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Abstract 

This thesis reports the development and analysis of feature based synthesis of 

transmission X-ray images. The synthetic imagery is formed through matching and 

morphing or warping line-scan format images produced by a novel multi-view X-ray 

machine. In this way video type sequences, which periodically alternate between 

synthetic and detector based views, may be formed. The purpose of these sequences is 

to provide depth from motion or kinetic depth effect (KDE) in a visual display; while 

the role of the synthesis is to reduce the total number of detector arrays, associated 

collimators and X-ray flux per inspection. A specific challenge is to explore the bounds 

for producing synthetic imagery that can be seamlessly introduced into the resultant 

sequences. This work is distinct from the image collection and display technique, 

termed KDEX, previously undertaken by the Imaging Science Group at NTU. The 

ultimate aim of the research programme in collaboration with The UK Home Office and 

The US Dept. of Homeland Security is to enhance the detection and identification of 

threats in X-ray scans of luggage.  

A multi-view „KDEX scanner‟ was employed to collect greyscale and colour coded 

image sequences of 30 different bags; each sequence comprised of 7 perspective views 

separated from one another by 1
0
. This imagery was organised and stored in a database 

to enable a coherent series of experiments to be conducted. Corresponding features in 

sequential pairs of images, at various different angular separations, were identified by 

applying a scale invariant feature transform (SIFT). The SIFT was additionally bounded 

by epipolar-line and disparity window criteria. Experiments revealed that around 37% 

of unfaithful matches were removed. This approach was applied to greyscale imagery 

and colour coded materials discriminated views, produced by a dual-energy X-ray 

technique. Two competing approaches namely, direct matching versus material 

segmentation were developed and tested. The „direct method‟ provided relatively 

enhanced matching performance.  

The SIFT matching results are employed by a novel material based morphing to 

synthesise colour coded X-ray imagery. The technique was designed to conserve the 

colour coding scheme employed to represent the three different material classes. Error 

analysis revealed the presence of blurring and ghosting artefacts in the resultant 

synthetic views. In response a competing translation based image synthesis algorithm 

was proposed. This rival method reduced the blurring and ghosting artefacts to zero but 

at the expense of some shape distortion. However, it did provide marginally improved 

performance when the angular separation between generating views exceeded 5
0
.  

The fidelity of the synthetic imagery degraded as the angular separation between 

perspective views was increased. This finding is consistent with the commensurate 

increase in disparity and therefore dissimilarity between perspective views. The best 

fidelity intermediary views recorded in this research occurred at 2
0
, which is the 

minimum angular separation of interest. This result is highly significant as for a given 

3D or KDE imaging performance it can reduce the total number of X-ray sensor arrays, 

collimators and X-ray beams required by a factor of two. 
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Chapter One Introduction 

1.1 Background 

Airport luggage inspection is a challenging task, which involves numerous 

technological and human factors to consider. For example, identifying everyday items 

within complex arrangements and unusual juxtapositions is often difficult or impossible 

using a two-dimensional (2D) projection produced by a basic X-ray machine. This 

situation is compounded by any decrease in the screeners‟ alertness when constantly 

gazing at the display screen and observing similar objects over and over again. An 

informed terrorist will take advantage of all these „natural‟ difficulties to conceal 

weapons, explosives and other paraphernalia of terrorism. Potential threats range from 

dense items such as metallic guns and knives through to less dense objects such as 

liquid explosives, plastic or ceramic guns, glass and wooden sharp items. The low 

density threats can produce very faint responses in the resultant X-ray projections, 

making them very difficult to detect and identify by screeners [1-3] and significantly 

compound luggage inspection problems [4]. In addition, the screening task includes 

several target categories whose full member set is not known (e.g. improvised guns, 

knives and explosives) and is exacerbated by the lack of visual cues to depth in 

an image that has been produced by transmitted radiation [5]. A number of different 

X-ray imaging techniques are used in airports for the inspection of luggage [6-8]; 

however, the workhorse of the security industry is the single view or 2D transmission 

X-ray machine with colour coded materials discrimination presented on a visual 

display.  

The 2D transmission imaging system [9, 10] is fast and cost effective to operate but it 

produces visual images that do not contain any depth information. Owing to this lack of 

visual cues to depth in an image that has been produced by transmitted radiation many 

objects cannot be identified. This is particularly prevalent when there is a significant 

number of overlapping image features. Computer tomography (CT), originally known 

as computed axial tomography (CAT) employs image reconstruction to generate 3D 

images. CT technology can produce very high quality 3D image [11-14]. However, CT 

is costly, large in size and time-consuming in comparison to the conventional 2D 

transmission imaging system. Hence their deployment at airports is limited. Owing to 

fast stream and high volume of passengers at airports, X-ray imaging systems which 
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produce depth information may provide a smaller, faster and cheaper alternative to CT. 

Over the past twenty-years, the University team in collaboration with the Home Office 

Centre for Applied Science and Technology (CAST), formally the UK Home Office 

Scientific Development Branch (H.O.S.D.B.) developed a novel binocular stereoscopic 

X-ray technique [15, 16], to aid the detection and identification of objects in X-ray 

scans of luggage. Imaging technology based on this early work is now commercially 

available. More recently, through on-going collaboration with the CAST and the US 

Department of Homeland Security (DHS), the University team has developed multiple 

view techniques that combine binocular stereoscopic imagery with motion or kinetic 

depth effects (KDE) to produce three-dimensional imagery [16-19]. Motion provides 

a powerful visual cue to depth, which greatly enhances the interpretation of spatially 

complex structures [20] in shadowgram images and identified as kinetic depth X-ray or 

KDEX imaging in this thesis. The practical implementation of KDEX requires multiple 

views of the luggage to be acquired from an arrangement of linear (or folded linear) 

X-ray detector arrays. Each array is illuminated by a thin curtain of X-rays originating 

from a single X-ray source. The views are captured during a linear translation of the 

object under inspection through the interrogating X-ray beams. The ability effectively to 

“look around” an object under inspection using multiple views is particularly 

advantageous in comparison with standard stereoscopic techniques [21-24]. Linear 

“motion parallax” refers to the differential angular velocities of retinal images of points 

moving laterally with the same speed, but at different distances. Therefore, this effect 

can be used to produce motion perspective in which the viewer is able to extract depth 

information from continuous movement occurring in a visual display.  

To produce a smooth image rotation over sufficiently wide angles suitable for security 

screening applications does require a relatively large number of views (up to 32). The 

implementation of such a large number of folded array [21] detectors presents a number 

of serious practical problems for the construction of the X-ray collimators and the 

configuration of the dual-energy sensor modules. This problem is exacerbated by the 

small angular increments, of the order of 1
0
, required between each successive view and 

the physical bulk of the sensor arrays. These physical constraints currently preclude the 

development of a “single pass” KDEX imaging system. In visible light images, research 

work attempts to establish whether image synthesis [25-31] can be used to compute 

intermediary views of sufficiently high visual quality (e.g. stereo vision and film 
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industry). In particular, matching algorithms encountered in visible light scenarios 

might not directly applicable to the x-ray scenario due to the inherent transparency 

property in the transmission X-ray images and its theoretical considerations which have 

been reported in Chapter 2, Section 2.8.   

This research investigates the possibility of replacing some of the X-ray sensor views 

with synthetic images. If adequately high quality synthetic colour images can be 

generated then intermediary X-ray sensors can be discarded to minimise the hardware 

requirements. Together with sensor images, the synthetic images are used to provide 

a sequence of KDEX images. The imaging geometry of the KDEX technique presents 

a number of distinctive and challenging problems for the design of algorithms, which 

relate motion parameters to image intensities and contrast. Earlier work by the 

university team [32] has developed image synthesis algorithms that operate on greyscale 

imagery to synthesise views. The algorithms were designed based on a correlation 

matching approach. The limitations of correlation matching approach have been 

reported in Chapter 2, Section 2.6.1. Also, the prior synthesis algorithms developed by 

the university team were mainly designed to cope only with greyscale imagery and dealt 

with a very limited input data. Due to the small number of sample images, the general 

trends in terms of number of matches and error pixels have not been achieved.   

The research programme reported here is instigated to explore feature matching 

approaches to match the perspective views. Existing image synthesis algorithms are 

developed for visible light images. Due to fundamental differences between visible light 

and X-ray images, those algorithms are not directly applicable to the X-ray scenario. 

Therefore, initial consideration was given to improve the performance of the SIFT; 

a feature matching algorithm in order to deal with the line-scan imaging system being 

used in this research programme. SIFT alteration as well as the boundary conditions 

added on the top of SIFT have formed the basis of what so called optimized SIFT 

algorithm. Full description of  optimized SIFT algorithm is reported in Chapter 3.  

Dependence on the imagery system being used (either greyscale of colour coded), 

different morphing and warping techniques have been pioneered by the author. In terms 

of greyscale a novel morphing technique termed, epipolar based morphing was designed 

to generate the intermediary views. the algorithm is fully described in Chapter 4 of this 
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thesis. In terms of colour coded imagery and since the dual-energy images are colour 

coded according to colour gamut defined for each material class (Metallic, Mixture and 

Organic), the author has also devised another morphing technique which avoids linear 

cross-fade of colours typically accoutred with visible light image morphing techniques. 

The technique is termed, material based morphing and fully described in Chapter 5.  

The performance of the adopted matching algorithm as well as the morphing algorithms 

has been tested by operating a considerable amount of input imagery. Images were 

carefully arranged from simple to very complex structured luggage items. This 

arrangement covers large numbers of the scenarios routinely encountered in X-ray 

screening applications. The performance has also been assessed as a function of angular 

separation between perspective views in which the general trends of the number of 

matches and the number of error pixels was accomplished.  

1.2 Research objectives  

The aim of the research programme is design an improved system for facilitating 

a smooth motion and KDE in a visual display through computational synthesis of 

intermediary views within a sequence of previously captured X-ray views. The 

synthesis algorithm is achieved by utilizing a novel materials discriminating 3D X-ray 

imaging technique for security screening applications. The following objectives support 

and inform the research aim: 

 to assess feature matching techniques to match perspective images and identify their 

limitations when applied to transmission X-ray images; 

 to investigate a new matching criterion suitable for transmission greyscale and colour 

encoded X-ray images; 

 to assess the matching algorithm as a function of the angular separation between the 

X-ray beams employed to produce the input images; 

 to develop algorithms to synthesize greyscale intermediary views and amend the 

algorithm in order to cope with colour encoded X-ray images; 

 to investigate image segmentation based on materials discrimination; 

 to design an image fidelity metric for greyscale and colour coded dual-energy X-ray 

images; 
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 to formulate a comparative study on the synthetic images and ground truth provided 

by calibrated object structures; 

 to evaluate the synthesis algorithm performance as a function of the angular 

separation between the  X-ray beams employed to produce the input images; 

1.3 Research contributions 

The research programme is structured to draw upon the strength of the University team 

in 3D X-ray imaging, visualisation and materials ID. The programme is divided into the 

phases summarised below.  

Phase I 

Conduct a literature review of security X-ray imaging technologies including; X-ray 

line-scan imaging (2D and 3D) binocular stereoscopic imaging and CAT scanning to 

develop an understanding of the technological context of the project. Conduct a more 

detailed review of the following areas: 

 dual-energy (materials discriminating) X-ray imaging; 

 image matching / correspondence problem;  

 image warping and morphing; 

 image synthesis; 

 video processing;  

 image error analysis and quantification; 

Investigate the application of the above areas to transmission dual-energy X-ray images 

and identify limitations and problems as the basis for formulating a new approach. 

Phase II 

 Identify and apply image matching techniques to greyscale KDEX imagery. Identify 

the limitations of existing algorithms and where possible modify their boundary 

conditions to accommodate the imaging geometry of the KDEX technique.  

 Construct and fabricate calibrated structures and organise luggage items to test 

algorithm performance.  
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 Evaluate the performance of the matching algorithm as a function of the angular 

separation between the X-ray beams employed to produce the input imagery. 

 Develop an image synthesis algorithm employing epipolar based morphing and apply 

to the greyscale X-ray image sequences. 

 Design, develop and test appropriate image metrics to establish the fidelity of the 

new algorithm.  

 Assess the synthetic algorithm performance as a function of the angular separation 

between the X-ray beams employed to produce the input imagery. 

Phase III 

 Identify and apply the boundary conditions within the image matching technique for 

colour encoded KDEX imagery. This approach is obtained by first matching the 

whole colour encoded images and then matches them according to their segmented 

material classes.  

 Evaluate the algorithm performance as a function of the angular separation between 

the X-ray beams employed to produce the input imagery. 

 Develop a novel synthesis algorithm employing a material based morphing technique 

to utilise the materials segmentation information provided by the dual-energy X-ray 

discrimination technique. 

 Design an integration method to combine potentially differently coloured spatially 

corresponding regions, in the left and the right perspective views to produce 

an appropriately coloured synthetic view. 

 Design, develop and test appropriate image metrics to establish the fidelity of the 

new synthetic algorithm.  

 Assess the synthetic algorithm performance as a function of the angular separation 

between the X-ray beams employed to produce the input imagery. 

1.4 Structure of the report 

The report consists of seven chapters. 

 Chapter One Introduction introduces the work by summarising the research 

objectives, describing the research contributions and by presenting the structure of 

the report. 
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 Chapter Two Background provides context for the scope of the multidisciplinary 

work and includes; a discussion on X-ray techniques together with an overview of 

the existing image synthesis approaches, followed by considerations that have been 

taken to address the correspondence problem and X-ray transparency; this chapter 

concludes by presenting image warping and morphing techniques used to generate 

intermediary or in-between views.   

 Chapter Three Image Matching Algorithm describes the matching algorithm used 

to locate the corresponding features in a sequence of perspective views, limitation of 

the standard approaches and the proposed new boundary conditions, which take 

advantage of the imaging geometry of the KDEX technique. 

 Chapter Four Greyscale Image Synthesis Algorithm discusses the experiment 

methodology, experiment plan, results and analysis of generating the in-between 

greyscale imagery.  

 Chapter Five Colour Image Synthesis Algorithms the experiment methodology, 

experiment results and analysis of generating the in-between colour encoded images 

for different experiment conditions.  

 Chapter Six Translation Based Colour Encoded Image Synthesis Algorithm 

describes experiment methodology, results and analysis of generating the colour 

encoded synthetic views from single view for different experiment conditions. 

 Chapter Seven Summary, Conclusion and Future Work finally, the contribution of 

this work is summarised and concluded, and the direction of future work is 

suggested. 
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Chapter Two Background 

2.1 Introduction 

The materials in this chapter presents an overview of the technologies concerning the 

X-ray imaging used to generate the X-ray data employed in this research. Also, 

theoretical considerations necessary for the development and investigation of the 

synthetic algorithm presented in the coming chapters are also discussed.  

Some pertinent aspects of X-ray imaging are briefly discussed before the multiple view 

X-ray imaging techniques previously developed by the University team are also 

reviewed. Two different experimental X-ray scanners are presented as the practical 

source of the perspective image sequences used for the algorithm development and 

investigation. The basic principles of image matching techniques and their limitation 

when applied to X-ray imaging scenarios are presented. Image matching is the process 

implemented to „solve‟ the correspondence problem in which features between 

perspective views are identified. The correspondence problem encountered in X-ray 

image sequences is ill posed and similar to its visible light counterpart, although the 

inherent transparency property of X-ray images exacerbates matching problems. 

Finding the correspondences however is only part of the synthesis technique explored in 

this work. 

Image warping and morphing are also important aspects in the image synthesis 

algorithms presented in this work [33-36]. Image morphing is applied to the matching 

algorithm output and used to generate in-between views. The fundamental principles of 

warping and morphing techniques are reviewed and their weakness when applied to 

X-ray images explored and identified. Accordingly, the algorithms are modified and 

boundary conditions are imposed, which help them cope with the imaging geometry 

used to generate the data analysed and presented in this work. Additional factors to be 

considered include the amount of attenuation experienced by the X-ray beam and the 

properties of the X-ray detectors. The polychromatic nature of the X-ray source 

(required for dual-energy materials discrimination) installed in typical airport luggage 

security scanners, is also an important aspect of the imaging chain under consideration 

in this work.  
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2.2 Stereoscopic X-ray imaging 

Since the discovery of X-rays [37] to the present, X-ray imaging has undergone 

constant development, particularly in the field of medicine [38-42], non-destructive 

inspection and security screening [15, 43-48]. In aviation security screening, X-rays are 

routinely used to examine baggage contents to help detect dangerous or illegal items. 

The prime directive for aviation security personnel is to achieve high detection rates 

during airport luggage inspection.  

Previous work by the University team has developed a unique binocular stereoscopic 

X-ray imaging technique, which also enables the screener to discriminate between 

different materials [23, 24, 49]; the resultant colour coded imagery can significantly 

enhance the human observer‟s understanding of the true nature of the 3D scene under 

observation. 

 

Figure 2.1: The schematic of the binocular stereoscopic folded 

dual-energy X-ray screening system invented and developed by the 

University team [24]. 

  

The stereoscopic imaging technique developed by the University team, utilises a single 

X-ray source, a pair of folded linear dual-energy X-ray arrays and a pair of charge 

coupled device (CCD) cameras as illustrated in figure 2.1. The two slit-collimated X-ray 

beams are arranged to irradiate a left and a right folded configuration of linear detector 

X 

Y 

Z 

Pair of folded linear dual-energy x-ray 

arrays 

X-ray source 
Pair of slit-collimated 

x-ray beams 

Object under 

inspection 

Conveyer belt 

Pair of CCD 

cameras 

Image formation 

and display 



Background 

 

Omar Abusaeeda  10 

 

arrays. This geometric technique has formed the basis of several commercially available 

products, manufactured by 3D X-ray Ltd (http://www.3dx-ray.com/). 

2.3 Material identification and coding (Dual-energy X-ray imaging) 

Material discrimination requires measurements of two X-ray signals taken at two 

different X-ray energy levels. Typically, measurements are taken at 75keV and 140keV 

to generate low-energy (Lo) and high-energy (Hi) image sets, respectively. Low-energy 

and high-energy signals are required for colour encoding; each pixel in the resultant 

dual-energy image requires a corresponding energy discriminating X-ray sensor.  

Theoretically, a screening technique that utilises the dual-energy X-ray technique can 

potentially offer a major advance in the ability to distinguish between materials under 

inspection.[50, 51]. Detection of two different X-ray energy levels is a fundamental 

requirement for a dual-energy X-ray system. In this research programme, the system 

implemented uses a single broad spectrum X-ray source and detectors with differential 

energy discrimination (high-energy and low-energy) to differentiate „low-energy‟ X-ray 

radiation at 75 kVp and „high-energy‟ radiation at 140 kVp as illustrated in figure 2.2.  

  

Figure 2.2: Linear sandwiched dual -energy x-ray detector array. 

 

When the transmitted X-ray beam passes through the object under inspection, two 

detector arrays work in tandem to record two separate images of the same object at 

different energies. The low-energy arrays are mounted on top of the high-energy array 

with a copper filter sandwiched between them. X-rays first pass through the low-energy 

X-ray energy detector, and then the copper filter helps to remove low-energy 

components from the spectrum incident on the high-energy sensors. Therefore, 

a dual-energy radiograph can be produced from a single exposure for materials 

discrimination purpose. The relative difference in magnitude between (Hi) and (Lo) 

High energy 

detector array 

Low energy 

detector array 

High pass filter 

Copper filter Incident x-rays (at 90
0
), all 

available energies (high and low) 
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energies is exploited to broadly discriminate an inspected object into three material 

classes as function of atomic number, Z. The organic class Z  10, a mixture class 

10 < Z < 20 and the metallic class with Z  20 [18, 24]. The resultant discrimination 

information is presented to the human operators by colour coding the X-ray images.  

The colour encoding algorithm initially divides the material under inspection 

(pixel-by-pixel) into one of the three main categories: organic, inorganic and metal. The 

organic elements are displayed in an orange colour; the inorganic elements are 

presented in a green colour, while the metallic elements are shown in blue. Sometimes 

the X-ray beam cannot penetrate or achieve a sufficiently intense penetration of the 

object under inspection in which case the pixel is assigned a low intensity grey level 

value and is classified as an indiscriminable signal i.e. no materials discrimination can 

be achieved. Figure 2.3 illustrates the process of coding material discrimination 

information into final colour image. The low and high-energy images appear very 

similar to the human eye, however in the material discrimination process the fine 

difference is exploited to distinguish between the imaged materials: metallic, organic, 

mixture, and impenetrable material. The images are finally displayed together as 

a compound image. In an airport security system, such techniques are used to help 

detect illegal materials such as explosive or narcotics. To formulate the colour encoding 

scheme, three material discrimination curves acquired from organic, mixture and metal 

materials are required [52]. These curves are illustrated in figure 2.4, and are generally 

known as „banana curves‟ in context of aviation security screenings. To produce the 

three materials discrimination curves, a plastic, aluminium (Al) and a metal (Fe) 

step-wedges are employed as illustrated in figure 2.4. Curves A and B are the two 

midpoint curves produced to establish two discrimination boundaries respectively. The 

area below curve B represents the signature region for organic materials, the area 

between curves A and B is the mixture materials‟ signature region while the area above 

curve A is the metallic region.  



Background 

 

Omar Abusaeeda  12 

 

 

Figure 2.3: Colour encode of the dual -energy X-ray images. 

 

Figure 2.4: ‘Banana curve’ for materials discrimination plotted as the 

differential of Hi-Lo X-ray data, against Hi X-ray data. 
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The colour encoding algorithm begins with categorising the raw image data of the 

object under inspection (pixel-by-pixel) into one of the three material classes.  

 

Figure 2.5: Example of an industry RGB colour palette for (a) organic, (b) 

mixture and (c) metallic. 
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The raw image data (typically generated as 12-bit grey levels format) is converted into 

an 8-bit format which allows average of the low-energy and high-energy X-ray data to 

be calculated. Each averaged image data is assigned to the appropriate 24-bit RGB 

(Red, Green, Blue) colour intensity by utilising the industry „standard‟ colour palettes as 

illustrated in figure 2.5. For instance, given an average intensity  value of 45 grey levels, 

in organic material, its corresponding RGB colour intensity would be 68, 46, 18 

respectively, in mixture material, the corresponding RGB colour intensity would be 

11, 76, 41 respectively while in metal material the corresponding RGB colour intensity 

would be 13, 40, 74 respectively. These three examples are highlighted in figure 2.5 (a), 

(b) and (c) in that order. The algorithm for the colour encoding is presented as 

a flowchart in figure 2.6. 

 

Figure 2.6: Flowchart of the colour encoding algorithm.  
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2.4 Multiple view and kinetic depth X-ray imaging 

The University team led the development of the KDEX technique [53, 54] in 

collaboration with the UK Home Office and the US Department of Homeland Security 

(DHS). The technique is designed to capture a sequence of X-ray perspective images to 

provide binocular parallax and or kinetic depth effect imagery in a visual display. This 

approach greatly improves an observer‟s interpretation of a three dimensional aggregate 

of objects. A key aspect of the design is that it accommodates the strict operational 

constrains imposed by the aviation authorities [32, 55, 56]. This research builds upon 

the University team‟s prior work [17], which has been commercially exploited in the 

UK and US. 

Binocular parallax and motion parallax are important visual depth cues. Each cue 

depends upon the parallax in retinal images of spatially separated features. The parallax 

occurs sequentially in motion parallax rather than simultaneously in binocular parallax 

[57, 58]. When an object is rotated about an axis other than the line of sight, the relative 

motions of object features can specify the 3D structure of the object hence producing 

a vivid depth sensation. The kinetic depth effect (KDE) is a special case of motion 

parallax. KDE was first analytically investigated (and named) by Wallach and 

O‟Connell [59]. This effect involves the rotational motion of objects, rather than 

observers; a figure looks flat when it is stationary and appears to have depth once it 

moves. They concluded that KDE requires: “…the shadows cast to display contours or 

lines which change their length and their direction simultaneously”. The resultant depth 

effect is compelling and the observer can work out the shapes of certain objects with 

remarkable accuracy from the shadows during a full or partial rotation. KDEX employs 

novel line-scan techniques, utilising a relative linear translation of the object under 

inspection with respect to the X-ray source sensor configuration, to capture and display 

imagery exhibiting KDE. The resultant image sequence can also be displayed as 

a dynamic binocular stereoscopic sequence. The ability to look around objects under 

inspection afforded by the KDEX technique enables the spatial segregation of complex 

overlapping structures that are commonly found in cluttered X-ray images. As a result, 

threat objects that are camouflaged by local masks in some views may become visually 

prominent in other views. The practical implementation of the technique requires 

multiple views of the luggage to be acquired from an arrangement of linear X-ray 

detector arrays. 
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Two different experimental X-ray machines have been used to produce the image 

sequences utilised by the University group. Each system has a high degree of utility for 

experiments and is described in the following Sections but each is very different in 

terms of their physical construction and imaging capabilities. In this research all the 

image sequences are produced by the X-ray machine described in Section 2.4.2, which 

employs an inspection tunnel capable of imaging typical size suitcases. 

2.4.1 Flatbed multiple view X-ray scanner  

Initial research [19] concentrated on simulating complex multiple line-scan X-ray 

source configurations with an X-ray image intensifier system (see figure 2.7). In order 

to store electronically the shadowgram information projected onto the input window of 

the image intensifier, the output window is optically coupled to an area array camera. 

Thus as the object under inspection is translated through the X-ray beam, image 

information is produced by collecting and storing data from the selected photosite 

columns on the charge coupled device (CCD) array.  

 

Figure 2.7: Line-scan principle utilising a) image intensifier X-ray system 

b) linear X-ray detector array system [32]. 

The selected column on the area array maps to a line on the 9cm diameter input window 

of the image intensifier. In this way a novel line-scan system can be produced. To 
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produce motion parallax in a sequential display of images requires that each successive 

pair of perspective images exhibit parallax as a function of range from the perspective 

centre (i.e. X-ray point source) of the imaging system. The practical system within the 

University‟s Laboratory is limited to imaging relatively small objects but the concept is 

scalable. 

2.4.2 Folded array multiple view X-ray scanner  

The multiple view dual-energy X-ray scanner employed to produce the imagery for this 

research is illustrated in figure 2.8.  This scanner utilises a „folded‟ linear X-ray detector 

array (FLXDA) to image typical luggage. The resultant images are stored in a greyscale 

image format with an 8 bit intensity range.  

 

Figure 2.8: (a) Depiction of the experimental system with a single folded 

array in multiple positions and (b) Photo of the experimental system in the 

Imaging Science Group’s Laboratory at Nottingham Trent University . 

 

This X-ray machine employs a 140 kVP polychromatic X-ray source and a FLXDA 

depicted in figure 2.9 [17, 22, 53, 56, 60, 61]. The X-ray source/sensor assembly may 

be rotated about the conveyor belt to enable the collection of the multiple views at 

different angular positions. In this way the image output of a single pass multiple view 

scanner can be simulated.  
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Figure 2.9: Modular configuration of the folded linear (dual-energy) 

X-ray detector array [32]. 

 

The experimental machine was designed by the University team for the investigation of 

depth from motion (or kinetic) binocular stereoscopic imaging. It was originally 

designed by the University team and constructed at the Home Office Ionising 

Laboratories at Sandridge UK, before being transported to Nottingham. 

2.5 Image synthesis and sensor eliminations 

In this research programme synthetic perspective images are introduced into a sequence 

of sensor derived images to produce smooth motion. The resultant image sequences can 

be displayed in various visual modes, which include KDE only or in a combined 

binocular stereoscopic and KDE display. The production of each synthetic image 

negates the requirement (cost, bulk and complexity) for a corresponding X-ray detector 

array and its associated X-ray collimators. Also, this approach reduces the total amount 

of X-ray flux required per inspection. 

Image synthesis may be classified broadly as model based or image based. Model based 

techniques are designed to compute and manipulate a 3D mathematical representation 

of the scene. Such techniques computationally reconstructed other viewpoints, as 

required, and are highly computationally intensive [31]. Image based techniques employ 

matching processes to identify correspondences between two or more input images that 

refer to the same scene point [62]. Given two different perspective images, a pixel in 

one image is the corresponding pixel in the other image if both pixels are projections 
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along the lines of sight of the same physical scene element. Consequently, if both pixels 

do not lie on the same line, then one of the images or both original images need to be 

rectified. Image rectification is the process used to facilitate the analysis of a stereo pair 

of images by enforcing this two view geometric constraint. For a pair of related views, 

the epipolar geometry provides a complete description of the relative camera geometry. 

Once the epipolar geometry is determined, it is possible to constrain the match for one 

point in one image to lie on a line (the epipolar line) in the other image and vice versa. 

In the dual-energy X-ray scanner described in Section 2.4.2, the object under inspection 

is constrained nominally by the epipolar line being parallel with the motion axis or 

X-axis in the display; therefore, no image rectification is required. Once the 

correspondence points between given pairs of images are known, the world coordinates 

of each image point can be reconstructed by image interpolation. In this research, the 

image based approach is adopted to synthesize new images from a sequence of originals 

obtained from an X-ray scanner.  

One prerequisite of an image synthesis algorithm is to solve the correspondence 

problem. However, the correspondence problem is inherently ill-posed, and is 

practically unsolvable. This problem may be exacerbated by the transparency property 

of X-ray images. Such conditions imposed by the X-ray images have instigated the 

original research and novel algorithm development undertaken at the University as 

reported in this thesis. Prior work by the University team focused on analysing pixel 

based matching techniques to locate correspondence in X-ray images [32, 55, 56]. The 

results obtained thus far have been promising and formed an integral part of the 

development of the KDEX technology.  The US DHS has released funding to industry 

in the US to build and trial prototype KDEX systems. This encouraging outcome 

spurred on the University team to consider an alternative approach, which may act alone 

or be integrated within the existing algorithm to improve further refine the „synthetic 

approach‟. In this research programme, when adequately high quality synthetic images 

are generated then in-between sensors and their associated hardware may be discarded. 

In practice, this approach can also enable relatively bulky sensors/collimators to be 

employed when otherwise they could not be mounted close enough to satisfy the 

geometric requirements of image capture and display. 
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2.6 Multiple view stereo matching 

Stereo matching is the problem of identifying correspondences between two input 

images obtained from different station points. It is a fundamental computer vision 

problem with a wide range of applications [63-66], and it has been extensively studied 

in the computer vision field for decades. Despite the advances in computing and 

electronics technology, the correspondence problem remains relevant and challenging 

[67-69]. There are two basic techniques widely used, correlation-based, and 

feature-based methods. Correlation-based methods attempt to establish 

a correspondence by matching image intensities while feature-based methods attempt to 

establish correspondence by matching a sparse set of image features. Each approach is 

discussed in the following text. 

2.6.1 Correlation based methods  

Correlation based methods usually rely on statistical correlations between local intensity 

regions to enable similarity measurements [70-74]. Typically, they implement various 

types of statistical correlation between colour or intensity patterns in the local support 

windows [75]. By using local support windows, image ambiguity is reduced efficiently 

while the discriminative power of the similarity measure is increased [72, 76]. The 

method has the advantage of directly producing dense disparity maps. However, it has 

the following disadvantages. 

 Correlation based matching methods tend not to work well when the viewpoints are 

very different. 

 They assume that all pixels in a correlation window have the same depth. However, 

correspondences are identified by comparing this local window of pixels. Yet, this 

assumption is not valid at depth discontinuities and wide baseline images. 

 Most of the correlation based matching methods tend to blur and remove small 

details or objects. 

