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Theoretical mass, liquid, and polymer sensitivity of acoustic wave sensors
with viscoelastic guiding layers

Glen McHale,a) Michael Ian Newton, and Fabrice Martin
Department of Chemistry and Physics, The Nottingham Trent University, Clifton Lane,
Nottingham NG11 8NS, United Kingdom

~Received 12 July 2002; accepted 4 October 2002!

The theoretical sensitivity of Love wave and layer-guided shear horizontal acoustic plate mode
~SH-APM! sensors for viscoelastic guiding layers and general loading by viscoelastic materials is
developed. A dispersion equation previously derived for a system of three rigidly coupled elastic
mass layers is modified so that the second and third layers can be viscoelastic. The inclusion of
viscoelasticity into the second, wave guiding layer, introduces a damping term, in addition to a
phase velocity shift, into the response of the acoustic wave system. Both the waveguiding layer and
the third, perturbing layer, are modeled using a Maxwell model of viscoelasticity. The model
therefore includes the limits of loading of both nonguided shear horizontal surface acoustic wave
and acoustic plate mode~APM! sensors, in addition to Love wave and layer-guided SH-APM
sensors, by rigidly coupled elastic mass and by Newtonian liquids. The three-layer model is
extended to include a viscoelastic fourth layer of arbitrary thickness and so enable mass deposition
onto an immersed Love wave or layer-guided SH-APM sensor to be described. A relationship
between the change in the complex velocity and the slope of the complex dispersion curve is derived
and the similarity to the mass and liquid sensor response of quartz crystal microbalances is
discussed. Numerical calculations are presented for the case of a Love wave device in vacuum with
a viscoelastic waveguiding layer. It is shown that, while a particular polymer relaxation time may be
chosen such that the effect of viscoelasticity on the real part of the phase speed is relatively small,
it may nonetheless induce a large insertion loss. The potential or the use of insertion loss as a sensor
parameter is discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1524309#
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I. INTRODUCTION

A wide range of acoustic wave sensors have been
ported in the literature for use as mass sensors.1–3 When the
mass being sensed is deposited from the liquid phase o
focus of the application is to sense the properties of a liq
phase, the most obvious choice of acoustic wave mode is
with a shear horizontal polarization to the displacement. T
is because, for most acoustic wave devices, an out-of-p
motion would induce a compressional~sound! wave in the
liquid and so cause high damping.4,5 The exception to this
occurs for flexural plate wave devices where the wave sp
is less than the speed of sound in the liquid so that comp
sional wave generation does not occur even though an
of-plane displacement exists. One of the most common s
mode type of sensors is the quartz crystal microbala
~QCM! and this has been extensively used for chemical
biochemical studies. The QCM has the advantage of simp
ity because it is a simple thickness shear mode oscilla
where the crystal thickness determines the resonant
quency and the transducers are simple metallizations of
upper and lower crystal faces. Deposition of a thin m
layer onto a QCM operated in its fundamental mode caus
frequency shift proportional to the mass per unit area and
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square of the operating frequency, but does not cause
attenuation of the oscillation. This result, summarized by
Sauerbrey equation,6 can be shown to be valid, at least a
proximately, even when the mass is deposited from the liq
phase.7 Introducing a QCM from vacuum into a Newtonia
liquid results in both a frequency shift and an attenuation
the resonance. The effect of the shear mode oscillation i
entrain fluid within a penetration depthd5(2h f /vr f)

1/2of
the surface, whereh f is the fluid’s viscosity,r f is the fluid’s
density, andv is the angular frequency. The oscillation in th
liquid decays within a penetration and so the QCM can
viewed as sensing the interfacial mass defined by the p
etration depth. Since the penetration depth depends on
inverse of the square root of frequency, the frequency s
on immersion in a Newtonian liquid becomes proportional
the frequency to the power of 3/2 rather than squared
addition, the frequency shift is proportional to the squa
root of the viscosity-density product. These conclusions
liquid phase sensing were described by Kanazawa
Gordon.8 The difficulty with the QCM as a sensor for bio
logical applications is that high sensitivity is needed and t
requires higher fundamental frequency and conseque
thinner and more fragile crystals.

An alternative to the QCM is to use a shear mode s
face acoustic wave~SAW! type sensor. In such sensors, t
operating frequency is determined by the spacing betw
the fingers in a surface fabricated interdigital transducer
il:
© 2003 American Institute of Physics
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gether with the mode speed determined by the substrate
and propagation axis.9–11 Shear horizontal~SH! SAWs and
acoustic plate mode~APMs! have been considered by som
workers, but it has been claimed that higher mass sensit
can be obtained by using a waveguiding layer on the sur
of a SH-SAW to create a Love wave device.12,13 Experimen-
tally, Love wave devices have been created using substr
supporting surface skimming bulk waves~SSBWs! or SH-
SAWs and the waveguiding layer have been materials s
as silicon dioxide (SiO2 ! or poly~methylmethacrylate!.14,15

In our previous work we have used both types of subst
and a range of polymer photoresists.16 While much experi-
mental work has been reported by both ourselves and ot
using these types of systems, most theoretical considera
of Love waves assume a rigidly coupled elastic mass guid
layer and an infinitely thick substrate. It is evident from t
insertion loss that occurs in experiments, but which is
predicted by Love wave theory based on a rigidly coup
elastic mass guiding layer, that theoretical work on the
fects of viscoelasticity of waveguiding layers is needed. I
also highly relevant to note that outside of the biosens
field, the use of molecularly imprinted polymers~MIPs! as
both waveguide and analyte selective layers in Love w
devices for vapor phase sensing has been reported. In
own work we have used MIPs as coatings on QCMs to de
a range of analytes, including steroids in the liquid phase.17,18

Thus, the experimental motivation to develop models for
effect of viscoelasticity on acoustic wave sensors is urge

In our previous theoretical work we have shown th
SH-APMs can be viewed within the same theoretical fram
work as Love waves.19–21This involved extending the theo
retical treatment of both Love wave sensors with guid
layers composed of elastic mass to Love waves on fi
thickness substrates and of SH-APMs to SH-APMs coa
by waveguiding layers. In this previous treatment, high
order Love wave modes were shown to be continuations
the layer-guided SH-APMs and it was shown that sign
cantly enhanced mass sensitivity could be obtained for
APMs by the use of a waveguiding layer. In addition, a r
orous relationship was derived relating the slope of
dispersion curve to the mass sensitivity of a Love wave
layer guided SH-APM mode. This relationship between
slope of the dispersion curve and the mass sensitivity is
importance because it allows an experimentally determi
dispersion curve to be used to predict the mass sensitivit
a sensor and to predict the change in sensitivity with f
quency. In the present article, we significantly extend
previous formalism to include the effects of viscoelastici
In order to provide as wide a range of applicability as p
sible we consider the effect of viscoelasticity of both t
waveguiding layer and the material being sensed. This tr
ment therefore describes the following situations:

~1! SH-SAW and SH-APM perturbation responses to v
coelastic layers of finite or infinite thickness;

~2! dispersion curves for Love wave and layer-guided S
APMs when the guiding layer is viscoelastic;
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~3! response of Love wave and layer-guided SH-APMs
perturbing viscoelastic layers of finite or infinite thick
ness; and

~4! response of Love wave and layer-guided SH-APMs
mass deposition from the liquid phase.

In each of the above cases of viscoelasticity, we also g
results for the limits of thin elastic mass layers and for in
nite thickness of Newtonian liquids. In addition, the relatio
ship between the slope of the dispersion curve and the
sponse of a Love wave or layer-guided sensor is general
to include both viscoelastic waveguide layers and viscoe
tic perturbations. Thus, the present article is sufficiently
tailed mathematically to provide comprehensive analyti
results for the velocity shift and attenuation response of S
SAW, SH-APM, Love wave, and layer-guided SH-APM d
vices as sensors in the gas and liquid phases.

The organization of the article begins with a brief revie
of the three-layer model describing a substrate, guiding la
and perturbing layer, all composed of rigidly coupled elas
mass. Then, the idea of viscoelasticity for a layer is int
duced and a complex shear modulus defined. It is shown
the Navier–Stokes equations describing a viscoelastic la
can be transformed into a wave equation and how the pr
ous results for the three-layer model can be extended
addition, the equations describing the viscoelasticity usin
relaxation time and the Maxwell model are introduced a
the relationship to the penetration depth and mode spee
the three-layer model is defined. Subsequently, the analy
treatment of a viscoelastic guiding layer is developed w
the important limiting cases of SH-SAW and SH-APM se
sor response to mass, Newtonian liquid, and viscoelastic
uid loading detailed. For the general viscoelastic guid
layer a relationship between the complex velocity~i.e., ve-
locity shift and insertion loss! and the slope of the dispersio
curve is developed. For completeness, a four-layer mode
also developed so that the response of an immersed devi
mass deposition can be considered. The relationship of
Love wave and layer-guided SH-APM results to the Sau
brey and Kanazawa results are detailed. Finally, we concl
by focusing on numerical calculations for the effects of v
coelastic guiding layers on Love wave devices and, in p
ticular, on the consequences for sensors of the insertion

II. BASIC THEORETICAL FORMULATION

A. Three layers of rigidly coupled elastic mass

In a previous article we considered the propagation
shear horizontally polarized acoustic waves in a system c
posed of a substrate of thicknessw overlayed by a waveguid
ing layer of thicknessd and an additional mass layer o
thicknessh ~Fig. 1!. In this section, the theoretical develop
ment is briefly reviewed so that modifications due to v
coelasticity can be clearly identified. The substrate and lay
were considered to be rigidly coupled elastic mass layers
the equation of motion in each material reduced to

r
]2uj

]t2
5m¹2uj ~1!
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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where r is the density of the material andm is the shear
modulus. The equation of motion Eq.~1! was then solved in
each material using trial solutions of the form

us5~0,1,0!bCse
2Tsx31Dse

Tsx3cej (vt2k1x1), ~2!

ul5~0,1,0!bAle
2 jTlx31Ble

jTlx3cej (vt2k1x1), ~3!

up5~0,1,0!@Epe2 jTpx31FpejTpx3#ej (vt2k1x1), ~4!

where the subscriptss, l and p indicate substrate, guiding
layer, and perturbing layer andk15(v/n) gives the phase
speedn of the solution. The forms of Eqs.~2!–~4! were
chosen for their similarity to the displacements of a Lo
wave solution, but the wave vectorTs can become imaginary
and can therefore also represent a shear horizontal aco
plate mode with a guiding and/or a mass layer. Substitu
the trial solutions into the equations of motion for the ma
rials gives the following conditions on the wave vectors:

Ts
25v2S 1

n2
2

1

ns
2D , ~5!

