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Abstract

Animals are frequently used as model systems for determination of safety and efficacy in pharmaceutical research and
development. However, significant quantitative and qualitative differences exist between humans and the animal models
used in research. This is as a result of genetic variation between human and the laboratory animal. Therefore the
development of a system that would allow the assessment of all molecular differences between species after drug exposure
would have a significant impact on drug evaluation for toxicity and efficacy. Here we describe a cross-species microarray
methodology that identifies and selects orthologous probes after cross-species sequence comparison to develop an
orthologous cross-species gene expression analysis tool. The assumptions made by the use of this orthologous gene
expression strategy for cross-species extrapolation is that; conserved changes in gene expression equate to conserved
pharmacodynamic endpoints. This assumption is supported by the fact that evolution and selection have maintained the
structure and function of many biochemical pathways over time, resulting in the conservation of many important processes.
We demonstrate this cross-species methodology by investigating species specific differences of the peroxisome proliferator-
activator receptor (PPAR) a response in rat and human.
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Introduction

Comparative transcriptomics aims to understand organism

diversity and the conservation of phenotypic responses across

species. Conserved sequences between species are referred to as

orthologs. These are sequences that evolved from a common

ancestral gene and have retained the same function during the

course of evolution. As a consequence animal models are

frequently used in toxicology to assess the potential effects of a

chemical on humans. This necessitates the use of comparative

transcriptomics tools [1–4] (to determine whether an adverse

response observed in a model species is conserved in humans.

Although the magnitude of responses may differ between model

species and human, if these differences are consistent, extrapola-

tion of data to human is valid [5].

One major drawback to the concept of cross-species extrapo-

lation is species specific response to chemicals. This is when the

adverse response to chemical exposure is not conserved between

model species and humans. Comparative transcriptomic ap-

proaches of gene expression changes for human and model

species can identify divergent sets of genes specific to human and

the model species while pathway enrichment analysis of divergent

cross-species gene expression changes can confirm sensitivity of

organ toxicity to humans [6,7].

A number of drugs, pesticides, plasticizers, industrial chemicals

and specific diets cause pleitropic effects including proliferations of

peroxisomes. These pleitropic effects are mediated by activation of

the peroxisome proliferator-activator receptor (PPAR) a. Short

term studies of the effects of rodent peroxisome proliferators have

been conducted in many laboratories resulting in the identification

of marked species differences in response [8–10].

Rats and mice are clearly responsive to peroxisome proliferators

whereas the guinea-pig and dog are either unresponsive or

refractory. Peroxisome proliferation in primates is greatly reduced

compared to rodents [8]. The ability of PPAR agonists to cause

human liver peroxisome proliferation in vivo is mixed. Human

and rat PPARa have similar functions. There is also a high

homology of their DNA and ligand binding domains [11].

However, there is a marked decrease in PPARa expression of

human hepatocytes in the presence of an agonist. Ammerschlaeger

et al [11] showed that these species differences are due to

differences in the promoter response elements of target genes.

They also observed that human hepatocytes limit the activity of

PPARa.

PPARa functions as a ligand-inducible transcription factor for

genes involved in mitochondrial and peroxisomal metabolism.

Marked species differences in response to peroxisome proliferators

exist where rodents show high peroxisomal enzyme induction

while humans do not [12]. One factor accounting for this species
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specificity is the responsiveness of PPARa regulated genes that is

defined by PPAR response elements (PPRE) located within the

promoter region of target genes. PPRE has recently been found in

the human C3 promoter of the complement system in the liver

[13] and has been shown to be conserved between mouse and

human, suggesting a regulatory mechanism possibly common with

PPAR alpha targets across species.

Over expression of PPARa in human hepatocytes to the levels

comparable to those observed in rat primary hepatocytes does not

increase the induction of peroxisomal activity, suggesting that

differences in receptor levels alone cannot account for a lack of

peroxisomal activity [11]. Ammerschlaeger et al [11] also

demonstrated that transient transfection assays with the PPARa
agonists, ‘‘ciprofibrate and Wy 14,643 induced rat but not human

PPARa-mediated reporter gene activity’’. Their results further

showed that ‘‘human hepatocytes limit the extent of peroxisome

proliferation regardless of PPARa expression’’.

Preclinical studies of PPARa agonists usually do not predict

hepatoxicity to humans. This is perhaps PPARa agonist may

regulate different sets of genes in rodents and humans. As a

consequence, in the past, human liver cells have been used rather

than rodent liver cells to investigate hepatoxicity of PPARa
agonists to humans. However, primary human hepatocyte cultures

are limited by inter-individual variability and short term in vitro

life span which does not allow long term study of PPAR agonists in

primary human hepatocyte cultures [9].

The cell culture medium of human hepatocytes used for

investigating the PPARa response may have a limiting effect on

hepatocyte gene expression. Reports [14] show that in contrast to

the in vivo situation where the liver maintains its differentiated

functions while hepatocytes are undergoing cellular proliferation

following toxic damage, proliferation and differentiation in

hepatocytes are inversely related in vitro [15] where proliferation

leads to dedifferentiation of hepatocytes. Although it is clear that

varying culture conditions can have profound effects on the

transcription of liver-specific genes, many differentiated functions

are lost regardless of the culture conditions [16–18].

