a reactive, which takes place when

the fault occurs and a preventive, which is based on a scheduled timetable.

Recently, and as a result of the evolution in technology the possibility

for the development of cost-effective instrumentation and technologies for
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predictive maintenance is allowing the identification of machine problems

by measuring the condition of the machine and predicting maintenance

requirements (Morris and Pardue, 2006).

2.2.1 The Significance of Maintenance

Maintenance is a group of technical and administrative procedures and

tasks associated with each other, which aims to maintain the machine, or

return it to the state that it can perform its required functions. Mainte-

nance management aims to reduce the overall maintenance cost and im-

prove the availability of the machines(Ahmad and Kamaruddin, 2012). In

the industrial community, maintenance budgets are an essential element

that need to be considered. Therefore, much recent research has performed

to improve the relationship between good quality production and less main-

tenance cost.

The increasing request of the maintenance budget which is considered as

the total operating cost of production is responsible for about 15% to 40%

of the cost of manufactured goods (Pedregal and Carnero, 2009). Further-

more, the maintenance cost, in particular with regards to spare parts, is

required to avoid a series of catastrophic faults that may occur on machines

to keep them in good working order for longer periods of time (Li et al.,

2011). In general, growing machine faults are a direct result of the reduc-

tion of product quality which increases machine downtime which could lead

to an increase in the maintenance cost. Moreover, these defects may lead to

immobilising the entire machine which can be expensive and increase the
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maintenance costs. Therefore, the applications of Condition Based Main-

tenance (CBM) are advanced maintenance strategies that are based on

performance parameter monitoring and subsequent actions. Maintenance

decisions depend entirely on one of the monitoring techniques such as ther-

mal monitoring, oil debris monitoring, vibration monitoring and acoustic

emission monitoring which are applied to identify and diagnose the de-

fect. All these monitoring methods have been reported as a robust tool in

the machine condition monitoring by a number of studies which applied

these methods (Sartain et al., 2008; Diwakar et al., 2012). Signal processing

methods and intelligent computing techniques are applied to perform ma-

chine fault detections and to prevent any consequential failures which will

reduce the maintenance cost. By maximising condition monitoring infor-

mation, CBM is expected to reduce the operation and maintenance costs

of machinery (Zhang and Vachtsevanos, 2007a).

2.2.2 Maintenance Strategies and Condition Moni-

toring

Over the last decade the maintenance of equipment and machinery has

received great attention by the industrial companies in terms of non-stop

production and preservation of assets. The main target of a maintenance

unit is to maintain machinery and plant tools in a working condition to

avoid failure and continue their operation. However, the major problems

of machine faults are the high cost of maintenance and unexpected down-

times. Therefore, industrial societies are seeking to develop a program of
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predictive maintenance (Randall, 2011a). Maintenance strategies can be

structured into three major aspects which are introduced in the following

sections:

- Breakdown Maintenance is a traditional maintenance strategy.

In this type of maintenance, the machine is allowed to work until a

failure occurs or its performance keeps degrading to the point where

equipment must be replaced. Also, there is no predetermined action

to prevent failure. Failure is a random event and it may be unex-

pected, and could also become catastrophic. The traditional mainte-

nance is the most expensive maintenance procedure because it has

the greatest rate of lost production and needs a large amount of

spare parts inventory to reduce downtime. This type of maintenance

method can only be used if the cost of replacing the machine or part

is very low, and the failure does not affect the rest of the plant tools

(Staszewski and Tomlinson, 1994b).

- Planned Maintenance or scheduled maintenance is to shut down

the machine after a specific interval of operation based on the statis-

tical analysis of previous maintenance information. In this case, the

machine is partially dismantled into parts or completely to check if

any worn parts need to be replaced. This approach has many disad-

vantages as it is time-consuming, incurs high costs and sometimes

may not be necessary. Also, the machine can be adversely affected

due to incorrect dismantling which can lead to increased probability

of failure (Wang and McFadden, 1993b).
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- Predictive Maintenance is also known as CBM, where machines

are no longer maintained according to a damage- based policy, but

is dependent on their condition. The purpose of CBM is to minimise

machine breakdown by evaluating the state of the machine, detecting

the defect, and conducting the correct procedure at the right time

prior to any failure. Usually, initial machine faults provide some early

warning of failure so CBM can be conducted when the machinery

is running. Such a maintenance program not only reduces machine

failure, but also simplifies efficient labour scheduling, enables other

repairs to be included into any downtime and allows for replacements

to be ordered (Wang and McFadden, 1996).

2.2.3 Condition Monitoring for a Rotating Machin-

ery System

Rotating machines with moving parts produce vibration signals and noise.

The setting up and the operating of every machine emits an individual

vibration signal. Therefore, any changes in the vibration signal mean a

alteration in the machines condition. This signal can be utilised to discover

initial faults before they become serious. This is the main concept behind

condition monitoring systems for fault diagnosis in machinery, in which the

information is gained from the signal shown by a machine which reveals

faults at an initial stage (Kar and Mohanty, 2006). Generally, the basic

condition monitoring process is split into three main steps. First, a relevant

physical quantity is measured. Second, the collected data are processed and
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Figure 2.1: The general structure of a condition monitoring system.

machine state features are extracted, then the extracted state features are

compared to the reference values in order to diagnose and predict the fault.

Finally, the information obtained from previous steps is used for predictive

maintenance and decision making. A schematic diagram of the process is

shown in Figure 2.1. Moreover, beyond detection, condition monitoring

methods can also be used in order to diagnose the type and the evolution of

certain defects. Signals acquired from machines often contain contributions

from several different components as well as noise. Therefore, the major

challenge of condition monitoring is to pinpoint the signal content that is

related to the state of the monitored component.
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2.2.4 Condition Monitoring Techniques

In general, monitoring techniques can be grouped into six categories:

2.2.4.1 Human Inspection Monitoring

Visual monitoring can on occasion give a direct indication of the machine’s

condition without the need for further analysis. However, it is basic con-

dition monitoring techniques using aural, tactile, and visual which may

involve simple sensory devices such as microphones to help monitoring.

Many techniques are available which can be used to diagnose the faults

such as simple magnification lenses and low-powered microscopes. Also,

there are other styles of visual monitoring including liquid penetrant in-

spection which is used to detect any cracks occurring on the machine sur-

face, and the use of heat-sensitive or thermal paint. The status of a number

of gearbox parts can be easily checked by human visual perception. For

example, the deterioration of gear teeth surfaces provide a lot of infor-

mation such as overload issues, fatigue failure and poor lubrication. They

can be differentiated from the appearance of the teeth. All these styles are

considered as primitive methods and experts in this field are required to

deal with these which costs more time and effort (Jayaswal et al., 2008a).

2.2.4.2 Performance Monitoring

In this form of condition monitoring, operational parameters affecting a

machines performance such as force, torque and speed, are monitored to
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identify any deterioration. Any significant deviation from the intended op-

erational parameters is considered as an indication of a malfunction in the

machine (Gaberson, 2002).

2.2.4.3 Thermal Monitoring

Temperature monitoring is an essential factor in monitoring and inves-

tigating the thermal distortion response of machine tools. Temperature

monitoring includes two types of temperature which is the working tem-

perature and the component temperature. The working temperature is a

group of the operational parameters for performance monitoring. Whilst

the component temperature is considered as heat resulting from the de-

fect occurring in the machine elements, such as rolling elements, where

lubricant is either insufficient or contaminated. This monitoring technique

can be applied to examine the operating temperature of the process, or to

determine the location which produces heat due to any fault. The temper-

ature can be measured by the use of thermal sensors such as thermocouples

and thermal cameras (Jayaswal et al., 2008a).

2.2.4.4 Oil Debris Monitoring

Wear occurs if two surfaces are moved against one another with sufficient,

normal force. However, the presence of an adequate lubricant prevents

occurrence of wear when operational parameters (i.e. load and temper-

ature) within a clean working environment are properly established (or

controlled). If wear occurs due to an excessive load or inadequate lubrica-
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tion, material removed from contacting surfaces contaminates the lubricant

and, hence, wear debris can be detected by lubricant monitoring.

Lubricant monitoring ranges from the simple use of magnetic plugs which

provide evidence of ferrous debris build-up, to the spectrometric and ferro-

graphic analysis of oil, where debris composition, rate of accumulation and

particle shape can pin-point a damaged component and its mode of fail-

ure. However, this technique is not reliable for detecting faults like fatigue

cracks in a component because such failures shed few metallic particles

(Loutas et al., 2011). Oil debris monitoring for gearboxes is often used for

off-line analysis, where oil debris samples are analysed in order to detect

which component is failing. Also, chip detectors can be used which utilise

a magnetic force to capture debris and form an electrical bridge between

contacts that indicates a state change. Induction sensors are used to de-

tect the damage in bearings, especially for engines. However they are not

suitable for gear damage detection. Induction sensors work by measuring

a disturbance to a magnetic field caused by a particle passing through the

sensor (Loutas et al., 2009).

Jayaswal et al. (2008a); Yi and Quinez (2005) have performed many experi-

mental works and published interesting results, particularly for gear testing

using oil debris and vibration measurements. Their targets were to enhance

the performance health monitoring gearbox systems for helicopters. They

have examined gears with high shaft speeds for long periods of time. Also,

authors have used correlation methods for extracted features of vibration

recordings based on higher order moments with the debris mass accumu-
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lated during the tests. Furthermore, they have integrated their results in a

fuzzy logic based health monitoring system with satisfactory performance.

2.2.4.5 Vibration Monitoring

Vibration monitoring is considered as the most common method for ma-

chine fault identification in rotating machines when compared with other

techniques. It is based on the principle that all machine components gen-

erate vibration. When a machine is working in a steady state manner,

the vibration is smooth and constant, however, when defects grow due to

some of the dynamic working parameters of the machine changing, there

will be changes in the vibration spectrum observed. Vibration character-

istics can be used to signify many faults. Vibration monitoring is exten-

sively applied as a diagnostic tool for mechanical systems. Several types

of signal processing techniques are conducted on vibration signals in order

to extract specific features and to improve the quality of the informa-

tion about the problem from obtained signals. Vibration-based monitoring

techniques have been widely implemented for detection and diagnosis of

gearbox faults. These methods have traditionally been applied, separately

in time domain, frequency domain and time/frequency domain. Most re-

search projects in this area have shown that the vibration analysis is an

effective tool for fault detection and identification in gearbox systems (Ba-

jrić et al., 2011).

Renwick and Babson (1985) stated that the predictive maintenance of ap-

plying vibration monitoring gave promising results in the effective diagno-

23



2. Literature Review

sis of machinery malfunctions. The advantages of such procedures contain

not only simple cost benefits, for example minimising machine downtime

and losses in production, but also the more subtle long-term cost advan-

tages which can result from accurate maintenance scheduling. Lebold et al.

(2000) have reviewed the vibration analysis techniques in the diagnosis

and prognosis faults of gearbox systems. The surveys presented some of

the most conventional features implemented for machine diagnostics and

presented some of the signal processing parameters that impact on their

sensitivity. Polyshchuk et al. (2002) presented the development of a novel

method in gear damage detection using a new gear fault detection param-

eter based on the energy change in the joint time-frequency analysis of the

vibration analysis of the vibration signal.Wegerich et al. (2003a) devel-

oped a non-parametric modelling technique and demonstrated the use of

this approach for detecting faults in rotating machinery via extracted fea-

tures from vibration signals. Lei et al. (2003) presented a damage diagnosis

approach using time series analysis of vibration signals to benchmark struc-

tural health monitoring problems. Sohn and Farrar (2001) have presented

a procedure for damage detection and localisation within a mechanical

system solely based on the time series analysis of vibration data.

2.2.4.6 Acoustic Emissions Monitoring

The use of Acoustic Emission (AE) applications in the condition moni-

toring of rotating machinery is relatively new and has developed rapidly

over the last 20 years. AE in rotating machinery has been described as the
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elastic waveforms produced by the contact of two moving objects such as

two gears. There are many sources of AE in rotating machinery, for exam-

ple, asperities contact, material loss, cavitation, leakage, etc. AE provides

useful data in the form of sound from within an operating machines such

as smashing gears and bearing. As a result, it has been employed in many

rotating machine applications such as gearbox systems. AE technique has

received attention in this area, due to the fact that it provides some advan-

tages over vibration monitoring. AE is a non-directional technique, which

means one sensor is sufficient. AE produces signals at microscopic levels

and so it opens up opportunities for identifying faults at earlier stages of

damage in comparison with other condition monitoring techniques. How-

ever, the limitation of AE is that it is mainly used to detect high-frequency

elastic waves, so it is not affected by low frequency which means it is not

able to detect the faults that may occur at range less than 20 kHz. AE

technique is the attenuation of the signal, and the place of sensor has to be

near to source of the sound. Practically, the AE sensor is often located on

the fixed part of the machine (i.e. the gearbox case). Therefore, the signal

captured by the AE from the defective element will be subjected to severe

attenuation and reflections before getting to the sensor. The frequency

range of the AE starts from 20 kHz to 1 MHz. On rotating machinery,

the most regularly measured AE variables for diagnosis are signal ampli-

tude, Root Mean Square (RMS), energy, Kurtosis and Crest Factor (CF)

(Tian et al., 2011).

A number of research studies have investigated AE technique, especially

in condition monitoring of rotating machines. Singh et al. (1999) used AE
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technique in gearbox condition monitoring system, vibration technique was

also applied in order to compare between two techniques where a number

of accelerometers are placed on the gearbox casing. The result showed that

AE provided early fault detection over vibration technique. Tandon and

Mata (1999) applied AE technique using spur gear fault as case study

in gearbox system. AE technique is used to investigate pitting fault. AE

methods variables include energy, amplitude and counts were observed

during the test. In conclusion, AE showed promising results for early stage

detection of gears small defects. White (1991a) studied the relationship

between oil temperature and thickness of the oil film on AE activities. AE

signals collected from a back-to-back gearbox during operating time. It

was observed that the RMS of AE varied with time as the gearbox reached

a stabilized temperature and the variation in AE activity RMS could be as

much as one third. Hamzah and Mba (2009)investigated the influence of

operating conditions in recorded acoustic emission in helical gears as well.

2.2.5 Gearboxes Condition Monitoring

Gearboxes are a very important part of many industrial machines such

as wind turbines, generators and helicopters. In power transmission, the

gearbox function mostly operates under fluctuating load conditions during

service. Due to this reason, researchers have been under constant pressure

to upgrade and enhance measuring techniques and analytical tools for diag-

nosis of gearboxes faults in early stages to avoid catastrophic consequences.

Gears are the main components used in a gearbox. Due to high demands,
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gears operate at varying speeds and different applied loads. As a result,

gears are always subject to premature failure due to wear and material fa-

tigue. However, the physical parameters such as sound, temperature, motor

current and vibration can be used to monitor the condition of gearboxes

(Cyrille, 2012; li Tang et al., 2010). Different types of defects could cause

an error in transmission, which may influence and affect the gears leading

to gearbox failure. Gear defects can be classified as manufacturing defects

(gear material, tooth profile, etc.), mounting defects (clearance adjustment,

alignment, etc.) and defects appearing during transmission (tooth break-

age, wear, crack, misalignment, etc) (Kim and Melhem, 2004). Researchers

have developed and established many analytical techniques for processing

vibration signals to detect gear failure, obtaining information based on the

assumption that any changes in the gearbox condition may be detected by

changes in the gained measured vibration signal. Earlier reports on gear

fault detection and diagnosis focused on the time-domain and frequency-

domain vibration signal, spectrum, cepstrum, amplitude and phase mod-

ulation technique, which were introduced to detect different types of gear

failures. Most of these conventional techniques may help to detect and in-

dicate faults but could not provide much information about the location

and severity of the fault which were not eligible for non-stationary signal

(Elmaleeh et al., 2007; Liu et al., 2010). Most of the measured vibration

signals from gear- boxes show non-stationary properties. Therefore, in re-

cent years some methods of time-frequency domain have been considered

as reliable for machinery condition monitoring of gear faults using time-

frequency method.
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2.3 Gearbox System

Gearbox components such as gears, bearings and shafts are designed to

work for a long time based on their expected operational stress levels.

However, in some cases, these components are subjected to unanticipated

failures due to many scenarios. For example material error, manufactur-

ing error, corrosion, overload, lubrication, and maintenance error are all

scenarios that can cause damage (Wu and Hsu, 2009). The gears are key

elements in the gearbox, and the amount of wear and fatigue to which they

are exposed even under ordinary operational conditions means that they

are frequently exposed to early stage failure (Yao et al., 2009).

Ma and Li (1995) stated that about 75% of deficiencies in gearboxes are

caused by faults which grow in the gears, and all these faults approximately

are the result of localised defects such as fatigue-induced breakage. The se-

vere conditions under which gears operate relative to other machine com-

ponents means that this machine component can deteriorate quite rapidly

in comparison to other machine components. This is especially true for the

teeth of the gears (Hu, 2000).

2.3.1 Gears Fatigue and Failures

Gear failures can occur for many reasons, such as defects in the material

which the gears are made of, or lack of gear lubrication. Lubricant is utilised

as a film between two gears to protect tooth gears from direct impact,

diminishing friction, generated heat and vibration levels. Material failures
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are generally caused by internal structural changes, which may include

dislocation and growth of microscopic cavities. Microscopic deterioration

can develop into macroscopic deterioration, which may lead to the material

fracturing (Tandon and Nakra, 1992).

2.3.1.1 Material Faults

Metal fatigue is caused by repeated cycling of the load below its static

yield strength. It is a progressive localized damage due to unstable stresses

and strains on the material. Metal fatigue cracks initiate and propagate in

regions where strain is most severe. The process of fatigue consists of three

stages; a) crack initiation, b) progressive crack growth across the part, and

c) final sudden fracture of the remaining cross-section (Widodo and Yang,

2007).

Material failure is created by an intense stress state which the material

cannot tolerate. This can be conducted by implementing the tensile testing

of a gear material. If a sample is tolerated, the load up to its elastic edge

is then released. The result shows that the strain is recovered and no

permanent bend is observed. However, if the stress is raised past the yield

strength, when the load is taken out, the elastic element of the strain is

retained. In this case the plastic element of the strain makes a fundamental

change to the microscopic level of the structure. Even though the plastic

deformation is a sign of damage, the material may still be good to use. It

is challenging to evaluate the degree of the damage. For this reason, many

studies have been conducted to describe the severity of the failure (Yao
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et al., 2009).

2.3.1.2 Manufacturing Faults

The gear manufacturing process can produce small profile errors on gear

teeth. Ideally, these defects are supposed to be similar for all gear teeth,

as all teeth generate the same vibration at the tooth meshing frequency

and its harmonics. However, in reality, these defects have random behavior

from one tooth to another, which produces randomly varying vibrations

from one tooth to another. Even though vibration defects change slightly

from tooth to tooth, the full cycle of the gear will divide equally between

the teeth. This means that teeth have contact for the same period of time

during one rotation of the gear. Usually the gears are exposed to rigorous

quality tests. These tests produce low amplitude vibrations at the begin-

ning, but after a period of time the number of harmonics and frequency of

rotation of the shaft and the gear are increased (Tandon and Nakra, 1992).

2.3.1.3 Tooth Deflection under Over Load

Tooth deflection and load are likely to give a signal waveform of a stepped

nature. As result of periodically varying compliance, the load is shared be-

tween different numbers of teeth. The feature of this signal gives vibration

components at the tooth their meshing frequency and harmonics. These

vibrations describe the feature for different kinds of gears such as spur

gears. Helical gears give measured waveforms for both of the stresses and

synchronously averaged housing vibration. But the amplitude is basically
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Figure 2.2: A schematic diagram representing general structure of a condition
monitoring system.

affected by load. However, loadings both below and above the design load

will create a higher vibration amplitude than at the design load (Hedlund

and Lehtovaara, 2007; Andersson and Vedmar, 2003).

2.4 Structure of Gearbox Condition Moni-

toring System

Typically, most approaches used in tool condition monitoring consist of

three major elements; sensors, feature extraction and decision making, as

illustrated in Figure 2.2. This section will discuss these elements and the

limitations associated with them.
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2.4.1 Sensing Tools of Gearbox Monitoring System

A reliable condition monitoring system usually requires effective and reli-

able sensing tools to monitor the health condition of the machinery, and

to capture structural defects at their initial stage. Commonly, when a ma-

chine is running, several types of signals are produced based on machine

structure. Several types of sensors have been applied to measure intensive

signals such as vibration sound, speed, torque, oil debris and temperature

which may carry significant information about the events in the gearbox.

The success or failure of a condition monitoring system depends on the

accuracy of information captured by the sensors associated with the real

status of the machine (Ho and Randall, 2000b). However, these signals

based sensing are usually influenced by noise from the surrounding envi-

ronment. Sensors could be categorised in two groups, fixed-position (direct

measurement sensors and free position sensors (indirect measurement sen-

sors).

2.4.1.1 Determining Sensor Location Issue

Sensor location is a significant subject for a gearbox structural monitoring

system, which should take into account the number of sensors to be used,

and the position and location of the sensors in order to obtain the most

relevant possible information. It is uneconomical to install sensors on every

part of a gearbox structure. Inappropriate position arrangement of a sensor

may result in collecting undesirable signals that are overwhelmed by noise.

Moreover, it will affect the accuracy of fault identification and diagnostics

32



2. Literature Review

of the monitoring system. Therefore, in order to obtain accurate and reli-

able results from a gearbox monitoring system, it is essential to select an

optimal position of measurement and have an appropriate number of sen-

sors. There are many existing studies on the optimal placement of sensors in

many different monitoring applications such as architectural constructions

(building, bridge), which depends on how to obtain the fullest and most

instructive information from limited information feedback (Bhushan and

Rengaswamy, 2000). There is relatively more research on optimal sensor lo-

cation in architectural construction monitoring systems, whereas investiga-

tion into optimal sensor placement methods in complex machinery such as

gearboxes are limited. Guo et al. (2009) and Li and Zheng (2008) proposed

sensor positioning methods to reduce the traces of the covariance matrix

which was associated with the structural parameters estimation. Yao et al.

