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Abstract 

Multiplexed immunoassays have been explored using the fluorescent and 

luminescent properties of fluorophores and nanoparticles. Epi-fluorescence 

microscopy, confocal laser scanning microscopy and programmable array 

microscopy were used to detect signals from mixtures of conventional organic 

fluorophores, quantum dots and silica nanoparticles doped with europium, 

samarium and terbium in single-welled multiplexed immunosorbent assays. Spectral 

unmixing was investigated using mixtures of fluorophores and cadmium selenide 

quantum dots. Mixtures of up to four dyes were separated quantitatively using least 

squares minimisation, with relative standard error ranging from 0.5 to 13 %. Silica 

nanoparticles doped with luminescent lanthanides were synthesised and used in a 

model immunoassay system for simultaneous, single-welled detection of human and 

mouse IgGs. The results indicated the lanthanides are well suited to multiplexed 

assays, mainly because of their atomic line emission bands. Analytes in a mixture 

could be quantified with < 5 % error. The multiplexed assay developed was applied 

to the detection of anti-dengue IgM and IgG in mouse sera, to differentiate primary 

and secondary dengue infection. The assay traced the kinetics of antibody 

production for both IgM and IgG with an IgM/IgG ratio of 1. The fluorescence-

based methods compared favourably with ELISA results (r2 ≥ 0.8), with results 

using conventional fluorophores showing the best correlation with ELISA (r2 > 

0.98). Differentiation of serotype specific IgGs was also explored but was 

complicated due to cross reactivity of the antibodies. A model to differentiate cross 

reactive dengue antigens was applied to the data through fitting parameters of the 

five parameter logistic equation to the intensity obtained for an assay. Results 

indicated the family of dengue antigens are too closely related to be distinguished by 
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the method. The model was however successful in differentiating a partially cross 

reactive system (p > 0.95). 
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1 Introduction 

1.1 Motivation and Outline of Thesis 

This project developed immunoassays where multiple serum biomarkers are 

simultaneously detected in a single well of an assay plate using fluorescence 

spectroscopy. Dengue fever, which has four distinct but cross reactive forms was 

the virus of choice, as several biomarkers are released in response to infection by 

the virus. There are several immunoassay formats for detecting the presence of anti-

dengue antibodies, 1-17 but these methods all require spatial separation of the 

antibodies. The serological ELISA method, though commonly used for detecting 

dengue antibodies, is not used to detect multiple analytes in a single welled assay. 

Current ELISA methods are further limited by problems common to the use of 

enzymes: contamination of the substrate solution and the need to read the 

microwell shortly after completion of the enzyme/substrate reaction. The use of 

fluorescence-linked immunoassays gives advantages over ELISAs such as increased 

sensitivity, a larger dynamic range and greater stability of reagents. Fluorescence 

methods may also be multiplexed, thereby using lower volumes of reagents and 

decreasing assay time.18 

The ability to spectroscopically detect multiple analytes in a single welled assay is 

not without its challenges. These include cross reactivity of antibodies, the need for 

spectral unmixing, and the possibility of interaction between the fluorophores. The 

use of nanoparticles removes some of these challenges, as does the use of 

specialised fluorescence microscopy methods. 
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This chapter reviews the immune response and explores the history of 

immunoassays. The probes employed for immunoassays are listed with detailed 

presentation of the probes used for fluorescence-based immunoassays. Multiplexed 

immunoassays are mentioned with a view of presenting previous approaches to 

multi-analyte detection, where the current work advances the state of the art. 

Finally, dengue fever is presented, highlighting the need for an immunoassay that is 

able to accurately detect the presence of dengue antibodies. 

As fluorescence microscopy methods were used for assay read out, the second 

chapter of the thesis introduces fluorescence and a description of the three different 

microscopes used: an epifluorescence, a confocal laser scanning (CLSM) and a 

programmable array microscope (PAM). The chapter seeks to highlight the relevant 

differences and relative advantages/ disadvantages among the microscopes. A 

review of methods for the synthesis, bioconjugation and size characterisation of 

nanoparticles is also contained in this chapter.  

Chapter 3 describes a chemometric method for spectroscopic unmixing of 

conventional organic fluorophores and commercially obtained quantum dots.  The 

algorithm used is similar to the spectral unmixing algorithm, but the standardisation 

method differs from previously published methods. A comparison between 

conventional standardisation methods and the one explored in this thesis is 

presented.  

Chapter 4 introduces the concept of using lanthanide-doped silica nanoparticles for 

single welled multiplexed immunosorbent assays. This work was a result of 

problems encountered with organic fluorophores and commercially obtained 

quantum dots. 
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The single welled multiplexed assay developed in chapter 4 is applied to 

simultaneous detection of anti-dengue IgM and IgG in chapter 5. This chapter 

describes the use of conventional organic dyes, quantum dots and lanthanide-doped 

silica nanoparticles in the multiplexed assay. The results are compared to those 

obtained for multi-well ELISA detection of IgM and IgG. The relative merits of the 

different probes and microscopes used are discussed at length. 

The final results of the thesis are presented in chapter 6, where cross reactivity 

between serotype specific anti-dengue IgGs is addressed. A mathematical method 

for distinguishing cross reactive antibodies is devised and applied first to a partially 

cross reactive system of human and mouse IgGs and finally to a fully cross reactive 

system of anti-dengue IgG types 3 and 4. 

Chapter 7 presents the final discussion of the thesis. The main achievements are 

revisited and the possibilities of further work are listed. 

 

1.2 The immune response and immunoassays 

Immunology as a discipline came about after the observation of persons developing 

immunity to an infectious disease after recovery. Immunity can be defined as the 

state of protection from an infectious disease,19 and is derived from the Latin term 

immunis, which means exempt. A virus that elicits an immune response may be 

detected using immunoassays which utilise antibodies, and nucleic acid methods 

that detect RNA. Antibodies are glycoproteins that are involved in immune 

recognition and host defence systems,20 and belong to the immunoglobulin class of 

proteins. Human immunoglobulins are heterodimers, with their basic structure 

consisting of four polypeptide chains that are linked by disulfide bridges. These are 
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two heavy chains consisting of 450 – 600 amino acid residues, and two light chains 

of about 220 amino acid residues. IgG is the most abundant Ig in serum and forms 

a Y-shaped structure (Figure 1).20 It is synthesised predominantly by plasma cells 

after secondary exposure to antigen. 

 

 

Figure 1: Diagram of immunoglobulin G (IgG), showing the blue heavy 
chains and the green light chains. CL represents the constant domain of the 
light chain, VL and VH represent the variable domains of the light and heavy 
chains respectively. The Fab fragment has antigen binding activity and the 
Fc fragment is the crystallisable region, recognised by host defence 
mechanisms. The antigen binding sites are the amino-terminal domains of 
the molecule which bind to the antigen, while the hinge region is an amino 
acid stretch; rich in proline and cysteine, linking the two heavy chains with 
disulfide bonds. The carbohydrate is an oligosaccharide.    
 

Each heavy chain of IgG consists of one variable (VH) and three constant domains; 

the light chain consists of one variable (VL ) and one constant domain. Each domain 

is comprised of approximately 110 amino acids, giving an IgG a total molecular 

VL 
Fab fragment 

Antigen binding 
sites 

Carbohydrate 

Hinge region 

Fc fragment 

VH

CL 
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mass of approximately 150 000 Daltons. The Ig has two functionally important 

parts; the region of the antigen binding site (Fab) and the crystallisable region (Fc) 

that is recognised by host defence mechanisms. In addition to IgG there are four 

other antibodies: IgM, IgA, IgD and IgE. Like IgG, IgD and IgE are monomeric 

structures. IgM is a pentameric structure of approximately 970 kDa and IgA is 

dimeric with an approximate molecular mass of 385 kDa. 

 

Antigens are molecules capable of eliciting an immune response when injected into 

an animal. The antigen is treated as a foreign species and its epitope binds to the 

paratope of its complementary antibody. Several different forces are involved in 

binding and the two reactants must first overcome the repulsive forces that exist 

between them before specific binding occurs. Initially, hydrophobic and ionic 

attractions exist between the epitope; the part of an antigen that is recognised by the 

immune system, and the paratopes; the part of the antibody that recognises the 

antigen. The hydrophobic paratopes interact, while oppositely charged amino acids 

in the epitope and paratope form what are known as salt bridges over a distance of 

some 100 Å. Van der Waals forces between the paratope and epitope then become 

involved, and as the epitope draws closer to the paratope, hydrogen bonds are 

formed between adjacent amino, hydroxyl and carboxyl groups at distances between 

2 and 3 Å. Eventually, direct protein-protein interactions occur that strengthen the 

bond. 20 These interactions refer to localised induced fitting of the epitope and 

paratope to ensure shape complimentarity.  

  

Immunoassays play a prominent role in clinical science for analyses involving 

biological matter such as proteins, nucleic acids and hormones, 21 and have evolved 

significantly since the first immunoassay for insulin, performed by Yalow and 
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Berson in 1959.22 The assay involved competition between unlabelled and 

radioactively labelled insulin for a limited amount of insulin antibody. Bound and 

free insulin were separated by paper chromatography and the radioactivity of the 

separated fractions determined using a scintillation counter. The next major advance 

was made in 1968 by Miles and Hales, when labelled antibodies rather than antigens 

were used. 23 This and the assay performed by Berson and Yalow were single-site 

immunometric assays,20 with two-site immunometric assays first described in the 

1970’s.24 The discovery of monoclonal antibodies by Kohler and Milstein in 1975 25 

made available large amounts of antibodies and this made non-competitive or 

sandwich immunoassays more practical. While the radioactively labelled antibodies 

are said to be one of the most sensitive detection schemes used, 21 they offer the 

disadvantages of radioisotopes, and other labels are frequently used. The more 

widely used of these are enzymes, used in enzyme-linked immunosorbent assays 

(ELISAs), a technique first reported in 1971 by two research groups working 

independently of each other in Sweden and the Netherlands. 26 ELISAs may be 

competitive, or may be in the sandwich format, where the sample containing the 

antigen is incubated on a surface that has been treated with antibody. A secondary 

enzyme-labelled antibody is then added and detected by a colour change after the 

addition of substrate (Figure 2).  Indirect ELISAs are characterised by incubation of 

the antigen on the surface, followed by the addition of the sample containing the 

antibody. A secondary enzyme-labelled antibody is used for detection of antibody 

after addition of enzyme substrate. 

A significant drawback of ELISAs is that a separate assay is required for each 

analyte of interest. Since it is frequently necessary or helpful to detect several 

biomarkers simultaneously, conventional ELISAs make the process time 
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consuming.27 Immunoassays therefore continue to evolve and include new 

applications such as multiplexed methods and nanoscale levels of analysis. 28  

 

 

Figure 2: Schematic of an enzyme linked immunosorbant assay (ELISA). 
Step 1 is incubation of the primary antibody on the solid surface; steps 2 and 
3 are addition of substrate followed by a wash step. Steps 4 to 7 are 4) 
addition of secondary antibody labelled with enzyme, 5) washing, 6) addition 
of colour developer, 7) addition of stop solution. 
 

 

1.3 Multiplexed methods of analysis 

Multiplexed methods of analysis allow simultaneous testing of several analytes in a 

single assay. Multianalyte technologies were developed in the early 1980s 29 and now 

include microarray and bead-based formats. At present, several multiplexed based 

analyses are performed using particle-based flow cytometric assays such as 

Luminex,30 the FlowMetrix ™ system 31 and UltraPlex.27 Luminex is perhaps the 

most well known and consists of polystyrene microbeads embedded with red and 

infrared fluorescent dyes. Each bead has a unique signature which is a result of 

differing ratios of the fluorescent dyes. The Luminex system is reported to have 

limits of detection and sensitivity comparable to and better than ELISA for some 

assays, 18, 32-41 as well as lower coefficients of variation, 42 though some studies report 

no improvement. 32 Imaging platforms such as Luminex are costly and not easily 

  Step 1 Steps 2 and 3 Steps 4 - 7
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accessible to most diagnostic laboratories. Other multiplexed methods are more 

readily adopted and include conventional microarrays, 43 microarrays based on 

electrogenerated chemiluminescent read out,44 microfluidic immunoassay devices 

integrated with optically encoded beads,45 a microfluidic-based chip, able to 

simultaneously measure multiple biomarkers in blood, 46 systems based on confocal 

read-out of quantum dots fluorescence 47 and assays using magnetic luminescent 

nanoparticles. 48  For these microarray-based methods, antibodies are printed onto 

the surface 49 and are therefore spatially separate. 

 

Multiplexed immunoassays in a single well of an assay plate have been successfully 

carried out 50 using quantum dots (QDs) of different colours. The spectrum of the 

mixture was broken down into individual spectra using a minimisation algorithm. 

This is the first, and still one of the few reports where a single well fluorescent 

immunoassay mixture is broken down into its individual components through 

spectral unmixing. The result obtained was that of the fractional contribution of 

each QD to the composite signal from the well. Their algorithm indicates the 

presence or absence of an analyte, but does not predict the concentration. These 

assay formats, where simultaneous multiple fluorescence signals can be detected are 

desirable, but are difficult to implement because of the photophysical nature of 

fluorophores and the need for specialised equipment and unmixing algorithms.  

 

1.4 Probes used for fluorescence-linked immunoassays  

The use of fluorescent technology in immunology originally involved staining for 

microscopy, 51 but has since been applied to immunoassay development. 

Fluorescence linked immunosorbant assays (FLISAs) (Figure 3) use fluorescence for 
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detection. 52 While antibodies labelled with fluorophores have been used since 1941, 

their use then was limited to immunofixation techniques and they were only 

introduced as probes in immunoassays in the 1970s. 53 These probes provide some 

advantages over ELISA, although their inherent limitations can be problematic 

when applied to immunoassays. 

 

Figure 3: Basic concept of the FLISA procedure. The format is similar to 

ELISA, the difference being the use of fluorophore-labelled secondary 

antibodies. 

 

These limitations include Rayleigh, Raman and Tyndall light scattering.54 Rayleigh 

scattering is a result of interaction between excitation light and water molecules. 

Raman scattering is also a result of interaction between excitation light and water 

molecules, but the scatter peaks are shifted to longer wavelengths. 54 Tyndall 

scattering is reflection of excitation light off particulate matter in the sample, and 

like Rayleigh scattering the peaks occur at the excitation wavelength. Other 

limitations of fluorophores are high fluorescence background from the samples and 

microplate, 55 and their sensitivity to changes in their environment. In spite of this, 

fluorescence immunoassays have found widespread use for detection and these 

include their applicability to high throughput screening,56, 57 reduction of wash 

steps,58 and the ability to multiplex. 18, 38, 41, 59 
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 The applications of fluorophores to immunoassays result from the fact that they 

have high detection sensitivities and several measurable properties. 60 These 

properties include the intensity of fluorescence, the lifetime and orientation of the 

fluorophore, and interrelationships between these properties. Some techniques 

applied to immunoassays which measure these relationships are fluorescence 

polarisation assays 61, 62 time-resolved immunoassays,63-67 and methods based on 

phase modulation spectroscopy. 68 As fluorescence methods are developed, 

instrumentation for quantifying fluorescence is also developed. Some of these 

developments include the programmable array microscope 69-73 and spectral imaging 

systems as add-ons to a fluorescent microscope. 74  

 

Organic fluorophores such as fluorescein and rhodamines are commonly used 

because of their high molar extinction coefficients (> 90 000 M-1cm-1 at maximum 

excitation wavelengths) and ease of use. Indeed, these organic fluorophores have 

found widespread use as labels for biological macromolecules such as cells,75, 76 

proteins and nucleic acids.77-79 This has allowed them to be used for monitoring 

cellular integrity and processes,80 membrane fluidity,81 protein trafficking,82 signal 

transduction,83 and enzymatic activity.84 Organic fluorophores have also been 

applied to genetic mapping85 and chromosome analysis.86  

 

These organic fluorophores have disadvantages. They are sensitive to pH. They 

have a tendency to self quench. 76 In concentrated solutions of fluorescent dyes 

static quenching can occur, indicated by a change in the absorption spectrum of the 

fluorophore. While this effect can be used to monitor processes in the cell, 87, 88 it is 
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a hindrance for multiplexed measurements. Organic fluorophores have small Stokes 

shifts. 89 This means that the energy difference between the absorbed and emitted 

photon is small, and can lead to an overlap between excitation and emission 

wavelengths. The organic fluorophores lack photostability,90 and this complicates 

measurements because of the photochemical degradation of the molecules. Finally 

the broad, overlapping emission bands of the organic fluorophores 91 makes them 

generally unsuitable for multiplexed measurements.92 For these reasons, other 

fluorescent probes have been developed, which purportedly offer improvements 

over conventional fluorophores while still maintaining their useful characteristics. 

One such set of probes is quantum dots (QDs).93  

 

QDs are fluorescent nanocrystals composed of organic semiconductors. Their 

photophysical properties are best described through a description of 

semiconductors. Semiconductors are a material group which have moderately good 

conductivity; higher than that of insulators but lower than that of metals. Their 

conductivity is dependent on the temperature and chemical purity of the material, 

and a semiconductor is characterised as having no conductivity at absolute zero 

temperature.94 As semiconductors, QDs contain electrical charge carriers and are 

characterised by a bandgap energy. This is the minimum energy required to excite 

an electron from its ground state to the first excited state.95 The band gap energy 

that characterises semiconductors is formed by the energy between the conduction 

and valence bands of the nanocrystals. The electrons in a crystal have kinetic and 

potential energies, and there are areas in the crystal where all of the electron energy 

can be found while other areas exist where there are no electrons and no electronic 

energy. This energy axis of the crystal can be divided into forbidden bands; where 

no electrons are located, and allowed bands; that contain electrons. The forbidden 
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band is referred to as the conduction band, while the allowed band is the valence 

band. Excitation of a QD is initiated when a photon of energy greater than the band 

gap energy is absorbed. This results in the generation of charge carriers. 

Recombination of the electron and hole occurs on relaxation back to the ground 

state, converting the bandgap energy into a photon, and creating fluorescence. 95  

 

QDs are typically small crystals, ranging in size from one to ten nanometers in 

diameter.96 Because of their small size, the charge carriers are confined to a space 

smaller than they normally would in a bulk semiconductor. This is known as 

quantum confinement and can be manipulated by tuning the size of the QD. A 

smaller QD indicates greater confinement and larger band gap energy. The 

electron/hole pair formed is therefore of a higher energy, and fluoresces at a shorter 

wavelength. Similarly, a larger QD fluoresces at a longer wavelength. By carefully 

tuning the size of the crystals, a range of fluorescent probes can be obtained. QDs 

find use as biological probes 97 due to their large molar extinction coefficients; 0.5 – 

5x106 M-1cm-1, 95 quantum efficiencies up to 85%, 95 good photostability and long 

lifetimes with respect to conventional organic dyes. 96 Their broad absorption bands 

and narrow emission bands allow them to be excited at a single wavelength, thereby 

making it possible to simultaneously detect multiple QD probes without the need 

for complex processing.98 They have been applied extensively to multiplexed 

methods of analysis. 99, 100 

 

Fluorescent probes are subject to non-linear behaviour and can also mix non-

linearly. Non-linear processes of fluorescent probes include photobleaching and 

excited state reactions 101 while within mixtures of the probes this non-linearity can 

be extended to photophysical interactions between the fluorophores, such as energy 
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transfer.102 These processes complicate spectral unmixing, as they can result in 

reduced fluorescence of the donor and increased fluorescence of the acceptor. 

Fluorescent probes also have typically broad emission bands, which could result in 

overlap in a hyperspectral image of a mixture. Spectral overlap needs to be 

separated using chemometric methods, which mainly involve the use of multivariate 

statistics to analyse data collected in the analytical chemistry lab.103 Principal 

Components Analysis (PCA) is one of the more widely used chemometric methods, 

first described in 1901, and is used to determine patterns in data.104 Other widely 

used chemometric methods include Partial Least Squares (PLS) and regression. For 

spectral unmixing, the chemometric methods are generally developed for the 

individual system of interest. This usually entails writing specific algorithms to be 

applied to the fluorophore system. For example, linear unmixing algorithms have 

been used105 to spatially and spectrally separate fluorescence emission signals from 

fluorophores that have overlapping spectra. This was achieved through the 

separation of a mixture of Nile Blue and HIDC Iodide by PCA, orthogonal rotation 

and constrained linear least squares analysis. Similarly, multivariate curve resolution 

(MCR) techniques have been applied to data from a hyperspectral fluorescence 

imaging microarray scanner.106 This method allowed quantitative measurements to 

be made through constrained alternating least squares analysis on an in-house 

developed MatLab code. Finally, maximum likelihood principal components 

regression has been applied to separate mixtures of acenaphthylene, naphthalene, 

phenanthrene. This algorithm also was a MatLab in house development.107 

Linearity of mixing, with clear non-overlapping signals can be obtained from probes 

such as silica nanoparticles doped with a fluorescent lanthanide chelated by an 

organic antenna.108, 109 Lanthanides have line-like atomic emission which is 

characteristic of the lanthanide of interest and this removes problems of spectral 
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overlap. As the silica particles are large; on average between 30 and 70 nm in 

diameter, and encapsulate the lanthanides within, there is little possibility of 

interaction between the two dyes, making the occurrence of inter-particle FRET 

minimal. In comparison to conventional fluorophores, fluorescent NPs have higher 

fluorescence intensity due to the presence of several fluorophores in a single 

nanoparticle. This has led to the integration of nanoprobes into bioassays, where 

their properties are thought to improve the features of the assays. 110 Presently the 

use of these NPs does not extend beyond applications of low limits of detection, 

and their applicability to single-welled, multiplexed immunosorbent assays has not 

been clearly demonstrated. The aim is to use them in multiplexed immunoassays for 

dengue fever. 

 

1.5 Dengue fever 

Dengue fever is a mosquito borne Flavivirus, having four distinct but closely related 

serotypes DEN 1-4. 1, 111 It is presently one of the most important emerging tropical 

viral diseases in the world,112 with an estimated 50 – 100 million cases yearly.113  

Dengue fever produces a spectrum of diseases ranging from mild flu-like symptoms 

such as fever, chills and headache,1 to dengue hemorrhagic fever (DHF) and dengue 

shock syndrome (DSS) which are fatal and involve plasma leakage, haemorrhage 

and shock. 114 It is hypothesised that prior infection by one dengue serotype can 

increase the likelihood of contracting DHF on subsequent re-infection by another 

serotype through a process known as antibody dependent enhancement (ADE). 115 

This however, is one of several hypotheses as the exact mechanism of DHF and 

DSS are not well understood. 
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Dengue is a Spanish homonym for the Swahili term ki dinga pepo that was initially 

applied to the chikungunya viruses but came to be associated with dengue viruses.116 

A virus believed to be dengue was first reported by the Chinese who called it water 

poison, in a medical encyclopaedia from the Chin dynasty, 265- 420 AD. Other 

early reports of the disease have also been published.116 The first reports of major 

epidemics of a virus thought to be dengue originated from Asia, Africa and North 

America in 1779 and 1780, but outbreaks of unusual illness thought to be dengue 

have been reported in the French West Indies and Panama in 1635 and 1699 

respectively.116 The virus presently has a worldwide distribution in the tropics 

(Figure 4) and it is estimated that 2.5 billion persons live in dengue endemic regions. 

The disease presently causes more illness and death among humans than any other 

arbovirus. 115 

 

 

 

 

Figure 4: Global distribution of dengue virus 115 
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After initial infection with one serotype of DF (primary infection), it is believed that 

there is lifelong immunity against a second infection with a homotypic strain.117 This 

conclusion was reached after detecting neutralising antibodies in the sera of persons 

that had been infected with DF some four decades previously. 118-120 A person may 

be infected by a second serotype however, resulting in a secondary infection. 

Primary and secondary DF infections may be differentiated since their kinetics of 

antibody production are different.121 A person infected with dengue fever has an 

initial rise in IgM antibodies, generally between days 4 and 7 of the illness, with a 

peak around 2 weeks, after which the IgM antibody concentration decreases to 

undetectable levels.121 IgG antibodies show a contrasting pattern to IgM, as only low 

levels of anti-dengue IgG are detected initially, thus meaning that IgM antibody 

levels greatly exceed those of IgG.122  Secondary dengue infection causes a prompt 

immune response known as an anamnestic response, which leads to IgG being the 

primary antibody to be produced. High IgG levels of antibody are detected early 

and rise quickly, while the concentration of IgM is low and rises only modestly. 122 

Generally, a primary infection is characterised by a low IgG to IgM ratio while the 

reverse holds for a secondary infection.   