Tl
25v2S 1

n l
2

2
1

n2D , ~6!

Tp
25v2S 1

np
2

2
1

n2D . ~7!

For elastic mass the density and shear modulus define
shear speed of the layers byns5(ms /rs)

1/2, n l

5(m l /r l)
1/2, andnp5(mp /rp)1/2. The final requirement was

that the solutions in each material should satisfy bound
conditions of continuity of displacement and stress at
boundaries; the stress is given by

Ti35d i2mS ]u2

]x3
D . ~8!

Applying the boundary conditions gave a dispersion equa
for a three-layer system

tan~Tld!5j tanh~Tsw!2jp tan~Tph!

3@11j tan~Tld!tanh~Tsw!# ~9!

wherej andjp are defined as

j5
msTs

m lTl
, ~10!

and

FIG. 1. Definition of axes, symbols, and layer parameters for propagatio
shear horizontally polarized acoustic waves in a three-layer system.
sensor applications the first layer is the substrate, the second layer i
waveguiding layer, and the third layer is the perturbing layer.
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jp5
mpTp

m lTl
. ~11!

In this formulation Eq.~9! is a key result because it repre
sents the effect of a finite thickness third layer of elastic m
upon a layer guided system of a finite thickness subst
with a finite thickness wave-guiding layer. When the thi
layer vanishes (h→0), Eq. ~9! is the equation that define
the operating point on the dispersion curve for the ‘‘bar
device of a substrate with a waveguide layer. Subseque
considering the third layer to have a finite, but small, thic
ness gives the perturbation of the operating point due
sensed mass and so enables the shift in velocity to be ca
lated. In the case of liquid or polymer loading, it is necess
to identify changes in the previous formulation so as to all
the perturbation to have an arbitrary thickness of liquid
polymer. The generalization to a liquid or polymer will ne
essarily introduce an attenuation of the wave in addition
the velocity shift.

B. Viscoelasticity and the Maxwell model

In this section we show that even when a viscoelas
layer is introduced it is possible to retain the majority of t
equations used in the previous section in developing
model of a three-layer system with overlayers composed
elastic mass. To incorporate viscoelasticity, first consider
Navier–Stokes equation for a liquid under the assumpti
that the liquid is viscous and incompressible and that
pressure gradient can be ignored

]vI f

]t
5

h f

r f
¹I 2nI f , ~12!

wherenI f is the fluid velocity andh f is the viscosity of the
fluid. Taking a time dependence ofej vt the velocity can be
rewritten in terms of displacements as

r f

]2uI f

]t2
5 j vh f¹I

2uI f . ~13!

Comparing Eq.~13! with Eq. ~1!, we have the same equatio
except for the replacement of the shear modulusm by the
liquid factor j vh f . In a similar manner the stress conditio
in transforming from a solid to the liquid is altered only b
this same replacement. Thus, replacement of the shear m
lus m by a complex shear modulusGf , with limits of m
when the material is solid-like andj vh f when the material is
liquid-like provides one possible model for acoustic wa
response with a viscoelastic layer.

In the Maxwell model of viscoelasticity the shear stre
and rate of strain can be viewed as a spring and das
model. The total rate of strain contains an elastic part an
viscous part and a relaxation timet5h f /m can be intro-
duced. The shear modulus becomes

Gf5
j vh f

11 j vt
~14!

so that the limitvt→` gives the solid limit (Gf→m) and
the limit vt→0 gives the liquid limit (Gf→ j vh f). Thus,

of
or
the
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introducing viscoelasticity into the equations of the previo
section amounts to the replacementm→Gf in Eqs.~1!–~11!.

C. The shear wave penetration depth

In the Newtonian liquid limitvt→0, we would expect
the shear wave viscous penetration depth defined bd
5(2h f /vr f)

1/2 to be an important length scale determini
whether the layer thickness should be regarded as larg
small. It is therefore useful to consider the relationship
tween the wave vector for a layer and the fluid velocity d
fined using the Maxwell model of viscoelasticity. The wa
vector for a fluid layer@Eq. ~6! or ~7!# can be written

Tf
25v2S 1

n f
2

2
1

n2D , ~15!

where

n f
25

Gf

r f
5

j vh f

r f~11 j vt!
. ~16!

Using Eq.~16! in Eq. ~15! and recalling the definition of the
penetration depth, we can write

Tf
25S 22 j ~11 j vt!

d2
2

v2

n2 D 5
22 j

a2
, ~17!

wherea has been defined by

a5
d

A11 j vt2
j d2v2

2n2

5
d

A11 j vt2
j d2k2

2

. ~18!

In the limit dk!1 ~i.e., the penetration depth is muc
smaller thanl! the fluid wave vector becomesTf5(21
1 j )(11 j vt)1/2/d and is independent of the wave speedn.
Then in the limit of a Newtonian liquidvt→0, the solution
for the fluid displacement is a damped oscillation in thex3

direction, whereas for a solid withvt→` the wave vector
Tf becomes real and the solution for the fluid displacemen
an oscillation in thex3 direction without damping.

III. VISCOELASTIC GUIDING LAYER

The first generalization of the previously publish
model of mass sensitivity21 is to allow the waveguiding laye
itself to become viscoelastic. This viscoelasticity means t
the ‘‘bare’’ device of the substrate and the waveguiding la
has a complex dispersion curve with a wave velocity that
both real and imaginary parts indicating that both a veloc
shift and attenuation occur due to the waveguiding layer. T
decay in the displacement amplitude of the substrate fo
propagation of the wave over a lengthL is given by Eq.~2!
as exp(Imk1L), where Im indicates that the imaginary part
k15v/n should be taken. The insertion loss~IL ! in decibels
per meter propagation length is then given by

IL5220~ log10e!ImFvn G . ~19!
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In Eq. ~19!, the sign convention adopted for the insertion lo
is that a larger positive value indicates a weaker transmis
of the wave. When considering small changes from an op
ating point, the inverse wave speed can be expanded a
the unperturbed wave speedv0 as 1/n'1(/n0)(12Dn/n0)
and the change in insertion loss can then be evaluated f
the change in the complex velocity.

A. Perturbation from a bare substrate

In this section we consider a bare substrate compose
elastic mass supporting either a SH-SAW or a SH-AP
These two situations correspond to solutions of Eq.~9! with
h50 and eitherj050 or tanh(Ts

0w)50 with TsÞ0, respec-
tively; the superscript zero implies the unperturbed solut
for a bare substrate with no viscoelastic layer@i.e., Eq. ~9!
with both d50 and h50]. If a thin layer of elastic mass
with v l,vs is deposited, the SH-SAW becomes a Love wa
while the SH-APM mode becomes a layer-guided SH-AP
mode. In the case of the SH-APM,Ts

0 is purely imaginary so
that the tanh~ ! function becomes a tan~ ! function andTs

0w
5 jmp, with m51,2,3,... . To develop perturbation solution
for the effect of a viscoelastic layer of thicknessd on the bare
substrate, we first rewrite Eq.~9! using the perturbed velocity
v5v01Dv

tan~Tf
0d!5~j01Dj!F tanh~Ts

0w!1tanh~DTsw!

11tanh~Ts
0w!tanh~DTsw!

G . ~20!

Continuation of the perturbation solution now depends up
whetherj050 or tanh(Ts

0w)50. In the former case, car
must be taken not to divide usingTs

0 becausej050 implies
Ts

050 ~i.e.,Ts itself is of orderDTs). Since we are intereste
in the limit of the viscoelastic layer becoming an infinite
deep Newtonian liquid, we do not assume thatd is necessar-
ily small.

1. SH-SAW perturbation

The perturbation of the SH-SAW uses an expans
aboutj050 which impliesTs

050 ~i.e.,v05vs). In this case,
Eq. ~20! simplifies to

tan~Tf
0d!'Dj0 tanh~DTsw!. ~21!

The perturbation in the substrate wave vector must
handled carefully because ofTs

050, but doing so and group
ing together the terms involving the perturbation of the v
locity gives

S Dn

ns
D tanh2S wv

ns
A22Dn

ns
D

'2
1

2 S GfTf
0ns

msv
D 2

tan2~Tf
0d! ~22!

and using Eqs.~14!, ~17!, and~18! for the Maxwell model of
viscoelasticity gives
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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S Dn

ns
D tanh2S wv

ns
A22Dn

ns
D

'2
1

2 H S 2h fd

rsns~11 j vt!a0
2D

3F tanSA22 jd

a0
D

SA22 jd

a0
D G J 2

, ~23!

wherea0 is Eq.~18! with n5ns . In the limit of an infinitely
thick substrate and assuming the real part ofDn is negative,
the tanh~ ! term on the left-hand side of Eq.~23! tends to
unity. Equations~22! and ~23! provide the equations nece
sary for calculating the velocity shifts and damping of a pu
SH-SAW due to a layer of elastic mass, Newtonian liquid,
viscoelastic layer of arbitrary thickness.