 Window size must be carefully chosen. Too small a window may not capture enough 

image information and increases noise, while too large a window tends increase the 

variations in image intensity.  
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2.6.2 Feature based methods 

Feature matching can be defined as the process of matching corresponding points 

between two or more images of the same scene. It is worth noting that in the literature 

a feature may refer to a point, keypoint or region of interest. It is fundamental in many 

computer vision applications, including object recognition and tracking, recovering 

camera motion, image registration, 3D reconstruction and stereo correspondence [77]. 

Feature based methods match special features of two images, such as corners or edges 

to produce a sparse disparity map [67, 78-80]. This method matches more features, 

rather than matching textured regions in the two images [81]. Feature based methods 

provide more precise positioning for the matching results and are more reliable than 

correlation-based matching when good image features can be extracted from the scene 

[82]. They are also faster than correlation based methods, and relatively insensitive to 

illumination changes. Feature based methods are widely used in wide-base stereo image 

matching [28, 83, 84]. 

A vital aspect of feature matching is the detection and description of interest features. 

The detection of interest features determines stable points that are to be matched, and 

the description of interest features involves creating a unique descriptor for each point 

by describing the point and the region around it [85, 86]. It is important that a feature‟s 

descriptor be as distinguishable as possible so that it can be discriminated from 

descriptors of other features in the same image. It is necessary that a feature‟s descriptor 

be as stable and robust as possible so that it can be matched to descriptors of features in 

transformed images while allowing for various image transformations due to change in 

camera pose, object movement, difference in lighting and even image deformation. 

Correspondences between two images may then be established by matching the 

descriptors of both images [87]. 

Numerous variations exist on the computation of interest points matching. It can be 

traced back to the work of stereo matching using a corner detector [88], which was later 

improved by Harris and Stephens [89, 90]. Consequently the Harris corner detector has 

since been extensively used for various other image matching tasks. The approach was 

presently expanded to match Harris corners over a large image range by using 

a correlation window around each corner to select likely matches [91]. Moreover, Harris 

corners were used to select interest points, but rather than matching with a correlation 
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window, they used a rotationally invariant descriptor of the local image region. This 

allowed the matching of features under arbitrary orientation change between the two 

images [92]. Additionally, it was demonstrated that multiple feature matches could 

accomplish general recognition under occlusion and clutter by identifying consistent 

clusters of matched features [93].The local feature approach was extended to achieve 

scale invariance and more distinctive features whilst being less sensitive to local image 

distortions such as 3D viewpoint change [94]. 

In recent times, there has been an inspiring body of work on extending local features to 

be invariant to full affine changes [81, 95, 96]. However, none of these approaches are 

yet fully affine invariant, as they start with initial feature scales and locations selected in 

a non-affine-invariant manner due to the prohibitive cost of exploring the full affine 

space. Most recently, there has been an impressive effort on expanding the approach of 

local feature descriptor [97-101]. While this method is not completely affine invariant, 

a different approach is used in which the local descriptor allows relative feature 

positions to shift extensively with only small changes in the descriptor. This approach 

produces descriptors which are consistently matched across a substantial range of affine 

distortion. It also makes the features more robust against changes in 3D viewpoint. This 

approach not only has the advantages of extracting more efficient feature, but it also 

able to identify larger numbers of features. Furthermore, Principal Components 

Analysis SIFT (PCA-SIFT) was introduced [102-104]. This technique accepts the same 

input as the standard SIFT descriptor. The advantage of this approach is the size of the 

descriptor. It produces a more compact descriptor in comparison to standard SIFT. On 

the other hand, it tends to blur the edges [105]. Another local feature descriptor named, 

Speeded-up robust features (SURF) was proposed [106-108]. SURF is mainly designed 

for real time application where the speed is the main concern. SURF performance is 

similar to SIFT but it is not invariant to rotation and illumination changes [105]. The 

choice of methods is informed by the computer vision application under consideration 

[80, 101, 109-117]. It has been demonstrated recently that features identified by SIFT 

are highly distinctive and invariant to image scales and rotations, and partially invariant 

to a change in illumination [118].   

It is implied that using multiple images might help to solve some problems associated 

with stereo matching. However, more information may also carry the risk of increased 
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uncertainties. Some common problems encountered by stereo matching algorithms that 

apply feature based method for visible light images include repeating features, 

overlapping and discontinuity. In addition, X-ray images exhibit modified versions of 

these problems. The following sub-sections are organised to illustrate the advantages 

and disadvantages of employing multiple images for addressing the remaining three 

common problems. 

2.6.2.1 Repeating features  

The images in figure 2.10 provide a good example of repeated features, which are 

commonly found in luggage scans, where 2.10 (a) and (b) are the images obtained at -2
0
 

and 2
0
 respectively. To study the effect of local similarity, consider the repeating 

features Object 1 and Object 2, illustrated in figure 2.10 (a) and (b). By applying the 

stereo matching criterion on this pair images, on one hand, and as these features are 

clear enough, the opportunity to match them is significant. 

 

Figure 2.10: Repeating features are present in ROI extracted from two 

different X-ray images produced at (a) -2
0
 and (b) 2

0
 respectively. 

 

On the other hand, unless special care is taken, Object 1 would have an equal 

opportunity to match with Object 1, Object 2 or other similar features.  As a result, an 

error in matching could occur. This finding is exacerbated when considering 

overlapping structures commonly found in cluttered X-ray images. 

Object 2 

Object 1 Object 1 

Object 2 
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2.6.2.2 Overlapping structure 

In this research programme the term „overlapping structure‟ refers to structures from 

different discrete objects, which overlap in the resultant image. Over the past decades, 

extensive research has been devoted to solving the problems produced by overlapping 

structures, which destroys the parallax information associated with foreground or 

background occluded objects. The nature of occlusion in X-ray images is different from 

visible light images as figure 2.11 shows. The transparency property of the X-ray 

images presents a unique matching challenge. Common matching constraints derived 

for visible light images such as uniqueness, smoothness, ordering constraints may not 

translate well to transmission X-ray images. Acquiring images from multiple 

perspectives can improve the probability of obtaining unoccluded ray paths from at least 

some the perspective image sequence. In this case, threat objects, which are 

imperceptible in some views, may become visible in other views.  

 

Figure 2.11: A hypothetical example of a square object, a circular object 

and a triangular object, where (a) represents the visible light image and 

(b) the X-ray image. 

(a) (b) 
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Figure 2.12: Effect of using multiple images for overlapped features 

where (a) and (b) are images generated at -2
0
 and 2

0
 respectively. 

 

Figure 2.12 illustrate images obtained at -2
0
 and 2

0
. Object 1 could be easily identified 

by applying stereo matching. However, Object 2 would be problematic as it is visible in 

one view while it is camouflaged in other view. Object 2 is partially occluded in the -2
0
 

image but it is fully overlapped by other object in the 2
0
 image. 

2.6.2.3 Structural unsharpness and local contrast 

Unshapness refers to the inherent blurred appearance of edges in transmission images. 

This effect is a natural consequence of transmission imaging and is the result of the 

variation in ray paths, especially near object boundaries, through an imaged object. 

Typically, structural unsharpness may be observed near the boundaries of imaged 

objects. The effect tends to limit the performance of the stereo matching algorithms. 

Local masking conditions such as the contrast between the feature and the background 

“i.e., local contrast” is an important consideration in solving the correspondence 

problem. The contrast is determined by the differential amount of X-ray attenuation 

produced by the two or more objects, which is a function of material compositions and 

thickness. In practical cluttered conditions an infinite number of different combinations 

of foreground and background features/objects can occur. It is therefore, very difficult 

to surmise any „typical‟ scenario on which to test the performance of stereo matching. 

2.7 Common matching constraints 

There are many constraints employed in stereo matching. The common ones are briefly 

described in the following list. 

(a) (b) Object 2 

Object 1 
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2.7.1 Epipolar 

Epipolar geometry is the geometry of stereo vision. The epipolar line is defined as the 

intersection of the epipolar plane with the image plane [119, 120]. The epipolar line, in 

practical terms, is the image in one camera of a ray through the optical centre and object 

point of interest in the other camera. In such a scheme a corresponding point must lie 

somewhere along this epipolar line; thus reducing the potential 2D search space into 1D 

search. The epipolar constraint can be reliably applied only after the geometry of the 

system is known and a series of corresponding epipolar lines in both stereo images is 

estimated [121, 122]. Calibration is used to make two images satisfy this criterion [91]. 

The epipolar lines are of fundamental importance in the design of a KDEX system as 

they describe the motion trajectory of features as a function of depth.  

 

Figure 2.13: Interpretation of the epipolar geometry constraint. 

 

Careful consideration of the epipolar geometry enables an efficient search for 

corresponding points in stereo matching. With reference to figure 2.13, suppose the 

point X is imaged in two views, at x1 and x2 respectively. Assuming that x1 is known 

then the position of the corresponding point x2 must lie along the epipolar or line ab. It 

can be appreciated from figure 2.13 that the epipolar lines are formed at intersections of 

the epipolar plane with the image planes. In terms of identifying stereo correspondences 
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the benefit is that the search for points corresponding to x1 need not cover the entire 

image plane but can be restricted to a geometrically defined linear space.  

2.7.2 Disparity window 

The disparity window defines the limits in the x and y-axes for a search space within 

which all matching criteria can also be applied. The disparity window is calculated by 

considering the geometric relationship between each overlapping discretised image 

within the inspection volume. The 3D sampling of the inspection volume can be 

represented by a voxel model, where each voxel has a unique (x,y,z) coordinate position 

[56, 123]. Figure 2.14 illustrates a voxel as a function of the angle  between the 

intersecting lines of sight of two X-ray sensing elements. The size of the voxel in the 

depth (or z-axis) is Z, and X is the motion axis resolution (horizontal in the display).  

 

Figure 2.14: Dependency of voxel dimensions on  and disparity window 

search along the motion axis.  

 

It is readily appreciated from the simple geometry that when the angle  increases, the 

minimum detectable increment in object space Z decreases. However, in binocular 

stereoscopic systems the maximum allowable  is limited by the maximum permissible 

parallax in the resultant display, which in turn is determined by the maximum disparity 

that can be fused by an observer comfortably [124-126]. Voxels that have the same 

z-axis coordinate value may be simplistically represented as an iso-disparity surface or 

depth plane. In the experimental KDEX scanner employed in this research programme, 

  
 

Right 

perspective 

view 

Left 

perspective 

view 

Z 

 

 Z  

Right 

perspective 

view 

Left 

perspective 

view 

Point of interest 

Disparity window 

X 

Y 

Z 

  increases 

X 



Background 

 

Omar Abusaeeda  28 

 

the disparity window is nominally limited to a 1D search space for corresponding points 

along the motion or x-axis. The design of KDEX systems have been published in the 

literature [53, 54]. The design necessarily employs the inspection chamber‟s far and 

near boundary to coincide with maximum positive and negative disparity, respectively. 

A smaller Z will provide enhanced depth resolution and can be accomplished by 

employing a larger convergence angle [24]; the resultant disparity window will also 

increase in size. The implication for stereo matching is that an increased search space 

coupled with increasingly dissimilar imagery will tend to decrease the likelihood of 

identifying corresponding points.  

2.7.3 Other constraints 

There are other matching constraints which might be applied in stereo matching. The so 

called uniqueness constraint is one of them [127, 128] where pixels, from each of the 

two images, are forced into a one-to-one mapping. Also, the compatibility constraint 

assumes that intensities of a point in the first and second images only change a little. 

The intensities may not be exactly the same due to many different effects such as the 

light source and surface normal, but the difference is expected to be relatively small. 

Geometric similarity is also considered as a potential constraints in which the shape of 

corresponding features do not change too much. 

2.8 Theoretical considerations 

Since this research programme dealt with multiple view X-ray imaging, it is important 

to highlight some theoretical considerations, which contribute to understanding why 

visible light images and X-ray images might require different treatments.  

2.8.1 Transparency 

The transparency property of X-ray images distinguishes them from most visible, 

reflected light images. This property presents additional considerations and 

complexities for the development of image synthesis techniques.  
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Figure 2.15: A visible reflected light image and a transmission X-ray 

image of the same scene. 

 

Images in figure 2.15 give a hypothetical example of difference between visible light 

and X-ray images where object (a) was imaged employing visible light while the same 

object was imaged using transmitted X-rays in (b). Due to the transparency property of 

X-rays, it is a common attribute of such imagery that the X-ray beams transmitted 

through an object producing a shadowgraph. As a result, an overlapping structure in 

an X-ray image may appear as an integral part of two or more spatially separate objects.  

2.8.2 Multiple correspondence 

The intensity of each pixel in the resultant images is an aggregated intensity of all points 

along the ray path under consideration. Each pixel may have multiple correspondences 

associated with a number of different overlapping structures encountered along the ray 

path. Figure 2.16 presents the scenario where objects under inspection are imaged by 

X-rays which are incident normal to the detector plane and alternatively at an angle to 

the detector plane. Two different interrogating rays image the section of the rectangular 

object in the diagram. The resultant pixels P1 and P1', produced by the inclined and the 

normal rays respectively, are a corresponding pair, although their intensities are 

different. However, P1' is also the corresponding point for P2. As a result, P1' has two 

potential correspondences arising from the transparency property in the transmission 

image.  

(a) Visible light image (b) X-ray image 
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Figure 2.16: Illustration of multiple correspondences ; P1 and P2 record 

the X-ray attenuation from the inclined ray, while P1' and P2' record the 

X-ray attenuation from the normal rays . 

 

In contrast, pixels in visible light images are not, in general, subject to such uncertainty 

for potential matches. Any matching error produced by the multiple correspondences 

has the potential to negatively affect the resultant synthetic images, which requires 

further computational measures to be undertaken to produce acceptable synthetic 

imagery. 

2.8.3 Effective thickness 

In the context of this research, the effective thickness of an object is defined as the 

length of the ray path through the object or objects under inspection. The intensity of 

the pixels is proportional to the amount of attenuation experienced by the X-ray beam. 

The distance travelled through a given material or object largely determines (for a given 

density) the amount of attenuation. When an object is acquired at different perspective 

angles, the commensurate change in the ray path through the object (or effective 

thickness) produces a relative change in the image intensity. In practice, the thicker the 

object, the greater the intensity fluctuation observed for different perspective views. 

Thus even a relatively straightforward correspondence-matching task can be 

problematic. The complex overlapping patterns of objects routinely encountered in 

images of luggage items further exacerbate the problems associated with integrated 

thicknesses.  

Rectangular object 

Triangular object 

X-ray source plane 

Detector plane 

P1 P2 

Inclined rays 

Normal rays 

P1' P2' 
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2.8.4 Material composition 

Given the two objects depicted in figure 2.16, suppose that the rectangular object is 

made of a highly attenuating dense material (e.g., metal) and the triangular object is 

made of a less dense material (e.g., plastic). On one hand, the difference in intensity 

between P1 and P1' could be minor, leading to a potentially robust match. On the other 

hand, a switch of the material characteristics of the two objects would confound 

a matching process due to occlusion. Therefore, the density and chemical composition 

of an object plays an important role in its X-ray attenuation properties and the resultant 

image intensity.  

2.8.5 Angular separation of the perspective images  

In the context of this research, the angular separation between two views is defined as 

the angle between the slit collimated X-ray beams that were used to collect the imagery. 

As the angular separation is increased, the perspective views tend to become 

increasingly dissimilar in terms of shape, overlapping features and intensity simply 

because of the factors discussed in Sections 2.8.3 and 2.8.4. In the case of simple scenes 

it may be advantageous to acquire highly disparate imagery in which objects and their 

relative features are conveniently separated, in the x-axis, by virtue of their relative 

location in range (or z-axis). Equally it is relevant to consider the case of complex 

scenes in which increasing parallax results in highly dissimilar imagery leading to 

difficulty in automatically identifying corresponding features. Figure 2.17 is organised 

to illustrate the possible effect of increasing the angular separation between views.  
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Figure 2.17: Relationship between the angular separation between views 

and intensity the smaller separation produces a smaller intensity 

difference (PB and PD) while the larger separation produces a larger 

intensity difference (PA and PE). 

 

Consider the pair of pixels PB and PD. Assume that they were corresponding features 

and identified when the angular separation was 2
0
. The intensity difference between PB 

and PD are relatively small and favourable to matching correspondences and 

influencing the intensity of the synthetic pixels. In contrast, as the angular separation is 

increased the perspective views tend to become dissimilar in terms of overlap leading to 

major difference in intensity. This case is highlighted when taking into consideration the 

pair of pixels PA and PE where the angular separation between them was 4
0
. 

2.9 Limitations of common matching constraints 

In stereo matching, the search for corresponding points is limited within a maximum 

allowable disparity window, which in turn is determined by the design parameters of the 

experimental system. As illustrated in figures 2.11 and 2.15 and due to the fundamental 

difference between X-ray and a visible light images common matching constraints may 

not be directly applicable to the X-ray scenario. In X-ray imagery searching for 

correspondences along a search direction (x-axis), will encounter depth discontinuity, 

inconsistency and, variation in pixel values. Thus one pixel from the left view may be 
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associated with several correspondences in right view thereby increasing the matching 

ambiguity. In contrast, a comparable search in the visible light image does not 

encounter this effect. This situation can be further exacerbated in the X-ray case when 

the material composition of the different objects is taken into account. Common 

matching constraints have good performance in visible light image matching. But, due 

to the multiple potential correspondences in X-ray images, constraints which are 

commonly used for visible light images may become inappropriate and produce 

unstable results. 

2.10 Image warping and morphing  

Image warping is defined as a geometric operation, which maps all positions from one 

image plane to a second image plane. It has been applied in different areas such as 

modelling, image analysis and image synthesis [129-131]. View morphing, in 

particular, is a process which combines a geometric warp with an intensity blend (in 

grayscale images) or mixing colour information (in colour images). In this process, two 

images are superimposed and then colour or intensity is blended to achieve a smooth 

transition from the source image to the target image. This visual effect is known as 

cross-dissolve. 

Numerous approaches towards the problem of warping and morphing were documented 

by [132-140]. Good morphing algorithms are those in which the shape of the objects is 

preserved. In terms of quality, to obtain well-behaved morphing which preserve the 

shape of objects; forward warping (source to target image), inverse warping (target to 

source image) and blending the two warped images are required. A simple image 

morphing process is illustrated in figure 2.18. In visible light images, the linear 

combination of colours exhibited in figure 2.18 (a) is appropriate as the three colour 

channels (RGB values) of each pixel may vary. As discussed in Section 2.3, the imaging 

system used in this research employs industry „standard‟ colour encoding with three 

different colour palettes to represent three different material classes; organic, mixture 

and metallic. Therefore, a linear combination of different coloured pixels may not 

produce a viable resultant colour. This scenario is an especially important consideration 

in a security screening context where certain colours are associated with specific threats. 

Also, the fact that a linear combination of colours would often introduce new colours or 
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„unknown materials‟ in addition to the three existing classes could cause improper 

detection and identification of threat objects.  

 

Figure 2.18: Simple structure of two morphed objects where (a) intensity 

blend (in grayscale images) and (b) mixing colour information (in colour 

images). 

 

To warp an image into another requires some corresponding points to be identified. The 

majority of warping methods are based upon the principle of identifying a set of 

keypoints, which act as geometric references for the subsequent warp. In practice, the 

methods used to identify the keypoints, together with the method of interpolation are 

very significantly. The following section is organised to describe some of the warping 

and morphing techniques commonly used in the field of computer graphics.  

2.11 Warping and morphing techniques 

In the area of computer graphics, vision and pattern recognition, warping and morphing 

is used as an aid to perform tasks such as segmentation, shape reconstruction, and 

motion tracking. The transformation of an image into a new different image may be 
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informed by coordinate points, vectors, curves and meshes [141-147]. Some of 

techniques used to compute image warping and morphing are reviewed in the following 

text. 

 Affine warping is common technique and is employed when the object of the warping 

requires rotating, translating or scaling. It is an important class of linear 2D geometric 

transformations, which maps variables (e.g. pixel intensity values located at position 

(x1,y1) in the source image) into new variables (e.g. (x2,y2) in the target image) by 

applying a linear combination of translation, rotation, scaling operations [148]. Point 

based or feature based variants are the most appropriate technique when the object of 

the warping is to map image features. Piecewise projective warping and piecewise 

bilinear reconstructions warping are a good examples of the point based techniques 

[149, 150].  Point based techniques require a finite set of features to represent the source 

object and a corresponding set for the target object. The warping is achieved by 

mapping each feature in the source object to its corresponding position in the target 

object. The final warp is achieved by extending this process to the whole shape of 

object by interpolation. Vector-based and curve-based methods are alternative warping 

techniques. Line-based methods employ oriented lines instead of points. Source and 

destination vectors are enough to specify local features. Warping is executed by 

mapping each vector in the source object to its corresponding position in the target 

object [135, 151]. Point, vector and curve techniques are conceptually similar since are 

all based on feature-based warping techniques. In order to obtain a good resultant 

morphology, good alignment for the warping together with good blending is required. 

2.12 Image combination  

As stated in Section 2.10, morphing is a combination between a geometric warp and an 

intensity or colour blend. Image combinations are used to reduce the artifacts caused by 

either forward or inverse transform [152-155]. Linear crossfading involves creating 

a series of image frames composed of a linear combination of two original images; 

source and target. In terms of grayscale images, the pixel intensity of the source image 

is linearly crossfaded with its corresponding pixel in the target image to form the final 

morph [138]. Colour image combinations are achieved in a slightly different manner in 

that each colour channel is constructed and combined separately, as if they were three 

different images with simpler attributes. This approach is acceptable where there are no 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/translte.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/rotate.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/scale.htm
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colour restrictions. On the other hand, in dual-energy X-ray imaging a linear 

combination of colours is potentially problematic as it leads to the production of new 

material classes, as mentioned in Section 2.3. Therefore, an alternative combination 

strategy, which accommodates the industry RGB colour palettes for organic, mixture 

and metallic materials, is required. 

2.13 Optimal morphing 

Computer graphical morphing has multiple applications and there are an infinite number 

of different ways to define an animation path from the source to the destination. 

Therefore, it is relevant to raise the question of finding the optimal morphing 

transformation between two graphical objects. However; as morphing is application 

dependent, it is demanding to give an accurate meaning to the word optimal [132]. In 

the special-effects industry such as TV, movies and face morphing industries, morphing 

is a matter of smooth transition from frame to frame.  

 

Figure 2.19: Feature preservation morphing sequence of two objects, 

where (a) preserved features and (b) non preserved features . 

 

Other technical applications such as medical imaging and view synthesis demand that 

a mathematical approach to morphing is adopted [138]. Although; morphing is mainly 

application dependent, it does exhibit common properties in order to acquire more 

natural and pleasing morphing transformation. Feature preservation, in particular, is an 

important property to consider. Distinguished features of one object should be 

transformed onto distinguished features of other object. Figure 2.19 (a) shows 

     

         

(a) 

(b) 
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a morphing sequence where features are preserved, while features in the morphing 

sequence in figure 2.19 (b) are not preserved. 

In particular, if salient features are not preserved, object shapes are not preserved too. In 

other words, a new view of the same object should not exist when two different views 

of an object are morphed. Therefore, it is obvious that unless special care is taken when 

assigning the corresponding features, dissimilar shapes of the same object might be 

formed when morphing one object into another object. Images in figure 2.20 are 

organised to give an example of morphed objects in terms of shape preservation where 

figure 2.20 (a) and (b) are the source and destination images. If the recognised features 

are well located and preserved then the shape of the resultant morphed object should 

also be preserved “e.g. image (c) in figure 2.20”. However; if the same features are 

inadequately preserved then it is expected that the resultant morphed object will be 

deformed “e.g. image (d) in figure 2.20”. This type of shape artifact is produced when 

the correspondences between the source and destination objects are ill defined or 

incorrect. 

 

Figure 2.20: Depiction of shape preservation where (a) and (b) are the  

source and destination objects, while (c) and (d) are the resultant morphed 

objects with preserved and deformed shapes respectively. 

(a) Left object (b) Right object 

(c) Shape preserved morphed object 

(d) Shape destroyed morphed object 
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Another important property of a high quality morphing transformation is smoothness 

preservation between frames. This is achieved when forward and inverse warping is 

synchronously applied. Also, high quality morphing transformation should avoid so 

called morphing leakage, which occurs when a limited portion of the perspective views 

are morphed while other objects are kept static. This is typically occurs when there is 

a shortage of corresponding features.  

2.14 Introduction to Matlab 

Matlab can be defined as the language of technical computing. It is high-level language 

and interactive environment for numerical computation, visualization, and 

programming. It can be used for data analysis and representation, algorithms 

development, and even to create your own functions. Matlab software consists of tools 

and built-in math functions which enable the user to reach a solution faster than 

traditional programming languages. The software has a range of toolboxes which 

include signal processing and communications, image and video processing, control 

systems, test and measurement, computational finance, and computational biology. 

Additionally, Matlab graphics system enable the user to visualize the data as for 

two-dimensional and three-dimensional, image objects, animation, and movie files. 

Matlab can be used as a simulation using what so called „Simulink‟, which is a block 

diagram environment for multi domain simulation (e.g. simulate electrical circuit or 

control system). Also it can be used as programming language where the so called Mat 

files (.m) is written.  

It is worth noting to mention that the work presented in the thesis was developed, 

analysed and graphically presented using Matlab software Version 7.1.0.246(R14) 

Service Pack 3. Part of the code was modified and boundary conditions were applied by 

the author in order to cope with the imaging system being used in this thesis (e.g. the 

matching algorithm). Also, numerous of different Matlab files (.m files) were designed 

and written by the author in order to implement the designated synthesis 

algorithms(e.g. the epipolar based morphing and material based morphing). Since the 

project deals with X-ray imaging, it is important to note that the majority of Matlab 

codes were written using Matlab Image Processing Toolbox.  
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The considerations and discussions presented in this chapter informed and supported the 

investigation and analysis employed in this research programme. It has been reported 

that identifying corresponding features within a sequence of X-ray images is 

a fundamental aspect to assist in the warping and morphing of the input X-ray images as 

the basis for producing synthetic views. Chapter Three presents the methods adopted to 

identify corresponding features within a sequence of X-ray images. 
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Chapter Three Solving the correspondence problem in KDEX 

imaging  

3.1 Introduction 

Theoretically, image synthesis requires solving the correspondence problem as 

a precursor to establishing the relative location and orientation of each object in the 

scene to accurately predict the content of the synthetic image. Factors to be considered 

include the amount of attenuation experienced by the X-ray beam and the properties of 

the X-ray detectors. Solving the correspondence problem is a fundamental aspect of 

many problems in computer vision [82, 85, 96, 97, 100, 156, 157]. It is described as the 

process of identifying correspondences between two input images obtained with 

different angular views. Despite the advances in computing and electronics technology, 

the correspondence problem remains relevant and challenging [67].  

The image matching algorithm adopted in this research programme is presented fully in 

this chapter. The algorithm employs Scale Invariant Feature Transform known as 

“SIFT”. It is a popular feature extraction algorithm proposed by Lowe [97] which 

extracts features of interest from images that can be used for reliable matching between 

different views of an object. SIFT has recently gained substantial attention in the 

computer vision community to address the correspondence problem. Due to 

fundamental differences between visible light images and X-ray images, the material 

presented in this chapter discusses the feasibility of applying SIFT to transmission 

X-ray images. The algorithm is designed to accept X-ray detector images produced by 

the kinetic depth X-ray (KDEX) imaging techniques previously developed by the 

university team. To cope with KDEX, SIFT is optimised and bounded by additional 

criteria. These criteria are of fundamental importance in the design of a KDEX imaging 

system. 

As far as the author can ascertain there is only one previous literature report concerning 

the application of SIFT to X-ray images [158]. The paper indicated the great potential of 

SIFT but without presenting empirical evidence. This chapter investigates the ability of 

SIFT to extract correspondences from cluttered images containing overlapping 

structures. These conditions are encountered routinely in X-ray screening applications. 

Empirical results revealed that optimised SIFT has promising potential to search for 

X-ray image correspondences. The transparency property of X-ray images provides 
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additional information, which can also limit the matching process under certain 

conditions. The fidelity of the extracted correspondences is evaluated by analysing the 

resultant synthetic KDEX imagery. The synthesis also incorporates morphing. Further 

details on generating the synthetic views are discussed in this chapter and Chapter 4.  

3.2 Scale Invariant Feature Transform (SIFT) 

SIFT was proposed by Lowe [97] to extract features of interest from images that can be 

used for reliable matching between different views of an object. The features are 

invariant to image scaling and rotation and partially invariant to change in 3D viewpoint 

and additional noise. Over recent years, SIFT has played a significant role in various 

computing applications such as object recognition, 3D modelling and video tracking. 

However, the computation employed to generate the set of image features can be split 

into four main stages. The first stage of computation searches over all scales and image 

locations “also known as scale space construction”. This is implemented efficiently by 

using a difference-of-Gaussian function to identify potential interest points that are 

invariant to scale and orientation. Then, at each candidate location, a detailed model is 

fitted to determine location and scale and the key points are selected based on measures 

of their stability. Next, orientation is assigned to each key point and finally, a local 

image descriptor for each keypoint is produced.  

3.2.1 Scale space construction 

The SIFT algorithm begins with detecting the features of interest, which are known as 

keypoints, using a cascade filtering approach. The most appropriate scale space kernel is 

the Gaussian function [159]. The scale space function  (    σ) can be produced from 

the input image  (   ) as following: 

 (    σ)   (    σ)   (   )                                                                                          

Where * is the convolution operation in   and   with Gaussian 

 (    σ)  
 

 π  
  (     )                                                                                    
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σ is the standard deviation of the Gaussian function. It has been demonstrated by Lowe 

[156] that difference of Gaussian function  (    σ) is capable of efficiently detecting 

stable keypoints in the scale space. This function can be computed from the difference 

of two adjacent scales, which are separated by constant multiplicative factor  : 

 (    σ)  ( (     σ)   (    σ))   (   )                                                          

 (    σ)   (     σ)   (    σ)                                                                               

There are numerous reasons for preferring this function. For instance, scale space 

smoothed images   can be easily computed, therefore;   images can be computed 

simply by image subtraction. An additional advantage is that   gives a very similar 

approximation to the scale-normalised Laplacian of Gaussian,       as stated by 

Lindeberg [159] where    is required for scale invariance. Additionally, it is 

demonstrated by Mikolajczyk [85, 160] that the maxima and minima of       can 

produce the most stable image features in comparison to the range of other possible 

feature detection methods, such as gradient and Hessian or Harris corner detector. The 

relation between   and       can be appreciated from the following equation which is 

parameterized in terms of σ.  

  

 σ
 σ                                                                                                                                  

Using the difference of adjacent scales  σ andσ, σ    can be calculated as: 

σ    
  

 σ
 
 (     σ)   (    σ)

 σ σ
                                                                            

In other words the above equation can be rewritten as: 

 (     σ)   (    σ)  (   )                                                                             
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Examples of one octave of scale space where Gaussian images and difference of 

Gaussian images are illustrated in figure 3.1.  

 

Figure 3.1: One octave of scale space illustrates Gaussian images on the 

left with difference of Gaussian on the right.  

 

It is demonstrated and accepted in the literature that the best number of scales at each 

octave is 3. However, the number of images in each octave can be expanded by 
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doubling the σ value. This means the total number of images at each Gaussian octave is 

6 and for the difference of Gaussian is 5. The reason behind doubling the images is that 

the number of stable features is amplified. But, no additional enhancements were found 

with a larger expansion factor [97]. 

3.2.2 Keypoint localization 

As stated in the previous section, local extrema provides the best image features in 

terms of stability. Therefore, it is important to detect the local maxima and minima of 

 (    σ). This is acquired by comparing the intensity of each pixel of interest to its 

eight neighbours in the current image and nine neighbours in the scale above and below.  