1.5.1 Molecular nature of dengue fever  

Electron microscopy has shown the dengue virus to be comprised of an electron 

dense core surrounded by a lipid bilayer (Figure 5). 123  
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Figure 5: Schematic of flavivirus virion. E: envelope protein; M: membrane 
associated protein. 124 
 

The virion contains three structural proteins, seven non-structural proteins and a 

single strand of RNA genome of 10 700 nucleotides. The three structural proteins 

are the core protein (C) which is 100 amino acids, the membrane protein (M), 75 

amino acids, and the envelope (E) which is 495 amino acids in size (Figure 6). The 

envelope protein (E) is implicated in host cell binding and haemagglutination, 125 

and this is the protein against which primary antibody responses are displayed. 126 

The non-structural proteins are NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5. 

Antibodies are formed against NS1 on infection with the virus. NS3 has protease 

and helicase activity. NS5 is the viral RNA-dependent RNA polymerase while the 

other four non-structural proteins are small and thought to be involved in 

membrane localisation of NS3 and NS5 through protein-protein interactions. This 

structure is typical of the Flaviviridae family of viruses of which Japanese encephalitis 

and tick-borne encephalitis are also members. As a result, these viruses have 

common group epitopes on the envelope protein allowing for cross reactivity 

during serologic testing. 115 
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Figure 6: Flavivirus structure, showing C, the core protein; prM, the 
membrane protein; E, the envelope protein; and NS 1 – 5, the non-structural 
proteins. 124 
 

1.5.2 Methods for dengue diagnosis 

There are two basic methods for diagnosing DF. These are detection of the virus 

and detection of antibodies to the virus, known as serology. Virus detection 

traditionally refers to isolating the virus from a laboratory culture, but now includes 

detection of viral RNA in the sera or tissues, and detection of specific antigens. 127 

Isolation of dengue virus from culture is the definitive test for the virus, but its use 

is limited due to some disadvantages which include the time consuming nature of 

the test. The test involves incubation of the patient’s diluted serum sample on the 

mosquito-derived cell culture. This is left for a week at 28oC, after which the cell 

culture is screened for the presence of the virus using fluorescently stained serotype 

specific antigens. 92 The common serologic tests used for diagnosis of dengue fever 

are hemagglutination inhibition (HI), complement fixation (CF), neutralisation test 

(NT), and ELISAs for IgG and IgM. These methods will now be described to 

indicate accepted protocols for the detection of anti-dengue IgG antibodies. 

1.5.3  Haemagglutination Inhibition 

Haemagglutination inhibition (HI) was the first serological assay finding general use 

in clinical laboratories, and remains the gold standard for the newer serological 

tests.20 This method involves the agglutination of antigen-coated red blood cells and 
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is based on the premise that virus particles have a membrane protein known as 

hemagglutinin on their envelope which binds to sialic acid receptors that are located 

on the cells. The HI test is sensitive and reproducible, and is able to differentiate 

between primary and secondary infection. It has three main disadvantages however, 

which prevent its widespread application. The first of these is the need to pre-treat 

the sample to remove non-specific inhibitors of hemagglutination, followed by a 

step where the serum sample is absorbed with type O human red blood cells to 

remove non-specific agglutinins. The second main disadvantage is the need for 

paired serum samples. Both acute and convalescent serum samples are required as 

the change in HI titer between the convalescent and acute samples determines 

whether infection is primary or secondary. Finally, there are problems with cross 

reactivity, which make it difficult to distinguish between dengue and other 

Flaviviruses, as well as among the different serotypes of dengue. 92 

 

1.5.4 Neutralisation Test   

The plaque reduction neutralisation test (PRNT) is the serological method of choice 

for dengue serotyping.128 The PRNT was first described in the 1950s and was 

adapted for dengue in 1967.129 This test is very time consuming130 and few 

laboratories use it in their research. 128 For the test, the serum specimen being 

examined is first diluted then mixed with a standardised amount of virus. The 

mixture is then plated onto virus susceptible cells and overlaid with a semi-solid 

restrictive medium. If a virus initiates an infection, a localised area of infection 

known as a plaque is produced. Plaques are counted and the amount present is 

compared to the starting concentration of the virus to determine the reduction of 
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viral activity. In spite of its labour intensive nature, this test remains the gold 

standard for serotyping and any tests developed need to be compared with it. 

 

1.5.5 Complement fixation 

Complement is a set of serum proteins that are able to react with antibody-antigen 

complexes. When the reaction occurs on the surface of a cell, the cell is destroyed 

through the formation of transmembrane structures. The complement fixation 

test131-133 uses sheep red blood cells (SRBC), anti SRBC antibody, complement, the 

antibody against the desired antigen (or antigen for the desired antibody) and the 

serum sample. If the antigen or antibody is present in the serum sample, the SRBC 

is not destroyed. If the antigen or antibody of interest is not present, complement 

destroys the anti-SRBC and SRBC complex.  

 

1.5.6  ELISA 

ELISA (Figure 2) is presently the most frequently used technique for dengue 

serological studies 128 and several formats have been designed for detecting dengue 

virus antibodies. These include IgM/IgG capture ELISA in separate wells of an 

assay plate. 10, 134 Since 1984, dengue fever has been diagnosed through the detection 

of serum anti-dengue IgM using dengue IgM antibody capture ELISA (MAC-

ELISA), using a mixture of all four dengue antigens. Positive and borderline 

samples were subsequently evaluated using hemaggluttination inhibition (HI) testing 

and after 1992, IgG-ELISA.135 HI testing suffers from several disadvantages as 

mentioned previously, and while MAC-ELISA is widely used, it is not the best 

method for early diagnosis of the virus. Additionally, neither method allows for 

serotyping. 
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1.5.7  Nucleic acid based methods 

Isolation of the virus by cell culture and reverse transcriptase polymerase chain 

reaction (RT-PCR) are recommended for early detection of the virus. 127 Since virus 

isolation by cell culture can take more than seven days before a result is obtained, 136 

RT-PCR methods of diagnosis have been developed.137-142 An advantage of using 

PCR methods is the ability to multiplex.137, 141, 143  Routinely, serotyping is carried out 

using a two step approach of RT-PCR followed by nested PCR. This procedure is 

costly and time consuming, and a one-step, single-tube method has been 

developed,144 as well as a 1-step single-tube duplex RT-PCR. 145 

 

PCR affords a sensitive, specific, multiplexed method of detection, but it is still too 

costly for extensive application,8, 146 particularly in areas where dengue is endemic. 

As a result, novel detection systems which incorporate high sensitivity with short 

operation time and easy processing are required. These include biosensors,147 

microfluidic devices integrated with fluorescence cross correlation spectroscopy 

(FCCS),148 a magnetophoretic fluorescence sensor7 and serological test kits,4, 15-16, 149-

150  which have varied sensitivities. 

 

Generally, nucleic acid methods of diagnosis are able to detect lower levels of the 

virus than the cheaper serological methods. These methods can be applied to 

multiplexed measurement of the different forms of the virus, unlike serological 

methods. Table 1 summarises the relative limits of detection of the two methods, 

showing the relative detection limits for the two methods. The concentration unit 1 

pfu mL-1 refers to a single virus particle in a millilitre of solution. Since a virus 
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particle weighs 22 M Da (0.8 fg), 123 this indicates a limit of detection of 0.8 fg mL-1, 

which is substantially lower than those obtained through serology.  

 

 

 

Biomarker Method LOD 

E protein 151 QCM 1.727 µg mL-1 

NS-1 151 QCM 0.740 µg mL-1 

NS-1 (DEN-1) 152 QCM 1 ng mL-1 

NS-1 (DEN-2) 152 QCM 4 ng mL-1 

NS-1 (DEN-2) 153 ELISA 4 ng mL-1 

Viral DNA 

 NASBA 154 1 pfumL-1 

NASBA 155 1pfu mL-1 

RT-PCR 92 1 pfu mL-1 

 
Table 1: Limits of detection for some methods of dengue diagnosis 
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1.6 Research Objectives 

On the basis of existing knowledge, the following objectives were set for this 

present study. First, to use chemometrics to quantitatively separate mixtures of 

conventional organic dyes and quantum dots. A simple spectral unmixing algorithm 

was applied for quantitative analysis of fluorescence mixtures. Organic dyes were 

used in immunoassays to establish the possibility of detecting multiple targets in a 

single well of an assay plate, thereby creating novel multiplexed immunoassays for 

dengue antibodies.  

 

The next part of the study concentrated on the development of a simplified 

approach to spectral unmixing using silica nanoparticles doped with chelated 

lanthanides. Similarly, limits of detection of these NPs were determined and their 

behaviour in mixtures established. The overarching goal was a multiplexed 

immunoassay using these NP probes to detect multiple viral targets.   

 

The multiplexed methods designed in the first and second parts of the study were 

applied to serum samples obtained from mice immunised with dengue antigens, to 

test the hypothesis that multiple forms of a virus can be detected in a single well of 

an assay plate by separation of fluorescent signals. A variety of methods were used 

to prove this hypothesis: epi-fluorescence microscopy, confocal laser scanning 

microscopy and programmable array microscopy. All assays were compared to 

conventional multi-well ELISAs. 

 

Finally, as viruses of the same family may have similar antigenic sites on the 

antibodies, cross reactivity of one virus with another can occur during the diagnostic 
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process. Model studies involving human and mouse IgGs were used to establish the 

applicability of a statistical method already in existence for pesticides, to 

differentiate between cross reactive Flavivirus antibodies. The applicability of this 

method to dengue fever was explored through the use of simulated and real data. 
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2 Experimental methods 

In this chapter, we explore the various instruments used throughout the research 

period, followed by protocols developed or adapted. As the main instrumentation 

used was the fluorescence microscope, a great deal of detail is placed on 

fluorescence, with the salient features of the three microscopes used described. 

General references are given at the end of the chapter. 

2.1 Fluorescence Microscopy 

 
Fluorescence microscopy was discovered by a German microscopist Köhler in 

1904,1 and has found several biological applications. 2-6  The basic principles of 

optical microscopy apply to fluorescence microscopy, the main difference being the 

use of specialised light sources and filters for detection of fluorescence.  

 

Fluorescence is one form of luminescence, which may be defined as the emission of 

light from an electronically excited state of a substance. 7 Fluorescence occurs from 

a singlet excited state, where the electron in the excited orbital has an opposing spin 

to the electron in the ground state orbital. As a result, the return of the electron to 

the ground state is spin allowed and occurs quickly, on the order of nanoseconds. 

Phosphorescence, another form of luminescence, occurs when light is emitted from 

a triplet excited state; the electron in the excited orbital has the same spin as the one 

in the ground state orbital. Return to the ground state is spin forbidden and takes a 

significantly longer time. The Jablonski diagram (Figure 7) shows the number of 

possible routes whereby a specimen excited by a light source can return to the 

ground state, emitting either fluorescence or phosphorescence. 
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Figure 7: Jablonski diagram showing possible routes an excited fluorophore 
can take to return to the ground state 7 
 
 

Fluorescence intensity is directly related to the intensity of the excitation light and is 

proportional to the number of absorbing molecules in the sample. This may be 

explained theoretically. When light of intensity Io is directed through a fluorescent 

sample, the sample absorbs some of the incident radiation, and light not absorbed is 

transmitted by the substance. The transmitted light may be called I and the light 

absorbed by the sample can be represented by (Io - I). The intensity of fluorescence, 

which occurs as a result of absorbance of Io, is given by Equation 2-1.8 

 

( )IIQF o −=                                                                                   Equation 2-1 

 

where F is fluorescence intensity, Io is the light intensity before absorption, I is the 

light intensity after absorption and Q is the quantum efficiency. The absorbance A, 

according to Lambert’s law is given in Equation 2-2. 8 
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As A approaches zero, e-A approaches one and F approaches zero; when A 

approaches ∞, e-A approaches 0 and F=QIo. When A is very small, 1-e-A approaches 

A and F =AQIo. If A is replaced by kc, where k is a constant and c is concentration 

of the sample, then for low concentrations F = kcQIo. This means that fluorescence 

is directly proportional to the concentration. For high concentrations, F=QIo, which 

is independent of concentration.8 The range over which fluorescence intensity is 

proportional to concentration has been determined experimentally through a 

calibration curve of the relationship between relative fluorescence and absorbance. 

It was found that two phenomena lead to reduced fluorescence intensity at high 

absorbance values. These are the inner filter effect; also known as excitation 

absorbance, and reabsorption. The inner filter effect may be defined as the 

reduction of excitation intensity in the layers of a fluorescing object further from the 

light source, owing to absorption by the fluorophore.8 This phenomenon occurs 

when fluorescing molecules are not all equally well situated to collect the excitation 

light, resulting in the layer closest to the light source receiving more light than layers 

further from the source. Io is then greater than I and fluorescence intensity is 

reduced. Reabsorption occurs for some fluorophores because of the overlap of 

absorption and emission spectra. In this instance, fluorescence can be reabsorbed by 

surrounding fluorophores, leading to a reduction in fluorescence yield. 
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2.1.1 Epifluorescence microscopy 

The term epifluorescence microscopy refers to a system where the excitation and 

emission light pass through the same objective. 7 This format is advantageous as 

most of the excitation is moved away from the detector. Figure 8 shows a schematic 

of the epi-illumination microscope used for this project. This is an Olympus IX71 

inverted microscope, with a mercury lamp for excitation. The light from the 

excitation source passes through an excitation filter, also called a primary filter, 

which serves to provide light over a narrow band of wavelengths. This light is able 

to excite the specimen. On return to ground state, the specimen emits light which is 

passed through an emission or barrier filter. This filter typically has a low 

transmission at the wavelengths of excitation, but high at the wavelengths of 

emission. The dichroic beam splitter, also known as the dichroic mirror is 

positioned below the objective and serves to separate emitted light from 

unabsorbed excitation light. This is accomplished through an interference coating, 

which reflects light below a specified wavelength into the objective, and transmits 

light above this, allowing it to reach the eyepiece and detector. The filters used 

throughout the project consisted of band pass excitation filters, long pass emission 

filters and dichroic mirrors. The samples were generally contained in 96 and 384-

welled glass bottomed plates with thickness of 170 μm. These were mounted on an 

automated stage (Merzhäuser, Wetzlar, Germany) powered by a USB port.  
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Figure 8: Schematic of the epi-fluorescence microscope used  

 

2.1.2 Add-ons to the epi-illumination microscope 

The add-ons to the epi-fluorescence microscope used were a spectrograph (PARISS; 

LightForm Inc., Hillsborough, NJ), intensifier (II118MD; Lambert Instruments, 

Leutingewolde, The Netherlands) and CCD camera (PCO.1600; PCO Computer 

Optics GmbH, Kilheim, Germany), all shown in Figure 8. While the intensifier is a 

useful add-on for doing lifetime measurements, its applications were beyond the 

scope of this project and will not be discussed. 

 

A spectrograph allows the transformation of spectral information into an image, 

thereby providing a graphical means of monitoring the behaviour of fluorophores. 

The process of transformation is referred to as spectral imaging, although the terms 

hyperspectral imaging and multispectral imaging are also used.  
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The optical layout of a spectrograph is shown in Figure 9.9 This structure applies to 

both diffraction grating and prism spectrographs; only prism spectrographs will be 

mentioned here and schematic of a prism is shown in Figure 10. Light passes 

through a prism and is refracted by the angle β, which is dependent on the prism 

angle ε, the angle of incidence α, and the refractive index of the prism n. The 

relationship between these when the light is refracted parallel to the base of the 

prism is given by: 10 
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The change in refraction with respect to the change in refractive index is then given 

by: 10 

 

( )[ ] ( )2/sin1
2

sin2

2/cos
2

sin2

22 ε

ε

εβ

ε
β

ndn

d

−









=
+









=                                          Equation 2-5 

 

 

The difference in refractive angle dβ for a difference in wavelength dλ is the angular 

dispersion: 10 
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Figure 9: Diagram of the optical layout of a spectrograph, where α, angle of 
incidence; β, angle of refraction (min) at shortest wavelength (max) at 
longest wavelength; λ wavelength; γ, the inclination of a ray Lb to focal plane 
at a specific wavelength; La, distance from the entrance slit to the first active 
optic (such as a collimating mirror); Lb, distance from final optic to the 
detector; Lh, perpendicular distance from the first optic to the focal plane; βh, 
angle from the normal to Lh; normal, the reference line perpendicular to the 
optics; γ, inclination of a ray Lb to the focal plane at a specific wavelength.9  
  

 

 
Figure 10: The dispersion of light of two wavelengths in a prism. The prism 
has an apex α, and baselength b. Two rays having wavelength λ1 and λ2 are 
refracted upon entering and exiting the prism according to Snell’s law. As 
expected, blue light is more highly refracted than red light. 11 
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Equation 2-6 indicates that the angular dispersion is dependent on the angle of the 

prism,8 The linear dispersion, which defines the spread of the spectrum across the 

focal distance, is the product of the angular dispersion and the focal length of the 

optics used:10 

 

λ
β

λ d

d
f

d

dx =                                                                                          Equation 2-7 

 

The spectrograph used in this research was designed for use in the wavelength range 

360 – 920 nm and optimised for use with a digital CCD as detector. It had a slit 

width of 25 μm, a slit height of 5 mm and a spatial resolution of 0.6 μm. Unlike 

other prism-based spectrographs, this system was adapted to allow high aberration 

correction. Spectral imaging allowed mixtures of fluorophores with distinct spectral 

profiles to be separated without further processing. When dyes have a large spectral 

overlap, the spectrum of the mixture is a linear combination of the individual 

components as long as the fluorophores mix linearly. If a fluorescence spectrum of 

the individual components is obtained, the observed mixture can be resolved into its 

components through spectral unmixing which is facilitated by the spectrograph. 

 

A charge coupled device (CCD) camera converts optical brightness into electrical 

signals, using CCDs. A CCD is a type of detector that stores its charge as a two-

dimensional array. The design consists of layers of semiconductor silicon capped 

with a layer of silica. A pattern of conducting Si electrodes is placed on the surface 

of the silica (Figure 11). The surface is further broken down into pixels; a positive 

potential is applied to two-thirds of the pixels while the final third has a less positive 

potential applied, thereby creating a potential well.  Construction involves a p-doped 

region sitting on an n-doped substrate, thereby creating a p-n junction.  The p-
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doped region absorbs light and an electron is liberated. The hole formed moves to 

the n-doped substrate and the electrons accumulate in the potential wells. The 

electrons stored in the pixels are transferred to the data processing device by 

sequentially changing the voltage at each of their three parts. This charge transfer is 

efficient and is more efficient than a photomultiplier tube.12 The CCD camera used 

had a resolution of 1600 × 1200 (horizontal by vertical) and a pixel size of 7.4 × 7.4 

μm2. 

 

Figure 11: Schematic of a charged coupled device 12 

 

2.1.3 Confocal Microscopy 

The set up of the fluorescence microscope described in Figure 8 suffers from the 

issue of out-of-focus fluorescence due to the blurring of the image as a result of the 

light emitted being spread out in a cone. The confocal microscope blocks out-of-

focus fluorescence through the use of pinholes, in a process known as optical 

sectioning. Each point of a confocal image represents the sum of in-focus 

information from the focal plane. The confocal microscope was first invented by 
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Marvin Minsky in 1955 and has since become an important tool for imaging 

biological samples. The original system consisted of two pinholes and two objective 

lenses but confocal systems used today consist of a single objective with pinholes. 

Figure 12 is a schematic of a confocal laser scanning microscope (CLSM). The light 

source is a laser, the detector is a photomultiplier tube and a computer controls the 

scanning mirrors. A single point is focussed onto the specimen by a dichroic beam 

splitter and two mirrors. Each mirror twists on its axis and deflects the laser beam. 

One mirror scans light in one direction across the specimen and the second scans at 

right angles to the first. The light from the specimen is detected by the 

photomultiplier tube and the computer builds an image from the photomultiplier 

tube’s output.  

 

The objective plays an important role in the general theory of confocal microscopy. 

It focuses the excitation light onto a spot of the specimen, collects the fluorescence 

from the specimen and images it onto the detection pinhole. Even in a system 

without aberrations, the spot focused onto the detector is smeared by diffraction. 

This spread is described by the point spread function, which characterises the 

imaging properties of the system. The point spread function is a diverging spherical 

wavefront that extends 4 π steradians (sr). The objective transforms this point to a 

converging spherical wavefront which is clipped according to the aperture of the 

objective. Clipping leads to the smearing of the point source, which forms the three 

dimensional point spread function. In an ideal aberration free lens the point spread 

function is determined by the wavelength of the light, the numerical aperture of the 

lens and diffraction. The lateral coordinate is given by: 13 
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where r is the radial coordinate relative to the optical axis, λm = λ/n is the 

wavelength of the optical field having refractive index n, α is the semi-aperture angle 

of focussing and NA= n sin α is the numerical aperture. 

 

 
 
 
Figure 12: Schematic of a confocal laser scanning microscope (CLSM). 14  
 
 

The axial coordinate is defined by: 13 
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where z  is a distance relative to the focal point.  

The intensity along the optical axis is then given by: 13 
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The third dimension of the point spread function is the volume, which can be 

calculated by the diffraction theory. In the lateral plane this results in a circular Airy 

pattern, and in the axial plane the result is significant elongation that is larger than 

the lateral pattern by a factor of ~ 3.3/sin (α). 

 

The image in the epi-fluorescence microscope is a result of the point spread 

function being shift-invariant: its shape remains constant for every point within the 

field of view. This results in the cone-shaped spread of light. The image of the 

confocal microscope is the product of its excitation and emission point spread 

functions, and this reduces the width of the function. This is approximated to be 

cylindrical. 

 

In this project, the optical sectioning capabilities of the confocal were used to obtain 

the maximum intensity on the surface of the assay by taking images along the 

vertical axis, 10 µm below and above the surface of the glass.  

 

2.1.4 Programmable array microscope 

The programmable array microscope (PAM) is an optical sectioning microscope for 

spectroscopic characterisation of biological materials based on programmable spatial 

light modulators (SLMs) (Figure 13). The confocal microscope is limited by the fact 

that it illuminates one spot at a time. The widefield microscope images faster than 

the confocal and is more light efficient, but it cannot perform optical sectioning. 
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The PAM allows both fast efficient imaging with optical sectioning and has 

excitation and emission efficiencies superior to those of the CLSM, by modulating 

the SLMs to create two images. The difference gives the true confocal image. The 

first PAM for fluorescence was described in 1998 by Quentin Hanley, Peter Verveer 

and Thomas Jovin 15 and had a digital micromirror device (DMD) as its SLM.  

 

Figure 13: Diagram of a version of the PAM. The DMD directs light to and 
from the microscope’s object plane when illuminated using light source and 
filter block A. This microscope can be used in standard epi-illumination 
mode using light source and filter block B. The triplet relay system is 
positioned such that the CCD camera and focal plane are both normal to the 
DMD 16 
 

The DMD consisted of an array of square mirrors, each of which can be tilted ± 10o 

to the normal. The DMD may be switched to the “on” position to reflect light to 

the object at conjugate positions to the focal plane forming the conjugate image cI , 

or to the “off” position where it reflects light that originates from non-focal planes 

and other ‘out-of-focus’ fluorescence, forming a non-conjugate image, ncI . The sum 
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of cI  and ncI  is a conventional wide field image. The conjugate and non-conjugate 

images were reflected to two different 2-D cameras. 

 

The confocal image is created by changing the modulation of the SLM, which has 

continuous coordinates of ( )ddi yxS . In the on position this value is 1, in the off 

position it is 0. An object O having coordinates ( )ooo zyx ,,  is scanned over sz , and 

is illuminated by the following intensity, which integrates the contributions from all 

sources of excitation (Equation 2-11). 17 
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                    Equation 2-11 

 

Here M is the magnification of the objective and exH  is the excitation point spread 

function of the objective. 

The SLM is modulated N times, and the conjugate image formed is the sum of all 

the modulations, and the contribution from all points in the object. This is given by 

Equation 2-12. 17 
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In Equation 2-12, emH is the emission point spread function and T  is the total 

integration time. The non conjugate image Inc is calculated by replacing ( )ddi yxS ,  

with ( )ddi yxS ,1− . 
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The PAM used for this research featured a ferroelectric liquid-crystal-on-silicon 

(LCoS; SXG-R2D, Forth, Dimension Displays, Dumfermline, Scotland) SLM 

instead of the DMD. The conjugate and non-conjugate images are acquired 

simultaneously with a single CCD camera, and a final image is formed by 

subtraction of the non-conjugate from the conjugate image. Before formation of the 

final image, the conjugate and non-conjugate images are registered through a step 

size optimisation of the parameters translation, rotation and magnification. A 

background image is subtracted from the pair of registered images, the non-

conjugate image is transformed to overlap the conjugate image and is then 

subtracted to obtain the final image. The transformation and subtraction have a 

computation time less than the lowest possible integration time of ~16 ms, making 

this instrument a real-time device.    
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2.2 Experimental Protocols  

This section illustrates protocols used for synthesis and bioconjugation of 

nanoparticles. 

