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Abstract 

The relationship between the edge velocity, vE, and the dynamic contact angle, #, for the 

spreading of a small spherical cap type droplet on chemically and geometrically 

heterogeneous surfaces is examined using Frenkel's method. In this method, the change in 

surface free energy is equated to the viscous dissipation caused by Poiseuille flow inside the 

spherical cap. To describe dynamic wetting of a surface that is heterogeneous due to small 

variations in the local surface geometry of the solid, we introduce a simple Wenzel type 

correction for the ratio of the actual to geometric surface areas, r. The rate of change of 

surface free energy is then (2izr0)yLy{Q,osd-rr)VE where r0 is the drop base radius, I={y^v-

"^L)I%V and the %'s are the interfacial tensions. For partial wetting, I=cos&e where 6e is the 

equilibrium contact angle and when the viscous dissipation vanishes, Wenzel's relationship 

linking the equilibrium contact angle on a rough surface to that on a smooth surface is 

obtained. Using dimensional arguments, we suggest that for a surface with weak geometric 

heterogeneity, the viscous dissipation is of the form kijrovE
2Aan(0/2) where 1] is the viscosity 

and & is a numerical factor. Balancing the rate of change of the surface free energy with the 

viscous dissipation gives the edge speed proportional to tan(#/2)(rcos#e-cos^), which for 

small angles and smooth surfaces reduces to the Tanner-de Gennes Law vE°c ttjf'-de
2). The 

influence of incomplete penetration of the fluid into the surface structure is also examined. 

An analogous relationship based on a smooth, but chemically heterogeneous surface is 

derived. This is shown to give Cassie's equation for the equilibrium contact angle. For 

complete wetting, Frenkel's method predicts Tanner's law 0~f3/l0 when the surface is smooth 

and a modified Tanner's law tending towards 0~f34 when the surface has a weak geometric 

heterogeneity. 
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1. Introduction 

Surface roughness is known to alter the wetting of surfaces [1]. The measured macroscopic 

equilibrium contact angle depends on both the chemical nature of the surface and the local 

surface geometry [2]. Experimentally the influence of local geometry (topography) on 

wetting has been demonstrated with a range of materials including, rough waxy surfaces [3], 

glass-bead based surfaces [4], sol-gel derived oxide surfaces [5] and patterned silica surfaces 

[6]. Much of this work was motivated by the spectacular demonstration in 1996 of a super-

hydrophobic (super-non-wetting) surface with an equilibrium contact angle approaching 

180°. The achievement of many super-hydrophobic surfaces is due to the combination of 

local geometry to provide a large geometric area for a relatively small projected area and a 

chemical treatment of the surface, often using self-assembled monolayers, to provide 

intrinsically non-wetting properties. However, local geometry used in this manner also 

predicts two other less well-studied effects: enhanced film formation (super-wetting) and 

modification of dynamic wetting. Whilst work is in progress on modifying equilibrium 

wetting by producing chemically patterned surfaces [7,8] and on studying wetting dynamics 

on such surfaces [9], there appears to be relatively little consideration of the dynamic wetting 

of rough or geometrically patterned surfaces. 

A significant achievement in the theoretical understanding of dynamic wetting for the 

complete spreading case, was the derivation, by Tanner [10], from the equations for viscous 

flow in two dimensions of a simple law relating the edge speed, vE, to the cube of the 

dynamic contact angle. De Gennes [11] later considered the case of partial wetting and 

derived a modified Tanner's law, valid for small angles, that gives v^O^^-O^) where 8e is 

the equilibrium contact angle. One of the simplest experiments is to follow the evolution in 

time of the contact angle as a small droplet of liquid spreads across a surface. When the 

droplet size is significantly less than the capillary length and the surface is smooth the droplet 

shape takes the form of a spherical cap. For this shape, Tanner's law can be explicitly solved 

in the small angle limit to give &^(t+C)'3/l0 where C is a constant. This time dependence of 

the dynamic contact angle is in excellent agreement with experimental data for all, but the 

longest times [12]. Tanner also demonstrated that his law was accurate up to 90° and could be 

extended to the full angular range by replacing the edge angle by a suitable empirical 

function. A good agreement with experimental data was obtained for a range of angles up to 

165° [13]. In all these cases, the surfaces considered were smooth and chemically 

homogeneous and the emphasis was either on complete wetting with #e=0° or partial wetting, 

but with a small value of the equilibrium contact angle. 
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In 1945, Frenkel [14] outlined a method for obtaining the equilibrium contact angle of a 

spherical cap type droplet based on the change in surface free energy as the drop evolves. 