Solid and Newtonian liquid limits for SH-SAW.The
limit of a thin layer usesd→0, so that Eq.~23! gives

S Dn

ns
D tanh2S wv

ns
A22Dn

ns
D

'2
1

2 S 2h fd

rsns~11 j vt!a0
2D 2

~24!

and taking the solid limit using bothvt→` andd2v2/2ns
2

→`, this reduces to

S Dn

ns
D tanh2S wv

ns
A22Dn

ns
D'2

1

2 Fm f

ms
S ns

2

n f
2

21D vd

ns
G 2

,

~25!

which is the same as Eq.~33! in Ref. 20. The limitvt→`
andd2v2/2vs

25d2ks
2/2→0 is equivalent to taking the limi

vs@v f in Eq. ~25!, and would be correct for a solid laye
used as a waveguide in a Love wave device. The limit of
infinitely thick layer of Newtonian liquid usesd→` with
vt→0. In this limit, the tan~ ! function on the right-hand
side of Eq.~23! tends to2j and therefore

S Dn

ns
D tanh2S wv

ns
A22Dn

ns
D'

j vh fr f

2msrs
S 12

j d2ks
2

2 D , ~26!

whereks5v/vs . In the further limitd2v2/2s
2→0, the veloc-

ity perturbation@Eq. ~26!# is purely imaginary and the effec
is to create a damping, but no phase velocity shift. From
~19! and in the limit ofw→`, the insertion loss is propor
tional to the square of the frequency times the viscosi
density product; this can be contrasted with the square
of the viscosity–density product expected for QCM senso
The limit of an infinitely thick viscoelastic layer can also b
obtained from Eq.~23! and would result in Eq.~26! with the
replacement
loaded 23 Sep 2011 to 152.71.223.129. Redistribution subject to AIP licens
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S 12
j d2ks

2

2 D→
11 j vt2

j d2ks
2

2

~11 j vt!2
. ~27!

2. SH-APM „mÌ0… perturbation

In the previous section we considered the perturbation
a SH-SAW using the unperturbed conditionj050 which im-
plies Ts

050 ~i.e., n0Þns). In the plate mode case we tak
Ts

0Þ0 ~i.e., noÞns) and purely imaginary so that the tanh~ !
function becomes a tan~ ! function. The~nontrivial! zeros of
this tan~ ! function are then our unperturbed solutions a
correspond toTs

0w5 jmp, with m51,2,3,... . Them50 so-
lution belongs to the SH-SAW case and is not a plate m
solution in the sense that any added elastic mass withn l

,ns , no matter how small, convertsTs from imaginary to
real. For the perturbation of a bare substrate supportin
SH-APM, Eq.~20! reduces to

tan~Tf
0d!5jo tanh~DTsw! ~28!

and performing the perturbation aboutTs
0Þ0 and using Eq.

~17! gives

S Dn

nm
D'S 2 jdvm

2 Gf

mswv2am
2 D F tanS A22 jd

am
D

S A22 jd

am
D G , ~29!

wheream is Eq. ~18! with n5nm . In Eq. ~29! we have used
nm to indicate that the unperturbed speed is the plate m
speed and usednm.ns to convert the tanh~ ! function into a
tan~ ! function. Equation~29! provides the equation neces
sary for calculating the velocity shifts and damping of a pu
SH-APM due to a layer of elastic mass, Newtonian liquid,
viscoelastic layer of arbitrary thickness.

Solid and Newtonian liquid Limits for SH-APM.The
thin layer limit d→0, is simply the prefactor in Eq.~29!

S Dn

nm
D'S 22h fdnm

2

mswv~11 j vt!am
2 D ~30!

and in the solid limit ofvt→` andd2v2/2vs
2→` this fur-

ther reduces to

S Dn

nm
D'

2m f

ms
S nm

2

n f
2

21D d

w
, ~31!

which is the same as Eq.~42! in Ref. 20. It should be noted
that sinceTs

0w5 jmp the substrate thicknessw is propor-
tional to 1/v, i.e.,

wv5
mpnm

Anm
2

ns
2

21

~32!

and Eq. ~31! therefore predicts a fractional shift in phas
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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velocity proportional to the mode frequency. Also the fac
m fd5n f

2r fd and so involves the combination of density a
thickness, thus giving the mass per unit area. Equation~31!
is therefore similar to the Sauerbrey equation familiar fro
QCM sensors in that it predicts a fractional shift in pha
speed proportional to the frequency multiplied by the m
per unit area. The limitvt→` andd2v2/2ns

2→0 is equiva-
lent to taking the limitnm@n f in Eq. ~29!.

The limit of an infinitely thick viscoelastic layer usesd
→` in the tan~ ! function on the right-hand side of Eq.~29!.
In this limit, the tan~ ! function tends toj and so

S Dn

nm
D'

A22 j h fnm
2

ns
2rswv~11 j vt!am

~33!

and in the limitd→0 we find

S Dn

nm
D'

1

A2wv
S nm

2 Ar fh fv

ns
2rs

D @2F2~vt!1 jF 1~vt!#,

~34!

where theF6(vt) functions are defined by

F6~vt!5S A11~vt!26vt

11~vt!2 D 1/2

. ~35!

There is a strong relationship between Eq.~34! and the re-
sults quoted by Martinet al.22 and Ricco and Martin23 ~1990!
with similar dependencies on various physical factors incl
ing theF6(vt) functions. However, there is a difference
the prefactor with ourns

2/2nm replacing a mode group veloc
ity ngm factor in the Martinet al. formula;22 this difference is
detailed in Appendix A.

B. General perturbation of a viscoelastic layer-guided
wave

When a SH-SAW device is coated with an elastic m
layer with a shear acoustic speed less than that of the
strate, the wave becomes a Love wave with a speed inte
diate between that of the layer and the substrate. Simila
we have previously shown that coating a SH-APM dev
with an elastic mass layer with a shear acoustic speed
than that of the substrate creates a layer-guided SH-A
with a wave speed intermediate between that of the orig
loaded 23 Sep 2011 to 152.71.223.129. Redistribution subject to AIP licens
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mode and the next lower SH-APM mode. In both the Lo
wave and layer-guided SH-APM cases, the use of a coa
of elastic mass results in a change in the wave speed,
does not cause any propagation loss. For use as sensor
benefit of the coating, also described as a waveguiding la
is that an enhanced sensitivity to mass deposition can
obtained. If the waveguiding layer were a viscoelastic ma
rial we would expect an insertion loss to be introduced
addition to a shift in the phase speed. The formalism of S
II can be used to determine the general effect of depositin
polymer layer~or a mass layer or immersing the device in
liquid! on a layer-guided wave device. In this section w
consider both the waveguiding layer and the third, pertu
ing, layer to be viscoelastic; the thickness of the third laye
kept arbitrary and is not assumed small. The device respo
to mass or liquid loading can then be obtained by tak
appropriate limits.

The unperturbed system of a substrate with a viscoela
waveguide layer is defined by Eq.~9! with h50

tan~Tl
0d!5jo tanh~Ts

0w!, ~36!

wherej0 has been defined using Eq.~10!, but with viscoelas-
tic parameters~i.e., m l→Gl). Similarly, theTl

0 includes the
viscoelasticity in Eq.~6! via the use of equations of the form
given in Eqs.~15!–~18!. For simplicity the substrate is as
sumed to be composed of elastic mass. We also assume
the unperturbed velocityv0 does not equalvs , so that we are
considering an operating point located away from the star
a mode on the dispersion curve for the system of the s
strate and guiding layer. The perturbation due to the th
layer, which is assumed finite and viscoelastic, is then gi
by Eq.~9! and is symbolically similar to the derivation of Eq
~24! in Ref. 21, except we keep the third layer thickne
finite and the shear moduli and, hence, velocities of
waveguide and perturbing layers are allowed to be comp
Thus, using a subscriptf to represent quantities for the third
perturbing, layer of thicknessh, the complex perturbation is

Dn

n0
'g~v,n0 ,ns ,Gl ,n l ,w,d!S 12

n f
2

n0
2D

3S tan~Tf
0h!

Tf
0h

D r fh, ~37!

where the functiong has been defined as
g5

2v2

GlTl
0 @11tan2~Tl

0d!#

H Tl
0d

S n0
2

n l
2

21D @11tan2~Tl
0d!#1

j0Ts
0w

S 12
n0

2

ns
2D @12tanh2~Ts

0w!#1tan~Tl
0d!F 1

S n0
2

n l
2

21D 1
1

S 12
n0

2

ns
2D G J

. ~38!
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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The equivalent equation definingg in Ref. 21@i.e., Eq.~25!#
contains several typographical errors. Noting that in the c
of elastic mass,Gp /np

2→rp and Gl→r ln l
2, formally Eq.

~37! appears to be the same as in the case of elastic m
derived in Ref. 21 except for the additional tanx/x type mul-
tiplicative factor arising from maintaining a finite thicknes
rather than an infinitesimally thin, third layer. If the wav
guide layer is simply elastic mass then both the functiog
and the unperturbed speedv0 are real and any complex com
ponent toDn arises purely from the viscoelasticity of th
perturbing layer. However, if the waveguide layer is v
coelastic then bothg andn0 may be complex. In this situa
tion, a third layer having a real shear modulus will, from E
~37!, give rise to a complex velocity shiftDn @i.e., an inser-
tion loss occurs via Eq.~19!#. Thus, mass deposition onto
device possessing a viscoelastic guiding layer can induc
insertion loss response in addition to a frequency~or phase!
response. In the SH-APM limit ofd50 and tanh(Ts

0w)50
with TsÞ0 ~i.e., noÞns), g→n0

2/(ns
2wrs)and Eq.~37! re-

duces to Eq.~29!.