 

2.2.1 Synthesis and Bioconjugation of Nanoparticles 

 
 
 
 
Figure 14: Synthetic scheme for preparation of lanthanide-doped silica 
nanoparticles18 
 
 
Silica nanoparticles doped with lanthanide chelates were synthesised (Figure 14) 

using a water in oil (W/O) microemulsion copolymerisation method. The chelate 

4,4”-bis(4,4,4-trifluoro-1,3-dioxobutyl)-o-terphenyl-4’-sulfonyl chloride (BTBCT) 

was mixed in a 2:1 mole ratio with the lanthanide Eu and Sm. To this was added (3-

aminopropyl) triethoxysilane (APS) (2.6 μL) and cyclohexane (0.08 mL) and the 

resulting mixture was sonicated for 15 minutes on a Cavitator Ultrasonic Cleaner 

(Mettler Electronics Corp).  After sonication, the solution was added to a 

microemulsion consisting of Triton X 100 (1.11 mL), cyclohexane (4.66 mL), n-
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octanol (1.06 mL), and water (0.28 mL) and stirred for 30 minutes at room 

temperature. Tetraethyl orthosilicate (TEOS) (0.05 mL) was then added and the 

copolymerisation was commenced after the addition of concentrated ammonia (0.05 

mL). The reaction was left to proceed at room temperature for 24 hours after which 

time acetone was added and the mixture was centrifuged at 4000 rpm for 30 

minutes. The white nanoparticles isolated were washed several times with ethanol 

and then PBS to remove unreacted materials.  

 

This work conjugated antibodies with amine functionalised SiO2 NPs. Several 

different conjugation procedures were attempted: 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-

Hydroxysulfosuccinimide (sulfo-NHS) assisted coupling of the amine groups on the 

NPs to the carboxyl groups on the proteins and the avidin/biotin interaction. 

Avidin was conjugated to the amine groups on the NPs and the amine groups on 

the proteins using glutaraldehyde chemistry. Linking the NPs to the sulfhydryl 

groups of the Fab fragments of proteins was also explored. 

 

 

Glutaraldehyde mediated conjugation 

Glutaraldehyde may be used to link primary amines (Figure 15). BSA was used to 

create a flexible bridge between the NPs and the avidin, thereby reducing steric 

hindrance with the rigid surface of the assay plate and the NP. 

 

Protocol 18 

1 mg lanthanide doped silica NPs was added to 3 mg BSA, and 0.3 mL 1 % 

glutaraldehyde in 1.2 mL PBS. This mixture was stirred at room temperature for 22 
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hours, after which 1 mg sodium borohydride was added for a further 2 hours. The 

mixture was centrifuged at 10 000 rpm for 10 minutes, washed with PBS, and the 

pellet was redissolved in PBS with 0.4 mg avidin and a further 0.3 mL 1% 

glutaraldehyde. This was stirred at room temperature for 22 hours followed by 

reduction with 1 mg sodium borohydride. The resulting conjugate was centrifuged 

at 10 000 rpm for 10 minutes and washed several times with PBS. Proof of 

conjugation of the nanoparticles to the avidin was evidenced with a luminescence 

signal when bound to a biotinylated antibody. 
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Figure 15: Glutaraldehyde-mediated conjugation of two amine-reactive 
molecules.  
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3  Spectral unmixing 

 

The first part of the study looked at methods for separating mixtures of organic 

fluorophores and quantum dots. This chapter focuses on the application of an 

algorithm for linear spectral unmixing through a study of dyes in mixtures.  

 

3.1 Introduction 

Multi–fluorophore analysis requires specialised excitation and emission detection 

schemes,1 and allows visualisation of many parts of the same sample 

simultaneously.2  There are extensive reports of the principle, with some of the 

earlier work being in the area of fluorescence in situ hybridisation. The ability to 

label seven targets with just three fluorescent dyes through a combinatorial labelling 

scheme was demonstrated3 using haptenized DNA probes. Fluorescence 

microscopy was used and results were determined based on fluorescence intensity 

ratios. Different filter blocks were required for viewing fluorescein isothiocyanate 

(FITC) and tetramethyl rhodamine isothiocyanate (TRITC), and the authors 

mention the usefulness of a single filter set for the two. Later, all 24 chromosomes 

could be labelled and imaged through a band pass filter4 and eventually spectral 

karyotyping (SKY) was developed.5 SKY is a technique based on spectroscopy and 

imaging, where fluorescence microscopy, CCD-imaging and Fourier spectroscopy 

are all used to determine the image spectrum. For imaging, a custom designed triple 

band pass filter which could simultaneously excite Spectrum Green, Cy3, Texas Red, 

Cy5 and Cy5.5 was used. These dyes are excited in the blue, yellow, and red regions 

of the spectrum. Colour separation was achieved through the observation of the 
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Euclidian distance between a normalised spectrum and the normalised reference 

spectra.  

 

Techniques such as SKY are unsuitable for quantitative analysis of samples which 

may have co-localized fluorophores,2 as chromosomes have spatially isolated 

signatures. For co-localised probes the technique of linear unmixing is most suitable. 

Linear unmixing assumes that the emission spectrum of the mixture is a linear 

combination of the individual fluorophore spectra, weighted by their relative 

abundance.6 The relative abundance of each fluorophore is available as a spectral 

profile, and this profile is used to assemble a matrix of fluorophore specific 

weighting factors. The specific weighting factors are then used to give the 

contribution of each fluorophore. The same can be done for excitation profiles 

when a sample is excited with multiple wavelengths and collected with a single 

channel. 7 

 

Linear unmixing algorithms have been used to separate fluorescence emission 

signals from fluorophores that have overlapping spectra.8,9,10 The algorithms used 

assume that there is a linear relationship between concentration and the signal being 

measured. 11 Spectral interferents that are unaccounted for,12 factors that result in 

curvature of the concentration-response function, changes to the position and width 

of response bands13 all make the application of classical curve resolution methods 

difficult.   

 

Garini et al. discussed the principles and applications of spectral unmixing of 

microscopic images.14 The spectrum of the individual fluorophore is first taken and 

the total intensity at each wavelength is the sum of each component of the mixture. 
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The linear decomposition algorithm finds the concentration of each dye such that 

the sum of the individual spectra gives the spectrum of the mixture: 14 

 

=
i ii ICI )(λλ                                                                                  Equation 3-1                               

 

where Iλ is the spectrum of the fluorophore mixture, the concentration of each 

fluorophore is given by Ci, and Ii refers to the intensities of the individual 

fluorophores. This expression can also be expressed in matrix form. The algorithm 

requires that spectra of individual fluorophores are imaged initially, under the same 

experimental conditions as the mixtures are imaged. There is a further requirement 

for the fluorophores to be linearly independent of each other. This means that 

energy transfer and charge transfer processes that occur in a mixture cannot be 

analysed using the typical linear decomposition methods.  

 

Methods and applications of linear spectral unmixing have been described for 

spatially separated and co-localised fluorophores. Depending on their proximity, co-

localised fluorophores can undergo reactions due to pH effects,15 quenching,16 ion 

pairing and energy transfer.17 In analyses, if samples of variable pH are used this will 

limit accurate separation of components of the mixture. At constant pH, ion pairing 

may occur, also reducing the ability to accurately separate the fluorophores. At high 

concentration, inner filter effects and quenching occur, also making typical linear 

unmixing methods unsuitable. 

 

Here co-localised samples of fluorescein, rhodamine B, rhodamine 101 and eosin Y 

were unmixed. CdSe ZnS-capped carboxylate functionalised quantum dots were 

also mixed and attempts were made to decompose the spectra into individual 
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components. Unmixing was initially done using the method described for linear 

decomposition as described previously.14 The method was then modified to account 

for the processes such as ion pairing that can occur between fluorophores in a 

mixture.   

 

3.2 Theory  

Linear regression models consist of paired data sets (xi, Yi), representing a fixed 

value (x) and a value for the response variable Y. Y is dependent on the value of x 

and the amount of random error present. The mathematical model for single 

component linear regression having a simple analytical solution is: 18  

 

εββ ++= 110 xYi                                                                               Equation 3-2 

 

where 0β is the intercept, 1β is the coefficient of 1x and therefore defines the 

contribution to the value of Y by 1x and ε  is the error in the measurement. The 

values of β0 and β1 need to be found such that there is a minimum sum of squares of 

the deviations from the line through a set of x and Y data.  

 

 The spectrum of the individual fluorophores can be described as Ii (λ), where i is 1, 

2, 3,.., N, and refers to the index of the fluorophore being evaluated with N being 

the total number of fluorophores. I (λ) is a vector with dimensions M, which is the 

number of wavelength points being evaluated. The concentration of each 

fluorophore is Ci, and the equation of the entire spectrum measured spectrum is 

shown in Equation 3-1. The concentration of a fluorophore is obtained by finding 

the inverse of Ii (λ) and multiplying by I (λ). 
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When multiple fluorophores are imaged together, the use of a spectral imager allows 

simple separation of the mixture into its individual components. In a complex 

sample, this is not the case as processes can occur among fluorophores that serve to 

change their profiles. If the pH of the solution is not controlled, spectroscopic 

changes can occur when pH sensitive dyes at are mixed: absorption and emission 

profiles can change. These changes also occur in unbuffered solutions of the 

individual dyes, but in mixed solutions there is the possibility that the change in 

structure could lead to spectral overlap. Examples of this have been documented,19 

Other processes include chemical interactions; such as hydrogen bonding between 

dyes, ion changes 20 and isomerism, 21 both of which could have a similar effect on 

the mixture solution as pH. With this in mind, a different approach was taken, 

where reference spectra comprised of mixtures of the fluorophores at different 

concentrations were collected. The slope and intercept of these spectra were used to 

simulate a curve of what was assumed to be present in the measured curve. Least 

squares optimisation was used to predict the concentration of the dye in the mixture 

through a linear model involving a dependent variable (fluorescence intensity) Yj, 

which is a function of i independent variables x1, x2,…..xi (concentration). The 

functional relationship between the two is given by the equation of a straight line:18 

 
xxxY iijj ββββ ++++= ...22110                                                     Equation 3-3  

where 0β refers to the intercept and β1, β2,…….,βi are the concentration coefficients 

as obtained by a least squares fit of a set of standards. Linear combinations of the 

mixture spectra were calculated using β1, β2,…….,βi and β0, and the sum of squared 

differences between the measured and calculated spectra were minimised using least 

squares optimisation software. The least squares principle chooses values of x1, 

x2,…..,xi  such that the sum of squared residuals (SS) is minimized: 22 
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This value is minimised by adjusting the concentration of fluorophores present. 
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3.3 Materials and Methods 

3.3.1 Reagents 

Fluorescein (Acros Organics, lot no. A0222026), rhodamine B (Acros Organics, lot 

no. A0081279) rhodamine 101 (Fluka, lot no. 1246518) and eosin Y (Sigma Aldrich, 

lot no. 20696DJ) were used in the study of dye mixtures. The CdSe ZnS-capped 

carboxylate functionalised quantum dots (Evident Technologies) selected were 

Adirondack Green (Lot no. AWN0512C, λex 497nm, λem 515 nm), Hops Yellow 

(Lot no. AWN30J2C, λex 537, λem 560 nm) and Fort Orange (Lot no. KFN0612C2, 

λex 581nm, λem 594 nm), designated green, yellow and orange respectively. Solutions 

containing fluorescein were made in 5 mM NaOH pH 9.2 (Sigma Aldrich lot no.  

14122HD ). The standards were made using mixtures of varying concentrations of 

the dyes assumed to be in the ‘unknown’ sample. 

 

3.3.2 Imaging of fluorophore and quantum dot mixtures 

Standards and samples were imaged using an add-on to an inverted microscope 

(Figure 8) (IX71; Olympus UK Ltd, Southall, UK). Images were collected using an 

image intensifier (II118MD; Lambert Instruments, Leutingewolde, The Netherlands) 

attached to a CCD camera (PCO.1600; PCO Computer Optics GmbH, Kelheim, 

Germany). The intensified camera system was attached to an imaging spectrograph 

(PARISS; Lightform Inc., Hillsborough, NJ) and then to the bottom port of the 

microscope. The microscope was illuminated using a mercury burner (Olympus 

USH-103OL; Olympus UK Ltd, Southall, UK). When imaging QDs, the light was 

passed through a UV filter cube consisting of a 330 – 385 nm band pass excitation 

filter, 400 nm dichroic mirror and 420 nm long pass emission filter (U-MWU2; 
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Olympus UK Ltd, Southall, UK). For fluorescent dyes, a filter cube consisting of a 

450 DF55 nm excitation filter, dichroic mirror of 485 nm and 500 nm long pass 

emission filter (XF77-2; Omega Optical Inc., Brattleboro VT) was used. 

 

Data analysis 

The LINEST function in Microsoft excel was used to obtain j0β and jβ  for the 

standard calibration curve. Using intensity readings for known samples at selected 

wavelengths, a matrix of concentration and intensity as a function of wavelength 

was constructed. Regression using the LINEST function for multiple components 

was carried out: the syntax for this operation is 

LINEST(known_y’s,known_x’s,const,stat). Known y’s were the measured intensity 

readings and known x’s were the concentrations of the standards within the mixture. 

The constant value was set at TRUE, which allowed the model to calculate the 

intercept for the regression line. The statistic value was also set at TRUE, allowing 

the model to calculate the standard error in the coefficients, the regression 

coefficient and other statistical information (which were not used). A spreadsheet 

showing the results of this regression is shown in Appendix 1 (page 193). The 

values obtained for j0β  and jβ  were then used in Equation 3-3 to simulate a curve 

for the ‘unknown’ mixture. The sum of squared differences between the simulated 

and measured curves was calculated and minimised by adjusting the concentration 

of the fluorophores present. The mixture of dyes was modelled as a mixture of 

known mixtures and the minimum number of components chosen was two. 
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3.4  Results and Discussion 
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Figure 16: Figure showing spectra of fluorescein alone ×, rhodamine B alone 

■and a mixture of the two fluorophores ♦ in buffered solution. 

 

Figure 16 shows spectra of fluorescein, rhodamine B and a mixture of the two dyes. 

Fluorescein has maximum excitation and emission wavelengths at 490 and 515 - 520 

nm respectively, while rhodamine B has maxima at 543 and 575 nm for excitation 

and emission respectively. Both dyes were excited with a 470 DF 35 band pass filter, 

with emission collected by a 515 nm long pass excitation filter. Both dyes are pH 

sensitive, having varied pH dependant forms. Their multiplicity of structures is a 

result of the xanthene and benzoic acid groups, which have several ionisation 

states.23 Figure 17 shows some of the possible structures of rhodamine B. In 

solution, the dye can exist as a cation or in neutral form. The neutral form can exist 

as an equilibrium mixture of the coloured, fluorescent zwitterion and the colourless 
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lactone.24 The lactone can also dimerize, and the nitrogen atoms can be protonated. 

These relationships in solution are important for correct interpretation of mixtures 

containing rhodamine B.   

 

Figure 17: Some pH-dependent structures of rhodamine B. The neutral forms 

are present at pH 13 to 4, the cation is formed between pH 3 and 1. 26 

 

Seven forms of fluorescein are shown in Figure 18. As seen, fluorescein has multiple 

pH dependent forms including the yellow cation and zwitterion, the red quinone, 

the colourless lactone, and the green anions and dianion. In basic solution (pH> 8), 

the predominant species is the dianion. 
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Figure 18: The pH-dependent structures of fluorescein.  The cationic and 
neutral forms have pKa 3.1 to 3.4 and 6.3 respectively, with the pKa of 
lactonization 2.4. 23 The formation of the dianion from the anion has a pKa of 
6.3 to 6.8 25  
 
 
Chemometric separation was performed on mixtures of fluorescein and rhodamine 

B. Table 3 presents the separation after a mixture of dyes were used as the standards 

to compute Yi, while Table 2 shows separation using individual standards with 

Equation 3-1. The unmixed spectra are shown in Figure 19.  

It is readily apparent when Tables 2 and 3 are compared, that the method of 

separation using mixtures of standards gave a better approximation to the actual 
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concentration of the dyes than the method where individual fluorophores were used 

to unmix the data. 

[Actual]/mM [Predicted]/mM [Actual]/mM [Predicted]/mM

RB RB F F

0.020 0.039 ± 7.38E-04 4.000 0.032 ± 9.76E-05

0.030 0.049 ± 7.43E-04 0.040 0.022 ± 9.82E-05

0.010 0.013 ± 2.23E-04 0.020 0.014 ± 2.95E-05

0.001 0.001 ± 4.07E-05 0.010 0.009 ± 5.39 E-06  

Table 2: Relationship between actual and predicted concentrations for 
fluorescein and rhodamine B in a mixture of the two dyes, obtained using 
existing method 
  

 

[Actual]/mM [Predicted]/mM [Actual]/mM [Predicted]/mM

RB RB F F

0.020 0.021 ± 1.60E-04 0.050 0.050 ± 5.71E-05

0.030 0.030 ± 2.55E-04 0.040 0.040 ± 9.12E-05

0.010 0.007 ± 5.22E-04 0.020 0.022 ± 1.86E-04

0.001 0.001 ± 4.53E-04 0.010 0.012 ± 1.62E-04  
 
Table 3: Relationship between actual and predicted concentrations for 
fluorescein and rhodamine B in a mixture of the two dyes, obtained using 
new separation technique. The error in the prediction is calculated using 
Solver. 



 70

0

20

40

60

80

450 500 550 600 650 700
Wavelength /nm

In
te

ns
ity

 (a
rb

itr
ar

y)

fluorescein dianion

rhodamine B neutral form

 

Figure 19: Spectral unmixing of fluorescein and rhodamine B, showing 
spectra of the mixture (solid line), the fractional contribution of fluorescein 
50 μM (dash-dot line) and the fractional contribution of rhodamine B 20 μM 
(dashed line)  
 
 

Mixtures were unmixed using both individual standards and mixtures of standards, 

and the fractional contribution of each component to the mixture is demonstrated 

in Figure 19. For fluorescein, the RSD with the existing method (individual 

standards) was 14%, while that for the new method (mixtures of standards) was 

0.5%. With rhodamine B, the RSD was 11% and 8% for the existing and new 

methods respectively. The residuals plots further highlight the improvement of the 

new method over the old (Figure 20). 
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Figure 20: Residuals plots for the quantitative unmixing of fluorescein and 
rhodamine B for the existing method ●, and the new method ■ 
 

 

The residual plots (Figure 20) highlight the relative success of the unmixing models, 

with the previous method showing greater deviations near to the excitation maxima 

of the fluorophores. This method is unable to account for the behaviour of the dyes 

such as subtle wavelength shifts and energy transfer effects in a mixture. Figure 20 

shows an underprediction of the amount of fluorescein present, and an 

overprediction for the amount of rhodamine B. Creating standards that are already 

mixed provided a model that has taken into account ion changes, chemical 

interactions of the dyes and photophysical behaviours which would not be seen in a 

spectrum of an individual fluorophore. It has been previously stated that the use of 

mixed fluorophores as standards is not recommended,2 as they give an untrue 

representation of the individual fluorophore components. The results shown 

(Tables 2 and 3; Figure 20) indicate that the use of mixed fluorophores is beneficial. 
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The experiment presented in Figure 16 is performed at pH 9.2. The species present 

are the fluorescein dianion 23 (Figure 18) and the zwitterion of rhodamine B 26 

(Figure 17). At this pH, significant interaction between rhodamine B and the 

carboxyl groups on fluorescein is unlikely.  
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Figure 21: Mixtures of fluorescein and rhodamine B in unbuffered solution. 
The solid line represents a mixture of 22 μM rhodamine B with 50 μM 
fluorescein, × is 11 μM rhodamine B with 2 μM fluorescein. 
 

 

In unbuffered solutions, other species of the two fluorophores would be present. 

Subtle changes in pH can affect the position of the emission maxima and solutions 

need to be pH controlled. The effect of pH can be tested with a mixture of 

fluorescein and rhodamine B measured in deionised water as the solvent (Figure 21). 

The stock solution of fluorescein was also prepared in unbuffered solution. 
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Figure 21 shows a difference in the shape of the fluorescein peak. It is significantly 

broader (compared to Figure 16), and there appear to be two species there, at 515 

and 526 nm. For this experiment it is recognised as a broadened fluorescein peak, 

however in a mixture of unknown dyes, this could be misinterpreted as two species 

with similar emission maxima. The broad peak is easily explained by the 

photophysical behaviour of fluorescein. In unbuffered solutions it is possible to 

obtain a mixture of different forms of fluorescein. In this experiment, unfortunately 

the pH of the solution was not recorded, but the water used for making the 

solutions had a pH between 5 and 6, indicating the presence of the quinoid, lactone, 

zwitterion, monoanion and dianion forms each of which has a different emission 

maximum.23 Another effect of unbuffered solutions of fluorescein is reduced 

fluorescence of the dye. The dianion gives the most intense emission 27 and this 

predominates at pH > 8. Solutions of fluorescein with pH < 8 contain the lactone, 

which is colourless and has limited absorption. The presence of the lactone lends 

itself to reduced fluorescence in solution. For rhodamine B, the acidic solution 

means that the main species are the neutral and some amounts of the protonated 

forms of the dye. In acidic solution, the carboxyl group of the zwitterion becomes 

protonated and increasing acidity leads to successive protonation of the nitrogen 

groups. The species known as R++ (occurring at pH 3 – 1) consists of a protonated 

carboxyl and N group and has an orange colour. The species known as R+++ 

(formed at pH < 1) is formed on protonation of the second N, and is yellow. The 

forms all have different excitation maxima. Additionally, the reactions occurring at 

acid pH: dimerization and ion pairing, lead to a departure from Beer Lambert’s law 

and the system is no longer linear. This explains why linear unmixing; even with 

mixtures of standards, was not effective for quantitative separation of the mixture: 

the RSD between calculated and actual concentrations of fluorescein was 65 %, and 
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that for rhodamine B was 174 % when a mixture of unbuffered dyes was prepared. 

These results highlight the need for careful control of pH when doing quantitative 

analyses of fluorescent mixtures.  
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Figure 22: Mixtures of fluorescein, rhodamine B and rhodamine 101 in 
buffered solution. The solid line represents a mixture of 48 μM fluorescein, 10 
μM rhodamine B and 50 μM rhodamine 101, × represents a mixture of 38 μM  
fluorescein with 20 μM rhodamine B and 10 μM  rhodamine 101, and ▲ is a 
mixture of 19 μM fluorescein, 5 μM rhodamine B and 20 μM rhodamine 101. 
 

 

An attempt was made to determine how many fluorophores can be accurately 

separated using the new method. Figure 22 shows the spectra of the mixtures with 3 

dyes. The third dye is rhodamine 101, having excitation and emission maxima at 560 

and 589 nm respectively. Figure 23 shows the structure of rhodamine 101. Unlike 

the other xanthenes dyes, it is largely insensitive to its environment because the 

amine groups are all tertiary. 28 The spectra do not show distinct peaks for 

rhodamine 101 and rhodamine B; there is the appearance of a broad band that is 



 75

characteristic of neither rhodamine B nor rhodamine 101. However, the shift of 

emission was accounted for in the standard solutions, and this should allow the 

mixture to be separated. This mixture of 3 dyes however, was not easily separated. 

The RSD between the predicted and actual concentrations was 65 % and 34 % 

respectively for rhodamine B and rhodamine 101. The model appeared to have 

some difficulty distinguishing the two fluorophores from each other. The RSD for 

fluorescein was 13 %, higher than previously obtained in the mixture of fluorescein 

and rhodamine B. 

 

N O+ N

Cl-

COOH

 

                      

Figure 23: The structure of rhodamine 101 

 The inability to separate the 3 dyes appeared to be a result of the high 

concentration of the dye mixture: the addition of rhodamine 101 increased the 

absorbance of the mixture, creating a non-linear absorbance of light. To test this 

hypothesis, the effect of high concentrations of dyes in the mixture on the ability to 

separate the spectra was investigated. The experiment with the mixture of 3 dyes 

was repeated with the solutions diluted by a factor of 10. The RSD between the 

predicted and actual concentrations was 2% for fluorescein, 9% for rhodamine B 

and 7% for rhodamine 101. This indicated that the higher concentration of dyes was 

indeed the cause for the poor performance of the unmixing procedure. To further 
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prove that low concentrations of multiple dyes can be unmixed using the method, a 

fourth dye was added to the mixture (Figure 24).   
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Figure 24: Spectra of mixtures of four dyes fluorescein, rhodamine B, 
rhodamine 101, and eosin Y. The solid line is the spectrum of a mixture 
containing 2 μM fluorescein, 5 μM rhodamine B, 2 μM rhodamine 101 and 3 
μM eosin Y, × is a mixture containing 1 μM  fluorescein, 6 μM  rhodamine B, 
8 μM  rhodamine 101 and 2 μM  eosin Y, ▲ is a mixture containing 8 μM 
fluorescein, 8 μM rhodamine B, 4 μM rhodamine 101 and 1.3 μM eosin Y. 
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Figure 25: The structure of eosin Y 

The fourth dye added was eosin Y (Figure 25), a tetra-bromo derivative of 

fluorescein, having excitation and emission maxima at 490 and 525 nm respectively. 