Therefore an ideal or close to ideal system characterised by the

long term expression of all liver specific functions at the in vivo

level, which could be used for long term in vitro studies such as

chronic hepatoxicity, could advance the comparative transcrip-

tomic analysis of chemicals intended for human use.

Studies of cross-species interactions have attempted to identify

orthologous sets of genes as differentially expressed genes common

to human and model species after species specific microarray

analysis of human and model species samples [6,7]. This approach

does not allow for the investigation of specific mechanism of

activity of the putative sets of orthologous genes since they cannot

be separated from the other species specific sets of genes. This

could be problematic in the identification of gene expression

profiles that could be diagnostic of a toxicity endpoint.

The multiple probes per transcript feature of the Affymetrix

GeneChip microarray platform enables the selection of a subset of

probes for the analysis of transcripts. It is therefore possible to re-

map GeneChip probes by sequences comparison to generate new

probe set definitions to interrogate the transcriptome [19]. For

cross-species analysis this approach is powerful in that it allows for

the computation of new expression estimates for the orthologous

transcripts.

This study was aimed at investigating the utility of a cross-

species gene expression strategy in an attempt to characterise the

species specificity of PPARa activity and to demonstrate that the

weak PPARa response of human hepatocytes is partly due to the

primary hepatocyte culture environment. We used data generated

previously [18] and employed a cross-species gene expression

analysis strategy to identify human orthologs of rat Affymetrix

GeneChip probes. The human/rat cross-species orthologous

probes were used to compute new expression estimates for

human, in an attempt to mimick the wild type in vivo phenotype

of the human hepatocyte environment.

Materials and Methods

Total RNA Preparation and Analysis
All animal experiments were performed by Merck KGaA

(Darmstadt, Germany). Details of the animal and human samples

used to generate the microarray data for the work was published

by Merck Serono [18].

The animal experiments were approved by the local animal

welfare committee, Hessian Regierungspraesidium, and were

conducted with the principles of Good Laboratory Practice of

the Organization for Economic Cooperation and Development,

the European Union, and the Food and Drug Administration

Good Laboratory Practice regulation 21, Code of Federal

Regulations Part 58, as well as the local animal welfare

regulations. All experimental procedures regarding human sam-

ples were performed in compliance with French law and

regulations after the approval of the National Ethics Committee

(Paris, France). Informed written consent was obtained from all

patients for use of samples for research purposes.

Total RNAs for this study were extracted from rat and human

hepatocytes isolated from liver samples by Richert et al (2008). Rat

hepatocytes from each animal were treated with 30 mM EMD,

100 mM or 0.1% DMSO as vehicle control at 24 hrs and 72 hrs.

Three biological replicates were prepared for each time point at

each concentration of EMD 392949 and DMSO giving a total of

18 rat samples. The same treatment regime was applied to the

human hepatocytes.

Total RNA was isolated with TRI reagent following manufac-

turer’s protocol. Quality and concentration of RNA were

determined using the NanoDrop spectrophotometer and the

Agilent Bioanalyzer 2100 applying the total RNA Nano Assay

following the manufacturer’s protocols.

Microarray Hybridization
10 mg of total RNA, obtained from the work of Richert et al

[18], was converted to double-stranded cDNA, followed by cRNA

synthesis, hybridization, washing, and scanning using standard

microarray processing protocols; GeneChip analysis was per-

formed according to the Affymetrix manufacturer’s protocol

(Affymetrix Genechip Expression Analysis, Technical Manual).

Rat hepatocyte samples were hybridized to Rat Genome 230 2.0

GeneChips and Human Genome U133 Plus 2.0 GeneChips were

utilized to analyze RNA obtained from human hepatocytes. All

microarray data were submitted to the NCBI Gene expression

Omnibus as a series with the accession number GSE47972.

Downstream analyses was performed with the RMA [20]

condensed expression estimates using GeneGo MetaCore and

supervised learning strategy based on an artificial neural networks

(ANNs) modelling approach. ANNs are a form of artificial

intelligence that can model complex systems and have shown

good predictive performance on blind data [21,22].

GeneChip Probes
Affymetrix uses mRNA sequences obtained from public

databases and clusters them to 90% sequences identity. The

longest sequence in each cluster is used as the representative for

that cluster, with preference given to RefSeq sequences. Pairwise

Cross-Species Gene Expression Analysis
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alignment of probe sequences against the non-redundant mRNA

set is used to assign probe sets to transcripts. There are several

probes per probe set [23]. A probe set usually represents a gene.

Each probe is 25 bases long grouped in pairs. Each probe pair

consists a perfect match (pm) probe, designed to match perfect a

target gene sequence, and a mismatch (mm) probe, designed to

measure non-specific hybridization. The mismatch probe differs

from its associated perfect match probe only in the 13th base.