In other words, the pixel of interest is compared with 28 pixels.  

 

Figure 3.2: Maxima and minima of different of Gaussian (detection of 

keypoint). 

 

Accordingly, the pixel is selected if it is larger or smaller than all of these neighbours. 

Once the keypoint is chosen, an orientation is assigned to that keypoint according to 

local image properties. Figure 3.2 exhibits the procedure of local extrema detection.  

3.2.3 Orientation assignment 

Gaussian smoothed image   is selected based on the scale of the keypoint. At 

a particular scale, each image sample  (   ), the gradient magnitude  (   ) and 

orientation θ(   )  are computed as:  
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 (   )  √                 θ(   )       (
  
  ⁄ )                                               

    (     )   (     )                                                                                            

    (     )   (     )                                                                                          

Where    and    are pixel difference values.  

Within a region around the keypoint, an orientation histogram is formed from the 

gradient orientations of sample points. The orientation histogram has 36 bins covering 

the 360 degree range of orientations. The peaks in the orientation histogram correspond 

to the dominant directions of local gradients. The highest peak in the histogram is 

detected, and then any other local peak that is within 80% of the highest peak is used to 

also create a keypoint with that orientation. Therefore, for multiple peaks of similar 

magnitude, there will be multiple keypoints created at the same location and scale but 

different orientations.  Figure 3.3 illustrates the detected keypoints‟ location, orientation 

and scale of an X-ray image of a suitcase and contents produced by the author. 

 

Figure 3.3: Gradient magnitude and orientation of produced keypoints.  

 

3.2.4 Feature descriptor generation 

Once the keypoints are generated, a local image descriptor for each keypoint is 

produced. A keypoint descriptor is created by first computing the gradient magnitude 

and orientation at each image sample point, in a region around the keypoint location 

using the scale of the keypoint to select the level of Gaussian blur for the image, as 

shown in figure 3.4.  
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Figure 3.4: Magnitude and orientation of an image point.  

 

These samples are then accumulated into orientation histograms summarising the 

contents over 4 × 4 sub-regions. Figure 3.5 illustrates the creation of each feature 

descriptor. Lowe used a 4 × 4 array of histograms [97] with eight orientations in each 

bin. The length of each arrow is corresponding to the sum of the gradient magnitudes 

near that direction within the region. However, adding more orientations or a larger 

descriptor can damage the matching since it can make the descriptor more sensitive to 

distortion. Consequently, each descriptor vector for a particular keypoint will be of 

length 4 × 4 × 8 = 128.  Finally, to limit the effect of illumination change the feature 

vector is normalised to unit length. 

 

Figure 3.5: 4 x 4 feature descriptor.  

 

An example of feature descriptors for image is demonstrated in figure 3.6 (a). The 

image of figure 3.6 (b) is the magnified corresponding regions obtained at -2 and +2 

degrees (a knife inside the bag is highlighted by the black dashed rectangle in 

figure 3.6(a)). For brevity, just one pair of corresponding features is considered.  
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Figure 3.6: (a) A practical X-ray image populated with the location of 

keypoints indicated by red spots, and the location of  feature descriptors 

indicated by  green circles (b) the horizontal green line links the location 

of matched feature descriptors in view-2 and view+2. 

 

The yellow/red spot characterizes the location of the feature (keypoint) at the tip of the 

knife‟s blade while the green circle describes the feature descriptor. It is said that the 

two keypoints are matched if their descriptors are matched. 

3.3 Limitations of the SIFT matching criteria  

A fast nearest-neighbour algorithm is used to identify the best match for a particular 

keypoint in a large database of keypoints. Since the keypoint is described by its 

descriptor, the nearest neighbour is defined as the keypoint with minimum Euclidean 

distance from the invariant descriptor vector. Nevertheless, numerous features from the 

target image will not match correctly in the derived keypoints database. This is for the 

reason that they were not detected in the reference image. Also, features might be 

incorrectly matched with other features simply because they were similar descriptors.  It 

was suggested by Lowe [97] to discard all matches in which the distance ratio between 

closest neighbour to that of the second closest neighbour is greater than 0.8. It has been 

found that this ratio is a good metric as it tends to remove around 90% of the false 

matches; while discarding less than 5% of the true matches. 

   

(a) (b) 
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Figure 3.7: Matching result between view-2 and view+2 perspective 

images. 

 

Figure 3.7 presents the matching result between two perspective views. The matches 

were produced by utilizing the standard SIFT matching criteria. To aid the visual 

inspection, each corresponding pair is connected with a line. In the image of figure 3.7, 

green lines are used to link the “positive matches” (i.e., correct matches) while negative 

matches are highlighted by a red line. The success of the image synthesis algorithm 

relies upon the quality of the correspondences (keypoints) generated in the image 

matching stage and; the reliability of the image morphing process to make use of the 

keypoints to create intermediary images. It has been proven that the keypoints generated 

by standard SIFT are invariant to image rotation, scaling as well as being robust across 

a substantial range of affine transformation. Unfortunately, this broader affine 

invariance can be detrimental to our application. Figure 3.8 provides an example of a 

matched stereo pair in which the right view was rotated by 30
0
 about the normal to the 

page; green lines link each matched pair.  

 

Figure 3.8: The ability of SIFT to locate matches when image rotation has 

been applied to one view. 
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As it can be deduced from this figure 3.8, the standard SIFT is able to match 

correspondences even if they have large difference in y-positions (vertical disparity). 

SIFT has also demonstrated the ability to locate corresponding features under different 

image scaling conditions as revealed in figure 3.9, where the right perspective view was 

scaled down by 20% of the original size. This capability however, is not useful for our 

application as image magnification is preserved from view to view in KDEX imagery.  

 

 Figure 3.9: The ability of SIFT to locate matches when the image scale 

for one view is varied. 

 

The generation of KDEX imagery is based on the line-scan imaging principle. The 

resultant images are expected to exhibit no (or very small in practice) vertical disparity 

between the corresponding pairs. However, the SIFT‟s ability to match across large 

vertical disparities could generate matches that statistically satisfy the SIFT criteria but 

are not possible due to geometric constraints of KDEX imaging. These matches will be 

incorrect and can lead to significant or catastrophic errors in the synthetic images. The 

KDEX imagery employed in this research does not exhibit vertical disparity. Therefore, 

corresponding pairs of matches have to occur at the same y-axis coordinate position. 

It can be appreciated from the matching result in figures 3.7, 3.8 and 3.9 that 

corresponding pairs of similar features will be matched across different y-positions as 

indicated by non-horizontal lines in the diagrams. This observation suggests that the 

application of an additional geometric criterion would improve the accuracy of 

matching. Another limitation of the matching criterion adopted by SIFT is the absence 

of a disparity window limit. Again, the search for corresponding pairs can be informed 

by the specific design of the KDEX system employed in this research. In general, 

a KDEX scanner has a finite inspection volume, which is bounded a physical inspection 

chamber. The resultant disparity in the display is a carefully controlled parameter that is 
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naturally limited by the far and near extent of the inspection chamber.  Therefore, the 

imposition of a finite search window will reduce the search space and also exclude 

impossible negative matches.  

3.4 Proposal of new matching criteria 

To tackle the limitations associated with the standard SIFT matching criterion, two new 

criteria are proposed, namely the epipolar line criterion and the disparity window 

criterion. The following paragraphs are organised to describe the new proposals and the 

experimental details of the investigation. 

3.4.1 Epipolar line criterion 

The epipolar line criterion is implemented by extracting the location of features and 

their correspondences in the perspective views. These features are identified by 

applying the standard SIFT algorithm. Each feature or keypoint has a (     ) position 

and potentially a corresponding keypoint located at (     ). Taking into account 

various practical fluctuations (i.e., system noise) together with a tolerance of ±1 pixel 

difference in the  -         informs a practical epipolar line criterion. In other words, 

pairs that have a  -     difference           greater than ±1 are discarded. It should be 

noted that this criterion is only applied to corresponding pairs that have met the standard 

SIFT matching criterion. The corresponding pairs that satisfy the standard SIFT criteria 

as well as the epipolar line criterion and the disparity window criterion are potentially 

valid matches. The epipolar line criterion is graphically explained in figure 3.10.  

3.4.2 Disparity window criterion 

The disparity window criterion is designed to further increase the accuracy of matching. 

Both epipolar and disparity window criteria are of fundamental importance in the design 

of a KDEX imaging system. Unlike the epipolar criterion, the disparity window size is 

a function of the angular separation between the views under consideration. The 

disparity window criterion is illustrated figure 3.10.  
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Figure 3.10: The epipolar line is defined, nominally, in the horizontal 

direction for the KDEX imaging technique; the disparity window defines 

the maximum potential length along this line that supports potentially 

valid matches. 

 

The application of the disparity window can be applied by applying the maximum 

allowable offset values in the x-axis and y-axis. In other words, pairs those have  -     

difference            greater than the agreed disparity window may be discarded. This 

criterion is only applied to those corresponding features that have already met the 

standard SIFT and epipolar matching criteria.  

In this way matched features may be categorised into two groups; negative and positive 

matches. The positive matches are the matches that satisfy the standard SIFT, epipolar 

and disparity window criteria while the negative matches satisfy the standard SIFT 

criterion but violate either the epipolar line or disparity window criteria. Figure 3.11 

presents an example of the matching results recorded for two perspective views 

obtained at -3
0
 and -2

0
.  
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Figure 3.11: Optimised SIFT matching result (a) positive ‘green’ matches 

and, (b) negative or false ‘red’ matches. 

 

Figures 3.11 (a) represents the positive matches indicated by horizontal green colour 

lines connecting the corresponding pairs, while the negative or erroneous matches are 

presented in figure 3.11 (b) and are shown as red colour lines.  

3.4.3 Implementation of optimized SIFT using Matlab  

The standard SIFT Matlab open source code is available online at [164]. This software 

accepts two perspective views and matches them according to its standard matching 

criteria described in Section 3.3. The standard SIFT provides a single number which 

represents the total number of matches (including the positive and negative matches 

represented by the green and red lines in figure 3.7). The author designed and 

implemented additional criteria to reject geometrically impossible matches as 

determined by the novel line-scan imaging configuration. The code was modified to 

record the (x,y) location of all the corresponding features in each view. An epipolar line 

criterion was implemented in code to remove automatically all correspondences that 

exhibited a vertical disparity greater than ±1 pixel. A disparity window criterion further 

limited the search space along the motion or x-axis.  The boundaries for this criterion 

were calculated using the angular separation between the views under consideration and 

implemented automatically. In the context of this work, the modified code is termed the 

optimized SIFT algorithm. This modified algorithm also provides the percentage of the 

total number of matches being removed by either or both criteria with respect to the 

(a) 

(b) 
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total number of matches produced by the standard SIFT. The algorithm also displays the 

matching results visually by showing the positive and negative matches in two 

separated figures. Once the perspective views are matched, the code was also altered to 

save two (.mat) files. Each file consists of one perspective view and its corresponding 

features map. These two (.mat) files are then made available and exploited by the 

morphing/warping techniques where one or more synthetic views are generated. 

The Flowchart in figure 3.12 explains the matching approach adopted in this research. 

The matching procedure starts by applying the standard SIFT matching criteria followed 

by the proposed two new criteria. To assess the effectiveness of using the proposed 

criteria, percentages of negative and positive matches for stereo pairs are computed. 

This study employs a total of 30 different luggage items or bags. From each different 

bag, 6 successive stereo pairs were selected from a total of 7 images (from a KDEX 

sequence) and have been employed as per the scheme presented in figure 3.13.  
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Figure 3.12: Flowchart for the proposed matching route.  
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Figure 3.13: Organisation of the image pairs employed to study the 

dependency of the matching results upon the epipolar line and disparity 

window criteria.  

 

The angular separation between each successive view is 1
0
, taken over an angular range 

of 3
0
 about the 0

0
 or normal view position. Each pair is analysed twice to 

accommodate either perspective view as the reference image. This implies that 

12 image pairings are processed for each luggage item. This study employs 30 different 

bags therefore, a total of 360 image pairings were available for analysis. To demonstrate 

the effect upon matching performance for both new criteria, consider the images shown 

in figure 3.11. The combination of matched features in Figures 3.11 (a) and (b) is 1640 

as identified by standard SIFT; a total of 444 matches were discarded (from a base of 

1640) when the new criteria were applied, see the first row of data presented in 

Table 3.1. To make the discussion easier, a graphical representation of the data 

presented in Table 3.1 is reproduced in figure 3.14; all the matches were identified via 

standard SIFT and are indicated by the black bars. Positive and negative matches are 

recoded at each stage to identify the presence of „geometrically impossible‟ matches. 

Also, it should be appreciated that the total number of positive and negative matches are 

conserved e.g. the blue bar and the red bar „total‟ are equal to the green bar and pink bar 

„total‟ (which is also equal to the black bar „total‟).  
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successive stereo 

pairs 

Standard SIFT 

keypoints 

Epipolar line criterion 
Epipolar line + Disparity 

window criteria 

Positive 

matches 

Negative 

matches 

Positive 

matches 

Negative 

matches 

Pair 1 (-3 to -2) 1640 1335 305 1196 444 

Pair 2 (-2 to -1) 1533 1260 273 1009 524 

Pair 3 (-1 to 0) 1521 1242 279 853 668 

Pair 4 (0 to +1) 1607 1350 257 1206 401 

Pair 5 (+1 to +2) 1673 1383 290 1100 573 

Pair 6 (+2 to +3) 1738 1420 318 1185 553 

Pair 7 (+3 to +2) 1727 1408 319 1180 547 

Pair 8 (+2 to +1) 1670 1387 283 1096 574 

Pair 9 (+1 to 0) 1646 1359 287 1202 444 

Pair 10 (0 to -1) 1533 1231 302 859 674 

Pair 11 (-1 to -2) 1482 1240 242 999 483 

Pair 12 (-2 to -3) 1636 1340 296 1181 455 

 

Table 3.1: Matching results for the stereo pair shown in figure 3.11 where positive and negative 

matches were recorded when applying the epipolar-line criterion only and when applying both 

new criteria. 

 

 

 Figure 3.14: Matching result of the luggage item shown in figure 3.11 

where matches are classified as positive or negative according to the 

proposed matching criteria. 

 

The concatenation of the criteria tighten the support of standard SIFT. The increase in 

negative matches (and the corresponding decrement in positive matches) is the expected 

consequence of logically „ANDing‟ the criteria. It is important to note that only the 

positive matches “shown as green bars in figure 3.14” which meet standard SIFT, 

epipolar line and disparity window criteria are considered for input to the morphing 
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algorithm and will be used to synthesise in-between views. Briefly, together with their 

stereo pairs, the corresponding keypoints are loaded and operated by a morphing 

algorithm to create the synthesis view. This finding will be discussed in more detail in 

the following chapters.  

The procedure described in Table 3.1 has been repeated for 30 bags and the average 

numbers of positive and negative matches for each matching criterion are presented in 

figure 3.15. The bar chart in figure 3.15 has been plotted to demonstrate the 

effectiveness of new criteria in rejecting incorrect matches. The first bar in black 

represents the average number of matches generated by the 360 stereo pairs, which 

corresponds to matches that have met the standard SIFT criteria. Similarly, matches that 

have satisfied the epipolar line criterion, matches that have failed the epipolar line 

criterion, matches that have fulfilled the epipolar and disparity window criteria, and 

matches that have violated either or both new added criteria have been computed and 

plotted sequentially in the bar chart below.  

 

 Figure 3.15: Total number of averaged matches for 360 image pairs 

produced from 30 different experimental bags.  

 

The proposed criteria have demonstrated that they can remove 37.2% of unfaithful 

matches i.e. 19.8% are attributed to the epipolar line criterion and a further 17.4% 

attributed to the disparity window criterion. An indication of the benefit afforded by the 
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optimised SIFT algorithm is presented in the form of the synthetic results for a “torch” 

as extracted from one of the experimental bags, see figure 3.16. Out of the 79 detected 

matches, 26 positive matches are linked by green lines “figure 3.16 (a)” while the red 

lines link 53 negative matches “figure 3.16 (b)”. When all the 79 matches produced by 

the standard SIFT are used to synthesise a resultant image “figure 3.16 (c)” it has 

undergone substantial distortion; making it unrecognisable. Fortunately, the optimised 

SIFT has demonstrated a significant potential to improve upon this situation, as 

evidenced in the synthesised image of the “torch” in figure 3.16 (d).  

  

Figure 3.16: The matching and synthetic results for the X -ray images of 

a torch where (a)  and (b) show the positive matches and negative matches 

respectively, (c) and (d) are the synthetic views produced by empl oying 

matches detected by standard SIFT and optimised SIFT, respectively.  

 

The KDEX imagery employed in this pilot study is of practical luggage and was 

produced in the Imaging Science Group‟s laboratory at the University. These empirical 

results demonstrate that SIFT has a promising potential to search for X-ray image 

correspondences. The following paragraphs are organised to question the viability of 

operating SIFT on X-ray images under the more varied and complex conditions 

routinely encountered in security X-ray imaging.  

(a) (b)  

(c) (d)  
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3.5 Analysis of optimised SIFT  

The transparency property of X-ray images provides additional information, which can 

constrain the matching process under certain conditions. Besides, addressing the 

correspondence problem  is subject to conditions commonly encountered in imagery of 

practical luggage items include overlapping semi-transparent structures, local masking 

and repeated or similar objects. To study these conditions, consider the image of 

luggage exhibited in figure 3.17.  

 

Figure 3.17: X-ray image of a suitcase with highlighted regions of 

interest. 

 

ROI‟s highlighted by the red dashed circles are considered for further discussion.  

3.5.1 Effect of overlapping 

Figure 3.18 organises examples of image regions that are extracted from the stereo pair 

of the image illustrated in figure 3.17 to illustrate the effectiveness of optimized SIFT 

for no overlapping and overlapping conditions; the term overlapping refers to structures 

from different discrete objects, which overlap in the resultant image. Figure 3.18 depicts 

“part of the bag handle and it is labelled as exhibiting no overlap” and demonstrates the 

expected capability of optimized SIFT under a no overlapping condition. In addition, it 

can be deduced from the same sub-figure that optimized SIFT can also extract 

correspondences from the overlapping region presented by the “shutter of the floppy 

disk at the left and zip slider at the right both labelled as simple overlap”. Although, 

both objects were cluttered by organic material such as clothes and plastic, optimized 

SIFT was able to extract features from these objects. Due to the significant difference in 

    

  

  



Solving the correspondence problem in KDEX imaging  

 

Omar Abusaeeda  60 

 

X-ray attenuation, the shutter of the floppy disk and zip slider are highly salient objects 

under this overlapping condition hence aiding the search of correspondences. However, 

if the same scenario is replicated in visible light images, both objects will either be seen 

if it is located in front of the organic material, or totally buried by the organic object. 

This simple overlapping scene exemplifies the fundamental difference between X-ray 

images and visible light images as well as the nature of the challenge in solving 

correspondences.  

 

Figure 3.18: Image regions in the stereo pair of view 1 -2 to emphasize the 

performance of SIFT in terms of overlapping structure.  

 

The region of figure 3.18 labelled as „more complex overlap‟ is another example to 

support the capability of optimised SIFT of extracting features under further dense 

scene. This region represents part of the cell battery of the torch overlapped with the 

torch plastic body as well as by the amorphous organic material which made the scene 

much more intense. It is very encouraging to obtain positive outcomes even when SIFT 

is faced by multi-layered overlapping structures. The SIFT has to cope with not only the 

change in material compositions, but also variations in shape and relative positions and 

orientation in 3D space of the objects under inspection. For example, the change in 

spatial orientation of the cell battery when translating from one view to the other. 

3.5.2 Local contrast  

It can be deduced from figure 3.19 that the local masking conditions such as the contrast 

between the keypoint and the background (i.e., local contrast) play important roles to 

search for correspondence features. The local contrast factor affected the detection of 

No overlap 

Simple overlap  

More complex overlap  
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the local extrema. The images of figure 3.19 are a good example to illustrate the effect 

of the local contrast. The images are zoomed in area extracted from matching view-2 

and view-1 of the image revealed in figure 3.17. Two regions of interest are highlighted 

by blue dashed circles in figure 3.19 which are part of the bag handle as well as the 

bottom edge of the floppy disk. The contrast is determined by the amount of X-ray 

attenuation produced by the two objects, which is a function of material compositions 

and thickness. The contrast between the objects can be minimised by either reducing the 

difference in X-ray attenuation imposed by the objects, or increasing the thickness of 

the organic material such as the material overlap with the floppy disk.  

 

Figure 3.19: Effect of local contrast to search for correspondences where 

(a) and (b) are the image regions in view-2 and view-1 respectively, (c) 

and (d) are identical to (a) and (b) except (c) is presented with redu ced 

contrast as compared to (a) region. A blue circle is used for aiding visual 

comparison and it is apparent that SIFT failed to detect the same features 

once the contrast is reduced.  

 

The contrast can also be minimised by reducing the thickness of shutter of the metallic 

material embedded in the floppy disk. In a practical scenario, any of these conditions 

can occur, which may negatively affect the SIFT performance, as presented in 

figure 3.19. Figure 3.19 (a) and (b) are the corresponding image regions in view-2 and 

view-1 respectively where correspondences are detected and highlighted by blue circles. 

However, figure3.19 (c) and (d) are identical to (a) and (b) except that the contrast of (c) 

is reduced. It can be noticed that the optimized SIFT failed to find not only the 
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highlighted correspondences but even other correspondences as indicated in figure 3.19 

(c) and (d),  hence; reduction of contrast can adversely influence the performing of the 

matching algorithm. 

3.5.3 Local similarity 

Another factor that may determine the matching result is the local similarity of the 

neighbourhood around the feature of interest. To study the effect of local similarity 

consider the luggage item demonstrated in figure 3.20, where region of interest is 

highlighted by red circle.  

 

 Figure 3.20: Luggage item with highlighted region of interest to show the 

effectiveness of local similarity to search for correspondences.  

 

The region of interest is magnified as indicated in figure 3.21 where two repeated 

features are emphasized for the purpose of comparison (see figure 3.21 (a)). Features in 

figure 3.21 (a) are extracted from view-3 and -2.  Similar, closely located features are 

accurately matched. Similar result obtained when view-1 and view 0 are considered. 

Different views give different results as indicated in figure 3.21 (b) where the stereo 

pairs of view-2 and view-1 are involved. It is noticeable that only one of the two 

selected features is found. This is simply because when the view is changed, either the 

epipolar line or disparity window criteria are not satisfied, therefore; the correspondence 

pair of matches is discarded. Figure 3.21 (b) and (c) highlight the matching result for (1) 

view-2 and view-1 and, (2) view-1 and view 0, respectively. Both stereo pairs have the 

same angular separation between views (i.e. 1
0
) but exhibited a different result. This 

finding simply demonstrated that the transparency property of X-ray images can cause 
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a drastic change in the immediate neighbourhood of the features and hence affect the 

matching results.  

 

Figure 3.21: Image regions in the stereo pair between (a) view -3 and 

view-2, (b) view-2 and view-1 and, (c) view-1 and view 0 to exemplify the 

effect of local similarity on the correspondence search.  

 

The material presented in this chapter assessed the performance of optimized SIFT 

when dealing with X-ray imaging. 30 sets of luggage items are processed and analysed. 

6 successive stereo pairs from a total of 7 views KDEX sequence images are employed 

for each set of luggage items. Pairs are analysed twice to accommodate either 

perspective view as the reference view which produces 12 image pairings being 

processed for each luggage item. The angular separation between each successive view 

is 1
0
 taken over an angular range of 3

0
 about the 0

0
 or normal view position.  
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Initially, the matching algorithm was employed to minimum degree of angle separation 

between adjacent pairs (1
0
). This approach assumes that if SIFT has produced 

unsatisfactory results at a relatively small angular separation, then its performance will 

further degrade as the separation is increased. Empirical evidence in figure 3.18 

revealed that optimized SIFT is capable of finding the correspondences in X-ray images 

under no overlapping and full overlapping conditions. The success of optimized SIFT 

can be associated with two factors: the local contrast and local similarity, which directly 

affect the detection of corresponding features. These factors also play an important role 

in searching for correspondences in visible light applications. However, the 

transparency property of X-ray images posed a different set of challenges. This point 

can be appreciated further by referring to figures 3.19 and 3.21. The complex masking 

and unmasking inherent in KDEX imagery tends to increase the probability that the 

features of interest will be partly or fully occluded in at least one view, hence increasing 

the matching uncertainty. The problem is further exacerbated if the overlapping 

structure is comprised of many individual objects that have diverse properties in terms 

of material composition, thickness and shape. Overall, optimized SIFT has produced 

encouraging results in searching for X-ray image correspondences. The complexity 

presented by the transmission property of X-ray images presents a unique challenge in 

terms of solving the corresponding problem.  

In the context of the following chapters, the performance of the optimized SIFT 

algorithm will be assessed as a function of angular separation between views (or X-ray 

beam angle). The investigation addresses greyscale X-ray images along with 

dual-energy X-ray images in which materials discrimination information is colour 

coded. The results of the optimised SIFT will provide the required information for 

image morphing to provide the required synthetic imagery. Limitations of the developed 

synthesis algorithms will be investigated by employing ground truth imagery for 

comparative error analysis.  
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Chapter Four Greyscale image synthesis algorithm 

4.1 Introduction 

The greyscale image synthesis algorithm developed in this research programme is 

presented fully in this chapter. The algorithm is a combination of optimized SIFT and 

morphing techniques termed, „epipolar based morphing‟. The algorithm is designed to 

accept greyscale X-ray detector images produced by the kinetic depth X-ray (KDEX) 

imaging techniques previously developed by the University team. The algorithm 

produces synthetic images, which may be used to replace the X-ray detector images. 

Therefore, enabling a reduction in the total number of detectors and their associated 

hardware required to realise KDEX sequences.  

The synthesis algorithm is divided into two major stages, namely matching and 

morphing. Optimized SIFT is employed as a matching algorithm to accurately extract 

the corresponding keypoints from a successive pairs of perspective views. The resultant 

corresponding features are loaded into an epipolar based morphing algorithm, which 

generates the synthetic view. The combination of detector images and synthetic images 

are viewed in sequence, the resultant transition from one view to another should, 

ideally, be natural to the observer. Therefore, the fidelity of the synthetic images is 

established by comparing them with detector images produced at the appropriate X-ray 

beam angle by the scanner. This approach enables a direct measure on how well the 

synthetic images resemble the detector images. In the context of this research 

programme, these detector images that are used for comparison are defined as the 

ground truth (GT) images. It should be noted that GT images were solely used for 

comparative study but not as the input images to the synthesis algorithm. An image 

subtraction method is used as the quantitative measure to compute the number of pixel 

errors between the GT images and the synthetic images. Further details on the 

comparison are presented in the Section 4.5. The matching and synthesis algorithms 

performance is assessed as a function of X-ray beam angle. This is accomplished by 

increasing the angular separation between the X-ray beams used to produce the 

synthetic perspective images. 
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4.2 Experiment setup 

The experimental X-ray machine employed to produce the perspective images used in 

this research is illustrated in figure 2.8. This X-ray machine utilises a „folded‟ linear 

X-ray detector array (FLXDA) to image typical luggage. The resultant images are 

stored in a greyscale image format with an 8 bit intensity range. The scanner employs 

a 140 kVP polychromatic X-ray source. The X-ray source/sensor assembly may be 

rotated about the conveyor belt to enable the collection of the multiple views at different 

angular positions. In this way the image output of a single pass multiple view scanner 

can be simulated. The experimental machine was designed by the University team for 

the investigation of depth from motion (or kinetic) binocular stereoscopic imaging and 

was constructed originally at the Home Office Laboratories at Sandridge UK. 

The FLXDA illustrated in figure 2.9 is comprised of a contiguous set of linear 

dual-energy [51] X-ray detector array modules are positioned such that their midpoint 

normal will intersect the point X-ray source in the plane of the collimated X-ray beam. 

The resultant line-scan format image exhibits a nominally constant magnification in the 

(conveyor belt) motion axis (i.e. X-axis and horizontal axis in the visual display). The 

FLXDA produces an image distortion along its length, which is observable in the 

vertical display axis (i.e. Y-axis and vertical axis in the visual display). The bottom third 

of the image is „folded out‟ due to the perspective view through the luggage produced 

by the side arm of the folded array. 

The dual-energy X-ray materials discrimination information is not analysed in this 

chapter but is described briefly for completeness and will be discussed further in the 

next chapter. The dual-energy X-ray detector array consists of low-energy scintillator 

elements and high-energy scintillator elements in a „sandwiched‟ configuration [60]. 

A thin copper filter is placed between the front and rear arrays to enhance energy 

separation between the low-energy and high-energy X-ray data (see figure 2.2). The 

front array is exposed to the full X-ray spectrum and absorbs the low-energy portion of 

the polychromatic spectrum. After passing through the filter, a significant amount of 

low-energy X-rays together with a small amount of high-energy X-rays are removed 

from the spectrum. The remaining high-energy X-rays are subsequently detected by the 

rear array. Therefore, the low-energy (~75keV) and high-energy (~140keV) X-ray data 

of the irradiated object are simultaneously produced from a single exposure. Materials 
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discrimination information is derived from the dual-energy X-ray data and is made 

available to the human observer by colour encoding the resultant images. It is planned 

to use the materials discrimination data in next chapter where the image synthesis 

technique is described according to material discrimination.  

The material in this chapter describes the optimum combination SIFT, additionally 

bounded by epipolar and disparity window criteria to provide input to an epipolar based 

morphing method to generate synthetic views at different angular separations. To ensure 

realistic and satisfactory outcomes, the proposed synthesis algorithm is assessed using 

30 different luggage arrangements. The images used for the indicative analysis 

presented in this thesis were chosen carefully to include objects composed of different 

material classes arranged in spatially complex scenes. The inclusion of dense 

amorphous structure together with overlapping high frequency details exhibits the 

multi-layered translucency typical of images routinely encountered at security 

checkpoints.  

In this chapter, the luggage items (or bags) termed; b1, b2………b30 were employed. 

For each bag under inspection, 7 sequential perspective images are acquired and stored 

(producing a total number of 210 perspective images). The angular separation between 

each successive view is 1
0
, taken over an angular range of 3

0
 about the 0

0
 or normal 

view position, as illustrated in figure 4.1.  

 

Figure 4.1: Angular separation of the X-rays beams used to image each of 

the 30 different bags. 
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The synthesis algorithm initially matches the perspective views with a minimum 

separation of 2
0
 followed by the generation of one synthetic view using the proposed 

morphing algorithm e.g., -1
0
 and +1

0
 were employed to generate the view at 0

0
. 

Furthermore, the synthesis algorithm is appraised by increasing the angular separation 

between the „generating‟ views, in which more than one synthetic view is produced 

e.g. up to five synthetic views produced between the two generating views at -3
0
 and 

+3
0
, respectively.   

4.3 Experimental imagery 

To provide task relevant outcomes practical luggage items were used throughout the 

investigation. The image in figure 4.2 is an X-ray image of hand baggage. The bag 

contents includes a hair dryer which is partly occluded by a printed circuit board, copper 

wire, organic materials, pair of shoes and pistol overlapped with torch. The objects are 

arranged over the full volume of the bag. 

 

Figure 4.2: Structure of one of the experimental images used in this 

research. 

 

4.4 Image synthesis via epipolar based morphing 

To the authors‟ knowledge, there is no evidence in the literature that the SIFT based 

epipolar based morphing presented here has been applied to a sequence of transmission 

(dual-energy or polychromatic) X-ray images to produce synthetic intermediary views. 