 77

There is a broad band between 515 and 525 nm. In spite of the proximity of the 

emission maxima of these two dyes (fluorescein and eosin Y, 7 nm), the model was 

able to distinguish between them, and the RSDs between the predicted and actual 

concentrations were 3%, 2%, 13% and 7% for fluorescein, rhodamine B, rhodamine 

101 and eosin Y respectively. This indicates that despite the addition of a fourth 

species to the mixture, spectral unmixing can be successfully carried out. It would 

appear incongruous that four dyes were separated with greater success than three 

dyes. These results prove the hypothesis that high concentrations of dyes do not 

mix linearly and cannot be separated using linear least squares unmixing. These 

experiments highlight yet another restriction when using conventional fluorophores: 

the dyes are linear over only a narrow concentration range and concentrations need 

to be made such that the absorbance is less than 0.1 absorbance units. Departure 

from linearity reduces the ability to accurately identify and quantify the dyes present 

in a mixture. 

This section presented an analysis of quantitative spectral unmixing of fluorophores, 

with a new method of calibrating multi-fluorophore systems. Separation of 

fluorescent dyes is normally hampered by effects of pH, photophysical interactions, 

and differences in maximum excitation and emission wavelengths of the dyes in a 

mixture, to name a few. By creating standards that take all effects into consideration, 

the process of unmixing spectra is tractable. Through a series of experiments, it has 

been established that it is possible to control the experiment such that the mixture 

can be easily separated. These controls include control of pH, ensuring that 

concentrations are low, and selecting dyes that have well spaced emission maxima.  

Other probes that can remove the need for these controls and simplify multiplexed 

analyses were therefore investigated. 
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The focus was changed to QDs, to determine if their widely publicised 

improvement over conventional organic dyes is realised when applied to spectral 

unmixing.  Figure 26 shows the spectra of a mixture of the QDs for separation. 

This is a mixture of green and orange QDs, but the peak for green (515 nm) is not 

visible. The orange QD was kept constant at approximately 10 nM, while that of the 

green QD was incrementally decreased. Figure 26 shows that the intensity of the 

orange QD decreased with decreasing green concentration. These two QDs could 

not be separated using the same method as the organic dyes, and no other method 

was attempted.  
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Figure 26: Mixture of orange and green quantum dots indicating the 
dependence of orange fluorescence on green.  In this mixture, the orange 
concentration is kept constant and the green concentration is decreased from 
▪ 9nM to x 3 nM to ▲ 0.8 nM. 
 

The inability to separate is related to the non-linearity of mixing with the QDs, 

brought about through what is believed to be Förster (or Fluorescence) resonance 

energy transfer (FRET). This is a photophysical phenomenon where the intensity 



 79

emitted by the donor is decreased, while that of the acceptor is increased. The 

occurrence of FRET is dependent on the distance between the acceptor and donor, 

the spectral overlap between the donor emission and acceptor absorption spectra, 

and the relative orientation of the transition dipoles for the donor and acceptor. The 

observance of FRET occurring between the quantum dots is a phenomenon which 

isn’t expected to occur in solution, based on the relative sizes and the proximity of 

one QD to another. There has been a report of FRET occurring due to long-range 

resonance transfer between two different sizes of QDs in gelatin. 29 The gelatin 

ensured close proximity of the QDs, the donor emission spectrum overlapped with 

the acceptor absorption spectrum and FRET was permitted through a dipole-dipole 

interaction. In another report, FRET was evidenced between QDs of two different 

sizes in a single droplet of water.30 This was attributed to a decrease in the distance 

between the donor and acceptor species, allowing FRET to occur through dipole-

dipole interactions. FRET between QDs has been demonstrated in closely spaced 

systems,31 such as would occur in a solid.32 In our experiment, the reactions 

occurred in solution, and some other mechanism must be taking place to allow 

energy transfer. The following is proposed: there was an interaction between the 

carboxylate functionalisations of the QDs which could possibly be a hydrogen bond. 

This hypothetical bond has a distance of 261 pm,33 based on the length of the 

hydrogen bond between dimerized carboxylic acids. If this is the case, then, the 

aggregate formation due to the functionalisation allows for energy transfer to occur 

over the distance between the sensitizer (green QD) and the acceptor (orange QD), 

in spite of the low concentrations QDs; less than 10 nM This proposed mechanism 

is shown in Figure 27. This is one of the possible explanations of why the intensity 

of the orange QD increases as the concentration of the green QD is increased. 
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Figure 27: Diagram showing simplified organisation of two functionalised 
QDs in solution. The diagram shows ZnS capping with dihydrolipoic acid 
functionalisation.34 There is hydrogen bonding between the carboxylate 
groups 
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The hypothesis that FRET is occurring between aggregated QDs needs to be 

explored in greater detail. The energy transfer efficiency between the orange and 

green QDs can be calculated using intensity data, as shown in Equation 3-5.35  
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Where E is the energy transfer efficiency, and IDA and ID are the intensities of the 

donor (green) QD in the presence and absence of the acceptor (orange) respectively. 

This value of energy transfer efficiency can be used to determine the distance 

between the donor and acceptor, using Equation 3-6. 35  
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As fluorescence imaging lifetime (FLIM) measurements were not obtained for the 

QD system, it is not possible to state whether all the quenching is related to FRET. 

However, provided that no other interactions altered the emission intensities, an 

energy transfer efficiency of 0.257 is obtained from intensity data. This gives the 

distance between the donor and acceptor as 1.19 0R . As R0 is in the range of 20 to 

60 Ǻ,36 this indicates that the distance between the centres of the emission and 

adsorption dipoles is probably on the order of the size of the QDs. This means that 

the separation between them is minimal, possibly corresponding to the 261 pm 

length of the hypothetical hydrogen bonds. It must be noted however, that 

Equation 3-5 only provides an average FRET efficiency value, and therefore cannot 

define a definite distance in solution.36 In our case, this equation is not the best 
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method for determination of the distance between donor-acceptor pairs. The 

present situation requires different expressions derived through experiments where 

the rate of energy transfer is averaged over the distribution of the FRET pairs.    

 

3.5  Discussion and Conclusions 

The chapter presented a new method for calibrating a system containing a mixture 

of fluorophores, such that the dyes’ spectra could be quantitatively unmixed. The 

principle of spectral unmixing assumes that the intensity at a single pixel is a result 

of the sum of the individual components in the mixture. Experiments performed 

show this to be somewhat misleading, as fluorophores do not always mix in this 

manner. Reactions in the mixture can create new species which do not absorb or 

emit in the same manner as individual fluorophores. When this occurs, using 

individual standards is of little utility. This has been demonstrated through a series 

of experiments, illustrating the need for the new method. When a mixture of two 

dyes was quantitatively unmixed using existing methods, the results did not always 

correspond well with actual concentrations (Tables 2 and 3, Figure 20).  

 

The need for pH and concentration control has also been highlighted. It was shown 

that when these controls are in place, up to four dyes (and possibly more) could be 

unmixed with low RSD between the calculated and actual concentrations. Without 

controls in place, the method is of little utility.  

 

Linear least squares minimisation was proven to be an effective method for spectral 

unmixing of fluorophores. However, the intrinsic properties of fluorescent dyes 

allow for non linear mixing. 37 Processes such as excited state reactions, which are 
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exhibited by the coumarins, also allow for non linear mixing. 38 Another is the pH 

dependence of some fluorophores such as fluorescein, rhodamine B and eosin Y. 

Each form has a different emission maximum, thereby leading the model to assume 

that another species is present. In the case of QDs, their nonlinearity was a result of 

energy transfer between the molecules in the mixture. While the size of the quantum 

dot may not allow for overlap of the molecules, the carboxylate functionalisation in 

solution caused dimerisation of carboxylic acids, thereby bringing the QDs closer 

together. QDs satisfy all criteria of broad excitation and narrow emission bands, 

resistance to photobleaching and longer lifetimes than organic fluorophores, but 

there is still the need for probes that do not interact when colocalised. This caused 

attention to be turned to silica nanoparticles doped with lanthanides. The silica 

encapsulates the lanthanide thereby preventing photobleaching and the particles can 

be made large enough to prevent interparticle FRET. Even if small particles are 

used and aggregation occurs, the large Stokes shift of the lanthanides prevent them 

being FRET pairs with each other, while allowing FRET pairing with QDs in other 

applications. The use of these probes will be discussed in the following chapter. 
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4  Lanthanide nanoparticles: simplification of multiplexed methods of 

analysis 

The unfavourable characteristics of organic fluorophores and quantum dots in 

multiplexed experiments prompted the search for probes that mix linearly, are 

bright, have narrow emission bands, have large Stokes’ shifts and can be excited 

simultaneously. Silica nanoparticles doped with lanthanides have all these properties 

and were selected for application to multiplexed analyses. Nanoparticles doped with 

chelated Eu and Tb have been used previously and extensively characterised, but 

their application to single welled multiplexed immunosorbent assays had not been 

described. It was not the intention of this work to further characterise the particles, 

and this is therefore not presented. What this work set out to achieve was to create 

additional particles; doped with Sm and a mixture of Eu and Sm, create a ligand 

suitable for chelating Tb while binding it to the wall of silica, and to use these 

probes in immunoassays. Presented here is an introduction to the lanthanides, their 

spectral properties and their previous uses in immunosorbent assays. Then, 

nanoparticles containing chelated lanthanides are synthesised, the two probes were 

mixed in varied ratios and the spectra of the mixtures were separated using a simple 

unmixing algorithm. Finally, the probes are applied to a single welled multiplexed 

assay, where human and mouse IgGs were simultaneously detected in a model 

study.1 

  

4.1 Introduction 

The fluorescence of some lanthanides, particularly europium (Eu), terbium (Tb), 

samarium (Sm) and dysprosium (Dy) can be enhanced when chelated by organic 
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ligands.2  Lanthanide chelates have unique properties, making them suitable as labels 

in various applications such as bioassays, high throughput assays, screening studies 

and in time resolved spectroscopy. Their use enhances the signal to noise ratio.3 The 

unique properties include their line-like emission spectra, long fluorescence lifetimes, 

no self quenching, high quantum yield of fluorescence, good solubility and large 

Stokes shifts.4 Line-like emission spectra and large Stokes shift eliminate 

background fluorescence in time resolved immunofluorometric applications 

(TRIFAs), and long lifetimes allow better separation between the signal and noise.5  

These characteristics are a result of the Laporte forbidden f – f transitions of 

shielded inner shell electrons.6 The 4f electrons of the lanthanide trivalent ions are 

shielded by the outer 5s and 5p electrons. As a result, the ions retain atomic 

properties even after complexation. Direct excitation of these shielded electrons 

results in weak emission, but the use of a suitable ligand leads to sensitised emission, 

where the ligand is excited followed by an intersystem crossing (ISC) from the 

ligand’s singlet state to the triplet state. This is followed by energy transfer to the 

low lying emissive state of the excited lanthanide ion 7 (Figure 28). Energy transfer 

can also occur from the singlet state, but generally occurs from the triplet state. This 

is because ISC from the triplet state is enhanced by the paramagnetic lanthanide 

ions which lie closer to the triplet state. Energy transfer from the singlet state is 

slower and cannot compete with fluorescence and ISC. 8, 9 Figure 28 illustrates the 

absorption of light by a chromophore, leading to promotion to the first excited state 

(S1). There is then intersystem crossing to the triplet state (T1) of the chromophore 

followed by energy transfer to the excited state of the lanthanide (2S’+1L’J’). The metal 

centre then becomes deactivated and returns to the ground state. When radiative 

deactivation occurs light is emitted in the form of luminescence. 10 
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Direct excitation of the lanthanides is inefficient due to narrow intrinsic absorption 

bands (< 2 nm), and low molar absorptivity (< 1 M-1cm-1).11  The ligand must 

contain a sensitising chromophore with energy higher than that of the lanthanide’s 

excited state such that excitation is efficient and irreversible. This is known as the 

antenna effect. The ligand also protects the lanthanide luminescence from being 

quenched by molecules such as water which has high-energy vibrations. Quenching 

of the fluorescence by O-H vibrations of lanthanides having a short gap between 

the lowest excited state energy level and the highest ground state level tends to 

occur.12 This leads to nonradiative deactivation of the lanthanide metal centre. 10 

 

 

Figure 28: Energy diagram of luminescence in lanthanide complexes 
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The majority of studies involving the use of lanthanides as biomarkers use ligands 

such as β-diketones, aromatic amine derivatives such as pyridine, bipyridine, 

terpyridine and phenanthroline, and macrocycles.13 A commonly used lanthanide 

ligand is the polycarboxylate diethylenetriaminepentaacetic acid (DTPA), which 

when covalently attached to an antenna, allows luminescence of the lanthanides.  
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Figure 29: Reaction of polycarboxylate diethylenetriaminepentaacetic acid 

(DTPA) with cs 124 to form a lanthanide ligand 

 

7-amino-4-methyl-2(1H)-quinolinone; also known as carbostyril 124 or cs 124, 

acting as the antenna (Figure 29) has reportedly sensitised both europium and 

terbium.4 The dianhydride form of DTPA can be conjugated to amine-containing 

molecules, or can be further modified to prevent nucleophilic acyl substitution 

reactions which occur readily with the non-specific dianhydride. These 

modifications include conversion to the isothiocyanate form for reaction with 
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amines, and conversion to the maleimide, bromoacetamide and pyridyldithio forms 

for reaction with thiols (Figure 30). 14 
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Figure 30: Further modification of the lanthanide ligand to allow conjugation 
to other moieties. R refers to any amine or thiol reactive group. 

 

Lanthanide fluorescence may be further enhanced by compounds that protect the 

complex from solvent interference. Enhancement may also be brought about 

through cofluorescence, a process whereby the fluorescence of the lanthanide is 

increased through the use of another non luminescent lanthanide such as Gd3+. 15  

 

Nanoparticles (NPs) that contain thousands of lanthanide chelates have been 

developed for use in time resolved immunoassays.16 Earlier reports explored the use 

of polystyrene beads doped with a europium complex for detection of prostate 

specific antigen (PSA).16 The use of polystyrene NPs doped with terbium, europium, 

samarium and dysprosium complexes have also been reported as potential labels for 

multiplexed immunoassays, after their use in the detection of PSA.17 The chelates 
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are not covalently bound to the NP wall and dye leakage has been known to occur, 

causing a decrease in the NP signal.18 Additionally, polystyrene NPs are 

hydrophobic and agglomerate in aqueous solution, presenting problems during 

surface modification and bio-labelling applications.19 These factors prompted the 

synthesis of silica NPs containing first Eu complexes 19-21 as an alternative, due to 

silica’s hydrophilicity and ease of surface modification. Other reports noted the 

synthesis of lanthanide complexes on the surface of the silica.22-24 Incorporating the 

complexes into the silica particles allows for particles with more than one optical 

encoding to be synthesised, 24 making multiplexed measurements possible. 

 

Since the initial studies on luminescent lanthanide doped silica NPs, some reports 

have been made of dye-doped NPs containing more than one optical encoding. Liu 

et al. synthesised such particles through the hybridisation of silica particles doped 

with FITC and a terbium complex. The complex was made on the surface of the 

doped silica particles. The novel particles exhibited both the fluorescent properties 

of FITC and terbium. 24 There are few reports of multi-fluorescent dye doped SiO2 

NPs. In one report, the silica was doped with controlled ratios of Eu and Tb 

chelated by 2,9-bis[N,N-bis(carboxymethyl)aminomethyl]-1,10-phenanthroline and 

used in a time resolved immunofluorimetric assay (TrIFA) for human hepatitis B 

surface antigen. 5 In the other, the particles are 210 nm silica spheres containing Eu 

and Sm chelated by 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione.25 The study 

examined energy transfer within the system. 

  

The properties of lanthanide complexes and lanthanide-doped SiO2 NPs allow them 

to be used extensively in Tr-FIAs, and while their usefulness in two-colour 

detection imaging applications have been alluded to,26 no known studies have 
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separated the NPs using spectral unmixing, and little research has been carried out 

in creating more than one optically encoded NP. The present work examines the 

use of lanthanides as probes for simplifying spectral unmixing and reports the 

separation of mixtures of fluorescent probes for multiplexed measurements. The 

novelty of the work lies in the use of silica NPs doped with lanthanides as 

replacements for conventional fluorescent dyes and QDs in spectral unmixing, the 

synthesis of an NP containing Eu and Sm in the same silica matrix which has not 

been previously demonstrated for particles < 100 nm, and the synthesis of a ligand 

that is able to chelate all three lanthanides. Spectral unmixing of the NPs will be 

compared to unmixing spectra of fluorescent dyes and QDs. The utility of the NPs 

is further demonstrated in a novel single-welled multiplexed immunoassay using 

commercially obtained mouse and human IgGs. 

 

4.2  Materials and Methods 

4.2.1  Materials 

The reagents for the synthesis of SiO2-doped nanoparticles: EuCl3.6H20 and 

SmCl3.6H20 (both 99.99 %), the chelate 4,4”-bis(4,4,4-trifluoro-1,3-dioxobutyl)-o-

terphenyl-4’-sulfonyl chloride (BTBCT) (≥ 95 %, Lot no. 1156533), 3-aminopropyl) 

triethoxysilane (APS) (99%, Lot no. 10330CH-417), cyclohexane (99.5 %, Lot no. 

S42405-257), Triton® X-100 (Lot no. S42329-367), n-octanol (99 %, Lot no. 

01706DE) and tetraethyl orthosilicate (TEOS) (≥ 99 %, Lot no. 1332815) were all 

obtained from Sigma Aldrich UK (Sigma-Aldrich, Dorset UK). 4-phenylspiro-

[furan-2(3H),1-phthalan]-3,3′-dione (fluorescamine) (98%, Lot no. 80129) was also 

obtained from Sigma-Aldrich. Deionised water (Milli-Q purification system; 

Millipore UK Ltd.) was used to prepare all solutions. All reagents for the 
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multiplexed immunoassay were also obtained from Sigma Aldrich. These were goat 

anti-mouse IgG (whole molecule) (Lot no. M8642), mouse IgG (Lot no. I5381), 

goat anti-mouse IgG (Fab specific)-Biotin (Lot no. B0529), human IgG (Lot no. 

I4506), goat anti-human IgG (whole molecule) (Lot no. I1886), technical grade 

casein from bovine milk (Lot no. C7078) and carbonate-bicarbonate buffer capsules 

(Lot no. C3041). Biotinylated anti-human IgG was prepared in-house. 

4.2.2 Synthesis and characterisation of the nanoparticles 

The method for preparing the nanoparticles is outlined in Chapter 2. After the 24 

hour synthesis, acetone was added and the mixture was centrifuged (as outlined 

previously). The particles obtained upon centrifugation were then suspended in 

approximately 15 mL ethanol and transferred into 2 mL eppendorf tubes (1.5 

mL/tube). The tubes were centrifuged (10 000 g, 30 minutes), the supernatant was 

discarded, a further 1.5 mL of ethanol were added followed by further 

centrifugation. This process was repeated for a total of 7 washes; first with ethanol 

(4 times) and then with water (3 times). After the final wash with water the particles 

were stored in PBS (pH 7.4). These wash steps served to remove all unreacted 

chemicals, thereby ensuring that luminescence of the doped silica particles was a 

result of the chelated lanthanides bound to the wall of silica only, and not unbound 

reagents in solution. The speed and time of centrifugation further served as an 

indicator of the stability of the particles made. The ligand BTBCT is unable to excite 

Tb3+, and another ligand had to be synthesised. This needed to have a group that 

could be bound to the silica wall, thereby preventing leakage of the chelated 

lanthanide. The group chosen was (3-aminopropyl)triethoxysilane (APS), and the 

procedure is outlined below (Figure 31). 
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7-Amino-4-methyl-2-hydroxyquinoline, known as carbostyril 124 (cs124) (10 mg, 

0.0574 mmol) was dissolved in DMF (200 µL). This was added dropwise with 

stirring to the dianhydride of diethylenetriaminepentaacetic acid (DTPAA) (100 mg, 

0.287 mmol) and triethylamine (40 µL) in a solution of DMF (4.7 mL). After stirring 

at room temperature for 1 hour, APS (10.4 mg, 47 µmol) was added and stirring was 

continued for a further hour. The reaction was quenched by the addition of water (5 

mL) and the chelate formed, DTPA-cs124-APS was recrystallised from chloroform 

and the pale yellow crystals formed were dried and stored at 2 – 8oC for reaction 

with the lanthanides. This structure of the chelate was difficult to prove, as the 

presence of water and DMF, after days of drying by high vacuum and rotary 

evaporator pumps, was still evident in the NMR spectra. This made it difficult to 

integrate the peaks successfully. It was possible however, to compare the chelate 

NMR data with computer generated NMR data, and these will be discussed. The 

specific 1H NMR shifts looked for were those for carboxylic acids (indicating that 

the anhydride rings had opened), and the amide bonds formed when cs 124 and 

APS bind to DTPAA. As structural evidence was not definitive, the success of the 

synthetic procedure had to be based on the spectroscopy of a silica nanoparticle 

doped with Tb chelated by the ligand synthesised. The only structure which could 

provide such a particle would be the product of the reaction that is shown in Figure 

31.  
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4.2.3  Synthesis of a novel ligand for Terbium 
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Figure 31: The synthetic method for the preparation of a new ligand for Tb.  
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4.2.4 Fluorescamine 

4-phenylspiro[furan-2(3)l'-phthalan]-3,3-dione, (fluorescamine), was used to 

determine the presence of amine groups on the surface of the nanoparticles. This 

reagent is itself non-fluorescent, but reacts only with primary amines to form highly 

fluorescent pyrrolinones. 27 Any excess reagent is also non-fluorescent, thereby 

making fluorescamine suitable for the detection of primary amines in basic pH 

(pH > 7). 28 

 

A stock solution of 1.5 mg (0.011 M) fluorescamine in 0.5 mL dimethyl sulfoxide 

(DMSO) was made immediately before use. 5 μL of the solution were added to a 

tube containing 15 μL PBS (0.003 M fluorescamine) and a further 5 μL were added 

to a tube containing 15 μL of NPs (0.1 M) in PBS. The mixtures were vortexed and 

left at room temperature for 15 minutes, after which the tubes were centrifuged and 

the pellet washed with PBS. This was to ensure that any colour change would be a 

result only of amines on the particles. The presence of primary amines was denoted 

by blue-green fluorescence following illumination with a UV light source, 254/306 

nm excitation, 0.12A @ 220 V, 50 Hz (Mineralight® Lamp, Ultraviolet Products, 

Inc., San Gabriel, California, USA.). All analyses were performed in triplicate.   

4.2.5 Transmission Electron Microscopy (TEM) 

A transmission electron microscope (TEM) was used to determine the sizes of the 

nanoparticles made. The TEM used was a JEM-2010 JEOL (Jeol UK Ltd., Herts, 

UK), accelerating voltage 200 keV, tungsten filament, electron beam current 10 µA. 

Images were recorded using a Gatan SC1000 ORIUS CCD camera (Model 832) 

with an image size of 4008 x 2672 pixels. The nominal resolution of the instrument 

is ~ 0.2 nm,29 and this is dependant on the wavelength of electrons. The resolution 



 97

is reduced through spherical and chromatic aberrations, while increasing the 

accelerating voltage improves resolution.30 The magnification used was x 200 000 

and contrast at this resolution was achieved with the use of an objective aperture. 

This provided scattering contrast by absorbing electrons that were scattered at an 

angle greater than the semi-aperture angle.31 For this contrast mechanism, dark areas 

of the resulting micrograph represent electron dense areas, as these produce the 

greatest amount of scatter.    

4.2.6 Multiplexed immunoassay for human IgG and mouse IgG using NPs 

Multiplexed immunoassays were performed by first immobilising a mixture of anti-

mouse IgG and anti-human IgG (50 μg mL-1 ) in carbonate/bicarbonate buffer (pH 

9.65, 0.05 M) on the surface of a 384-well glass bottom plate (Porvair; Flowgen, 

Nottingham, UK). The plate was left to shake at room temperature overnight 

followed by blocking with a solution of 1% casein for 2 hours. After washing with 

PBS, a mixture of human IgG and mouse IgG was added and incubated at room 

temperature for 2 hours. After washing excess antigen from the wells, the 

biotinylated anti-mouse IgG and antihuman IgG antibodies; which had been 

incubated with the avidin linked NPs for 4 hours, were added to the wells in a 1:1 

volume ratio . The plate was incubated overnight at room temperature with shaking. 