Orthologous Probe Selection
GeneChip Rat Genome 230 2.0 probe sequences were obtained

from Affymetrix (www.affymetrix.com) to perform sequence

comparisons with human sequences using BLAST [24]. The

following steps were carried out computationally;

(i) A local human cDNA database was generated with

sequences sourced from the National Center for Biotech-

nology Information (NCBI). Each perfect match 25 mer

Rat GeneChip probe queried the human cDNA database

using a word size of 25.

(ii) The returned results were collected and screened for probe

sequences with 100% matches. In some cases not all

selected rat probes had 100% matches with a human

cDNA. These were defined as probes that had at least 20

bases matching human cDNA bases in tandem.

(iii) Probes were also selected that had one or two mismatch

base at the end of the 25 mer probe.

(iv) To ensure the selection of gene specific probe sets, probes

with multiple matching cDNA sequences were eliminated.

However, as explained above, not all rat probes were

100% matches to their corresponding human cDNA

sequences. It is noteworthy that sometimes cross hybrid-

izing probes can be useful since the cross hybridizing

transcript is usually not expressed at a level that leads to

signal interference in a given tissue or sample. Further-

more, probe level analysis algorithms such dChip [25],

RMA [20] and PLIER [26] are capable of identifying

cross-hybridizing probes and eliminating these probes from

the computation of the expression estimates.

(v) In some cases where probes detected several reference

sequences, most of the results were manually evaluated to

select suitable probes outside the stated criteria. For

example, where all the probes in a probe set matches

100% to multiple reference sequences, probes can be

manually identified where fewer than 10 mismatch bases

occur at the ends of the 25 mer probe.

(vi) All other probes intermingling with probes mapping to a

different cDNA reference sequence are eliminated. This

results in fewer probes for most of the selected probe sets

but with greater specificity.

(vii) Probe sets containing at least three probe pairs were used

to construct a new library file to analyse rat RNA samples

as human. This new cross-species rat/human orthologous

library file represents a ‘virtual’ human ‘microarray’

capable of analysing rat transcriptome as human.

(viii) A minimum of three probe pairs per probe set should

satisfy [19] the minimum requirement for most probe level

analysis algorithms. The reduced number of probes leads

to a slight drop in statistical power for each probe set.

However, this is compensated by the high specificity of the

orthologous probe sets.

(ix) A new library file of 31004 orthologous rat/human cross-

species probe sets, 96 probe sets less than the Affymetrix rat

GeneChip array, was constructed following the probe

selection criteria described above. Construction of the new

library file with the selected orthologous probes, compu-

tationally, takes almost a fortnight of program run time.

(x) The multiple probes per probe set feature of the Affymetrix

GeneChip microarray platform allows for robust selection

of orthologous sets of probe sets for cross-species

comparison. To this end, Affymetrix have designed

spreadsheet datasets containing cross-species information

on orthologous probes between human, rat, mouse, (www.

affymetrix.com/support/technical/comparison_spreadsheets.

affx).

(xi) The methodology described here builds on the Affymetrix

cross-species comparison approach described by the

spreadsheets and develops new library files containing

cross-species orthologous probes. The advantage of this

approach is that, the probe selection methodology allows

for the computation of new gene expression estimates,

unlike the Affymetrix spreadsheets.

There is a significant number of probe set redundancy with

GeneChips in a one-to-many relationship with the target sequence

[27]. This can be very problematic for downstream analysis, thus

requiring re-mapping of GeneChip probes to aide better

interpretation of GeneChip data. In this cross-species study we

have mapped probes on a one-to-one relationship between rat and

human. To select orthologous rat probes using human as the

reference genome, a subset of the 11 perfect match GeneChip Rat

Genome 230 2.0 probes, were identified for each orthologous

transcript. Probe sets with less than three orthologous probes were

excluded from library file construction.

Analysis with Cross-species Library File
The rat CEL file data, generated by hybridising RNA from

cultured rat hepatocytes challenged with EMD 392949 (EMD),

were analysed with the rat/human cross-species library file (virtual

human). Using the RMA algorithm, new expression estimates

were generated with the cross-species library file. The following

steps were carried out computationally;

(i) Using a text editor the header information of each

Affymetrix rat 230.2 array CEL file, hybridised with rat

hepatocyte challenged with EMD, was amended to include

the file name of the cross-species library file. Thus, the

Affymetrix rat 230.2 array CEL files were made compat-

ible with the cross-species library file.

(ii) The cross-species library file was placed in a folder

accessible by Affymetrix Expression Console application.

(iii) The library path of the Affymetrix Expression Console

application was redirected to access the folder containing

the cross-species library file.

(iv) The Affymetrix rat 230.2 CEL files, amended with the

cross-species library file header information, was uploaded

into Expression Console application.

(v) Expression analysis was performed with Affymetrix

Expression Console application using the RMA algorithm

workflow.

(vi) The new expression estimates (virtual human), generated

with the cross-species library file, for the Affymetrix rat

230.2 CEL files, were exported into Excel files for

downstream analysis.