In particular, image morphing is a popular visual effect in which one image is 

transformed into another. Morphing a stereo pair    and    requires two correspondence 

Pair of shoes 

Pistol 

Torch 

Printed circuit 

Copper wire 

Hair dryer 

Belt 

 

Region of interest (see figure 4.3) 
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maps    and    where          and         . In practice,    and    are derived by 

having the user to manually select critical points on the two corresponding images as 

a set of common features. Using these manually selected points, the remaining 

correspondences are then established automatically by interpolation [132, 138-140]. 

Any incorrect manual selection of the critical points can generate distracting artifacts 

such as ghosting and shape distortion. As a consequence, this will be detrimental to the 

fidelity of the corresponding maps (     ) and the resultant 3D depth sensation of the 

KDEX imagery. 

 

Figure 4.3: ROI for in-between view of figure 4.2 where (a) is the ground 

truth region, (b) and (c) are the synthetic results using standard morphing 

and epipolar based morphing correspondingly; where the ROI in (b) 

illustrates significant distortion.  

 

Epipolar based morphing is proposed here to address such unwanted artifacts. The idea 

is to employ the output of optimized SIFT as the critical points rather than creating them 

manually. Initially,   ,   ,    and    are input to the epipolar based morphing algorithm. 

Automatic linear interpolation (employed within the existing morphing technique) is 

then executed to estimate the positions of the correspondences,    and   . As soon as 

the pixels in     and    are interpolated, the morph is computed by applying the mapping 

incrementally on both   and   directions, i.e. to shift the features in the original image 

towards the final image and vice versa. In this research, however, the mapping is 

 
  

(c) Synthesised region with 

epipolar based morphing 
(a) Ground truth region (b) Synthesised region with 

standard morphing 
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restricted along the x-axis because the KDEX imagery produced by line-scan imaging 

technique should reveal no vertical ( -    ) disparity as explained in Section 3.4.  

Figure 4.3 is organised to illustrate the proposed epipolar based morphing method, 

which is employed to generate the synthetic views.  Figure 4.3 (a) is a region extracted 

from ground truth view between the pair of images illustrated in figure 4.2. It is the part 

of the image where the torch is fully occluded by the pistol. In figure 4.3 (a), the region 

of interest is surrounded by a red dashed oval. Due to unconstrained mapping along the 

y-axis and x-axis, the standard morphing algorithm has produced ghosting (double 

edges) along the pistol edge as shown in figure 4.3 (b). Interestingly, as evidenced in 

figure 4.3 (c) the image produced by the proposed method does not exhibit such 

artifacts. The number of in-between views depends upon the angular separation between 

the sensor views and the angular increment under consideration. For instance, if the 

separation between the two perspectives views    and    is 4
0
, then the three middle 

frames      ,      and       represent the three in-between views each separated by 1
0
. To 

evaluate the quality of the synthetic imagery requires an appropriate comparison with 

respect to GT.  

4.5 Synthesis algorithm performance measurements 

Image subtraction is used to evaluate the synthetic image with regard to the GT. To 

account for various practical fluctuations (e.g., system noise), the number of errors 

(ERR) computation includes a tolerance given by the value of the square root of the 

intensity. This approach is based on the prior research work [60, 161] on measuring the 

practical noise recorded by a typical X-ray luggage scanner. Ultimately, the acceptable 

limitation to the fidelity of the synthetic images is task dependent and would entail 

conducting a series of meticulous human factors investigations [162], which is beyond 

the scope of this thesis. Nonetheless, besides comparing the ERR produced, a visual 

inspection was undertaken to assist in evaluating the results within the context of visual 

displays. The quality of the synthetic images was determined by comparison with the 

GT according to the following formula: 

    ‖{   |   ( ( )   ( ))    ( )}‖                                                              
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Where   is dependant on the image size,  ( ) is the intensity of the ground truth image 

at position  , and  ( ) is the intensity of the synthetic image at position  . An error is 

recorded if the difference in intensity between the ground truth and synthetic is greater 

than the square root of the ground truth intensity.  

Owing to the highly varied nature of the three dimensional aggregate of objects within 

each different bag, it was considered useful to normalize the number of pixel errors and 

the number of matches. This approach enables the performance of the algorithm to be 

more easily compared over a representative range of practical scenarios. The errors 

recorded for each bag are normalised with respect to the minimum error recorded for 

that bag whereas the matches are normalized with regard to the maximum number of 

matches recorded for that bag. The minimum errors and maximum matches occur when 

the angular separation between the successive views is also at a minimum, which is 2
0
 

in this study. This approach enables the relative error and matches behaviour associated 

with each individual bag to be presented and studied more easily.  

4.6 Manipulating the epipolar based morphing in Matlab 

The Matlab code for the epipolar based morphing was designed by the author to cope 

with the novel imaging system employed in this research programme. The approach 

incorporates a „built-in‟ Matlab linear interpolation function, which was designed to 

accept the two (.mat) files produced by the optimized SIFT (as mentioned in Section 

3.4.3). The two files are loaded into the epipolar based morphing to inform view 

synthesis. The code was designed by the author to linearly interpolate pixels along the 

motion or x-axis to incrementally shift the pixels from each view towards each other. 

Once the interpolation was completed, the intensity of the pixels were linearly 

combined, which preserves the natural flow from one frame to another. The code 

automatically changes the number of in-between frames according to the degree of 

angular separation. For instance, if the separation is 5
0
, then the number of synthetic 

views required is four, as depicted in figure 4.1. Finally, the code saves the synthetic 

view, which is later compared to its corresponding GT by utilizing additional Matlab 

code written by the author. This code loads automatically the synthetic view and its GT 

to facilitate a pixel by pixel comparison according to Equation 4.1. The code records the 

total number of pixel errors as well as the average number of pixel errors. For example, 

given the angular separation of 5
0
, four synthetic views are compared to their respective 
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GT‟s. The resultant pixel errors for each of the four synthetic views are recorded 

individually. The calculation of an average error, produced in this example by four 

views, enabled a convenient representation of the combined error. The code also 

produced error maps, which enabled the dynamic visualization of pixel errors 

throughout the resultant image sequences.  

4.7 Results and discussion 

4.7.1 Matching results as a function of the angular separation between X-ray 

beams  

Figure 4.4 reports the matching results of two perspective views separated by 2
0
 for one 

of the 30 experimental luggage items. A total of 874 matched features (see 

figure 4.4 (a)) are produced by standard SIFT algorithm. The matches that do not satisfy 

the standard criteria are highlighted in red colour while the matches that do match the 

standard criteria are indicated in green colour. When the epipolar-line and disparity 

window criteria are applied, 189 previously „successfully‟ matched features were 

discarded.  

To aid the visual inspection of the number of matches, the positive and negative 

matches are considered separately as illustrated in figure 4.4 (b) and (c) respectively. 

The rejected matches presented in figure 4.4 (b), have passed the standard SIFT 

matching criterion but have not satisfied either the epipolar or disparity window criteria. 

The green colour lines in figure 4.4 (c) link up the successful candidates (positive 

matches) that will be used by the epipolar based morphing algorithm. Evidently from 

the bar chart presented in figure 3.15, further increase in the number of negative 

matches and reduction in the number of positive matches were recorded when the two 

additional  criteria were employed by the SIFT. This tightening of the SIFT criteria 

produces an expected increment in total number of negative matches and a decrement in 

the total number of positive matches.  
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Figure 4.4: (a) SIFT matching result, (b) negative matches, (c) positive 

matches. 

 

Images organized in figure 4.5 are extracted from the image of figure 4.4 (c) and 

arranged to enable the convenient comparison of a family of matches for the same 

objects, but with different angular separation. It can be appreciated by the visual 

inspection of the matching results organized in figure 4.5 that there is a significant 

reduction in the total number of matches when the separation between views is 

increased. This observation is further supported when comparing the result of matching 

two perspective views separated by 2
0
 of angle separation (see figure 4.5 (a)) and same 

objects with wider separation between them (see figure 4.5 (g)- when the views are 

separated by 14
0
). To provide an indication of the effectiveness of standard and 

modified SIFT, part of the bag in figure 4.4 is considered in figure 4.6. 

(c) 

(b) 

(a) 
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Figure 4.5: (a)-(g) matching results obtained at 2
0
, 4

0
, 6

0
, 8

0
, 10

0
,12

0
 and 

14
0
 of angular separation between views in that order.  

 

The images in figure 4.6 (a) and (d) are the ground truth left and right perspective views 

separated by 2
0
. The image in figure 4.6 (b) was generated by employing the matches 

illustrated in figure 4.4 (a), while; the image in figure 4.6 (c) was produced using the 

matched features shown in figure 4.4 (c).  

 

Figure 4.6: (a) and (d) are ground truth left and right views, (b)and (c) 

are the synthetic views generated using standard and optimized SIFT 

respectively. 

 

It is clear from the synthetic view in figure 4.6 (b) that shapes of objects were not 

preserved when all the features produced by SIFT were used. However, shapes of the 

same objects have improved in appearance when standard SIFT was tightened by the 

inclusion of additional criteria (see figure 4.6 (c)). The total number of matches 

obtained for each of the thirty different experiment bags, as a function of the angular 

separation of the X-ray beam (or perspective views), is illustrated in the graph of 

figure 4.7.   

(d) (c) (b) (a) (g) (f) (e) 

(d) (c) (b) (a) 

Morphing artifacts such as holes and fold overs due to warping failure 
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Figure 4.7: The total number of matches for 30 luggage items at 2
0
, 3

0
, 4

0
, 

5
0
 and 6

0
 of separation. 

 

Initially, the matching employed the minimum amount of separation (2
0
) for which only 

one synthetic view is required. Then, the angular separation between the perspective 

views was increased in 1
0
 increments up to a maximum of 6

0
. There is a significant 

reduction in the total number of matches recorded as the angular separation between 

views is increased. For example, 1304 matches were recorded for bag b1 employing a 2
0
 

separation between views, which was subsequently reduced to 790 matches for a 6
0
 

separation. Similarly, bag b20 produced 197 and 115 matches for separations of 2
0
 and 

6
0
, respectively. The average trend in matching performance is represented by the 

central red colour curve in figure 4.8. The upper and lower bounds of the maximum and 

minimum number of matches recorded for any of the 30 bags has also been illustrated 

graphically.  
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Figure 4.8: Maximum, minimum and average number of total matches for 

30 different bags as a function of the angular separation of views.  

 

It is important to note that the difference in the bag contents has resulted in variation in 

the total number of matches recorded, as indicated in figure 4.7 and 4.8. Therefore, as 

mentioned in Section 4.5, normalizing the number of matches provides the opportunity 

to view a family of curves pertaining to a highly dissimilar set of luggage items. 

Figure 4.9 shows the normalized matches‟ values. A global trend of matches is 

presented by normalizing the matches with respect to the matches produced by the 

minimum degree of angle separation, (2
0
 in this case). It is evident from figure 4.9 that 

the number of matches was reduced when the angular separation between views 

increased. This observation however is expected as views become increasingly disparate 

and difficult to correlate due to a commensurate increase in the search space. The 

average and the possible fluctuation of the number of matches are represented by the 

three characteristic plots illustrated in figure 4.10 for completeness.  
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Figure 4.9: Normalized number of matches for 30 luggage items at 2
0
, 3

0
, 

4
0
, 5

0
 and 6

0
 of separation. 

 

Figure 4.10: Maximum, minimum and average number of matches for 30 

bags as a function of angular separation.  
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It should be noted that there is steady reduction in the number of matches as the angular 

separation between views is increased. This finding is demonstrated by the average 

number of matches for the 30 bags indicated by the red colour line presented in the 

graph of figure 4.10. As a pilot study and to further value the results obtained from the 

above graphs, bags which produce the maximum and minimum number of matches at 4
0
 

are considered and illustrated in figure 4.11. 

 

 Figure 4.11: An example of two images obtained at a 4
0
 X-ray beam 

angle, where the bag in (a) produced the lowest number of matches and 

the bag in (b) produced the highest number of matches.  

 

It is observed from the image in figure 4.11 (a) that the lowest number of matches was 

produced when the structure of the bag contained a relatively small number of sparsely 

distributed low contrast features. Consequently, the extrema identified from the 

difference of Gaussian levels, as explained in Section 3.2, produce fewer features 

capable of being matched. This finding is discussed comparatively with the help of the 

two different ROIs, each highlighted by the red rectangle in figure 4.11; the ROIs are 

presented as a three image sequence collected at; -15
0
, 0

0
 and 15

0
, as presented in 

figures 4.12 and 4.13. The largely soft image structure, presented in figure 4.12, limits 

the potential for successful and robust correspondences to the disparate small pixel 

coverage features. 

(b) (a) 
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Figure 4.12: ROIs extracted from an image sequence at different angular 

positions; (a) -15
0
, (b) 0

0
 and (c) +15

0
; a full image of this bag is 

presented in figure 4.11(a). 

 

The three images in figure 4.13 are obtained using the same ROI coordinates as in 

figure 4.12. It is observable that the views contain relatively complex overlapping 

structures as well as significant variation in spatial segregation. In addition, some 

features are not visible in all views. The relatively high density of salient features 

provides significant stability in the detection of local maxima and minima and enables 

a higher matching denser to be achieved.  

 

Figure 4.13: ROIs extracted from an image sequence at different angular 

positions; (a) -15
0
, (b) 0

0
 and (c) +15

0
; a full image of this bag is 

presented in figure 4.11(b).  

(c) (b) (a) 

(a) (b) (c) 
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4.7.2 Synthesis and error analysis results as a function of X-ray beam angle  

Before presenting the synthetic view results produced using the epipolar based 

morphing, it is useful to compare the quality of the synthetic images produced by the 

proposed technique with the synthetic images generated by a „standard‟ morphing 

approach. The comparison is based on Equation 4.1, where an average ERR is generated 

for epipolar based morphing and for standard morphing. It is worth noting that the input 

keypoints for both standard and epipolar based morphing were generated using the 

optimized SIFT algorithm. The graph in figure 4.14 was produced by taking the average 

number of pixel errors for 30 pairs of different images separated by 2
0
. The graphical 

representation indicates the improved performance of epipolar based morphing in 

comparison to standard morphing. Both standard and epipolar based morphing were 

utilized to generate one synthetic view at the minimum degree of separation between 

perspective views (2
0
 in this case). This low angular separation represents a best case 

scenario. 

 

Figure 4.14: Total number of average pixel errors generated at 2
0
 of 

separation for 30 successive pairs of different luggage items.  

 

It is apparent from the bar graph illustrated in figure 4.14 that the number of pixel errors 

is reduced when the epipolar based morphing is employed. This improvement occurs 

because the left and right perspective views are interpolated along the motion axis 

“ -    ” to generate the synthetic view. This constraint, described in Section 4.4, 

reduces the potential for errors along the vertical axis “ -    ”, which are typically 

generated by two direction standard morphing. 
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Figure 4.15: A ground truth image of a briefcase produced by the FLXDA 

machine and used for the purpose of comparison.  

 

Increasing the angular separation between the X-ray detector arrays provides the basis 

for a more cost effective scanning technology. This approach enables the total number 

of X-ray detectors arrays and collimators to be reduced for a specified imaging 

performance. For instance, if the synthesis algorithm is able to produce an acceptable 

synthetic view when the two perspective views are separated by 4
0
, then no 

intermediary detector or collimator is required. In order to study the fidelity of the 

resultant synthetic imagery a comparative analysis employing ground truth is employed. 

A ground truth image produced by the FLXDA machine is presented in figure 4.15 and 

was used to assess the fidelity of the synthetic views at different angular separations.   

The group of images in figure 4.16 are arranged to enable the visual comparison of 

a family of synthetic images generated at different angular separations with regard to 

ground truth view presented in figure 4.15. The equivalent synthetic views at 2
0
, 4

0
 and 

6
0
 separations are presented in figure 4.16 (a), (b) and (c) respectively. It is worth noting 

that as the separation is increased, the resultant synthetic view reduces in fidelity.  

 

  

  

ROI 1 

ROI 2 

ROI 3 
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Figure 4.16: (a), (b) and (c) are synthetic images produced using perspective views separated by 2
0
, 4

0
 and 6

0
 while; (d), (e) and 

(f) are error maps generated using Equation 4.1.  

(a) (b) (c) 

(d) (e) (f) 
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Images in figure 4.16 (d), (e) and (f) are error maps generated by comparison with 

synthetic views at 2
0
, 4

0
 and 6

0
 of separation respectively according to Equation 4.1. It 

is undoubted that the pixel errors are accumulated as the angle of separation between 

views is increased. The best intermediary view however, is generated when the 

separation between views was at minimum (2
0
 in this case). As the angular separation 

between perspective views is increased the shapes of objects are preserved with respect 

to vertical and horizontal linear features, although edges of objects tend to become more 

blurred. Three ROI‟s highlighted in figure 4.15 are selected for further analysis in the 

coming text. Care was taken when choosing the ROI‟s to ensure that they encompass 

partially and fully overlapping objects as well as different materials, thicknesses and 

shape, to exhibit the multi-layered translucency typical encountered in security scans of 

luggage.  

 

Figure 4.17: (a) is the GT of ROI1, (b), (c) and (d) are the synthetic views 

obtained at 2
0
, 4

0
 and 6

0
 respectively. 

 

The image in figure 4.17 (a) represents a magnified section of the ROI1 highlighted in 

figure 4.15. It is a hub ring of a floppy disk, which is totally masked by an organic 

material. The synthetic results of this portion at 2
0
 and 4

0
 and 6

0
 have shown acceptable 

results although edges of the ring (highlighted by dashed red circle in figure 4.17 (a)) 

tended to blur at 4
0
. This observation is highlighted in figure 4.17 (b), (c) and (d). It is 

expected that the synthetic results would reduce in quality as the separation between the 

views was expanded up to 6
0
. It is obvious that common morphing artifacts, such as 

ghosting and blurriness (highlighted in figure 4.3) which are due to the cross-dissolve 

have been minimized. This effect can be seen in the ROI 2 enlarged in figure 4.18 (a), 

which encompasses the metal components inside an A4 lever arch folder. The proposed 

synthesis algorithm preserves horizontal and vertical edges (see the objects highlighted 

(a) (b) (c) (d) 
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in red in figure 4.18 (a)). Synthetic views of the ROI 2 at 2
0
, 4

0
 and 6

0
 are shown in 

figure 4.18 (b), (c) and (d) respectively.  

 

Figure 4.18: (a) GT of ROI2, (b), (c) and (d) are the synthetic views 

obtained at 2
0
, 4

0
 and 6

0
 angular separation respectively.  

 

Other common morphing artifacts such as „fold-overs‟ and „holes‟ due to warping 

failure, see figure 4.6 (b), have also been reduced. However, it is significant to note that 

the presence of ghosting appears to increase as the separation between views was 

increased. The growth of ghosting can be observed in the features highlighted by the red 

colour circles in figure 4.19. 

 

Figure 4.19: (a) is GT of ROI3, (b), (c) and (d) are the synthetic views 

obtained at 2
0
, 4

0
 and 6

0
 of angular separation respectively.  

 

The region ROI3, shown in figure 4.19, highlights a barrel combination lock positioned 

on the left hand side of the briefcase (illustrated in figure 4.15).  The images consist of 

(a) ground truth and the intermediary synthetic views (b), (c) and (d) produced using 2
0
, 

4
0 

and 6
0
 separations respectively. It is noticeable that the objects surrounded by red 

colour dashed circles are subject to increasing amounts of ghosting. The maximum 

ghosting is apparent in image (d) and demonstrates that ghosting tends to increase as the 

generating pair of images becomes increasingly disparate. This result was expected 

(a) (b) (c) (d) 

  

(a) (b) (c) (d) 
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when considering the increasing angular separation between the generating views. This 

effect occurs as the size of the disparity window along the motion axis is increased; 

therefore, the search space for correspondences is increased. Also, image structures that 

subtend a significant distance along the depth or z-axis (due to relative alignment within 

the inspection tunnel and or their natural three dimensional proportions) will 

increasingly change their „footprint‟ shape (i.e. in the x-axis and y-axis image space) as 

the angular separation between the views is increased. This statement requires 

a counterpoint insomuch as the difference between the images of a „corresponding 

object‟, when viewed from different directions is, in fact, the basis for the extraction of 

three dimensional data. The separation between the views improves the depth resolution 

(i.e. the minimum detectable depth increment in the z-axis reduces in size). However, 

for increasingly disparate views the correspondence problem becomes increasingly 

difficult to solve. The synthesis of an intermediary view is required to cope with 

reducing correspondences and increased differential shape within the generating views. 

These compounding effects are identified in this analysis as a major source of the 

ghosting artifacts. The analysis of pixel error is presented graphically in figure 4.20 as 

a function of the angular separation of the X-ray beams.  

 

Figure 4.20: Total number of pixel errors for 30 bags recorded at 2
0
, 3

0
, 

4
0
, 5

0
 and 6

0
 of angular separation.  
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The total number of pixel errors tended to increase as the angular separation between 

the views is increased. This effect was expected as the „generating‟ perspective images 

exhibit increasing variations in shape, overlap and pixel intensity, which also tend to 

reduce the total number of corresponding matches. If the number of matches is 

insufficient, then the performance of the epipolar based morphing also reduces, which 

tends to increase the total number of pixel errors. For example, the total number of pixel 

errors recorded for bag b1 at 2
0
 and 6

0
 was 93479 and 107658 respectively. The bag 

b25, produced an approximate threefold increase in the total pixel errors compare to the 

bag b1, 31331 and 38478, at 2
0
 and 6

0
 respectively. These examples support the finding 

that the total number of pixel errors recorded is very sensitive to the individual bag‟s 

image structure, which, of course, arises from the amount and relative positioning of the 

physical contents within each different bag. Figure 4.21 graphically illustrates the effect 

of the luggage structure on the range of pixel errors; the graph shows the upper and 

lower bounds of the maximum and minimum as well as the average number of errors 

recorded for any of the 30 bags.  

 

Figure 4.21: Maximum, minimum and average total number of pixel 

errors for 30 bags as a function of angular separation . 

 

As determined in Section 4.5, it is useful to normalize the number of pixel errors with 

respect to the minimum error recorded for each different experiment bag, which occurs 
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at the minimum angular separation of interest of 2
0
.  This approach enables trends in 

vastly different bag structures to be more easily identified and interpreted.  

 

Figure 4.22: Normalized number of pixel errors for 30 luggage items at 2
0
, 

3
0
, 4

0
, 5

0
 and 6

0
 of separation. 

 

Figure 4.23: Maximum, minimum and average normalized number of pixel 

errors for 30 bags as a function of angular separation.  
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Figure 4.22 shows the normalized number of pixel errors as a function of angular 

separation between generating views. A significant trend for the total number of pixel 

errors to increase as the generating images become more disparate is evident in the 

graph of figure 4.22 for each of the 30 different bags. The overall trend in this data is 

comprehensively represented in figure 4.23.  The normalized average number of pixel 

errors is presented by the red colour curve in figure 4.23, while the upper and lower 

bounds of the maximum and minimum number of pixel errors recorded for any of the 

30 luggage items are also illustrated graphically by the blue and green colour curves 

respectively. To further appreciate the results obtained from the above graphs, bags 

which produce the maximum and minimum number of matches at 4
0
 are considered for 

further discussion. These bags are illustrated in figure 4.24; two ROIs highlighted by 

red colour rectangles are presented for further analysis. 

 

Figure 4.24: An example of two images where (a) bag image that produced 

the lowest total number of pixel errors and (b) bag image that produced 

the highest total number of pixel errors; both images were obtained at a 4
0
 

view separation. 

 

The ROI in figure 4.24 (a) bounds a relatively simple image composition exhibiting 

a small number of high contrast features. This ROI position is used to provide 

a sequence of three different perspective views (obtained at -15
0
, 0

0
 and 15

0
) shown in 

figure 4.25. The salient features are well behaved over a large total view separation of 

30
0
. Their „long axis components‟ are confined to a small number of depth planes, 

which tends to minimise the amount of shape change from view to view 

(a) (b)
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i.e. simplistically, parallax manifests itself as an image translation as opposed to 

an image rotation of the features under consideration. Consequently, the views are very 

similar when in comparison with ground truth and produce minimal pixel error counts 

in the resultant synthetic imagery.  

 

Figure 4.25: (a) and (c) are ROIs extracted from the image of 

figure 4.24 (a) at -15
0
 and +15

0
 respectively and (b) is the ROI extracted at 

0
0
. 

 

The simple in scenario figure 4.25 can be contrasted with the more complex image 

composition bounded by the ROIs in figure 4.26.  Again, the ROI positions are used to 

provide a sequence of three different perspective views (obtained at -15
0
, 0

0
 and 15

0
). 

The resultant image structure is multi-layered with many different overlapping features 

that produce significant shape change as they „slide‟ and „rotate‟ from view to view. 

Also, significant changes in „corresponding‟ pixel intensities are produced.  

 

Figure 4.26: (a) and (c) are ROIs extracted from the image of 

figure 4.24 (b) at -15
0
 and +15

0
 respectively and (b) is the ROI extracted at 

0
0
. 

 

Under such conditions even small changes in viewing angle can produce relatively large 

pixel error values. This comparative analysis supports the causal linkage between the 

generating images or „bag‟ complexity and the trends in algorithmic performance.  

(c) (b) (a) 

(c) (b) (a) 
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4.7.3 Further Analysis 

Further analysis is required to investigate if the errors at specific angular positions and 

separations are coherent and consistent with these earlier findings. The working 

hypothesis is that the pixel errors recorded for each different synthetic image within 

a given KDEX sequence should not exhibit large variances. To establish the validity of 

this hypothesis the remaining synthetic images that form each full KDEX sequence are 

analysed in detail and presented in the following text. 

The maximum and minimum number of pixel errors recorded during the 30 bag 

experiments, at view separations of 4
0 

and 6
0
, are highlighted by the coloured dashed 

circles in figure 4.23. When each successive pair of views is separated by 4
0
, see graph 

of figure 4.27, three intermediary views are generated. For instance, generating views 

at -14
0
 and -10

0
 are employed to synthesise the three middle images at; -13

0
, -12

0
 

and -11
0
. The three different synthetic views are compared with their respective ground 

truth views and the number of pixel errors is calculated and recorded for each view.  

 

Figure 4.27: Total number of pixel errors associated with sequence of 

images separated by 4
0
 of angle separation where the blue and green 

curves indicate to the bags produced the maximum and minimum number 

of pixel errors respectively. 
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In addition, a representative average error value for the triplet is also calculated. This 

procedure was repeated for each different triplet of synthetic views within the full 

sequence. As previously mentioned the results of this analysis are presented graphically. 

The curves in figures 4.27 represent the average number of pixel errors for a sequence 

of views separated by 4
0
. The blue curve is the result of processing a sequence of 

images of the bag (b1), which produced the maximum number of pixel errors at 4
0
 of 

separation as highlighted by the blue colour dashed circle in figure 4.23.  The green 

curve indicates the minimum number of pixel errors recorded by the sequence of images 

of bag (b25) highlighted by the green dashed circle in figure 4.23.  

A similar approach was adopted to analyse the synthetic images that produced the 

maximum and minimum number of pixel errors at 6
0
, see graph of figure 4.28. The 6

0
 

separation requires five synthetic intermediate frames. For example, if views -3
0
 and 

+3
0 

are employed, then synthetic views at; -2
0
,-1

0
, 0

0
, 1

0
 and 2

0
 are compared with their 

respective ground truth images.  

 

Figure 4.28: Total number of pixel errors associated with sequence of 

images separated by 6
0
 of angle separation where the black and red curves 

indicate to the bags produced the maximum and minimum number of pixel 

errors respectively.  
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The representative error is calculated as the average number of pixel errors for each 

synthetic view. Again, this procedure was repeated for the full synthetic requirements of 

the given KDEX sequence. The reader is reminded that the ground truth images were 

generated at the appropriate X-ray beam angles by the scanner and were not input to the 

synthesis algorithm. The black and red curves in figure 4.28 indicate to the average 

number of pixel errors for the sequence of images of the bags highlighted by the black 

and red dashed circle in figure 4.23, respectively.  

Figures 4.27 and 4.28 illustrate that the overall fluctuation in the number of pixel errors 

seemed to be steady. Generally, the relative small fluctuations are anticipated as any 

change in viewpoints leads to change in the number of correspondence matches, which 

certainly affect the number of pixel errors. It is important to note that the pixel errors 

have shown a similar trend throughout the whole of image sequence. This finding 

validates that features generated by the optimized SIFT algorithm were stable and 

strong, otherwise significant variation in the number of pixel errors would be observed 

from frame to frame throughout each sequence.  

4.7.4 Interim discussion and conclusion 

The experimental work presented in this chapter explores the possibility of applying 

optimized SIFT along with epipolar based morphing to synthesising greyscale KDEX 

images. This effort is in fact essential as regards to founding the possibility of 

synthesising more than one view between the X-ray detector arrays to reduce the total 

number of detectors required for a practical scanner. The literature reports the 

effectiveness of SIFT on dealing with visible light images. This research study 

investigates the potential of SIFT to locate correspondences in KDEX images. The 

appropriateness of optimized SIFT results were reported in Section 4.6.1 and supported 

by the matching curves organised in figures 4.7-4.10. Initially, the algorithm operated 

on images obtained at the minimum angular separation between views of 2
0
. This 

decision was predicated upon the finding that the number of robustly identified 

corresponding features is reduced as the input views become more disparate. Therefore, 

the minimum angular separation condition represents the least difficult scenario for the 

combination of SIFT matching and synthesis employing the epipolar based morphing.  
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It can be appreciated from the synthetic results presented in Section 4.6.2 that the image 

fidelity is degraded as the X-ray beam angle increases. The best result on the contrary is 

obtained for 2
0
, which can be appreciated from the synthetic image illustrated in 

figure 4.16 (a). This finding was expected for two reasons. The first reason is that 

increasing the separation of the X-ray beams produces increasingly dissimilar 

perspective views, which negatively affects the identification of corresponding features. 

The second reason concerns the disparity window criterion. As the separation between 

the generating views (or generating X-ray beams) increase there is a commensurate 

expansion in the disparity window or search space for feature matching. The expanded 

search space coupled with increased dissimilarity between the generating views reduces 

the likehood of correctly identifying corresponding features. These general observations 

are supported by inspecting the curves organized in figures 4.20-4.23. Additional 

assessment of the pixel errors for each synthetic image required for full KDEX 

sequences were also undertaken. This analysis concentrated on using the bags that 

produced maximal and minimal number of pixel error at 4
0
 and 6

0
. Results have shown 

that the errors were stable across each different sequence of luggage items as supported 

by the approximately „flat line‟ responses recorded in the graphs arranged in figures 

4.27 and 4.28.  

This investigation has provided the impetus to expand the research to encompass 

dual-energy X-ray materials discrimination in which different material classes are 

colour coded to aid threat detection. The scheme for designing and developing the new 

algorithmic approach to produce colour synthetic imagery is analysed in the context of 

the „industry standard‟ colour palette for dual-energy X-ray imaging. The results and 

findings are reported in the material presented in the Chapter 5.  
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Chapter Five Colour image synthesis algorithm 

5.1 Introduction 

Dual-energy X-ray imaging is widely adopted by the security screening industry to 

provide colour coded materials discrimination information in a visual display. The 

colour image synthesise algorithm developed in this research programme is reported 

exclusively in this chapter. The dual-energy method employs low and high energy 

X-ray signals and is described in more detail in Chapter Two. Typically; organic, 

mixture, and metallic material is displayed in orange, green and blue colour 

respectively, as illustrated in figure 5.1. This encoding is not based upon an accurate 

scientific classification but nonetheless provides a useful discrimination between 

different types of materials e.g. a metal knife blade will be rendered in blue colour while 

plastic explosives will be rendered in orange colour. Imaging technology incorporating 

dual-energy materials discrimination is used in single view, multiple views and 

computed tomography security screening systems. Such technologies are deployed 

routinely in all the major airports throughout the world. 