(2009) have used Principal Component Analysis (PCA) to evaluate the

optimum location for sensors. Monsen et al. (1993) proposed utilising in-

formation entropy method which is a measure of uncertainties in the model

parameters for determining the optimal sensor configuration. Zhou et al.

(2011) proposed a new method, called the Effective Independence, which

orders multiple nominee sensor locations based upon their contribution

using Fisher information matrix. Dler et al. (1991) proposed the optimum

sensor positioning of gearbox layout using a Particle Swarm Optimization

(PSO) algorithm to solve the fitness problems based on the gearbox finite

element model. However, research on sensors optimal placement on the

gearbox is still relatively new. AL-Habaibeh et al. (2005b) established a

new method named Initial Optimisation Procedure (IOP) for optimising
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sensor position in order to enhance the condition monitoring system for

a cutting machine. In this study, the IOP method will be modified and

applied for optimum gearbox sensor position positioning to improve gear

fault detection. This section will described in details in chapter 5.

2.4.2 Signal Processing and Data Analysis

Signal processing and the data analysis step is the main stage in the con-

dition monitoring system. This step is to refine and get rid of impurity

from the raw signals in order to clarify signal specifications and details.

The raw signals captured by sensors commonly contain a high level of noise

and some random signals carrying a characteristic of vibration components

in machineries.

• Pre-processing methods such as filtrating are often applied to

eliminate noise and improve signal-to-noise ratios. Hence, signal anal-

ysis is essential to simplify and abstract the meaningful character-

istics for classification process (Liu et al., 2006). Most natural phe-

nomenon signals are non-linear, and the majority of these signals

contain diverse frequency components (Shao et al., 2013). The vi-

bration signals produced by gear- boxes comprise of non-stationary

transient signals such as the short periodic impulsive components

produced by impacts between components. Usually, gearbox vibra-

tion signals include three key elements, they are periodic components

such as those resulting from interactions between the gears during

meshing; transient components created by short interval actions, such
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as frequent impacts which are the result of a tooth having broken off,

and broadband background noise. In the initial stages of damage and

defect inception, due to low amplitude vibration the signal is over-

whelmed by other signals from different equipment present in the

gearbox; it cannot be applied directly for fault detection. However,

the accuracy at this stage of fault detection is highly significant. As a

result of that, reliable and effective signal processing techniques are

required for better analysis of measuring signals in order to develop

a robust condition monitoring system and health diagnosis of the

gearbox (Combet and Gelman, 2007).

Filtering signals is an important pre-processing step, and should be

performed, when required, to solve the noisy input problems and

aliasing. In general, signal processing methods include frequency do-

main, time domain and the time/frequency domain methods which

have been commonly applied in many engineering applications (Zhang

and Vachtsevanos, 2007b).

• The traditional method of monitoring signals is to display them

in the time domain. In Appendix A, this domain is explained in more

details. The time domain is considered as a record of what occurred

to the variable in the defined time range. Statistical parameters are

used to analyse the signals in time domain such as peak value, RMS,

Kurtosis and CF and their use is well established in assessing the

condition of gear (Liu et al., 2006).

Stevens et al. (1996) have stated that these methods are appropriate
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for detecting and diagnoses mechanical faults when the fault takes the

shape of impulses which impose periodic pulses in a small time period

(wide frequency bandwidth) onto the base vibration signal. However,

the most commonly used techniques for detecting and diagnosing

gear damage is spectral analysis of captured signal in the frequency

domain. The vibration spectrum of gears included: the tooth meshing

frequency components, harmonics and sidebands placed on both sides

of tooth meshing frequency of the gear. The attitude of the side-band

can be used as a clear sign of the existence of a fault, for example

through an increase in the number of sidebands and their relative

amplitudes.

Randall (1982) stated that the three gear meshing frequency com-

ponents at the beginning with their sidebands may offer good infor-

mation about gear fault. Therefore, tracing and observing changes in

the behaviour of particular sidebands can be used as a good indica-

tor of gear failure. In reality, it is often challenging to obtain useful

information from vibration signals using a simple Fourier Transform

(FT). Growth defect in the initial stages usually has low frequency

amplitude and can be concealed by frequency components of other

mechanical parts or buried in the background noise (White, 1991b).

This is especially pertinent due to the fact that individual vibration

impulses produced by gear faults normally tend to be of short period

resulting in the corresponding frequency pulse to be spread over a

wide frequency band with low amplitude (Randall, 1982). It can also

be a challenge to determine whether a certain frequency indicates a
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defect when a huge number of spectral components exist.

• Advance signal processing methods such as time-frequency do-

main, is applied in many monitoring applications such as gearbox

fault diagnosis systems and is gradually beginning to substitute tra-

ditional methods such as time and frequency domains analysis. The

time-frequency domain is a powerful technique that can be used to

represent the signal in time and frequency domains at the same time

as examining non-stationary signals. In Appendix A, this domain is

explained in more details. The results can be easily interpreted. Peng

and Chu (2004a) state that by using this domain, it is simple to de-

scribe the local features of the signal in detail, with all frequency

components in the range of interest and how they change with time.

All these can be presented on a single graph (White, 1991b). In the

last two decades, a group of time - frequency signal processing tech-

niques have been established as appropriate methods for analysing

gearbox vibration signals. They have received considerable attention

in the discipline of condition monitoring. Short-Time Fourier Trans-

form (STFT) (Tomazic, 1996; Rosvall et al., 2001), Wigner-Ville Dis-

tribution (WVD) (Wu and Huang, 2011) and Wavelet Transforms

(WT) (Yan et al., 2014; Xian and Zeng, 2009) are considered as the

famous examples of time-frequency domain. Peng and Chu (2004d)

have stated that the WT is a reliable technique to investigate vibra-

tion signals because the signals include a series of instant impulse

and other factors which are transient and non-stationary in reality.
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The WT is mathematical tool can be used to decompose the sig-

nal into different frequencies with different resolutions in time-scale

(Amirat et al., 2009). Many researchers have already put their ef-

forts to analyse vibration signals gained from multiple conditions of

a gearbox system using such techniques. Barszcz and Randall (2009);

Hui et al. (2009); Yiakopoulos et al. (2011) in several publications

have used WVD, STFT and WT to study vibration signals of a spur

gear at constant load in order to discover numerous defects develop-

ments. Wang and Hu (2006a,b) have implemented WT and STFT

to detect a number of gear faults such as pitting, spalling and root

crack. Accompanying of signal processing techniques with mathemat-

ical and statistical methods have been applied to improve the analysis

of vibration signals. These combing methods have been reviewed in

(Jia-Zhong et al., 2007; Huanqing and Peng, 2009).

Hall and Mba (2004) and Jayaswal et al. (2008b) have concluded

that WT is the best-suited technique to analysing vibration signals

for fault detection in gearboxes.

2.4.3 Feature Extraction

Feature extraction is a key issue to machine condition monitoring and fault

diagnosis. Features must contain the necessary discriminative information

for their fault classifier to have any feature extraction stage is a key element

in fault diagnosis and condition monitoring system of machineries. Usu-

ally, features include distinct characteristics of information about faults.
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These features can be used as inputs to fault classifier in order to have any

chance of precise classification. Features are defined as variables extracted

from measuring raw signals using signal processing methods to improve

the quality of detecting damage in the initial stage. However, the captured

signals are often in complex shape because of the randomness and the noise

generated by the industrial environment, which may adversely affect the

measurement of signals, increasing the signal to noise ratio significantly.

Feature selection contains in comparison between the computational feasi-

bility linked to low level features and extensive per-processing required for

high level features. Feature extraction includes characteristics or advanced

characteristics analysis. Characteristics analysis used simple feature ex-

traction techniques depend on data reduction procedure, which lead to

scalar representations (Lebold et al., 2005).

There are many methods for extracting features of a machines condition

from the vibration signals in order to capture the diagnostic information.

Some of these methods which are applied in this study, are explained in

more details in Appendix A. Features were computed as many times as

possible, but the choice of features is often arbitrary, which will lead to

situations where several features provide the same information as well as

some features providing no useful information at all. The additional burden

of computing these features may decrease the preformance and affect real

time applications of the condition monitoring system. So feature selection

is helpful in reducing dimensionality, discarding deceptive features and

extracting an optimal subspace from the raw feature space; it is critical to

the success of fault recognition and classification (Timusk et al., 2008).
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Rafiee et al. (2010) introduced a new automated algorithm of feature ex-

traction for fault diagnosis in gearbox system equipment (gear and bearing)

using wavelet-based signal processing. Four statistical methods were ap-

plied: standard deviation, variance, Kurtosis, and fourth central moment of

continuous wavelet coefficients. Results also show the fourth central mo-

ment is the appropriate method for gear and bearing defects. Standard

deviation and variance are suitable mainly for bearings. Kurtosis did not

show any consequential relation to the faults. A comprehensive study in-

cluding time and frequency domains, and the extraction of features for

fault detection and diagnosis of gearboxes is discussed by Lei et al. (2010).

The vibration-based features such as kurtosis and spectral kurtosis are ex-

tensively applied to an industrial case and demonstrate the possibility of

detecting relatively small tooth surface pitting for two-stage helical reduc-

tion gearboxes. This investigation was conducted by Combet and Gelman

(2009).

2.4.4 Intelligent Decision Making

An intelligent gearbox condition monitoring system is defined as an inte-

grated system consisting of multi-sensors, signal processing methods, re-

liable feature extraction techniques and intelligent decision making tech-

niques. These four requirements are necessary for an automatic monitoring

system. In recent years, intelligent monitoring systems for fault detection

have gained more attention because they can better expect the correct

mapping pattern for the input and output of a dynamic system directly.
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This feature is too difficult in the physical model which requires the deriva-

tion of very complex mathematical equations concerning measures that

are difficult to determine. Many researchers have used intelligent methods

such as expert system (Ran and Penman, 2008), fuzzy logic(Yuan et al.,

2010), support vector machine and artificial neural network (Wang et al.,

2010). For more details see Appendix A. Intelligent systems could use

their learning ability to describe high non-linear characteristics of gearbox

processes, superior learning, noise destruction, and parallel computation

abilities (Yuan and Cai, 2005). However, the disadvantage of some of the

intelligent decision making systems is that they would require significant

training and they could be very dependent on their structure and config-

uration (Ran and Penman, 2008).

2.5 Research Gap

According to the literature review presented in this chapter, the knowledge

gap can be summarised as fallows:

Many researchers have attempted to develop reliable condition monitoring

of gearbox system to diagnose gear faults. These methods are an area of

active research because gearbox condition strongly influences the entire

machinery performance. In addition, a reliable gear monitoring system

can increase the machine performance and decrease machine downtime

caused by defect in gears. The information obtained from the gearbox

using sensors can be used for detecting several types of faults, including
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gear defects and bearings defects. But there is a lack of understanding in

the effect of tools sensing and its locations on gearbox condition monitoring

systems. Also, there is limited research in studying the relationship between

detecting and diagnosing faults in gearbox condition monitoring system

and sensors selection and its locations. In order to identify problems in

condition monitoring development and the draw-backs of current practice,

it is important to describe the basic structure of a monitoring system. In

order to monitor an on-line machining process, the system must provide

the following:

1. Identifying the appropriate sensors types which can be used effec-

tively to extract the emitted information from the process in a form

of sensory signals.

2. Determining the appropriate signal processing methods to analyses

the sensory signal and simplify the incorporated information into a

form suitable for classification model.

3. The extraction of valuable information from the suitable sensitive

sensors and the suitable features and signal processing methods.

4. The improvement of a classification system strategy based on the

available sensory data and processing methods to identify the condi-

tion of gearbox.

Usually operation of machinery can produce different types of informa-

tion. This information can then be used to define the status of machinery.

42



2. Literature Review

Consequently, it has to be possible to select one or group of sensing tool

to recover information about the process which identifies the status of the

machinery. The selection of an appropriate sensor and its location could

be a challenging task in order to obtain reliable information at initial stage

of the fault. When the process to be monitored on-line is complex, such as

gear fault, it is difficult to immediately recommend a suitable sensor for

on-line monitoring the condition of the machinery. Therefore, the selection

of suitable sensors and its location is the most significant issue. The selec-

tion of proper signal processing technique is also necessary, because, the

information extracted by sensors are usually interfered by undesirable sig-

nals including noise or other relevant information. Hence, number of signal

processing and feature methods elicit are required to elicit the essential

information. The classification stage is highly significant step in categoris-

ing the extracted information by the sensing tools and taking the decision

regarding the status of the machine.

2.6 Discussions

Gearbox condition monitoring systems are important for detecting faults

which may occur while gearbox systems are in operation. Consequently,

this leads to an improvement in the quality of the product, reduces the

downtime for maintenance, increases the productivity and reduces the to-

tal cost. The success of the gearbox condition monitoring system depends

on the location and types of sensors, as well as on the quality of signal

processing, the reliability of feature selection, and the extraction and ro-
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bustness of classification methods for accurate decision making. This is in

addition to dependency on the reliability of the hardware and data ac-

quisition systems. Many approaches have been implemented in regard to

gearbox fault diagnosis monitoring systems including speed, torque, acous-

tic emission, vibration and oil debris analysis. For signal processing and

data analysis, many techniques have been applied to detect the state of the

gearbox from time series, frequency components such as FFT, STFT, and

wavelet. Feature extraction for many simple and advance statistical and

mathematical approaches have been conducted. The simple methods are

mean, maximum, minimum, skewness and kurtosis. The advanced meth-

ods included PCA and Kurtogram. These methods were combined with

computational intelligence techniques such as ANN, fuzzy logic and SVM.

In this regard the research is conducted to provide a more reliable, robust

and precise gearbox condition monitoring system which are required in

recent industrial applications.

44



Chapter 3

Methodology

3.1 Introduction

This chapter presents the research methodology which is adopted in this

study. It gives a summary of research gap in industry related to the design

of gearbox condition monitoring systems. The condition monitoring system

has been utilised to detect and diagnose the fault in gearbox systems such

as damage in gear teeth. It also presents the implemented condition moni-

toring methodology for gearbox. The chapter illustrates the main steps of

the proposed approach.

3.2 Gearbox System Information Analysis

In order to identify the problems in gearbox condition monitoring design

and drawbacks of current practice, it is important to understand and study
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the general structure of gearbox monitoring system. The main sources of

information condition monitoring system for the gearbox is illustrated in

Figure 3.1. Fault can be produced for many reasons such as inappropri-

ate operating conditions, lack of or inadequate lubrication, high load, and

installation problems. Defect in gearbox can be measured mainly by mon-

itoring three main elements; which are load, noise and lubricant. These

elements are essential for the most condition monitoring and fault diagno-

sis of gearbox systems.

Lubricant information can be measured by temperature, weight, and de-

bris size and shape which are collected from samples of the lubricant. Noise

information can be measured by vibration, acoustic emission and sound.

Load information can be measured by speed, torque and power of motor.

All these measurements are conducted in order to detect several types of

faults that can occur in any part of gearbox such as gears, bearings and

shafts. The obtained information is analysed to pick up relevant and dis-

card redundant information using advance techniques and methods. Then

the extracted information are integrated and used as base knowledge for

fault diagnosis and prognosis model for gearbox system. However, this in-

formation may negatively influenced by many factors including type of

sensor, sensor location and analysis signal methods. Therefore, there is a

need to take all these factors into account to develop appropriate moni-

toring system of fault diagnosis. The following sections will describe the

methodology of how to select these factors.
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Figure 3.1: Integrating framework for gearbox information analysis.

3.3 Problem Associated with Gearbox Mon-

itoring System

Current studies in condition monitoring system covered some facets for de-

signing reliable monitoring system while others aspects remain and need

further investigation. For example, decision-making and classification stage

have been well investigated especially in the case of determining the exis-

tence of the obvious faults (Williams et al., 1994; Widodo and Yang, 2007;

Widodo et al., 2009). In reviewing previous research, it was noticed that

the interest of most studies has been concerned with decision-making step

using many types of methods such as statistical methods and computa-

tional intelligent techniques. However, it has been found that this step is
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not considered as the main difficulty in condition monitoring design for

the following reasons:

The performance of classification and decision-making method is often re-

lied on the quality of the information been given. Usually raw data is anal-

ysed and processed to extracted useful information then this information is

fed to the decision-making stage; if the extracted data contains useful and

the required information about the gearbox operation and its conditions,

the decision-making stage is normally expected to produce acceptable re-

sults. However, the decision-making method is expected to produce mis-

leading results when the used data does not include relevant information

about the process and its conditions.

Regardless the source of data used in the decision stage and what it may

present, the decision-making techniques can still be used to evaluate the

processed data and make a decision on the essential prediction or classifi-

cation. The response required from this stage is application dependent. For

the same processes and faults, different techniques can be used based on

the requirements or the outputs of every technique. Therefore, it has been

found from literature that the success of a condition monitoring system

relies on three significant aspects:

1. The selection of optimal sensors locations.

2. The selection of appropriate sensors.

3. The selection of appropriate signal processing techniques.
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Sensing technology is considered as the most significant part for design-

ing gearbox condition monitoring system. Many different types of sensors

which are based on type of measuring data such as oil parameters, sound

and vibration are applied in many studies to investigate the faults in gear-

box systems. Some common methodologies have been found practical in

selecting the sensors used in a condition monitoring system. In order to

expand the failure coverage and reduce the number of sensors used, how-

ever, these methodologies provide broad guidance on use of sensors and

determining its locations. The techniques has failed to provide practical

information or a structured methodology on how to select sensors and its

location which can provide high quality information about the process with

reduced budget. The idea of selecting sensors which are used in previous

research can provide a primary point to start with. However, it might not

be right to assume that these sensors would produced the same results

if they were applied in this study. This is because gearbox systems are

generally different in their internal structure and operation conditions.

The next issue that needs to be investigated to develop reliable condition

monitoring systems for gearbox, is the selection of suitable feature and

signal processing techniques. The selection of these techniques are based

on the type and performance of sensors been used if the selected sensors

or their locations are inappropriate, then the applied features and signal

processing techniques are not expected to give useful information. Dif-

ferent features and signal processing techniques have been proposed and

implemented in gearbox monitoring systems including statistical methods,

time domain, frequency domain and time-frequency domain. The current
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practice in selecting the signal processing techniques is normally done by

a manual procedure such as visual inspection to search for abnormal pat-

tern within the signals. This approach, although it is successful, can be

considered costly and time consuming.

The final step is to develop an effective gearbox monitoring system, it

is required to evaluate the sensitivity of the sensors, and the associated

features and signal processing techniques. Therefore, if the system perfor-

mance is acceptable, then the sensors and the signal processing techniques

are assumed appropriate and satisfactory. When the system does not work

effectively as expected, then another investigation for other sensors or sig-

nal processing techniques is restarted. This technique of constructing a

complete system could also include a detailed examination of fault pro-

cesses to view the signals and search for the sensory features which allow

the pattern recognition system to provide better results. In addition, when

computational intelligent techniques are used, the training and testing pro-

cedures repeat and require long periods of time and computational effort. If

the sensors or signal processing methods are not appropriate, the recurring

training methods could take longer and not give good results.

It can be concluded from previous discussion and background presented

in Chapter 2, that the related work examining the development problems

of gearbox condition monitoring systems are limited. Despite the fact that

there is wide range of research investigating condition monitoring methods

of gearbox systems, very few studies have examining sensors reliability and

their locations in order to reduce the cost and maintaining high efficiency
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of the design. Most research reviewed so far has focused on detecting and

diagnosing faults. A method found to be successful in one application may

not give an adequate results in another. The methods found in the lit-

erature cannot provide an automated design methodology for monitoring

systems even when providing sufficient results. Hence, this research de-

velops a design methodology for gearbox condition monitoring systems,

and offers structured and automated design methodology. This methodol-

ogy can provide practical selection criteria of sensors, their locations and

features/signal processing methods with reduced experimental work, time

and cost.

3.4 Problem Domain and Objectives

The purpose of this study is to investigate the condition monitoring system

for gearbox especially gear defects. Many studies have been conducted to

develop trustworthy Gearbox Condition Monitoring system (GCM). How-

ever, a number of parameters may impede the performance of developing

GCM such as unsuitable selection of sensors and their locations. The do-

main of this research is to implement new enhanced approach for selecting

the sensors and features /signal processing methods essential for observing

gearbox operation and situations. The decision-making and classification

step is used to evaluate the methodology for selecting sensors and signal

processing methods. An approach, named Automated Sensor and Signal

Processing Selection (ASPS), which is applied on machining process, is

developed by Al-Habaibeh et al. (2002). ASPS approach is adopted and
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improved to be suitable for gearbox system. This approach, which will

be introduced in Section 3.6.1, is based on self-learning and multi-sensor

techniques. Also, ASPS approach has been implemented for milling and

turning of machining process (Abbas et al., 2011) and (Al-Azmi et al.,

2009). Although the ASPS approach can give good results for condition

monitoring system, this approach dose not consider some significant as-

pects ASPS approach such as sensor location which will be addressed in

this research. The ASPS approach is designed for machining process, but

in the present study the approach is developed to fit with gearbox system.

Accordingly, it is defined as a new approach named Automated Sensor and

Signal Processing Selection for Gearbox (ASPSG) system. The ASPSG, is

considered as a novel approach which is used for analysing and simpli-

fied sensory signals to prove and evaluate the proposed methodology for

choosing effective sensors, features and signal processing techniques and

to investigate the relationship between sensors in terms of (sensitivity and

locations) and the performance of designing gearbox condition monitoring

systems.