Cross-Species Gene Expression Analysis
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(vii) Real rat and real human expression data for comparison

with virtual human were generated following standard

Affymetrix Expression Console application protocol.

The new cross-species data generated with the rat samples

(converted Affymetrix rat 230.2 CEL files) represents a virtual

human hepatocyte transcriptome.

Pathway Enrichment Analysis
The enrichment analysis was conducted using GeneGo pathway

maps in the Metacore database (Version 6.4 build 26113;

GeneGo, St. Joseph, MI). A hypergeometric distribution strategy

was used to calculate the enrichment p-values using the GeneGo

database as background. Gene expression estimates were com-

puted using the Robust Multi-array Average (RMA) algorithm

with a log base 2 transformation [20]. Fold change values for

differentially expressed genes were computed and used for

GeneGo pathway mapping and pathway enrichment analysis. A

false discovery correct p-value,0.05 was defined as significant for

the enrichment analysis.

Results and Discussion

Increased Activity of PPARa Markers by Orthologous
Probe Selection

PPARa mediated responses involve regulation of lipid metab-

olism, peroxisomal proliferation and the induction of growth

regulatory genes. Figure 1 depicts the effects of EMD, a PPARa/

PPARg dual agonist [18], on the gene expression profile of the 18

samples. PPARa marker enzyme activity like acyl CoA oxidase

(ACOX) was highly expressed in both real rat and ‘virtual’ human.

However, human hepatocytes display only weak induction of

ACOX [11].

PPARa gene (1387278_at) expression in ‘virtual’ human is twice

that of real rat (Fig. 1). Also, the expression of PPARa is greater

than the expression of most genes involved in the PPARa
pathway. However, reports have shown that PPARa expression in

human is 1–10% of the levels found in rodents [28–30]. The high

level of PPARa gene expression in ‘virtual’ human relative to rat is

due to the high specificity of the cross-species ‘virtual’ human

strategy. This is made possible by the elimination of poor signals

through the selection of highly specific orthologous probes (Fig. 2)

for cross-species analysis.

The Affymetrix GeneChip microarray platform uses multiple

probes (eleven for the rat microarray) per transcript to estimate the

level of expression. If all eleven probes are used to compute the

expression level of a cross-species orthologous transcript the non

orthologous probes will give a false estimate of expression. By

eliminating non orthologous probes via sequence comparison

robust estimation of expression of the orthologous transcript is

made possible.

Gene Ranking Analysis using Artificial Neural Networks
Two data sets for the compound EMD were used for ANNs

analysis. One consisted of 18 samples (CEL files) of real rat gene

expression data and the other 18 samples (CEL files) of virtual

human gene expression data. All samples for both data sets were

treated identical prior to the generation of CEL files. RMA

expression signals for real rat were computed with Affymetrix Rat

Genome 230 2.0 library file whilst RMA expression signals for

‘virtual’ human were computed with the rat/human cross-species

library file.

Prior to ANNs analysis the data was split into two classifiers, 0

for control and 1 for treated sample. The data was further

randomly divided into three subsets; 60% for training, 20% for

validation (to assess model performance during the training

process) and 20% for testing (to independently test the model for

data completely blind to the model). Learning proceeds using the

training data and is stopped when the error of the network fails to

increase beyond a predetermined number of cycles. Once this is

complete the model is then validated on the remaining 20% of the

data set aside for independent validation. This process is known as

random sample cross-validation which enables the generation of

confidence intervals for the prediction of samples.

Detailed examination of the ranked model performance based

on the predictive error identified 100 most predictive transcripts

for each data set. Hierarchical clustering of each of these 100 sets

(real rat and ‘virtual’ human) was performed to identify differences

and similarities in the expression profiles (see Fig. 3).

In order to assess any effect of the cross-species technology

inherent in the ‘virtual’ human data, it was useful to investigate

any technical influence that the virtual human library file may be

exerting on the data. Therefore hierarchical clustering of samples

was performed (see Fig. 4).

Figure 4 suggests that both sets of samples (CEL files for rat and

converted CEL files for ‘virtual’ human) were treated identically.

In fact the same rat CEL files were made compatible with the

cross-species ‘virtual’ human library file in order to generate the

‘virtual’ human RMA condensed hybridisation signals of gene

expression. Figure 4 also confirms that the differences in

expression profiles observed in Fig. 3 are true biological differences

and therefore not a consequence of technical variability imposed

by the cross-species technology.