1. Maxwell model for perturbing layer

The effects of viscoelasticity in Eq.~37! can be made
more evident by rewriting it using Eqs.~16! and ~17!

Dn

n0
'g~v,n0 ,ns ,Gl ,n l ,w,d!S 12

Gf

r fn0
2D

3S tanS A22 jh

a f
0 D

S A22 jh

a f
0 D D r fh, ~39!

whereGf is given by Eq.~14! and a f
0 by Eq. ~18!. In the

Maxwell model the second factor in Eq.~39! can be written
using the fluid penetration depth and relaxation time as

S 12
Gf

r fn0
2D 5S 12

j d f
2k0

2

2~11 j vt f !
D . ~40!

In the limit of a thin viscoelastic layer, tanx/x→1 and the
perturbation becomesDn/n}r fh, which in the solid limit
(vt f→`) becomes mass per unit area. In the limit of
infinitely thick viscoelastic liquid, tan@(22j)1/2x#/@(22j)1/2x#
→j/@(22j)1/2x# and assuming thatd f

2v2/2n0
2→0 we obtain

the analogous equation to Eq.~34!

Dn

n0
'g~v,n0 ,vs ,Gl ,n l ,w,d!S 1

A2v
DAr fh fv

3@2F2~vt f !1 jF 1~vt f !#, ~41!

which reduces to Eq.~34! when thed→0 limit for g is used.

2. Relationship to the slope of the dispersion curve

Equation~39! shows that the same functiong determines
the sensitivity toward both mass and liquid perturbing lay
since the function depends only on the operating freque
and substrate and waveguide layer properties. Therefore
loaded 23 Sep 2011 to 152.71.223.129. Redistribution subject to AIP licens
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ing Eq.~37! for the thin mass limit and Eq.~41! for the liquid
limit, the ratio of the response of a Love wave or laye
guided SH-APM mode due to coating by a thin mass laye
due to immersion in a perturbing liquid is

~D ln n!mass

~D ln n! liquid
'A2vS 12

np
2

n0
2D Dm

Ar fh f

, ~42!

whereDm5rmh is the mass per unit area,nm is the shear
acoustic speed of that mass, and the fractional perturbatio
the wave speed has been written as a perturbation in
logarithm of the wave speed. In many senses this is a sim
relationship to that between the Sauerbrey response
QCM and the Kanazawa expression for the liquid respo
of a QCM. In the QCM case the ratio of the responses wo
involve a Av and the ratio of the mass per unit area to t
square root of the liquid density–viscosity product. For t
layer-guided wave it should be noted that the operating p
on the dispersion curve for the device~substrate plus guiding
layer! determinesn0 and this effectively introduces a fre
quency dependence, although in many situationsnm

2 !n0
2.

While the frequency dependence of the ratio of the mass
liquid responses is similar to the QCM result, Eq.~38! does
not imply that the absolute frequency dependence of
layer-guided system is the same as the QCM frequency
sponse. However, what is particularly important experim
tally is that if we can determine the sensitivity functiong for
any perturbing layer then it is the same function for any ot
layer.21 While we have previously noted the importance
this last observation, our present work shows that its
evance is much wider than previously indicated. The fu
tion g can be determined using a thin elastic mass layer,
will then be valid whether the device is used for sens
mass deposited from the vapor phase or for sensing liquid~or
polymer! properties. Moreover, the sensitivity functiong for
a sensor created using a viscoelastic waveguide layer ca
related to the slope of the dispersion curve in an ident
manner to that previously suggested for a waveguide la
composed of elastic mass.21 Thus, by considering a third
perturbing layer composed of a thin layer of the same v
coelastic material as used to create the waveguide layer
can use Eq.~37! to derive

g~v,n0 ,ns ,Gl ,n l ,w,d!5
1

r l~12n l
2/n0

2!
S d log en

dx D
x5d

.

~43!

Defining a new dimensionless variablez5d f /n l
` ~i.e., z

5d/l l
`), where the superscript̀ implies the solid limit~i.e.,

vt→` in the Maxwell model! the perturbation of the com
plex velocity, Eq.~37!, becomes

Dn

n0
'S 12n f

2/n0
2

12n l
2/n0

2D S d loge n

dz D
z5z0

S tan~Tf
0h!

Tf
0h

D vr fh

2pn l
`r l

~44!

and in the Maxwell model of viscoelasticityTf
0h

5(22 j )1/2h/a f
0.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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3. Relationship to the Sauerbrey and Kanazawa
equations

Equation ~44! is a key result of this work because
strongly emphasizes the formal similarity between the
sponse of Love wave and layer-guided SH-APM devic
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with that of QCMs. It deserves to be regarded as a gene
zation of the Sauerbrey equation for QCM response to m
loading and the Kanazawa result for liquid loading to lay
guided sensors. The limits of the tanx/x type function in Eq.
~44! provide results for the thin solid film and infinitely dee
Newtonian liquid
S tan~Tf
0h!

Tf
0h

D→H 1 h→0

2A22 j

2h~12n f
2/n0

2!
A2h f

vr f
h→` and vt→0

. ~45!
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According to this equation, subject to two conditions, t
fractional change in wave speed of a sensor due to an in
tesimally thin layer of rigidly bound elastic mass is propo
tional to the frequency multiplied by the mass per unit a
~i.e., vr fh5vDm) and the response to immersion in a
infinitely deep Newtonian liquid is proportional to the squa
root of frequency multiplied by the square root of th
density–viscosity product i.e.,~vr fh f)

1/2. The two condi-
tions that must be fulfilled are that the operating point on
dispersion curve does not change and thatn f

2!n0
2. However,

the first of these conditions is a strong condition becaus
general change of frequency without changing the waveg
ing layer thickness will necessarily alter the factor in E
~44! that involves the derivative of the phase velocity. It
therefore not generally true that the frequency dependenc
theDn/n0 response to mass and liquid loading isv andv1/2,
respectively, although the mass and liquid responses sh
differ by a factor ofv1/2.

IV. MASS DEPOSITION FROM A LIQUID

The perturbation summarized by Eq.~44! is the result of
adding a viscoelastic layer to a Love wave or layer-guid
SH-APM device in vacuum. When the added layer is a Ne
tonian liquid of infinite depth the perturbation is a compa
son between the wave velocity for the device when i
mersed to the wave velocity for the device in vacuum. Wh
the added layer is an infinitesimally thin mass layer, the co
parison is again to the wave velocity for the device
vacuum. In sensor work with QCMs it is approximately t
case that mass deposition from the liquid phase creates
same perturbation as the same mass deposition, but from
vapor phase. For Love wave and layer-guided SH-AP
mass deposition from a liquid phase introduces a fourth la
and the unperturbed situation corresponds to three la
~Fig. 2!. The layer that can be regarded as the perturbatio
positioned between the waveguide and the final~fourth!
layer. Following the pattern of Sec. III 2 B, it is tempting, b
strictly incorrect, to conclude that mass deposition from
viscoelastic liquid phase will be described by Eq.~44! with
h5Dh representing a mass layer and the unperturbed s
tion being the immersed Love wave or layer-guided devi
i.e.,
i-

a

e

a
d-
.
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d
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-
n
-
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s
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a
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Dn

n0
'S 12nm

2 /n0
2

12n l
2/n0

2 D S d loge n

dz D
z5z0

vrmDh

2pv l
`r l

, ~46!

wheren0 is a solution of the three-layer equation@Eq. ~9!#

tan~Tl
0d!5jsl

0 tanh~Ts
0w!2j f l

0 tan~Tf
0b!

3 b11jsl
0 tan~Tl

0d!tanh~Ts
0w!c. ~47!

The symbolsjsl andj f l have been defined as

jsl5
msTs

GlTl
, ~48!

and

j f l5
GfTf

m lTl
. ~49!

Equation~47! can be rearranged into the form

tan~Tl
0d!5

jsl
0 tanh~Ts

0w!2j f l
0 tan~Tf

0b!

11jsl
0 j f l

0 tan~Tf
0b!tan~Tl

0d!tanh~Ts
0w!

.

~50!

For a device immersed in an infinitely deep viscoelastic m
dium the limit b→` would need to be taken. If Eq.~46!
were correct, then the perturbation due to mass depos
from the liquid phase could be related to the mass depos
by experimentally determining the dispersion curve forv in

FIG. 2. Layers in the four-layer system. The substrate, guiding-layer, m
layer, and fluid layer are indicated by,w, l, m, andf, respectively. For mass
deposition from the liquid phase the third layer is regarded as the pertu
tion.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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the liquid as a function of guiding layer thickness in a simi
manner to the work reported in Ref. 16. This type of expe
ment would enable the derivative of the liquid phase disp
sion curve to be determined numerically and the sensiti
to be evaluated. These considerations only apply if an eq
tion similar to Eq.~46! can be shown to be valid for mas
deposition from a liquid; in the following we provide a rig
orous derivation of a slightly modified form of Eq.~46! @see
Eq. ~52!#.

To rigorously investigate the effect of mass deposit
from the liquid phase, a full solution in a similar form to E
~44! can be obtained from first principles by extending t
three-layer model to a four-layer model; the algebra involv
is extensive and is briefly outlined in Appendix B. The res
for the perturbation in the velocity from the solution to E
~47! is

Dn

n0
'gL~v,n0 , substrate, guiding layer, fluid!

3S 12
nm

2

n0
2 D @11j f m

2 tan2~Tf
0b!#rmDh, ~51!

where the functiongL depends on the substrate, guidin
layer and viscoelastic fluid properties, and the operat
point and frequency. In a manner similar to the derivation
Eq. ~43!, we can imagine the perturbation resulting from t
deposition of a thin mass layer that has identical propertie
the waveguiding layer, and this allows us to relate the fu
tion gL to the slope of the liquid phase device dispers
curve

Dn

n0
'F11j f m

0 2 tan2~Tf
0b!