The overall goal of this research is to develop a reliable condition monitor-

ing system for detecting faults in gearbox with high quality. It also aims

at reducing number experiments and sensors, which will lead to reduce the

cost by using sensor-fusion model.
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3.5 The Concept of Proposed Approach

This research present a review of the state of the art in methodologies of

sensors and signal processing which are used as tools for condition mon-

itoring system. The gap in literature is the lack of standredised form of

designing monitoring system which can be used to detect faults in all

gearbox systems. This could be due to difference in nature of sensors mea-

surement which are used for different purposes and no single form can

serve all of them. This study will use the same sensors, features and sig-

nal processing techniques which are applied in previous research. It Also

will propose the same classification techniques that’s used in earlier stud-

ies. The proposed ASPSG approach employed group of sensors, features

and signal processing techniques and classification techniques to develop

intelligent and automated monitoring system of gearbox. The main aspect

which differentiates this study from previous research is its approach to

reduce time of and cost of the monitoring system. It also provides a sys-

tematic design procedure for condition monitoring systems. Moreover, it

offers relevant information collected from the gearbox monitoring system

and its conditions.

The ASPSG approach is conducted to reveal the best collection of sensitive

sensors, features and signal processing methods which can help to design a

monitoring system with minimising number of experiments. The first step

in the methodology is to extract Sensory Characteristic Features (SCFs)

which are gained from raw signals by using several signal processing and

feature techniques. The SCF is used as sensitivity measurement for such
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sensor. If any SCF, which is extracted from any sensor, provides high

sensitivity this means that SCF is appropriate feature for detecting the

faults. Conversely, if any SCF shows low sensitivity, this indicates that

SCF inappropriate feature for detecting the faults.

In this section a description of how the suggested condition monitoring

design methodology is conceived based on previous evaluation and imple-

mentation of this approach in end milling process (Abbas et al., 2011). In

addition, it is based on enhancing the design tools and methods of previ-

ous research described in the literature. The author’s main contribution is

to implement the ASPSG approach and to combine previous points with

the idea of developing a generic structured sensor-fusion model using the

following three techniques:

1. Assessing the new ASPSG method (Automated and Sensor and Sig-

nal Processing Selection for Gearbox).

2. An automated idea for simplifying the complexity of raw signals into

simple Sensory Characteristic Features (SCFs) for gear monitoring.

3. Automated methods for measuring of sensitive SCFs and enhance

the associated sensors and signal processing methods.

4. Examining novel approach using neural networks methods for gear-

box system.

5. The method of reducing the cost of the gearbox monitoring system

based on eliminating the unused sensors when possible.

54



3. Methodology

The main techniques developed will be described in details in following

sections with more technical description and examples in the subsequent

chapters.

3.6 The ASPSG Approach

The proposed approach Automated Sensor and Signal Processing Selection

for Gearbox (ASPSG) process is shown in Figure 3.2. It is a systematic

approach used to identify reliable sensory signals and signal processing

techniques in order to detect abnormal conditions or the physical phe-

nomenon for any mechanical application such as the gearbox system. The

ASPSG approach initiates by using a wide range of sensors that are in-

stalled on the gearbox casing at different locations. The gearbox is operated

with varying speed and torque in order to generate sensory signals that

should contain useful information about the status of gearbox parts. The

next step of the proposed approach is to extract SCFs gained from the

sensors. If a SCF shows high sensitivity to the fault, this means that this

sensory characteristic feature is useful in detecting or evaluating that fault.

A particular number of sensitive sensors and signal processing methods are

then selected as an initial monitoring system. Cost reduction can then be

performed by reducing the number of SCFs which are extracted from the

selected sensory signals. Insignificant numbers of SCFs which are extracted

from a sensors should be eliminated from the monitoring system i order

to reduce thier costs. More details about the main concept of the ASPSG

approach are followed in the next sections of this Chapter. The following
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Figure 3.2: The essential structure of the ASPSG approach.

Sections are the main steps of proposed approach.

3.6.1 Simplifying the Raw Signals and Extraction of

Features

The raw sensory signals are captured from complex structure of gearbox

system and require to be processed in order to extract the appropriate

information. This process starts by eliminating the unwanted information

from sensory signals then the results are grouped into a set of simplified

sensory signals named Sensory Characteristic Features (SCFs). SCFs can

be gained from a combination of conventional and advanced signal process-

ing techniques to simplify raw data. Then, a number of feature methods

are used to extract useful information. Usually, operating machinery starts
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from a healthy condition and continue until unexpected fault occur at any

time thereafter the fault gradually increase till breakdown. It is difficult

to detect the abnormal condition of the process from the generated com-

plex signal. So, simplification methods are required to take out the SCF.

Numerous numbers of SCFs can be computed by picking number of sam-

ples of sensory signals at constant intervals with different conditions and

analysing these signals using wide range of features and signal process-

ing methods. The SCFs could be a good method to examine the essential

information regarding the presented process conditions, see Figure 3.3.

3.6.2 Automated Sensitivity Detection

Efficiency of sensitive SCF highly relies on the content of information about

the condition of machinery operation which may lead to excellent classifi-

cation. The SCF value is expected to be affected by the significant change

of operation conditions. The sensitivity of a SCF can be assessed by nu-

merous methods such as:

• Using a normal observation and visual inspection of the signals.

• Using of a classification methods as automated processes such as

ANN and FRBS .

• Using statistical techniques to detect the change in the SCFs levels.

Figure 3.3 shows the changes in SCFs which can be distinguished visually.

The raw sensory signals are simplified into simple SCFs. SCF1 is raised
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Figure 3.3: Simplification of complex sensory signal into simple SCFs.

progressively as result of changing that occur between two conditions or

more of the process. Moreover, SCF2 is declined gradually between two

conditions of the process when the process changes from fresh to damage.

SCFn−1 and SCFn could be randomly fluctuated between the two sta-

tus after period of time. Two sensory characteristics features SCF1, SCF2

show that there is significant changes based on two status of the process.

Even though the difference between SCF1 and SCF2 is one which has
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positive change and second has negative change; difference between the

two conditions can be easliy noticed. Therefore, both SCF1 and SCF2 are

identified as sensitive SCFs. While sensory characteristics features SCFn−1

and SCFn are identified as insensitive SCFs, because they are not showing

difference between two conditions (healthy and damaged). Measuring sensi-

tivity of the SCFs should to be automated to design enhanced methodology

of choosing reliable sensors and signal processing techniques. A number of

methods can be applied as shown in Figure 3.6 which can be utilised in

order to measure sensitivity of sensor characteristics features, for example

principle component analysis, the slope of a linear regression and Taguchi’s

methods.

3.6.3 Association Matrix

After computing the sensitivity characteristic feature for each sensor on

gearbox conditions, another matrix is generated and labelled as Association

Matrix (ASM). The ASM contains the gained sensitivity values for the

corresponding sensory features. It provides clear picture of the sensitivity

values which are related to each feature fij:
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The ASM matrix is defined as follows :

YASM =



f1,1 f1,2 f1,3 .. .. .. f1,n

f2,1 f2,2 f2,3 .. .. .. f2,n

f3,1 f3,2 f3,3 .. .. .. f3,n

.. .. .. .. .. .. ..

.. .. .. .. .. .. ..

.. .. .. .. .. .. ..

fm,1 fm,2 fm,3 .. .. .. fm,n



(3.1)

where 1 ≤ i ≤ n which represent sensors and 1 ≤ j ≤ m represent features

The parameter fij is named coefficient of the sensitivity for feature of gear-

box condition which is achieved by using the sensory signal; where the ith

represent sensor and the jth indicate feature and signal processing method.

The ASM provides clear picture for the most appropriate sensor and sig-

nal processing method to be utilised since each column in the matrix is

represented one feature and signal processing method while each row is

represented one sensor. Essentially, high sensitivity parameter of SCFs are

the most sensitive to fault detection and they are the most appropriate fea-

tures to be used. Therefore, the related sensory signals and features/signal

processing methods are the most appropriate ones and then selected as an

initial monitoring system.
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3.6.4 Sensor Fusion and Cost Reduction

To develop a reliable gearbox monitoring system with high sensitivity to

the faults, a set of high-sensitivity features SCFs should be applied in

combination of sensor and signal processing techniques. Usually, all SCFs

features are extracted from the sensory signals. Then, they are ranked

based on their sensitivity values, the highest sensitive number of SCFs can

be used together to form the initial monitoring system. The cost of the

monitoring system can be simply computed based on the quantity and

type of sensors have been utilised. The cost of the monitoring system is

The value of the highest sensitive number of SCFs can be selected based

on the cost of the system, the required quality of interpretation, the speed

of signal processing and the implemented decision making method. The

value chosen in this research is 20 based on a previous implementation

of the ASPS approach for end milling machining processes (AL-Habaibeh

et al., 2005a). The last value is also found satisfactory in providing sufficient

monitoring capability with reasonable signal processing speed.

The (m × n) matrix of sensory characteristic features as mentioned in

Figure 3.4 where m indicates number of sensors and n represents number

of signal processing methods. These features require to be computed during

the operation in order to categorise the sensitivity of the SCFs. Then, the

SCFs are sorted from high to low sensitivity and the highest numbers of

SCFs are selected to be produce reliable condition monitoring system, the

cost of the monitoring system can be computed depend on the sensors

of the selected features SCFs. The cost reduction step can be applied to
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Figure 3.4: The rank and the selection of features SCFs.

minimise the budget of the monitoring system. This step may or may not

affect monitoring performance of the system. It is conducted by removing

sensors which are inactive and they have less contribution to the abnormal

condition. Also, it need to replace them by SCFs which come next on the

rank, see Figure 3.4, from sensors already in the system without having to

significantly reduce the overall sensitivity of the system (i.e. the new SCFs

should still have relatively high sensitivity).

A sensor contribution in a system is described as the utilisation of a sensor.

It is defined as the number of SCFs features which are applied in a system

for specific sensor proportion to the entire number of SCFs utilised in the

overall system. Also, the utilisation is described in this thesis as the total

number of signals produced by the sensor.

Assume, for the process shown in Figure 3.4, that the first sensitive number

SCFs are found from sensors (S1, S2, S3, · · ·, Si, Sn−1, Sn). Therefore, the

cost of the hardware will be the cost of the sensors in addition to their
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signal conditioning devices. Assume CSj is the cost of the jth sensor and

its signal conditioning devices and all the associated hardware.

Assume that the sensor Sn−1 contributes in only h SCFs where h is much

less than the contribution of the other sensors. Then that SCF from the

Sn − 1 can be removed from the system and replaced by another h SCF

from the other sensors as long as these new SCFs have relatively high

sensitivity on the rank. Consequently, the cost of the new system will be:

Cost = CS1 + CS3 + CS5 + · · ·+ CSn−1 + CSn (3.2)

where the new system is reduced by CSn−1. The number of sensors is

reduced, even if the number of SCFs in the system is still not changed,

and therefore the cost of the system is also reduced. This removal process

can be very efficient as long as:

• The new SCFs have high sensitivity so that the overall system per-

formance does not decline.

• The eliminated sensor is relatively expensive.

3.7 The Framework of ASPSG Approach

The main concept behind the Suggested approach is defined in this section.

Practically, further detailed procedures for the ASPSG will be explained

clearly with more detail and experimental examples in the following chap-

ters of this thesis. The aim of the ASPSG is to develop a gearbox moni-
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Figure 3.5: The framework of proposed approach.

toring system for detecting fault in helical gear using an automated simple

procedure to identify the SCFs. These features SCFs should offer high sen-

sitivity to abnormal conditions or faults and should give less sensitivity to

other operating factors. The main target of any condition monitoring of

gearbox system is to detect the fault in initial stage taking into account

the cost of the monitoring system. Therefore, the ASPSG is based on the

ASPS approach which is used to prove that there is a strong relationship

between a measured sensory signals and the state of monitored physical

phenomenon. The monitoring system budget is significant issue and should

be considered as well; the sensors with high cost should be excluded from

the monitoring system whilst a low-cost sensor can be utilised to do the

same job instead of an using expensive tools. Figure 3.5 shows the basic

framework of the proposed approach.
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Analytically, captured sensory signals are analysed using signal traditional

and advanced processing methods applied to observe the anomalous condi-

tion of the physical phenomenon which needs to be discovered or evaluated.

The ASPSG approach begins by defining the operation to be monitored

and its states (e.g. normal or abnormal condition). Then, a number of

sensors are installed on the optimal places to collect relevant information

which is associated with the events on monitoring system. In order to pro-

duce sensory signals that contain useful information about the process,

gearbox system is operated under heath and fault conditions with vary-

ing speed and load. The following stage of the proposed approach is for

extracting SCFs obtained from the sensory signals using a wide range of

signal processing methods and then discovering the sensitivity of such fea-

tures on the investigated process state. If a specific feature from a specific

sensor shows high sensitivity to the fault, this means that the sensory

characteristic feature is useful in detecting or evaluating that fault. A par-

ticular number of sensitive sensors and signal processing methods are then

selected as an initial monitoring system. Cost reduction can then be per-

formed based on the number of SCFs extracted from the selected sensors.

Consequently, and to reduce the cost, the sensor might be eliminated from

the monitoring system if extracted numbers of SCFs from a sensor are in-

significant. More details about the main concept of the ASPSG approach

are explained in the following chapters.
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3.8 Implemented Methods to Develop ASPSG

Approach

This research uses different types of sensors such as accelerometer, AE,

speed and torque. It also applies several techniques of signal processing

including time, frequency and time/frequency domains. Moreover, Many

traditional and advance statistical features implemented to reduce the di-

mensionality and simplifying large amount of raw signals in order to obtain

features characteristics of sensory data. Several measuring sensitivity tech-

niques have been developed in this research and implemented to measure

the quality of information are captured from the sensory signals.

Two novel approaches named, holistic procedure and stepwise procedure,

are proposed to measure sensitivity of features characteristics of sensory

SCF. Holistic procedure is considered as a measuring tool using Taguchi’s

method based on orthogonal array to calculate the quality of information

offered by each sensor. It provides a general picture of sensitivity for each

sensor based on all the changes in the values of speed and load to operate

the gearbox. Stepwise procedure used three different methods to calculate

sensitivity for every sensor gradually, so that the sensitivity of each sen-

sor is calculated depending on any change in driving parameters of the

gearbox which are speed and load. Three classification techniques are ap-

plied; namely, PCA, LR and FRBS. All these techniques are considered as

statistical methods which are used to evaluate the sensitivity of the SCF.

All these methods also be used and evaluated throughout this thesis. Four
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different type of neural networks will be used to measure the capability of

each method and define the most accurate method. A brief definition for

each method is provided in the following sections.

3.8.1 Automated Stepwise Method

3.8.1.1 Linear Regression Analysis

It can be observed that the change in SCF value is due to the change in a

gearbox system state. For example, if the average of the broken teeth signal

is increasing gradually in a gearbox process, this could be due to broken

teeth developing. The likelihood of a SCF shows a specific and clear sign

and change in values as random behaviour is rather low and it is ignored

in this research particularly when using several SCFs.

Data points of SCFs change with time as shown in Figure 3.6 (a): the

values of SCF can behave randomly so they make low or even no change

in the average value of the SCF as a function of time. When SCF changes

randomly, it is described as being a low sensitivity of SCF which means

no information about the process and the slop angle of a linear regression

line is expected to be relatively low compared with a high sensitivity of

SCF which changed in specific pattern as show in the Figure 3.6 (b). The

absolute slope angle is a relative measure and it depends on the process.

The advantage of using linear regression; firstly, the slop angle can present

a good indication of the sensitivity of the SCFs by indicting the average

change in the SCF value to calculate the linear regression and the position
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Figure 3.6: The Framework of Suggested approach.

of the data to the states to be monitored. Secondly, easy to compare the

result if several SCFs obtained from different sensors and signal processing

methods by normalising the SCF value during the same period of time.

3.8.1.2 Principal Component Analysis

The steps of implementing the PCA start by subtracting the mean of

the data from the original dataset and then finding the covariance matrix

of the dataset. The following step is calculating the eigenvalue which is

equal to the distance between the zero mean and each variable of the row

data. The biggest value indicates the more effect on the data (Zou et al.,

2006). Therefore, it is useful to select a sensor which shows an Immediate

response to the event during the gearbox operating. Each eigenvalue of the
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used sensor is combined to create the PC of Feature. All the PC of SCFs

are arranged to form the eigenvalue sensory matrix which will be fully

described in Chapter 7. Further information about the PCA in general

can be found in the reference section. The advantages of the PCA are

summarised as follows:

• It is a way to identify patterns in data, and to expressing the data

in such a way as to highlight their similarities and differences. Since

patterns in data can be hard to find in data of high dimension, where

the luxury of graphical representation is not available, PCA is a

powerful tool for analysing data.

• The other main advantage of PCA is that once you have found these

patterns in the data, and you compress the data, i.e. by reducing the

number of dimensions, without much loss of information.

3.8.1.3 Fuzzy Rule-Based system

As described in the aforementioned sections, that there are different meth-

ods to measure the sensitivity of the features. In this thesis, the FRBS is

used to characterise the sensitivity of the features when all the sensitivity

measuring methods are combined together. This will be implemented by a

membership function (0–1) which associates with each element of universe

and represents the grade of membership specify for the condition each case.

The features obtained from each method have been interred in the fuzzy

rules, these rules to evaluate each type of the method and then the results

of the rules are combined to determine the most sensitive features.
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3.8.2 Automated Holistic Method

3.8.2.1 Taguchi Method

Taguchi orthogonal array (OAs) methods has been applied to design an

experimental work for reducing the number of experiment which needs to

be optimised for quality process. Instead of using a full factorial technique

where one variable is varying at each run, Taguchi’s method uses a small

number of experiments to predict the best quality of each variable and

and calculate the most significant variables in an experiment. The use of

Taguchi’s method is described in chapter 6. The Taguchi method imple-

ments specially constructed tables know as orthogonal arrays (OAs). The

use of these tables makes the design of experiments easy and consistent

practically when applied to experiments with high number of variables (or

factors in Taguchi terms). A full factorial design will identify all possible

combination for a given set factors. Since most industrial experiment usu-

ally involve a significant number of factors a full factorial design results in

a large number of experiments. Taguchis approach complements two im-

portant areas. First, it define a set of OAs each of which can be used for

many experiments. Second, it provide a standard method for analysis of the

results. This research propose to use Taguchi methods for calculating sen-

sitivity of the sensory characteristic features (SCFs) which obtained from

gearbox sensory signals under different condition such as healthy and fault.

Dependency values of Taguchi’s method are used as a sensitive measure.

The use of Taguchi method will be described in details with experiments

and results in Chapter 7.
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3.9 Discussions

This chapter has summarised the methodology used and the investiga-

tions of this research work. The aim is to develop a systematic structured

methodology for the design and implementation of the ASPSG approach

of condition monitoring systems gearbox system. The problems of condi-

tion monitoring design have been described and compared with the current

practice in the field. Not only the way the ASPSG approach is conceived

has been described but also techniques modified as a result of previous re-

search and more recent development. The chapter has explained the general

steps of the ASPSG approach and described its applicability for gear faults

with multi-sensor fusion.
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Chapter 4

Experimental Apparatus

4.1 Introduction

This research provide the early diagnosis and prognosis condition moni-

toring system for two type of helical gear faults; distributed pits and grad-

ually tooth breakage. An experimental apparatus is developed to obtain

relevant and useful information about helical gear faults and also test dif-

ferent faults. This chapter presents detailed information about test rig

equipment which was designated to monitor faults in industrial gearbox

systems. In this respect, general descriptions of test rig facilities includ-

ing the mechanical tools and condition monitoring devices are explained.

Mechanical tools comprise gearbox system, AC motor, and DC generator

whereas monitoring system devices include sensors and data acquisition

system.
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Figure 4.1: Experimental test rig.

4.2 Experimental Setup

Figure 4.1 presents the experimental test rig developed by this research

and associated data acquisition unit including sensors and data acqui-

sition system. This rig is designed to study and to investigate healthy

and unhealthy conditions for the gearbox systems under different opera-

tions. This system contains mechanical system, three accelerometers, two

torque/speed transducers, acoustic emission sensors, data acquisition de-

vices, monitoring computer and appropriate software. The system under

monitoring is the gearbox, which is a part of the driving system used in

the agitator of chemical system provided by Chemineer Ltd. More details

are provided in the following sections.
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4.2.1 Mechanical Equipment

The mechanical side comprise an input drive and an output drive de-

veloped to test an industrial gearbox for a chemical agitator. The input

drive consists of a 3 kW variable speed AC motor to drive the gearbox

via an input shaft, and a torque limiter set to stop applying the load at

18Nm for preventing the overload of the gearbox. The drive motor is fit-

ted with the gearbox by delivering the rotational speed between 100RPM

and 1440RPM .

The output drive includes a DC motor (generator) for applying a load to

the gearbox to change gear engagement, and a control station in conjunc-

tion with the DC motor to control the output of the load. The DC motor

can supply a load of 18Nm to the gearbox by tuning the voltage/current

of the control station, and transmit the load to the gearbox via an output

shaft and a 2-level transmission belt. The gearbox mounted in the mechan-

ical test rig is part of driving system for HT agitator which is a chemical

mixer supplied by Chemineer company. It includes a helical gear drive,

a bevel gear drive, bearings, and shafts for transferring loads. Gearbox

fault such as wear or failure of gear teeth can be discovered by monitoring

vibration of the gear. While the gear is running, the gear transmits vibra-

tion that it generates to the bearing; the vibration data are then acquired

by the sensor and transmitted to the computer via the data acquisition

hardware for data processing and fault diagnosis.
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4.2.2 Data Acquisition System

To collect data from sensors, National Instruments USB device the nega-

tive distance USB-6259) is used. This device is a multifunction analogue,

digital, and timing I/O boards for PC AT as shown in Figure 4.2. The

card has 12-bits ADCs with 64 analogue input single ended or 32 differen-

tials with a guaranteed sampling rate up to 1200 k sample. The analogue

input used was configured as differential inputs because of the low voltage

levels involved, the noisy environment, and long wires used in connecting

the signals to the data acquisition card. The analogue channel is used to

acquire the machining data using high sampling rate. The card is used in a

bipolar mode of +5V or −5V with a board gain of 0.5. Hence, for 12-bits

data samples the resolution is up to 9.76mV .