A final wash was performed and the plate imaged using the inverted fluorescence 

microscope. 
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4.3  Results and Discussion 

4.3.1 NP characterisation 
 

 
 

Figure 32: Electron micrograph of Sm-doped silica NPs, obtained with a 

TEM. Mag × 200 000. Particles were obtained after spinning at high speed. 

 

Figure 32 shows an electron micrograph of silica NPs doped with lanthanides 

obtained using a TEM. The image shows spherical, uniform particles having 

diameter of 40 ± 10 nm (40 NPs measured). No elemental analysis was performed 

on the particles, however, when looking at Figure 32, the particles show a dark ring 

around the inside of the particles. According to the theory of transmission electron 

microscopy, the darker region represents the presence of a more electron dense 

material. This region suggests that the chelated lanthanide is present and bonded to 

the inner wall of the silica NP. This is in keeping with previously published 

observations. 20 

Figure 32 further indicates that there is very little aggregation. It was observed that 

when the particles are first centrifuged, a high speed (10 000 rpm was the speed 

chosen) prevents aggregation. This was determined after initial micrographs of the 
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NPs showed aggregation when spun at a low speed (5000 rpm) (Figure 33). When 

figures 32 and 33 are compared, the two most easily comparable observations are 

size and the presence/absence of aggregates. As the particles obtained after 

spinning at low speeds are bigger (90 ± 10 nm) and more aggregated, the decision 

was made to switch to the highest speed of the centrifuge available thereby allowing 

smaller particles to be collected. Unfortunately a comparison could not be made 

from a single micrograph as the TEM was not in operation when Figure 33 was 

obtained, and the sizes obtained in Figure 32 were not easily visualised with the 

SEM. 

 

The nanoparticles were imaged using a fluorescence microscope. Their spectra are 

shown in Figures 34 through 36 and 41. Assignment of the main peaks for each 

spectrum is shown on the figures, and an explanation for the width of the emission 

peaks follows the figures. 

 

 

Figure 33: Electron micrograph of Sm- doped silica NPs as obtained by SEM. 
Particles were obtained after spinning at a low speed  
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Figure 34: Luminescence spectrum of samarium-doped silica nanoparticles. 
The concentration of Sm is 735 μM. 
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Figure 35: Luminescence spectrum of europium doped silica nanoparticles. 
The Eu concentration is 438 μM. 
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Figure 36: Luminescence spectrum of silica nanoparticles doped with 
europium and samarium. The Sm concentration is 409 μM while that of Eu is 
270 μM.  
 
 
The luminescence spectrum for Sm-doped NPs is shown in Figure 34. Four bands 

were obtained for the Sm NPs synthesised, are visible, with the most intense 

emission peak at 640 nm corresponding to 4G5/2 → 6H9/2 and the others at 570 nm, 

600 nm, and 694 nm, corresponding to the 4G5/2 → 6H5/2, 
4G5/2 → 6H7/2 and 4G5/2 

→ 6H11/2 transitions respectively.12 A fifth band was also seen at 532 nm, and this 

broad band was attributed to the BTBCT ligand emission. This was not seen in the 

emission spectrum from the Eu NP. A similar pattern of strong ligand emission and 

weak Sm emission has been reported for a Sm complex and attributed to 

deactivation of the Sm complex through solvent O-H vibrations and inefficient 

energy transfer from the ligand to the metal. The first factor would not apply in this 

case unless there is water present in the coordination sphere. The Sm complex is 

encapsulated in the silica matrix and is therefore protected from solvent effects. 

Inefficient energy transfer between the ligand and the lanthanide however, seems 



 102

likely. When the ligand is irradiated with UV light, one pathway to deactivation of 

the excited state is through transfer of energy to the lanthanide.32 Ligand 

luminescence and transfer of energy to the lanthanide excited state are competitive 

processes. Compared to the Eu complex, the transfer is less efficient for the Sm 

complex, resulting in higher fluorescence intensity for the ligand. 

The Eu-doped NPs were found to have bands at 594 nm, corresponding to the 5D0 

→7F1 transition; 613 nm corresponding to the 5D0→
7F2 transition and 689 nm, 

corresponding to the 5D0 →
7F4 transition, with the band at 613 nm having the most 

intense emission (Figure 35).33  

Synthesis of these particles allowed the creation of a particle which had all the peaks 

of both Eu and Sm. This particle was synthesised, also using the microemulsion 

method with Eu and Sm individually chelated to BTBCT, but encapsulated in the 

same silica matrix (Figure 36). This particle has fluorescence maxima corresponding 

to those of both Eu and Sm. Although added in a 1:1 molar ratio, the peak 

corresponding to Eu has fluorescence intensity 4 times that of Sm. Additionally, the 

intensity of the peak at 613 nm is almost 3 times greater in the mixed NP than it is 

in the particle doped with Eu alone. This has been described in a previous study 25 

as energy transfer from the 4F3/2 level of Sm3+ to the 5D1 level Eu3+, which lie close 

to each other, thereby leading to fluorescence enhancement of Eu. No peaks for Sm 

were observed in that study.22 All peaks for both chelated lanthanides were seen in 

the emission spectrum of our mixed NP, suggesting multiple energy transfer 

through orbital overlap from the ligand to Eu, ligand to Sm and the Sm complex to 

the Eu complex. The enhanced luminescence of Eu, coupled with visible 

luminescence from Sm makes this NP useful, and provides an advantage over the 

use of individually doped Eu and Sm particles. Its characterisation also differs from 

what has been previously published. This particle has a unique spectrum, making it 
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applicable to multiplexed measurements. Additionally, for assays where the analyte 

is of a low concentration, it is hypothesised that the enhanced luminescence of Eu 

would allow for low limits of detection. By carefully controlling the ratio between 

Eu and Sm, further particles with their own unique signatures can be developed, 

thereby allowing for sensitive assays. That, however, was not attempted during this 

project, as the main focus was to use probes with unique spectra in multiplexed 

assays. The probe with enhanced luminescence of Eu would be better suited to 

single analyte detection studies and could find utility in future work focussed on that 

area. 

 
The spectrum of Tb-doped silica NPs is shown in Figure 41. The ligand used was 

DTPAA with cs 124 as the antenna, and APS used to bind the complex to the silica 

wall. The structure of a similar ligand has been described in literature14 and the 

peaks of interest for this ligand were not clearly seen using 1HNMR (DMSO-D6). 

The shifts observed were not definitive due to the presence of solvent peaks 

obscuring the product peaks. Those looked for were δ 7.4 (d, CONH between 

DTPAA and cs 124); δ 10.55 (-COOH); δ 8.28 (CONH between APS and DTPAA). 

As a comparison, the presumed structure of the chelate was generated in 

ChemBioDraw (CambridgeSoft). 1HNMR shifts were assigned theoretically and a 

comparison was made to the experimental NMR. This comparison is shown in 

Figures 37 and 38. From these figures, it can be seen that the expected peaks are 

indeed present, but are somewhat obscured by the presence of DMF and water 

peaks. Nevertheless, the roughly predicted position of the COOH shift (δ 11.00) 

appears at δ 10.27, the predicted position of the secondary amide formed between 

APS and DTPAA (δ 8.03) appears at 8.14 and the secondary amide between cs 124 

and DTPAA (δ 7.33) is shown at 7.33 in the experimental spectra. These 
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correlations indicate that with more time, further attempts could be made to clean 

the product and make it more suitable for characterisation. Future work could also 

explore using solvents other than water and DMF, as these two were hard to 

remove after synthesis. For the purposes of the NMR, a D2O shake would help 

clear the region between δ 2.0 and 3.0 of OH peaks, allowing better analysis and 

more in depth peak assignments. The shake would do little else for interpretation 

however, due to its removal of all OH and NH peaks. The product of the synthetic 

reaction should contain both starting materials DTPAA and cs124, with the 

addition of other peaks corresponding to APS and the amide bonds formed. 

Comparisons can be drawn between their respective NMR spectra and the spectrum 

of the chelate. These spectra are shown in Figures 39 and 40.  
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Figure 38: Predicted 1HNMR spectrum of lanthanide chelate. Spectrum was 
generated using ChemBioDraw (CambridgeSoft)    
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Figures 39 and 40 compare well with their theoretical spectra (not shown here), and 

when compared to Figure 37 suggest that the amide bonds have been formed 

between Cs124, DTPAA and APS. This conclusion is drawn based on the absence 

of peaks in the region of δ 8.0 and 7.4 (Figures 39 and 40). The presence of water 

and the comparatively lower concentration of the chelate solution measured (based 

on the abundance) make further comparisons in the region of δ 2.0 to 4.0 difficult. 

 Further confirmation of the structure was obtained through the formation of a 

luminescent Tb-doped silica NP. This meant that cs 124 was bound to DTPAA and 

acted as an antenna, and APS was bound to both DTPAA and the inner wall of the 

silica particle. As the particles were washed extensively after synthesis, any chelated 

Tb that is not bound to the wall of the NP is washed away and would not 

contribute to the luminescence seen. To ensure that unbound Tb was being washed 

away, the fluorescence of wash solutions were checked until they were no longer 

luminescent. The maximum excitation wavelength of the complex was 316 nm. 

Emission occurring from the 5D4 was seen, with peaks at 613 nm, 582 nm, 543 nm 

and 488 nm, corresponding to emission from the 5D4 level to 7FJ levels (J=3, 4, 5, 6 

respectively) (Figure 41).  
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Figure 41: Fluorescence spectrum of terbium-doped silica nanoparticles. The 
concentration of Tb is 430 μM. 
 

Figures 34 through 36 and 41 show spectra of the chelated lanthanides and the 

width of the emission peaks are wider than the line-like emission bands mentioned 

previously.  The dispersion and resolution of the peaks would be captured with a 

perfect imaging system. In an imperfect instrument however, the spectrum of a line 

is recorded with a finite width, which is known as the instrumental line profile. 34 

The width of the measured spectrum is a result of the resolution of the 

spectrograph; characterised by the linear dispersion (Equation 2-7), the slit size and 

the ‘real’ peak width. At small slit widths, the width of the image is larger than the 

width of the slit as the spectrum is now controlled by dispersion, aberrations and 

diffraction. The image seen is no longer a slit image but is a diffraction pattern. This 

measured width can be determined quantitatively as the full width at half of the 

maximum intensity (FWHM) and is 18 nm for the Sm peak at 640 nm, 15 nm for 

the Eu peak at 613 nm, and 14 nm for the Tb peak at 543 nm (Figures 34, 35 and 

41 respectively). This explanation is best visualised using an illustration (Figure 42). 
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Figure 42: Diagram showing diffraction that occurs at a single slit of width W. 
Rays reaching P0 have a central maximum of irradiance. The beams falling 
on P1 and P2 create minima when W sin θ = λ and W sin θ= 2λ. For an 
exhaustive description see Spectrochemical Analysis 35 
 

 

The spectrograph used has a manufacturer defined reciprocal linear dispersion of 54 

nm mm-1 and a reported spectral resolution of 1 nm at 436 nm. These values are 

further limited by the size of the pixels of the camera used. 34 The camera used had 

pixels of size 7.4 μm2, which means that an emission line from a monochromatic 

source, having FWHM of 1 nm theoretically occupies an area of 2.5 pixels (54-1 

/0.0074) at 405 nm. To determine if this stands true for our system, the 

spectrograph was calibrated using the lines of the mercury spectrum (calibration 

shown in Appendix 2, page 195). The sharpest lines in the calibration spectrum had 

an FWHM of 2 pixels. A plot of wavelength against pixel number showed a 3rd 

degree polynomial relationship between the number of pixels and wavelength. Using 

this relationship for Eu, an FWHM of 15 nm occupied 6 pixels, representing a 

dispersion of 338 nm mm-1. These calculations show that the resolution of the 
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Po 

P1 
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spectrograph used was poor in this region of the spectrum. This is expected with a 

prism spectrograph, due to the lower refractive index of glass in the red region 

relative to the blue. As a result, the resolution decreases as wavelength increases. 

Other factors such as the presence of an image intensifier would serve to further 

increase the FWHM of atomic line spectra. 

 

4.3.2 Spectral unmixing of NPs 

The concentration of lanthanide within a set volume of nanoparticle solution was 

measured using inductively coupled plasma (ICP) and defined as the concentration 

of the NPs. Eu-doped and Sm-doped NPs were mixed (Figure 43) and separated 

using chemometrics. Since Eu and Sm have distinct non-overlapping peaks, 

mixtures of the two nanoparticles can be easily separated using the same excitation 

and emission filter sets. Their presence is easily established qualitatively. 
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Figure 43: Luminescence spectra of mixtures of europium and samarium 
doped silica nanoparticles in the ratios Eu: Sm 2:3 ■, 3:7  ×, and 1:4 ♦ 
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[Actual]/mM [Predicted]/mM [Actual]/mM [Predicted]/mM

Eu Eu Sm Sm

0.000 0.002 ± 0.06 0.735 0.736 ± 0.1

0.131 0.132 ± 0.02 0.513 0.513 ± 0.03

0.219 0.220 ± 0.08 0.368 0.368 ± 0.1

0.175 0.174 ± 0.02 0.439 0.438 ± 0.03

0.088 0.089 ± 0.006 0.585 0.586 ± 0.01

0.438 0.439 ± 0.09 0.000 0.001 ± 0.1  
 
Table 4: Relationship between actual concentration and concentration 
predicted by the model for mixtures of Eu and Sm-doped SiO2 NPs. The 
error between the actual and predicted concentrations is < 1 % for both Sm 
and Eu while the error in each simulation as calculated by Solver is tabulated.  
 

Table 4 shows the values obtained for the predicted concentration of lanthanide NP 

in the mixture after the spectral unmixing algorithm is applied to a series of 

mixtures of Eu and Sm-doped nanoparticles. The table illustrates that quantitative 

separation is also possible, as least squares analysis of the samples using Equations 

3-3 and 3-4 gave a good linear relationship between actual and predicted 

concentrations for both Eu and Sm, with a relative standard deviation (RSD) <1%. 

When this value is compared to that obtained for prediction of rhodamine B and 

fluorescein concentrations (8 % and 0.5 % respectively, shown in Chapter 3), it is 

clearly visible that the use of the lanthanides reduces the error in estimating the 

concentration of the analyte, making them well suited to quantitative multiplexed 

immunosorbent assays. In addition to reduced error, the lanthanides offer a further 

advantage over conventional organic dyes, as they do not require pH control. 
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4.3.3 Bioconjugation of Nanoparticles 

Of the methods attempted (listed in Chapter 2), bioconjugation using glutaraldehyde 

to conjugate first BSA to the NP and then avidin to BSA was the only one giving a 

result when an immunoassay with biotinylated secondary antibody was carried out. 

As a result, this method for conjugating NPs to proteins was adopted for this 

research. The protocol is outlined in Chapter 2 and was adopted because of the 

reduction of steric hindrance between the solid glass surface and the large NP.  

 

4.4 Spectral analysis of multiplexed immunoassay 

Multiplexed immunoassays employing the lanthanide doped SiO2 NPs were 

implemented on species specific IgGs.  
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(b) 
Figure 44: (a) Concentration response of human IgG on anti-human IgG, 
assayed with an Eu-doped SiO2 NP, (b) Concentration response for human 
IgG assayed with mouse IgG on anti-human and anti-mouse IgGs. The line 
is a sigmoidal fit to the data, described in Chapter 6, the error bars represent 
the RSD of 9 measurements. 
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 (b) 

Figure 45: (a) Concentration response of mouse IgG, on anti-mouse IgG, 
assayed with a Sm-doped SiO2 NP, (b) Concentration response for mouse 
IgG assayed with human IgG on anti-human and anti-mouse IgGs. The line 
is a sigmoidal fit to the data, the error bars represent the RSD of 9 
measurements. 
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The individual IgGs were first assayed on their respective antibodies, followed by 

assay on a mixture of antibodies to assess the contributions from cross reactivity 

and non-specific binding. Finally, mixtures of the two IgGs were assayed on a 

mixture of the two antibodies. The assay was a human and mouse IgG model, and it 

has been observed that human IgG reacts with anti-mouse IgGs, but mouse IgG 

has limited reactivity with anti-human IgGs.  

 

Figure 44 shows the dose response curves for human IgG assayed on anti-human 

IgG (a) and a mixture of anti-human and anti-mouse IgGs (b), while Figure 45 

shows dose responses for mouse IgG on anti-mouse IgG (a) and a mixture of anti-

mouse and anti-human IgGs (b). The data in Figures 44b and 45b were obtained 

after a series of mixtures of the two IgGs at different concentrations were assayed.  

The data shown have the blank intensities subtracted from the intensities of the 

samples. The intensity at the maximum emission wavelength of Eu and Sm was 

noted for each well and used to construct the graphs. The graphs show the typical 

sigmoidal shape of immunoassays, even in the presence of a second analyte, and this 

indicates that the presence of multiple analytes does not inhibit detection of 

individual IgGs. The main difference between the individual dose responses and the 

dose response in the mixture is that the signal from the mixture analysis (Figures 

44b and 45b) is higher than obtained for individual analyses. This is a result of the 

binding of anti-mouse IgG to human IgG, and anti-human IgG to mouse IgG. In 

separate assays (not shown here) where mouse IgG was assayed on anti-human IgG 

and human IgG on anti-mouse IgG, it was determined that the binding was largely 

non-specific, a result of what we believe to be a measure of cross reactivity between 
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human and mouse IgGs. Although there is some cross reactivity, the assays clearly 

demonstrate that multiple analytes can be quantified simultaneously. Here, the 

advantage of the lanthanide doped NPs is realised because of their unique 

properties: narrow emission bands and the fact that there is no interaction between 

NPs in a mixture. As all results were obtained without time resolved measurements, 

these multiplexed assays further demonstrate the ability to produce a luminescence 

assay without specialised time resolved equipment. 

 

A spectral unmixing algorithm described by Equations 3-3 and 3-4 was applied to 

the multiplexed assay. Table 5 shows the relationship between the measured and 

predicted intensities for both Eu and Sm in the multiplexed assay. There is an error 

less than 5% for both probes. These data therefore establish a method for 

quantifying analytes simultaneously in a single-welled immunoassay.    

 
 

[human IgG] Eu measured Eu predicted [mouse IgG] Sm measured Sm predicted

/μg mL-1 Intensity Intensity / μg mL-1 Intensity Intensity

0.10 295 295 0.50 908 908

0.20 436 436 0.75 723 723

0.50 542 542 0.10 240 240

0.00 239 253 1.00 978 978

0.00 265 253 0.00 221 200  

Table 5: Comparison of measured and predicted intensities of lanthanide-
doped SiO2 NPs used as probes in a multiplexed immunoassay for human 
and mouse IgGs 
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There is a great deal of discussion that can be derived when Table 5 is examined. 

The first of these is that in spite of the excellent correlation between measured and 

predicted intensities of the NP probes, there are discrepancies between the results 

for the intensity of the 0 µg mL-1 sample of both human and mouse IgGs. The 

comparatively high values for these blank readings also evoke further discussion. 

The high blank readings are most likely a result of non-specific binding of the 

secondary antibody to the well of the assay plate. This is a widely recognized 

problem for which several solutions have been offered. In these assays, 1 % casein 

was used to reduce non-specific binding. This worked by providing a coating over 

the surface of the plate to prevent adsorption by unwanted antibodies, and was 

selected as a suitable blocking agent following research carried out in the laboratory 

(unpublished data). Other methods include anti-sera adsorption to the plate before 

adding the test sera, and the use of detergents such as Tween and Triton X-100. The 

effect of non-specific binding was accounted for in the model. However, as the 

values for the blank intensities form the basis of the intercept β oj  for the regression 

line, these are calculated by the model during the fitting procedures. This value is 

unlikely to be changed during simulations, leading to the difference between 

measured and calculated intensities of the 0 µg mL-1 sample. In spite of this, 

fluorescence readings of unknowns that are comparable; even though not identical, 

to the intensity of the 0 µg mL-1 standard are identified as 0 µg mL-1 during the 

fitting procedures. A second observation from Table 5 is that the intensity of 0.5 µg 

mL-1 mouse IgG has a higher intensity than 0.75 µg mL-1. The value for 1 µg mL-1 

seems acceptable, making the intensity for 0.75 µg mL-1 an outlier, having an error 

of 40%. Low precision was encountered when these probes were used, as evidenced 

in Figures 44 and 45. This may be a result of aggregation due to the high avidity of 
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biotin and avidin. Aggregation would result in non-uniform binding throughout the 

well and is something that needs to be addressed in future work.   

From Table 5, the lowest concentration of IgG detected was 0.1 µg mL-1. This value 

gives an idea of how effective this method would be for serological detection of 

infection such as dengue, both during and after infections. Dengue NS-1 has been 

detected at 15 µg mL-1   during secondary infection using ELISA. 36 The limit of 

detection for that assay was 4 ng mL-1 and NS-1 could not be detected in the sera of 

patients with a primary infection. In another study, NS-1 was detected by ELISA 

down to 600 ng mL-1 in patients with secondary infection.37 In another report, 

primary sera were found to contain NS-1 levels between 0.04 and 2 µg mL-1, while 

those of secondary sera were between 0.01 and 2 µg mL-1 as determined by 

ELISA.38 Protein concentrations post infection were undetectable. These values 

show that while the concentration of NS-1 in secondary sera would be detected 

using lanthanide doped silica nanoparticles (provided the affinity of anti-NS-1 

antibodies used were the same as that of our anti-IgG antibody), more work has to 

be done in optimizing the present method for sensitive serological detection of 

dengue infection. This could be done through a time resolved assay, where the long 

lifetimes of the lanthanides allow them to be applied to sensitive work with low 

detection limits.   

 

SiO2 NPs doped with complexes of europium and samarium have been prepared, 

characterised and used as substitutes for conventional organic dyes in fluorescent 

mixtures. Despite reports of lanthanide complexes being used in multicolour 

detection schemes we are not aware of their application to spectral analysis of 

luminescent mixtures without time resolved measurements. The current work 

therefore provides a synthesis of lanthanide-doped SiO2 NPs using existing methods 
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and demonstrates how they simplified problems that were encountered with 

conventional dyes and quantum dots. It is apparent that lanthanide doped SiO2 NPs 

can be used for steady state measurements and can be applied in a simplified 

approach to multiplexing immunoassays. By tuning the relative amounts of 

lanthanide within the silica matrix, NPs with multiplexing capabilities can be 

synthesised, and this was demonstrated with the synthesis of the SiO2 particle doped 

with both europium and samarium. This NP also exhibits what has been reported as 

energy transfer from Sm complex to the Eu complex, resulting in an Eu signal that 

is about 3 times greater than obtained when Eu3+ is the only dopant. Further 

applications would include use in sensitive immunoassays where the limit of 

detection could be lowered due to increased luminescence of Eu.  

 

4.5 General discussion and conclusions 

SiO2 NPs doped with the lanthanides Eu, Sm and Tb have been synthesised and 

applied to spectral unmixing for diagnostic applications. They have also been used 

in novel single-welled multiplexed immunoassays. The ligands used were the 

commercially obtained BTBCT and a newly synthesised ligand, comprised of the 

popular ligand DTPA with cs 124 as the antenna, bonded to APS. APS was used to 

anchor the chelated lanthanide to the wall of the silica. The long term stability of the 

ligand in terms of leakage over time from the nanoparticles is currently unknown. 

However, it was observed that unconjugated particles were still brightly luminescent 

after a year. When conjugated to proteins and subsequently used as reporters in 

immunoassays, the luminescence was reduced in comparison to Eu-doped particles 

of the same age. Reduction in lanthanide luminescence is a result of nonradiative 

return to the ground state through quenching of luminescence. This is caused by the 



 122

presence of coordinated X-H molecules such as water (X=OH) and amine (X=NH2) 

ligands. As the chelated lanthanide is encapsulated by silica it is not expected that 

these molecules could become coordinated to the lanthanide. This reflects some 

degree of leakage of the chelate from the NP. Very little is as yet known about these 

NPs, but it has been well established that with a suitable ligand they are useful 

probes for bioassays. This was evidenced in the results obtained for Sm and Eu 

doped probes which were chelated by the commercially obtained BTBCT. 