 

Figure 5.1: Examples of a grey level image and a colour coded X -ray 

image of a suitcase. 

 

The increased complexity of the dual-energy detector arrays in comparison to the 

relatively simple „greyscale‟ detectors makes for an even more compelling argument for 

their functional replacement by computational synthesis developed here. However, the 

general approach to synthesising the colour imagery is similar to the greyscale approach 

described in Chapter 4. Although, there are significant and important differences from 

Organic 

Metallic 

Mixture 

Grey level X-ray image Colour coded X-ray image 
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the greyscale algorithm both in the matching approach and the “material based 

morphing” required to generate the colour synthetic views. The fidelity of the synthetic 

imagery is established through comparative measures employing colour ground truth.  

Optimized SIFT is employed to identify and extract the corresponding keypoints from 

a pair of perspective views. In the colour work the matching algorithm is operated in 

two distinctly different modes. The first mode employs the direct matching of the entire 

colour coded image. The second mode is based upon the initial segmentation of the 

input image according to material classes; organic, mixture and metallic as provided by 

the dual-energy encoding process.  The motivation for developing these two competing 

schemes is to identify the approach that produces the greatest number of matches. The 

identification of a sufficiently high total number of correct matches is essential to the 

production of high quality synthetic views. The output from the matching algorithm is 

supplied to the material based morphing algorithm together with a pair of generating 

views to enable a new view to be synthesised.  

The fidelity of the synthetic images is established by comparing them with detector 

images produced at the appropriate X-ray beam angle by the scanner. The error analysis 

records two different types of error, namely intensity and class errors. The intensity 

error or ERR-I is obtained by calculating the difference between pixel intensities in the 

GT images and the corresponding synthetic images. The class error or ERR-II is 

measured by comparing the material class of each synthetic pixel with GT; an error is 

recorded if the synthetic view pixel and the corresponding GT do not belong to the same 

class. Both errors enable a direct measure on how well the synthetic images resemble 

the detector images. The number of matches along with number of pixel errors 

(intensity and class) is assessed as a function of the angular separation of the generating 

images. Both types of error accommodate the effects of concatenated noise present in 

the GT (and generating views) by applying appropriate threshold conditions. 

5.2 Dual-energy X-ray image matching 

The analysis of the optimized SIFT algorithm when applied to greyscale images is 

reported in Chapter Three, and also assessed as a function of  the angular X-ray beam 

separation between generating views in Chapter Four. The analysis of the colour coded 

synthetic imagery, presented in this chapter, has to account for the potential changes in 



Colour image synthesis algorithm 

 

Omar Abusaeeda 96 

 

material classification or „colour call‟ for pixels, which compose the generating views. 

This effect is a fundamental consequence of applying the dual-energy technique, at 

different X-ray beam angles, to overlapping arrangements of potentially different 

materials encountered routinely in luggage screening.  

The experiment approach to evaluate comparatively the two different algorithm modes 

namely; direct matching and segmented materials matching, each involved employing 

increasingly disparate views. The views were obtained by systematically increasing the 

angular separation between the generating pairs of X-ray beams according to the 

scheme presented in figure 5.2.  

 

Figure 5.2: Incremental angular separation between X-ray beams for the 

colour coded images employed in the comparative matching analysis.  

 

The initial 1
0
 separation, between views at -3

0
 and -2

0
, is increased in increments of 1

0
 

up to a maximum separation of 6
0
, between the extreme views at -3

0
 and +3

0
 as 

indicated in the figure.  

5.2.1 Direct matching of colour coded images 

The direct matching of the colour coded imagery does not take into account the three 

different material classifications, which are encoded by the dual-energy x-ray imaging 

process. The optimized SIFT is applied only once to each successive view and resultant 

positive matches and negative matches are recorded. The matches are classified 

according to the bounding criteria described in Chapter Three, which tighten the support 

of SIFT. The direct matching experiment requires seven sequential perspective images 

to be acquired and stored for each bag under inspection. The angular separation between 

X-ray source 

+3
0

 +1
0

 +2
0

 -2
0

 -3
0

 

Matching 

direction 

-1
0
 0

0
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each successive view is 1
0
, taken over an angular range of 3

0
 about the 0

0
 or normal 

view position, as discussed in the previous section and illustrated in figure 5.2. A total 

of 30 different bags termed; b1, b2…b30 are processed, according to the flowchart 

presented in figure 5.3,  to provide data for a total number of 180 successive image 

pairs.  

 

Figure 5.3: Data collection for direct matching of colour coded imagery.  

 

The direct matching experiment was designed to provide results to enable a comparison 

with the competing „materials segmentation matching‟ described in the following 

section.  

5.2.2 Materials segmentation image matching 

This matching approach focuses on investigating the utility of the material information 

that is segmented naturally by the dual-energy X-ray discrimination process. Initially, 
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the colour coded image is spilt into its three material classes; organic, metallic, mixture. 

It is worth noting at this juncture that each material class has distinct and important 

roles in assisting threat detection and identification. To acquire the full spatial 

information (i.e. the total number of pixels that compose the image) requires 

an additional fourth class, which does not provide any specific materials information. 

This latter class is referred to as the non-discriminated class or grey level class; 

a pictorial example of the class segmented imagery is presented in figure 5.1. The grey 

level class arises when the X-ray signal incident upon the X-ray detectors is too weak to 

enable materials discrimination. This occurrence arises when the structures in the path 

of the X-ray beam are either too dense and or too thick to enable sufficient X-ray 

photons to reach the detectors.  

In the context of this Thesis, the four material classes, organic, metallic, mixture and 

greyscale are referred to as; O, M, X and G, respectively. Also, left and right are 

referred to as L and R, respectively. For example, the organic class originating from the 

left and the right views is termed O_L and O_R, respectively. Positive and negative are 

indicated as P and N, respectively. The materials segmentation matching and data 

recording scheme process is explained in the flow chart in figure 5.4.  
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Figure 5.4: Flowchart for the segmentation of the four different material 

classes, application of the optimised SIFT and recording of the matching 

results. 

 

The algorithm interrogates all the pixels in the left view and the right view as depicted 

in the flowchart in figure 5.5. Each interrogated pixel is replicated and stored, at its 

original (   ) location in one of the four material class frames. Each left and right input 

image will generate four separate material class frames; a total number of eight frames.  

Input left and right views (colour encoded images) 

Segmentation according to material classes 

O_L O_R X_R M_R G_R X_L G_L M_L 

Apply the optimized SIFT to the left and right views according to the material classes 

Combine all positives and then combine all negatives matches 

Combined positive matches 

for four material classes 

O matches 

P N 

M matches 

P N 

X matches 

P N 

G matches 

P N 

Combined negative matches 

for four material classes 

Left view Right view 

Start 

Load luggage item set of images 

    

Yes 

No 
End of current set 

of images? 
  

  

Yes 

End of 30 luggage 

items? 
  

  
No 

End 



Colour image synthesis algorithm 

 

Omar Abusaeeda 100 

 

The matching algorithm operates exclusively within each class. For example, the 

organic class left view is matched with the organic class right view. The positive and 

negative matches are recorded for each the four classes. In particular, all the positive 

matches, for each input pair of colour images, obtained from organic, metallic, mixture 

and „grey‟ materials is aggregated in a single file. Negative matches from the different 

classes are also aggregated in a different file. 

 

Figure 5.5: Flowchart for the production of the four material class images 

for each successive image pair.  
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An example of the different class frames produced by the image segmentation algorithm 

is shown in figure 5.6.  

 

Figure 5.6: Pair of colour input images (top) and their respective 

segmented material or class images, where (a) was obtained at the -3
0
 

position, and (b) at the +3
0
 position. 

Colour coded 
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Organic class 

(a) (b) 
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The input colour images, at the top of the figure, were obtained at -3
0
 and +3

0
 positions, 

respectively. Both images are segmented according to their material classes. Each class 

from the first view will be matched to its equivalent class in the second. Both 

approaches previously described are based on colour encoded X-ray images. 

5.3 Experimental imagery 

The 30 different bags; b1, b2,.., b30 used to generate the experiment input and GT 

colour imagery in the study described in this chapter were also rendered in greyscale. 

This approach enables reliable comparisons between the greyscale study, presented in 

Chapter Four, and the colour results. Seven sequential perspective images are acquired 

and stored for each bag (producing a total number of 210 perspective images). The 

angular separation between each successive view is 1
0
, taken over an angular range of 

3
0
 about the 0

0
 or normal view position, as illustrated in figure 4.1. The image in 

figure 5.7 is a colour coded version of the image illustrated in figure 4.2.  

 

Figure 5.7: Colour coded bag with labelled contents; the amorphous 

orange background corresponds to items of clothing.  

 

The luggage imaged contained a mixture of „typical‟ objects composed of different 

materials, thicknesses and shape. Objects shown as grey levels in figure 4.2 are colour 

coded in figure 5.7. For instance, the printed circuit board is contains some metal 

material that under careful scrutiny appears coded in blue colour. Similarly, the pair of 

shoes is made from organic material and appears rendered in orange colour. Each 

luggage item‟s location is arranged carefully to ensure that overlapping objects and 
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structures provide the multi-layered translucency typically encountered in security scans 

of luggage. The position of the objects along the depth or z-axis are also carefully 

arranged to provide realistic imaging scenarios.  

5.4 Dual-energy X-ray image synthesis via material based morphing 

In the previous chapter, linear interpolation and linear cross-fade operations were 

employed to generate synthetic greyscale views. The fidelity of the synthetic views was 

established by calculating the intensity error for each synthetic pixel relative to its GT 

pixel. This approach however, is not directly applicable to dual-energy X-ray imaging 

due to the limited colour gamut employed in the materials encoding process. For 

example, a synthetic pixel colour established by employing a linear combination of the 

RGB values from the left and the right views can produce a „new‟ colour that falls 

outside the standard colour gamut defined for each material class. Another possibility is 

the „natural‟ occurrence of corresponding features or pixels appear colour coded 

differently in each generating view. This latter situation also requires class 

disambiguation to be carefully considered. Ultimately, inconsistent pixel colour calls 

have the potential to disrupt the detection and identification of threats in a visual 

display.  

A so called „material based morphing‟ approach was designed and developed to ensure 

that all synthetic pixels fall within the standard colour gamut and therefore, represent 

valid material classes. The 16 (i.e. 2
4
) permutations obtained by considering the four 

material classes for each of the two corresponding features are presented in Table 5.1. 

This table also presents two different interpretations of the „correct‟ synthetic pixel 

class; the rightmost column of the table was designed to bias ambiguous material calls 

in the generating images towards the „threat‟ classes in the resultant synthetic imagery 

according to the following criteria. 

The synthetic class is unchanged if the corresponding features belong to the same class; 

the synthetic class is a Mixture if the corresponding features belong to the Organic and 

Metallic classes; otherwise the following class precedence is applied: 

Organic has precedence over a Mixture; 

Metallic has precedence over a Mixture; 
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Organic or Mixture or Metallic has precedence over Grey.  

 

The rationale for this approach takes into consideration that primary threats such as 

IEDs are often composed of plastic or liquid explosives, which are characterised as 

low-density responses in X-ray projections [1, 3, 152]. 

 

Table 5.1: The 16 different combinations of four different material classes represented by 

corresponding (left and right) features; where O, X, M and G refer to organic, mixture, metallic 

and grey classes respectively.  

 

A second interpretation, presented in the penultimate column in Table 5.1, applies the 

same criteria as previously explained but this time precedence is given to the Mixture 

class over the Organic and Metallic classes. Both approaches are analysed and discussed 

in the following text. 

5.5 Dual-energy X-ray synthetic algorithm performance measurements 

Before the synthetic views results are presented, it is necessary to discuss the metrics 

employed to evaluate them. As previously indicated, two types of errors are recorded 

when the synthetic views are analysed. In the greyscale work, the error was recorded 

using an image subtraction where the intensity of the synthetic view was compared to 

the intensity of GT using formula 4.1. A similar approach is adopted for the colour 

coded images, where ERR-I is determined by comparison with the GT according to the 

following formula: 

Index Left view 

material class 

Right view 

material class 

Output colour I (optimized 

material identification) 

Output colour II (optimized 

threat identification) 

1 O  O  O  O  

2 O  M  X  X  

3 O  X  X  O  

4 O  G  O  O  

5 X  X  X  X  

6 X  O  X  O  

7 X  M  X  M  

8 X  G  X  X  

9 M  M  M  M  

10 M  O  X  X  

11 M  X  X  M  

12 M  G  M  M  

13 G  O  O  O  

14 G  M  M  M  

15 G  X  X  X  

16 G  G  G  G  
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       ‖{   |   ( ( )   ( )  √ ( ))}‖                                                 

Where   is dependant on the image size. In previous chapter,  ( ) and  ( ) were used 

to indicate to the intensity of the GT and synthetic views at position  , respectively. The 

intensity of the colour pixels is taken as the average value of the RGB triplet. An error 

is recorded if the difference in intensity between the GT and synthetic views is greater 

than the square root of the GT intensity [161, 163]. This justification is based on the 

prior research work on measuring the practical noise recorded by typical X-ray luggage 

scanner arising from various practical fluctuations (e.g. system noise).  

A second type of error, ERR-II is required to record changes in the material class of the 

synthetic pixels with respect to GT. Both types of errors are assessed as a function of 

the X-ray beam angles. Also, errors recorded for each bag are normalised with respect 

to the minimum error recorded for that bag, which occurs at a 2
0
 separation in this 

study. Normalizing the number of pixel errors enables the results of different bags to be 

more easily compared. For completeness, upper and lower bounds of the maximum and 

minimum number of each type of errors recorded for any of the 30 bags are illustrated 

graphically.   

5.6 Manipulating the material based morphing in Matlab 

The Matlab code for material based morphing was designed by the author to prevent the 

linear cross-fade of colours; such effects are typically encountered with standard 

morphing techniques but are problematic in the context of colour coded imagery. The 

code was designed to accept the optimized SIFT output (Direct matching approach) to 

enable the interpolation of pixels in a fashion similar to the one described in Section 4.6. 

However, instead of linearly combining the colours from perspective views, the Matlab 

code was written in a way which satisfies the colour gamut defined for each material 

class. In other words, upon the completion of pixel interpolation, the code reads the 

material class for each individual pixel in the left view and its corresponding class in the 

right view. The resultant colour code for the synthetic pixel is chosen according to the 

approach described in Tale 5.1. This technique preserves the original colour gamut and 

ensures that only valid pixel colours are present in the resultant synthetic imagery. If 

new colours were to be allowed then this situation would infer that new material classes 

were being generated, which is not the case in this research. As per the scheme 



Colour image synthesis algorithm 

 

Omar Abusaeeda 106 

 

presented in Section, 4.6, the synthetic view is compared to its corresponding GT in 

which ERR-I and ERR-II are recorded. The Matlab code, which records ERR-I 

implements a different from that presented in Section 4.6. It is designed to calculate the 

intensity of the colour pixels by taking the average value of the RGB triplet according to 

Equation 5.1. ERR-II is also recorded by utilizing Matlab code written by the author to 

compare the class of each synthetic pixel with its corresponding GT. An error is 

recorded if the pixels belong to different classes. The average number of total pixel 

errors (i.e. combining ERR-I and ERR-II) is determined, as per the scheme presented in 

Section 4.6, to enable the collective error as a function of angular separation between 

views to be represented. The collective relationship of errors (ERR-I and ERR-II) is 

calculated with respect to the angular separation while the average number of pixel 

errors is calculated as per the scheme presented in Section 4.6. 

5.7 Results and discussion 

Matching and synthesis both are comprehensively described in the following text.  

5.7.1 Matching results as a function of X-ray beam angle 

The SIFT was incorporated into two different matching schemes. The first scheme, 

termed direct matching, employs SIFT to operate upon greyscale versions of the colour 

coded input images. In the second scheme, each input image is segmented into four 

material class specific sub-images before being input to the SIFT. More details on both 

arrangements are described in the following text.  

5.7.1.1 Direct matching  

The image in figure 5.8 is an example of two views, separated by 2
0
, of bag b21. A total 

of 1442 matches were recorded for the standard SIFT algorithm, which dropped to 1020 

matches when the additional criteria were incorporated.  
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Figure 5.8: Positive matches, highlighted in green colour, for bag b21 

when the input images are separated by 2
0
. 

 

The ROIs shown in figure 5.9 are extracted from the bottom left quadrant of bag b21, 

see figure 5.8; each ROI is enlarged and arranged to enable the convenient comparison 

of a family of matches over increasing angular separations. 

 

Figure 5.9: (a)-(g) matching results obtained at 2
0
, 4

0
, 6

0
, 8

0
, 10

0
,12

0
 and 

14
0
 of angular separation, respectively.  

 

It can be appreciated from visual inspection that the matches are significantly reduced 

when the separation between views is increased, especially when comparing the 

minimum separation figure 5.9 (a) to the maximum separation condition at (g). 

Figure 5.10 shows the total number of matches for thirty different bags as a function of 

the X-ray beam angle or angular separation.  

(d) (c) (b) (a) 

(g) (f) 

(e) 
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Figure 5.10: The total number of matches for thirty luggage items at 1
0
, 

2
0
, 3

0
, 4

0
, 5

0
 and 6

0
 of separation according to direct matching of colour 

coded images. 

 

Figure 5.11: Maximum, minimum and average number of total matches 

for thirty different bags as a function of angular separation.  
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There is a significant reduction in the total number of matches when the angular 

separation between views is increased. For instance, bag b1 produced 1354 matches at 

a 1
0
 separation, which reduces to around half this total number at a 6

0
 separation. 

Similarly, the total number of matches recorded for bag b20 was 182 and 88 at 

separations of 1
0
 and 6

0
, respectively. The trend for the average number of matches for 

the 30 different bags, at different angular separations, is illustrated graphically in 

figure 5.11, along with the maximum and minimum number of matches recorded.  It is 

evident that the total number of matches is dependent largely upon the nature of the 

bag‟s contents. For example; bag b1 produced a seven fold increase in matches in 

comparison to b20. Figure 5.12 shows the matching results normalized to the number of 

matches obtained at 1
0
.  

 

Figure 5.12: Normalized number of matches for 30 luggage items at 1
0
, 2

0
, 

3
0
, 4

0
, 5

0
 and 6

0
 separations. 

 

The average and the possible fluctuation of the number of normalized matches are 

represented by the three characteristic plots illustrated in figure 5.13.   
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Figure 5.13: Maximum, minimum and average number of matches for 30 

different bags as a function of angular separation.  

 

To investigate the nature of the data presented in the graphical obtained from the above 

matching graphs, bags which produce the maximum and minimum number of matches 

at 4
0
 are considered as a pilot study for further discussion. 

  

Figure 5.14: An example of two colour coded images where (a) is the bag 

that produced the lowest total number of matches and (b) is the bag that 

produced the highest total number of matches; both examples were 

recorded for a 4
0
 angular  separation. 

(b) (a) 
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Bags b19 and b20 (4
0
 separation) produced the highest and lowest number of matches, 

respectively. Both bags are illustrated in figure 5.14. These bags also produced the 

maximum and minimum number of matches, respectively, in the greyscale presented in 

Chapter 4.  

The image in figure 5.14 (a) has a relatively simple arrangement of features in 

comparison with the image in (b). The two ROIs highlighted in figure 5.14 are 

reproduced, for detailed discussion, at three different X-ray beam angles; -15
0
, 0

0
 and 

15
0
, in the triplet of images presented in figures 5.15 and 5.16. The materials 

discrimination content of the images in figure 5.15 is relatively uncomplicated. The 

higher densities (metallic materials) are well delineated against an organic field. The 

amorphous structure of the organic content is due to the faint responses in the X-ray 

projections combined with the „soft‟ nature of many organic objects such as clothing. 

Consequently, it is demanding for SIFT to detect corresponding features between 

perspective views.  

 

Figure 5.15: ROIs extracted from an image sequence at different angular 

positions; (a) -15
0
, (b) 0

0
 and (c) +15

0
; a full image of this bag is 

presented in figure 4.14(a). 

 

The ROIs illustrated in figure 5.16 exhibits a larger number of more complex spatial 

structures composed of a wider range of different materials in comparison with the 

content of figure 5.15.  

(c) (b) (a) 
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Figure 5.16: ROIs extracted from an image sequence at different angular 

positions; (a) -15
0
, (b) 0

0
 and (c) +15

0
; a full image of this bag is 

presented in figure 4.11(b).  

 

The relatively large number of well delineated high contrast features will increase the 

likelihood of the SIFT algorithm identifying corresponding features in adjacent 

perspective views. 

5.7.1.2 Materials segmentation matching 

As indicated by Section 5.2, the materials matching method employs the „natural‟ 

materials/colour segmentation provided by the dual-energy technique. This approach 

requires the SIFT to operate independently upon each of the four, material class 

sub-images. An example of the sub-images is arranged in figure 5.17 to enable 

conveniently the comparison of a family of matches (bag b21 at a 2
0
 separation) within 

each class. The full „composite view‟ of this bag is illustrated in figure 5.8. The metallic 

class produced the highest total number of matches in comparison to the other classes. 

Specifically, 276 matches were recorded for the metallic class and 238 for the mixture 

class. The matching within the grey level and organic classes produced significantly 

fewer matches, 117 and 104 respectively. The aggregated matches across all four 

classes totalled 735, whereas employing direct matching produced 1020 matched 

features for the identical input imagery. This initial finding provided the motivation to 

conduct a more detailed study to assess the matching performance across the full 30 

experiment bag set.  

(c) (b) (a) 
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Figure 5.17: Matches recorded at a 2
0
 separation for each material class 

sub-image, where (a) is the metallic class, (b) mixture class, (c)  organic 

class and (d) the grey class. 

  

Figure 5.18 shows the total number of matches of any of 30 bags as a function of the 

X-ray beam angle. There is significant variation in the number of total matches 

produced by different language items. For example, the bag b14 generated 679 matches 

when the angular separation between views was 4
0
 whereas 71 were recorded for bag 

b20. The general trend for all thirty experiment bags is represented by the average 

number of matches illustrated by the red colour curve in figure 5.19, while the 

(a) 

(b) 

(c) 

(d) 
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maximum and minimum numbers of matches recorded for any of the thirty bags are 

illustrated by the blue and green colour curves respectively.  

 

Figure 5.18: The total number of matches recorded employing materials 

segmentation, for thirty different bags at 1
0
, 2

0
, 3

0
, 4

0
, 5

0
 and 6

0
 view 

separations. 

 

Figure 5.19: Maximum, minimum and average number of total matches 

for thirty different bags as a function of angular separation.  
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Figure 5.19 indicates that the average total number of matches reduces as the separation 

between views increases. The normalized version of this data is shown in graph of 

figure 5.20, while the trend for the average and maximum deviation from the mean is 

illustrated graphically in figure 5.21.  

 

Figure 5.20: Normalized number of matches for 30 luggage items at 1
0
, 2

0
, 

3
0
, 4

0
, 5

0
 and 6

0
 separations. 

 

Figure 5.21: Maximum, minimum and average number of matches for 30 

different bags as a function of angular separation.  
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It is worth noting that direct matching and segmented matching both produce minimum 

matches for bag b20 at a 4
0
 view separation. Although, the maximum total number of 

matches produced at a 4
0
 was different in this experiment. The materials segmentation 

approach shows that b14 (see figure 5.22) formed the maximum number of matches.  

 

Figure 5.22: Bag b14 produced the highest total number of matches at a 4
0
 

view separation when employing materials segmentation matching . 

 

The structure of bag b14 is a complex aggregate of objects and demonstrates the 

potential for high density structures to „line-up‟ (due to parallax) and therefore, produce 

localised occluding conditions in specific views. Also, the bag is relatively deep (large 

z-axis component) and produces rapidly changing image content with respect to the 

X-ray beam angle.  

 

Figure 5.23: ROIs extracted from an image sequence at different angular 

positions; (a) -15
0
, (b) 0

0
 and (c) +15

0
; a full image of this bag is 

presented in figure 5.22. 

(c) (b) (a) 
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Three different ROI extreme views of bag b14 are organized in figure 5.23.  While the 

objects are well delineated in each view they also exhibit very different outline 

structures. This effect is due to significant z-axis components for each object e.g. the 

spectacle case is tilted in depth. 

5.7.1.3 Interim discussion and conclusion 

Two competing matching schemes namely, direct matching and materials segmented 

matching are analysed comparatively. The overall number of matches produced by the 

direct matching approach exceeds consistently those produced by the materials 

segmentation approach. This conclusion is clearly supported by the matching 

performance data, averaged over 30 different bags and presented in the graph illustrated 

in figure 5.24 (and the normalised version in figure 5.25). This result is important as 

an increased total number of robust matches will tend to improve the fidelity of the 

resultant synthetic image. Also, the sub-image matching inherent in the material 

segmentation approach incurs increased computational loading in comparison with the 

direct matching approach.   

 

Figure 5.24: The average number of total matches for 30 different bags as 

a function of angular separation obtained from two different matching 

approaches. 
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Figure 5.25: The average number of normalized matches for 30 different 

bags as a function of angular separation obtained  from two different 

matching approaches. 

 

The materials segmentation approach, can disrupt the continuously of a shape or break it 

into sub-shapes according to its material classes. If the shape is not well-defined, then 

the matching algorithm might find it difficult to detect corresponding features. 

However, in the direct matching of colour coded images the shape of an object is 

preserved and the potential of SIFT to identify corresponding features is enhanced. 

Therefore, it is demonstrated that the direct matching approach outperforms materials 

segmentation approach in terms of matching performance. Also, direct matching 

approach is computationally cost effective. Therefore, it is important to note that the 

output of the direct matching approach is further considered by the morphing algorithm. 

In particular, corresponding features produced by direct matching scheme have been 

exploited by the material based morphing algorithm in which the colour coded synthetic 

images are generated.  

5.7.2 Synthesis and error analysis results as a function of X-ray beam angle 

As mentioned in Section 5.4, a linear cross-fade of colours employed typically by 

morphing algorithms is not directly applicable to dual-energy X-ray imaging as it 
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creates the possibility for unsupported colours or material classes. In response a material 

based morphing algorithm is proposed to avoid the issues raised by the linear cross-fade 

of colours. Examples of the standard morphing and material based morphing results are 

presented in figure 5.26.    

 

Figure 5.26: (a) is the GT at normal view position, while (b) and (c) are 

synthetic images produced by morphing and material based morphing, 

respectively. 

 

The relatively small differences between the images in figure 5.26 are more easily 

appreciated by observing the corresponding ROIs presented in figure 5.27 where 

individual pixels can be inspected. The linear cross-fade has produced undesirable 

results in terms of material discrimination information. The group of pixels highlighted 

by yellow squares in figure 5.27 (a) provide examples of unclassified colours Produces 

by the linear cross-fade process. However, the pixels produced by material based 

morphing correspond to possible material classes.   

The performance of the proposed algorithm is established by comparing the resultant 

imagery with GT. ERR-I is recorded by an image subtraction method to quantitatively 

measure the number of pixel errors between the GT images and the synthetic images. 

The material classes‟ comparison between GT and its correspondence synthetic view is 

performed by employing the ERR-II measure. Both types of error allow a direct 

measurement of the fidelity of the synthetic images.  

(a) (b) (c) 
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Figure 5.27: Pixel structure in (a) a synthetic image generated using 

a standard morphing approach, while (b) is the corresponding region 

produced using material based morphing.  

 

The synthetic views at 2
0
, 4

0
 and 6

0
 separations are presented in figure 5.28 (a), (b) and 

(c) are organized to enable the visual assessment of a family of synthetic images 

generated at different separations (GT is presented in figure 5.26 (a)). The best fidelity 

intermediary view is produced when the separation between views is a minimum.  

  

Figure 5.28: (a), (b) and (c) are synthetic images produced using 

perspective views separated by 2
0
, 4

0
 and 6

0
, respectively; the GT view is 

presented in figure 5.26 (a).  

(a) (b) 

 
 

  

  

  

The same pixels synthesised via different approaches  

(a) (b) (c) 

 

  

ROI 1 ROI 2 
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The minimum separation between perspective views is 2
0
. As per the grey level image 

analysis correct image shape information tends to be better preserved at relatively small 

separations. To further discuss the performance of the synthetic algorithm, two ROIs, 

highlighted by the red dashed rectangle in figure 5.28, are selected. Images are chosen 

carefully to include objects composed of different material classes arranged in spatially 

complex scenes as routinely encountered at security checkpoints.  

 

Figure 5.29: (a) is the ground truth of ROI 1. (b), (c) and (d) are the 

synthetic views of the same ROI at 2
0
, 4

0
 & 6

0
 separation, respectively.  

 

The images in figure 5.29 are a magnified version of the selected ROI 1 and are 

arranged to conveniently enable the quality comparison of the synthetic results with 

regard to the ground truth images. Image of figure 5.29 (a) represents the ROI 1. It is 

good example of overlap structure where different material classes are exhibited in 

a multi-layered arrangement. The synthetic views of ROI 1 at 2
0
, 4

0
 and 6

0
 are presented 

in figure 5.29 (b), (c) and (d). The synthetic results preserve shape „e.g. metal material 

embedded in the shoe heel “highlighted by the black dashed oval” and the face of the 

doll. Also, the capability to preserve near horizontal linear structures is demonstrated. 

To a certain extent, the algorithm has also conserved the material classes of each object 

in the synthetic view. Some objects edges tend to blur when the separation between 

perspective views is increased as highlighted around the speaker, shown in black at the 

bottom of ROI 1, as well as the face of the toy baby, especially when the separation 

between views is expanded to 6
0
. The GT image of ROI 2 is presented in 

figure 5.30 (a), while its synthetic views at 2
0
, 4

0
 and 6

0
 are shown in figure 5.30 (b), (c) 

and (d), respectively. Images in figure 5.30 demonstrate that the algorithm is capable of 

(a) (b) (c) (d) 
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preserving curved edges and vertical lines (see the wire supporting the edges of the soft 

bag). 

 

Figure 5.30: (a) is the ground truth of ROI 2. (b), (c) and (d) are the 

synthetic views of the same ROI at 2
0
, 4

0
 & 6

0
 of angular separation, 

respectively. 

 

The hub ring of the floppy disk together with its shutter is blurred when the angle 

between views is increased (see figure 5.30 (d)). It is interesting to note that these 

blurred regions are highlighted in green. The synthetic view is colour encoded 

according to Table 5.1, which is based on the colour of the left and right perspective 

views (e.g. if the left view is O and the right view is M then the synthetic view has to be 

X). Hence the artifact along the edges has been emphasized but the material information 

is preserved. It is noticeable that common morphing artifacts (such as ghosting and 

blurriness) which are due to cross dissolve have been minimized. Other common 

morphing artifacts (such as fold overs and “holes” due to warping failure) have also 

been reduced. An error analysis is formulated in terms of ERR-I and ERR-II to compare 

the quality of the synthetic images with the ground truth images. 

5.7.2.1 Intensity error assessment (ERR-I) 

As stated in Section 5.5, ERR-I is a based upon an image subtraction method to count 

the number of pixel errors on the synthetic images with respect to its GT view. Binary 

error masks are produced to visualize the pixel errors at different angular separations. 

Images in figure 5.31 provide examples of GT with their corresponding synthetic views 

at different separations. Binary error masks (according to Equation 5.1) which present 

(a) (b) (c) (d) 
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ERR-I are illustrated in figure 5.32. In the error mask images, a pixel is highlighted by 

red colour if an error is recorded.  