Analysis of Marker Interactions using Artificial Neural
Networks

ANNs was employed to identify specific markers for EMD

which may be responsible for the classification of certain outcomes

and in identifying the influence of interacting factors between

these markers. Another advantage of ANNs is that they do not rely

on any pre-determined relationship between transcripts, meaning,

each individual transcript is not initially assumed to be interacting

in a biological manner with any other [31]. A pathway distiller tool

[22] developed by ANNs was employed to discern the relationship

Figure 1. Comparison of PPARa gene expression profile
between real rat and virtual human. Gene expression profile of
PPARa gene (1387278_at) activity on y-axis for ‘virtual’ human and real
rat in 18 samples (x-axis). The RMA condensed expression estimates
were computed with ‘virtual’ human (Rat/Human cross-species library
file) and real rat (Affymetrix Rat 230.2 array) library files.
doi:10.1371/journal.pone.0096853.g001
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Figure 2. Graphical representation of PPARa probe intensity response. Probe intensity profiles for real rat (A) and virtual human (B) arrays.
Informative probes from Affymetrix Rat230.2 array were identified and selected to construct the ‘virtual’ human cross-species library file after
comparative genome sequence analysis. The probe intensity profiles demonstrate that sensitivity of the ‘virtual’ array was significantly improved over
the sensitivity of the reference Affymetrix rat230.2 array. The ‘virtual’ human cross-species array consists of human ortholougs of Affymetrix rat230.2
probes.
doi:10.1371/journal.pone.0096853.g002

Figure 3. Gene cluster analysis. Hierarchical clustering of real rat (A) and virtual human (B) 100 top ranked transcripts selected after ANNs
analysis.
doi:10.1371/journal.pone.0096853.g003
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between the 100 top ranked markers for EMD 392949 in both

data sets (Table 1). The diagram in Figure 5 depicts the

relationships of 10 most negative and 10 most positive interactions

between the markers.

Figure 5 demonstrates that different sets of markers can be

identified for EMD in real rat and ‘virtual’ human. Importantly

this demonstrates the feasibility of identifying bridge effect markers

for cross-species extrapolation using cross-species technology. In

fact one of the markers, acyl-CoA synthetase (D90109, Fig. 3B),

identified with ‘virtual’ human data, is a marker enzyme for

PPARa activity [32]. D90109 is also ranked (19) very high in the

list of 100 top predictors for ‘virtual’ human but was not selected

by ANNs analysis for real rat.

Analysis of Real and Virtual Human Data
Table 2 depicts fold change data for PPARa pathway genes of

real and virtual human in comparison with real rat. There are

significant differences in fold changes between virtual human and

real human. The marker genes, acyl CoA oxidase (Acox), carnitine

palmitoyltransferase I (Cpt1), and hydroxyacyl-CoA dehydroge-

nase (Hadha) are all down regulated in real human compared to

virtual human. These genes are involved in hepatic fatty acid

oxidation. The data suggests that elevated levels of expression was

due to high levels of PPARa trascripts induced by the

EMD392949 agonist.

PPARa is predominatly expressed in tissue capable of fatty acid

oxidation such as liver, heart, muscle and brown adipose tissue

(Dongiovanni and Valenti, 2013). The most well studied

peroxisomal marker enzyme, ACOX, had a mean fold change

of 21.21 for real human and 1.34 for virtual human at 100 mM of

compound (Fig. 6). The other peroxisomal enzyme, EHHADH,

was significantly upregulated (33.62 at 100 mM) in virtual human

compared to a mean of 21.09 fold in real human. The most

dramatic fold difference was FABP3 with 45.42 fold at 100 mM for

virtual human compared to 21.89 fold for real human at 100 mM.

PPARa expression stimulates the cellular uptake of fatty acids by

increasing the expression of fatty acid binding proteins (FABP) and

translocase (Slc25a20).

Given the high homology (see Table 2) of PPARa regulated

genes between human and rat the significant fold change

differences between virtual human and real human is surprising.

For example, all eleven probes for Ehhadh and Acsl1 (see Table 2)

of the Affymetrix Rat GeneChip microarray were selected as

orthologs for the human orthologous transcripts (virtual human).

However, there were dramatic fold change differences between

virtual human and real human for the same transcripts. Each Rat

GeneChip probe is 25 base pairs, selected within 600 base pairs at

the 39 end of the target sequence [23]. It is therefore conceivable

that homology to human is restricted to less than 600 base pairs of

the human ortholog. However, this does not fully explain the

dramatic fold change differences between virtual human and real

human. The weak induction of PPARa regulated genes could be

due to the limiting effect of human hepatocytes in culture [9].

Redundant Probe Sets
In order to deal with splice variance, Affymetrix designed probe

sets that can detect several variances of transcripts from a gene

leading to a high level of probe set redundancy. For example, there

are nine probe sets (1558631_at, 1560981_a_at, 206870_at,

210771_at, 223437_at, 223438_s_at, 226978_at, 237142_at,

244689_at) detecting transcripts of PPARa on the Affymetrix

human (U133 Plus 2.0) GeneChip array.

There is no standard way to deal with data from redundant

probe sets. Some analysis use the average signal of all probe sets

representing the same gene while others (MetaCore) focus on the

probe set showing the most differential expression, regardless of

the behaviour of other probe sets representing the same gene.

Redundant probe sets therefore create bias in function category-

based analysis such as pathway and gene enrichment analysis (see

below). For most analyses, a one probe set-to-one target

relationship will be highly desirable.