This method was later extended to examine the coalescence of spherical drops by including a 

viscous dissipation term modelled on a rod under uniaxial compression [15]. McHale et al 

[16] applied the same ideas to the dynamic spreading of a small spherical cap type droplet on 

a smooth and chemically homogeneous surface by using a viscous dissipation based on 

Poiseuille flow within a cone inscribed within the droplet. This approach enabled an edge 

velocity-contact angle relationship to be obtained for partial wetting and for a wide range of 

dynamic contact angle. It was shown that the angular function obtained could accurately 

describe the experimental data and so replace the empirical function used by Tanner. In the 

small angle limit, the formula reduces to the Tanner - de Gennes law for the edge velocity. 

In this article, we first review simple models describing equilibrium contact angles on 

heterogeneous surfaces, but with an emphasis on changes in surface free energy. Frenkel's 

method is then developed and applied to the case of heterogeneous surfaces. Both surfaces 

with chemical heterogeneity and surfaces which are chemically homogeneous, but which are 

rough or have local geometric (topographic) patterns are considered. Modifications of the 

equilibrium equations of Cassie and Wenzel to the dynamic case are considered. Equations 

analogous to the Tanner-de Gennes law are derived using both a simple dimensional 

argument for the viscous dissipation and a model of Poiseiulle flow within a cone inscribed 

within the spherical cap shaped droplet. The possible influence of incomplete liquid 

penetration into surface features is also considered. For the case of chemically homogeneous 

surfaces that have a characteristic roughness, possibly due to geometric patterns, the small 

angle limit for the dynamic contact angle is derived. For a smooth surface showing complete 

wetting and a dynamic contact angle #*=(M-Ci)"3/1°, it is suggested that the rough surface may 

have a modified power law tending towards #*=(M-C2)"3 4. It is also argued that the dynamic 

contact angle may enable surfaces that are super-wetting, in the sense of having a vanishing 

equilibrium contact angle due to surface roughness, but which differ in their equilibrium 

contact angles on the smooth surfaces to be distinguished from each other. 

2. Review of Equilibrium Contact Angles 

In this section, standard approaches to equilibrium wetting are considered with an emphasis 

on changes in the surface free energy. This brief review underpins the application in section 3 

of Frenkel's method to dynamic wetting on heterogeneous surfaces. 
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2.1 Smooth heterogeneous surfaces 

On smooth and chemically homogeneous planar surfaces, two approaches to the equilibrium 

contact angle, #e, exist, i) force balance, and ii) minimum surface free energy. In the force 

view (Fig. la), the interfacial tensions, yxj, are regarded as forces per unit length and a 

horizontal force balance at the contact line is required: ysi+yLvCOS&e= ysv- In the energy view, 

the interfacial tensions, yxj, are regarded as energies per unit area, and the surface free energy 

change, AF, due to a displacement, AA, of the contact line is considered (Fig. lb). This 

energy change of, AF=(^L-^V) AA+ji,vCos0eAA must vanish when the contact angle is at its 

equilibrium value. Either approach gives rise to Young's equation, 

cos8e=(ysv-ySL)/yLV (1) 

On a heterogeneous surface problems can arise with the force view because the surface may 

be continuous, but non-differentiable so preventing a simple resolving of forces. In contrast, 

the energy view provides a simple approach to surfaces that are patterned or rough, 

irrespective of whether the patterning is chemical or geometric. 

2.2 Chemically heterogeneous surfaces 

Consider a surface which is smooth, but which is a composite of microscopic patches with 

two types of chemical properties characterised by different solid-liquid and solid-vapor 

interfacial tensions, y^ and y2. The overall surface can be characterised by a factor, 

J=si/(si+s2), where Si is the typical area of a patch of chemical properties of type i . Displacing 

the liquid-vapor interface by a small area on the solid surface of AA, as shown in fig. 2a, 

gives a surface free energy change of, 

AF = (ylL-ylv)fAA + (y2
SL-y2

sv)(l-f)AA + yLVcos0AA (2) 

assuming changes in contact angle are second order. Requiring this change in surface free 

energy to vanish at equilibrium gives Cassie's equation, 

cos 6e=f cos 6X + (1 - / ) cos 62 (3) 

where # are the equilibrium contact angles given by eq. (1) for each of the two types of 

surface forming the composite surface. 
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2.3 Geometrically heterogeneous surfaces 