11j f l
0 2 tan2~Tf

0b!
G S 12nm

2 /n0
2

12n l
2/n0

2 D
3S d loge n

dz D
z5z0

vrmDh

2pn l
`r l

, ~52!

which is similar to Eq.~46! apart from the first factor;j f m

has been defined in the same manner as Eq.~49!. For an
infinitely deep viscoelastic liquid assuming a Maxwell mod
and that thed2k0

2/2 term inTf
0 can be neglected, the facto

in Eqs.~47!, ~51!, and~52! involving GfTf
0 become

GfTf
0 tan~Tf

0b!→ 2vAr fh fv

A2
@2F2~vt!1 jF 1~vt!#.

~53!

In the limit of a Newtonian liquidvt→0, so thatF2→0
andF1→1.

When considering acoustically thin layers of mass
posited onto a QCM sensor operating in the liquid phase
often assumed that the total shift in velocity is additive. T
total velocity shift is viewed as the sum of the shifts th
would be obtained for the QCM immersed in the liqu
added to the shift that would be obtained if the mass w
deposited from the gas phase. The accuracy of this assu
tion for Love wave and layer-guided SH-APM sensors c
be assessed by comparing Eq.~46! with Eq. ~52! and defin-
ing two mass sensitivity functions
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Sr f

vacuum[ lim
h→0

1

r fh
ReS Dv

v0
D vacuum

5ReF S 12n f
2/n0

2

12n l
2/n0

2D vacuum

3S d loge v
dz D

z5z0

vacuum v

2pn l
`r l

G ~54!

and

Srm

fluid[ lim
h→0

1

rmh
ReS Dn

n0
D fluid

5ReF S 11j f m
0 2 tan2~Tf

0b!

11j f l
0 2 tan2~Tf

0b!
D fluid

3S 12nm
2 /n0

2

12n l
2/n0

2 D fluidS d loge n

dz D
z5z0

fluid v

2pn l
`r l

G . ~55!

The superscripted words vacuum and fluid have been use
reminders that the unperturbed reference situations co
spond to a device either in vacuum or immersed in a fluid
order for the additive assumption used in QCM sensor w
to also be valid for the layer-guided sensors, a numbe
conditions need to be satisfied. First, the first factor in E
~55! has to be approximately unity. Second, the terms in
second factor in Eq.~55! need to be approximately equa
either because the two unperturbed operating point veloc
n0 are close or becausenm

2 /n0
2!1 andn1

2/n0
2!1; the unper-

turbednos are different in Eqs.~54! and~55! because one is
relative to the dispersion curve for the device in vacuum a
the other for the device in the fluid. Third and finally, th
slopes of the phase speed curves at the operating p
should be approximately equal. For Love wave and lay
guided SH-APM sensors operated at maximum phase sp
sensitivity the second two assumptions may not be true
cause the maximum phase speed sensitivity will necess
correspond to the point of steepest slope on the phase s
curve.

V. NUMERICAL RESULTS AND DISCUSSION FOR
LOVE WAVES

The equations developed in the previous sections
comprehensive and cover many types of sensor situati
The effects of elastic solids, Newtonian liquids, and v
coelastic liquids on SH-SAW and SH-APM sensors are
scribed by Eq.~36!. This equation also gives the dispersio
curves for both Love waves and layer-guided SH-APM
when the guiding layer is viscoelastic and the dispers
curves can be used to evaluate sensor response via Eq.~44!.
Equation~47! describes the dispersion curve for a Love wa
or layer-guided SH-APM sensor immersed in liquid and t
dispersion curve is relevant for the evaluation of sensor
sponse to mass deposited from the liquid phase@Eq. ~52!#.
While the analytical equations cover a wide range of sen
situations, it is a substantial task to provide comprehens
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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numerical calculations for all these situations. Therefore
this section we focus solely on the effect of viscoelasticity
the guiding layer on the dispersion curve and the senso
sponse of a Love wave device.

A. Numerical approach

To understand the effect of the viscoelasticity of t
guiding layer on Love waves it is necessary to numerica
compute the dispersion curve Eq.~36! for the complex ve-
locity. The insertion loss can then be calculated from
imaginary part of the inverse wave velocity. The gene
problem of the substrate plus a viscoelastic layer has th
intrinsic scales related to the frequency. Imagining the s
strate to be infinitely thick (w→`) and the guiding layer to
be perfectly elastic mass (vt→`), the guiding layer thick-
ness becomes a natural intrinsic length scale. By defining
combinationl l5n l / f a dimensionless combinationd/l l can
be formed and the velocity is a real value determined b
function of d/l l with no other dependence on frequenc
However, if the thickness of the substrate is retained as fin
then another combinationls5ns / f becomes possible an
the velocity then depends on the frequency in a more c
plicated manner, although it remains real; a natural dim
sionless combination isw/ls . When the perfectly elastic
mass limit is relaxed so thatvt becomes a natural dimen
sionless combination, the frequency dependence of the w
speed becomes more complicated and, in addition, the s
becomes complex indicating that an insertion loss also
curs.

Considering a finite substrate composed of elastic m
overlayed by a finite thickness Maxwellian viscoelastic lay
there are five material parameters (rs , ns , r l , n l

` , vt! and
three operating parameters~w,d,f! where n l

`5n l(vt→`)
and the productvt is treated as a single parameter. Usi
this parameter set the layer penetration depth is given bd l

5(2h l /vr l)
1/2, the layer speed is n l5n l

`@ j vt/(1
1 j vt)#1/2, the layer shear modulus byGl5 j r ln l

`2vt/(1
1 j vt), and the viscosity of the layer is given byh l

5Gl(vt→`)t. In analogy to the dispersion curve for
Love wave device on an infinite thickness substrate and w
an elastic mass guiding layer, we define a parametez
5d f /n l

` . To rewrite Eq.~36! into a form suitable for nu-
merical work, we define a new variablex5Tl

0d and a com-
plex function b52pn l

`(12n l
2/ns

2)1/2z/n l . Equation ~36!
can then be written in either of the two equivalent forms

tanx5S ms

Gl
D S b

x DA12S x

b D 2

tanhFbw

d
A12S x

b D 2G ,
~56!

or

tanx52S ms

Gl
D S b

x DAS x

b D 2

21tanFbw

d
AS x

b D 2

21G .
~57!

The numerical problem is to compute the complex value ox
that is a solution to Eq.~57! @and hence Eq.~56!# given a
particular set of material and operating parameters. The c
plex velocity is then found from
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A12S xn l

2pzn l
`D 2

. ~58!

To understand the numerical problem, we can first cons
the limit vt→`, which reducesx andn to being real num-
bers. For a given parameter set, the solution forx can either
lie in the range 0 tob or it can be larger thanb, but smaller
than 2p(12n l

`2/ns
2)1/2z. In the former case, Eq.~56! indi-

cates that the solutions forx will correspond to the intersec
tion of the tanx with the tanh curve. Ifb,p there will be a
single solution corresponding to the first Love wave mo
since x,b necessarily means from Eq.~58! that n,ns .
Each timeb increases byp an additional solution, corre
sponding to a higher mode Love wave, becomes possi
the number of Love wave modes is given by 11 the integer
part ofb/p. The start of each Love wave mode, labeled by
integern, corresponds toTl

0d5np andjo50 in Eq. ~36! so
thatn5ns . In the latter case, whenx.b, Eq. ~57! is a more
suitable form for understanding the equation definingx. The
problem then corresponds to finding the intersections
tween the two tan functions, which can have widely differi
periods inx. These solutions each haven.ns and corre-
spond to layer-guided SH-APMs. More traditional, nonlay
guided SH-APMs occur whend50 andTs

0d5 jmp and this
corresponds to mode speedsnm given by

nm5
ns

A12S mpns

wv
D 2

. ~59!

Equation~59! can also describe the layer-guided plate mo
speeds at the start of each Love wave branch, defined
Tl

0dnm5np. The specific guiding layer thicknessesdnm at
which n5nm is satisfied are given by

dnm5
nn l / f

2A12S n l

ns
D 2F12S mns

2 f w
D 2G

. ~60!

Thusdnm can be described as the guiding layer thickness
which the Love waves (m50) and their associated plat
modes (mÞ0) begin and the wave speeds at the start
these modes are given bynm .

B. Numerical results for phase speed and insertion
loss

The first effect of allowing the guiding layer to becom
viscoelastic is that Eq.~57! and its solutionx both become
complex. Analytically, we can still imagine a set of Lov
wave and associated layer-guided SH-APM modes with
starts of the modes at values (dnm ,nm) given by Eqs.~59!
and ~60!. The wave speed at the start of the mode is r
while the guiding layer thicknessdnm becomes complex, i.e.
the mathematically requireddnm for n5nm becomes an un-
physical value. In the remainder of this section we simpl
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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the computational problem by concentrating on the effect
viscoelasticity of the wave-guide layer on the Love wa
solutions and do not consider the layer-guided SH-AP
branch of the solutions. Our approach is to choose the m
rial parameters (rs ,ns ,r l ,n l

` , vt! and the two operating
parametersw and f, and to then step through a range
guiding layer thicknessd. At each step Eq.~57! is numeri-
cally solved for the complex rootx and the velocityv calcu-
lated from Eq.~58!. The insertion loss is then calculate
from the imaginary part of the inverse velocity using E
~19!.