 

 Mixtures of the NPs were made and separated spectroscopically, thereby creating a 

new and simpler approach to unmixing of fluorescent dyes. As was mentioned in 

the previous chapter, subtle changes in the environment of fluorophores can lead to 

a change in the emission maximum. This is problematic in a mixture of 

fluorophores that may have similar emission maxima. Unlike organic fluorophores, 

the atomic line emission of the lanthanide doped NPs is not affected by changes in 

the environment, and allows these probes to be distinguished qualitatively, thereby 

simplifying the approach to unmixing.  

 

Also made was an NP which contains two lanthanides in the same matrix of silica. 

The two lanthanides were Eu and Sm, and an enhanced luminescence of Eu was 

evidenced, in addition to emission from Sm. Although a similar type of particle has 

been previously synthesised, the difference here is that emission of Sm was 

evidenced, unlike what has been reported. This gives the particle a unique spectrum 

that could find applications in low limit of detection studies and multiplexed assays. 

 

The NPs were made with amine groups on the surface and their presence 

confirmed by reaction with fluorescamine. The amine groups were used to 
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conjugate the NPs to antibodies. As mentioned, a number of methods were used to 

conjugate the NPs to proteins. A series of homo- and hetero-bifunctional cross 

linkers were employed, but all utilised the EDC/sulfo-NHS chemistry. It was 

determined that the large particle bound tightly to the secondary antibody 

introduced a degree of rigidity to the antibody, limiting attachment to the solid 

surface. This was determined when results of long flexible linkers were compared 

with those of short linkers. No signal was obtained when the latter were used. 

Another possibility could be that the large NP blocked the active site of the 

antibody and prevented antigen recognition. The method using BSA was adopted 

and the success of this method is a result of an increased surface area for 

attachment, as well as increased flexibility between the protein and NP. 

Eu and Tb are generally the dopants of choice when SiO2 NPs doped with 

lanthanide chelates are synthesised. This is readily understood because of the large 

energy gap between the lowest excited state and the highest ground state for both of 

their trivalent ions. Sm however, has a narrow band gap and is easily affected by 

solvents. In spite of this, a NP containing Sm chelated to BTBCT was successfully 

synthesised. This has not previously been reported. It was observed that when the 

particle was optimised such that high concentrations of lanthanide were 

incorporated, a highly luminescent particle was obtained which can be applied to 

immunoassays.  

 

Lanthanides have found use in immunoassays, where the popular and sensitive 

dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) allows 

multiplexed time resolved measurements of multiple luminescent molecules in a 

single well. 39-41 A lanthanide is conjugated to the secondary antibody and an 

enhancement solution is then added that allows luminescence of the lanthanide, 
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which is measured by a time resolved instrument. The existence of this method 

questions the need of the present work and the improvement over the DELFIA 

method. The following points highlight the novelty of this work, as well as the 

utility of the newly developed method. Firstly, the presence of free lanthanide in 

solution, as occurs with the DELFIA method, can bring about coordination to 

water or any amine containing molecules that can quench the luminescence of the 

particle, thereby giving inaccurate results. With the NPs, this is not an issue as the 

lanthanides are encapsulated by silica. Secondly, all lanthanides do not luminesce on 

sensitisation by the same ligand. As a result, for DELFIA multiplexed assays there is 

a need to add different enhancement solutions. When the lanthanides are 

encapsulated with silica, there is no need for addition of an enhancement solution 

which shortens the incubation time of the assays. 

 

The assays performed using these NPs are the first of their kind. The NPs have 

been used in immunoassays previously, but there is no known report of their 

previous application to single-welled multiplexed assays. The ability to do this is a 

major advance, particularly for viruses that present themselves in multiple forms. 

That it can be done quantitatively with cheap probes without instruments such as 

Luminex, makes it more attractive.  

In conclusion, silica nanoparticles doped with lanthanides provide a suitable 

alternative as probes for multiplexed immunoassays. When compared to the 

problems encountered with organic dyes and QDs as discussed in Chapter 3, these 

probes did not present with the same problems: there is no energy transfer 

occurring between particles in solution, and as the chelated lanthanide is 

encapsulated by silica, there is no interaction with the solution. This means that pH 

control is not necessary. Previous work with chelated Eu has shown that the pH 
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range at which these probes can be used effectively is > 3.42 This allows a broad 

range that can be used without a change in the probe, unlike the fluorophores. The 

ability to excite the particles in the UV region means that all can be excited 

simultaneously, thereby simplifying measurement protocols. 
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5   A model study: Dengue fever 

5.1 Introduction  

The single welled multiplexed immunoassay was tested on a diagnostic model for 

anti-dengue antibodies. DF is a mosquito borne Flavivirus presenting itself in four 

serotypes. While it is not possible to be reinfected by the same serotype, infection 

by a second serotype leads to a secondary antibody response to the virus, 

characterised by differences in the ratio of IgM and IgG antibodies.1 The ability to 

detect both of these in a single welled format is presently not possible as 

multiplexed detection of dengue is normally a nucleic acid based method.2-4  

Dengue is an interesting viral study because of the multiple serotypes and 

biomarkers exhibited during infection. 5-8 This chapter describes the development of 

an immunoassay for the simultaneous detection of IgM and IgG in the same well of 

an assay plate, accomplished with organic fluorophores, CdSe quantum dots and 

lanthanide-doped silica nanoparticle probes. The methods used for separating 

differently coloured probes differ from the spectral unmixing methods discussed in 

Chapters 3 and 4. In this study, probes were separated by splitting detection 

channels. This change was a result of the inability to acquire dengue antibodies 

commercially. As a result, standard curves could not be obtained and quantitative 

statements on IgM and IgG concentration in sera, and their respective limits of 

detection could not be made. The change in methods of distinguishing differently 

coloured probes is further reflected in the choice of probes: Tb-doped NPs are now 

used with Eu-doped particles to effect greater separation of signal. Immunoassays 

were performed on sera collected over a three week period from mice immunised 

with recombinant dengue antigens. The immunoassays were similar to the popular 
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enzyme linked immunosorbent assay (ELISA), the main differences being the use of 

a fluorescently labelled probe, detection with an epi-fluorescence and confocal 

microscopes, and multiple analytes being detected in the same well.  Balb/C mice 

were immunised with recombinant dengue antigens leading to the production of 

mouse anti-dengue IgG and IgM. The mouse anti-dengue IgM and IgG served as a 

basis for testing the hypothesis that multiple antibodies to a virus may be detected 

in the same well of an assay plate through the differentiation of fluorescent signals. 

It must be noted that due to reagent constraints, single well fluorescent assays were 

compared to multi-well ELISAs and multi-well fluorescence assays for mouse IgM 

and IgG. As a result, there are no data shown for multi-well fluorescent assays.  

5.1.1 Methods and materials 

Ten female Balb/C mice between the ages of two and four months (Harlan Olac, 

Oxon, UK) were bred in accordance with the Home Office Codes of Practice and 

the NTU Ethical Review Committee. Incomplete Freund’s adjuvant (IFA) was 

obtained from Gibco UK (Gibco BRL., Paisley, Scotland) and PBS was obtained 

from Sigma Aldrich. Dengue antigens Types 3 and 4 and rabbit anti-dengue 

polyclonal antibody (Tebu-bio Ltd., Peterborough, UK), monoclonal dengue 

antibodies against dengue serotypes 3 and 4 (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA), goat anti-mouse IgM-TRITC (Millipore UK Ltd., Watford, UK) and 

goat anti-mouse IgG-FITC (Invitrogen, Paisley, UK) were used as outlined in the 

protocol. Nunc 96-well glass bottomed plates (TKT-195-020V, Fisher scientific UK, 

Loughborough, Leicester, UK) were used as the solid phase. For assays with QDs, 

streptavidin-linked quantum dots (QDot® 525 streptavidin conjugate; Lot no. 

Q10141-MP, QDot® 655 streptavidin; Lot no. Q10121-MP, Invitrogen, Paisley, 

UK) were incubated with anti-mouse IgM-biotin (Lot no. B9265) and anti-mouse 
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IgG-biotin (Lot no. B0529), obtained from Sigma. These assays were performed on 

Porvair 384 well glass bottomed plates (Lot no. F324021, Flowgen Bioscience Ltd., 

Wilford, Nottingham). Assays for PAM readout used goat anti-mouse IgG-QD 565 

nm (Lot no. Q-11031MP, Invitrogen, Paisley, UK) and rat anti-mouse IgM-NC 650 

nm (eFluor® 650 NC anti-mouse IgM, Lot no. 95-5790, eBioscience Inc., San 

Diego, CA) as secondary antibodies. Assays were performed on 15 well chamber 

slides (µ-slide Angiogenesis, Lot no. IB81501, Ibidi GmbH, München, Germany). 

5.1.2  Antigen preparation 

Dengue antigen Types 3 and 4 were mixed with IFA and PBS in a concentration 

such that each mouse would be immunized with 100 μg of antigen. Solutions were 

made under sterile conditions immediately before the mice were immunized. 

 

5.1.3 Immunization and collection of sera 

The mice were placed in two cages. The first contained control mice and those to be 

immunized with dengue antigen type 3. The second contained mice to be 

immunized with dengue antigen type 4. Mice were identified according to the 

method of immunization, but no record was kept of individual mice; that is, 

controls 1 and 2 were not differentiated, they were simply referred to as ‘the 

controls’. The mice immunised once were pierced on the right ear, while those 

immunised twice were pierced on the left ear. There was nothing done to 

distinguish between the two mice in each cage with similar ear piercings. For 

bleeding, mice were placed in an incubator set at 37oC. Antiseptic cream was applied 

to the tails after which a small slice was made with a scalpel blade. Approximately 

200 μL of blood were collected in eppendorf tubes and left to coagulate at room 

temperature for 30 minutes. Sera were collected by centrifugation of the blood at 
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13000 rpm for 5 minutes, and stored in eppendorf tubes at -20oC. Mice were 

immunized and bled according to Table 6. This table shows that they were 10 mice 

used for the study. Two were designated control mice and were not immunised 

throughout the study. Sera from these mice served as the blanks in the 

immunoassays performed. The remaining 8 mice were divided into two groups: one 

group was immunised with dengue type 3 antigen, the second with dengue type 4 

antigen. There was further distinction made between the mice immunised with each 

type of antigen: in an attempt to produce a secondary response to the virus, two 

mice from each antigen group were immunised a second time after the first week. 

The remaining two mice from each antigen group were immunised only once and 

were used to determine the trend of a primary response to the antigens. The 

schedule for bleeding occurred over a period of four weeks, with all mice bled no 

more than 4 times in accordance with ethical requirements. Control mice were bled 

every week, as were mice immunised only once. The mice immunised twice were 

not bled on the first week as the intention was to bleed them a fourth time in the 

fifth week of the study. This was not followed through as there was no control sera 

available for comparison, and all 10 mice were sacrificed after the fourth week of 

the study. 
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Mouse 

Dates of Immunisation and bleeding  

(I and B) 

 

03/16 03/23 04/01 04/08

B I B I B I B I

Control √  √  √  √  

Control √  √  √  √  

DEN 3 √ √ √  √  √  

DEN 3 √ √ √  √  √  

DEN 3  √ √ √ √  √  

DEN 3  √ √ √ √  √  

DEN 4 √ √ √  √  √  

DEN 4 √ √ √  √  √  

DEN 4  √ √ √ √  √  

DEN 4  √ √ √ √  √  

 

Table 6: Schedule for immunisation and bleeding of mice. Yes, √; no,  
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5.1.4  Dengue immunoassay 

 

Figure 46: Format for the NP-based immunosorbant assay 
 

Assays with confocal read out 

Dengue immunoassays were performed in 96 well glass bottom plates. These 

plates had low fluorescence background and gave favourable results for the 

adsorption of antibodies. For confocal imaging using conventional fluorescent 

dyes, polyclonal rabbit anti-dengue type 1 - 4 antibody dissolved in 

carbonate/bicarbonate buffer (0.05 M, pH 9.2) at a concentration of 20 μg mL-1 

was incubated overnight on the surface of the plate at 2 - 8oC. The experiment 

was structured to allow each sample to be analysed in triplicate (sample of raw 

data shown in Appendix 3, page 196). The plate was washed three times with PBS 

and tapped dry. Dengue antigen type 3 or 4 was then added for 2 hours at a 

concentration of 10 μg mL-1. The plate was washed three times, tapped dry and 

sera containing mouse anti-dengue IgG and IgM antibodies were added at a 

dilution of 1:500 in PBS for 2 hours. The plate was washed three times with PBS 
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and tapped dry, after which goat anti-mouse IgG labelled with FITC and goat 

anti-mouse IgM labelled with TRITC were added at an antibody concentration of 

5 μg mL-1 and left for 1 hour. A final wash step was carried out and the sample 

was measured confocally. Confocal imaging was carried out with a confocal 

scanner head (TCS NT; Leica Microsystems, Germany) installed on an inverted 

microscope (DMIRIB, Leica Germany). The 488 nm line of an Ar ion laser was 

used for excitation of FITC and the intensity of fluorescence emitted was detected 

using a 530/30 nm bandpass filter. The 568 nm line of a Kr ion laser was used for 

excitation of TRITC and the intensity of fluorescence emitted was detected using 

a 570 nm long pass filter. The objective used was 40x NA 0.75 air objective. The 

thin film resulting from the immunoassays was measured in a 512 x 512 pixel area; 

which translates to ~ 159 μm2. The scan speed was set at 400 Hz, corresponding 

to a dwell time of 4.9 µs. The axial response was measured in 0.4 μm intervals 

along the z-axis for a total of 50 images, using a 74 μm pinhole. The intensity as 

the sum of each x-y image was plotted against the z position, allowing the 

maximum intensity to be identified and used. Samples of the confocal images and 

resulting intensities are shown in Appendix 3 (page 196). 

As a result of reagents constraints, the results from single well assays for dengue 

antibodies were compared to multi-welled assays performed using ELISA 

methods. The correlation with the ELISA method was used to determine the 

success of the multiplexed methods. 

Assays using nanoparticles and QDs 

For NP-based assays, (Figure 46), 100 μg mL-1 polyclonal rabbit anti-dengue type 

1 - 4 antibody dissolved in carbonate/bicarbonate buffer (pH 9.5) was coated on 

the surface of 384-well glass bottom plates overnight at 2 – 8oC.  The plate was 

washed three times with PBS and tapped dry. Dengue antigen type 3 or 4 was 
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then added for 2 hours at a concentration of 10 μg mL-1. The plate was washed 

three times, tapped dry and sera containing mouse anti-dengue IgG and IgM 

antibodies were added at a dilution of 1:500 in PBS for 2 hours. The plate was 

washed three times with PBS and tapped dry, after which each well was filled with 

a mixture of goat anti-mouse IgG biotin attached to an avidin conjugated Eu-

doped NP and goat anti-mouse IgM biotin attached to an avidin conjugated Tb-

doped NP. This mixture was left shaking overnight, after which the plate was 

washed with PBS and tapped dry in preparation for epi-fluorescence microscope 

measurement by a UV filter cube consisting of a 330 – 385 nm band pass 

excitation filter, 400 nm dichroic mirror and 420 nm long pass emission filter (U-

MWU2; Olympus UK Ltd, Southall, UK). The biotinylated antibodies were mixed 

with the avidin conjugated NPs in PBS (pH 7.4) for more than 8 hours before 

their use. A 50-fold dilution of the antibody was dissolved in the required amount 

of avidin conjugated NP solution and left to shake. The mixture was then 

centrifuged at 8000 rpm for 10 minutes, after which it was washed twice with PBS. 

The pellet was redissolved in PBS and mixed with the second secondary antibody 

for use in multiplexed immunoassays. 

 

Quantum dot-based assays were carried out in similar fashion to the NP-based 

assays. Streptavidin-linked quantum dots 655 nm and 525 nm were incubated with 

anti-mouse IgM-biotin and anti-mouse IgG-biotin respectively. Since these probes 

cannot be centrifuged, an excess of the QD was added to the antibodies to ensure 

that unlabelled anti-mouse IgG/M did not bind to mouse anti-dengue IgG/M. 

Excess streptavidin-QD label was established by observing the fluorescence of the 

tryptophan groups on streptavidin. When biotin is bound to streptavidin, the 

tryptophan fluorescence, observed at 333 nm, is quenched by 30 to 40 %. 9 A 10 
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nM solution of QD-streptavidin was prepared and the tryptophan fluorescence 

measured at 333 nm with 300 nm excitation with a fluorescence spectrophotometer 

(Carey Eclipse Fluorescence Spectrophotometer, Varian). Anti-mouse IgG-biotin 

was added in 2 μL increments until the tryptophan fluorescence peak decreased by 

40 %. The volume and concentration of biotinylated antibody added was used to 

determine optimal concentrations of antibody and streptavidin-linked QD. These 

optimal concentrations were 80 nM 655 nm QD incubated with a 1 in 10 000 

dilution of anti-mouse IgM-biotin and 100 nM 525 nm QD incubated with a 1 in 

100 000 dilution of anti-mouse IgG-biotin. For the assays utilising the biotin-

avidin/streptavidin interaction, there is the possibility of exchange between the two 

labels as a result of their dissociation equilibrium. This equilibrium has been 

investigated previously 10 using avidin, biotin and radioactively labelled biotin. The 

authors began with the statement that thermodynamically speaking, there must be a 

dissociation equilibrium between avidin and biotin, in spite of the avidity of the 

association. They determined that the formation and dissociation of the complex 

occurs simultaneously. The ramifications of this formation and dissociation with 

respect to the success of the multiplexed assays with NPs will be discussed. 

 
Assays using the programmable array microscope 

The solid phase for these assays was 15 well μ-slide Angiogenesis uncoated 

chamber for cell microscopy. The same assay protocol used for nanoparticles was 

carried out, but the secondary antibodies were goat anti-mouse IgG-QD 565 nm 

in a 1:10 dilution, and rat anti-mouse IgM-QD 650 nm (1:20 dilution). Each 

sample was analysed only once due to the size of the assay plate and time 

constraints. 
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Imaging spectroscopic measurements were carried out using a PAM installed on 

an inverted fluorescence microscope (IX 71 Olympus Germany Ltd., Hamburg, 

Germany). The 488 line of an argon ion laser (~ 200 mW, Coherent Innova 90, 

Spectra Physics 2000) was used for excitation and emitted light collected by 

D525/80 nm band pass filter and a 655/40 nm band pass filter (Chroma 

Technology  GmbH, Fuerstenfeldbruck, Germany). The objective used was a 

water 40x NA 1.15. The camera (Ixon DV 897_BV) was cooled to -100 oC (Julabo 

Hc F30, Ultratemp 200). EM gain was set at 200 and the exposure time was 250 

ms. Data for the two different dyes were not collected simultaneously; the 

instrument was set to perform a z-slice through the plate in two different channels. 

This allowed the signal of the 565 nm QD to be read first, followed by the signal 

from the 650 nm QD. Data were collected as TIFF files and converted to 

numerical data using Image J.  

 

 

Conventional ELISAs 

ELISAs were performed on the mouse serum where mouse anti-dengue IgG and 

IgM were detected in separate wells of the assay plate. Standard ELISA protocol 

was followed. The enzyme used was horse radish peroxidise and the plate was 

read at 415 nm on a TECAN SpectraFluor plate reader (MTX Lab Systems Inc. 

Virginia, USA).  

5.2 Results 

In this section, the results of assays done in ELISA and FLISA formats are 

presented. The data shown are intensity averages from sera of each group of mice 

obtained over the study. A comparison of the three different microscopic 
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methods of detection are presented, along with the advantages and disadvantages 

of the various probes used. The data demonstrates that the methods all go 

beyond what has been done before for detection of dengue, and demonstrate for 

the first time the ability to detect IgM and IgG in a single welled assay. The 

results also demonstrate a clear comparison of three state of the art microscope 

systems. 

 

5.2.1  Detection of IgM and IgG in a single assay well  
 

5.2.2   Elisa Results 
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Figure 47: ELISA response of mouse anti-dengue IgM in mice immunised 
with dengue antigen type 3. Each data point represents the average from two 
serum samples each assayed twice. The RSDs are given in Table 7 
 
 



 140

0.00

0.08

0.16

0.24

0.32

0.40

0 5 10 15 20 25
Number of days after immunisation

A
bs

or
ba

nc
e

single immunisation

two immunisations

 
Figure 48: ELISA response of mouse anti-dengue IgG in mice immunised 
with dengue antigen type 3. Each data point represents the average from two 
serum samples each assayed twice. The RSDs are given in Table 7 
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Figure 49: ELISA response of mouse anti-dengue IgM in mice immunised 
with dengue antigen type 4. Each data point represents the average from two 
serum samples each assayed twice. The RSDs are given in Table 7 
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Figure 50: ELISA response of mouse anti-dengue IgG in mice immunised 
with dengue antigen type 4. Each data point represents the average from two 
serum samples each assayed twice. The RSDs are given in Table 7 
 
 
 
 
Figures 47 through 50 show the results for ELISA performed on the mouse serum. 

The data represent an average of an assay carried out in duplicate. The graphs show 

the trend expected for production of anti-dengue IgM and IgG antibodies. IgM has 

a sharp rise and then falls sharply back to the level present before immunisation 

(Figures 47 and 49). IgG also has a sharp increase, but this persists without 

noticeable reduction in antibody concentration (Figures 48 and 50). There is no real 

evidence of a secondary response to the virus, with the graphs of primary and 

secondary antibodies having the same general trend. A secondary response would 

be evidenced with the IgG profile rising quickly and then returning to pre-

immunisation levels, while the response of the IgM would follow the general trend 

for a primary IgG response. These assays were all performed in different wells of 

the multi-well assay plate, and were all done as the standard to which single well 
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assays could be compared. The relative standard errors are larger than the scale of 

the graphs and are not shown on the relavent graphs. These are shown in Table 7. 

There is a large spread of values, and IgM measurement shows generally a higher 

error than IgG. The values however, are all within acceptable for ELISA 

measurements.11  

 
% RSD 

 Primary 
type 3 

Primary type 4 Secondary type 3 Secondary type 4

Day IgG IgM IgG IgM IgG IgM IgG IgM 
0 4 2 10 4 4 10 8 8 
7 22 10 4 15 9 29 10 17 
16 12 31 5 5 1 21 9 21 
23 16 39 9 12 23 17 5 12 

 
Table 7: RSD for ELISA experiments for 4 replicates. RSDs vary but are 
generally within acceptable vaues 
 

5.2.3 Organic Dyes Measured Confocally 

Assays were performed using secondary antibodies labelled with the organic dyes 

FITC and TRITC. The results are shown below. As the profiles for both types 3 

and 4 anti-dengue antibodies are similar, only profiles from one serotype will be 

shown. 
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Figure 51: Confocally measured response of mouse anti-dengue IgM in mice 
immunised with dengue antigen type 4. Each data point represents the 
average from two serum samples each assayed three times (6 measurements). 
The error bar represents the standard deviation of the replicates.  
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Figure 52: Confocally measured response of mouse anti-dengue IgG in mice 
immunised with dengue antigen type 4. Each data point represents the 
average from two serum samples each assayed three times (6 measurements). 
The error bars represent the standard deviation of the replicates  
 
  
 

Figures 51 and 52 show the results of the FLISAs for mouse anti-dengue IgM and 

IgG. The fluorophores used were FITC and TRITC for IgG and IgM detection 

respectively. These data were obtained with a confocal microscope and IgG and 

IgM were assayed simultaneously in the same well of an assay plate. There was no 

evidence of cross reactivity between IgM and IgG antibodies, thereby simplifying 

the system and making it possible to easily detect whether a patient has a primary or 

secondary dengue infection. Additionally, there is no appearance of cross talk 

between the two dyes in the confocal. What is clearly demonstrated are the expected 

trends for both anti-dengue IgM and IgG production after infection by dengue. The 

mice are not infected by dengue but are simply showing an antibody response to 



 145

immunisation by the antigen, and this assay if repeated in human serum would be 

able to detect whether there is a primary or secondary response to the virus. The 

ratio of IgM to IgG would make this possible. When Figures 53 and 54 are 

compared to what was obtained for multi-well ELISA in Figures 47 through 50, 

some differences are noticed. The first of these is the increased response of the 

assay. The fluorophores are easily detected with the confocal microscope and their 

signals can be amplified through changing parameters such as increasing the power 

of the laser and increasing the gain of the microscope. These changes would allow 

the detection of low concentration of analytes, thereby creating an assay that can be 

used in the early stages of the immune response. With the ELISA method used, the 

method of visualisation did not allow for amplifying the enzyme signal, and as such 

low concentrations of antibodies produced could go undetected. While this was not 

a problem for this assay, it would be relevant in a clinical diagnostic setting. The 

ability to detect dengue in the early stages of the disease is of critical importance and 

as such the new confocal based fluorescent method would make this possible.  