The geometric case, involving a surface that is chemically homogeneous, but which has local 

roughness or geometric structure can also be considered within the surface free energy 

approach. Consider characterising such a surface by a roughness factor, r=AATme/AA, where 

AA is the horizontal projection of the surface microscopic area. In the sense used in this work, 

the factor r does not only represent surface roughness, but may alternatively represent the 

enhanced microscopic surface area resulting from a deliberate patterning of the surface 

[6,17]. In this latter case, the shape of the pattern and the aspect ratio in the fabrication of the 

surface can be directly related to the "roughness" factor r. Considering a small displacement, 

AA, of the liquid-vapor interface, as shown in fig. 2b, gives a surface free energy change of, 

^ F = (7SL- 7sv)r^A + yLV cos 6AA (4) 

The geometric influence arises only in the solid-liquid and solid-vapor interfacial areas, 

provided the contact angle change is second order. Requiring the change in surface free 

energy to vanish to first order results in Wenzel's equation, 

cos6e = r(rsv -YSL)I YLV = r cos0s
e (5) 

where 6e and 0/ are the contact angles on the rough and smooth surfaces, respectively. The 

derivations of Cassie's equation and Wenzel's equation are simple within the framework of 

minimising surface free energy changes. However, they involve significant assumptions 

including, i) the change in contact angle is second order, ii) the axial symmetry of the drop is 

maintained, and iii) the displacement of the liquid-vapor interface proceeds with the solid 

surface maintaining intimate contact with the liquid at all locations. Experimentally, some of 

these assumptions are known to not always hold. For example, drops on patterned surfaces 

when viewed from above may not show a circular shape, but may take on the symmetry of 

the shapes used to create the pattern. Hexagonal patterns of surface protrusions can give rise 

to pinning and coherent motion of the contact line, such that the equilibrium drop shape is 

hexagonal when viewed from above [8]. 

Wenzel's equation is of particular interest because it predicts that equilibrium wetting 

behaviour induced by surface chemistry can be emphasised by geometry. This is illustrated 

by the solid line in fig. 3, which illustrates the effect of eq. (5) for a roughness factor r=5. 
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Three regions can be observed, i) super-hydrophobicity ("planar roll-up"), ii) super-

hydrophilicity ("film formation"), and iii) the region in-between representing contact angle 

"amplification". Wenzel's equation predicts that for #e
s>90° the effect of roughness is to 

increase the contact angle towards 180° and for #e
s<90° the effect is to decrease it towards 0°. 

Experimentally, it is found that the threshold of 90° for the smooth surface contact angle that 

determines which direction surface roughness modifies the contact angle can be offset to a 

lower value. Quere et al [6] (see also Adamson [2]) explained the offset by considering a 

breakdown in the assumption that intimate contact is maintained by the liquid with the solid. 

Consider incomplete liquid penetration into a rough surface so that vapor exists trapped in 

small pockets between the solid and the liquid, as shown in fig. 4. To model this system two 

parameters,/and g are introduced with/representing the fraction of the rough solid surface 

covered by the liquid and g the projected area of trapped vapor not in contact with the liquid. 

It is to be expected that these parameters depend on the contact angle and that they are 

interrelated such that wheny=l then g=0. In the approach of Quere et al, f is approximated to 

a constant independent of the contact angle and g is taken as /1 . The displacement of the 

liquid-vapor interface, shown in fig. 4, gives a surface free energy change of, 

* F = (7SL- 7sv )frAA + yLVgAA + yLV cos 0AA (6) 

and the modified Wenzel's equation is then, 

cos6e =rf cose*-g (7) 

In a sense, the model considered by Quere et al is one of a composite surface involving both 

geometric structure through the r factor and chemical structure through the presence of both a 

solid and trapped vapor at the interface with the solid. The effect of trapped vapor in the 

manner suggested by eq. (7) is illustrated in fig. 3 by the dotted line using parameters J=0.1 

and g=0.3. Clearly the threshold value of the smooth surface contact angle that determines 

whether surface roughness generates a higher or lower contact angle can be reduced below 

90° by the effect of vapor trapping. In addition, vapor trapping alters the slope of the curve in 

the contact angle amplification region and the values of 0e
s for which saturation occurs. 