This cross-species microarray methodology handles probe set

redundancy more effectively in a one-to-one relationship. For

example, the virtual human data uses one probe set (1387278_at)

to interrogate the PPARa transcript. To achieve this we select

orthologous probes by comparing GeneChip probes to cDNA

Figure 4. Sample cluster analysis. Hierarchical clustering of real rat (A) and virtual human (B) samples (CEL files) using the 100 top ranked
transcripts selected after ANNs analysis.
doi:10.1371/journal.pone.0096853.g004
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Table 1. Most predictive virtual human transcripts of EMD activity identified by ANNs analysis.

Probe Set ID Gene Symbol Gene Title

1367660_at Fabp3 fatty acid binding protein 3, muscle and heart

1367718_at Chkb choline kinase beta

1367742_at Cpt1b carnitine palmitoyltransferase 1b, muscle

1367915_at Dgat1 diacylglycerol O-acyltransferase 1

1368560_at Kcnj5 potassium inwardly-rectifying channel, subfamily J, member 5

1368915_at Kmo kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)

1369665_a_at Il18 interleukin 18

1370066_at Keap1 Kelch-like ECH-associated protein 1

1370406_a_at Cd55 Cd55 molecule

1370827_at Cyb5r4 cytochrome b5 reductase 4

1370937_a_at Itga7 integrin, alpha 7

1370939_at Acsl1 acyl-CoA synthetase long-chain family member 1

1371349_at Col6a1 collagen, type VI, alpha 1

1371375_at Dstn///Dstnl1 destrin///destrin-like 1

1371457_at --- ---

1371492_at Apobec2 apolipoprotein B mRNA editing enzyme, catalytic

1371695_at Tpr translocated promoter region, nuclear basket protein

1371938_at Caprin1 cell cycle associated protein 1

1372091_at Mid1ip1 MID1 interacting protein 1

1372171_at Phc1 polyhomeotic homolog 1 (Drosophila)

1373010_at Krt12 keratin 12

1373270_at Wipi1 WD repeat domain, phosphoinositide interacting 1

1373469_at Ptplad1 protein tyrosine phosphatase-like A domain containing 1

1373648_at LOC681849 similar to Protein C6orf142 homolog

1374082_at Ndufaf7 NADH dehydrogenase (ubiquinone) complex I

1374342_at Ly6g6c lymphocyte antigen 6 complex, locus G6C

1374383_at --- ---

1374416_at Coa4 cytochrome c oxidase assembly factor 4

1374471_at LOC498972 similar to copine II

1374487_at Fam96a family with sequence similarity 96, member A

1374566_at --- ---

1375239_at --- ---

1375307_at Cbx6 chromobox homolog 6

1375341_at Tmem189 transmembrane protein 189

1375697_at Mlec malectin

1376576_at Dusp11 dual specificity phosphatase 11 phosphatase-like

1376663_at Dcaf15 DDB1 and CUL4 associated factor 15

1376801_at RGD1564450 RGD1564450

1377541_at --- ---

1378219_at Sgtb small glutamine-rich tetratricopeptide repeat (TPR)

1378614_at --- ---

1378674_at En2 engrailed homeobox 2

1379178_at --- ---

1379210_at --- ---

1379255_at Atp6ap2 ATPase, H+ transporting, lysosomal accessory protein 2

1379970_at Epha4 Eph receptor A4

1380079_at Samd9l sterile alpha motif domain containing 9-like

1380351_at --- ---

1382786_at --- ---

1382885_at Ebf4 early B-cell factor 4
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Table 1. Cont.

Probe Set ID Gene Symbol Gene Title

1383068_at Dtymk deoxythymidylate kinase (thymidylate kinase)

1383928_a_at LOC688310 similar to CG5500-PA

1384042_at --- ---

1384360_at Casz1 castor zinc finger 1

1384780_at Cpne4 copine IV

1385262_at --- ---

1385534_at Ngfrap1 nerve growth factor receptor (TNFRSF16) associated protein 1

1386852_x_at LOC100360645 ubiquitin B-like ubiquitin B-like ubiquitin-40S ribosomal prot

1386988_at Deaf1 DEAF1 transcription factor

1387015_at LOC100909840 profilin-2-like///profilin 2

1387358_at Arl1 ADP-ribosylation factor-like 1

1387561_at Vipr1 vasoactive intestinal peptide receptor 1

1387644_at Btc betacellulin

1387812_at Pcsk6 proprotein convertase subtilisin/kexin type 6

1387934_at Bcan brevican///brevican core protein-like

1388564_at Kansl2 KAT8 regulatory NSL complex subunit 2

1388603_a_at Isca1 iron-sulfur cluster assembly 1 homolog (S. cerevisiae)

1388629_at Impdh2 IMP (inosine 59-monophosphate) dehydrogenase 2

1389199_at RGD1309079 similar to Ab2-095

1389395_at Sepn1 selenoprotein N, 1

1389905_at --- ---

1390230_at Mip major intrinsic protein of lens fiber

1390270_at --- ---

1390339_at --- ---

1390413_at RGD1310371 similar to RIKEN cDNA 1700026D08

1390437_at Sema5a sema domain, seven thrombospondin repeats

1390902_at --- ---

1390939_at --- ---

1390942_at Peli2 pellino E3 ubiquitin protein ligase family member 2

1391314_at Kcnq5 potassium voltage-gated channel, KQT-like subfamily

1391339_at --- ---

1391363_at --- ---

1391378_at --- ---

1391448_at Crim1 cysteine rich transmembrane BMP regulator 1 (chordin like)