 

Another difference noted is the higher signal to background ratio obtained using the 

fluorescent method. Figures 47 through 52 are corrected by subtraction of the 

blanks intensity from the intensity of the samples; sera from mice that were not 

immunised. Figures 53 and 54 are constructed without subtraction of the blank 

intensity from the final intensity, and demonstrate that for the ELISA method, the 

blanks’ signal is high relative to the samples. With the confocal method, the signals 

from the blanks are low with respect to the signals from the samples. Figure 54 

illustrates what could be interpreted as one of the reasons why ELISAs return false 

positives: results indicate that the response for control mice is higher at day 16 than 

the response for mice immunised. ELISAs were found to be dependant on factors 
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such as the amount of time between addition of stop reagent and imaging, and the 

positioning of the well. It was observed that wells towards the edges of the 96 well 

plates gave higher absorbance values than those further towards the centre. This 

may simply be related to the fact that these wells are the first to be filled with 

solution, but for a sensitive assay, particularly in the early stages of infection this 

could lead to false negatives. This is not an issue when the new fluorescent method 

was carried out, as demonstrated in Figure 53. The background signal is due to non-

specific binding; an issue that plagues immunosorbent assays, but can be minimised 

through the use of a suitable blocking reagent. 
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Figure 53: Graph demonstrating the high signal to background ratio of the 
confocal system 
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Figure 54: Graph demonstrating the low signal to background ratio using the 
ELISA method 
 
 

 

The results obtained with conventional fluorophores show an improvement over 

ELISAs. Attempts will now be made to see if QDs and nanoparticles offer an 

improvement over conventional fluorophores. 

5.2.4 Quantum Dots 
 

The use of QDs is favoured over organic fluorophores.12 The ability to excite QDs 

simultaneously makes them more attractive for use in multiplexed immunoassays. 

Assays for mouse anti-dengue IgM and IgG were performed using QD-labelled 

secondary antibodies. Anti-mouse IgM was labelled with a streptavidin linked 655 

nm QD, and anti-mouse IgG was labelled with a 525 nm QD. The results of these 

assays are shown in Figures 55 and 56. 
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Figure 55: Anti-dengue IgG response in mice immunised with dengue 
antigen type 3. Each data point represents the average from two serum 
samples each assayed three times. Precision is poor, error bars are the RSD 
of 6 measurements 
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Figure 56: Anti-dengue IgM response in mice immunised with dengue 
antigen type 3. Each data point represents the average from two serum 
samples each assayed three times. Error bars are the RSD of 6 measurements  
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Figures 55 and 56 show the results of a QD-based single well immunoassay for anti-

dengue IgM and IgG. An epi-fluorescence microscope using a band pass UV 

excitation filter and long pass emission filter were used for detection of the assay 

signal. The results for the two different antibodies are shown in two different 

graphs, due to the higher intensity of the IgM signal with respect to the IgG signal. 

Once again, the graphs show the expected trend for both anti-dengue IgM and IgG. 

There was low precision between the replicates, with RSD ranging between 24 and 

68 % for both IgM and IgG. The binding was through the biotin/streptavidin 

interaction and as seen before with the assays using lanthanide doped silica NPs, the 

high avidity of streptavidin/avidin and biotin can lead to aggregation. This leads to 

variable binding within the wells and poor precision. The aggregation between these 

two entities had been previously documented.13 

While this assay was simplified through the use of a single excitation and emission 

filter, there is a readily apparent disadvantage, which is the low signal of IgG relative 

to IgM. The 655 nm QD used to label anti-dengue IgM has a molar absorptivity of 

9 100 000 cm-1M-1, while the 525 nm QD has a molar abosorptivity of 710 000 cm-

1M-1 at 350 nm.14 These QDs were both excited at the same wavelength, and the 655 

nm QD has a more intense signal than the 525 QD. This highlights the need for 

specially selected QDs with similar molar absorptivities when single welled QD-

based assays are performed and other methods of detecting QDs need to be 

explored. One such method employs the use of the programmable array microscope 

(PAM). With the PAM system, a series of multiple filters were used to excite the 

QDs sequentially in a multi-channel z-slice setting. In that mode the instrument 

detects the amount of fluorescence on the surface of the assay plate by imaging 

through the z axis. 
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5.2.5 Multiplexed Quantum Dot-based Immunoassays with PAM Readout 

A PAM was applied to the single well multiplexed detection of anti-dengue IgM and 

IgG. The programme was set to take a series of images through the z-plane of the 

assay plate. The images were converted to intensity values using Image J. The QDs 

were anti-mouse IgM-QD 650 nm and anti-mouse IgG-QD 565 nm. The results of 

an assay performed for anti-dengue IgM and IgG is shown in Figure 57. The data 

indicate a ratio of approximately 1 for IgM/IgG, which is similar to the ratio 

obtained for multi-well ELISAs. This indicates that there is no energy transfer 

between the two QDs on the surface. There is also no evidence of the problem seen 

with the epi-fluorescence microscope, where the shorter wavelength QD had a 

lower intensity than the longer wavelength QD. This problem was solved through 

the use of band pass excitation and emission filters, which allowed the QDs to be 

optimally excited, while the use of well spaced band pass emission filters prevented 

any cross talk between the two labels. The decision to use emission filters of 525/50 

nm and 655/40 nm was made after cross talk was evidenced with another set of 

filters, 585/20 nm and 655/40 nm. When the latter filters were used, the signal from 

the red QD spilled into the green channel and the intensities obtained for green QD 

(IgG) followed the same profile as the red QD (IgM) (data were not recorded). This 

indicated the importance of selecting QDs that are well spaced when using band 

pass filters. It also illustrated the benefits of hyperspectral imaging with subsequent 

unmixing. That way more colours can be used, allowing for the detection of more 

analytes. 
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Figure 57: Response of mouse anti-dengue IgM and IgG in mice immunised 
twice with dengue antigen type 4. Data were collected with a PAM, and no 
replicate measurements were performed. 
 
 
 
 
 

5.2.6 Lanthanide-doped Silica Nanoparticles 

The lanthanide doped silica nanoparticles which were synthesised for use in 

multiplexed immunoassays were applied to detection of anti-dengue antibodies in 

mouse sera. Nanoparticles doped with Tb and Eu were conjugated to avidin, 

incubated with biotinylated secondary antibodies and added to the assay plate. The 

results are shown below in Figures 58 and 59. 
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Figure 58: Response of mouse anti-dengue IgG in mice immunised with 
dengue antigen type 4. The probe was an Eu-doped silica NP. No replicates 
were performed. 
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Figure 59: Response of mouse anti-dengue IgM in mice immunised with 
dengue antigen type 4. The probe was a Tb-doped silica NP. No replicates 
were performed. 
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Figures 58 and 59 are results obtained for multiplexed detection of mouse anti-

dengue IgG and IgM respectively. The data shown were obtained from multiplexed 

assays, but were not collected from a single well and cannot be compared. Due to 

variable binding within the assay well, the nanoparticles proved to be difficult to 

work with in serum. 

 

5.2.7 Comparison of the Four Fluorescent Immunoassays 

Multiplexed immunosorbent assays for detection of anti-dengue IgM and IgG have 

been performed using fluorophores, quantum dots and lanthanide doped silica 

nanoparticles. These fluorescent and luminescent reporters were detected using 

confocal laser scanning microscopy (CLSM), epi-fluorescence microscopy and 

programmable array microscopy (PAM). While all methods and probes gave the 

same trend in results for the anti-dengue IgM and IgG response, each method has 

its advantages and disadvantages relative to the others and these will be discussed. 

 

The first point that can be compared is the ability to simultaneously detect both 

analytes. This was possible with the epi-fluorescence system, which used a UV 

excitation filter and a spectral imager. These made it possible to excite both 

nanoparticles simultaneously, and collect the emission spectra in a hyperspectral 

image. The spectral imager was not present on any of the other microscopes, 

thereby making it necessary to use multiple excitation and emission filters. This 

makes data collection time consuming. The automation of the PAM meant that 

although data were not collected in a single hyperspectral image, the two channels 

were imaged quickly and this made that microscope attractive for use and preferred 

over the confocal method. The PAM was also preferred over the epi-fluorescence 
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microscope because the differing molar absorptivities of the two QDs were not an 

issue when specially suited excitation filters were used. Both were efficiently excited. 

While specially suited filters may have been used on the epi-fluorescence 

microscope, the lack of automation would prolong the imaging process. 

 

A second point of comparison is the correlation of FLISA results with those of 

ELISA. ELISA has been adopted as the gold standard for serological diagnosis of 

dengue15 IgG and IgM with several kits having been developed for their detection. 

The success of the fluorescence and luminescence linked assays developed is 

therefore evaluated based on how well they compare to the results obtained for 

ELISAs done in separate wells. These will be compared below. 
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(b) 

Figure 60: The relationship between values of intensity obtained with CLSM 
readout of organic fluorophores and ELISA methods for (a) an assay for anti-
dengue IgM, (b) an assay for anti-dengue IgG 
  

Figures 60 a and b show the correlation between the values obtained for single 

welled confocal detection of anti-dengue IgM and IgG with those obtained for 

multi well ELISAs. The graphs demonstrate a good correlation between the results 

of the two methods, indicating that despite the unfavourable properties of 

fluorophores (Chapter 3), they can still be used for single welled multiplexed 

analyses. The linear relationships suggest that assaying for the two different 

antibodies in the same well of an assay plate does not affect the detection of either 

antibody. This indicates that fluorophores can be used for multiplexed analyses, in 

spite of their previously mentioned disadvantages. 

Based on the results, there is no cross reactivity between anti-dengue IgM and IgG. 

In practice, it would therefore be possible to detect dengue fever IgM and IgG in 



 156

the same well of an assay plate using fluorescent dyes. With a set of standards, the 

multiplexed assay can become quantitative, thereby giving the relative 

concentrations of IgM and IgG. This would allow an assessment of primary or 

secondary infection in a single assay well. The higher signal to background ratio of 

the confocal method relative to the ELISA method increases the sensitivity of 

detection, allowing low levels of antibody to be detected.  

 

The comparisons between methods using QDs, NPs and ELISA methods will now 

be discussed. 
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(b) 

Figure 61: The relationship between values of intensity obtained with PAM 
and ELISA methods for (a) an assay for anti-dengue IgM, (b) an assay for 
anti-dengue IgG 
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(b) 

Figure 62: The relationship between values of intensity obtained with epi-
illumination of QDs and ELISA methods for (a) an assay for anti-dengue 
IgM, (b) an assay for anti-dengue IgG 
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(b) 

Figure 63: The relationship between values of intensity obtained with epi-
illumination of lanthanide doped silica nanoparticles and ELISA methods for 
(a) an assay for anti-dengue IgM, (b) an assay for anti-dengue IgG 
 



 160

Figures 61 through 63 show the comparison between nanoparticle based methods 

and ELISA methods for antibody detection. There is a linear relationship between 

the two methods with the correlation coefficient between approximately 0.8 and 0.9 

for most measurements. IgG detection results tend to be well correlated (Figures 61 

(b), 62 (b) and 63 (b)), but the relationship for results of IgM detection is repeatedly 

less so (61 (a), 62 (a) and 63 (a)). A similar trend is seen in Figure 62 (a) and (b). In a 

multiplexed assay, there exists competition between the anti-dengue IgM and anti-

dengue IgG in the assay well. This competition is influenced by some factors.  One 

of these is the size of IgM relative to IgG; 950 kDa and 150 kDa respectively 

indicating that the rate of diffusion to the surface of the plate is somewhat slower, 

and attachment may be limited by IgG occupying the available sites preferentially. 

Another factor is that IgM also has a lower affinity for the antigen than IgG; that is, 

the strength of the interaction between the antigen and a single binding site of IgM 

is weaker than that between the antigen and a binding site of IgG. These two factors 

however, are contrasting with the higher avidity; the overall strength of the IgM- 

antigen interaction, due to the fact that it is a pentameric antibody. The result is IgG 

diffusing to the antigen faster but competing with a more effective overall 

interaction with IgM.16 These processes would eventually reach equilibrium. With 

this in mind, future work could be extended to look at the kinetics of binding of 

both IgM and IgG to the antigen in both single well and multi-well assay formats. 

This would allow for some improvements to the assay, such as optimising 

experimental times to ensure accurate concentration values. These are factors have 

all been put forward as explanations for the variability between single well and 

multi-well anti-dengue IgM assays, and now to be considered when a multiplexed 

assay is designed.  
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Based on the correlation with ELISAs, the conclusion is that fluorophores with 

CLSM readout give the best results for the multiplexed assays. There are however 

other factors that need to be considered. One of these relates specifically to the 

lanthanide doped silica nanoparticles and this is non-uniform attachment of the 

labelled secondary antibodies to the antibodies in serum. This is partly because of 

aggregation of the antibodies in the presence of the antigens. The aggregation 

results in clusters of particles at random points within the sample well, giving an 

uneven spread of luminescence throughout the well, evidenced when looking 

through the microscope eyepiece into the assay well. One benefit of the ELISA 

method is that the signal from the well is uniform and uneven sampling would not 

be a problem. The problem with NPs is common when dealing with sampling of 

particles; precision is generally limited by the homogeneity of the sample. One way 

to reduce aggregation would be to dilute the serum sample, thereby reducing the 

aggregation within the sample matrix.  

In spite of these observations, however, there exists a good correlation between the 

results obtained using organic dyes with CLSM read-out and those obtained using 

the NPs with epi-fluorescence read-out (Figure 64). The results shown in Figure 64 

are encouraging as they show that in spite of the difficulties encountered when 

using the lanthanide doped silica NPs, there exists a good correlation between 

results obtained using them and those using well established organic dyes as probes. 

What is also positive about this result is that the confocal microscope used was a 

commercially available instrument using a laser as the excitation source, while the 

epi-fluorescence microscope was assembled in-house and had a mercury lamp as the 

excitation source (this information is recorded in Chapter 2). 
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(b) 
Figure 64: Comparison of results obtained from similar serum samples using 
NPs with epi-fluorescence read-out and organic dyes with CLSM read-out 
for (a) anti-dengue IgG and (b) IgM 
 

These results show the success of the new microscopic method and provide a 

favourable framework for further development of both the probes and the 

microscope. It is also observed that in spite of the long incubation time of the NP 

assay coupled with the possible exchange of avidin linked probes with biotinylated 
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antibodies, there still remains a good correlation between the two methods. This 

indicates that the transfer was minimal in these experiments.   
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(b) 

Figure 65 : Comparison of results obtained from similar serum samples using 
QDs with PAM read-out and organic dyes with CLSM read-out for (a) anti-
dengue IgG and (b) IgM 
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As the PAM is a modified confocal instrument, it is of interest to compare results 

obtained from the CLSM and the PAM for the same serum samples and this 

comparison is shown in Figure 65. There is a linear relationship existing between 

the results from the PAM and CLSM methods, with the correlation coefficient as 

0.97 for anti-dengue IgG and 0.84 for anti-dengue IgM. This result is also 

encouraging as once again the PAM; a recently developed and still presently a non-

commercial instrument correlates reasonably well with the established confocal 

method. This also forms a good basis for future work on assay read-out with the 

PAM. 

A more in depth investigation of the relative merits of both methods should take 

the form of a quantitative analysis. This should include a comparison of detection 

limits for anti-dengue IgM and IgG. No detection limits were carried out using the 

PAM. While no detection limits were obtained for dengue antibodies, mouse IgG 

detection limits were obtained using fluorophores imaged confocally and 

lanthanide-doped silica NPs imaged by epi-fluorescence microscopy. Using the 

confocal microscope and a FITC-labelled probe, mouse IgG had a detection limit of 

8 ng mL-1. The same analyte was detected down to 1 ng mL-1 using a Sm-doped 

silica nanoparticle with epi-fluorescence read-out. This is a good indication of the 

relative superiority of the lanthanide-doped probes in single analyte detection 

systems. Future work should seek to better establish these comparisons, with limits 

of detection obtained by dilution of sera. 

 

Another factor that can account for the varied results among the different methods 

of detecting anti-dengue IgM and IgG is the quality of the solid surface used, as this 

determines the attachment of the primary antibody to the surface of the plate. As 

ELISAs are widely performed, there are several plates available that are specially 
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suited to attachment of primary antibodies. The most suitable plate used for 

fluorescence was the Nunc glass bottom plate designed for tissue culture. In 

preliminary work carried out (will not be shown) it was ascertained that 

immunoassays performed on the Nunc glass bottom plates gave superior results to 

those performed on any other plate. This plate was only used for confocal 

applications, while other suitable but somewhat inferior plates had to be used for 

epi-fluorescence and PAM work. Different plates had to be used for the PAM as 

this microscope’s stage could only accommodate chamber slides and 15-well plates. 

With epi-fluorescence work, smaller volumes were used to conserve samples, and as 

a result 384-well plates were the plates of choice. Attachment of the first antibody is 

of primary importance to the success of the assay and the results with FLISAs 

performed on the Nunc plate and imaged confocally seem to confirm this.  

 

Finally, ELISAs and FLISAs with organic dyes were all performed within weeks of 

collection of sera. The other FLISAs were done some 8 to 12 months after 

collection, with the sera going through several freeze and thaw cycles. This has been 

shown to limit the accuracy of an assay and may be a reason for lower correlation 

between nanoparticle based methods and ELISAs. 

 

5.3  General Discussion and Conclusions 

A single-welled multiplexed immunoassay has been successfully developed and 

applied to a model virus system that presents itself in multiple forms. Mice were 

immunised with dengue antigens and the serum obtained was assayed. The assay 

was tested using three different types of fluorescent probes and these probes were 

applied with varied degrees of success.  The results of the multiplexed immunoassay 
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compare favourably with those obtained with a multi-well ELISA, thereby offering 

several advantages over the adopted gold standard for serological diagnosis. The 

results show the reproducibility of the new method, with very similar results being 

obtained from a variety of methods over a period of 8 - 12 months (Figures 64 and 

65). Each method of imaging was significantly different, with one method relying on 

absorbance measurements, another confocal readout, a third epi-fluorescence 

illumination and finally a modified confocal method. Differences with respect to 

attachment to the plate were noted and it was acknowledged that each method using 

a different type of plate could make a difference. 

 

The presence of a primary and secondary response was not demonstrated by the 

assay results. The two sets of mice immunised once and twice show very similar 

profiles for the antibodies over the 4 week period. This pattern of antibody 

production was not expected in the mouse model, and is not expected in a human 

model, as double exposure to the virus should result in a secondary response. It is 

expected that if this experiment is performed on human sera, taking the ratio of 

IgM to IgG concentration would indicate whether the person has a primary or 

secondary infection. With this in mind, future similar experiments should be 

structured differently to ensure that a secondary response is obtained. Some reasons 

for the lack of a secondary response will now be explored. When referring to Table 

6, it is observed that the mice were immunised a second time one week after the 

initial immunisation. Future work should explore allowing a greater period of time 

to pass between the first and second immunisations, thereby seeing the possibility 

of a secondary infection. In practice, the production of significant concentrations of 

antibody in mouse hybridoma production methods is a process spread over 6 to 8 

weeks, with 2 additional immunisations at approximately equal intervals. The 
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animals are bled some 2 weeks after the third immunisation. 17 The levels of 

antibodies produced in the present experiment are therefore substantially lower than 

could be obtained and are probably not representative of the true responses of the 

mice to immunisation. Additionally, a longer timing between primary and 

secondary ’infections’ would better mimic a human model, as time periods between 

infections vary. With this in mind, future work could also seek to determine the 

effect of time between primary and secondary infection on the magnitude of the 

secondary response mounted. The lack of a defined secondary response can also be 

discussed in light of the persistence of the dengue antigens after immunisation. It 

was observed from a single experiment (data are shown in Appendix 4, page 199) 

that there was antigen present in the serum samples. This should not be the case. As 

long as the antigen persists, antibody production continues. This however is at a low 

and often undetectable concentration, and studies have shown 18 that the antigen 

persists for a shorter period of time after a second immunisation. As stated in the 

introductory chapter, secondary dengue infections produce anamnestic reactions. 

Such a response is seen on re-injection with an antigen; antibody production is 

increased upon a second exposure to the antigen. As no anamnestic response was 

evidenced for this experiment, it may be acknowledged that in addition to the time 

between immunisations, the persistence of the antigen is a contributing factor to the 

unexpected results.  

The method of taking the ratio of the IgM concentration to the IgG concentration 

for establishment of the type of infection has been described in the ELISA format, 

particularly in commercially produced kits, and involves separate tests in separate 

assay wells. This method, done in a single well for each serum sample, has some 

advantages. Firstly, the test is performed under the same environment and therefore 

variations cannot be due to the position in the plate. This can be a problem with 
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ELISA.18 Secondly; fewer materials, reagents and samples need to be used as the 

tests are not done individually, thereby saving money. Thirdly, when compared to 

ELISA, an advantage of the FLISAs is the greater flexibility of the assay; ELISA 

needs to be imaged very shortly after the addition of colour developer and stop 

solution. Here the assays can be imaged several hours after the assay has been 

completed, and in the case of QDs and lanthanide-doped NPs, can be imaged 

several days and multiple times after assay completion. A major disadvantage at 

present is the time the assay takes. With the confocal method, collection of data 

takes some 3 continuous hours and data analysis took a further 4 hours. With the 

lanthanide doped probes, data collection and analysis was just as quick as for ELISA, 

but the probes were not easily imaged on the same day of the assay; imaging was 

carried out after the plate was left shaking overnight. In light of the avidin-biotin 

dissociation equilibrium, other methods of conjugating the NPs to the antibodies 

need to be investigated. It is possible that the labels became interchanged and 

affected the result. When looking at the success of the multiplexed NP method 

compared with the multi-welled ELISA methods, it seems likely that some degree of 

interchange has occurred. QDs had a shorter incubation time than ELISA, with 

data collection and analysis taking a similar period of time. 

 

Within the set of fluorescent and luminescent probes used, some probes have 

various benefits over others used. Organic fluorophores are the cheapest and most 

easily obtainable form of fluorescent probe. These probes are also very easily 

conjugated to antibodies using simple isothiocyanate and EDC/sulfo NHS 

chemistry. The QDs did not offer any great improvements over conventional 

fluorophores: in addition to their high cost, very high concentrations of the more 

blue shifted 525 nm QDs had to be used in order to get a signal that could be 
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detected with 365 nm excitation. This was in keeping with literature obtained from 

the company, which noted the very low molar absorptivity of the 525 nm probe 

with respect to that of the 655 and 605 nm probes. This problem was resolved with 

the use of a PAM, where both QDs were efficiently excited in their respective 

channels. The use of probes with well separated emission maxima ensured that 

there was no energy transfer between the labels.  

 

The lanthanides provided bright, cheap alternatives to the QDs, but they also 

presented with some problems. Since they are in particulate form, there was non-

uniform attachment to the plate as evidenced when looking through the microscope 

into the assay well. This resulted in low precision within and between the wells. 

What could improve this study is a time-resolved assay. This would image the entire 

well and the result would not be biased by the position at which a reading is 

obtained. Another disadvantage of using lanthanides is that they require specialised 

methods for attachment to antibodies. The previously published method using BSA 

as a flexible bridge between the particles and the antibodies was adopted. This 

method took 48 hours for completion, making them unattractive for clinical 

applications as a quick assay time is generally preferable. Other methods for 

attaching the silica nanoparticles to proteins could be explored in future work. The 

development of smaller probes presenting reduced steric hindrance with the solid 

surface of the assay could also be beneficial in the future.   

 

The multiplexed method of analysis could not be applied to mixtures of cross 

reactive antibodies. As a result, virus serotyping was not achieved using the assay 

designed. A method for distinguishing cross reactive analytes is needed. Such a 
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method would find great utility, and the development of such a method will now be 

explored. 
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6 Cross reactivity studies 

 
This chapter deals with the development and use of a model for detecting the 

presence of cross reactive antibodies. The antibodies investigated are anti-dengue 

IgG types 3 and 4. A similar model has previously been used for the detection of 

cross reactive pesticides, but there are no reports of it being applied to dengue fever 

serotyping. The method presented in the preceding chapter was not a unique 

method for detecting anti-dengue IgM and IgG in a colocalised multiplexed 

method. It is a general method for multiplexed analyses applicable to anything with 

multiple serum biomarkers. One goal was to detect the various serotypes of a virus 

simultaneously, in the same well of an assay plate. It was proposed that serotype 

specific anti-dengue IgGs in serum would react selectively with the serotype specific 

antigen. These would be detected with secondary antibodies labelled with differently 

coloured fluorophores. What was found was that the polyclonal antibodies 

produced by the mice reacted non-selectively with all dengue antigens. Such a 

response would be seen when assaying for any mixtures of cross reactive antibodies. 