Figure 3 shows calculations of the real part ofn using an
operating frequency of 100 MHz on a substrate of thickn
500 mm with material parameters ofrs52655 kg m23 and
ns55100 m s21, coated by a viscoelastic layer with materi
parameters ofr l51000 kg m23 and n l(vt→`)51100 m
s21. The solid curves show the first two Love modes and
a relaxation time for the waveguiding layer satisfyingvt
5106, while the dotted curves usevt510; the dotted curves
are almost identical to the solid curves. The horizontal a
has been plotted usingz5d f /n l` . The horizontal dashed
curve is the numerical evaluation of the real part of the a
lytical limit of n→n l

n→n l5n l
`Avt

2
@F1~vt!2 jF 2~vt!# ~61!

and the dashed curve with an initial value ofn5ns is the
numerical evaluation of the real part of the analytical limit
d→0 for the first Love wave mode. Considering the so
and dotted curves in Fig. 3, the effect on the real part ofn of
including some viscoelasticity through the relaxation tim
while keeping both the frequency andn l

` constant appears t
be relatively small. The transition in the dispersion curve
Fig. 3 betweenns and n l

` occurring atz;1/4 for the first
mode and atz;3/4 for the second mode, is sharpened,
the absolute changes in the real part ofn are small. To clarify
this, the absolute changes in the real part of the phase ve
ity are shown in Fig. 4; in this figure the solid curve show

FIG. 3. The real part of the velocity as a function of the normalized guid
layer thicknessz5d f /n l(vt→`) for the first two Love wave modes in a
system of a finite thickness substrate with a Maxwellian viscoelastic guid
layer. The solid curves correspond tovt5106 and the dotted curves to
vt510; the dashed curves are the limits forn→ns and n→n l .The other
parameters aref 5100 MHz, w5500 mm, rs52655 kg m23, ns55100 m
s21, r l51000 kg m23 andn l(vt→`)51100 m s21.
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the first Love wave mode and the dotted curve shows
second Love wave mode. For the higher Love wave mo
the value ofd at which the mode begins is also reduced asvt
decreases.

Figure 5, which plots the insertion loss as a function
the normalized guiding layer thicknessz, shows that the ef-
fect of viscoelasticity on the insertion loss is considera
larger than on the real part of the velocity. In Fig. 5 a higher
positive value indicates a signal that has greater loss an
hence, weaker. The solid curve is the insertion loss per m
calculated usingvt5106. The dotted curve is the insertio
loss per meter scaled down by 105 calculated usingvt
510; the scaling has been used to enable both curves t
displayed on the same diagram and has been chosen to b
ratio of thevt’s. The accuracy of the numerical calculation
for the insertion loss can be verified by considering the a
lytical limit for the insertion loss asn→n l @i.e., Eq. ~61!#.
The insertion loss per meter is then given by

g

g

FIG. 4. The difference in the real part of the velocity as a function of
normalized guiding layer thicknessz5d f /n l(vt→`) for the data in Fig. 3;
the solid curve is the difference for the first Love wave mode and the do
curve is the difference for the second Love wave mode.

FIG. 5. The insertion loss per meter propagation path as a function of
normalized guiding layer thicknessz5d f /n l(vt→`) for the first two Love
wave modes; the parameters are the same as in Fig. 3. The solid curve
vt5106 and the dotted curve is the insertion loss data forvt510, but
divided by a factor of 105. The horizontal line is then→n l limit given by
Eq. ~62!.
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IL5220~ log10e!ImFvn G
→20~ log10e!S v

n l
`DA11~vt!2

2vt
F2~vt! ~62!

and this formula explains the choice of scaling used in p
senting the numerical calculation for the curve withvt
510. Providedvt>10, the F2(vt) function can be ap-
proximated to 1/(8vt)3/2 thus giving IL}1/vt in the limit
n→n l .

Both the ‘‘low loss’’ vt5106 and ‘‘high loss’’ vt510
curves in Fig. 5 show a characteristic change with increas
guiding layer thickness. Considering the first Love wa
mode, for very thin guiding layers the insertion loss in bo
cases is small, but as the guiding layer thickness incre
the loss increases significantly with a particularly rap
change occurring at aroundz;1/4 for the first mode. Subse
quently, the loss overshoots and then saturates at a con
value given by Eq.~62!. A similar behavior occurs for the
second Love wave mode, although the overshoot is ha
apparent and the particularly rapid change occurs at aro
z;3/4. Thus, the insertion loss depends on the Love w
mode so that, for example, at a guiding layer thickness oz
;0.65 the losses for the first Love wave mode are hi
while the losses for the second Love wave mode are low.
the first Love wave mode, an overshoot can also be see
d;l l

`/4, wherel l
`5v l

`/ f and this can be shown to be du
to the tanx term in Eq.~57!. Indeed, it is similar in origin to
the idea of a shear wave resonance known in work w
QCMs.24,25A close comparison of Eq.~36! in the thin layer
mass loading limit with acoustic impedance models
QCMs shows that the tanx term in Eq.~57! is the term in the
acoustic impedance that is the source of the shear wave
nance idea.

Physically, it is possible to understand the insertion lo
behavior as a consequence of the transfer of the Love w
from a wave similar to a shear acoustic wave in the subst
to one similar to a shear acoustic wave in the guiding la
as the guiding layer thickness increases. In our previ
treatment of Love waves with elastic mass guiding layers
plotted displacement profiles for a range of guiding lay
thicknesses.20 In any mode the upper, free, surface of t
guiding layer is an antinode and the displacement decays
the substrate. For the first Love wave mode (n50) and very
thin guiding layers, the displacement in the substrate dec
gently so that the substrate displacement approximate
plane wave and this plane wave pattern extends into
guiding layer. As the guiding layer thickness increases
displacement of the first Love wave mode (n50) becomes
similar to a quarter wavelength type pattern in the guid
layer with the displacement decaying so rapidly into the s
strate that the substrate-guiding layer interface almost
comes the location of a node in the displacement. Eff
tively, for thin guiding layers the Love wave is a she
acoustic wave in the substrate, with a wave velocity sim
to a shear acoustic wave in the substratens , and for thick
guiding layers it is a wave in the guiding layer with a wa
velocity similar to a shear acoustic speed in the layern l . For
loaded 23 Sep 2011 to 152.71.223.129. Redistribution subject to AIP licens
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the next Love wave mode (n51), the wave begins as
plane wave in the substrate with a half-wavelength type p
tern in the guiding layer and then evolves with increas
guiding layer thickness into an almost zero displacemen
the substrate with a three-quarter wavelength displacem
pattern in the guiding layer. Since the substrate is mu
thicker than the guiding layer the initial plane wave in t
substrate represents the majority of the displacement and
half-wavelength pattern in the guiding layer is only a sm
part of the overall displacement. However, for the thick
guiding layers the substrate displacement almost vanis
and so the displacement in the layer is the dominating par
the overall wave displacement. In a manner similar to
first Love wave mode, the transition in the displacement p
tern corresponds to a change of the wave velocity fromns to
n l . In this interpretation the insertion loss arising due to t
viscoelasticity of the guiding layer would only become e
fective when the displacement is dominated by the displa
ment in the guiding layer and this only occurs once the tr
sition in velocity toward the layer valuen l occurs. Thus, we
would expect the first Love mode to have significant dam
ing at, for example,d;0.65, while the second Love mode t
simultaneously have little damping. Moreover, once the Lo
wave mode is localized into the guiding layer, the inserti
loss would be expected to saturate, as is clearly the case
Fig. 5.

The prediction that one Love wave mode can have s
nificant damping while the next higher Love wave can sim
taneously have little damping is consistent with repor
data.16 Frequency spectrums for Love wave devices sh
that as a guiding layer is built up systematically, the reson
frequency shifts to a lower value, and the wave eventua
appears to be completely damped. However, data also s
that if the guiding layer thickness is further increased, th
after a given thickness a strong mode appears back at
original frequency and then again shifts with increasi
guiding layer thickness to lower frequency until it is com
pletely damped. This pattern has been observed throug
sequence of more than seven Love wave modes. One pr
cal caution against a too literal numerical application of o
results to experimental data is that the theory concerns L
waves generated from SH-SAW supporting substrates. D
on Love waves taken using a SSBW mode would not h
an insertion loss predicted using this theory because in
SSBW case, the guiding layer thickness also appears to
crease the angle at which the SSBW is launched into
substrate. For a Love wave generated from a SSBW mo
the initial effect of a guiding layer is to improve the tran
mission of the wave rather than to damp the wave. Even
ally, as the wave localizes to the guiding layer the loss sho
become equal to that predicted by Eq.~62!. Thus, the theory
in this work may apply quantitatively to Love waves on
36° YZ-LiTaO3 SH-SAW substrate with the propagation pa
metallized, but only qualitatively to Love waves on a 9
rotated ST-cut quartz SSBW substrate.

C. Mass Õliquid sensitivity

In QCM sensors targeted at mass deposition appl
tions, it is usual to quantify the mass sensitivity by the pha
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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velocity mass sensitivity@i.e., Sm
n defined by Eq.~54! with

r fDh5Dm andn f5n l ]; to a first approximation the attenu
ation vanishes for thin mass layers. Figure 6 shows the m
nitude of the phase velocity mass sensitivity for the data
Fig. 3 derived from the slope of the curves in Fig. 3; the so
curve corresponds tovt5106 and the dotted curve corre
sponds tovt510. The effect of increasingly viscoelasticit
~i.e., reducingvt! is to increase the peak sensitivity, a
though for thinner guiding layers the viscoelasticity can
duce the sensitivity. The reduction in the sensitivity prior
the peak may be important experimentally because the in
tion loss increases with increasing viscoelasticity and it m
not therefore be possible to operate a device at the gui
layer thickness required for peak phase velocity mass se
tivity.