The data sampling rate is 100 kHz. In this research, the monitoring com-

puter collects 65530 sampling data point from data acquisition device and

generates one data group with nine parameters using these data for further

analysis.

4.2.3 Sensors

Many sensors are integrated into the test rig to extract useful information

about the gearbox health conditions (e.g. gear teeth breakage, gear teeth

wear, shaft condition, oil temperature, etc.) and transfer physical quanti-

ties such as vibration, acoustic emission, torque, speed and temperature

to analog voltage, which are then digitised by the data acquisition de-
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Figure 4.2: High-speed National Instruments M series multifunction data acqui-
sition device.

vice. The outputs are transmitted to a monitoring computer. M420 rotary

torque transducer from datum electronics is used to measure the torque

and speed signals. It is a non-contact torque sensor with a standard sam-

pling rate of 100 samples per second. The data measured are allowed to

transmit in either in digital format via a USB interface or in analog format

through a data acquisition device. M420 rotary torque transducer used in

this research is shown Figure 4.3(-c).

Vibration of the gearbox is measured by accelerometers (vibration sensors).

Three Kistler accelerometers with the identical dynamic performance are

located on the top of gearbox housing at positions near the driving helical
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gear, driving bevel gear and driven bevel gear. Vibration sensors are con-

nected to a coupler (5134B) which serves as a power supply and a signal

amplifier, and also provides the excitation to all accelerometers and ampli-

fies the signals from them. An output signal of 0-5V is then transmitted to

the data acquisition device, which is connected to main computer. Kistler

accelerometer 8704B used in this research is shown Figure 4.3(-a).

The AE sensor is used to measure the stress waves. This sensor is suit-

able for measuring sound emissions more than 50 kHz. The Kistler AE

sensor 8152B is mounted on the surface of the gearbox near the bearing of

the driving gears. It is connected to an AE-coupler with integrated RMS

converter, which is specially used for processing high-frequency acoustic

emission signals from the AE sensor. A variable amplifier embedded in the

AE-coupler amplifies the AE signals by a factor gain of 10. Kistler AE

8152B sensor used in this research is shown in Figure 4.3(-b).

Figure 4.4 shows the configuration of the condition monitoring system

where location of sensors are also shown. More details about the utilised

sensors are provided in the following sections.

4.2.3.1 Accelerometer Sensor

The significant relationship between tool conditions and vibrations during

machining is well recognised, and the comparably low noise implication

of the vibration sensors is discussed in other tool condition monitoring

investigations. Accelerometers are used to measure acceleration and vi-

bration. Among the several vibration detection techniques, piezoelectric
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Figure 4.3: Sensors; a) M420 rotary torque transducer, b) Kistler accelerometer
Sensor, and c) Kistler acoustic emission sensor

accelerometers are often adopted for gears investigation and for measuring

vibrations. These instruments rely on the piezoelectric effect of quartz or

ceramic crystals to generate an electronic output related to acceleration.

The piezoelectric effect produces an opposed accumulation of charged par-

ticles on the crystal. This charge is proportional to the applied force or

stress. The main advantage of using vibration based monitoring systems

for monitoring gearbox and other industrial machinery is that they are

simple, accurate and inexpensive. Moreover, they are easy to use and no

modification to the machine is required. However, vibration methods do

have drawbacks such as dependency of the vibration signals on conditions,
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Figure 4.4: Configuration of the gearbox condition monitoring and fault diagnosis
system.

and machine structure.

4.2.3.2 Acoustic Emission Sensor

Acoustic emission refers to the generation of transient elastic waves during

the rapid release of energy from localised sources within a material. The

source of these emissions in metals is closely associated with the dislocation

movement accompanying plastic deformation and the start and extension

of cracks in a structure under stress. Other sources of acoustic emission in-

clude: melting, phase transformation, thermal stresses, cool down cracking,

and stress build up.

In recent years, AE instruments have been adopted for use in structure in-

tegrity valuation, non-destructive testing, and quality testing for advanced

material industries. AE is also proposed as a possible signal source to de-
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tect the gear condition in a number of studies (Tan et al., 2007). AE can

be defined as: low amplitude, high frequency elastic stress wave generation

due to a rapid release of strain energy within a solid material associated

with the plastic deformation, fracture and phase transformation of the

material. AE sensor is attached to the gearbox housing to monitor AE

signals transmitted during gear running. Recently, AE based monitoring

systems are finding increased applications in condition monitoring (Loutas

et al., 2011). Acoustic emission and audible sound waves produced during

gears meshing have been found useful in several researches for identifying

gearbox condition.

4.2.3.3 Torque/Speed Transducer and Monitoring Unit

The non-contact torque/speed transducers are utilised to measure the

torque and speed, which are generated from the driving/driven shaft. M420

rotary torque transducer from datum electronics is used to measure the

torque via a monitoring unit. This unit, also known as torque trip box, is

used to connect torque/speed transducers and DC motor controller. The

unit is developed as a fail-safe device to prevent overload of the loading

equipment (DC motor). It controls the switch of the DC motor controller

to guarantee the gearbox runs in a normal load condition. The maximum

load for the DC motor needs to be set in the gearbox first. The adjustable

load is within a range of 0 to 18Nm. When either the rotating speed of

the driving shaft reduces below a given value or the load exceeds a given

value, the DC motor stops immediately and its output workload changes
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Figure 4.5: Calibration setup for the accelerometer (8152B).

to zero automatically. Thus, the gearbox can run tests normally without

manual intervention.

4.2.4 Calibration and Testing Devices

The acquired working condition data from the gearbox are transmitted

to the data-acquisition computer. Collected data are calibrated and con-

verted into real physical values quantities, such as Newton-Meter (Nm)

and Rotation Per Minute (RPM). The process of calibration of the sensors

is detailed in the following sections.

Table 4.1: A/D conversion coefficients of three accelerometers.

Sensors A/D conversion coefficients

Accelerometer 1: amplitude per volt = 96.993 g
Accelerometer 2: amplitude per volt = 96.339 g
Accelerometer 3: amplitude per volt = 96.712 g
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Figure 4.6: Calibrations of accelerometers with the use of the calibrator (8152B).

4.2.4.1 Calibration of Accelerometers

Accelerometer sensor calibration process is conducted using the accelerom-

eter calibrator B&K 4291. The accelerometer calibrator consists of a built-

in 79.6Hz sinusoidal generator. The accelerometer is fixed on the calibra-

tion table of the calibrator and subjected to a vibration system shown in

Figure 4.5.

The calibration process starts by adjusting the Acceleration Level of the

accelerometer calibrator to the accelerometer used. The sensitivity of the

voltage amplifier is then adjusted to the sensitivity of the accelerometer.
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Figure 4.6 shows the calibration results of the three accelerometers. The

sensitivity of the accelerometers are measured as 10.31mv/g (g=9.80665

m/s2), 10.38mv/g, and 10.34mv/g while the gain of the amplifier is set by

default. According to these sensitivities, the Analog-to-Digital (A/D) con-

version coefficients of three accelerometers are obtained, which are listed

in Table 4.1.

4.2.4.2 Calibration of the Torque/Speed Transducers

The calibration of the torque/speed transducers are implemented by calcu-

lating the linear factors, which reflects the linear relationship between the

voltage data of the transducers and real working condition values, which

are acquired by the digital tachometer. Figures 4.7 shows a linear relation-

ship of the torque/speed transducers under different working conditions.

The linear factors, also known as the A/D conversion coefficients of torque/speed

transducers, are obtained as follows:

1. torque per volt (driving shaft) is 10Nm,

2. speed per volt (driving shaft) is 500RPM ,

3. torque per volt (driven shaft) is 50.76Nm, and

4. speed per volt (driven shaft) is 10RPM .
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(a)

(b)

Figure 4.7: Calibrations of Torque and Speed Transducers; a) b)

4.3 Tooth Gear Faults

Local gear tooth fault such as pitting and broken tooth are result of tran-

sient events when the defective tooth contacts another gear tooth. The size

and period of these transients are based on the severity of the tooth defect

and contact ratio of the gear pair. If the tooth fault severity is small and

the contact ratio is relatively high, the resulting transient may not be seen

clearly on the vibration signal. Time and frequency domains analysis can

be effectively applied to identify such events. This section presents simu-

lation of two types of industrial helical gearbox pitting and broken tooth

faults.
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Figure 4.8: Simulated pitting tooth: a) 25%, b) 50%, c) 75% and d) 90%.

4.3.1 Distributed Pitting Fault

Pits are seeded on some of the gear teeth in differing degrees of fault

severity as small spots bottomed cavities and intended to replicate the

fault developing on a few teeth due to shock or load fluctuation. Gear load

can be overrode result of shock or unbalancing cyclic load. This event may

occurs on one tooth or group of teeth on the same gear. In such cases, a

pitting fault may probably occur in time on the tooth surfaces on which a

higher load is experienced. All the simulated surface pits were introduced

to some of the wheel gear teeth using an drilling machine and were intended

to replicate a pitting failure initiating firstly on a single tooth, and then

increasing the number of pitting on the same tooth surfaces. First of all,
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Figure 4.9: Time domain analysis of four gradual pitting gear tooth conditions.

a circular pit (diameter and depth are approximately 0.7mm and 0.1mm

respectively) was seeded onto a single tooth surface as shown in Figure 4.8.

After that, in order to represent the advancement of fault, the number of

defected teeth was increased. Figure 4.8-(a), Figure 4.8-(b), Figure 4.8-(c)

and Figure 4.8-(d) show 25%, 50%, 75% and 90% pitting tooth respectively.

Moreover, the severity of fault was increased by doubling the number of

pits on the same gear tooth. At the final stage of the fault development,

the number of pits was redoubled on the same gear tooth during which the

surface of the centre tooth was completely covered by severe pitting.
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Figure 4.10: Frequency domain analysis of four gradual pitting gear tooth condi-
tions.

4.3.2 Time and Frequency Domain Analysis of Pit-

ting Gear Tooth

Figures 4.9 show the time domain representation of the simulated pitting

tooth of helical gear vibration. It can be seen from the time domain rep-

resentation that the vibration signal is modulated, but it is difficult to

determine clear characteristic of each conditions from the time domain

analysis. In contrast, the frequency domain representation provides much

better understanding of each condition properties such as harmonic am-

plitudes and harmonic spacing as shown in Figures 4.10.
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Figure 4.11: Simulated broken tooth: a) 25%, b) 50%, c) 75% and d) complete
tooth removal.

4.3.3 Distributed Broken Tooth Fault

Tooth breakage is one of the common faults of gearbox in industry appli-

cations. In this study, four degrees of the tooth breakages were simulated

which is 25%, 50%, 75%, and 100% of the tooth damage as shown in Figure

4.11-(a), Figure 4.11-(b), Figure 4.11-(c) and Figure 4.11-(d) respectively.

It is produced by removing the percentage of the tooth face on the wheel

gear in the width direction. Sensory signals collected from a same gearbox

in which the four broken gears were tested individually. The larger fault

of 100% tooth breakage is used to help with the understanding of the data

analysis techniques.
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Figure 4.12: Time domain analysis of four gradual broken gear tooth conditions.

4.3.4 Time and Frequency Domain Analysis of Bro-

ken Gear Tooth

Figure 4.12 illustrates the time domain representations of the simulated

broken gear tooth. The time domain signal does not show any discernible

amplitude variation throughout the time. On the other hand, the frequency

spectrum reveals major differences between healthy gear condition and

other conditions of broken tooth as shown in Figure 4.13, which can be

used as clear evidence to distinguish between healthy and unhealthy gear-

box. Also, it can be seen that the frequency spectrum exhibits two major

peaks located on the broken gear tooth figures. A close inspection upon the

frequency spectrum reveals that these peaks are progressively decreased to
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Figure 4.13: Frequency domain analysis of four gradual broken gear tooth condi-
tions.

show the fault propagation from figures 25%, 50%, 75% and 100% respec-

tively.

4.4 Discussions

This chapter outlines the general experimental set-up for carrying out the

present work. It describes the test rig used to implement the experimental

condition monitoring systems, including gearbox system, AC motor, and

DC motor generator. It also highlights the sensor types, their extensions

and the data acquisition card. Consequently the environment, in which

the practical research work was conducted, was similar to an industrial

environment and practical gearbox applications.
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Chapter 5

Sensor Location Optimisation

5.1 Introduction

The results of fault diagnosis system will be affected when many sensors are

located in different positions. Using the same sensors in different locations

will produce different outcome and subsequently the results of overall signal

processing will be affected. Therefore, it is important to find optimum

locations where sensors could be used and to improve overall performance

of the diagnosis system. This chapter discusses the experimental aspects of

the selection of optimum location of sensors. Initially, a general description

is provided, followed by a practical example relating to how to choose the

best location and how to adjust the sensor conditioning system.
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Figure 5.1: Measured signals emitted from gearbox system.

5.2 Sensing Tools Reliability

Consider the gearbox system shown in Figure 5.1. Sensors connected to the

gearbox capture signals such as vibration and sound, which are directly

associated with the operation condition of the gearbox. Accelerometers

and AE sensors are also applied in many different contexts (Staszewski and

Worden, 2001). However, signal-based sensing is influenced by noise from

surrounding environments. The negative impact of signal measurement can

be substantial at the incipient stage of a fault, when the intensity of the

associated vibration is often overwhelmed with the background noise. For

92



5. Sensor Location Optimisation

example, the vibration signal of the monitored inner components of the

gearbox are influenced by the noise of the motor and shaft, which could

lead to unreliable data (Worden and Burrows, 2001). In order to enhance

the quality of sensing information, the high signal-to-noise ratio needs to

be maintained. This can be attained by either selectively adjusting the

sensor characteristics (i.e. bandwidth), sensitivity, or by optimizing the

placement of the monitoring sensors. Taking such measures will ensure

a comprehensive coverage of the signal features with minimal structural

repercussions (Udwadia, 1994).

Sensors could be categorised in two groups; fixed-position sensors (direct

measurement sensors) and free position sensors (indirect measurement sen-

sors). Fixed-position sensors are located in predefined positions on the ma-

chine, according to manufacturer instructions or their functionality. These

sensors are usually mounted directly to mechanical components or installed

close to certain places in order to measure physical quantity (for example,

speed and torque sensors). Conversely, free-position sensors do not have

specific locations on machines and can be installed at any location on the

machine as long as there is no isolation between sensors and the machine

body. Furthermore, there is no specific methodology to determine the lo-

cation and position in certain locations on the gearbox or its tools.

5.2.1 Direct Measurement Sensors

Fixed-position sensors which are located in predefined positions are usu-

ally mounted directly to the mechanical component or installed close to a

93



5. Sensor Location Optimisation

certain place to measure the natural phenomenon such as measuring speed

and torque. Torque and speed measurements are significant mechanical pa-

rameters related to the functional performance of rotating machinery. The

accurate measurement of these values is important for defining a machines

efficiency and for creating operating systems for machines that are both

secure and conducive to long life working and reliable services. Speed and

torque measurement are insensitive to surrounding noise on the gearbox,

because they are directly connected to the signal sources (Mardia, 1974).

They are usually attached to input/output of gearbox shaft which means

that they are placed outside the housing of the gearbox. Therefore, speed

and torque measurement are less sensitive to gearbox state.

5.2.2 Indirect Measurement Sensors

Free-position sensors do not have specific locations on machine and they

could be installed at any location. These sensors are usually mounted re-

motely from desirable components such as vibration and sound sensors

which disturb those functions and general performance. These kinds of sen-

sors are usually influenced by noise from surrounding environment. There

are many factors that cause inaccuracy in indirect sensors measurements.

The sensor location error is one of the most significant sources of inaccu-

racy in values obtained from sensors. Normally, sensors cannot be placed

right at the locations or close to the components they are supposed to ob-

server (Fu and Li, 2009). This causes a difference between the actual signal

at the location of interest and the sensory signal. Adding many sensors can
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resolve this problem, but this comes at a heavy cost, which of course is un-

desirable. Accelerometer and AE sensors are considered as indirect sensors

because there is no specific location to place them.

5.3 Determining Sensor Location

Obtaining optimal sensor location is a significant research area for the

structural monitoring systems of gearboxes. The research challenges should

take into account the number of sensors to be used and the position of the

sensors in order to obtain as much relevant information as possible. It is

uneconomical to install sensors on every part of a structure. The inappro-

priate positional arrangement of a sensor may result in collecting unde-

sirable signals that are overwhelmed by noise. Furthermore, it is likely to

affect the accuracy of fault identification and diagnostic system. There-

fore, in order to guarantee the accuracy and reliability of the monitoring

and identification results of the system, it is essential to select the optimal

position of measurement and number of sensors to design robust gearbox

monitoring system.

There are many existing studies on optimal placement of sensors in many

different monitoring applications such as architectural constructions (build-

ing, bridge) which depend on how to obtain as much instructive infor-

mation possible from limited information feedback (Sarrate et al., 2007).

Researches on sensor optimal location of architectural constructions moni-

toring system are relatively more, whereas investigations on sensor optimal
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placement method on complex machinery such as gearboxes are limited.

Indirect sensors are usually located on the outer surface of gearbox cas-

ing. Mechanical components with different structures (e.g. shafts, gears,

and pinions) are mechanically connected to the gearbox casing in certain

places by bearings. The way in which these components are connected

depends on the structural design of each gearbox. The sensors will pick

up vibration signals, surrounding noise and in addition to the defect im-

pact induced vibrations. At the initial stage, the fault is generally weak in

magnitude and of short duration, due to the small size of the defect. Usu-

ally, indirect sensor are located remotely from the defect; as result of that

the signal attenuation along the distribution route will be reinforced by

environmental noise contamination, leading to poor signal-to-noise ratio.

This makes fault detection at initial stage and during gearbox operations

a challenging measurement duty. In order to solve the problem, the indi-

rect sensors should be placed at the optimal location or close to defect

(Hajnayeb et al., 2011a).

5.4 Proposed Sensor Location Methodology

This study proposes a new approach for locating free-position sensors,

such as vibration and AE sensors, for gearbox systems to perform high

quality of information regarding the characteristic of the gearbox tool. Al-

Habaibeh et al. (2005) established a new method named Initial Optimisa-

tion Procedure (IOP) for optimising sensor position in order to enhance
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the condition monitoring system for the machining process. In this study,

the IOP method will be enhance and applied for gearbox optimum sensors

positioning to improve gear fault detection.

In the first step, sensory data were captured using full factorial method

with three factors which are; three levels for speed and torque, and two lev-

els for gearbox condition. Nine from eighteen experiments of loose bearing

condition used to determine best location of vibration and acoustic emis-

sion sensors. To analyse the collected data, an initial step is proposed that

will involve obtaining representative characteristics by using proper signal

processing methods. The second step will be to extract the optimum fre-

quency value using Spectral Kurtosis (SK) method to obtain useful feature

representing the fault. The last step involved clustering to determine the

optimum location of sensors and understand sensors behaviours in terms

of characteristic and response to fault. Location of sensors for indirect

measurement are illustrated in Figure 5.2

5.4.1 Scheme of Optimum Sensor Location

The IOP procedure is used to establish optimum sensor location for condi-

tion monitoring systems. The procedure as shown in Figure 5.3 consists of

three main steps: the first step is an extreme value of variables test, which

is used to comprehend the behaviour of the required signals in order to

identify the parameters that approximately provide the upper and lower

signal levels. The second step, sensor optimisation, is used to change the

sensor position to an ideal place where sensor is most sensitive to the gear-
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Figure 5.2: Longitudinal section of gearbox illustrating location of direct mea-
surement sensors.

box condition under consideration. This step enables the best positions for

the sensors to be determined. The final step is called regulating signal con-

dition, and is used to adjust the gains and ranges of the signal conditioning

system to guarantee high amplification of the signals without reaching the

saturation point which would guarantee a high quality of signal.

5.4.1.1 The Extreme Value of Parameters Test

Experimentally, 18 tests are conducted with varying speeds and loads from

low to high. It was found that in order to be able to select a suitable initial

position for the sensors and initial readings, it is important to use tried and

tested machine parameters in order to produce the maximum and mini-
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Figure 5.3: Sensor location optimisation procedure.

mum absolute levels of machine signal. An example of such tests is that

the highest vibration is normally generated by the maximum speed, while

minimum speed generates low vibration. Therefore, by using this test, in

the minimum value it is possible to ensure that the sensor can sense the ab-

normal machine condition and the maximum values are used, to make sure

no saturation level is reached. In order to develop a better understanding

of machine signals and find the parameters that give extreme values (i.e.

maximum and minimum voltage levels), the researcher develops a practi-

cal procedure that should help in adjusting the monitoring system. The

procedure of Extreme Value Parameters Test (EVPT) requires a number

of experiments with variety of input factors to find the parameters which

gives the absolute maximum and minimum values of voltage in order to

adjust signal conditioning and identifying sensors location. The EVPT pro-

cedure has been found useful for the initial adjustment of the system and

the sensory position. In order to describe the EVPT of machine condition,
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it is necessary to search for parameters that cause minimum and maxi-

mum signal values by conducting the following experiments for gearbox

condition monitoring system in order to optimize sensors location.

5.4.1.2 Sensor Position Optimisation

By identifying the parameters that generate the maximum and minimum

voltage values, it is possible to reach a better position for the sensors

using the minimum level signal. Following the placement of the sensor

in the new position, a new test is implemented using the minimum level

machine parameters. The place that offers the highest signal levels and

best frequency sensitivity is then selected as the optimum position for

the sensors under the position optimisation process. Following this, the

sensor conditioning adjustment step is performed to guarantee suitable

magnification of signals without saturation.