Whilst Wenzel's equation has been known for many years, it is only relatively recently that it 

has been used to design surfaces that amplify wetting behaviour [3]. Most of the recent work 
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focuses on the creation of super-hydrophobic or super non-wetting surfaces and the relevance 

of Wenzel's equation to both the opposite super-hydrophilic/wetting case and to dynamic 

wetting has been relatively neglected. Indeed, we expect that dynamic wetting, the rate at 

which the contact angle approaches its equilibrium value, will be relevant to both super-non-

wetting surfaces and super-wetting surfaces. In particular, it is possible to envisage that 

dynamics could allow two surfaces with #e=0°, but which have different values of #e
s, to be 

distinguished. 

3. Frenkel's Method for Dynamic Wetting on Heterogeneous Surfaces 

Popular methods of modelling dynamic wetting on homogeneous planar surfaces include, 

hydrodynamic theory [11,12] and molecular-kinetic theory [18,19]. In Frenkel's method [14-

16] the rate of surface free energy change of a given shape, in this case a constant volume 

spherical cap, are deduced and these are equated to a rate of viscous dissipation obtained 

from a hydrodynamic approach. The advantages of the method are, i) on smooth chemically 

homogeneous surfaces the correct limit for small &e is obtained, ii) an edge speed-wide angle 

relation can be derived, and iii) the partial wetting (#e ^0°) case can be modelled. 

3.1 Surface free energy changes 

The analogous case to Wenzel's equation of a rough surface having intimate contact between 

liquid and solid will be considered in detail and results for the composite case and the 

chemically heterogeneous case simply stated. Consider the spherical cap geometry shown in 

fig. 5. The spherical radius R, contact radius r0, cap height h0, and volume V, are related by 

the equations, 

' W r \1 / 3 

R RsinO ho=R(\-cos0) (8) 

where j3 is a function of the contact angle and is defined as, 

p = 2 -3cos# + cos3 6 = (1 -cos#)2(2 + cos#) (9) 

The total surface free energy F, is due to the three surfaces separating the liquid, vapor and 

solid, 

F =F0 + yLVALV + (ySL - ysv)ASL (10) 
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where F0 is a constant. From the spherical cap geometry, the liquid-vapor and the solid-liquid 

surface areas are, 

ASL=rnr? ALV =2;zft2(l-cos0) (11) 

where the factor of r is the geometric "roughness" factor defined as r=AATrue/AA, and AA is 

the horizontal projection of the surface microscopic area. 

Differentiating eq. (10), and performing some algebraic manipulation gives the rate of 

dissipation of surface free energy as, 

dF 
— = IXYLV (COS e ~ rI>ovE (12) 
at 

where / has been defined as, 

YLI 

and the edge speed is given by, 

I=7sv 7sL (13) 

-{3v/*y3 de/dt 
E (l-cos^)2 /3(2 + cos^)4/3 ^ ^ 

If the calculation is modified to allow for trapping of vapor using the two constant factors,/ 

and g, defined in section 2.3, eq. (12) is modified to, 

dF 
— = 2w0yLV [cos d - frl + g\E (15) 
dt 

Similar algebraic manipulations can be performed for the smooth, but chemically 

heterogeneous surface and the result is then, 

dF 
— = 2morLV\zos0-flx -(l-f)I2]vE (16) 
dt 



One immediate consequence of eq. (12) and eq. (16) is that i f the rate of change of surface 

free energy vanishes, Wenzel's and Cassie's equations are obtained and define the 

equilibrium contact angles. 

3.2 Form of dissipation 

In cylindrical co-ordinates, centred on the base of a spherical cap, the rate of dissipation of 

energy in the fluid is given by [16], 

dEd 

dt 
• r, \(j>vdV (17) 

liquid 

where rj is the viscosity and (JK is given in terms of the radial, vr, and axial, vz, velocity 

components by, 

^v=2 
v 3 r j 

+ 
f \2 
I v * 

r + 
V ' ) 

rao 
V dz j 

+ 
fdvr dv 

- + • 
dz dr 

(18) 

A detailed knowledge of the velocity field is needed to evaluate eq. (18) and so obtain a 

viscous dissipation from eq. (17). However, a simple estimate can be found by performing an 

analysis of the characteristic dimensions of the terms in eq. (18). Taking the fluid to be 

incompressible and using the continuity equation shows that there are three types of terms 

contributing to the dissipation of energy, 

2 2 

Wo 
h„ 

vlK 
vlhl 

(19) 