In QCM sensors attenuation occurs if the mass depos
is viscoelastic, but not if the mass is purely elastic. The
fore, an important aspect of the insertion loss arising fr
viscoelasticity of the waveguiding in a Love wave device
that in theory it provides a highly sensitive sensor param
both for liquid sensing and mass sensing even when the m
is purely elastic. To understand why, it is necessary to rec
sider the origin of the high phase velocity mass sensitivity
a Love wave device with a guiding layer composed of ela
mass. Equation~44! shows that the phase velocity mass se
sitivity is directly proportional to the slope of the logarith
of the mode velocity and that the highest phase velocity m
~and liquid! sensitivity occurs when a device is operated
the point of steepest slope on the dispersion curve. The p
of steepest slope corresponds to the mode being on the
of transition between a wave dominantly in the substrate,
so havingv;vs , to one dominantly in the layer, and s
having v;v l . In a similar manner, in the case with vis
coelasticity the insertion loss also changes from a value c
acteristic of the substrate~i.e., zero! to a value characteristic
of the layer @i.e., given by Eq.~62!#. We would therefore
expect high insertion loss mass and liquid sensitivity to c
respond to the point of steepest slope of the insertion
curve and for that slope to be particularly steep if the po
mer induces high insertion losses. To be more quantitat
Eq. ~19! for the insertion loss shows that the change in

FIG. 6. Magnitude of the phase velocity mass sensitivity function,uSm
n u,

@i.e., Eq.~54! with n f5n l ]; the parameters are the same as in Fig. 2; T
solid curve is forvt5106 and the dotted curve is the insertion loss data
vt510.
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sertion loss per unit propagation length due to a small cha
in the ~complex! phase velocity is

DIL520~ log10e!ImF v

n0
S Dn

n0
D G ~63!

and the fractional shift in the phase velocity is given via E
~37! using theg function or from Eq.~44! which uses the
slope of logen. In Eq. ~63! a positive DIL represents a
weaker signal.

In the approximation that the material being sensed
elastic mass with a shear acoustic velocity similar to tha
the guiding-layer~i.e., n f'n l), then Eqs.~44! and ~63! pre-
dicts that the maximum change in insertion loss for a giv
deposited mass (Dm5r fh with h small! will be high when
the operating point is chosen such that the imaginary par
n0

21d logen/dz is large. For large relaxation times, this com
bination is dominated by the imaginary part of the slo
d logen/dz. Thus, a key conclusion is that when using a Lo
wave device to sense rigidly coupled elastic mass, inser
loss can be a highly sensitive parameter because the el
mass can convert the wave from having a low loss to a h
loss via the transfer of the displacement from the substrat
the guiding layer; there is no absolute requirement for
deposited mass itself to be viscoelastic. While, in a sense
elastic mass does not itself have a loss, the mass effecti
moves the operating point of the device down the comp
dispersion curve into a region where the guiding layer los
start to dominate the Love wave.

For sensing rigidly coupled elastic mass of shear aco
tic velocity vm , deposited from vacuum, we can define
insertion loss mass sensitivity functionSm

IL in a manner simi-
lar to the phase velocity mass sensitivity function using
change in insertion loss per meter divided by the mass
unit area

Sm
IL5 lim

Dm→0
S DIL

DmD
520~ log10e!ImF v2

2pr ln l
` S 12nm

2 /n0
2

12n l
2/n0

2 D
3

1

n0
S d loge n

dz D
z5z0

G , ~64!

where Eqs.~44! and ~63! have been used to obtain the rel
tionship to the slope of the dispersion curve. One immed
consequence of Eq.~64! is that the peak sensitivity in the
insertion loss does not necessarily occur at the same op
ing point on the dispersion curve as the peak sensitivity
phase velocity. For example, when sensing a mass la
composed of approximately the same material as the guid
layer, the peak phase velocity sensitivity will correspond
the maximum ofd logen/dz, while the peak insertion loss
sensitivity will correspond to the maximum o
n21d logen/dz. Figure 7 shows the insertion loss mass s
sitivity for a Love wave with a viscoelastic guiding laye
with the same parameters as used for the data in Fig. 3;
approximation (12nm

2 /n0
2)/(12n l

2/n0
2)!1 has been used in
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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Eq. ~64!. The solid curve corresponds tovt5106 and the
dotted curve corresponds tovt510, but it should also be
noted that the data forvt510 has been scaled down by
factor of 105 in order to plot the figures on the same diagra
for comparison of their shapes. The need to use a large s
ing factor in presenting the data for the effect of viscoel
ticity on the insertion loss mass sensitivity emphasizes
experimentally insertion loss may be a very useful Lo
wave sensor parameter; we would also expect this to be
for other layer-guided acoustic wave sensors.

If the Love wave device is being used to sense chan
due to the device being immersed in a liquid, then Eqs.~44!
and~45! show that insertion losses will arise whether or n
the guiding layer is viscoelastic. In the infinitely deep Ne
tonian liquid case given by Eq.~45!, tan(Tf

0h)/Tf
0h has real

and imaginary components of equal magnitude@since
(22 j )1/2512 j ] and a Love wave device with an elast
guiding layer will couple the imaginary part into an insertio
loss. If the guiding layer becomes a viscoelastic mater
then the real part of tan(Tf

0h)/Tf
0h will also become coupled

into the insertion loss via the imaginary part of the slope
logev0 ~multiplied by 1/v0). This additional mechanism fo
insertion loss changes, introduced by the viscoelasticity
the guiding layer, may provide even higher sensitivity in li
uid phase sensing applications. The mass sensitivity defi
by Eq. ~64! does not include this additional mechanism f
the liquid phase sensitivity. However, because for the i
nitely deep Newtonian liquid the real and imaginary con
butions of tan(Tf

0h)/Tf
0h have equal magnitude, the relativ

importance of the viscoelasticity of the guiding layer to t
insertion loss can be assessed by considering the rel
magnitudes of the real and imaginary parts of the slope
logev and this is shown in Fig. 8. The parameters used
Fig. 8 are the same as for the data in Fig. 2; the solid cur
corresponds tovt5106 and the dotted curves correspond
vt510. The curves with negative peak values are the
part of the slope and the curves with positive peak values
the imaginary part of the slope. It is evident from the ex
tence of only dotted curves with positive peak values for
two Love wave modes in Fig. 8 that the imaginary part of t

FIG. 7. The insertion loss mass sensitivity,Sm
IL , for sensing material of the

same type as the guiding layer@i.e., Eq.~64! with nm5n l ]; the parameters
are the same as in Fig. 2. The solid curve is forvt5106 and the dotted
curve is the insertion loss data forvt510, but divided by a factor of 105.
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slope is vanishingly small forvt5106. However, the real
part of the slope~curves with negative peak values! is of
comparable order of magnitude for bothvt5106 and vt
510. Thus, for liquid phase sensing we would expect t
contributions to arise from the slope~i.e., d logen/dz) to the
phase velocity sensitivity as the guiding layer becomes
coelastic. For liquid phase sensing similar conclusions a
apply for the insertion loss sensitivity although the releva
factor is n21d logen/dz rather than simply the slope
d logen/dz.

In this section we have not considered numerically
effect of depositing mass from the liquid phase because
requires a substantially more difficult root finding procedu
based on Eq.~47! @or Eq. ~50!# rather than the simpler Eq
~36!. However, some qualitative comments are possible. T
simplest view of the liquid phase is that it has two effec
first the liquid shifts downwards each point of the dispers
curve for the device in vacuum to create a new dispers
curve, and second, the magnitude of the slope of the curv
the operating point is subsequently higher. The idea that
vacuum based device response to liquid can simply be ad
to the vacuum based device response to the mass use
assumption that the change in slope of the dispersion cu
can be neglected. Since a Love wave device has high p
velocity mass sensitivity precisely because it is operated
point of steep slope on the dispersion curve, it is far fro
obvious that the assumption that the change in slope ca
neglected will be true. Moreover, for a viscoelastic guidi
layer it is difficult to predict qualitatively how the introduc
tion of the imaginary part to the slope will change the r
sponse. Nonetheless, the equations developed in this w
provide a rigorous basis for a numerical investigation
these issues. We would anticipate that the insertion loss
sponse will be particularly important in biological sensin
applications were the mass being sensed often has an
ment of viscoelasticity and is usually deposited from the l
uid phase.

FIG. 8. Comparison of the real and imaginary parts ofd loge n/dz for the
data in Fig. 3. The dotted curves with positive peaks are the imaginary
of d loge n/dz for vt510; the corresponding data forvt5106 is vanish-
ingly small on the scale of the figure. The solid and dotted curves w
negative peaks are the real part ofd loge n/dz for vt5106 and vt510,
respectively. Data for the first two Love modes are shown.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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VI. CONCLUSION

A theoretical treatment of Love waves on finite su
strates and with viscoelastic wave-guiding layers, and
shear horizontal acoustic plate modes with coatings, has b
developed. Equations for the sensor response of these t
of systems for both mass and viscoelastic or Newtonian
uid phase applications have been derived and the limi
cases of mass and liquid response for shear horizontal p
ized surface acoustic wave and shear horizontal acou
plate mode sensors detailed. The response of Love wave
layer-guided SH-APMs to a general material~elastic mass,
Newtonian liquid, or viscoelastic fluid! has been shown to
depend on the slope of the complex dispersion curve and
relationship to the QCM mass and liquid phase sensor
sponse has been discussed. Equations describing mass
sition from the liquid phase have been developed. The a
lytical results have been investigated using numer
calculations, based on a Maxwell model of viscoelasticity
the waveguiding layer of Love wave devices. The role of
waveguiding layer’s viscoelasticity in creating an inserti
loss and modifying the mass sensitivity has been quantifi
It has been suggested that, by using a viscoelastic materi
a waveguiding layer, insertion loss can be a useful sen
parameter for studying not only liquid phase response,
also mass deposition response.
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APPENDIX A: COMPARISON TO LITERATURE
SH-APM FORMULAE

To compare our result for the perturbation of a SH-AP
sensor response by a viscoelastic liquid to the result fr
Martin et al.22 we start from our Eq.~33!