5.4.1.3 Sensor Conditioning Adjustment

Sensor conditioning is performed separately for each group of sensors which

have the same extreme value parameter. The procedure starts by operat-

ing the machine with the parameters that give absolute minimum level

signals. The gain/rage of the sensors is adjusted to have an absolute out-

put voltage of about 30% of the upper/lower limits. Then the loose bearing

test which gives the high level signal is performed to make sure that the

absolute voltage is between 60% to 70% of its corresponding limit. If the

absolute voltage is higher than 70% there could be a risk of reaching satu-
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Figure 5.4: Sensor location optimisation procedure.

ration during some normal conditions, therefore the gain /range has to be

adjusted to a suitable magnification value as show in Figure 5.4.

5.4.2 Full-Factorial Design of Experiments Method

The DOE method is used to examine and analyse the quality of products

based on some essential design of parameters and levels during the manu-

facturing process. This analysis explores the influence of factors on overall

system performance and the interdependency between factors and levels.

The DOE method has been extensively applied in various industries and
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academic contexts depending on the requirements of the state. The full-

factorial design needs a great number experiments or calculations. How-

ever, it provides high precision results on the relationships between factors

without losing information. The first step for analysing DOE is to deter-

mine the number of factors and the levels that need to be investigated. To

explore the main and interaction effects of factors and obtain the maximum

power density output, this study uses the full factorial method to deal with

the test matrix of two factors, three-levels and one factor, two levels. Table

5.1 lists the design factors and levels considered. The model includes three

factors, including speed, load and gearbox condition (healthy and loose

bearing condition). As the results suggest, runs are necessary to identify

18 sets.

Table 5.1: Full factorial for (23, 12) factors.
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5.4.3 Signal Processing and Features Selection

Sensory data captured from machinery is usually affected by high levels of

noise and other random characteristics. As such, signal analysis is required

to simplify and extract the meaningful information for maintenance and

decision-making process. Filtering and amplifying signals are often used

to minimise noise and to improve signal-to-noise ratios. Time domain and

frequency domain methods, such as FFT are used to analyse the behaviour

and the pattern of measured signals. In this study the FFT spectrum is

applied to select optimum features of the un-healthy status of the gearbox

with high precision. Condition monitoring systems considerably rely on

data analysis and features selection. Feature selection can considerably

improve the accuracy of results for classification model. Kurtosis is used

to extract reliable information from the spectrum of healthy and faulty

data, which are used as features to be fed into classification model for

fault detection. In this research, the specific values of the spectral kurtosis

are obtained as the extracted features for the classification model in order

to determine the best locations for sensors.

5.5 Experimental Work

A test rig is designed to study and to investigate healthy and unhealthy

conditions of gearbox systems under different operating conditions. In this

investigation just indirect sensors are Targeted for study which are ac-

celerometer and acoustic emission sensors. Here, three different locations
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Figure 5.5: Three position of acoustic emission and vibration sensors were tested.

P1, P2, and P3 will be investigated shown in Figure 5.5.

5.6 Results

Optimum sensor position procedure is applied on gearbox system with

loose bearing defect to identify sensitive sensor location to the fault. Three

possible sensor locations are investigated using AE and vibration sensors.

Three sets of experiments are conducted. Each set of experiments are based

on changing speed and load as mentioned in Table 5.1 using full factorial

method. Loose bearing condition has been investigated to identify the best

place for sensor with high sensitivity to the fault. Figures 5.6 and 5.7 show

samples of signals in time domain and power spectrum in three position.

Spectral kurtosis (Sk) features are extracted from the power spectrum to

104



5. Sensor Location Optimisation

Figure 5.6: Sample of raw data in time domain for vibration signal for three
position.

represent each experimental condition. Figure 5.8 shows the spectral kur-

tosis for vibration signals based on three acceleration sensors in three dif-

ferent locations (P1,P2 and P3). The x-axis represents variation of speed

and torque based on the full factorial method outlined in Table 5.1. Pro-

jected curves represent spectral kurtosis of vibration features under loose

bearing gearbox conditions denoted by three carves. Based on the spectral

kurtosis of the vibration signals in P1, P2, and P3 positions have the same

pattern and are significantly influenced by changing the sensor, especially
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Figure 5.7: Samples of power spectrum analysis for vibration data in three posi-
tion.

P1 and P2 positions. Therefore, it can be concluded that SK features of

vibration signals are significant to determine optimum sensor location.

Data sets are captured and analysed using FFT and SK methods in order

to select useful information representing every position separately. Three

curves in Figure 5.9 represent locations in the gearbox for sensor positions

P1, P2 and P3 respectively. From this figure, it can be observed that

P2 and P3 locations are inappropriate to receive signals with high sensi-

tivity compared with P1. It could be argued that the P1 position is the

most sensitive location as it provides the highest amplitude reading for all

combinations of speed and load.

Figure 5.10 shows the SK for AE signals. The circle shapes in this figure

represent feature data of the P1 position, the star shapes represent feature
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Figure 5.8: Spectral kurtosis features of vibration sensor using loose bearing data
for three positions.

Figure 5.9: Spectral kurtosis features of acoustic emission sensor using loose bear-
ing data for three positions.

data of the P2 position, and the square shapes represent feature data of

the P3 position. The data represented in this figure can be easily separated
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Figure 5.10: Clustering for optimum position of acoustic emission sensor.

(linearly). Therefore, it can be seen clearly that the features of SK of AE

signals are sufficient features to determine the sensitive sensor location

for an unhealthy gearbox condition. This tool is used to display the data

sets into three groups relating to sensor locations. It provides a better

understanding of these data sets in terms of sensitive locations for sensors.

Also, according to EVPT procedure, it can be argued that the P1 position

is the best location for the sensor. This is because the SK Features of

acoustic emission give the highest levels compared to other locations (P2

and P3).

5.7 Discussions

A new practical procedure based on IOP scheme is proposed for position-

ing of sensors and signal conditioning adjustment in gearbox systems using
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vibration and acoustic AE. The procedure has been found to be experimen-

tally useful for identifying the optimum position for the sensor conditioning

of the gearbox system. It has also been found that the suggested proce-

dure can indicate the most sensitive position for the sensors among the

initially selected ones to ensure high quality signals and reliable condition

monitoring systems.
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Chapter 6

ASPSG Approach Based on

Taguchi Procedure

6.1 Introduction

This chapter explains and evaluates the Automated Sensor and Signal Pro-

cessing Selection approach for Gearbox system referred as ASPSG using

Taguchi method. It will illustrates how the suggested approach can be

utilised to develop a condition monitoring system for detecting and diag-

nosing faults in gearbox system. The suggested approach can be imple-

mented to develop a condition monitoring system for group of machining

parameters in a systematic way taking into account the cost of the im-

plemented monitoring system. This chapter also introduces the details of

the proposed approach using gradual broken tooth of helical gear fault.

Experimental tests and evaluation of the approach will be applied in this
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chapter.

6.2 Proposed Concept

Although several techniques are proposed in the literature for feature ex-

traction, not all these features techniques always produce efficient features

for all problems. In reality, efficiency of features extraction methods is

highly depending on problem itself. That mean, features extracted utiliz-

ing one method may conduct extremely well for some problems, but may

not perform well for others. The problems (faults) in rotating machinery

especially in gearbox systems are complex and sophisticated, (Roy, 2001).

Therefore, the designers are in charge for selecting suitable feature ex-

traction methods for each problem given manually and individually. Also,

they are required to choose a set of features based on numerous feature ex-

traction methods are available, which is optimal features for each problem

in particular taking into them account the performance of classification

model. It is still remaining a challenge to implement a condition mon-

itoring and fault diagnostic system in real-world due to the complexity

of rotating machinery structures and operating conditions. The designers

must consider all steps mentioned to design condition monitoring and fault

diagnosis systems for gearbox.
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6.3 ASPSG Approach Based Taguchi’s Method

The ASPSG algorithm purpose is to design a condition monitoring system

for rotating machinery using an automated simple procedure to identify

from simplification of the sensory signals matrix SCFs which are most sen-

sitive or they have high dependence to abnormal condition variable such

as faults in the gearbox system. Also, they have less sensitive to other

machine parameters. The SCFs provide essential information for classifi-

cation or detection of machining faults. SCF can be considered as feature

extraction matrix of sensory data from raw sensory signals using a specific

signal processing method, for example the spectral kurtosis value of an

acceleration signal, or the standard deviations of acoustic emission signal.

The introduced approach applies the black box idea where the condition

monitoring system is constructed based on the input and output parame-

ters of the process rather than its mechanics. This procedure (black box)

can be applied for several of condition monitoring systems considering the

application structure. In this way, it is only required to relate some in-

formation in the machining signals (i.e., SCFs) to the identified faults or

conditions. Figure 6.1 shows the main idea behind the black box model

and its applications in gearbox system. The black box scheme should has

capability to transfer the design of condition monitoring problem from be-

ing a specific problem for a specific application to a more general problem

that can be described in generic terms and the solution might be provided

for different groups of processes that have specific criteria in common.

Taguchi’s method of OAs are applied to design a short test, either on/off-
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Figure 6.1: The block box concept and the method it can be applied to diagnose
the fault in gearbox system.

line, to reduce the number of experimental work required; bear in mind the

sensitive of sensory signals to the faults for many of the machine parame-

ters. The dependency values of Taguchi’s OAs are used as measurement for

sensitivity of the SCFs to detect machining faults and to discover the most

sensitive SCFs to the faults under investigation. The condition monitoring

system is designed based on a number of SCFs in order to select the most

sensitive group of SCFs, which represent high dependency on the observed

faults. For example, in this research has shown that due to the damage on

helical gear tooth; there is a steady increase in the RMS values of vibra-

tion signal. Therefore, it can use the changing in the SCF of average RMS

level of vibration signal as the basis for designing a condition monitoring

system. So for example the increase in the average RMS of vibration signal

shows the development of damage in helical gear tooth.

Figure 6.2 represents a structure diagram the ASPSG approach based on

Taguchi’s orthogonal arrays theory. The ASPSG technique is conducted

by installing a number of sensors on gearbox system. The captured sig-

nals from sensors, are then analysed using many common and advance

signal processing methods; after that statistical and mathematical feature
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Figure 6.2: A simplified block diagram of the ASPSG approach using Taguchi
method.

selection and extraction techniques are applied to reduce irrelevant and

redundant information. Self-acting procedure, using Taguchi’s method, is

then implemented to select the most sensitive SCFs to build reliable con-

dition monitoring system. The less significant sensors, signal processing

and feature selection methods are discarded from the designed condition

monitoring system. However, only sensors are associated with signal pro-

cessing and feature selection methods which are discovered its effective.

Therefore, they are kept in the monitoring system. Then, cost reduction

phase is achieved to exclude the sensors that are less utilised due to not

its sensitivity to the event and in order to reduce the cost of the mon-

itoring system whereas maintaining the system’s performance within its
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reasonable range.

6.4 Taguchi Method

Taguchi’s based on OAs is usually applied to eliminate a number of exper-

iments that do not have any impact on the process in order to optimise

the quality of the process (Gunes et al., 2011). The main concept behind

Taguchi’s method is to utilise least number of experiments rather than

the whole full factorial technique to calculate the contribution of each ele-

ment of experiment individually (i.e., independent variable) and compute

the dependency of factors outcomes for each experiments. In the Taguchi’s

method the dependency means that the proportion of contribution val-

ues gained by analysing the variance. The dependency of variable reflects

the portion of the total variation observed in an experiment attributed to

that factor. Taguchi’s method applied in the ASPSG approach based on

the SCFs obtained from the sensory data captured from gearbox system

to calculate their dependencies (sensitivities) on the investigated machine

faults. SCFs represent high dependency on the machinery faults, rather

than the machinery parameters, are potential candidates for use in a mon-

itoring system.

The percentage contribution (P) of a factor (F) can be expressed as follows

(Roy, 2001):

PF =
SSF − VeυF

SST
× 100 (6.1)
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where

SST =

KF∑
k=1

F 2
i

nFi
− T 2

M
b (6.2)

and

SST =
N∑
i=1

y2
i −

T 2

M
(6.3)

Ve is the variance due to the error and is given by:

Ve =
SST −

∑
F SSF

m− 1−
∑

F VF
(6.4)

where y denotes the matrix of SCF, T represent the total of summation

for all SCF values, F denotes the factor of gearbox parameters such as,

conditions of gearbox fault, gearbox shaft speed, gearbox torque, KF the

number of levels for each factor F in this study KF = 3, M represent the

total number of observations where M = 27 in this study, υF the number

of degrees of freedom associated with factor F ; VF =KF − 1, Fi the sum

of observations under the ith level of factor F , and nFi the number of

observations y under level i of factor F . In order for the approach to be

useful, two main assumptions need to be tested, i.e.:

1. Partial number of runs using Taguchi’s method is sufficient to design

the monitoring system for full factorial runs.

2. SCFs with high dependency values to a fault have high sensitivity to

that fault.
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6.5 The Experimental Work

The gearbox test rig shown in Figure 4.1 utilized to collect sensory signals

such as vibration, AE, speed and torque for developing a reliable condition

monitoring system in in order to diagnosis gear damage failure. Gearbox

system includes a three phase AC drive motor which used to drive the

gearbox which in turn is used to lead the DC motor generator all connected

by shafts and couplings. The load was applied through the DC motor

generator. Two speed and torque transducers are attached between the

input/output shafts of the gearbox and the AC motor/DC generator shafts.

The gearbox system contains bearing, shaft and two types of gears, bevel

gear and helical gear but the research will focus on the helical gear. The

vibration signals are recorded by three accelerometers (Kistler 8704B500),

namely SV IB1, SV IB1, V IBS3 are mounted at three different locations

on the housing of the gearbox system which are connected to 4-channel-

couplers (Kistler 5134). AE sensor (Kistler 8152A) is installed on the case

shell of the gearbox which is connected to the AE-Piezotron coupler type

(Kistler 5125), in order to measure sound signal that omitted from gearbox

components.

6.5.1 The experimental methodology and conditions

The gear damage is made on the helical gear tooth surface at different

breakage levels, namely: semi-damage with 25% breakage, moderate dam-

age with 50% breakage and the severe damage with complete breakage of

117



6. ASPSG Procedure Based on Taguchi Method

Figure 6.3: Helical gear with artificially created damage at different severity.

the gear tooth (100% breakage), as illustrated in Figure 6.3. These faults

are applied to evaluate the performance of the proposed method in order

to recognise different fault categories. Figure 6.4 shows the summary of

the complete study.

Signals are collected from all the sensors with a sampling frequency up to

500 KHz. The work done with three speed conditions of the driving motor

(i.e. 200, 500, and 750 RPM) and adjusting load conditions with three levels

applied by the load motor as displayed by torque sensor. The applied load
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Figure 6.4: Summary of the complete experimental work.

on the output shaft of the gearboxes is 2, 6 and 8 Nm. A full factorial

test of the parameters requires 27 runs for every each gearbox condition.

However, the proposed application of Taguchi’s method can reduce the

number of runs to 9 runs using the L9 table (Roy, 2010). For the three

conditions of helical gear of broken teeth progression, the experimental

program involved 9 runs based on OAs L9 and a further L27 full factorial

runs as shown in Figure 6.1 and Figure 6.2. The experimental 9 test is

used for the design process as well as training the neural networks. The

full factorial test is used to test the capability of four neural networks to

recognise the gear conditions.

6.6 Sensory Signal and Signal Processing/Features

Extraction Methods

In literature, researchers have done great efforts to identify diagnostic pa-

rameters with interesting behaviour and high sensitivity to the faults dur-
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ing gear fault monitoring. However, it is still difficult to find which are

the sensitive parameters to the abnormal event in gearbox system; this is

because the sensitive features (SCFs) could be case dependent and sub-

Table 6.1: Experimental layout using L27 Taguchi’s table.

Table 6.2: Experimental layout using L9 Taguchi’s table.
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ject to the mechanical system and operational conditions. In this work,

various features are extracted from each sensor (three accelerometers, one

AE sensor, and two transducers measuring speed and torque). To extract

the SCFs; the sensory signals are analysed using several signal processing

methods and transformed into time and frequency domains. In order to

obtain a better representation with perfect resolution of the signals, fea-

ture extraction techniques are employed to extract 24 SCFs from every

sensory signal as shown in Table 6.3. The SCFs supposed to be real num-

bers in order to use Taguchi’s method to compute the dependency values

(i.e. sensitivity). The signal processing and feature extraction methods are

select based on previous research in gear monitoring. However, any other

methods of signal processing and features extraction can be applied pro-

vided that they produce real numbers. The key objective of these processes

is to simplify the forms of the complex signal for analysis. The feature ex-

traction methods used in the time domain are the average, STD, absolute

maximum, RMS, power, kurtosis, and skew value. In Frequency domain

(FFT); envelope spectrum is applied first then the same features methods

are used as in time domain.

6.6.1 Envelope Spectrum

Envelope spectrum is defined as a curve which envelopes the frequency -

amplitude plane, obtained from Fourier magnitude spectrum. This curve

could carry useful information and facilitate about faults. Envelope spec-

trum analysis can be used for diagnostics and investigation of machinery
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where faults have an amplitude modulating effect on the characteristic fre-

quencies of the machinery such faults in gearboxes. In order to automate

the selection process of the sensitive frequencies to the fault under inves-

tigation; the Envelope spectrum is used as sensory feature for the system.

The values of the envelop spectrum are normalised with respect to fre-

quency amplitude. These features calculated using statistical methods as

shown in Table 6.3.

6.6.2 Wavelet Analysis

The wavelet is used to study diagnostic parameters precisely and examine

their pattern during the tests. Wavelet concept is to divide the main signal

into number of versions by shifted and scaled the mother wavelets. In this

research, the standard deviations of 11 level decomposition of wavelets

are used as SCFs for the proposed monitoring system. For each level, the

number of wavelet signals used to construct the signal equals 2i where

i is the level number. The dilation equation is used to define the basic

scaling function ϕ(x) from which the D4 discrete wavelet original signal is

calculated as following:

ϕ(x) =
3∑
j=0

c(j)ϕ(2x− j) (6.5)

where c(j) represents the wavelet coefficient and j the index. The primary

wavelet signal is computed from the scaling function which is expressed as
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following:

ψ(x) =
3∑
j=0

(−1)iC(i+ 1)ϕ(2x− j) (6.6)

The four coefficients for D4 wavelets are as follows:

c(0) =
1

4
(1 +

√
3) (6.7)

c(1) =
1

4
(3 +

√
3)

c(2) =
1

4
(3−

√
3)

c(3) = −1

4
(
√

3 + 1)

For discrete D4 wavelets transformation the original function can be re-

constructed form the equation:

The standard deviations are calculated from the wavelet levels are used

as SCFs features for the proposed monitoring system. In general, the 4

wavelet SCFs used is denoted as ED1− ED4.

6.6.3 Methodology Process to Verify Applied Ap-

proach

Figure 6.5 shows the block diagram of the proposed method for diagnos-

ing gear tooth surface damage using ASPSG. Firstly, sensory signals are
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captured 25 features described in Table 6.3 were calculated for each of the

nine sensors. Secondly, features from all the sensors are combined, making

the total number of features be 216 (i.e. 24 × 9), and the whole data set

be 648 (i.e. 216 samples/level ×3 levels). Thirdly, feature selection is con-

ducted using the feature selection method proposed in Section 6.4 Finally,

Table 6.3: Time domain features definitions.

Definition Equation

Average TD1 = 1
N

∑N
i=1 xi

STD TD2 =

√∑N
i=1(Xi−TD1)2

N−1

Abs Average TD3 =
(

1
N

∑N
i=1

√
|Xi|

)2

RMS TD4 =

√∑N
i=1(Xi)

2

N

Abs Maximum TD5 = max |Xi|
Skewness TD6 =

∑N
i=1(Xi−TD1)3

(N−1)TD3
2

Kurtosis TD7 =
∑N

i=1(xi−TD1)4

(N−1)TD4
2

Crest Factor TD8 = TD5

TD4

Clearance factor TD9 = TD5

TD3

Shape factor TD10 = TD4
1
N

∑N
i=1|Xi|

Impulse factor TD11 = TD5
1
N

∑N
i=1|Xi|

Table 6.4: Frequency domain features definitions.

Definition Equation

Mean frequency FD1 = 1
K

∑K
i=1 S (i)

VAR of frequency FD2 =
∑K

i=1(S(i)−FD1)
2

K−1

Skewness of frequency FD3 =
∑K

i=1(S(i)−FD1)
3

K(
√
FD2)3

Kurtosis of frequency FD4 =
∑K

i=1(S(i)−FD1)
4

K{FD2
2

Frequency centre FD5 =
∑K

i=1 fiS(i)∑K
i=1 S(i)

STD of frequency FD6 =

√∑K
i=1(fi−FD5)

2S(i)

K

RMS of frequency FD7 =

√∑K
i=1 f2

i S(i)∑K
i=1 S(i)

Energy Ratio FD8 =

√∑K
i=1 f4

i S(i)∑K
i=1 f2

i S(i)

Energy operator FD9 =
∑K

i=1 f2
i S(i)√∑K

i=1 S(i)
∑K

i=1 f4
i S(i)
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Figure 6.5: The relationship between sensitivity value of SCFs and the classifica-
tion error of ANN.

the selected feature subset is imported into ASPSG algorithm as described

in Section 6.3 to diagnose the damage levels, and find which the sensitive

sensors to faults.