  

Figure 5.31: (a) is the GT view, (b), (c) and (d) are synthetic images 

produced using perspective views separated by 2
0
, 4

0
 and 6

0
, respectively. 

 

  

Figure 5.32: (a), (b) and (c) are binary error masks produced by 

comparing the synthetic images at 2
0
, 4

0
 and 6

0
 with GT according to 

Equation 5.1. 

 

(a) (b) 

(c) (d) 

(a) (b) (c) 
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It is noticeable that the number of pixel errors increases as the angular separation 

between perspective views is increased.  

  

Figure 5.33: Total number of pixel errors for thirty colour coded bags at 

2
0
, 3

0
, 4

0
, 5

0
 and 6

0
, separations. 

 

Curves organised in figure 5.33 show the total number of pixel errors as a function of 

the angular separation between views. It is evident that the number of pixel errors has 

been increased when the angular separation between views has been widened. This 

effect however is anticipated simply because the „generating‟ perspective views exhibit 

increasing variations in terms of shape, overlap and pixel class. Particularly, one visible 

shape in one view might become partially of fully invisible in other views due to change 

in the view angle. The number of corresponding matches plays an important role in 

terms of the number of pixel errors. It is supposed that as the angular separation 

between perspective views is increased, the number of corresponding matches is 

reduced. Therefore, under the condition of an inadequate number of corresponding 

matches, the performance of material based morphing would be negatively influenced 

producing an increase in the total number of pixel errors. Bag b13 is a good example to 

show the dependency of the total number of matches on the image content. In this 

particular example, b13 has produced 24001 pixel errors at a 2
0
 separation, which has 
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almost been doubled to 48208 for a 6
0
 of separation. This assumption is further 

supported by examination of the upper and lower boundaries of pixel errors recorded for 

any of the thirty bags as illustrated in figure 5.34.  

  

Figure 5.34: Maximum, minimum and average total number of pixel 

errors for 30 bags as a function of angular separation.  

 

The total average number of pixel errors has been presented by the red colour curve in 

figure 5.34, while the upper and lower bounds of the maximum and minimum number 

of pixel errors recorded for any of the thirty bags have also been illustrated graphically 

by the blue and green colour curves, respectively. The normalized number of pixel 

errors is presented in figure 5.35 illustrates.  
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Figure 5.35: Normalized number of pixel errors for 30 luggage items at 2
0
, 

3
0
, 4

0
, 5

0
 and 6

0
 of separation. 

 

  

Figure 5.36: Maximum, minimum and average normalized number of pixel 

errors for thirty bags as a function of angular separation.  
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In ERR-I, the bag b1 and bag b25 have recorded the highest and lowest number of pixel 

errors at 4
0
 respectively. Interestingly, the same bags have recorded the maximal and 

minimal pixel errors in the greyscale work presented in Chapter 4. 

  

Figure 5.37: An example of two colour encoded images where (a) and (b) 

are the luggage items that recorded the minimum and maximum total 

number of pixel errors at a 4
0
 separation, respectively.  

 

Colour coded bags b1 and b25 are illustrated in figure 5.37, and two ROIs are 

highlighted by the red rectangles for further analysis. The image in figure 5.37 (a) 

reports that the least number of pixel errors has been recorded when material 

composition, bag structure and overlap structure are relatively simple. This assumptions 

is more validated when taking into consideration the magnified ROIs extracted from 

three different views of the image in figure 5.37 (a) separated by 15
0
. Figure 5.38 (b) is 

the ROI extracted from the normal or 0
0
 view while views taken at -15

0
 and 15

0
 are 

shown in figure 5.38 (a) and (c), respectively. By means of visual inspection, the three 

ROIs are relatively alike although they originated from three extreme views. In addition, 

to the uncomplicated structure of the luggage item, the similarity between the three 

different views produces a marginal increase to the potential change in the intensity of 

each material class when the bag is viewed at different perspectives. Consequently, the 

increase in the pixel errors would be small. Conversely, the highest rates of pixel errors 

have been recorded with the images which contain many multi-layered structures. 

Moreover, changes in the overlapping conditions have also played an important role in 

terms of the total number of pixel errors when the luggage items have been viewed at 

(a) (b)
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different angles. In particular, ROIs extracted from views at -15
0
, 0

0
 and 15

0
 in 

figure 5.38 (d)-(f) confirms that there is a noticeable variation in terms of structure, 

overlap and the 3D spatial distribution. The changes in multi-layered and overlapping 

structure result in variance in the 3D spatial relationship of the objects, which directly 

affects the intensity of each individual pixel. Therefore, the probability of any synthetic 

pixel to be recorded as a pixel error is increased.   

  

Figure 5.38: (a), (b) and (c) are ROIs extracted from the image of 

figure 5.37 (a) at -15
0
, 0

0
 and 15

0
, respectively; while (d), (e) and (f) are 

ROIs extracted from the image of figure 5.37 (b) at -15
0
 0

0
, and 15

0
, 

respectively. 

 

Nonetheless, any changes in the pixel intensity would have led to change in the material 

class. Therefore, synthetic view material classes have been compared with the material 

(c) 

(b) 

(a) (d) 

(e) 

(f) 
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classes of the GT, in which the ERR-II has been recorded. More details on analysing the 

ERR-II are reported in the following text.  

5.7.2.2 Material class error assessment (ERR-II) 

As indicated in the introductory chapter, aviation security applications require high 

throughput and threat detection rates. The utility of dual-energy material discrimination 

information is to provide additional information concerning metal and dense organic 

threats e.g. guns, knives and plastic explosives. Also, modern threats can be made from 

a mixture or compound materials. Therefore, the synthetic algorithm is designed to 

colour encode the synthetic view through equal consideration of the three material 

classes as reported in Table 5.1. The colour encoding scheme incorporated in this 

chapter has the potential to increase pixel errors, but circumvents the generation of 

unsupported and invalid material classes. 

Pixels located at identical coordinate positions (x, y) in the synthetic view and the GT 

were compared. An ERR-II was recorded when the pixel class at each of these locations 

was not the same. The images in figure 5.39 provide an example of such errors where 

(a) is a pixelated region from GT and (b) is the „matching‟ pixelated region from the 

synthetic view. The non-corresponding class of „pixel pairs‟ is highlighted in the figure 

by the dashed yellow colour squares.   

  

Figure 5.39: Pixelated regions at identical coordinate locations in the (a) 

GT and (b) the synthetic view (extracted from figure 5.26  (c)); examples of 

ERR-II are highlighted by the dashed yellow colour squares.  

 

  

  

  

(a) (b) 
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In this particular example the GT pixel located at the top right corner of the 

figure 5.39 (a) is classified as metallic, while it‟s corresponding synthetic pixel in (b) is 

classified as a mixture, the latter is recorded as erroneous; a similar occurrence of 

a class error can be observed for the bottom middle pixel locations. 

The ERR-II results are graphically represented as a function of X-ray beam angle as per 

the ERR-I analysis. From the graphs in figure 5.40, it can be appreciated that the pixel 

error tends to increase with increasing angular separation of the generating views. This 

general trend is similar to that observed for ERR-I although the total number of errors 

recorded for ERR-II are significantly larger. In ERR-I and according to Equation 5.1, 

a single value is used for comparison when calculating the error. However, in ERR-II 

the potential to record pixel errors is increased as there are 16 different potential states 

in Table 5.1. Therefore, the potential for generating ERR-II type errors is inherently 

higher.  

  

Figure 5.40: Total number of material class pixel errors for thirty colour 

coded bags at 2º, 3º, 4º, 5º and 6º of separation.  
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The upper and lower bounds of the maximum and minimum number of pixel errors 

recorded for any of the 30 bags is also graphically illustrated in figure 5.41 for 

completeness. 

  

Figure 5.41: Maximum, minimum and average total number of pixel 

errors for thirty different bags as a function of X-ray beam angle. 

 

Due to the large fluctuation in the amount of data recorded for each different test bag 

the total number of pixel errors was normalized with respect to the minimum amount 

recorded at a 2
0
, see figure 5.42. For the comprehensiveness, the average number of 

normalized pixel errors as well as the maximum and minimum number obtained from 

any of the thirty bags is illustrated in figure 5.43.  
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Figure 5.42: Normalized total number of material class pixel errors 

recorded for thirty different bags at 2
0
, 3

0
, 4

0
, 5

0
 and 6

0
 of separation. 

 

 

Figure 5.43: Maximum, minimum and average normalized number of pixel 

errors for thirty different bags as a function of X -ray beam angle.  
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As per the ERR-I analysis it will be useful to consider the imagery that produced the 

minimal (bag b9) and maximal (bag b21) total number of pixel errors at a 4
0
 angular 

separation, see figure 5.44.  

 

Figure 5.44: Colour coded images where (a) bag b9 produced the 

minimum total number of material class pixel errors and (b) bag b21 

produced the maximum total number of material class pixel errors; each 

at a 4
0
 separation.  

 

Colour coded bag images b9 and b21 illustrated in figure 5.44 produced the minimum 

and maximum total number of pixel errors, respectively. The contributory factors to this 

outcome will be understood from closer inspection of the ROIs (red rectangles) in the 

figure. The relatively simple structure and small size (area/footprint and volume) of b9 

in figure 5.44 (a) produced the least number of resultant pixel errors. This bag also 

produced a relatively similar perspective views in comparison to the larger volume and 

more complex b21.  

(a) (b)
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Figure 5.45: ROIs at separations of (a) -15
0
, (b) 0

0
 and (c) 15

0
 (see 

figure 5.44 (a)) and similarly ROIs at separations of (d) -15
0
, (e) 0

0 
and (f) 

15
0
 (see figure 5.44 (b)).  

 

Figure 5.45 (b) is the ROI extracted from the 0
0
 view of b9 while (a) and (c) are taken at 

-15
0
 and 15

0
, respectively. Visually, the structure of the three ROIs is relatively simple 

and similar although they originated from three extreme views. In addition, the 

uncomplicated structure of b9 has produced a marginal in material class transitions 

when the bag is viewed at different perspectives. As a result, the increase in the pixel 

errors is relatively small. In contrast, the pixel errors recorded for b21 are significantly 

increased and are attributed to the presence of many multi-layered structures as 

indicated by the ROIs illustrated in figure 5.45 (d), (e) and (f). The ROIs confirm that 

there is a recognizable variation in terms of structure, overlap and material composition 

when the bag is viewed at different perspectives. Therefore, any change in the view 

(c) 

(b) 

(a) (d) 

(e) 

(f) 
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point might increase the potential for change in the material class, which results in 

relatively increased pixel errors.  

5.7.3 Interim discussion and conclusion 

The experimental work presented in this chapter explores the possibility of synthesising 

dual-energy imagery. Two different schemes have been used to match such imagery; 

namely direct matching and matching according to material segmentation information. 

It has been demonstrated that the former approach has increased the likelihood of 

matching and therefore its output has been exploited by the material based morphing to 

produce synthetic views. Two types of errors, termed ERR-I and ERR-II, have been 

used to measure the performance of material based morphing. Empirical results have 

shown that the total number of matches produced by the optimized SIFT reduces as the 

angular separation between the generating views increases. This effect is accompanied 

by an increase in the total amount of ERR-I and ERR-II. Material based morphing is 

designed to overcome the problem of linear cross-fade associated with typical morphing 

techniques. Material based morphing ensures that no material class other than the three 

valid material classes (O, M and X) is generated. However, it does tend to produce 

blurring artefacts around the edges of an object. This affect is inherent due to the colour 

encoding scheme employed to produce the synthetic view. Therefore, another 

experiment was planned to tackle problems associated with the linear cross-fade and 

edge blurring. The experiment employs a translation or warp based approach. Once 

again, this technique adopts the „industry standard‟ colour palette for dual-energy X-ray 

imaging. The results and findings are reported in following chapter. 
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Chapter Six Translation based image synthesis algorithm 

6.1 Introduction 

The material based morphing approach to image synthesis, analysed in the previous 

chapter, has an inherent tendency to produce “ghosting” artefacts in the resultant 

synthetic imagery. The motivation for the research presented in this chapter was to 

establish whether warping or translating, i.e. shifting pixels from the left view towards 

the right view or vice versa, would be beneficial in diminishing such ghosting effects. 

The evaluation of the translation approach requires careful analysis of the amount of 

pixel errors generated as well as consideration of the smoothness of the visual transition 

from one frame to another within the resultant KDEX sequences. 

The translation based image synthesis algorithm comprises two main parts; matching 

and warping. The warping involves the translation of original „generating‟ pixels 

(without combining or cross fading, which constitutes a morph) in accord to the direct 

matching data. Thus, the synthetic views are generated by shifting the pixels in the 

perspective views towards each other, with no need of colour encoding schemes. This 

approach is designed to reduce the amount of ghosting present in the resultant synthetic 

imagery. The fidelity of the synthetic images is established by comparing them with GT 

and errors ERR-I and ERR-II are recoded as a function of X-ray beam angle. To 

establish the best approach, within the context of this research programme, 

a comparative analysis of the translation based image synthesis algorithm with the 

material based morphing algorithm was also conducted.  

6.2 Experimental imagery and experimental setup 

An identical experiment setup was employed for the comparison of the material based 

morphing algorithm with the translation based image synthesis algorithm. In particular, 

thirty luggage items (or bags) termed; b1, b2,….., b30 have been utilized. For ease of 

interpretation an identical bags sequence was adopted for all analysis. An example of 

a luggage items employed by both algorithms is shown in figure 5.7. A standardized 

approach to investigating the material based morphing algorithm employs seven 

sequential perspective images acquired and stored for each luggage item (producing 

a total number of 210 perspective images). The views are taken over an angular range of 

3
0
 about the 0

0
 view where the angular separation between each successive view is 1

0
.   
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6.3 Dual-energy X-ray image synthesis via pixel shifting/warp 

The translation based image synthesis algorithm conserves the material class of the 

pixels that compose the warped synthetic view. Therefore, it is not necessary to identify 

the material class of each pixel in the left view and its corresponding right view as there 

is no manipulation or processing of material class information required. In this chapter, 

linear interpolation of pixels along the motion axis has been applied to generate 

in-between views. The idea here is to avoid the linear cross-fading of non-aligned 

corresponding features, which can lead to ghosting and invalid pixel class data. Note 

that this approach does not preclude to the potential for numerous pixel errors (in 

comparison with GT) due to the „post warp‟ invariant assignment of pixel class. 

Therefore, ERR-I and ERR-II are employed to measure the performance of the 

synthesis algorithm as a function of the X-ray beam angle.  

6.4 Translation based image synthesis algorithm evaluation 

The methodology adopted to evaluate the performance of „translation‟ algorithm 

employs the ERR-I and ERR-II analysis, which is comprehensively described in 

Chapter Five. To recap, ERR-I is recorded using the formula presented in Equation 5.1, 

whereas ERR-II is recorded by comparing the material class of each synthetic pixel with 

its corresponding GT. This approach enables a direct analytical comparison of the two 

competing algorithms i.e. translation based synthesis versus morphing based synthesis.  

6.5 Results and discussion 

The images in figure 6.1 have been organized to enable the visual comparison of two 

synthetic images produced by different approaches with their GT. The image in 

figure 6.1 (a) is GT obtained at the normal view position or 0
0
, while its corresponding 

synthetic views, produced by material based morphing and translation based algorithms, 

are shown in figure 6.1 (b) and (c), respectively. The angular separation between the 

perspective views is 2
0
.   
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Figure 6.1: (a) GT at the normal or 0
0
 view position, while (b) synthetic 

image produced by the material based morphing and (c) is the synthetic 

image produced by the translation based warp; each approach employs 

perspective views separated by 2
0
. 

 

It can be appreciated from a visual inspection of the „competing‟ synthetic views in 

figure 6.1 that each is very similar to the GT. To explore the potential different 

characteristics of each approach the ROI highlighted by the red dashed rectangular in 

the GT 0
0
 image in figure 6.2 is presented for further discussion.  

 

 Figure 6.2: Normal 0
0
 GT for b6, where the ROI highlights  a handgun. 

  

The ROI highlighted in figure 6.2 is used to probe a series of synthetic images produced 

using increased angular separations (2
0
, 4

0
 and 6

0
) between the generating views. The 

resultant nine different ROIs for GT, morphing based and translation based synthesis 

are presented in figure 6.3, where the top row of images are identical GT (for ease of 

comparison), the second row are produced by material based morphing and the bottom 

row are produced employing a linear warp (or translation).  

(a) (b) (c) 

  ROI 
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Figure 6.3: The top row (a), (b) and (c) are identical GT; the middle row (d), (e) and (f) were produced by material based 

morphing and; the bottom row (g), (h) and (i) were produced by warping; the synthetic views, from left to right, were obtained 

at  2
0
, 4

0
 & 6

0
 of angular separation, respectively.  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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The dashed red lines in figure 6.3 act as common reference indicators to help gauge 

visually the relative position of the salient object boundaries. The synthetic views 

produced by material based morphing (middle row) demonstrate blurred object edges 

„highlighted by the dashed red circles in figure 6.3 (d)-(f)‟. It can be observed that for 

fine structures the „blurring‟ can separate into the individual contributions from the two 

generating images to produce double image structures or ghosts. This blurring 

mechanism becomes increasingly apparent as the angular separation between the views 

is increased. These effects are broadly described in Chapter Five. It is interesting to 

consider that the dynamic nature of KDEX imagery might benefit from some instances 

of local edge blurring (i.e. not double images). For example, the natural lengthening of 

the horizontal or X-axis component encountered through the change in the X-ray beam 

angle can be (pseudo) corrected by blurring artefacts, see the white arrows in figure 6.3. 

While this effect may help smooth some visual transitions it is a by-product of 

an aberration and it is not easy to predict or control. However, much of this type of 

ghosting does become inconspicuous when introduced into KDEX imagery. Moving 

one‟s attention to the bottom row of warped images in figure 6.3 (g) - (i) it can be 

appreciated that ghosting is not present. In short the „ghosting issue‟ is replaced by 

a geometric distortion. This distortion arises from the inability of a warp to adequately 

respond or process the changing size of a corresponding object‟s „footprint‟ within the 

generating views. In other words, corresponding features change their shape and relative 

position dependent upon their three dimensionality and relative orientation.  

Consequently, there is inherently insufficient spatial information available in a single 

warped perspective image to alleviate the said affect. In practice this inadequacy can 

lead to spatial dislocations or jumps from one view to another view when GT and 

synthetic images are combined into a resultant KDEX sequence. Therefore, the gaps 

indicated by the white arrows in figure 6.3 produce disrupted transitions between GT 

and synthetic view. This affect has the potential to cause the human observer visual 

discomfort. Ultimately, human factors analysis is required to understand fully the 

impact upon user comfort, detection and identification. This aspect, being beyond the 

scope of the current research, is presented as further work on page 147.  

The qualitative discussion presented above does not lead to a convincing argument for 

the primacy of either approach. To establish a quantitative basis for such a decision 

ERR-I and ERR-II are employed as good measures of relative algorithm performance. 
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The general trends of ERR-I and ERR-II were recorded for the material based morphing 

and translation based algorithms.  

 

Figure 6.4: The average number of total pixel errors (ERR-I) recorded 

when utilizing material based morphing and translation based algorithms.  

 

 

Figure 6.5: The average number of total pixel errors (ERR-II) recorded 

when utilizing material based morphing and translation based algorithms.  
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The general trends of ERR-I recorded for both algorithms are graphically illustrated in 

figure 6.4, while the ERR-II general trends are plotted in figure 6.5, for completeness.  

It is interestingly to note that in both algorithms, the average number of pixel errors 

“ERR-I and ERR-II” increased as the angular separation between the perspective views 

increased. It is somewhat surprising to observe that the material based morphing 

algorithm outperforms the translation based algorithm in terms of ERR-I and ERR-II. 

The ERR-II curves shown in figure 6.5 indicate that the translation based synthesis 

algorithm performs marginally better for separations between views that exceed 5
0
.  

6.5.1 Effectiveness of the matching algorithm on the performance of the 

translation based synthesis algorithm 

The problem of ghosting along the edges of the objects is addressed by introducing the 

translation based synthesis algorithm; albeit with the potential for disrupted image 

transitions. In response to this finding the optimized SIFT algorithm “matching 

approach” is revisited and explored in the specific context of the translation based 

synthesis algorithm. Part of the motivation here concerns the observation that the 

position of keypoints can change abruptly around salient features as the perspective 

views are changed. In other words, keypoint positioning is not object centric as the 

algorithm does not employ intelligent interpretation of the three dimensional coordinate 

information associated with each object.  

To open up the discussion, consider the images in figure 6.6 in which (a) and (b) are 

ROIs that have been extracted from pair of images separated by 6
0
. Owing to the change 

of the view point, objects in figure 6.6 (a) has been located in different position 

compared to its corresponding object in the image of figure 6.6 (b). The image in 

figure 6.6 (c) is a combination of the images in figure 6.6 (a) and (b), which 

demonstrates the difference in relative positioning of the objects. 
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Figure 6.6: (a) and (b) are left and right perspective views separated by 6
0
 

of angular separation, while (c) is the combination of (a) and (b).  

 

The matching algorithm can identify features that appear shape invariant in each 

perspective view. However, this is a very limited scenario in practice as very few 

objects are composed of an aggregate of features that can satisfy this condition. A more 

common place scenario is that as the viewing angle is changed the aggregate features 

change their shape as well as their relative position with respect one another. 

Consequently, keypoint positions can change near salient image structures from one 

view to the next view. For example, a keypoint in one view might be located at the 

centre of an object, but its corresponding keypoint in the other view is placed in 

a different relative position with regard to the same object. The images shown in 

figure 6.7 are ROIs extracted from two matched views of the luggage item named as b1 

separated by 6
0
 of separation. The ROIs are organized to demonstrate that some of 

keypoints which have been identified by SIFT, have not been centrally located with 

regard to the object under inspection.  Two features in one view and their corresponding 

in the other view have been highlighted by white circles in the images of 

figure 6.7 (a) and (b) respectively. 

(a) (b) (c) 
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Figure 6.7: (a) and (b) are left and right perspective views separated by 6
0
 

extracted from bag b1, where the relative position of two features are 

highlighted with respect to the ‘object’; (c)  and (d) are a different example 

of perspective views separated by 6
0
 exhibiting the same effect.  

 

It is interesting to note that feature 1 in figure 6.7 (a) is shifted towards the right in the 

corresponding view in figure 6.7 (b); while feature 2 is shifted towards the left in the 

corresponding view in figure 6.7 (b). A similar observation is apparent for the feature 

highlighted by the white circle in figure 6.7 (c), which is relatively shifted towards the 

left in figure 6.7 (d). The ROIs presented in figure 6.8 also demonstrate the impact of 

overlapping conditions on the location of keypoints. The ROIs shown in figure 6.8 are 

extracted from two matched views, separated by 6
0
, of bag b18. The image in 

figure 6.8 (a) shows two objects fully overlapping each other, where the central 

positioning of the keypoint is emphasized by the white circle. 

(a) (b) 

(c) (d) 

Feature 1 

Feature 2 
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Figure 6.8: ROIs where keypoints are highlighted with regard to salient 

objects to demonstrate the effect of overlapping structure on the relative 

position of the keypoints; (a) and (b) are extracted from two perspective 

views, separated by 6
0
, of bag b18, while (c) and (d) are extracted from 

bag b3. 

 

As the view point is changed, the overlap condition is changed from fully to partially 

overlapping, as illustrated in figure 6.8 (b). In addition, the keypoint is shifted towards 

the left as highlighted by the white circle. The images in figure 6.8 (c) and (d) 

demonstrate the influence of overlapping conditions on locating the keypoint under 

more complicated overlapping situations. The centre of the feature highlighted by white 

circle in the image of figure 6.8 (c) is located near the border of the object emphasized 

by the white four-sided lines. This feature is located approximately at the centre of the 

same object in the presence of significant overlapping structures.  

(a) (b) 

(c) (d) 
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6.5.2 Interim conclusion 

The investigation of synthesizing dual-energy X-ray imaging is presented in this 

chapter. The problem of ghosting around the object edges produced by the material 

based morphing synthesis algorithm was tackled by introducing the translation based 

image synthesis algorithm. However, the material based morphing algorithm recorded 

fewer pixel errors in comparison to the translation based algorithm as demonstrated by 

ERR-I and ERR-II analysis. Also the investigation has shown that due to the animated 

nature of KDEX, edge blurring might become beneficial and aid smooth visual 

transitions between frames. Evaluation of this approach in terms of human factors is 

beyond the scope of the current research and has been left for future investigation as 

presented in Chapter Seven. Exploring the relationship between the matching algorithm 

and translation based synthesis algorithm has revealed that in various cases, the relative 

location of keypoints can shift from view to view as a function of cluttering features. 

This effect can lead to spatial discontinuities between frames when encountered in 

KDEX imagery.  
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Chapter Seven Summary, conclusion and future work 

7.1 Summary 

The research findings presented in this thesis describe the design development and 

analysis of X-ray image synthesis algorithms. The synthetic imagery is generated by 

processing images obtained from a novel multiple view dual-energy X-ray scanning 

technique. The resultant synthetic views are then combined with the scanner views to 

form KDEX movie sequences in a visual display. The algorithmic approach copes with 

greyscale or colour coded materials discrimination imagery produced by the 

dual-energy X-ray technique. The motivation for this work is the reduction in the total 

number of X-ray detector arrays and associated X-ray collimators required for a given 

angular sweep or rotation in the resultant KDEX display. Another important benefit is 

that the amount of X-ray flux required by each inspection is also significantly reduced 

i.e. the total number of X-ray beams is reduced.  

An essential requirement of the image morphing and warping algorithms developed in 

this work is the feature based solution to the correspondence problem. Yet, solving the 

correspondence problem is ill posed and compounded by the transparency property of 

the X-ray images. The nature of transmission imagery requires additional care and 

consideration to address the complexities of image matching and image synthesis. In 

this work an optimised version of the scale invariant feature transform referred to as 

“optimised SIFT” has been used as the matching algorithm and proposed to solve the 

correspondence problem in the KDEX imagery. The SIFT is bounded by additional 

criteria, which are of fundamental importance in the design of the imaging system. In 

particular, the matching algorithm has also been integrated with various morphing 

techniques to operate upon greyscale and colour coded X-ray images. For the purpose of 

smooth motion in the kinetic display angular separations of the order of 1
0
 between 

successive views in the image sequences are employed. The intermediary synthetic 

views can be combined discreetly with the sensor views to provide a sequence of 

KDEX images. This consideration is the key requirement to improve the practical 

implementation and commercial viability of the KDEX technique through the reduction 

in the total number of physical sensors and associated hardware required for a given 

visual performance.  
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7.1.1 The matching algorithm 

To improve the performance of the standard SIFT algorithm, two new criteria namely 

the epipolar line criterion and the disparity window have been proposed. These criteria 

exclude geometrically impossible matches to reduce the total number of incorrect 

matches. The line-scan imaging technique employed in this work produces minimal 

vertical disparity, a tolerance of ±1 pixel difference in the  -         is employed to 

define an epipolar line criterion and accommodate various practical fluctuations such as 

system noise. Therefore, any pair of corresponding matches is discarded if its difference 

along the vertical axis is greater than ±1 pixel. To further increase the accuracy of 

matching, a disparity window criterion has also been designed. The disparity window is 

a function of the spatiotemporal design parameters of the imaging system. Therefore, 

a suitable disparity window serves as an effective criterion to reject unfaithful matches. 

In the context of this work, the term “optimised SIFT” is used to describe the modified 

algorithm. To appreciate the support provided by the additional criteria, the optimized 

SIFT algorithm has been tested on 30 different luggage items or bags.  A sequence of 

7 views distributed symmetrically about the normal view position is captured for each 

different bag. Each successive image pair is separated by 1
0
, with both L-R and R-L 

search directions employed to find corresponding matches. Therefore a total of 360 

successive views have been obtained. The matching algorithm has also been tested 

under conditions typically encountered within X-ray images such as complex 

overlapping conditions, change in local contrast and repeated features within the same 

image frame.  

The proposed matching algorithm has also been assessed as a function of X-ray beam 

angle, where the angle of separation between views was incrementally increased to 

a maximum of 6
0
. The general trend of the total number of matches decreased as the 

angular separation is increased. In the colour coded imagery, the optimized SIFT 

algorithm is operated in different manner in comparison to the greyscale images. In 

general, the matching study of colour coded X-ray images was split into two 

approaches, namely direct matching and matching according to segmented materials 

information. The aim here was to determine, which of the two approaches would 

produce a higher number of matches. The results of each matching scheme have been 

normalized to prevent them from being dependent on the bag structure or its degree of 

complexity. The output of the feature matching stage is used as an input for the image 
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morphing stage (translation and colour encoding) to produce the resultant synthetic 

view.  

7.1.2 The morphing algorithms 

A range of morphing algorithms has been designed to cope with the transmission X-ray 

imagery. An epipolar based morphing technique has been instigated to generate 

greyscale intermediary views. An optimized SIFT algorithm is used rather than creating 

feature points manually as per common visible light morphing techniques. Also, 

epipolar based morphing has been devised to allow pixel interpolation only along the 

motion axis or horizontal display axis, as nominally no vertical disparity is present in 

the KDEX imagery. The performance of the epipolar based morphing has been 

compared with a typical morphing technique, which permits pixel interpolation along 

both vertical and horizontal axis. The analysis of the epipolar based morphing has 

shown that the synthetic images reduce in fidelity as the angular separation between 

views is enlarged.  

Material based morphing has been developed to generate the colour coded synthetic 

views. The algorithm employs the optimized SIFT to inform pixel interpolation along 

the motion axis. The colour coding accommodates corresponding features that exhibit 

conflicting material classes. In other words, the class of the corresponding pixels in the 

left and right views are carefully processed to avoid generating invalid „new materials 

or unsupported colours‟ i.e. the synthetic pixel is forced to belong to one three material 

classes (O, M and X).  This approach has a tendency to blur edges or produce ghosting 

as the angular separation between views is increased. Two types of errors known as 

ERR-I and ERR-II have been recorded to evaluate the performance of the material 

based morphing. The general trends of error behaviour have been presented in both total 

and normalized values.  

To address the ghosting generated by the material based morphing, a translation based 

image synthesis algorithm has been proposed. This approach employs the optimized 

SIFT to inform an image warping algorithm. The resultant synthetic is created by 

shifting the pixels in both perspective views towards each other with no alteration of the 

original pixel intensity values or material classification. Results obtained from operating 

the translation based image synthesis algorithm have revealed that the transition 
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between synthetic and GT KDEX frames was prone to localised spatial discontinuities 

or jumping. Similar to the material based morphing the translation based image 

synthesis algorithm has been assessed by recording the ERR-I and ERR-II in both total 

and normalized values. Both morphing algorithms have pros and cons, therefore; they 

have been compared through ERR-I and ERR-II to identify, which of the algorithms are 

superior. It is supposed that the better performing algorithm records fewer errors. The 

significance of KDEX image frame discontinuity has not been assessed.  