1393196_at Klhl23 kelch-like family member 23

1393280_at Ly86 lymphocyte antigen 86

1393492_at --- ---

1394156_at Igsf3 immunoglobulin superfamily, member 3

1394270_at Mks1 Meckel syndrome, type 1

1394338_x_at Ptk2 protein tyrosine kinase 2

1394416_at Prickle2 prickle homolog 2 (Drosophila)

1394496_at --- ---

1395323_x_at --- ---

1395995_at --- ---

1397372_at LOC100910520 MOB kinase activator 1A-like///similar to Mob4B protein

1398449_at --- ---

1398889_at Polr2m polymerase (RNA) II (DNA directed) polypeptide M

1398897_at LOC100912618 ubiquitin-conjugating enzyme E2 variant 1-like

1398946_at Mrps16 mitochondrial ribosomal protein S16

1399165_a_at Ccdc97 coiled-coil domain containing 97

doi:10.1371/journal.pone.0096853.t001
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database sequences. This excludes probes that match to non-

transcribed regions of the genome.

Ideally, a gene specific probe set should only contain probes

whose sequence will be present on the common sequences of all

spliced products from the same gene. This means pooling all

probes targeting the same gene into one gene specific probe set.

For some genes more than eleven probes per probe set will be

required to create a gene specific probe set. We believe the gene-

based probe set definition is essential for evaluating the overall

transcription activity of a gene. Potential alternative splicing events

can conceivably be explored by these gene-base probe sets.

Metacore Pathway Enrichment Analysis
An enrichment analysis will determine which pathways and

biological functions are represented in both real and virtual

human data. The enrichment analysis takes advantage of novel

GeneGo ontoglogies and other publicly available ontologies in

MetaCore. Table 3 represents ten enriched pathways in real

human and virtual human ranked according to their p-values.

Pathway enrichment analysis provides the opportunity to func-

tionally interpret gene expression changes between virtual human

and real human.

Figure 5. Interactions of putative marker genes. Interactions between 20 putative markers of real rat (A) and virtual human (B) of the 100 top
ranked transcripts after ANNs analysis. Red arrows depict negative interaction whilst green arrows depict positive interactions. The thickness of the
arrow indicates the magnitude of the interaction.
doi:10.1371/journal.pone.0096853.g005

Table 2. Fold change data for PPAR alpha pathway genes for real rat, virtual human and real human.

Gene Symbol Gene Name Real Rat1 Virtual Human1,* Real Human1

Fabp3 fatty acid binding protein 3, muscle and heart 44.66 45.42 (9) 21.89

Cd36 CD36 molecule (thrombospondin receptor) 5.95 5.92 (10) 4.59

Cpt1b carnitine palmitoyltransferase 1b, muscle 33.63 33.93 (9) 1.15

Cpt1a carnitine palmitoyltransferase 1a, liver 5.12 5.13 (10) 1.60

Acsl3 acyl-CoA synthetase long-chain family member 3 7.00 10.35 (6) 1.12

Ehhadh enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase 34.08 33.62 (11) 21.09

Ucp2 uncoupling protein 2 (mitochondrial, proton carrier) 8.53 8.66 (8) 21.18

Fabp1 fatty acid binding protein 1, liver 10.77 10.77 (10) 2.00

Acox3 acyl-CoA oxidase 3, pristanoyl 1.35 1.34 (8) 21.21

Hadha hydroxyacyl-CoA dehydrogenase 3.17 3.15 (10) 1.48

Fabp5 fatty acid binding protein 5, epidermal 1.27 1.28 (9) 21.06

Acsl1 acyl-CoA synthetase long-chain family member 1 7.57 7.58 (11) 1.30

Cpt2 carnitine palmitoyltransferase 2 3.60 3.5 (9) 1.48

Acsl1 acyl-CoA synthetase long-chain family member 1 14.55 14.31 (9) 1.55

Slc25a20 solute carrier family 25 (carnitine/acylcarnitine translocase) 4.14 4.09 (8) 0.66

*Data in parenthesis indicate number of orthologous probes selected for the virtual human ortholog fold change.
1Fold change values were calculated at 100 mM of compound.
doi:10.1371/journal.pone.0096853.t002
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Among the pathways that were enriched in both real human

and virtual human, pathways indicative of hepatotocity [7] were

strongly represented in both. These include, cytoskeletal remod-

elling, EMT, stellate cell activation and liver fibrosis. There is

some divergence in the type of pathways enriched between real

human and virtual human. The pathways specific to virtual

human were representative of tumor formation and toxicity. For

example, epidermal growth factor (EGFR) signalling, enriched in

virtual human, has been implicated in the development of many

human cancers and cardiotoxicity [33].