6.7 The Experimental Results

The signals obtained corresponding to healthy and unhealthy gear con-

ditions are used to determine the faults. Sampled signal in time domain

cannot be used directly as inputs to classifier. Because, the number of sam-

ples has to be fixed for a given sampling rate; however, it is a function of

speed. So features have to be extracted before classification. Figures 6.6
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Figure 6.6: Examples of the raw signals of vibration data for the four conditions
of the gear.

and 6.7 present examples of the raw and FFT signals of the three condi-

tions on helical gear for one of the vibration sensors. Notice the complexity

of the raw signals and the need for a suitable signal processing methods to

improve and clarify its dependency on gear conditions.

6.7.1 Data Analysis of the Experimental Work

The calculated Sensory Feature Matrix (SFM) for this test has dimensions

of (9 × 24 × 9) thus presenting 9 sensory signals, signal processing meth-

ods and 9 runs of experiments is the L9 OA. For every feature located

in the SFM matrix, the dependency on helical gear damage conditions is
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Figure 6.7: Examples of FFT of vibration signals for the three conditions of
damage gear.

calculated and placed in the Association Matrix (ASM). Consequently, the

ASM matrix for helical gear damage conditions has a size of 9×24, making

a total of 216 SCFs. The dependency coefficients of the ASM are used as

an indicator of the sensitivity of the features to gear conditions. The 216

SCFs are divided into 7 different groups/systems where each system con-

tains 30 features. The features are arranged in a descending order so that

system number 1 contains the features of maximum dependencies while

127



6. ASPSG Procedure Based on Taguchi Method

system number 7 groups contains the features of minimum dependency.

The suggested number of 30 features in every system is based empiri-

cally on the author’s previous experience with condition monitoring and

neural networks. Normally, such a range of inputs provides good identifi-

cation and relatively fast training time. However, other values might also

be used depending on the application and the neural networks topology.

The monitoring systems with each consisting of 30 SCFs, includes SCFs

from different sensors using different signal processing methods.

6.7.2 Selection of the Most Sensitive Feature Based

on Taguchi Method

The sensitivity of SCFs based Taguchi method is significant step in ASPSG

approach to determine relevant and irrelevant sensors and signal processing

methods. The sensitive SCFs should be able to indicate the faults prog-

nostic with a significant change in their values, regardless of the change in

other operating conditions. Figure 6.8 presents the ASM of the conducted

analysis, which represent all SCFs obtained from the implemented sensors

and signal processing methods, indicates clearly the sensitivity of each in-

dividual SCF. The light colour indicates high sensitivity and dark colour

represent low sensitivity as indicated by the colour-map. Each column is

associated with a sensory signal and each row is associated with a signal

processing method. The colour-map of the ASM can provide a clear indi-

cation of the most appropriate sensors and signal processing methods to

monitor the fault under consideration. A SCF can be presented as SCF(S,
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Figure 6.8: The association matrix of the ASPSG approach which indicates the
sensitive sensors and signal processing methods in detecting gear faults using
Taguchis dependency value as a sensitivity measure.

SP) where ”S” is the sensor and ”SP” is the signal processing method. It

can be observed that among the SCFs as shown in Figure 6.8, some are

more sensitive than others. For example, from the general visual observa-

tion the SCF with high sensitivity to the gear damage is SCF(SP2, TD10);

while SCF(V IB2, TD4) is not considered sensitive to the fault. Therefore,

it can be concluded that ASPSG based Taguchi method could help in

finding the sensitivity of the sensory features signal. In order to develop

reliable condition monitoring system with low cost and time.

Each row and column of the ASM of Figure 6.8, could also indicate the av-

erage sensitivity of each implemented sensor and signal processing method.
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Figure 6.9: Average of the most sensitive sensors based on Taguchi method.

Figure 6.10: Average of the most sensitive features and signal processing methods.

Figures 6.9 and 6.10 represent the average sensitivity (dependency) values

for the implemented sensors and signal processing methods respectively.

The results show that, on average, vibration sensor 1 (V IB1), vibration

sensor 3 (V IB3), acoustic emission sensor 1 (AE1) and speed sensor 2

(SP2) are the dominant sensors while FD10, FD11 , TD7 and TD8 are

the most dominant signal processing methods.
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6.7.3 Neural Networks Classification

As aforementioned, four types of neural networks models are utilised to

prove if the SCFs with high dependency can actually offer a greater sensi-

tivity that should consequently result in better identification of abnormal

patterns as shown in Figure 6.11. The neural networks are two supervised

and two unsupervised neural networks implemented. The neural network

architectures included (BP), Radial Basis (RB), Elman neural network

(ELM) and Learning Vector Quantisation (LVQ), as shown in Table 7.5

6.7.3.1 Results for Binary Input Data

Since the 7 proposed systems have 30 SCFs each, the neural networks

implemented here are designed to have 30 inputs, A normalising process

is performed using Equation 6.8 below so that every sensory characteristic

feature will have a value between 0.1 and 0.9 thus making it possible to fuse

Table 6.5: The implemented neural networks.
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and com- pare all the calculated sensory features relative to each other:

f̈ij = 0.1 +
0.8

max−min
(fij −min) (6.8)

where max is the maximum value of the feature fij, min the minimum

value of the feature fij, and f̈ij is the normalised values of the feature fij.

Figure 6.11: The relation between the average dependency and the average clas-
sification error of the neural networks of back propagation.

The neural network parameters are chosen from experience in order to give

a reasonable response; however, it is important to point out that neural

networks are not optimised for this application since the objective here is

to compare systems in order to select the most appropriate sensors and sig-

nal processing methods. The L9 runs are used to train the neural networks

while the full factorial tests are used to test them (i.e. using new 9 runs).
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Figure 6.12: The relation between the average dependency and the average clas-
sification error of the neural networks of elman back propagation.

Although the 27 runs contain different machining parameters, this should

not pose a problem for the neural networks since the SCFs which show

high dependency on the helical gear conditions should show low depen-

dency (sensitivity) to the other machining parameters. Three independent

training and testing processes are performed for each tested system. The

average classification errors of the BP, RB, ELM and LVQ neural net-

works for the three data sets. As shown in the previous figures, there is

a clear trend that systems with high average dependency values produces

less classification error (i.e. better identification). Moreover, for systems

with dependency greater than 45%, the results are steadier and have lower

average variation relative to each other. Therefore, it can be concluded that

the higher is the average dependency of the system, the better and more
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stable is the classification of the pattern recognition system. The ASPSG

approach is found to be very useful in predicting the behaviour of condi-

tion monitoring systems with- out the need to use any iterative methods.

The average classification errors of the four neural networks have proved

that high dependency means better information for the neural networks,

as illustrated in Figure 6.5.

Figure 6.13: The relation between the average dependency and the average clas-
sification error of the neural networks of radial basis.

6.7.4 Gear Damage Classification Based on Most Sen-

sitive Models

Figure 6.16 shows a comparison between helical gear damage for three

stages (and the most sensitive sensors and features for 7 compared mod-

134



6. ASPSG Procedure Based on Taguchi Method

Figure 6.14: The relation between the average dependency and the average clas-
sification error of the neural networks of learning vector quantitation.

Figure 6.15: Average sensitivity for each system

els). The system 1 represent the most sensitive groups of sensory features

to conditions in gearbox system and systems 7 represent the groups of sen-

sory features with less sensitivity. From the Figure 6.16, it can be seen that
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Figure 6.16: The relationship between systems sensitivity and gear damage clas-
sification.

systems numbers 1 to 4 are good classifying models but the other systems

(5-7) are not able to categorise three faults levels of damage gear. On the

other hand system 1 has the best classification compared with the other

systems (2-4) as shown in the Figure Figure 6.15; it be can notice that the

performance of damage classification of the helical gear is decreased grad-

ually based on models sensitivity, it is essential to compromise between

specifications sensors in terms of (type and cost) and performance of gear-

box fault diagnosis system if a cheaper system with good performance is

needed. The experimental results show that the proposed method is very

effective for gearbox fault diagnosis. Although the input features have the

all most the same pattern, it still can be identified by this method with

high accuracy. Therefore, it can conclude that the proposed model has
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more strong robustness of data analysis and better generalization ability

than conventional selection for sensors and Features extraction models for

gearbox fault diagnosis.

6.8 Discussions

Experimental work and analysis shows the capability of the ASPSG ap-

proach. The ASPSG approach provide a scientific basis of the methodology

for selecting the optimal features and signal processing methods which in

turn select reliable sensors to the condition in gearbox system. In this

chapter, three type of faults in helical gear are performed a slight damage

in tooth, moderate damage in tooth and sever damage in tooth. For each

test; ASPSG approach has shown that the most sensitive sensors and in-

sensitive sensors to the gear defect; also it illustrates which more useful

than others in monitoring at specific type of faults. For example, vibration

sensor V IB1 is significant to damage gear, but vibration sensor V IB2 is

insignificant; because the vibration sensors V IB1 is mounted in the top

of gearbox housing and close to bearing while vibration sensors V IB2 is

installed at the side of gearbox housing and bit far from the structure

components inside the gearbox. Hence, the observation can be explained

by the fact that the SCFs that are sensitive to tooth helical gear dam-

age. Each gearbox component has own specific nature and the generated

faults produce different types of signals and frequencies. Therefore, every

sensor extracts different information about the fault. The sensor which ex-

tracts more information is more likely to provide the sensitive SCFs for the
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monitoring system. The results confirm that only a partial number of the

experimental tests are required in order to predict the machining condition

for the full combinations of machining parameters and machining faults.

• investigating the most appropriate sensors and signal processing method

to detect gear faults;

• the reduction in cost of machine and process monitoring systems

without affecting the system’s performance using a suitable fusion

model;

• reducing the development time;
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Chapter 7

ASPSG Approach Based on

Stepwise Procedure

7.1 Introduction

This chapter explains the concept and implementation of the automated

sensor and signal processing selection for gearbox system based on step-

wise. The chapter shows how the ASPSG approach can be used to develop

a novel approach of sensory integration model of a condition monitoring

system to detect gradual gear damage in gearbox system in an effective

way. The chapter introduces the details of the ASPSG approach based on

stepwise method using a gradual broken tooth fault with multi-sensor sig-

nals during a gearbox process. This chapter uses a number of sensors to

examine the suitability of the ASPSG condition monitoring. It covers the

main stages of the ASPSG approach, the association matrix of the damage
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gear test, the sensitivity detection, the selection of the most sensitive SCFs

for a condition monitoring system and the cost of the implemented mon-

itoring system. More experimental work for the evaluation of the ASPSG

approach for other sensors will be described in the following chapters. The

implementation of the ASPSG approach will answer the following ques-

tions:

1. Which is the most sensitive sensors and features to gradual helical

gear damage?

2. How many sensory signals is sufficient to detect the condition of

gearbox system?

3. What is the relationship between the changes in gearbox driving

parameters (speed and load) and the sensitivity of sensory signals?

4. What is the relationship between proposed approach and measuring

sensitivity of CSFs matrix using three techniques FRBS, LR and

PCA?

5. How can we choose between those sensors so that we can design an

efficient monitoring system?
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7.2 ASPSG Approach Based on Automated

Stepwise Method

In this section a novel approach is named ASPSG approach based on step-

wise method which is proposed to develop an effective condition monitoring

for gearbox systems with high-performance, less cost by discarding inef-

ficient sensors, and time-consuming by reducing the number of irrelevant

experiments. The theoretical idea of this approach is highlighted in Chap-

ter 3. In this chapter, the practical concept of the ASPSG approach based

on stepwise procedure is explained in details as follows: Nine experiments

are conducted based on changing the input parameters of gearbox system

(speed and load) under three conditions of gear damage. In each experi-

ment, the monitoring system has n number of raw signals which can be

processed by numerous signal processing techniques. The processed sig-

nals then are used to extract m number of features in order to produce

SCFs which are grouped in matrix named Sensory Feature Matrix (SFM).

This matrix can be calculated for every set of sensory signals, at each

experiment and with different condition of gear damage. For any sensory

characteristic feature, it is possible to study its behaviour in relation to tool

wear. For example, SCF extracted from the Kurtosis value of the V IB1

sensory signal can be presented as SCF (V IB1, Kurtosis). SFM matrix is

used to measure sensor sensitivity to the gear damage using three different

techniques which are linear regression, fuzzy inference system and princi-

ple component. These techniques are used in parallel to select appropriate

technique for calculating sensors sensitivity.
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Figure 7.1: A simplified block diagram of the proposed approach using stepwise
method.

Figure 7.1 illustrates the framework for the practical stages of the ASPSG

based on the stepwise approach. The raw signals which are captured from

sensors are facilitated and processed to provide sensory characteristic fea-

tures are then arranged in the SFM matrix. The SFM can be utilised to

compute the sensitivity of every feature on gear conditions. The sensitiv-

ity weights are then grouped in the Association Matrix (ASM) for further

analysis. After computing the sensitivity of each SCF for each level of gear

damage, another matrix is generated. The ASM contains the gained sensi-

tivity values for the corresponding sensory features. It offers a clear presen-
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tation of the sensitivity values for sensory characteristic feature. The ASM

provides the key assessment for the most appropriate sensor and feature

where each row is associated with a feature while each column is associated

with a sensor. Therefore, the sensory characteristic features with relatively

high sensitivity coefficient are the most sensitive to the gear conditions.

ASMs of nine experiments are averaged for every measuring sensitivity

techniques (LR, FRBS, and PCA).

7.3 The Experimental Work

In this chapter, nine experiments are conducted to examine the behaviour

of the signals for different types of helical gear condition, and to find the

most sensitive sensory characteristic features to the gear damage. Seven

sensors are used in the this study as mentioned in the previous chapter.

Twenty five statistical features are applied which are illustrated in the table

as the following: (TD1 − TD11), represent the features of time domain,

(FD1− FD10) represent the features of frequency domain, and (WD1−

WD4) represent the features of wavelet. The twentieth five features are

used to process seven sensory signals to construct an association matrix

of (25 × 7) which allows the investigation of 175 SCFs for the design of

the monitoring system. Figure 7.2 shows an example of the raw signals of

damage gear for all sensors used in this investigation.
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Figure 7.2: Example of the raw signals of damage gear for all sensors.

7.4 Signal Simplifications

As result of sensory signals complexity such as gearbox, the initial step is to

convert raw signals from its complex shape into a set of simplified sensory

signals named in this study as SCFs. For instance if the gear condition

signals can be converted into a set of SCFs with less variation, so it is

likely to be much easier to recover the significant information which offer

the condition of gearbox based on the alteration in the level of the obtained

SCFs as illustrated in Chapter 3, a sensitive SCF includes a significant

amount of information regarding the state of the process. This should lead
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to better recognition. In this chapter, in order to compute the sensitivity

of the SCFs based on gear damage, two statistical techniques and one

computational intelligent technique are applied as following:

• Linear regression (slope)

• Principle component analysis

• Fuzzy inference system

Then the result from three techniques are evaluated in order to find the

best technique to measure sensor sensitivity. All features are normalised

based on Equation 7.1. Which means, all SCFs have values between 0.1 and

0.9. Therefore, it possible to compare all calculated SCFs relatively to each

other. There is no precise purpose for using this formula of normalisation,

so any other methods of normalisation could be applied. The only reason

is that such values are expected to have better effect on the classification

systems.Moreover, in order to compare the sensitivity values which are

calculated using techniques mentioned early, these values are normalised

as well using the same equation.

x = 0.1 +
0.8

max−min
(xi −min) (7.1)

where x is normalized value, max is the maximum value of SCF feature,

min is the minimum value of SCF feature.
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7.4.1 Selection of Linear Regression Method

Linear regression analysis is one of the most commonly used statistical

technique to sum up or study a group of data. It is utilised to describe the

degree of interdependence between two or more factors. Mathematically,

it can be expressed as fitted a straight line through the centre of axis x,

y of the data points in certain way which leads to the vertical distances

between the data points and the fitted line as short as possible. The slope

of fitted line can be considered as a correlation between the axis x and y

adjusted by the ratio of STD of these parameters. Slope can be explained

as the change in the mean of axis y for unit change in axis x. This means

that there is a distribution of y values at each x and the variance of this

distribution is the same at each x.

In this study, the slope of linear regression method is adapted to measure

the relationship between the SCFs values and the damage gear distribution.

It supposes that the effective sensor should be detects any tiny defect on

gear may occur at any stage of process. Normally, gear damage starts with

slight damage and then gradually increased to become severe damage after

a period of time. Here, SCFs values of three conditions of gear damage

such as slight, moderate and severe are tested. If the values of SCFs are

progressively increased or declined from slight to severe damage status,

this will lead to a change on slope value. When there is large variation

in a positive or negative between SCF values of slight damage and severe

damage. Therefore, this results in a massive deviation in slope line and this

imply that SCF value is high sensitive to the damage. However if there is
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no change in SCFs values between slight damage and severe damage, this

will lead to the fitted line become horizontal and slope to be zero. It infers

that the SCF is low sensitive to the fault as illustrated in the Figure 7.3.

it can be concluded that slope method is a useful technique which can be

used to calculate sensors sensitivity.

Figure 7.3: Examples of sensitivity SCF using slope of linear regression Method:
a) High sensitivity, b) High sensitivity, c) Low sensitivity and d) Low sensitivity.

After calculating all SCFs for all sensors based on LR technique all SCFs

are arranged in an ASM matrix. Figure 7.4 shows a graphical represen-

tation of ASM which contains the sensitivity of SCFs as implemented in

this monitoring system. The ASM presents the sensitivity of each sensor

and feature/signal processing methods to detect the gear faults. Where

rows of the ASM matrix represent feature/signal processing methods and
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columns of ASM denote the sensors. Bright colour indicates high sensitiv-

ity of SCF which means high capability to detect the fault. While dark

colour in the image represents no sensitivity which means sensor is inef-

fective. Therefore, it can be discarded to reduce the cost of a monitoring

system. Gradation of colours from bright to dark is considered as medium

sensitivity. From image, it can be noticed that V IB3, V IB1 and TORQ1

are the most sensitive to the gear damage while V IB2, SP2 and SP1 are

the less sensitive to the fault. The most sensitive feature/signal processing

is TD2, TD3, TD5 and TD6 while low sensitive features are FD1,FD2

and FD4.The other features can be considered as medium sensitivity to

the fault .

Figure 7.4: A graphical presentation of the sensitivity measurement using linear
regression.

148



7. ASPSG Approach Based on Stepwise Procedure

7.5 Selection of Fuzzy Rule Based System

Method

In order to develop an automated monitoring system with high efficiency,

multi-sensors and features extraction methods are required to select most

sensitive sensors and associated features. Also, to reduce the budget of

the monitoring system, the sensors with less contribution to the faults

are need to be removed. Therefore, the measurement of sensor sensitivity

is significant. In previous section a statistical technique (slope of LR) is

conducted to measure the sensitivity and it gives clear presentation for the

sensors that have been used in the study. In this section, a soft computing

technique will be applied to evaluate the sensors and features sensitivity.

Fuzzy Rule-based System (FRBS) is implemented to estimate the SCFs

sensitivity based on three gradual gear damage. FRBS has capability to

transact vague or uncertain sensory signal with efficient way. And it can

deal with raw data that has been captured from reveal sensors. it can ex-

press the gear damage conditions in terms of linguistic variables in place

of the pre-processed sensory signals values. Moreover, it can provide clear

explanations for these expressions to be more understandable to the sen-

sor characteristic features. FRBS are employed in many applications such

as Data mining, smart and intelligent environment image processing and

pattern recognition. In this investigation, a group of FRBSs are used to

evaluate and summarize sensitivity of SCFs features to faults in gear mon-

itoring system. The following steps are used in developing FRBS.
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For each SCF values, fuzzy rules are constructed based on values of the

fuzzy inputs slight, moderate and severe. If all inputs slight, moderate and

severe are the same reading: high or moderate or low than the fuzzy output

is low that means there is no change in SCF values so the gear condition

constant and sensor sensitivity is low as well. Also, if the first and third of

fuzzy inputs are identical and the second fuzzy input is different from other

fuzzy inputs. Therefore, the fuzzy output is low and the sensor sensitivity

is low. As result of that the gear conditions are asymmetrical as shown in

Figure 7.5.

Figure 7.5: Examples of sensitive SCF using fuzzy inference system: a) High
sensitivity, b) High sensitivity, c) Low sensitivity and d) Low sensitivity.

Fuzziffication

In this stage, SCFs set is transformed from its value into fuzzy value by
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appointing the membership degrees for each value of the input and output

data set. SCF values arranged in SFM matrix which is explained in Sec-

tion 3.6.3 are implemented to identify the degree of memberships of each

SCF. These features are represented by three levels of gradual gear damage

(slight damage, moderate damage and severe damage). These levels gener-

ate the input variables of FRBS where SCFs features are calculated based

on statistical features for each sensory signals as illustrated in Table 6.3

in Chapter 7. For example, three SCF (V ib1, TD2) values represents char-

acteristic feature RMS of vibration1 in time domain, each value denotes

level of gear damage.

Three input variables have three membership function µ: µ(Low), µ(moderate)

and µ(High). They have different values based on SCF calculated from

different level of gear damage. The output variable of the RBS named

sensitivity of SCF which donate the rate of sensor contribution to the

fault. The output fuzzy sets are converted their values to linguistic vari-

able similar to input variables. Three membership functions are produced:

µ(Low), µ(moderate) and µ(High). These membership functions are cre-

ated for each SCF. The output variable ranges between [0, 1]. For example,

the membership functions for the inputs and output to evaluate the sensor

and feature sensitivity are illustrated in Figure 7.6.