7.2 Conclusion 

7.2.1 The matching algorithms 

In conclusion, the optimized SIFT has produced encouraging results in searching for 

X-ray image correspondences, although its performance is significantly reduced as the 

angular separation between views is incrementally increased. The transparency property 

of X-ray images posed a different set of challenges to SIFT in comparison to reflected 

visible light images. This can be appreciated from the matching results reported in 

Chapters 3, 4 and 5. Also, the complex masking inherent in KDEX imagery tends to 

increase the likelihood that the features of interest be partly or fully occluded in at least 

one view, hence the matching uncertainty can vary significantly between successive 

pairs of images. For example, overlapping structures comprised of many individual 

objects can present large fluctuations in corresponding pixel intensities. The effect is 

exacerbated for objects that have diverse properties in terms of material composition, 

thickness and shape. In terms of dual-energy X-ray imaging, the direct matching 

approach produced a relatively higher number of matches in comparison with the 

materials segmentation matching approach. Therefore, the direct matching approach 

was employed to supply keypoints to the colour image synthesis algorithms.  

7.2.2 The morphing algorithms 

The epipolar based morphing minimised common morphing artifacts such as ghosting, 

blurriness, fold-overs and holes due to warping failure. The highest fidelity intermediary 

views were synthesised by employing adjacent perspective images separated by the 

smallest angular increments used in this work, which is 2
0
. The pixel errors increase in 

magnitude as the angular separation between views increase; this effect was largely 

independent of the actual angular separation from the normal or 0
0
 position. 
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The material based morphing algorithm circumvented the possibility of generating new 

material class pixels and was, ultimately, found to be superior to a translation based 

synthesis algorithm. While the latter approach conserved pixel class information 

through image warping (i.e. no cross fading or blending of pixel properties) it produced 

shape discontinuities, which could disrupt the smooth transition between views. On the 

other hand the morphing approach demonstrated a different error mechanism that 

produced blurring and ghosting but recorded relatively fewer errors as defined by ERR-I 

and ERR-II. Also, the blurring tended to be visually acceptable in terms of the overall 

smoothness of the resultant KDEX sequence.  

The only case where the translation based synthesis algorithm performed better than 

material based morphing was in ERR-II when the angular separation between views 

exceeded 5
0
. Therefore, the material based morphing was demonstrated to be the 

superior approach for synthesising colour coded synthetic views.  

7.2.3 Final conclusion 

To sum up, the material presented in this thesis has demonstrated that greyscale or 

colour coded intermediary views may be successfully synthesised. The performance of 

the optimized SIFT „matching algorithm‟ weakened as the angular separation expanded. 

In terms of the best conditions, the matching algorithms as well as the morphing 

algorithms produced the enhanced results when the angular separation between 

perspective views was 2
0
. This finding is very significant as it eliminates the middle X-

ray detector array in a group of three arrays. Therefore, a KDEX scanner requiring 21 

views (±10 around the normal position or 0
0
 view) requires only 11 X-ray sensor arrays 

in combination with the ability to synthesise the remaining 10 views. This work is of 

practical significance and enables a time multiplexed sequence alternating between 

synthetic and X-ray sensor views to produce high quality KDEX imagery.  

7.3 Future work 

Feasible developments on the work presented in this research are summarized in the 

following points: 
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7.3.1 Improvement in matching algorithm  

Solving the correspondences is only part of the synthesis method explored in this work. 

The correspondence problem is an ill posed problem in computer vision applications, 

and it is exacerbated by the inherent transparency property of X-ray images. It has been 

established that performance of optimized SIFT significantly reduces when presented 

with spatially simple images. Therefore, a rigorous analysis of the SIFT parameters to 

increase the robustness and density of keypoints would enhance the fidelity of the 

synthetic views. Also, it might be worthwhile to combine the optimized SIFT algorithm 

with other feature matching techniques so more keypoints are generated.  

7.3.2 Improvement in morphing algorithm 

A topic of future work will be to investigate ways of extending the proposed morphing 

algorithms to handle problems such as ghosting, blurring and discontinuity while 

preserving objects shapes as well as the material classes of dual-energy X-ray images.  

7.3.3 X-ray scatter imaging  

Another interesting direction of investigation would be to apply the existing algorithms 

to coherently scattered or diffracted X-ray imagery currently under development by the 

University team. The techniques are highly sensitive and highly specific and enable 

materials to be identified as opposed to the crude „three class‟ discrimination provided 

by dual-energy X-ray transmission techniques.  

7.3.4 Human factors evaluation to support algorithm development       

It is a major importance in the design of the KDEX imaging system to preserve the flow 

of 3D visual information to the observer. In another words, the validity of such 

synthesis algorithms is dependent upon human factors considerations, which might 

include the following: 

 Investigate threat detection and identification performance as a function of the 

fidelity of the synthetic images.   

 In the greyscale and colour coded experiments, the synthetic algorithms were 

evaluated as an angular separation between views was incrementally increased up to 

6
0
 therefore, the possible number of detectors that can be removed without 

destroying the flow of 3D visual information requires further investigation.    
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 In the case of colour coded images, two different methods were utilized to generate 

synthetic views; each has cons and pros. The material based morphing has produced 

ghosting around the edges of the object, but it has recorded a lower number of pixel 

errors compared to the translation based algorithm. Further work is required to 

establish whether the discontinuities and changes in object shapes produced by the 

translation based algorithm reduce threat detection and identification performance, 

response time or induce fatigue.  

To conclude, the research findings set out in this Thesis are part of a larger body of 

ongoing research conducted by the University team. Nonetheless, the endeavour 

reported here has important implications for the successful implementation of the 

KDEX image capture and display technique and also provides the basis for several new 

research projects. 
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Appendix A Images samples 
Grayscale image samples at 0

0
 

 

Bag 1 Bag 2 

Bag 3 Bag 4 

Bag 5 Bag 6 
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Bag 7 Bag 8 

Bag 9 Bag 10 

Bag 11 Bag 12 
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Bag 13 Bag 14 

Bag 15 Bag 16 

Bag 17 Bag 18 
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Bag 19 Bag 20 

Bag 21 Bag 22 

Bag 23 Bag 24 



Appendix A 

   

Omar Abusaeeda 173 

 

 

Bag 25 Bag 26 

Bag 27 Bag 28 
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Example of KDEX sequence of range (-3
0
 to 3

0
), “bag1” (greyscale) 

View at 1
0 View at 3

0

 View at 2
0

 

View at -1
0

 View at -3
0

 View at -2
0

 

View at 0
0
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Dual-energy image samples at 0
0
  

 

Bag 1 Bag 2 

Bag 3 Bag 4 

Bag 5 Bag 6 
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Bag 7 Bag 8 

Bag 9 Bag 10 

Bag 11 Bag 12 
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Bag 13 Bag 14 

Bag 15 Bag 16 

Bag 17 Bag 18 
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Bag 19 Bag 20 

Bag 21 Bag 22 

Bag 23 Bag 24 
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Bag 25 Bag 26 

Bag 27 Bag 28 

Bag 29 Bag 30 
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Example of KDEX sequence of range (-3
0
 to 3

0
), “bag1” (Dual-energy) 

View at 1
0 View at 3

0

 View at 2
0

 

View at -1
0

 View at -3
0

 View at -2
0

 

View at 0
0
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Appendix B Tables for number of matches and number of 

pixel errors  
 

The total number of matches and pixel errors in greyscale image sets. 

Errors/Matches  No. of Pixel Errors 
Average No. of Pixel 

Errors 
No. of Matches 

No. of Synthetic 

Views 
1 2 3 4 5 ### ### 

Bags1         

2 Degree 93479 ### ### ### ### 93479 1304 

3 Degree 88514 100945 ### ### ### 94730 1173 

4 Degree 90201 111570 95802 ### ### 102191 1022 

5 Degree 94097 120911 116454 95964 ### 106857 896 

6 Degree 93325 120709 120274 111979 92003 107658 790 

Bag 2         

2 Degree 72359 ### ### ### ### 72359 832 

3 Degree 62475 78108 ### ### ### 70292 785 

4 Degree 66763 87065 72464 ### ### 75431 752 

5 Degree 68515 91300 84377 71539 ### 78933 579 

6 Degree 69032 93463 88660 82724 78309 82438 503 

Bag 3         

2 Degree 52002 ### ### ### ### 52002 792 

3 Degree 39403 55325 ### ### ### 47364 631 

4 Degree 43770 68284 48108 ### ### 53387 526 

5 Degree 45600 71390 58099 49943 ### 56258 453 

6 Degree 47559 74456 64474 63132 48284 59581 400 

Bag 4         

2 Degree 71016 ### ### ### ### 71016 951 

3 Degree 62505 77448 ### ### ### 69977 896 

4 Degree 66715 85212 67994 ### ### 73307 887 

5 Degree 67204 86389 77285 65112 ### 73998 741 

6 Degree 68817 88717 83400 76459 70659 77610 694 

Bag 5         

2 Degree 47257 ### ### ### ### 47257 875 

3 Degree 40362 55677 ### ### ### 48020 778 

4 Degree 39146 60907 43684 ### ### 47912 684 

5 Degree 40288 64644 55381 45459 ### 51443 493 

6 Degree 40902 67306 61187 56115 51001 55302 440 

Bag 6         

2 Degree 90460 ### ### ### ### 90460 1168 

3 Degree 82725 96756 ### ### ### 89741 1064 

4 Degree 83092 103801 89014 ### ### 91969 979 

5 Degree 83842 107631 103469 84944 ### 94972 863 

6 Degree 83847 109055 109487 100636 83320 97269 788 

Bag 7         

2 Degree 36839 ### ### ### ### 36839 458 

3 Degree 45091 44330 ### ### ### 44711 391 

4 Degree 47576 48345 44787 ### ### 46903 342 

5 Degree 49096 51590 52496 47252 ### 50109 301 

6 Degree 49886 53125 55113 54828 48319 52254 257 

Bag 8         

2 Degree 62220 ### ### ### ### 62220 586 

3 Degree 67024 70011 ### ### ### 68518 504 

4 Degree 70454 80083 78476 ### ### 76338 411 

5 Degree 72018 84338 86007 76980 ### 79836 363 

6 Degree 72714 85671 90883 87750 77625 82929 322 

Bag 9         

2 Degree 39136 ### ### ### ### 39136 301 

3 Degree 33647 43684 ### ### ### 38666 227 

4 Degree 35014 50400 38242 ### ### 41219 208 

5 Degree 36372 53892 51345 42908 ### 46129 156 
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6 Degree 36436 54992 55307 52823 45051 48922 128 

Bag 10         

2 Degree 42150 ### ### ### ### 42150 599 

3 Degree 44035 51272 ### ### ### 47654 498 

4 Degree 45690 58484 50170 ### ### 51448 400 

5 Degree 46907 61058 57748 45473 ### 52797 334 

6 Degree 47367 63125 62509 59334 53555 57178 290 

Bag 11         

2 Degree 60573 ### ### ### ### 60573 607 

3 Degree 65909 65040 ### ### ### 65475 524 

4 Degree 70968 78587 74407 ### ### 74654 434 

5 Degree 73429 84262 88597 84361 ### 82662 364 

6 Degree 74602 87607 94108 93040 75597 84991 291 

Bag 12          

2 Degree 76414 ### ### ### ### 76414 504 

3 Degree 75131 82284 ### ### ### 78708 393 

4 Degree 79788 91189 79616 ### ### 83531 344 

5 Degree 79847 95751 89764 92702 ### 89516 286 

6 Degree 81561 98144 95579 101992 86185 92692 238 

Bag 13          

2 Degree 60856 ### ### ### ### 60856 675 

3 Degree 55801 65380 ### ### ### 60591 465 

4 Degree 62060 78665 59481 ### ### 66735 371 

5 Degree 61050 86198 77489 86703 ### 77860 329 

6 Degree 62752 89884 85515 98662 68178 80998 271 

Bag 14          

2 Degree 83879 ### ### ### ### 83879 911 

3 Degree 74328 89233 ### ### ### 81781 845 

4 Degree 77483 97379 77634 ### ### 84165 778 

5 Degree 90009 109573 104156 102626 ### 101591 662 

6 Degree 89897 110940 106188 105505 88901 100286 621 

Bag 15          

2 Degree 47991 ### ### ### ### 47991 613 

3 Degree 44691 54889 ### ### ### 49790 559 

4 Degree 47617 61776 51656 ### ### 53683 555 

5 Degree 64604 70356 66766 60266 ### 65498 492 

6 Degree 64932 73955 68857 67321 55849 66183 446 

Bag 16          

2 Degree 90201 ### ### ### ### 90201 1253 

3 Degree 85247 100522 ### ### ### 92885 1105 

4 Degree 89888 116309 91074 ### ### 99090 1009 

5 Degree 92092 123422 112874 95283 ### 105918 876 

6 Degree 93997 128398 121848 115677 93952 110774 819 

Bag 17          

2 Degree 49284 ### ### ### ### 49284 551 

3 Degree 41353 49956 ### ### ### 45655 493 

4 Degree 42588 57484 43807 ### ### 47960 424 

5 Degree 43154 60099 54798 44404 ### 50614 352 

6 Degree 43476 62041 62041 55719 43706 53397 275 

Bag 18          

2 Degree 51260 ### ### ### ### 41260 306 

3 Degree 38353 47923 ### ### ### 43138 266 

4 Degree 41000 49772 39998 ### ### 43590 237 

5 Degree 42333 53472 48057 39869 ### 45933 210 

6 Degree 43076 54976 50601 43735 36338 45745 197 

Bag 19          

2 Degree 88600 ### ### ### ### 88600 1216 

3 Degree 82917 91768 ### ### ### 87343 1114 

4 Degree 91319 109335 95330 ### ### 98661 1051 

5 Degree 94292 116112 113504 94595 ### 100602 932 

6 Degree 92677 114877 113610 105648 100887 105540 849 

Bag 20          

2 Degree 34697 ### ### ### ### 34697 197 

3 Degree 39164 38258 ### ### ### 38711 176 
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4 Degree 42523 44563 42248 ### ### 43111 151 

5 Degree 44861 51654 52480 47690 ### 49171 124 

6 Degree 45948 52136 54430 53371 45286 50234 115 

Bag 21         

2 Degree 92204 ### ### ### ### 92204 1166 

3 Degree 92355 94723 ### ### ### 93539 1080 

4 Degree 106591 116934 66026 ### ### 96517 906 

5 Degree 106766 119683 93164 88442 ### 102014 795 

6 Degree 106894 121760 106518 90601 87246 102604 673 

Bag 22         

2 Degree 49717 ### ### ### ### 49717 499 

3 Degree 44813 52558 ### ### ### 48686 345 

4 Degree 50011 63254 51839 ### ### 55035 234 

5 Degree 52390 67344 61057 57902 ### 59673 200 

6 Degree 54094 71699 69027 72734 58927 65296 145 

Bag 23         

2 Degree 43447 ### ### ### ### 43447 284 

3 Degree 34746 47167 ### ### ### 40957 247 

4 Degree 35650 47096 36651 ### ### 39799 244 

5 Degree 37755 51022 43635 36377 ### 42197 210 

6 Degree 38913 53561 47183 41574 33336 42913 186 

Bag 24         

2 Degree 48104 ### ### ### ### 48104 394 

3 Degree 47100 44899 ### ### ### 46000 323 

4 Degree 47751 49734 47129 ### ### 48205 274 

5 Degree 48717 51769 52344 48050 ### 50220 235 

6 Degree 49806 53242 55455 53949 49078 52306 207 

Bag 25         

2 Degree 31331 ### ### ### ### 31331 278 

3 Degree 26034 38527 ### ### ### 32281 263 

4 Degree 26559 42460 29563 ### ### 32861 234 

5 Degree 26902 44188 37695 30329 ### 34779 183 

6 Degree 27703 45895 41569 37431 39791 38478 165 

Bag 26         

2 Degree 64499 ### ### ### ### 64499 665 

3 Degree 67382 72212 ### ### ### 69797 542 

4 Degree 70093 80134 72342 ### ### 74190 462 

5 Degree 71429 83838 83437 73009 ### 77928 430 

6 Degree 73224 88008 90889 88681 77988 83758 355 

Bag 27         

2 Degree 46835 ### ### ### ### 46835 438 

3 Degree 50776 49925 ### ### ### 50351 373 

4 Degree 54865 59103 55140 ### ### 56369 342 

5 Degree 56205 60867 61086 53845 ### 58001 269 

6 Degree 57585 63554 65752 64459 57264 61723 237 

Bag 28         

2 Degree 64629 ### ### ### ### 64629 840 

3 Degree 56973 71622 ### ### ### 64298 773 

4 Degree 59042 82806 63076 ### ### 68308 680 

5 Degree 60562 85454 76727 60776 ### 70880 531 

6 Degree 61260 89008 85089 78261 72098 77143 493 

Bag 29         

2 Degree 73064 ### ### ### ### 73064 790 

3 Degree 76290  79837  ### ### ### 78064 734 

4 Degree 72886 90747 70653 ### ### 78095 550 

5 Degree 72148 89595 79392 65333 ### 76617 550 

6 Degree 74049 93083 87704 83687 67334 81171 483 

Bag 30         

2 Degree 40490 ### ### ### ### 40490 247 

3 Degree 42371 45245 ### ### ### 43808 206 

4 Degree 45041 50228 47310 ### ### 47526 190 

5 Degree 45927 51628 52376 48173 ### 49526 175 

6 Degree 47237 54621 57334 55412 49639 52849 154 
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The total number of matches using direct matching on dual-energy data. 

 No. of Correct Matches  No. of Incorrect Matches 

Degree of 

separation 
1 Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Degree  1 Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Degree 

Bag 1 1354 1144 960 872 778 679  283 327 383 404 406 406 

Bag 2 936 772 626 557 495 450  214 233 290 318 299 342 

Bag 3 616 512 445 383 340 312  124 169 169 190 187 190 

Bag 4 858 783 720 654 655 571  212 225 234 261 264 272 

Bag 5 840 709 609 520 445 380  149 190 208 236 246 245 

Bag 6 1095 966 874 781 730 667  246 260 300 275 304 322 

Bag 7 512 423 366 287 271 259  93 207 140 139 138 165 

Bag 8 686 514 433 330 302 263  167 235 289 326 331 334 

Bag 9 356 256 204 149 126 112  83 118 128 142 131 146 

Bag 10 529 421 329 301 263 224  105 132 144 142 149 155 

Bag 11 707 610 509 448 375 358  168 158 200 227 249 243 

Bag 12 518 456 382 347 334 282  108 106 135 134 155 185 

Bag 13 525 470 408 344 339 323  138 155 150 181 167 185 

Bag 14 669 577 508 469 447 402  187 220 230 202 231 225 

Bag 15 614 579 565 482 404 433  143 170 168 198 183 189 

Bag 16 1190 967 873 767 705 649  334 378 429 401 443 449 

Bag 17 570 487 383 318 269 229  116 132 146 148 179 171 

Bag 18 277 249 209 176 172 149  104 82 113 108 121 124 

Bag 19 1176 1051 957 849 766 694  235 280 259 286 322 312 

Bag 20 182 154 128 108 88 87  58 74 97 91 109 104 

Bag 21 1239 998 878 755 675 617  326 421 451 443 446 445 

Bag 22 575 351 279 210 173 151  192 267 281 265 299 291 

Bag 23 218 217 180 184 164 152  90 87 103 85 91 112 

Bag 24 492 393 323 285 261 232  74 123 131 132 136 132 

Bag 25 222 163 141 141 121 118  88 157 145 145 157 152 

Bag 26 715 592 514 425 398 351  125 174 184 220 232 243 

Bag 27 500 358 333 252 241 215  87 133 150 155 158 151 

Bag 28 812 677 549 441 401 374  164 201 222 279 269 281 

Bag 29 765 620 528 476 413 356  303 316 358 392 390 373 

Bag 30 233 156 141 139 121 118  47 102 105 112 116 108 
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The total number of matches using materials segmentation information on dual-energy 

data.  

Matches 
No. of Matches 

Correct Incorrect 
Total Correct Total Incorrect 

Material Class O X M G O X M G 

Bag 1           

1 Degree 194 282 337 113 190 299 203 70 926 762 

2 Degree 181 260 279 104 177 303 197 79 824 756 

3 Degree 139 242 231 75 216 273 218 102 687 809 

4 Degree 126 206 217 65 207 299 214 96 614 816 

5 Degree 112 185 169 57 223 284 223 100 523 830 

6 Degree 109 180 174 49 228 294 244 93 512 859 

Bag 2           

1 Degree 123 161 176 96 168 239 169 66 556 642 

2 Degree 91 120 136 64 163 249 148 84 411 644 

3 Degree 88 98 125 62 164 234 172 69 373 639 

4 Degree 73 77 108 57 171 255 166 75 315 667 

5 Degree 63 98 99 50 164 226 152 83 310 625 

6 Degree 67 88 72 60 203 248 170 86 287 707 

Bag 3           

1 Degree 121 124 148 58 101 158 110 36 451 405 

2 Degree 124 113 141 62 102 151 106 42 440 401 

3 Degree 121 111 113 44 105 138 122 48 389 413 

4 Degree 84 89 111 52 93 164 125 50 336 432 

5 Degree 81 86 95 48 125 146 120 42 310 433 

6 Degree 68 59 88 31 109 157 121 39 246 426 

Bag 4           

1 Degree 137 171 252 172 169 248 160 78 732 655 

2 Degree 105 126 219 155 189 238 183 77 605 687 

3 Degree 97 122 206 138 187 238 181 71 563 677 

4 Degree 96 130 206 126 163 237 158 82 558 640 

5 Degree 88 115 204 119 183 229 145 73 526 630 

6 Degree 84 101 174 119 189 251 196 72 478 708 

Bag 5           

1 Degree 185 187 89 52 135 209 107 30 513 481 

2 Degree 174 153 78 44 148 190 111 26 449 475 

3 Degree 138 126 65 29 163 210 113 41 358 527 

4 Degree 127 113 54 36 169 196 123 40 330 528 

5 Degree 121 97 43 33 175 212 123 35 294 545 

6 Degree 118 94 53 26 144 213 103 38 291 498 

Bag 6           

1 Degree 203 223 203 99 183 311 136 46 728 676 

2 Degree 190 219 211 88 213 271 179 53 708 716 

3 Degree 175 182 185 71 196 304 143 62 613 705 

4 Degree 153 181 182 62 184 275 186 67 578 712 

5 Degree 149 189 152 61 197 247 188 60 551 692 

6 Degree 145 148 146 64 206 258 179 63 503 706 

Bag 7           

1 Degree 65 133 82 33 77 151 93 30 313 351 

2 Degree 69 144 78 28 86 115 71 23 319 295 

3 Degree 52 117 74 28 82 114 56 26 271 278 

4 Degree 47 115 64 27 88 141 67 26 253 322 

5 Degree 47 103 51 25 90 137 66 21 226 314 

6 Degree 40 85 59 24 87 144 67 23 208 321 

Bag 8           

1 Degree 181 197 122 66 182 242 79 36 566 539 

2 Degree 148 148 66 63 197 239 109 37 425 582 

3 Degree 137 134 59 54 178 246 133 41 384 598 

4 Degree 104 105 44 42 175 261 139 53 295 628 
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5 Degree 98 94 42 49 211 230 136 52 283 629 

6 Degree 76 94 38 42 187 252 129 54 250 622 

Bag 9           

1 Degree 111 88 26 31 132 122 23 24 256 301 

2 Degree 96 62 15 26 140 123 39 22 199 324 

3 Degree 67 56 8 17 162 136 37 26 148 361 

4 Degree 44 44 10 18 161 126 30 26 116 343 

5 Degree 42 34 21 16 173 152 19 21 113 365 

6 Degree 36 25 12 15 167 127 25 29 88 348 

Bag 10           

1 Degree 89 92 133 62 111 105 88 27 376 331 

2 Degree 72 78 142 43 98 140 74 39 335 351 

3 Degree 58 74 103 31 106 109 85 23 266 323 

4 Degree 43 62 98 29 103 120 85 45 232 353 

5 Degree 40 51 111 32 111 112 85 44 234 352 

6 Degree 37 47 103 24 104 120 75 35 211 334 

Bag 11           

1 Degree 218 175 94 56 168 198 83 31 543 480 

2 Degree 178 152 62 51 175 198 99 38 443 510 

3 Degree 142 131 50 40 176 181 96 54 363 507 

4 Degree 137 111 53 39 193 206 103 42 340 544 

5 Degree 131 100 41 43 159 199 107 31 315 496 

6 Degree 117 100 46 31 186 195 94 43 294 518 

Bag 12           

1 Degree 36 157 326 385 47 124 170 165 904 506 

2 Degree 33 141 292 284 44 141 168 183 750 536 

3 Degree 36 107 274 265 34 140 167 185 682 526 

4 Degree 32 84 260 205 37 140 164 186 581 527 

5 Degree 30 64 249 207 49 160 178 171 550 558 

6 Degree 28 53 215 168 41 164 199 181 464 585 

Bag 13           

1 Degree 178 132 105 33 124 130 87 38 448 379 

2 Degree 140 128 97 28 116 128 91 41 393 376 

3 Degree 127 101 79 21 132 109 83 43 328 367 

4 Degree 120 103 50 16 119 124 96 29 289 368 

5 Degree 105 92 52 9 154 126 97 49 258 426 

6 Degree 99 75 48 16 125 134 89 45 238 393 

bag 14           

1 Degree 62 169 299 343 107 221 199 142 873 669 

2 Degree 56 160 282 325 111 243 177 128 823 659 

3 Degree 44 140 246 255 114 251 194 149 685 708 

4 Degree 47 139 235 258 115 227 199 173 679 714 

5 Degree 38 138 202 241 117 243 211 154 619 725 

6 Degree 33 116 188 243 128 242 207 155 580 732 

Bag 15           

1 Degree 119 137 120 21 73 128 97 5 397 303 

2 Degree 105 119 112 21 73 150 99 10 357 332 

3 Degree 100 119 91 21 86 150 119 13 331 368 

4 Degree 97 104 82 13 91 119 107 10 296 327 

5 Degree 87 85 73 10 71 147 111 18 255 347 

6 Degree 86 87 78 10 77 147 108 9 261 341 

Bag 16           

1 Degree 136 256 355 117 133 253 251 70 864 707 

2 Degree 106 234 283 82 169 300 254 68 705 791 

3 Degree 112 207 240 72 155 301 255 48 631 759 

4 Degree 106 211 222 68 158 254 258 66 607 736 

5 Degree 93 205 213 60 139 295 256 88 571 778 

6 Degree 80 182 176 55 167 271 288 85 493 811 

Bag 17           

1 Degree 97 125 49 90 94 128 64 21 361 307 

2 Degree 83 139 59 81 75 143 59 29 362 306 
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3 Degree 82 134 35 67 99 131 72 33 318 335 

4 Degree 56 102 30 55 108 141 76 31 243 356 

5 Degree 60 86 22 46 81 155 78 47 214 361 

6 Degree 62 80 25 45 104 128 64 41 212 337 

Bag 18           

1 Degree 105 54 46 20 127 177 46 8 225 358 

2 Degree 94 54 29 14 110 162 57 15 191 344 

3 Degree 85 33 33 12 120 127 56 9 163 312 

4 Degree 68 33 21 14 116 167 49 11 136 343 

5 Degree 71 28 27 13 106 131 49 9 139 295 

6 Degree 60 39 25 9 122 131 60 11 133 324 

Bag 19           

1 Degree 219 259 230 135 199 293 160 47 843 699 

2 Degree 196 230 215 118 216 247 150 60 759 673 

3 Degree 160 223 207 102 192 273 173 64 692 702 

4 Degree 131 190 176 96 190 301 178 78 593 747 

5 Degree 129 180 152 84 181 304 187 85 545 757 

6 Degree 131 189 147 68 180 281 198 73 535 732 

bag20           

1 Degree 52 35 27 4 81 88 26 6 118 201 

2 Degree 44 33 21 5 91 90 24 9 103 214 

3 Degree 41 26 17 4 75 78 41 7 88 201 

4 Degree 32 22 14 3 83 83 29 10 71 205 

5 Degree 33 28 19 4 79 93 39 6 84 217 

6 Degree 27 22 19 3 85 90 46 5 71 226 

bag21           

1 Degree 110 251 338 119 182 322 261 82 818 847 

2 Degree 84 206 280 114 183 313 237 80 684 813 

3 Degree 92 216 243 87 185 328 271 115 638 899 

4 Degree 78 187 219 76 183 305 282 106 560 876 

5 Degree 62 165 208 74 184 309 277 100 509 870 

6 Degree 64 143 187 62 193 301 241 101 456 836 

bag22           

1 Degree 146 96 47 60 173 132 86 72 349 463 

2 Degree 99 80 32 34 188 170 88 93 245 539 

3 Degree 76 58 34 17 167 159 91 96 185 513 

4 Degree 56 63 26 21 192 146 108 90 166 536 

5 Degree 43 54 19 18 178 148 109 79 134 514 

6 Degree 52 36 24 17 193 139 83 89 129 504 

bag23           

1 Degree 78 34 55 3 103 96 55 3 170 257 

2 Degree 83 27 50 5 100 107 52 3 165 262 

3 Degree 96 26 43 4 80 118 52 4 169 254 

4 Degree 75 27 37 3 98 94 55 1 142 248 

5 Degree 69 27 44 2 103 100 51 5 142 259 

6 Degree 69 19 45 3 105 102 55 6 136 268 

bag24           

1 Degree 90 184 108 93 87 142 68 38 475 335 

2 Degree 70 113 90 69 94 130 82 56 342 362 

3 Degree 84 101 68 60 90 150 71 50 313 361 

4 Degree 66 71 68 46 89 140 92 68 251 389 

5 Degree 68 81 68 53 84 155 91 68 270 398 

6 Degree 64 78 51 39 90 130 85 62 232 367 

bag25           

1 Degree 44 36 34 4 116 121 58 2 118 297 

2 Degree 44 30 32 0 110 110 68 0 106 288 

3 Degree 50 26 20 0 110 115 83 0 96 308 

4 Degree 41 24 18 0 99 124 77 0 83 300 

5 Degree 44 22 17 0 113 125 72 0 83 310 

6 Degree 34 24 16 0 108 117 74 0 74 299 

bag26           
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1 Degree 181 182 119 68 183 184 101 33 550 501 

2 Degree 168 135 96 53 161 200 87 38 452 486 

3 Degree 149 123 78 39 179 206 96 44 389 525 

4 Degree 128 108 83 48 184 209 109 27 367 529 

5 Degree 114 114 72 42 182 191 111 41 342 525 

6 Degree 126 83 79 39 185 184 97 51 327 517 

Bag 27           

1 Degree 98 116 80 63 96 174 81 21 357 372 

2 Degree 79 116 59 37 88 157 100 39 291 384 

3 Degree 70 103 50 29 101 154 94 40 252 389 

4 Degree 75 88 43 22 108 155 98 34 228 395 

5 Degree 52 92 39 23 88 137 92 47 206 364 

6 Degree 62 94 23 14 92 143 102 38 193 375 

Bag 28           

1 Degree 190 188 145 74 161 200 119 35 597 515 

2 Degree 190 167 122 47 141 189 130 65 526 525 

3 Degree 137 128 70 34 181 219 168 66 369 634 

4 Degree 122 94 75 35 186 197 173 77 326 633 

5 Degree 119 101 59 19 186 198 154 72 298 610 

6 Degree 114 93 48 22 194 230 138 54 277 616 

Bag 29           

1 Degree 138 182 117 23 167 296 168 46 460 677 

2 Degree 119 175 103 22 153 280 171 56 419 660 

3 Degree 94 142 115 16 166 288 163 55 367 672 

4 Degree 77 142 103 18 173 296 176 53 340 698 

5 Degree 86 117 98 13 163 290 180 60 314 693 

6 Degree 88 105 90 14 173 277 185 62 297 697 

Bag 30           

1 Degree 57 37 28 0 78 111 36 0 122 225 

2 Degree 41 31 19 0 91 104 51 0 91 246 

3 Degree 34 41 21 0 98 104 55 0 96 257 

4 Degree 31 45 17 0 105 107 52 0 93 264 

5 Degree 39 41 21 0 90 116 39 0 101 245 

6 Degree 24 25 12 0 112 110 49 0 61 271 
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The total number of pixel errors according to material based morphing image synthesis algorithm.  