The first term, which is dominant, arises from the variation of the radial velocity with the 

spherical cap height. Thus, noting that the ratio of cap height to contact radius is given by 

tan(#/2), the viscous dissipation is anticipated to be of the form, 

dE d _ kjp2
Er0 

dt tan(<9/2) 
(20) 

where & is a constant. 
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Several routes exist to determining a more precise form for the viscous dissipation. The most 

popular is to consider Poiseuille flow within a wedge shaped edge of the droplet [11,12]. The 

velocity field is then, 

vr(z) = vE J z 
z 

J h(r) v h(r) 
(21) 

Another approach, considered by Strella [15] for the coalescence of spherical drops, was to 

consider a uniaxially compressed rod model for the energy dissipation. Denesuk et al [20] 

built on this idea by considering a uniaxially contracting cylinder of fluid. It is interesting to 

note that a similar idea has recently been used in the recent work of de Ruijters et al [21], 

who derived a viscous dissipation occurring from the velocity field in the core of the 

spreading drop from modelling the cap as a spreading cylindrical disk. They also included an 

additional term to represent dissipation due to frictional effects in the vicinity of the contact 

line. An extension of the idea of a uniaxially contracting cylinder of fluid suggested by 

Denesuk et al [20], was proposed by McHale et al [16] who suggested using a Poiseuille flow 

within a cone inscribed within the spherical cap (fig. 6). The rate of energy dissipation then 

evaluates to, 

dEd _ %7trjv2
Er0Jw 

dt 3 tan(0/2) 

where Jw is given by, 

Jw=£-\oge£-l (23) 

and arises from a truncated integral that regularises a singularity. The parameter e is a cut-off 

in the evaluation of the integral and can be physically interpreted as due to some finite height 

at which the macroscopic cap passes into a film [16]. The result (eq. (22)) from the cone 

model provides a definition for the constant factor, k, arising from the dimensional analysis. 

A significant difference between the wedge approximation and the cone approximation, is the 

occurrence of a tan(#/2) in the denominator of eq. (22) rather than a tan# The half-angle is 

significant in enabling the subsequent version of Tanner's law to be accurately fitted to the 

wide angle data from experiment. 
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3.3 Edge speed-contact angle relation for heterogeneous surfaces 

Balancing the dissipation for the cone, eq. (22), with the rate of change of the surface free 

energy (eq. (12), (15) or (16)) gives a relationship between the edge speed and the dynamic 

contact angle. For the case of a chemically heterogeneous surface the appropriate rate of 

energy change is given by eq. (16) and the resulting relationship is, 

VE 
V krl J 

tan(^/2)[/71 + (1 - f)I2 -costf] (24) 

For the composite geometric surface, eq (15) is used for the rate of energy change and this 

gives the relationship, 

VE 
V krl J 

tan(#/2)L/r/-<g--cos#] (25) 

The effect of a frictional term in the dissipation [21] could be incorporated into these 

equations in a straightforward manner and would lead to the tan(#/2) prefactor being replaced 

by a factor of the form [a+ tan(#/2)] where a would be a constant independent of the dynamic 

contact angle. 

A simple limiting case for the chemically homogeneous geometric surface can be obtained 

from eq. (25) using the small angle limit, 

vE = ^0(jrcos0:-g-cos0)~^d(fr-g-l) + (02-0f)/2) (26) 
krj krj 

This is the Tanner-de Gennes equation (fr=l and g=0) modified by the Wenzel roughness 

factor. 

3.4 Dynamic contact angle - complete wetting on a geometrically heterogeneous 

surface 

In experimental studies of spreading, the dynamic contact angle is often measured as function 

of time. For complete wetting where #e
s=0°, a simple power law, Tanner's law 0~f3/l(\ has 
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been well verified for oils on surfaces such as silicon [12], although some discrepancies have 

been noted particularly at long times [22]. Since we are interested in how the equivalent of 

Wenzel's ideas on surface roughness or geometric patterning of the surface modifies dynamic 

wetting, a simple power law for the complete wetting case may be of value. For a spherical 

cap the edge speed, vE, is related to the contact angle and volume, V, by eq. (14) and in the 

small angle approximation this gives, 

VE = ^ ( 2 ? ) 

For a smooth, high energy surface having #e
s=0°, eq. (26) and eq. (27) give, 

^oc-^[ 2 ( / r _ g _ l ) + 0 2 ] ( 2 g ) 
at 

When fr=l and g=0, or when the surface roughness can be ignored, Tanner's law is 

recovered, but when the surface is rough or geometric patterning dominates the dynamics a 

modified power law is obtained, 

A „ iOLzlzlL J _ (29) 
(t + cf4 t3'4 

where A and C are constants. The model therefore predicts that a power law with an exponent 

intermediate between -3/10 and -3/4 may be observed. 