Fuzzy rules and inference system

The form of IF-THEN expresses fuzzy rules where IF is placed in side

of the rule is named the antecedent, while the THEN is placed in the

side is named the consequent. the rules are constructed by using linguistic
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Figure 7.6: Membership labels for input and output variables for measuring sen-
sitivity of sensors; a) Sight damage, b) Moderate damage, c) Severe damage and
d) SCF sensitivity.

variables. The fuzzy inference system with fuzzy output is illustrated in

Figure 7.7. The fuzzy system inputs can be used any of the options crisp

or values, but the output has to be in fuzzy values. In this study, mamdani

rule is used as fuzzy rule for the output of the inference system. The

antecedents of the rules are slight, Moderate, Severe and CSF sensitivity

respectively. For each FRBS, there are 27 rules with three membership for

each inputs and three membership for each output (m = 3 and n = 3).

The following configuration is employed:
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Figure 7.7: Fuzzy inference system with three inputs and one output.

R
j
i : If Sightj is Ã

j
i andModeratej is B̃

j
i andSeverejisC̃

j
i thenSCFsensitivityj is D̃

j
i

(7.2)

whereR
j
i is the label of ith rule for the SCFsj. Sightj, Moderatej and

Severej are the inputs for the sensor j. SCFsensitivityj is the output,

Ãji , B̃
j
i and C̃j

i (i = 1; 2; .....;m and j = 1; 2; ....; p) are fuzzy labels (fuzzy

values) for inputs and D̃j
i (i = 1; 2; .....;n) is the label for outputs. p is the

number of SCFs data set, m is the number of labels for input membership

functions and n is the number of labels for output membership functions.

For each SCF values, fuzzy rules are constructed based on values of the

fuzzy inputs slight, moderate and severe. If all inputs slight, moderate and

severe are the same reading: high or moderate or low than the fuzzy output
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is low that means there is no change in SCF values so the gear condition

constant and sensor sensitivity is low as well. Also, if the first and third of

fuzzy inputs are identical and the second fuzzy input is different from other

fuzzy inputs. Therefore, the fuzzy output is low and the sensor sensitivity

is low. Because the gear conditions are asymmetrical.

Otherwise, the status of the process is considered as normal. It is also

possible to reach other options if none of the above are satisfied. Therefore,

to reach a decision based on the values of the indices, a fuzzy rule-based

system is used to provide the decision. Sample of fuzzy rules for sensor

sensitivity identification are defined as shown below:

R1: IF Slight is µ(High) AND Moderate is µ(High) AND Severe is

µ(High) THEN SCFsensitivity is µ(Low)

R2: IF Slight is µ(Medium) AND Moderate is µ(Medium) AND Severe

is µ(Medium) THEN SCFsensitivity is µ(Low)

R3: IF Slight is µ(Low) AND Moderate is µ(Low) AND Severe is µ(Low)

THEN SCFsensitivity is µLow)

· · ·

R23: IF Slight is µ(Medium) AND Moderate is µ(High) AND Severe is

µ(High) THEN SCFsensitivity is µ(Medium)

R24: IF Slight is µ(low) AND Moderate is µ(Medium) AND Severe is

µ(Medium) THEN SCFsensitivity is µ(Medium)

R25: IF Slight is µ(low) ANDModerate is µ(Low) AND Severe is µ(High)

THEN SCFsensitivity is µ(High)

R26: IF Slight is µ(Low) AND Moderate is µ(Medium) AND Severe is
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µ(High) THEN SCFsensitivity is µ(High)

R27: IF Slight is µ(High) AND Moderate is µ(Medium) AND Severe is

µ(Low) THEN SCFsensitivity is µ(High)

Figure 7.8 shows a graphical representation of ASM which contains the sen-

sitivity of SCFs implemented in this monitoring system based on FRBS.

The ASM shows the sensitivity of each sensor and feature/signal processing

methods to detect the machining faults. Where rows of the ASM matrix

represent feature/signal processing methods and columns of ASM denote

the sensors. This matrix is similar to ASM matrix of LR. From the graph-

ical image, it can be noticed that V IB3 and V IB1 are the most sensitive

to the gear damage while V IB2 is less sensitive to the fault because it

is placed away from the internal structure of gearbox. The most sensitive

feature/signal processing is TD2, TD3, TD5 and TD6 while low sensitive

features are FD1, FD2. The other features can considered they are as

medium sensitivity to the fault. ASM of FRBS show that the fuzzy system

is more powerful to detect the sensitivity of the sensors.

Based on stepwise procedure investigation, nine experiments with vary

speed and load are tested to find the most sensitive sensors and features at

each experiments and which is reliable speed and load for detecting fault.

It can be noticed from Figures 7.10 and 7.11 that the reliable experiment is

the experiment with speed1 and load3 as shown Figure 7.1 which gives high

detection to the fault compared with other experiments. Load has positive

impact for discovering the fault. Also, load has positive relationship with
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Figure 7.8: A graphical presentation of the sensitivity measurement using fuzzy
inference system.

Table 7.1: Nine of experiment with rrange of speed and load.
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Figure 7.9: Images of nine experiments based of varying of speed and load.

fault identification, If the load increase the fault becomes clear to detect,

taking into account speed should be low. However, speed has negative

impact for identifying the fault. So, if the speed is increased the fault will

disappear gradually. It can be observed from both figures 7.10 and 7.11

that vibration sensors (V IB1 and V IB3) is the most sensitive sensors and

V IB2 is the less sensitive sensor to the fault all experiments. It can be

concluded that gearbox driving parameters such as speed and load are

very significant for detecting gear damage.

Figures 7.12 shows the relationship between nine experiments with varying

speed and load and the average of sensors sensitivity. It can be observed

from image that sensors in the first five experiments (Exp1 - Exp5) have

high ability to discover defect while sensors in experiments (Exp6 - Exp9)
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Figure 7.10: Images of nine experiments based of varying of speed and load.

are facing difficulty for determining the defect. Experiment 3 (Exp3) is

the most reliable experiment which gives high reading for all sensors. From

both figures, we can conclude that the sensors V IB1, V IB, TORQ1 and

TORQ2 is the effective sensors and it can be used to develop a reliable

gearbox condition monitoring for detecting gear damage. Also it can get

rid of ineffective sensors, for example, V IB2, SP1 and SP2 in order to

reduce the cost of gearbox monitoring system.
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Figure 7.11: Nine graph measuring sensitivity based on varying of speed and load.

7.6 Selection of Principle Component Anal-

ysis Method

PCA is considered as one of the multivariate method which is used to re-

duce a number of variables. The purpose of PCA is to find how variables

are associated to each other. PCA is valuable statistical technique used

with more than one variables. As a result of the variables associated with

each other are more likely to have a redundant data. Redundancy means

that some of the variables are measuring data insignificant or repeated

information. Therefore, this redundancy should be reduce which means

reduce the observed variables into a smaller number of principal compo-

nents with maintaining the significant information. Thus, it is appropriate

to adopt PCA component in this research, due to the fact that it is essen-

tial to observe the impact of the variables (e.g sensors) on the data, this
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Figure 7.12: the relationship between sensors sensitivity and varying of speed and
load.

will give clear picture to identify which variable is more effective to detect

the abnormal condition in gearbox system. Here, PCA is applied in this

research to identify the sensitive and insensitive sensors to the faults.

Figure 7.14 shows a graphical representation of ASM based on PCA cal-

culation which contains the sensitivity of a few SCFs implemented in this

monitoring system. The ASM presents for each sensor and signal process-

ing method (SCF) the sensitivity to detect gear fault. PCA shows all SCFs

have not sensitivity the fault, It can be noticed that all image has the same

colour and whole image is dark. it can be conclude that PCA is not reliable

technique to measure sensitivity in this case.
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Figure 7.13: Example of the raw signals of damage gear for all sensors.

7.7 Comparison between sensitivity measure-

ments techniques

In the current section, the (SFM) for this test has dimensions of (7×25×9)

thus presenting 7 sensory signals, signal processing methods and 9 runs

of experiments. For every feature located in the SFM matrix. The sensors

sensitivity to gear damage conditions is calculated and placed ASM matrix

based on three techniques FRBS, LR and PCA. The 2175 SCFs are divided

into 7 different groups/systems where each system contains 25 features.

The features are arranged in a descending order so that system number

1 contains the features of maximum dependencies while system number 7

groups contains the features of minimum dependency. From the Figure,
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Figure 7.14: A graphical presentation of the sensitivity measurement using prin-
ciple component analysis.

it can be noticed that FRBS and LR have found to be achieved higher

sensitivity for all system in comparing with PCA. It can concluded that

FRBS and LR are the best techniques to measure sensors sensitivity in

gear conditions as illustrated in Figure 7.15.

7.8 Discussions

This chapter has investigated the capability of the ASPSG approach based

on stepwise procedure. this approach provides a scientific methodology for

selecting the optimal features and signal processing methods which in turn

select a reliable sensors to the condition in gearbox system. In this chapter
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Figure 7.15: Comparison of the sensitivity measurement using three techniques.

three different faults are investigated slight, moderate and severe damage

in gear tooth. Nine experiments with varying speed and load are tested.

For each test; ASPSG approach based stepwise procedure has revealed the

most sensitive sensors and insensitive sensors to the gear defect; also it

illustrates which more useful than others in monitoring at specific type of

faults. The result shows that vibration sensor V IB1 and V IB3 are signif-

icant to damaged gear. However, vibration sensor V IB2 is insignificant;

because the accelerometer sensors V IB1 is mounted in the top of gearbox

housing and close to bearing while accelerometer sensors V IB2 is installed

at the side of gearbox housing and away from the structure components

inside the gearbox. Also, speed and load values have significant impact on

sensors measurements. The results confirm that only a partial number of

the experimental tests are required in order to predict the gearbox con-
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dition for the full combinations of driving gearbox parameters and gear

faults.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

This thesis addresses the application of several computational techniques

for the diagnosing and predicting gearbox faults in rotating machines.This

thesis has investigated and developed a reliable gearbox condition moni-

toring system and fault diagnosis using a novel approach named ASPSG,

with reduce cost and experimental work. This section gives a clear picture

of the overall structure of the thesis. Chapter 1 has presented an introduc-

tion to the research work. Chapters 2 and 3 has presented the background

and gearbox condition monitoring domain which is under investigation in

this thesis. In addition, the methods of signal processing and data analysis

have been described. The methodology of the proposed approach ASPSG

and the elements of the implemented condition monitoring systems, have

been presented in Chapters 4. Chapter 5 described the general experimen-

165



8. Conclusions and Future Work

tal set-up and the equipment details which have been used in this research.

Chapters 6 has illustrated a new methodology of identifying the optimum

sensor location. Chapters 7 and 8 have presented the implementation and

evaluation of novel approach ASPSG based on two procures (holistic and

stepwise) for developing effective gearbox condition monitoring system.

8.2 Summary

This thesis introduced a novel approach by answering the research ques-

tions from the theoretical and practical aspects. The study and the scien-

tific analysis of the results found that the selection of sensory signals, its

location and features/signal processing methods. This methods can play

significant role to develop reliable condition monitoring for gearbox sys-

tems in terms of high performance, cost reduction and reduce the number of

experiments. The main aim of this research work is to develop an effective

gearbox condition monitoring system to detect the abnormal condition at a

very early stage using a cost reduction methodology with reduced number

of experiments have been conducted. This has been successfully achieved

and examined by applying a systematic ASPSG approach. The ASPSG

approach proposed automated way for selection the most sensitive sensor

and its location and reliable feature/signal processing method to improve

the reliability of conditions monitoring system gearbox. This approach is

performed by using two methodologies (Holistic and stepwise) procedures.

Both procedures will help in the design to find the most sensitive sensors

and signal processing methods for use in a condition monitoring system.
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The approach in developing the system and it is also combined with a new

procedure to reduce the cost of the system without significantly affecting

its prediction consistency and accuracy.

8.3 Concluding Remarks

This thesis has also provided an analysis of the identification and classifica-

tion of sensory signals to design monitoring system of gearbox. Conclusions

for different aspects of the project are presented below:

8.3.1 Automated Simplification Method

This thesis introduce scientific way to process and simplify all raw sen-

sory signals that are collecting from test rig with three different unhealthy

conditions. These signals are analysed using a wide range of statistical fea-

tures and signal processing methods to produce an sufficient number of

SCFs features automatically. The combination of features and signal pro-

cessing techniques are considered as simplification techniques which are

used to reduce the dimensionality and extract useful information about

condition in the gearbox system.

The simplification process is effectively performed for all raw signals using

the selected features and signal processing methods. Three-dimensional

matrix SFM are produced where including all SCFs where x dimension

represents sensors and y dimension represents features and z dimension

denote number of experiments including all possible conditions need to
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be investigated. This step is very significant to identify the sensitivity of

sensor and features. Also it has successfully converted the complex signals

into more arranged and simplified SCFs Clarify important information

about the condition monitoring system. For more information about the

simplification method, see Section 7.3.

8.3.2 Automated Sensitivity Detection Method

The research also introduced an automated methods to measure sensitivity

of SCFs using many statistical and computational intelligent techniques

such as PCA factorial analysis, slope of LR and FRBS. These method

are used to detect the sensitivity of the SCFs to the gradual gear tooth

damage contained in the SFM matrix. It can be seen that the most sensitive

SCFs which have significant change in their levels as result of gradual

gear tooth damage. Also KNN technique has been conducted to evaluate

an automated sensitivity measuring methods. Results shows that LR and

FRBS are appropriate techniques for calculating sensitivity of SCFs and

they give clear presentation for all SCFs features in terms of high and

low sensitive to the faults while PCA technique provide results not clear

compered to LR and FBrS.

8.3.3 The Selection of Sensors and Features Methods

Sensory signal and a feature/signal processing methods are employed to

prove a SCF. If a SCF feature is discovered sensitive to a defect that means

it is relevant sensor and signal processing method and it should be selected
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for the monitoring system. ASM matrix is contain the sensitivity coeffi-

cients were calculated using automated sensitivity detection method. The

ASM is 2D matrix, comprises the sensitivity values of all the SCFs where

columns represent sensors and rows represent features. This are arranged

descendingly where the SCFs with high sensitivity should be at first rows

and SCFs with low sensitivity at the end of matrix. After that ASM matrix

is grouped every 20 SCFs so called systems. The most sensitive system is

system 1 so that contains the first 20 SCFs where they can be selected to

develop reliable condition monitoring system for gearbox. Therefore, the

relevant sensors and features methods could be nominated as the most

sensitive and suitable tools to design and develop the monitoring system.

8.3.4 Cost Reduction

The cost of condition monitoring systems are calculated depending on the

earlier step. The cost are computed by adding the price of selected sen-

sors and their conditioning devices. Cost reduction of reliable condition

monitoring is performed by eliminating sensors which are less contribution

and low sensitive to the faults progression. A limited number of SCFs was

removed from the selected system of SCFs and exchanged with other sen-

sitive SCFs from the sensors which were already in the system. The sensor

utilisation factor is considered as very beneficial technique to identify the

less used sensors within the monitoring system during process. The cost

reduction is discovered as very useful step for all the experiments in or-

der to minimise the cost of the monitoring system without affecting its
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efficiency.

8.4 Final Conclusion

The main aim of this research is to develop an reliable condition monitoring

for gearbox system using a cost-effective methodology with reduced exper-

imental work. The results has shown that this aim has been achieved and

successfully tested. A systematic ASPSG approach, has been designed to

develop an effective sensor-fusion model for gearbox system. This system

will help to find the most sensitive sensors and features/signal process-

ing methods for use in a gear condition monitoring system. The results

demonstrate that the sensor location has significant impact on the infor-

mation quality obtained from sensors and signal processing methods for

the detection of tool condition. The approach is combined with a new pro-

cedure to reduce the cost of the system without significantly affecting its

prediction consistency. The experimental results of this research work have

shown, with clear consistency, that this approach has been successful in

developing a condition monitoring system for gearbox system.

8.5 Directions for Future Works

Further investigation, in which future works could proceed, are listed be-

low:

- To extend the work to develop automated monitoring system for
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gearbox condition using two dimensional sensing tool such as in-

frared camera rather than just using sensors which are considered

one dimension sensing tool. It may bring now useful information for

detecting gearbox condition with less cost and less experiments.

- The proposed methodology has been only examined and evaluated

for one type of fault (gradual gear tooth damage). More experimental

estimations of the approach for other industrial faults such as bearing

damage, and shaft damage, could be done.

- More experimental work is needed to further evaluate the sensitiv-

ity and reliability of the proposed detection method on a different

structure of gearbox system, (e.g. a two stage gearbox) to gain a bet-

ter understanding of the effect of path transmission on the vibration

signal.

- Limited numbers of pattern recognition systems are implemented

and greater investigation on optimising pattern recognition systems

and performance comparisons are still needed. This could lead to

changing the proposed number of SCFs in the designed system.
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Data Analysis and Classification Techniques

A.1 Introduction

This chapter describes various data analysis and processing techniques

which are used to analyse the sensory signals based on condition of gear-

box monitoring system. This chapter also describes pattern recognition

techniques used in developing the model including neural networks and

the novelty detection classification method. Used methods are briefly de-

scribed here to give better understanding of the results applied in the

following chapters of this thesis.

A.2 Design of Experiment

There are several published articles about performance of condition moni-

toring and fault detection system on machinery using different parameters

such as vibration, speed, torque and acoustic emission to determine healthy
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and unhealthy conditions (He and Li, 2011; Guan et al., 2005; Wegerich

et al., 2003b; Sait and Sharaf-Eldeen, 2011). However, there is still dif-

ficulty in determining the most effective parameters which can identify

defect in early stages of the fault’s development. While a machine is in op-

eration, various signals are produced. These signals can give appropriate

information on a machinery condition monitoring and diagnostic system

and they usually contain a high ratio of noise. Also, the captured signals

are measured arbitrary, thereby leading to redundant data and insignifi-

cant information. Therefore, an effective method of design of experiment

that should be used to investigate the input signals which have significant

impact on the efficiency of output signals.

Design of Experiment (DoE) is a statistical technique employed to inves-

tigate the effect of multiple variables simultaneously (Roy, 2001). It is a

method used to explore output performance of machinery process. The

input parameters are scheduled to levels in order to design a number of

structured experiments. These levels have an impact on a predefined out-

put which is then evaluated. The DoE method provides engineers with the

ability to identify simultaneously and individually any of the input vari-

ables that could influence the output results in any design or plan. The

DoE method also gives the extent of interdependence between design ele-

ments thereby helping to turn any standard design into a robust one. More

so, the DoE method helps to identify the sensitivity of output parameters

with respect to the input variables in designs.

For each input variable, a number of levels are defined which represents
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the range for which the effect of the desired variable is to be known. An

experimental plan tells the user where to put each test variables for each

run of the test. The output response is then measured for each run. The

traditional method of designing experimental work is used to varying one

factor and to hold other factors fixed and so on. This method gives un-

acceptable results in a wide range of experimental settings. If interaction

exists between the factors, there is no guarantee that the final set of oper-

ating conditions will be at the optimum level. Mehrban et al. (2006) and

Box and Meyer (1993) mentioned that the full factorial design methods

are powerful tools for determining important factors to improve the sys-

tem performance. Madu and Kuei (1993) applied the fractional factorial

method to analyse the management of maintenance floats. They concluded

that it is an efficient tool for analysing system performance.

A.3 Data Analysis Techniques

Signal processing techniques are mathematical methods to deal with the

analysis of signals in order to enhance the understanding of information

contained in received signals. There are many signal processing techniques

and data analysis algorithms in the literature for the diagnostics and prog-

nostics of machines. More investigations are required to choose suitable

signal processing tools from a number of possibilities. The most common

captured signals in condition monitoring systems are vibration signals and

acoustic emissions (Al-Badour et al., 2011). There are three main cate-

gories of waveform analysis commonly used in gear condition monitoring
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systems. These are described in the following sections:

A.3.1 Time Domain Analysis

Time domain analysis is a method used to analyse the data over a given

time period. It uses the amplitude of gear vibration signals as the source

of time-based information to discover gear damage. The amplitude of the

signal can be used to signal that a fault is present and the periodicity of

the vibration can then indicate a likely source for the fault (Stevens et al.,

2005). Time domain analysis can be considered as a suitable method if

observed vibration signals are periodic and defects generate frequencies

sideband as a result of periodic impulses. The waveform can be detected

in the changes in the vibration signature developed by the defects, however,

it is a challenge to identify the source of the defects.

Usually, when a signal is captured by suitable equipment, it is displayed in

the time domain; where y axis represents amplitude and x axis represents

time. Time-domain analysis is a way of representing or analysing the vibra-

tion signal as a function of time. Ordinary time domain analysis attempts

to extract characteristic features from raw signals, using descriptive statis-

tical features including Mean, Max, Min and Standard Deviation (STD),

Skewness, the Peak Value (PV), RRMS, Kurtosis and CF etc. (Forrester,

1996b; Lebold et al., 2005). The simple statistical evaluation for signals

measured can provide valuable information about potential defects. These

features are simple to measure, however the disadvantage is that they are

sometimes insensitive tools for fault detection. These features are usually
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called time-domain features (Yesilyurt, 1997).

Most mechanical devices produce high levels of vibrations when in op-

eration. When these devices progressively generate defects, this leads to

the level of vibration being raised consistently over time. However, the

fault vibration development is often very small and is difficult to recog-

nise. Therefore, if the proportion of this development is negligible, it may

not be possible to identify a defect symptom from the differences in the

waveform of the signal (Martin et al., 1990).

A.3.2 Frequency Domain Analysis

Frequency domain analysis is considered as common method for vibration

analysis and it has been proved as a valuable method for detection and

diagnosis of defects in machines (Forrester, 1996a). By applying this tech-

nique, the time-domain of sensory signals are converted into their equiv-

alent of frequency components. The result of conversion has shown that

the frequency components often contain more useful information about

machine conditions than the time domain; because of the complex time-

domain signal. Therefore, the signal in time domain can be simplified by

disintegrating a signal into several frequency components. It can then be

easily analysed and focus on specific frequencies which could be significant

and related to fault diagnosis (Tom, 2010). There are different variations

of frequency domain analysis most commonly used and these are covered

in the following sections.
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A.3.2.1 Fast Fourier Transform

Fast Fourier Transform (Fast Fourier Transform ) is a common method

applied to transfer the raw signal into the frequency domain. This method

is widely used for measuring signal which do not fluctuate in spectral

content over time (for example no variations in the rotating speed of the

machine). When machine run with known and fixed velocity the frequency

components of the vibrations generated by each parts in the machine can

be expected. Hence, any alteration occurring in the vibration level within

a specific frequency band can be associated with a specific part. Analysis

of relative vibration levels at different frequency bands can provide some

diagnostic information (Walker, 1996).