S Dn

nm
D'

A22 j h fnm
2

ns
2rswv~11 j vt!am

. ~A1!

From Martin et al.’s definition of gm we can find thatgm
2

52 j /am
2 and so Eq.~A1! becomes

S Dn

nm
D'

2nm
2

ns
2rsw

F h f

2vGF j gm

~11 j vt!G ~A2!

and it has a real part of

S Dn

nm
D'

2nm
2

ns
2rsw

F h f

2vGReF j gm

~11 j vt!G
5

22nm
2

ns
2rsw

F h f

2vG ImF gm

~11 j vt!G . ~A3!

Defining a constantc by

c5
2vm

2

vs
2rsw

~A4!
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and comparing to Eqs.~B11! and Eq.~B12! gives the same
formula for the perturbation in velocity as in Martinet al.
provided our constantc is replaced by their constantcn de-
fined as

cn5S nm

ngm
D Jm

rsw
, ~A5!

whereJm51 sincem.0; in our work we have previously
indicated that them50 result quoted by Martinet al. as-
sumes that the SH-APM is not converted to a Love wave
the perturbing material. Thus, form.0 the only difference
between our SH-APM perturbation formula and that of Ma
tin et al. is the replacement of a mode group velocityngm by
our ns

2/2nm . The insertion loss for the damping of a SH
APM sensor by a viscoelastic liquid of infinite depth arisin
from our velocity perturbation formula is

IL'2S 20 log10e

2pA2
D S vL

rsns
2D S 2pnm

Wv DAvh fr fF1~vt!,

~A6!

whereas the formula from the Martinet al. article would
have an additional factor ofcn /c. A similar formula for the
damping was also given by Ricco and Martin in an earl
article,23 but in that case the third factor in brackets in E
~A6! was absent. Our first factor in brackets in Eq.~A6!
evaluates to 0.9775, the second term is theirA factor, and the
F1(vt) is theirF(vt) function. The primary difference be
tween our insertion loss formula for the viscoelastic liqu
perturbation of an SH-APM sensor and the Ricco and Ma
formula23 is the existence of the third factor, which evaluat
to around 0.17 for the lowest modes for the data in th
article. It is not obvious from the published work why th
factor should have been taken as unity. One argument m
be to argue that (2pnm /Wv)5(nm /W f) and assumenm

5 f lm so that the factor becomeslm /W and then approxi-
mate it to unity. For example, by takingW;mlm/2 and av-
eragingm51, 2, and 3lm /W gives 11/9. However, such a
argument would be wrong because it impliesw;mnm/2f
rather than the relationship among the substrate thickn
mode speed, and frequency given by Eq.~32!.

APPENDIX B: FOUR-LAYER MODEL

The layers in the model are defined in Fig. 2 and are
substrate, guiding layer, mass layer and fluid layer, or thi
nesses,w, l, m, and f, respectively; subscriptss, l, m, and f
are used to indicate quantities related to these layers.
displacements of the layers are given by

us5~0,1,0!bCse
2Tsx31Dse

Tsx3cej (vt2k1x1), ~B1!

uk5~0,1,0!bAke
2 jTkx31Bke

jTkx3cej (vt2k1x1), ~B2!

and the wave vectors by

Ts
25v2S 1

n2
2

1

ns
2D , ~B3!

Tk
25v2S 1

nk
2

2
1

n2D , ~B4!
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Down
wherek5 l , m, or f in Eqs.~B2! and ~B4! so that each rep
resents three equations. To obtain the dispersion equati
is necessary to impose boundary conditions of continuity
stress and displacement at each interface between layer
of the vanishing of stress at the two free surfaces. The c
tinuity of the displacements at the boundaries between
substrate and guiding layer, guiding layer and mass la
and mass layer and fluid layer give

Cs1Ds5Al1Bl , ~B5!

Al exp~2 jTld!1Bl exp~ jTld!

5Am exp~2 jTmd!1Bm exp~ jTmd!, ~B6!

Am exp~2 jTm~d1h!!1Bm exp~ jTm~d1h!!

5Af exp~2 jT f~d1h!!1Bf exp~ jTm~d1h!!. ~B7!

In addition, the stress boundary conditions at the two f
surfaces give

Cs exp~Tsw!2Ds exp~2Tsw!50, ~B8!
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Af exp~2 jT f~d1h1b!!

2Af exp~ jT f~d1h1b!!

50 ~B9!

and the continuity of stress provides a further three equat

Cs2Ds5 j j lm~Al2Bl !, ~B10!

Al exp~2 jTld!2Bl exp~ jTld!

5jml@Am exp~2 jTmd!2Bm exp~ jTmd!#, ~B11!

Am exp~2 jTm~d1h!!2Bm exp~ jTm~d1h!!

5j f mbAf exp~2 jT f~d1h!!2Bf exp~ jTm~d1h!!c,
~B12!

where j i j 5GiTi /GjTj and theGis are the complex shea
modulii which are defined by Eq.~14! for the Maxwell
model of viscoelasticity. Solving the eight equations E
~B5!–~B12! gives the full dispersion equation for the fou
layer system
j f m tan~Tfb!5
@j lm tan~Tld!2jsmtanh~Tsw!#1tan~Tmh!@11jsl tanh~Tsw!tan~Tld!#

tan~Tmh!@j lm tan~Tld!2jsmtanh~Tsw!#2@11jsl tanh~Tsw!tan~Tld!#
, ~B13!
rs

ss

n.

ns.

l.

le,

G.

-

ors

B

J.
which has the correct limits for the systems of a simple s
strate, substrate plus layer, and substrate plus two layer
order to develop the model for the effect of mass deposi
from a liquid Eq.~B13! is rewritten with the terms involving
the mass layer grouped together

@ tan~Tld!2jsl tanh~Tsw!#1j f l tan~Tfb!

3@11jsl tanh~Tsw!tan~Tld!#

5tan~Tmh!$@ tan~Tld!2jsl tanh~Tsw!#j f m

3tan~Tfb!2@11jsl tanh~Tsw!tan~Tld!#jml%. ~B14!

Whenh50, the left-hand side of Eq.~B14! equals zero and
defines the unperturbed system of a device composed
substrate and waveguiding layer immersed in a viscoela
fluid of thicknessb. In Eq. ~B14!, the dependence on th
perturbing mass occurs through the tan(Tmh), j f m , andj f m

factors on the right-hand side of the equation. Noting t
mmTm

025rmv2(1-nm
2 /n0

2) and performing an expansio
abouth50, we find

Dn

n0
'gL~v,n0 , substrate, guiding layer, fluid!

3S 12
nm

2

n0
2 D ~11j f m

2 tan2~Tf
0b!!rmDh, ~B15!

wheregL is a function depending on the operating point
the unperturbed system.

1D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers,
C. Frye, and H. Wohjlten,Acoustic Wave Sensors~Academic, New York,
1997!.
-
In
n

f a
tic

t

f

2 M. Thompson and D. C. Stone,Surface-Launched Acoustic Wave Senso
~Wiley, New York, 1997!.

3M. J. Vellekoop, Ultrasonics36, 7 ~1998!.
4B. A. Martin and H. E. Hager, Anal. Chem.67, 3324~1995!.
5R. M. White, Faraday Discuss.107, 1 ~1997!.
6G. Z. Sauerbrey, Z. Phys.155, 206 ~1959!.
7H. L. Bandey, S. J. Martin, and R. W. Cernosek, Anal. Chem.71, 2205
~1999!.

8K. K. Kanazawa and J. G. Gordon, II, Anal. Chim. Acta175, 99 ~1985!.
9D. P. Morgan,Surface-Wave Devices for Signal Processing~Elsevier, New
York, 1991!.

10C. K. Campbell,Surface Acoustic Wave Devices for Mobile and Wirele
Communications~Academic, New York, 1998!.

11E. Benes, M. Gro¨schl, F. Seifert, and A. Pohl, IEEE Trans. Ultraso
Ferroelectr. Freq. Control45, 1314~1998!.

12E. Gizeli, A. C. Stevenson, N. J. Goddard, and C. R. Lowe, IEEE Tra
Ultrason. Ferroelectr. Freq. Control39, 657 ~1992!.

13G. Kovacs and A. Venema, Appl. Phys. Lett.61, 639 ~1992!.
14J. Du and G. L. Harding, Smart Mater. Struct.6, 716 ~1997!.
15E. Gizeli, Smart Mater. Struct.6, 700 ~1997!.
16G. McHale, M. I. Newton, F. Martin, K. A. Melzak, and E. Gizeli, App

Phys. Lett.79, 3542~2001!.
17C. J. Percival, S. Stanley, A. Braithwaite, M. I. Newton, and G. McHa

Analyst 127, 1024~2002!.
18C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton,

McHale, and W. Hayes, Anal. Chem.73, 6995~2001!.
19M. I. Newton, G. McHale, F. Martin, E. Gizeli, and K. A. Melzak, Euro

phys. Lett.58, 818 ~2002!.
20G. McHale, M. I. Newton, and F. Martin, J. Appl. Phys.91, 5735~2002!.
21G. McHale, M. I. Newton, and F. Martin, J. Appl. Phys.91, 9701~2002!.
22S. J. Martin, A. J. Ricco, T. M. Niemczyk, and G. C. Frye, Sens. Actuat

20, 253 ~1989!.
23A. J. Ricco and S. J. Martin, Appl. Phys. Lett.50, 1474~1987!.
24G. McHale, M. K. Banerjee, M. I. Newton, and V. V. Krylov, Phys. Rev.

B59, 8262~1999!.
25S. J. Martin, H. L. Bandey, R. W. Cernosek, A. R. Hillman, and M.

Brown, Anal. Chem.72, 141 ~2000!.
e or copyright; see http://jap.aip.org/about/rights_and_permissions