3.5 Validity of the approach 

Frenkel's method is a simple approach based on surface free energy changes and viscous 

dissipation. It has the advantage of giving the accepted limits of an edge speed proportional 

to the cube of the dynamic contact angle and of a contact angle dependence of f3no for 

dynamics on smooth surfaces. The method, as applied within this work, provides an approach 

to the dynamic contact angle on chemically and geometrically heterogeneous surfaces which 

is consistent with Wenzel's and Cassie's equations for the equilibrium contact angle. 

However, the approach is limited in assuming a spherical cap droplet with its inherent axial 

symmetry which is unlikely to be the case when surfaces are strongly heterogeneous due to 

patterns that have an imposed symmetry [8]. Furthermore, the form of the viscous dissipation 
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has been assumed to be the same on the heterogeneous surface as on the smooth surface and 

it is far from clear whether this will be valid. It is therefore likely that the results of the 

Frenkel's method approach can at best represent an average effect and are likely to be limited 

to the case of a weak influence of heterogeneity. The method does not address the issue of 

contact line pinning. In addition, for the geometric heterogeneous case, i.e. due to surface 

topography, the approach does not include a rigorous relationship between the / and g 

parameters and the contact angle on the smooth surface. The influence of incomplete 

penetration of fluid into surface features may therefore be a problem. Despite these 

limitations, the method does suggest that combining surface geometry with surface chemical 

treatments can provide more than the super-non-wetting/hydrophobic surfaces that have been 

of recent experimental interest. The super-wetting/hydrophilic case, which Wenzel's equation 

predicts will enhance film formation, should also be of interest. Our work predicts that the 

dynamics of contact angles on such surfaces may be significantly different to the case of 

smooth, chemically homogeneous surfaces. Whether eq. (29) turns out to be an accurate 

description cannot be determined from existing data, but it should provide additional 

motivation for new experimental studies. 

4. Conclusions 

The relationship between heterogeneous surfaces and the dynamic contact angle has been 

considered. Frenkel's approach based on surface free energy changes and viscous dissipation 

has been applied to both chemically heterogeneous surfaces and rough/geometrically 

structured surfaces. It has been shown that this formulation contains both Cassie's and 

Wenzel's equations as limiting cases. Edge speed-contact angle relations have been derived 

for both types of heterogeneous surfaces thus giving a generalised Tanner-de Gennes law. 

This law describes both a wide range of dynamic contact angles and the complete and partial 

wetting cases. For a geometrically structured or rough surface the effect of vapor trapping has 

been considered. The time dependence of the dynamic contact angle for super-

wetting/hydrophilic surfaces has been examined and a simple power law derived. 
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Figure Captions 

Figure 1. Equilibrium contact angle on smooth, chemically homogeneous surfaces using, (a) 

force balance, and (b) minimum surface free energy. 

Figure 2. Equilibrium contact angle from minimum surface free energy for, (a) chemically 

heterogeneous surface, and (b) geometric/rough surface. 

Figure 3. Effect of Wenzel's equation for a "roughness" r=5 (solid line). The dotted line 

shows the model of vapor trapping with J=0.7 and g=03. (see comment on 

diagram about error in original paper). 

Figure 4. Minimum surface free energy from a liquid-vapor interface displacement when 

vapor trapping occurs. 

Figure 5. Spherical cap geometry for a spreading droplet. 

Figure 6. Viscous dissipation modelled by radial flow within a cone inscribed within the 

spherical cap. A cut-off occurs at a characteristic height z0 a distance of e from the 

edge of the droplet. 
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Figure 1 McHale and Newton, Frenkel's method and the dynamic 
wetting of heterogeneous planar surfaces. 
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Figure 2 McHale and Newton, Frenkel's method and the 
dynamic wetting of heterogeneous planar surfaces. 
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higure J McHale and Newton, Frenkel's method and the dynamic wetting of heterogeneous planar surfaces. 

This original published figure was in error due to a mistake in the spreadsheet calculation. 

This error does not alter the equations or conclusions of the paper. 
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This is the corrected figure 3 
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Figure 4 McHale and Newton, Frenkel's method and the 
dynamic wetting of heterogeneous planar surfaces. 
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Figure 5 McHale and Newton, Frenkel's method and the 
dynamic wetting of heterogeneous planar surfaces. 
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Figure 6 McHale and Newton, Frenkel's method and the 
dynamic wetting of heterogeneous planar surfaces. 
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