Variations in particular frequency amplitude of the pulse or sideband can

be used as good indicator of possible gear damage. Essentially, the dis-

tance of the sidebands relies on periodic attributes of the loading and on

the gearbox path. Therefore, it can be hard to obtain valuable features

directly from vibration spectrum using only the FFT technique. When the

interested signal is low compared to noise ratio and the vibration spectrum

contains a large number of frequency components because of the system

complexity, it becomes difficult to differentiate between the peaks gener-

ated by faults and peaks produced by other system parts. This is the most

difficult issue related to the fault detection technique using FFT (Aherwar

and Khalid, 2012).
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The Fourier transform of a signal x(t) is present as follows:

x(f) =

∫ ∞
−∞

x(t)e−j2πftdt (1)

where f is the frequency variable. The spectral density of a signal per

unit frequency at a particular frequency f is |x(f)|2 , and the total signal

energy in the frequency domain can be calculated by summing up the

spectral density function over all frequencies. The total energy calculated

in both the time and frequency domains is equal that is:

∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x(f)|2 df (2)

A.3.2.2 Envelope Spectrum

Envelope spectrum analysis for signals is widely applied in many fields

(Ho and Randall, 2000a). If the content of the signal to be extracted is not

enough for representing signals of the physical trends a of interest, then

the envelope spectrum method can be applied to select information that

contains several complex components with different features. The main

concept behind the envelope spectrum method is to demodulate low fre-

quency oscillations from higher frequency signals. This method is used to

observe the frequency component of the mechanical tools such as gear or

bearing faults that have a periodical effect. The peak is produced each

time the rolling element has a defect on another part in the bearing or as

a damaged tooth in gear smashes with another tooth. This peak has an
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extremely short period of time compared to the time between two peaks.

Using envelop analysis makes it possible to collect signal from the mechan-

ical device with relatively low energy and it hides vibration signals from

other mechanical parts (Yen and Lin, 2000). This technique is widely im-

plemented so as to detect early the defects in rotating machinery elements

such as gears.

A.3.3 Time-Frequency Domain Analysis

Analysing raw signals in the time and frequency domains offer some in-

formation about the characteristics of the signals for each domain sep-

arately. This means that, the time-domain signal does not include any

spectral information and the time information of converted signal from

time-domain to the frequency-domain is lost. So, both domains have their

restrictions. Furthermore, it must be taken into account that the limita-

tion of frequency-domain analysis is not able to deal with non-stationary

signals, which are very common when machine defects occur.

Currently, widespread research has been performed on the analysis of raw

signals in the time-frequency domain by combining both domains (time

and frequency) to give a full picture of the signal (Peng and Chu, 2004b).

Time-frequency domain are used to represent the energy of waveform sig-

nals in both dimensional functions of time and frequency in detail. It has

been developed to study non-stationary signals, and an attempt to address

the deficiency of time domain and frequency domain analysis. Recently,

there have been many type of time-frequency domain such as Short-Time
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Fourier Transform (STFT) also called (spectrogram) (Yen and Lin, 2000),

Wigner-Ville Distribution (WVD) (Staszewski et al., 1997) and Wavelet

Transform (WT). Generally, the main idea of this domain is to split the

entire waveform of signal into sections with a short time window and then

use a FT to each section.

The fundamental contrast between these techniques is their respective time

and frequency resolutions. Wavelets analysis has been considered as the

perfect method for diagnosing and monitoring the fault in machines. In

comparison with, the STFT technique, the window size is fixed, while

the wavelet transform allows flexible window sizes to analyse different fre-

quency components within waveform signals (Forrester, 1989). Therefore,

WT is a very reliable technique for analysing transient and non-stationary

signals. Abnormal transients generated by early stage gear faults can be

detected using discrete and continuous wavelet transformation (Diwakar

et al., 2012).

A.3.3.1 Short-Time Fourier Transform

STFT uses a sliding window function g(t) that is placed at the centre of

time t. For every t, a time-localised Fourier transform is conducted on

x(t) waveform signal within the window. Then, the window is shifted by

t along the path of the time, and another FFT step is conducted and so

on. Through successive such processes, FFT of the whole waveform signal

can be carried out. This assumes that the part of signal within the window

function is roughly stationary. As a result, the STFT break down a signal
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in time domain into a two dimensional time-frequency representation, and

the frequency components details of that signal within the window function

are discovered. STFT is defined as follows:

STFT (τ, f) =

∫ ∞
−∞

g(t− τ)x(t)e−j2πftdt (3)

where g(t) = e−( t
α

)2 and α is a constant that defines the width of the

window used.

This equation develops the fourier transform of the function F (t) windowed

by g(t) centered at time τ . By continuously performing the same analysis

at multiple translated locations τs, it is possible to gain signal variations

with time.

Time-frequency technique have been applied in many studies for gearbox

fault detection. It gives better understanding for analysing signal com-

pared to time and frequency domains. However, the drawback of the STFT

method is that the window size remains constant during the entire analy-

sis. This technique is ineffective especially when high resolution is needed

to identify surprise changes over time. When the width of the window is

chosen it cannot be adjusted during the transform.

In order to obtain a good resolution for both time and frequency domains

which cannot be attained concurrently, the selection of window size is

performed by a trade-off between the time resolution and the frequency

resolution (Cohen, 1989).

Some gear defects can be discovered via checking the energy distribution
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of a signal x(t) over a time-frequency space. Wang and McFadden (1993a)

have demonstrated the application of combined STFT and the Gaussian

window function for vibration signal analysis.

A.3.3.2 Wavelet Transform

Wavelet Transform (WT) is a mathematical tool used to decompose raw

signals into a different shape, such as a chain of coefficients, in scale of time

(Rioul and Duhamel, 1992). WT analyses are considered as appropriate

signal processing method for monitoring system and diagnosing faults in

machines. By converting a time domain signals into time-frequency space,

so it is possible to identify frequency components in the signal and also

the time duration of each individual frequency component (Staszewski and

Tomlinson, 1994a; Peng and Chu, 2004c). Therefore, The WT is reliable

method to examine vibration signals from faulty rotating machines, where

either large or small scale changes in the vibration may occur if the defect is

distributed or local (Sung et al., 2000). WT is usually utilised to determine

all possible transients in vibration signals which are produced by faults in

gearbox system. it possess multiple resolutions for localization of short

time components, enabling all possible types of gear fault to be displayed

by a single time-scale distribution resulting from the transform (Baydar

and Ball, 2003). Generally, the wavelet transform can be classified into

three techniques: Continuous Wavelet Transform (CWT), Discrete Wavelet

Transform (DWT), and Wavelet Packet Transform (WPT).
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A.4 Feature Selection Techniques

Feature selection is a very significant field in pattern recognition, statis-

tics, and data mining. The major concept behind this topic is to select the

optimal features that can achieve the highest precision results from input

parameters whilst removing useless information which does not affect the

characteristics of the input variable (Gharavian et al., 2013). Feature selec-

tion can considerably improve the accuracy of the resulting classification

model. The feature selections mentioned below are used in our study.

A.4.1 Peak Value

Peak value is defined as the maximum vibration amplitude (Goh, 1995):

PV = xmax(t) (4)

where xmax(t) is maximum amplitude of the signal x(t).

A.4.2 The Root Mean Square

The Root Mean Square (RMS) also known as the quadratic mean is the

measurement of the power content in the vibration signal. The RMS con-

siders features in time domain analysis. This feature is used to handle the

overall noise level, however it will not give information on which element

is deteriorating. It can be used effectively to detect some faults in rotating
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systems (Goh, 1995). Consider a signal x = x1, x2, x3, ······, xM with length

M , the following is the equation for calculating the root mean square:

RMS =

√
1

M
(x2

1 + x2
2 + x2

3 + · · · · ·+ x2
M) =

√√√√ 1

M

M∑
i=1

x2
i (5)

where; M is the number of samples ; x(M) is the amplitude of the signal

for the Mth sample; x is the mean value of the M samples.

RMS is the most common approach in vibration analysis for gearbox con-

dition monitoring. Its working is based on the measurement of the overall

intensity of a wide-band vibration, and calculates an averaging effect which

reduces the influence of incidental impulse vibration.

A.4.3 Standard Deviation

Standard Deviation (STD), and variance are numerical measurements of

distribution of the signal samples set from mean. A minimum STD shows

that the data points are very close to the average, whereas high STD

indicates that the data points are far apart from the average (Goh, 1995).

The standard deviation is the RMS of the signal without the mean value

component. The STD is defined as:

STD = σ2 =
1

M

M∑
i=1

(yi − ȳ)2 (6)

where x̄ is the mean. To calculate the variance, we simply use the following
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expression.

σ =

√√√√ 1

M

M∑
i=1

(xi − x̄)2 (7)

A.4.4 Crest Factor

The Crest Factor (CF) is computed by dividing the maximum positive

peak value by the RMS value of signal. CF analysis is normally used on

the raw vibration signal. It is suitable method to detect the alteration in

the signal waveform pattern as result of impulsive vibration sources such

as broken tooth in the gear (Goh, 1995).

CF =
|x|peak
xRMS

(8)

A.4.5 Kurtosis

In the probability theory Kurtosis is known as a mathematical measure-

ment, used to identify distributing data whether it is in its steady state

or peaked relative to a natural distribution. Data with high kurtosis is

distinguishable with a peak around the mean, and a rapid decrease to

the normal. Data with a low Kurtosis is distinguished by a constant level

close to the mean rather than a spike (Hadjileontiadis and Douka, 2007a).

The normalised kurtosis for distribution y(t) is given by its sample values
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xi, · · ·, xM is measured at times ti, · · ·, tM and can be defined as:

Kurtosis =
1
M

∑M
i=1(xi − x̄)4

( 1
M

∑M
i=1(xi − x̄)2)2

(9)

A.4.6 Spectral Kurtosis

Spectral Kurtosis (KS) was presented initially by Dwyer (1984), to detect

transient signals in sonar applications (Antoni, 2006). Lately, it was reused

as a new method in the signal processing for differentiating between differ-

ent types of signals. It is defined as a statistical parameter which has the

ability to show the spike of a signal with their positions with varying fre-

quency. SK is the value showing how peak signals changes with frequency,

and it is utilised as a signal characterisation in the spectrum. The fault

pattern waveform changes and produces sequence of short spiked reactions

when the mechanical part is deteriorating. Therefore, the SK can be used

as a reliable method for detecting frequencies exposed by machine defects.

Usually these frequency components contain useful fault information. This

information is required to extract optimum frequency value using the SK

method to obtain useful feature representing the nature of the fault. It can

be revealed that the FFT spectrum of faulty bearings contains tiny diag-

nostic fault information, whereas the spectral components obtained by SK

contain the required information about the impacts of repetition frequency

(Hadjileontiadis and Douka, 2007b).
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A.5 Automated Sensitivity Detection

A.5.1 Taguchi’s Based Orthogonal Arrays

Taguchi’s method is used in experimental work to minimise the number of

experiments required to optimise process quality (Ranjit, 1990). Instead of

using a full factorial experimental method where one factor is changing at

each run, Taguchi’s method uses a lower number of experiments to predict

the best quality levels of each factor and to calculate the most signifi-

cant factors in an experiment. The Taguchi method implements specially

constructed tables known as Orthogonal Arrays (OAs). The use of these

tables makes the design of experiments easy and consistent particularly

when applied to experiments with a high number of variables (or factors

in Taguchi’s terms). A full factorial design will identify all possible combi-

nations for a given set of factors. Since most industrial experiments usually

involve a significant number of factors, a full factorial design results in a

large number of experiments.

Taguchis approach complements two important areas. First, it defines a

set of OAs, each of which can be used for many experiments. Second, it

provides a standard method for analysis of the results.

A.5.2 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate statistical tech-

nique applied to reduce the number of variables in a data set into a smaller
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number of dimensions. In mathematical terms, from an initial set of n cor-

related variables, PCA creates uncorrelated indices or components, where

each component is a linear weighted combination of the initial variables.

For example, from a set of variables x1, x1, x1 · · · ··, xn Principal Component

Analysis, and more specifically Factor Analysis groups together individual

indicators which are collinear to form a composite indicator that captures

as much as possible of the information common to individual indicators.

Each factor (usually estimated using PCA) reveals the set of indicators

with which it has the strongest association. The idea behind PCA and FA

is to account for the highest possible variation in the indicator set using

the smallest possible number of factors (He et al., 2007).

The formula for covariance can be defined as follows:

cov(x, y) =

∑n
i−1(xi − x̄)(yi − ȳ)

n− 1
(10)

The covariance matrix cov(X, Y ) is a squared matrix, therefore it is possi-

ble to calculate the eigenvalue and eigenvector as it will indicate the useful

information about the effect of each variable on the data. Eigenvector, v, is

a non-zero vector that after multiplying by the matrix, remain parallel to

the original vector. For each eigenvector, there is corresponding eigenvalue,

λ, which is a factor or real number to scale the eigenvector when multiplied

by the matrix as shown on Equation 10. In other words, the eigenvalue will

define the length of the variable of the raw data. It is possible to measure
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the eigenvalue by the following equation:

[cov(x, y)][v] = λ[v] (11)

For the purpose of measuring the significance of the sensor in current

research, eigenvalue will be used to evaluate the important of each sensor.

The theory is based on the discussion represented in Section .

A.5.3 Linear Regression Analysis

Linear Regression (LR) is used to find the linear equation which best rep-

resents the linear relationship between two variables. The first variable is

the independent variable which could be the degree of tool wear, etc. The

second variable is the dependent variable which is a sensory characteristic

feature that changes according to the change in the independent variable.

The line is obtained by using the least squares straight line fitting. The

least squares line is defined as (Gharavian et al., 2013):

y = αx+ β (12)

where α and β are given by:

α =
M
∑M

i=1 xiyi −
∑MM

i=1 xi
∑M

i=1 yi

M
∑M

i=1 x
2
i −

(∑M
i=1 xi

)2 (13)
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β =
1

M

(
M∑
i=1

yi − α
M∑
i=1

xi

)
(14)

A.6 Computational Intelligence Classifying

Methods

Many researchers have introduced various computational intelligence tech-

niques including FRBS and ANN models to classify the complex, non-linear

data. The following sections a review of relevant techniques in classification

are presented :

A.6.1 Fuzzy Rule Based System

Fuzzy Rule Based System (FRBS) is a particular area of concentration in

the investigation of artificial intelligence and is constructed on the value

of that data which is neither absolutely true nor false (Buragohain and

Mahanta, 2008). The data which operators use in their everyday lives to

base natural decisions and apply general rules of practical information can

and should be applied to those control situations which demand them.

Developed knowledge can be a great way to avoid the unwanted effects

of the system reaction. In the current research, fuzzy logic will be used

to implement the controlling of the sensitivity measuring method to select

the most sensitive feature. A fuzzy logic model with its fundamental input-

output relationship consists of four components namely, the fuzzifier, the

inference engine, the defuzzifier, and a fuzzy rule base as In the fuzzifier,
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inputs are fuzzified into linguistic values to be associated to the input lin-

guistic variables. After fuzzification, the inference engine refers to the fuzzy

rule base containing fuzzy IF-THEN rules to derive the linguistic values for

the intermediate and output linguistic variables (Khoo et al., 2000). Once

the output linguistic values are available, the defuzzifier produces the final

values from the output linguistic values.

A.6.2 Neural Networks

An Artificial Neural Network (ANN) is a soft computing methods that

mimic the human neurons. It contains input, output and a number of hid-

den layers interconnected with each other. The layers consist of nodes (neu-

rons) and weights. The model structure is somewhat a non-linear function

with multiple input and output. The ANN learns the unidentified func-

tion by regulating its weights with monitoring of input and output. This

procedure is usually named training stage of ANN. There are numerous

neural network mode is, have produced based on required applications.

The Feed Forward Neural Network (FFNN) is the most commonly applied

ANN construction in machine fault diagnosis (Hajnayeb et al., 2011a; Sar-

avanan and Ramachandran, 2010). An example of a general structure of

feed forward neural network is shown in Figure A.1.

The application of ANNs in condition monitoring have received a great

deal of attention from researchers. In one of condition monitoring system

stages; ANN are dealing with huge information to define the status of ma-

chine. ANN can also be considered as an effective data analyser for pattern
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Figure A.1: Structure of feed forward neural networks.

recognition and classification method in condition monitoring systems (Li

et al., 2011). The main advantage of using ANNs is the full automation of

the learning and classification processes.

A.6.3 Structure of Applied Neural Networks

Many different neural networks structures have been established to achieve

different learning and processing speed capabilities. Neural networks are

categorised into groups supervised and unsupervised in terms of their learn-

ing characteristics. The decision is greatly dependent on the data obtain-

able from training the networks. If there is a target class or output for

each pattern. Then a supervised neural networks can be used (Rojas et al.,
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2008). However, when the input data do not have target output specified

previously, then unsupervised neural networks have to be implemented.

Unsupervised neural networks such as competitive neural networks use a

special algorithm to group similar patterns in the input data space into

similar output classes. The reasons behind using unsupervised neural net-

works, is to compare the results obtained with other results obtained for

the same system by using supervised neural networks.

In this thesis four types of neutral networks are used to test the proposed

approach for more details see Chapter 7.

1. Back Propagation Neural networks (PB)(Supervised)

2. Radial Basis Neural Networks (RB)(Supervised)

3. Competitive Neural Networks (CN) (Unsupervised)

4. Learning Vector Quantisation (LVQ) (Unsupervised)

The neutral networks parameters are selected from experience to provide

only an convenient performance to compare designed systems and not to

assess the absolute performance of a system. A brief description of four

neural networks have been used as presented in following section.

A.6.3.1 Back-Propagation Neural Networks

A back-propagation neural networks is a supervised neural networks which

consist of n number of neurons connected together to form an input layers,

hidden layers and an output layer. A basic back-propagation computational
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Figure A.2: The neuron of back propagation neural networks.

element is illustrated in Figure A.2. The node or neuron can have several

inputs but only one output.

The back-propagation neural network used in this thesis uses a sigmoid

function in the hidden layer and a liner function in the output layer re-

spectively.

µ(nj) =
1

1 + e−nj
(15)

The most important characteristic of neural networks is its ability to learn

or to be trained. The training or learning process can be defined as a change

in connection weight values that result in the capture of information that

can later be called the supervised training which is done by iteratively

adjusting the weights to minimise the error between the output and the

target.
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Figure A.3: The neuron of radial basis neural networks.

A.6.3.2 Radial Basis Neural Networks

A Radial Basis neural network is a supervised neural network which nor-

mally needs less time for training. The radial basis neural network consists

of an input layer, a hidden radial basis layer and a linear output layer.

The difference between the back propagation and the radial basis neural

network is in the radial basis neuron structure shown in Figure A.3.

A.6.3.3 Competitive Neural Networks

A competitive neural is an unsupervised neural network which uses As-

sociative Learning Rules which allow the network to learn the associa-

tion between the inputs and outputs in response to the data presented to

them. Competitive neural networks belongs to self-organising neural net-

works where such networks can learn to detect regularities and correlation

in their inputs and adapt their future responses according to that input.

A competitive neural network basically learns to recognise similar input
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Figure A.4: The neuron of competitive neural networks.

vectors and to categorise in one group.

The neuron of a competitive neural networks in shown in Figure A.4. The

input vector to the competitive layer is obtained by the negative distance

between input vector p and the Weight vector w adding the bias b for any

layer, the neurons are in competitive, all the output of the neuron will be

zero, except the winner neuron, which its output will be one. When the

weight w of a neuron is the closest to the input vector p, it will have least

negative input and therefore it will win the competition and its output

will equal to 1. The user has to choose the length of the input vector and

the number of groups and then network will group the inputs according

and to the required groups. The competitive neural networks used in this

thesis has three groups and learning rate of 0.1 and 500 training iterations.

More details about competitive neural networks can be found in (Hajnayeb

et al., 2011b),
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A.6.3.4 Learning Vector Quantisation

The advantage of using Learning Vector Quantisation (LVQ) is that it

learns to classify input vectors into target classes chosen by the user. How-

ever, the learning rules are done according to the competitive layers de-

pending on the distance between the input vectors and the weight and not

according to the error between the output and target dissimilar to back

propagation neural networks. Hence, there is no mechanism in the net-

work to dictate whether or not any two input vector belong to the same

category. The LVQ has an input layer, a competitive layer, and a linear

output layer. The competitive layer learns to classify the input vectors to

subclasses while the output linear layer transforms the competitive sub-

classes into the desired target classes . More information about LVQ can

be found in (Saravanan and Ramachandran, 2010).

A.7 Discussions

This chapter explained the theoretical basis of conventional diagnostic

methods based on gear condition and sensory signals to assist the un-

derstanding of results presented in the following chapters. Briefly, it has

discussed the state-of-the-art data processing techniques that are com-

monly used in the area of gear fault detection and diagnosis which in-

cludes, time domain, frequency domain and time-frequency domain. The

use of time-frequency analysis such as wavelet transformation was estab-

lished when analysing sensory data from complex machines such as gearbox
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as this domain provides better results for non-stationary signals as vibra-

tions generated by gear impacts. Moreover, brief theoretical of feature se-

lection techniques are discussed. Finally a overview of pattern recognition

and classification models were discussed which will be employed in this

research study.
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