The nuclear factor E2-related factor 2 (Nrf2) is a transcription

factor that responds to oxidative stress. The NRF2 pathway has

been identified as having regulatory functions in mitochondrial

biogenesis, adipocyte differentiation and liver metabolism [34].

The NRF2 pathway was significantly enriched in virtual human

but not in real human. Activation of Nrf2 increases energy

metabolism and conversely suppresses lipid synthesis. Also, Nrf2

activation may act together with PPARa activation as hepatopro-

tective response to toxic injury in the liver [35].

Although many of the enriched pathways were common to real

human and virtual human there is divergence of significant

pathways. Those divergent or less enriched in real human may be

due to the variability caused by the hepatocyte culture. It is

conceivable that the orthologous probe selection strategy em-

ployed for virtual human has reduced some of the genetic

variability.

Conclusions

A single cause for the weak response of PPARa agonists in non

rodents is unlikely. For example, although humans have a lower

constitutive expression of PPARa [36] than in rodents, it was

observed (Fig. 1 & Fig. 2) in this manuscript that, the expression of

PPARa in ‘virtual’ human is twice that of real rat. The homology

between the DNA binding domain and the ligand binding domain

of rat and human PPARa is high [37]. This manuscript found that

there is only a 25 base pair difference between rat and human

PPARa at the 39 end. However, human hepatocytes display weak

induction of PPARa marker enzyme activity [9,10,38].

Significant fold change differences were observed for PPARa
regulated genes between real human and virtual human (see

Table 2). It appears that there is high sequence conservation of

PPARa regulated genes between rat and human, however, gene

expression changes do not correspond to the observed sequence

conservation. This may be due to the limited expression of PPARa
in primary human hepatocyte culture. Primary hepatocyte culture

condition can sometimes lead to loss of function of liver specific

genes [16–18]. Also, primary human hepatocyte cultures are

limited by inter-individual variability and short term in vitro life

span which does not allow for long term study of PPAR agonists in

primary human hepatocyte cultures [9].

Virtual human (orthologs from rat) do not suffer any cell culture

effects, contrary to human hepatocytes in culture. This is because

gene expression levels (expression estimates) for virtual human

were derived from human orthologs of rat hepatocyte cell culture.

The cross-species methodology of virtual human therefore

attempts to mimic a wild type hepatocyte environment such that

gene expression estimates approach wild type estimates.

Further work will be required in order to ascertain how close

virtual human expression estimates derived from rat hepatocyte

culture approach wild type levels in human. This is beyond the

scope of the current work since human hepatocytes (real human)

in culture is limited in the PPARa response. The aim of the

current manuscript is to demonstrate the utility of the cross-species

methodology of virtual human, in that, PPARa activity is

significantly different between virtual human and real human

hepatocytes.

An efficient and reproducible in vitro system is required for the

investigation of the species specificity of the PPARa response.

Human hepatocytes have been shown [9,10,12,20,38] and also in

this manuscript, to limit the PPARa response. The work by

Mogilengo et al. [13] provides the strongest evidence yet of

conserved regulation of PPAR alpha target genes across species via

a PPRE-dependant mechanism. Using human hepatoma cells and

mouse liver, Mogilengo et al. [13] demonstrated that the

regulation of the PPAR alpha target gene, C3 of the complement

system, is conserved between human and mouse. This further

suggests that, human hepatocyte culture appears to limit the

PPAR alpha response. Our manuscript provides further evidence,

using a novel cross-species methodology, that human hepatocyte

Figure 6. GeneGo MetaCore pathway analysis. MetaCore PPARa
pathway mapping of fold change data for real human (A) and virtual
human (B). Significant reduction in gene activity of peroxisomal
enzymes can be observed for real human (A). Significant fold difference
of peroxisomal genes between real and virtual human can be observed,
particularly for ACOX3, see text for details. Thermometer-like icons
represent samples where red depicts upregulation and blue depicts
down regulation.
doi:10.1371/journal.pone.0096853.g006
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in culture may not be suitable for the investigation of species

differences in the PPAR alpha response.

Our cross-species gene expression methodology provides a way

of identifying human orthologs of the PPARa response and others,

and utilising them in an in vitro system, to elucidate the species

specificity that confounds the extrapolation of cross-species

preclinical data. Also, the capability to elucidate the molecular

mechanism underlying species-specificity of drug-metabolizing

enzymes and the utility of identifying bridge effect markers with a

cross-species strategy, to assist cross-species extrapolation, was

demonstrated.

Furthermore, this cross-species strategy, where human ortholo-

gous probes of model species are used for gene expression

investigation, in an attempt to mimick the in vivo environment, as

demonstrated, provides a suitable model to investigate the efficacy

and toxicity of drug candidates on organ systems.

Supporting Information

Data S1 Raw data of all rat and virtual human probe set
information after ANNs analysis. This also includes data on

error values used to determine ranking order of transcripts.

Column A depicts ranking order of rat transcripts and column T

depicts ranking order for virtual human transcripts.
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