Error I and II No. of Pixel Errors (ERR-I)   No. of Pixel Errors (ERR-II)  

No. of Synthetic Views 1 2 3 4 5 Average of ERR-I  1 2 3 4 5 Average of ERR-II 

Bag 1              

2 Degree 52606 ### ### ### ### 52606  90279 ### ### ### ### 90279 

3 Degree 76240 80718 ### ### ### 78479  96333 96283 ### ### ### 96308 

4 Degree 77068 93132 82450 ### ### 84217  102620 104190 101035 ### ### 102615 

5 Degree 80536 103746 104013 83866 ### 93040  107375 109185 108220 104533 ### 107328 

6 Degree 78898 104008 110769 104356 72835 94173  108459 110699 110629 108456 103614 108371 

Bag 2              

2 Degree 48028 ### ### ### ### 48028  88576 ### ### ### ### 88576 

3 Degree 58051 59871 ### ### ### 58961  93849 92576 ### ### ### 93213 

4 Degree 59412 68512 59856 ### ### 62593  95436 95461 94577 ### ### 95158 

5 Degree 60344 75784 75401 61567 ### 68274  96595 99224 98059 96300 ### 97545 

6 Degree 61739 80329 83861 79380 62239 73510  98423 100712 100459 100479 96856 99386 

Bag 3              

2 Degree 30323 ### ### ### ### 30323  62966 ### ### ### ### 62966 

3 Degree 37452 38425 ### ### ### 37939  67194 66637 ### ### ### 66916 

4 Degree 40970 51648 39048 ### ### 43889  68496 69495 69201 ### ### 69064 

5 Degree 47562 61056 59952 41582 ### 52538  72011 72904 73232 72045 ### 72548 

6 Degree 49856 67700 71426 65911 47918 60562  74517 75946 76467 75884 75867 75736 

Bag 4              

2 Degree 43653 ### ### ### ### 43653  88154 ### ### ### ### 88154 

3 Degree 54209 55392 ### ### ### 54801  91272 91598 ### ### ### 91435 

4 Degree 57531 66665 53872 ### ### 59356  93638 94570 93344 ### ### 93851 

5 Degree 64698 76567 74322 55895 ### 67871  95787 97269 97860 95813 ### 96682 

6 Degree 66113 81717 84341 79276 66728 75635  97769 100287 100776 100499 99640 99794 

Bag 5              

2 Degree 28148 ### ### ### ### 28148  62928 ### ### ### ### 62928 

3 Degree 35554 36315 ### ### ### 35935  66093 65963 ### ### ### 66028 

4 Degree 39720 50831 40028 ### ### 43526  67966 68483 68865 ### ### 68438 

5 Degree 41851 56937 56234 41093 ### 49029  69427 71006 70535 70361 ### 70332 

6 Degree 43472 61882 66819 61967 46395 56107  71270 73164 73066 73458 70649 72321 

Bag 6              

2 Degree 41533 ### ### ### ### 41533  87077 ### ### ### ### 87077 

3 Degree 54800 53387 ### ### ### 54094  91447 91867 ### ### ### 91657 
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Omar Abusaeeda 190 

 

4 Degree 60636 70511 61522 ### ### 64223  94778 96155 95386 ### ### 95440 

5 Degree 59932 77924 77307 62739 ### 69476  96593 99385 99470 98315 ### 98441 

6 Degree 59825 80956 83367 77626 56223 71599  97754 100726 100996 100859 99135 99894 

Bag 7              

2 Degree 25608 ### ### ### ### 25608  56713 ### ### ### ### 56713 

3 Degree 28613 32464 ### ### ### 30539  58286 59200 ### ### ### 58743 

4 Degree 28049 33972 25736 ### ### 29252  58614 59760 57760 ### ### 58711 

5 Degree 29967 38208 37763 25545 ### 32871  61033 60784 61067 58903 ### 60447 

6 Degree 30643 41354 43782 40081 31760 37524  62807 62611 62838 61591 61929 62355 

Bag 8              

2 Degree 31309 ### ### ### ### 31309  64113 ### ### ### ### 64113 

3 Degree 40155 40434 ### ### ### 40295  67340 66765 ### ### ### 67053 

4 Degree 42976 52485 45599 ### ### 47020  70093 69682 68716 ### ### 69497 

5 Degree 56892 67369 63324 49182 ### 59191  72928 74628 73625 72035 ### 73304 

6 Degree 58630 71703 72873 64874 45592 62734  73897 75731 75341 73990 74459 74684 

Bag 9              

2 Degree 25575 ### ### ### ### 25575  40135 ### ### ### ### 40135 

3 Degree 36144 40016 ### ### ### 38080  42753 42728 ### ### ### 42741 

4 Degree 33529 40351 30407 ### ### 34762  42514 42642 41979 ### ### 42378 

5 Degree 44238 52319 51222 35972 ### 45938  44260 45342 44645 44235 ### 44621 

6 Degree 46002 58087 62014 57093 43204 53280  46086 47351 46831 47058 46172 46700 

Bag 10              

2 Degree 29603 ### ### ### ### 29603  55328 ### ### ### ### 55328 

3 Degree 32899 38029 ### ### ### 35464  57187 57673 ### ### ### 57430 

4 Degree 31463 45550 36941 ### ### 37985  58794 60054 58953 ### ### 59267 

5 Degree 34673 43140 42899 31723 ### 38109  59866 60044 60521 59255 ### 59922 

6 Degree 36225 47866 52297 46866 31967 43044  61807 62143 62998 62607 61634 62238 

Bag 11              

2 Degree 30598 ### ### ### ### 30598  58852 ### ### ### ### 58852 

3 Degree 35039 37114 ### ### ### 36077  62224 61296 ### ### ### 61760 

4 Degree 35752 45671 37419 ### ### 39614  64191 63099 64293 ### ### 63794 

5 Degree 45500 57202 55732 42076 ### 50128  67298 68466 66900 67542 ### 67552 

6 Degree 46025 58597 62882 58481 40414 53280  68207 69542 68670 69640 68253 68862 

Bag 12              

2 Degree 26951 ### ### ### ### 26951  53714 ### ### ### ### 53714 

3 Degree 37857 35560 ### ### ### 36709  57500 57836 ### ### ### 57668 

4 Degree 43123 51355 47951 ### ### 47476  62571 63834 63689 ### ### 63365 
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Omar Abusaeeda 191 

 

5 Degree 38818 50167 50891 44057 ### 45983  62194 63404 63863 63042 ### 63126 

6 Degree 39741 53622 57547 56931 45036 50575  64704 66062 66877 67064 66198 66181 

Bag 13              

2 Degree 24001 ### ### ### ### 24001  60793 ### ### ### ### 60793 

3 Degree 34711 32833 ### ### ### 33772  65434 64936 ### ### ### 65185 

4 Degree 38856 48334 36995 ### ### 41395  68178 68766 67829 ### ### 68258 

5 Degree 35593 54313 54862 39196 ### 45991  69352 71977 71827 70293 ### 70862 

6 Degree 35064 56164 60789 54772 34250 48208  70043 73220 73862 72991 71204 72264 

Bag 14              

2 Degree 48580 ### ### ### ### 48580  78106 ### ### ### ### 78106 

3 Degree 62882 65817 ### ### ### 64350  84317 84541 ### ### ### 84429 

4 Degree 60921 72178 62738 ### ### 65279  84149 85750 84725 ### ### 84875 

5 Degree 61832 76452 78120 66040 ### 70611  87771 88293 89190 87598 ### 88213 

6 Degree 61316 78172 82993 80085 63305 73174  89041 90163 90782 90415 89104 89901 

Bag 15              

2 Degree 17998 ### ### ### ### 17998  68304 ### ### ### ### 68304 

3 Degree 18772 19410 ### ### ### 19091  69502 70168 ### ### ### 69835 

4 Degree 26800 38342 40450 ### ### 35197  74502 76411 76303 ### ### 75739 

5 Degree 34203 41680 44007 41804 ### 40424  77391 77853 79019 78375 ### 78160 

6 Degree 32269 39316 41182 37181 37511 37492  76688 77089 77531 76347 78815 77294 

Bag 16              

2 Degree 68258 ### ### ### ### 68258  103746 ### ### ### ### 103746 

3 Degree 58920 60403 ### ### ### 59662  103794 104931 ### ### ### 104363 

4 Degree 63112 76922 63790 ### ### 67941  107516 108925 107570 ### ### 108004 

5 Degree 69100 93910 96267 76595 ### 83968  112848 115298 116309 114441 ### 114724 

6 Degree 62672 88125 96444 93165 67662 81614  113269 115499 116720 115731 114676 115179 

Bag 17              

2 Degree 28004 ### ### ### ### 28004  53898 ### ### ### ### 53898 

3 Degree 25580 25423 ### ### ### 25502  54871 54345 ### ### ### 54608 

4 Degree 27822 36248 29177 ### ### 31082  56812 56992 57002 ### ### 56935 

5 Degree 29745 45613 46563 35347 ### 39317  59301 60796 60484 60316 ### 60224 

6 Degree 29088 45376 51118 49386 33673 41728  59722 61248 61461 61721 61133 61057 

Bag 18              

2 Degree 20971 ### ### ### ### 20971  60105 ### ### ### ### 60105 

3 Degree 28568 30433 ### ### ### 29501  64679 65007 ### ### ### 64843 

4 Degree 25499 33604 26226 ### ### 28443  64796 65591 65403 ### ### 65263 

5 Degree 20754 30781 33343 23079 ### 26989  63754 65773 66686 65898 ### 65528 
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Omar Abusaeeda 192 

 

6 Degree 23475 38225 43914 38244 24569 33685  66910 69087 70381 70090 68590 69012 

Bag 19              

2 Degree 52332 ### ### ### ### 52332  88535 ### ### ### ### 88535 

3 Degree 67237 70135 ### ### ### 68686  93513 94308 ### ### ### 94310 

4 Degree 69155 82270 67878 ### ### 82101  95698 97527 96981 ### ### 96735 

5 Degree 68598 90342 92014 71711 ### 80666  97379 101164 101202 99835 ### 99895 

6 Degree 70675 95907 103415 96550 73100 87929  99690 104135 104358 104493 102949 103125 

Bag 20              

2 Degree 12581 ### ### ### ### 12581  49768 ### ### ### ### 49768 

3 Degree 15849 16782 ### ### ### 16316  51954 52214 ### ### ### 52084 

4 Degree 17761 24919 19737 ### ### 20806  54070 54956 54980 ### ### 54669 

5 Degree 16473 27162 28501 20113 ### 23062  55824 55642 56113 56207 ### 55947 

6 Degree 16433 28407 32159 29357 19490 25169  56946 56829 57305 57665 56149 56979 

Bag 21              

2 Degree 56888 ### ### ### ### 56888  100703 ### ### ### ### 100703 

3 Degree 65847 72792 ### ### ### 69320  106971 108815 ### ### ### 107393 

4 Degree 73212 91591 75836 ### ### 80213  109980 111824 110636 ### ### 110813 

5 Degree 80798 103582 104056 76281 ### 91179  113837 116201 116513 114103 ### 115164 

6 Degree 84258 112272 119817 112767 86641 103151  117546 120533 121640 120185 119210 119823 

Bag 22              

2 Degree 30084 ### ### ### ### 30084  49232 ### ### ### ### 49232 

3 Degree 36074 37790 ### ### ### 36932  51640 51552 ### ### ### 51596 

4 Degree 39608 47983 40955 ### ### 42849  54132 54499 54453 ### ### 54361 

5 Degree 43118 52993 53814 41559 ### 47871  55853 56596 56638 56190 ### 56319 

6 Degree 43409 55631 58121 54437 38634 50046  56560 57764 57893 58047 56496 57352 

Bag 23              

2 Degree 11926 ### ### ### ### 11926  56028 ### ### ### ### 56028 

3 Degree 15903 16439 ### ### ### 16171  56762 58538 ### ### ### 57650 

4 Degree 18938 24011 29807 ### ### 24252  59452 61552 61971 ### ### 60992 

5 Degree 18082 26617 27805 21994 ### 23625  60850 61305 63498 60252 ### 61476 

6 Degree 17209 27233 31842 29950 19030 25053  61444 62268 64961 61990 63773 62887 

Bag 24              

2 Degree 26647 ### ### ### ### 26647  50221 ### ### ### ### 50221 

3 Degree 34183 34758 ### ### ### 34471  53958 53944 ### ### ### 53951 

4 Degree 32298 39096 29193 ### ### 33529  53993 54655 54025 ### ### 54224 

5 Degree 32848 43980 44283 32537 ### 38412  55379 56607 56766 56223 ### 56244 

6 Degree 33291 46064 49096 45679 35741 41974  56804 58245 58793 58768 58505 58223 
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Bag 25              

2 Degree 10787 ### ### ### ### 10787  64483 ### ### ### ### 64483 

3 Degree 13817 14935 ### ### ### 14376  66522 65677 ### ### ### 66100 

4 Degree 15539 20531 14373 ### ### 16814  67897 67059 68348 ### ### 67768 

5 Degree 16628 24588 24087 14167 ### 19868  68730 69662 68696 69728 ### 69204 

6 Degree 17044 27226 29688 25459 15707 23025  69752 71041 69795 71318 70202 70422 

Bag 26              

2 Degree 27084 ### ### ### ### 27084  59047 ### ### ### ### 59047 

3 Degree 39875 38436 ### ### ### 39156  63042 63281 ### ### ### 63162 

4 Degree 42442 48954 39806 ### ### 43734  65194 65719 65348 ### ### 65420 

5 Degree 43210 57905 55428 41767 ### 49578  66085 68085 68630 67379 ### 67545 

6 Degree 44227 62412 64466 58722 39977 53961  67494 69911 70430 69866 68657 69272 

Bag 27              

2 Degree 26813 ### ### ### ### 26813  53884 ### ### ### ### 53884 

3 Degree 27935 29084 ### ### ### 28510  55057 55180 ### ### ### 55119 

4 Degree 33087 41970 31271 ### ### 35443  57741 58332 57585 ### ### 57886 

5 Degree 30344 39206 37742 27441 ### 33683  56621 57323 57463 56522 ### 56982 

6 Degree 31541 44304 46103 42880 32341 39434  58878 60175 60300 59531 57992 59375 

Bag 28              

2 Degree 47070 ### ### ### ### 47070  67239 ### ### ### ### 67239 

3 Degree 50132 49818 ### ### ### 49975  71406 70774 ### ### ### 71090 

4 Degree 53444 67132 57935 ### ### 59504  74406 74944 74693 ### ### 74681 

5 Degree 61946 73846 72945 56660 ### 66349  77602 79224 78103 76976 ### 77976 

6 Degree 63211 76812 80926 76585 59449 71397  80207 81816 81603 81127 80743 81099 

Bag 29              

2 Degree 45767 ### ### ### ### 45767  98960 ### ### ### ### 98960 

3 Degree 54421 58178 ### ### ### 56300  102533 103049 ### ### ### 102791 

4 Degree 58637 71015 56575 ### ### 62076  105063 105834 105603 ### ### 105500 

5 Degree 63099 78932 77933 57128 ### 69273  106484 109000 109561 108862 ### 108477 

6 Degree 64275 84086 86884 81194 57296 74747  108878 110851 111867 112129 110913 110928 

Bag 30              

2 Degree 9919 ### ### ### ### 9919  66121 ### ### ### ### 66121 

3 Degree 13591 13527 ### ### ### 13559  67140 67702 ### ### ### 67421 

4 Degree 15397 20297 14071 ### ### 16588  68103 68596 68153 ### ### 68284 

5 Degree 14564 24942 26367 15126 ### 20250  69163 69898 70347 69947 ### 69839 

6 Degree 14518 26611 31312 27709 16643 23359  69855 70819 71417 71457 70444 70798 
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Omar Abusaeeda 194 

 

The total number of pixel errors according to translation based image synthesis algorithm.  

Error I and II No. of Pixel Errors (ERR-I)   No. of Pixel Errors (ERR-II)  

No. of Synthetic Views 1 2 3 4 5 Average of ERR-I  1 2 3 4 5 Average of ERR-II 

Bag 1              

2 Degree 69291 ### ### ### ### 69291  92802 ### ### ### ### 92802 

3 Degree 81207 84059 ### ### ### 82633  97507 102020 ### ### ### 99764 

4 Degree 82168 90100 95718 ### ### 89329  98907 99709 102540 ### ### 100385 

5 Degree 75940 90106 100075 111994 ### 94529  95213 101392 105501 110612 ### 103180 

6 Degree 74052 88931 100074 111544 118440 98608  94771 101636 106242 111037 114030 105543 

Bag 2              

2 Degree 55702 ### ### ### ### 55702  89318 ### ### ### ### 89318 

3 Degree 52537 61191 ### ### ### 56865  89522 91991 ### ### ### 90757 

4 Degree 53069 61271 67751 ### ### 60697  89280 91657 95136 ### ### 92024 

5 Degree 48041 62221 71210 77131 ### 64651  88485 92695 94849 97749 ### 93445 

6 Degree 48585 62265 71582 78246 83476 68831  88378 92024 95076 98234 99472 94637 

Bag 3              

2 Degree 38407 ### ### ### ### 38407  66897 ### ### ### ### 66897 

3 Degree 37674 47757 ### ### ### 42716  66873 69178 ### ### ### 68026 

4 Degree 32923 45942 57723 ### ### 45529  65420 68244 71811 ### ### 68492 

5 Degree 32209 44273 57663 67327 ### 50368  65429 68313 71858 76716 ### 70579 

6 Degree 31479 41977 55489 65571 72219 53347  65248 67555 71042 74783 75934 70912 

Bag 4              

2 Degree 55031 ### ### ### ### 55031  90462 ### ### ### ### 90462 

3 Degree 57139 61518 ### ### ### 59329  90485 91087 ### ### ### 90786 

4 Degree 54757 60641 64002 ### ### 59800  89683 91288 93068 ### ### 91346 

5 Degree 52545 60819 67159 70866 ### 62847  88469 91569 94034 95953 ### 92506 

6 Degree 41788 56590 66317 73625 77395 63143  84932 90363 94072 97326 98401 93019 

Bag 5              

2 Degree 26137 ### ### ### ### 26137  65764 ### ### ### ### 65764 

3 Degree 31762 39094 ### ### ### 35428  67838 69390 ### ### ### 68614 

4 Degree 27654 38737 50593 ### ### 38995  66899 69428 72426 ### ### 69584 

5 Degree 28574 38957 49625 59585 ### 44185  67676 70133 71598 74816 ### 71056 

6 Degree 25855 37342 50492 60839 68534 48612  67181 69607 71157 74837 75830 71722 

Bag 6              

2 Degree 52168 ### ### ### ### 52168  90907 ### ### ### ### 90907 

3 Degree 46029 60223 ### ### ### 53126  91971 92296 ### ### ### 92133 
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4 Degree 55525 63703 74717 ### ### 64648  90584 96049 99467 ### ### 95367 

5 Degree 54843 63748 77698 85829 ### 70530  90813 95106 99712 101961 ### 96898 

6 Degree 52935 62726 74861 84125 87965 72522  89599 94544 98344 101597 102087 97234 

Bag 7              

2 Degree 29098 ### ### ### ### 29098  58329 ### ### ### ### 58329 

3 Degree 29805 32094 ### ### ### 30950  58341 60437 ### ### ### 59389 

4 Degree 27425 31265 35491 ### ### 31394  58980 59255 60973 ### ### 59736 

5 Degree 26896 30925 36477 41063 ### 33840     58126 59740 60513 61671 ### 61671  

6 Degree 26539  30196  36171  45206  48026    37228  58167 60889 61733 62899 64975 61733 

Bag 8              

2 Degree 52044 ### ### ### ### 52044  72610 ### ### ### ### 72610 

3 Degree 49869 60503 ### ### ### 55186  72881 74987 ### ### ### 73934 

4 Degree 50555 58280 63935 ### ### 57590  73159 75108 76785 ### ### 75017 

5 Degree 43140 54282 63747 72711 ### 58470  72712 74983 75671 77722 ### 75272 

6 Degree 42491 54910 63443 72977 78277 62420  72368 73432 76816 77242 79254 75822 

Bag 9              

2 Degree 43101 ### ### ### ### 43101  44244 ### ### ### ### 44244 

3 Degree 40795 45740 ### ### ### 43268  44301 45522 ### ### ### 44911 

4 Degree 41208 43253 48249 ### ### 44237  43648 48864 46455 ### ### 46322 

5 Degree 36911 48238 56852 64312 ### 51578  43982 46775 46882 48733 ### 46593 

6 Degree 38503 45970 52101 59362 63239 51835  429079 447183 46861 48536 51739 46980 

Bag 10              

2 Degree 39687 ### ### ### ### 39687  56344 ### ### ### ### 56344 

3 Degree 45848 49321 ### ### ### 47585  57699 59459 ### ### ### 58579 

4 Degree 44847 48882 56463 ### ### 50064  57555 59423 61792 ### ### 59590 

5 Degree 39482 49692 55533 61682 ### 51597  56059 58914 61610 63345 ### 59982 

6 Degree 35505 45975 51066 57234 61682 50292  55402 58094 60218 61883 63461 59812 

Bag 11              

2 Degree 38138 ### ### ### ### 38138  64926 ### ### ### ### 64926 

3 Degree 36572 48723 ### ### ### 42648  65652 67177 ### ### ### 66415 

4 Degree 36101 48614 61345 ### ### 48687  65525 66965 70746 ### ### 67745 

5 Degree 36857 53450 63815 73959 ### 57020  65739 70536 72169 75424 ### 70967 

6 Degree 41088 55524 66649 76183 82813 64451  66570 70408 72747 75952 78277 72791 

Bag 12              

2 Degree 57636 ### ### ### ### 57636  62598 ### ### ### ### 62598 

3 Degree 53779 62910 ### ### ### 58345  60215 65999 ### ### ### 63107 

4 Degree 52044 61674 69405 ### ### 61041  59475 65205 68654 ### ### 64445 
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Omar Abusaeeda 196 

 

5 Degree 54319 59743 66696 71503 ### 63065  57882 64498 66628 70054 ### 64766 

6 Degree 56207 53062 68326 67981 71928 63501  55728 62065 64517 68753 70448 64302 

Bag 13              

2 Degree 22388 ### ### ### ### 22388  61496 ### ### ### ### 61496 

3 Degree 22310 40426 ### ### ### 31368  66203 71203 ### ### ### 63107 

4 Degree 27499 41412 52610 ### ### 40507  66657 71172 74754 ### ### 70861 

5 Degree 29887 40417 52452 61867 ### 46156  66495 71135 74819 77675 ### 72531 

6 Degree 21062 38308 52530 62032 69663 48719  64873 70626 74829 77899 80388 73723 

Bag 14              

2 Degree 71863 ### ### ### ### 71863  84227 ### ### ### ### 84227 

3 Degree 72787 78296 ### ### ### 75542  84540 87451 ### ### ### 85996 

4 Degree 70691 76741 80305 ### ### 75912  83613 86634 88333 ### ### 86193 

5 Degree 72134 79054 83972 87349 ### 80627  84012 87420 89671 91357 ### 88115 

6 Degree 70045 76665 82187 86086 88104 80617  82957 86090 88832 90168 91150 87839 

Bag 15              

2 Degree 28456 ### ### ### ### 28456  78950 ### ### ### ### 78950 

3 Degree 27141 34307 ### ### ### 30724  78500 82362 ### ### ### 80431 

4 Degree 30830 39503 47056 ### ### 39130  79505 83503 85969 ### ### 82992 

5 Degree 30307 39724 46254 52499 ### 42196  78998 82663 85925 87733 ### 83830 

6 Degree 21560 32196 41288 47377 58331 40150  76504 79956 83541 85334 89229 82913 

Bag 16              

2 Degree 70647 ### ### ### ### 70647  100996 ### ### ### ### 100996 

3 Degree 69762 89504 ### ### ### 79633  101991 109926 ### ### ### 105959 

4 Degree 65582 82690 92803 ### ### 80358  102777 104651 109829 ### ### 105752 

5 Degree 69668 83393 95306 106816 ### 88796  101924 107457 111805 116385 ### 109393 

6 Degree 87662 100746 111399 121485 127408 109740  108424 115111 120281 124153 128088 119211 

Bag 17              

2 Degree 39276 ### ### ### ### 39276  56649 ### ### ### ### 56649 

3 Degree 39977 46224 ### ### ### 43101  56840 58939 ### ### ### 57890 

4 Degree 40157 46417 54009 ### ### 46861  56995 58985 62300 ### ### 59427 

5 Degree 38596 45825 53149 55773 ### 48336  54716 57987 61362 64823 ### 59722 

6 Degree 37143 44657 50193 57168 61755 50183  56137 59139 60577 63469 65276 60920 

Bag 18              

2 Degree 22536 ### ### ### ### 22536  68981 ### ### ### ### 68981 

3 Degree 21003 27014 ### ### ### 24009  68020 70483 ### ### ### 69252 

4 Degree 19691 26098 31424 ### ### 25738  67260 69992 72504 ### ### 69919 

5 Degree 23264 26941 33871 39782 ### 30965  69099 71012 73012 75139 ### 72066 
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6 Degree 23404 26615 31986 37358 43138 32500  68922 71062 72977 75279 77136 73075 

Bag 19              

2 Degree 72185 ### ###  ### 72185  92779 ### ### ### ### 92779 

3 Degree 69541 80457 ### ### ### 74999  92083 95275 ### ### ### 93679 

4 Degree 66360 77295 87300 ### ### 76985  90798 93617 97576 ### ### 93997 

5 Degree 61007 74272 87341 96891 ### 79878  89659 94564 98982 103113 ### 96580 

6 Degree 50132 67936 84620 96786 103986 80692  86804 92793 98505 103408 106256 97553 

Bag 20              

2 Degree 14170 ### ### ### ### 14170  55252 ### ### ### ### 55252 

3 Degree 16038 21705 ### ### ### 18872  55712 57601 ### ### ### 56657 

4 Degree 12498 21065 28032 ### ### 20532  54889 57659 59990 ### ### 57513 

5 Degree 13494 21970 29335 35181 ### 24995  54952 56574 59223 61286 ### 58009 

6 Degree 12800 21278 28524 34644 39038 27257  54733 56485 58925 60833 61979 58591 

Bag 21              

2 Degree 80359 ### ### ### ### 80359  99538 ### ### ### ### 99538 

3 Degree 72668 93610 ### ### ### 83139  96903 104166 ### ### ### 100535 

4 Degree 64191 85660 100444 ### ### 83432  95081 102056 107121 ### ### 101419 

5 Degree 74276 93646 108876 119377 ### 99044  97156 104177 110062 114105 ### 106375 

6 Degree 78868 99560 116076 127756 136773 111807  100555 108520 115376 119982 124033 113693 

Bag 22              

2 Degree 31872 ### ### ### ### 31872  53238 ### ### ### ### 53238 

3 Degree 30624 44719 ### ### ### 37672  52874 56884 ### ### ### 54879 

4 Degree 30197 44562 55233 ### ### 43331  52844 56867 60090 ### ### 56600 

5 Degree 31098 43893 53069 60767 ### 47207  52792 56557 59101 61892 ### 57586 

6 Degree 31269 44485 53496 61118 66020 51278  52850 56820 59136 62050 63251 58821 

Bag 23              

2 Degree 16792 ### ### ### ### 16792  65069 ### ### ### ### 65069 

3 Degree 15446 22662 ### ### ### 19054  66820 70347 ### ### ### 68584 

4 Degree 15508 28175 37007 ### ### 26897  67095 71311 72104 ### ### 70170 

5 Degree 20315 24590 29114 35602 ### 27405  68041 70465 72511 72862 ### 70970 

6 Degree 16685 23614 28514 34442 37328 28117  67303 70035 72834 73322 75917 71882 

Bag 24              

2 Degree 37497 ### ### ### ### 37497  50954 ### ### ### ### 50954 

3 Degree 39425 44487 ### ### ### 41956  51635 53700 ### ### ### 52668 

4 Degree 37528 42741 48344 ### ### 42871  50925 52943 54976 ### ### 52948 

5 Degree 35513 39739 50491 51599 ### 44336  49174 50212 53232 56293 ### 52228 

6 Degree 32035 37667 49815 48534 51117 43834  49845 50713 51537 54725 55736 52511 



Appendix B 

   

Omar Abusaeeda 198 

 

Bag 25              

2 Degree 14631 ### ### ### ### 14631  68793 ### ### ### ### 68793 

3 Degree 11354 19138 ### ### ### 15246  69703 71055 ### ### ### 70379 

4 Degree 9088 17933 26416 ### ### 17812  68985 71017 73598 ### ### 71200 

5 Degree 10176 18914 27499 34628 ### 22804  69858 72464 74035 76253 ### 73153 

6 Degree 18550 31866 40566 47911 52941 38367  72404 75729 77516 80053 81288 77398 

Bag 26              

2 Degree 38536 ### ### ### ### 38536  65808 ### ### ### ### 65808 

3 Degree 34726 49391 ### ### ### 42059  64974 68288 ### ### ### 66631 

4 Degree 33842 48938 60959 ### ### 47913  64699 67740 70749 ### ### 67729 

5 Degree 37767 50289 62030 72457 ### 55636  65893 69190 72571 75089 ### 70686 

6 Degree 27625 48080 61376 70527 79260 57374  61890 67551 70747 72883 75577 69730 

Bag 27              

2 Degree 27607 ### ### ### ### 27607  53946 ### ### ### ### 53946 

3 Degree 26602 37544 ### ### ### 32073  53181 55865 ### ### ### 54523 

4 Degree 25575 37043 43475 ### ### 35364  52957 55744 58008 ### ### 55570 

5 Degree 29743 37615 45246 50973 ### 40894  53919 56299 58813 60687 ### 57430 

6 Degree 20868 32472 40798 47390 51966 38699  52082 54938 57757 59871 61258 57181 

Bag 28              

2 Degree 52277 ### ### ### ### 52277  72990 ### ### ### ### 72990 

3 Degree 59106 71482 ### ### ### 65294  75349 80024 ### ### ### 77687 

4 Degree 50468 64949 76406 ### ### 63941  73248 77690 82879 ### ### 77939 

5 Degree 49948 60147 72148 77262 ### 64876  67551 74067 78830 82585 ### 75758 

6 Degree 49534 62617 72422 81110 87637 70664  72243 77981 81590 85271 88717 81160 

Bag 29              

2 Degree 63496 ### ### ### ### 63496  102793 ### ### ### ### 102029 

3 Degree 59107 72725 ### ### ### 65916  100079 103979 ### ### ### 102777 

4 Degree 58777 64494 74770 ### ### 66014  99052 103123 106156 ### ### 102793 

5 Degree 45571 61671 76710 87378 ### 67833  98342 103396 105317 108823 ### 103970 

6 Degree 56363 74956 88035 100186 107206 85349  99838 106000 109912 114173 116058 109196 

Bag 30              

2 Degree 18881 ### ### ### ### 18881  73570 ### ### ### ### 73570 

3 Degree 14290 22478 ### ### ### 18384  71846 74636 ### ### ### 73241 

4 Degree 15993 28057 29917 ### ### 24656  76160 74282 76082 ### ### 75508 

5 Degree 14508 20322 30112 37485 ### 25606  72552 74083 76768 78530 ### 75483 

6 Degree 13946 20151 29775 37231 42373 28695  72333 73960 76504 78421 79086 76060 

 