Therefore, the present method using different coloured secondary probes was of 

little utility for serotyping in the absence of a method for assessment of cross 

reactivity. Here, cross reactivity and its effect on diagnostics will be presented. This 

will be followed by discussion of a model commonly used for modelling and 

calibrating immunosorbent assays. Data are presented; first for a partially cross 

reactive system of human and mouse IgG, and finally for a fully cross reactive 

system of anti-dengue IgG types 3 and 4. Here, partially and fully cross reactive 

systems refer to one-way and two-way reactivity between the two species. In the 

one-way reactive system, anti-human IgG reacts with human IgG but has limited 
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reactivity with mouse IgG, while with the two-way reactive system anti-mouse IgG 

reacts with both mouse and human IgGs. 

Simulations were initially carried out to test the robustness of this model for the 

present application and these data are shown in Appendix 5 (page 200).  

6.1 Introduction 

A cross reactant has typically been defined as an interferent causing a positive bias 

on an immunoassay result 1 or an interferent causing a negative bias through the 

suppression of the signal. Positive bias results from the assay taking a longer time to 

reach equilibrium but giving a signal level similar to that obtained at equilibrium for 

the single analyte due to higher dissociation rates of the cross reactant-antibody 

complex.2 Negative bias is a result of the cross reactant binding to the antibody and 

then being washed away after a short incubation time.  

 

Cross reactivity is a form of analytical interference, which may be dependant upon 

or independent of the analyte.3 Analyte independent interference is a result of 

factors such as sample storage, while analyte dependent interference is brought 

about through interaction between the constituents of the sample with the reagent 

antibody. Structural similarities between the cross reactant and the analyte of 

interest lead to this type of interference, and can be problematic in diagnostic 

immunoassays, particularly where administration of drugs is concerned. What has 

been reported as one of the more severe cases of false positive results was the 

diagnosis of a 22 year old woman with human chorionic disease (hCG), which led to 

her unnecessarily undergoing chemotherapy, hysterectomy and segmental lungs 

resection.4 Eventually sixteen million US dollars were awarded in damages. 5 It is 
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believed that the reason for the false positive result was the presence of human anti-

mouse IgGs, or some other heterophilic antibody. 4 

 

Antibodies used in immunoassay development may be placed into one of three 

groups: highly specific; where the antibody recognises only its specific antigen, cross 

reactive with other antigens of the same chemical class with similar binding affinities 

for all members of the group, and cross reactive with other antigens of the same 

chemical class, but having varied binding affinities for each member of the group. 6 

While the first and second groups of antibodies may be used for detection of 

specific antigens or a specific class of antigens respectively, the antibodies of the 

third group are difficult to use for quantitative analysis of an analyte in an unknown 

sample. Cross reactivity therefore poses challenges for epidemiology and serology 

when it comes to diagnosis of viruses with multiple antigenically related forms.  

 

The arboviruses, belonging to the Flaviviridae genus, are a set of viruses for which 

serologic diagnosis is complicated. The viruses are commonly diagnosed using 

ELISA, but this method falls short due to the presence of common antigenic 

epitopes on the envelope protein of all flaviviruses, and a plaque reduction 

neutralisation test, which is costly and time consuming, must be used to confirm 

serology.7 The envelope protein contains the fusion peptide and this confers some 

degree of reactivity of all arbovirus antigens with virus specific antibodies, as a result 

of the amino acid sequence. 8 One such example is a study performed in Columbia,9 

where two arboviruses, dengue fever and yellow fever, co-circulate. ELISA for anti-

dengue IgM performed on yellow fever patients showed that 46.2 % had reactivity 

for dengue fever, while 80 % of dengue fever patients were positive for the presence 

of yellow fever. The issue of cross reactivity with these viruses serves to decrease 
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the ability of public health services to respond efficiently and effectively to 

outbreaks.  

 

Methods for overcoming the problem of cross reactivity include mutagenesis of the 

cross reactive epitope in order to ablate its effects. 10 Other methods include the use 

of curve fitting procedures. One example is the herbicides triazines, which though 

easily separated through instrumental analytical methods can also be detected by 

immunoassays.11 Differentiation between triazines was performed through 

mathematical modelling and curve fitting procedures. 12, 13 

 

An equation frequently used to describe the shape of an immunoassay dose 

response curve is the five parameter logistic (5 PL) function.14 This function has 

parameters for the upper and lower asymptotes, the length of the transition region, 

the location of the transition and the degree of asymmetry present in the curve. This 

equation was applied to the cross reactive system.      

 

6.2 Theory   

The logistic law of growth assumes that systems grow exponentially until an upper 

limit is reached, at which point the growth rate slows and eventually saturates, 

thereby producing a characteristic S-shaped curve.15 Logistic models are empirical 

models which indicates that their parameters lack physical meaning, but can still be 

applied to data to obtain quantitative results.16 In an immunoassay, the 

concentration response curve is a result of the response y to the concentration of 

analyte present, x . These curves are characterised by 5 parameters: the response at 

infinite concentration, the response at zero concentration, the curve midpoint, the 
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slope of the curve and a factor modelling the asymmetric shape of the curve. If the 

curve is modelled in semi-logarithmic space; where the log of the concentration is 

used, the response at zero concentration is not considered and there are 4 

parameters used to describe the curve. The 5 parameter logistic function is shown in 

Equation 6-1.14 
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In Equation 6-1, iy is the measured intensity, ia  is the intensity at zero 

concentration, ib is the slope parameter, ic is the midpoint concentration, id is the 

intensity at infinite concentration and ig is the parameter that models asymmetry. 

The subscript ‘i’ refers to a given antibody. As these 5 parameters are all specific to 

each antibody, the identity of an unknown sample can be determined based on the 

deviation of measured yi from yi that is calculated using the 5 parameters. The 

deviation follows an approximate χ2 distribution: 
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In Equation 6-2, SSE represents the weighted sum of squared residuals, wj is the 

weighting factor which is the inverse of the variance 14 at the jth concentration. As 
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the value for xj in an unknown sample is only approximate, the sum of squared 

errors (SSE) is minimised by changing xj. The χ2 distribution has i-1 degrees of 

freedom and the statistic is used to determine the identity of the unknown sample. 

  

 

6.3 Methods and Materials 

6.3.1  Materials 

Reagents for the human IgG/mouse IgG cross reactivity model obtained from 

Sigma Aldrich were goat anti-mouse IgG (whole molecule) (Lot no. M8642), mouse 

IgG (Lot no. I5381), human IgG (Lot no. I4506), goat anti-human IgG (whole 

molecule) (Lot no. I1886), goat anti-human IgG-FITC (Lot no. F9512), technical 

grade casein from bovine milk (Lot no. C7078) and carbonate-bicarbonate buffer 

capsules (Lot no. C3041). Dengue antigens Types 3 and 4 and rabbit anti-dengue 

polyclonal antibody (Tebu-bio Ltd., Peterborough, UK), monoclonal dengue 

antibodies against dengue serotypes 3 and 4 (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) and goat anti-mouse IgG-FITC (Invitrogen, Paisley, UK) were used as 

outlined in the protocol. Nunc 96-well glass bottomed (Fisher scientific, UK, 

Loughborough, Leicester, UK) were used as the solid phase. 

 

6.3.2 Assay Readout 

Assays were imaged using an add-on to an inverted microscope (Figure 8) (IX71; 

Olympus UK Ltd, Southall, UK). Images were collected using an image intensifier 

(II118MD; Lambert Instruments, Leutingewolde, The Netherlands) attached to a 

CCD camera (PCO.1600; PCO Computer Optics GmbH, Kelheim, Germany). The 

intensified camera system was attached to an imaging spectrograph (PARISS; 
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Lightform Inc., Hillsborough, NJ) and then to the bottom port of the microscope. 

The microscope was illuminated using a mercury burner (Olympus USH-103OL; 

Olympus UK Ltd, Southall, UK) and light was filtered with a cube consisting of a 

450 DF55 nm excitation filter, dichroic mirror of 485 nm and 500 nm long pass 

emission filter (XF77-2; Omega Optical Inc., Brattleboro VT). 

6.3.3 Immunoassay 

The immunoassays were performed by first immobilising separately anti-mouse IgG 

and anti-human IgG in carbonate/bicarbonate buffer (pH 9.65) at a concentration 

of 20 μg mL-1 each on the surface of a 96-well glass bottom plate. The plate was left 

to shake at room temperature overnight. The remaining sites for protein binding 

were blocked with a solution of 1% casein for 2 hours. After washing with PBS, a 

mixture of human IgG and mouse IgG was added and incubated at room 

temperature for 2 hours. Calibration samples for a dose response of the individual 

IgGs were also prepared and added to the wells for two hours. The plate was 

washed with PBS and the secondary FITC-labelled antibodies were added 

individually to their respective wells for two hours. A final wash step was performed 

before imaging microscopically. 

6.3.4 Data Analysis 
 

The data collected for the antigen/antibody dose response curves were fit to the 5 

PL function and the values for ia , ib , ic , id and ig  are obtained. The parameters 

ib , ic , id and ig are optimised to give the best possible fit for the data. These 

parameters are then applied to a dose response of an unknown analyte on a known 

antibody. The SSE is minimised by changing x and comparing to a critical value for 
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χ2. The aim of the minimisation is to obtain an SSE that is as close to zero as 

possible; an ideal SSE is zero.  

 

 

6.4 Results and Discussion 

Anti-mouse and anti-human IgGs have some measure of cross reactivity with 

human and mouse IgGs respectively, based on the results presented in Chapter 4. 

They were therefore chosen as a partially cross reactive system to test the model. 

Human IgG was assayed on anti-human IgG and the 4 parameters were obtained. 

Mouse IgG was then assayed on anti-human IgG and the values for intensity were 

modelled using the parameters for assays on anti-human IgG. 

Figure 66 shows the curve for the dose response of anti-human IgG with human 

IgG. The value of ia is set to 0, and thus only 4 parameters are fit to the data. These 

data are shown below and are set as the standard for all assays on anti-human IgG. 
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Figure 66: Dose response for human IgG. The line is a sigmoidal fit, 
modelled with 4 parameters. Each data point is an average of 3 replicate 
measurements and the error is % RSD.  
 

 

Parameter Modelled value

A 0

B 2.65

C 0.49

D 120.5

G 2.2  

Table 8: The parameters obtained when the dose response of human IgG on 

anti-human IgG is modelled 

 

The SSE of the fit of the parameters in Table 8 to human IgG data was 2.56. This 

value is used as the statistical basis of comparison for ‘unknown’ data fit to the 
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parameters for anti-human IgG. The parameters for anti-mouse IgG were also 

determined through a dose response for mouse IgG on anti-mouse IgG (Figure 67). 
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Figure 67:  Dose response for mouse IgG. The line is a sigmoidal fit, 
modelled with 4 parameters. Each data point is an average of 3 replicate 
measurements and the error is % RSD.   
 

Parameter Modelled value 

A 0 

B 0.99 

C 0.75 

D 829.5 

G 3.11 
 

Table 9: The parameters obtained when the dose response of mouse IgG on 

anti-mouse IgG is modelled 
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Table 9 shows the parameters obtained from fitting 4 parameters to the dose 

response for mouse IgG. The SSE for this fit was 4.16. Using values from Tables 7 

and 8, the identity of samples known to contain either mouse or human IgG could 

be determined and quantified. 

 

Two samples known to contain 0.3 µg mL-1 and 0.75 µg mL-1 of mouse IgG were 

assayed on both anti-human and anti-mouse IgGs. The same was done for samples 

containing 0.3 µg mL-1 and 0.75 µg mL-1 of human IgG. Table 10 indicates that anti-

human IgG does not react with mouse IgG, while the model is able to accurately 

quantify the amount of human IgG present in the sample, with p > 0.2 for the 

observation.   

 

 

 

Analyte [Predicted]/µ g mL-1 [Actual]/µ g mL-1

mouse IgG 0 0.3 

human IgG 0.3 0.3 

mouse IgG 0 0.75 

human IgG 0.75 0.75 

 

Table 10: Results of the cross reactivity model for mouse and human IgGs 

assayed individually on anti-human IgG. 
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Analyte [Predicted]/µ g mL-1 [Actual]/µg mL-1 

mouse IgG 0.37 0.30 

human IgG 0.09 0.30 

mouse IgG 0.96 0.75 

human IgG 0.09 0.75 
 

Table 11: Results of the cross reactivity model for mouse and human IgGs 
assayed individually on anti-mouse IgG 
 

Table 11 shows the results for two concentrations of analytes assayed on anti-mouse 

IgG. The model predicts the concentration of mouse IgG, but assumes that human 

IgG is mouse IgG at very low concentration. The predictions (p >0.95) demonstrate 

the cross reactivity of anti-mouse IgG with human IgG, with no significant 

difference detected between the reaction of  anti-mouse IgG with human IgG and 

anti-mouse IgG with mouse IgG. These results confirm what was noticed 

previously (Chapter 4) with the increased signal for mouse IgG when human and 

mouse IgGs were assayed together. ith Anti-mouse IgG reacts with human IgG, but 

the response is a fraction of what would be obtained if mouse IgG is the analyte. 

We recommend that the sample containing an unknown analyte is diluted by known 

factors to produce a concentration/response curve on the cross reactive antibody. 

The modelled curve that approximates closest to a dose response curve with a 

suitable error distance between the measured and calculated intensities reveals the 

identity of the unknown analyte.   

 
The same curve fitting methods were then applied to a real viral system. The success 

with the partially cross reactive human IgG/mouse IgG model indicates that cross 
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reactants can be distinguished using the present method, and attempts were made to 

extend it to a fully cross reactive system of dengue antibodies. 
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Figure 68: Dose response of anti-dengue IgG on dengue type 3 antigen. The 
line is a sigmoidal fit to 4 parameters. Each data point is an average of 3 
replicate measurements and the error is % RSD. 
 
 

Anti-dengue type 3 antibody was assayed on dengue type 3 antigen (Figure 68). The 

four parameters fit the data with a SSE of 0.15. These four parameters were then fit 

to data obtained from anti-dengue type 4 assayed on dengue type 3 antigen. The 

results of this fit indicate that there is reactivity of type 4 antibody with type 3 

antigen, with the model assuming type 4 antibody to be type 3 antibody (p >0.95) at 

very low concentrations. This same pattern was seen for the partially cross reactive 

system of human IgG with anti-mouse IgG, where the model assumed that human 

IgG was mouse IgG at a low concentration (Table 11). 
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Analyte [Predicted]/µg mL-1 [Actual]/µg mL-1 SSE 

dengue Ab 3 0.2 0.2 3.80E-23 

dengue Ab 3 2 2 4.81E-12 

dengue Ab 4 0.31 0.2 1.27E-14 

dengue Ab 4 0.49 2 5.51E-29 
 
Table 11: Assessment of a cross reactive assay, where type 3 and type 4 
dengue antibodies are assayed individually on dengue type 3 antigen. 
 

 

From Table 11, the sum of squared differences between the  measured and 

calculated intensities is low, and the method of accepting the sample with the lowest 

χ2 as the correct analyte cannot be performed with confidence.  

 

6.5 General Discussion and Conclusions 

A model for cross reactivity was developed and applied to a partially cross reactive 

system of human and mouse IgGs, and a fully cross reactive system of  dengue 

types 3 and 4 antibodies. Standard dose response curves were measured and 4 

parameters were obtained, which were then used to fit ‘unknown’ data. The sum of 

squared differences between the measured and calculated data was assumed to 

follow a χ2  distribution and this value was optimised. While the components of the 

partially cross reactive system can be determined, results showed that the model 

cannot be applied to a fully cross reactive system.  

Initially, simulations where noise was added to the system were performed to test 

the robustness of the model and these indicated that the error distance is large when 

the analyte is not assayed on its antibody, with p < 0.005. This value is statistically 
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significant and indicates that unrelated antibodies can be distinguished. A lower 

error distance is obtained when the correct analyte is assayed on its antibody, with 

p > 0.1. This value is not statistically significant. The simulations allowed use of the 

model as it works even in the presence of noise.   

This method for distinguishing between cross reactive antibodies is similar to a 

previously described method17 for herbicides. The report also noted the difficulty of 

distinguishing between closely related analytes, and suggested developing more 

discriminatory antibodies for specialised detection. Indeed, this approach of 

developing discriminatory antibodies is frequently taken for detecting cross reactive 

viruses. 18-20 These methods are somewhat expensive, and therefore the combination 

of a multiplexed assay using specialist antibodies and quantified with the 

mathematical method described here would create a cheaper, sensitive method for 

specific detection of cross reactive viruses.  

The method described for herbicides was an ELISA, 17 and was modeled with the 

four parameter logistic function which fits three parameters to the data. This 

function did not always fit the immunoassay data, resulting in lack of fit error. The 

method used here employed the five parameter logistic function which adds a 

fourth fitting parameter that accounts for asymmetry in the dose response curve. 

The use of this parameter extends the utility of the method described here to several 

types of assays, as the shape of the curve varies for high and low binding assays, in 

the presence of cross reactants and with variation of incubation time. 21 

The method described in this chapter was applied with the intention to distinguish 

serotypes of dengue fever and other cross reactive viruses using a cheap and easily 

implemented technique. While this goal was not reached, the method provides a 

viable platform for future work when combined with multiplexed immunoassays 

using specialized antibodies.   
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7 General Discussion and Conclusions 

This thesis explored the development of multiplexed immunosorbent assays 

through spectral unmixing of spectroscopic signals. Multiplexing is widely discussed, 

but implementing methods into viable immunoassays is difficult. The most easily 

implemented method is the microarray method, where the assays are performed in 

specific spots on a glass slide or in a glass plate. This, as mentioned previously, is 

done extensively and no attempts were made to multiplex in this manner. Another 

widely used but expensive method is through bead-based assay platforms such as 

Luminex® and other such technologies. The work presented in this thesis goes 

beyond what has been done before: multiplexed single well measurements have 

been performed in both solution and solid phase using organic fluorophores, 

quantum dots and lanthanide doped silica nanoparticles. The results were obtained 

through the use of spectroscopic techniques for detecting multiple spectra and 

subsequently separating these spectra into individual components. Additionally, a 

number of microscopic techniques are used, with a particularly novel application of 

an epi-fluorescence and programmable array microscope to the issue of 

multiplexing. In this chapter the work carried out is summarised, along with 

suggestions for further study. 

 

7.1 Spectral Unmixing Of Conventional Fluorophores and Quantum Dots 

In chapter 3 a method for separating mixtures of organic fluorophores was 

described where the fluorescence spectra of up to four co-localised dyes was 

unmixed. This concept was not straight forward, as conventional unmixing methods 

did not always give favourable results (Table 2). The problem was compounded by 

multiple forms of dyes (Figures 17 and Figure 18) and their intrinsic properties, 
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which have been discussed at length in chapter 3. The spectral unmixing algorithm 

assumes that the intensity of a mixture at a given wavelength is the sum of the 

intensities of all individual components of the mixture. The unmixing method is 

calibrated using standards of the individual mixture components. It was observed 

that this method does not allow for interactions of co-localised dyes, and the 

method presented in chapter 3 used standards that were comprised of mixtures of 

the dyes. That way, these behaviours were accounted for and any interactions would 

not hinder the unmixing process. Indeed, this method offers an improvement over 

existing methods, with the model better able to predict the concentration of each 

fluorophore in the mixture. These results were described in Figures 16 – 24 and 

Tables 2 and 3, with Figure 21 showing a comparison of the existing and new 

methods. Tables 2 and 3 show the improvement of the concentrations predicted by 

the new method over the old one. Attempts to unmix QDs using the same method 

were unsuccessful, indicating the need for alternative inorganic fluorophores. It was 

subsequently realised that the problems encountered with QDs were specific to the 

unmixing experiment and are not a generic issue. 

Imaging of the samples was performed using spectral imaging microscopy with a 

single filter set for excitation and emission. This means all dyes in the mixture are 

not excited at their excitation maxima. The process of changing filter sets was not 

automated for this project. If this were done, multiple dyes could all be efficiently 

excited with band pass filters collecting the emission data. Doing this would 

increase the number of samples that can be imaged simultaneously and could be 

explored in future work. 
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7.2 Lanthanide-doped silica nanoparticles 

The issues encountered with fluorophores and quantum dots indicated that 

although their use is possible, there is a need for probes that simplify multiplexed 

assays. The synthesis, characterisation and use of these probes were described in 

chapter 4. The probes used were silica nanoparticles doped with europium, terbium 

and samarium. While particles in this format have been described for terbium and 

europium, there was no record for samarium. These probes were chosen for their 

atomic line emission that removed the possibility of spectral overlap. Their 

encapsulation in silica meant that the particles could not interact with each other 

and thus there was no possibility of FRET. Silica also allowed for bioconjugation 

compatibility with biological molecules. All these factors made the particles suitable 

for multiplexed single welled immunoassays. They were indeed suitable for these 

assays, with multiplexed assays for mouse and human IgGs demonstrating this 

(Figures 44 and 45). Figures 44 and 45 show a comparison between a dose response 

for the analytes human and mouse IgG assayed individually (Figures 44 (a) and 45 

(a)) and in a mixture (Figures 44 (b) and 45 (b)). It is clearly observed that the 

detection of an analyte is not greatly affected by the presence of a second analyte, 

since the probes used for detection do not interact and their emission spectra do 

not overlap.  

The results highlighted another factor that hinders wide-spread implementation of 

single welled multiplexed immunoassays: cross reactivity. The partial cross reactivity 

of mouse and human IgGs is realised in the increased intensity of the response 

when the two analytes are assayed simultaneously (Figures 44 (b) and 45 (b)). The 

issue of cross reactivity was addressed subsequently (Chapter 6). 

The studies with lanthanide doped silica nanoparticles were performed without time 

resolved measurements. Performing these (or similar) experiments in a time 
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resolved immunoassay format would extend the utility of the method to detection 

of low levels of analytes, and could be explored in further work. 

Chapter 4 also discusses the synthesis of a ligand able to excited terbium in the UV 

region. The ligand BTBCT was also UV excited. The development of a ligand that 

can be excited by the 488 line of the Argon laser would allow these probes to be 

used with powerful microscopes such as the confocal laser scanning and 

programmable array microscopes. Visible-light excited probes are already in 

existence 1-3 and further work could optimise their development for use with 

instruments such as the confocal microscopes used in this project.  

 

7.3 A Model Study: Dengue Fever 

Chapter 5 presented the application of the multiplexed assay to simultaneous 

detection of anti-dengue IgM and IgG. The assays were performed with quantum 

dots, lanthanide doped silica nanoparticles and organic fluorophores, with epi-

fluorescence, confocal laser scanning and programmable array microscopy used for 

assay readout. All results obtained were compared to multi-welled ELISAs. The 

results were discussed at length in chapter 5 and will not be discussed again here. 

However, the salient points are that conventional fluorophores with confocal 

readout gave the best results when compared to ELISA (r2 > 0.9), while the PAM 

was the preferred instrument because of its speed and advanced capabilities. 

The assays were performed on mouse sera and it would be of interest to extend the 

method to human samples. Here, the real utility of the differing ratios of IgM to 

IgG would be realised in patients suffering from secondary dengue infection. The 

antibodies were first detected 7 days after the first immunisation. Further work 

could investigate detection of antibodies in fewer days post infection.  
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7.4 Cross reactivity studies 
 

Finally, chapter 6 presented a model for distinguishing cross reactive analytes. This 

model was designed and tested on a partially cross reactive system of mouse and 

human IgG, and a fully cross reactive system of anti-dengue IgG types 3 and 4. The 

model was able to distinguish between the partially cross reactive analytes, but there 

was no differentiation made between the fully cross reactive dengue antibodies. 

Future work could explore the use of engineered serotype specific antibodies 

twinned with the cross reactivity model. Combining the two methods in a 

multiplexed format would reduce the time and cost of the assay, making the 

technique suitable for use in poorer countries. 
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Appendix 1: Linest data sets 

This table shows the data that were put into the unmixing model.  The first 
column contains the wavelengths used in the model. The top 4 rows contain 
the concentrations of the standards used and the body of the table contains 
the intensities of the solutions at the corresponding wavelength. 
 

concentration of standard solutions/ mol dm-3  

R101 4.97E-06 9.94E-07 2.01E-06 7.93E-06 4.02E-06 2.96E-06 2.96E-06
RB 9.63E-07 2.03E-06 5.03E-06 5.99E-06 8.03E-06 3.00E-06 3.96E-06
F 4.67E-06 3.69E-06 1.85E-06 8.86E-07 7.38E-06 4.67E-06 5.54E-06

671.5488 1.933148 1.102128 1.087334 1.779374 2.951261 1.778882 1.952941
639.4831 3.168524 1.93617 1.78856 2.25395 4.956303 3.018634 3.220588
592.2238 6.369081 4.970213 2.448417 1.182993 7.921008 5.913043 6.567647
553.1066 11.47911 8.843617 4.368233 1.885665 15.1916 10.89938 12.275 
524.437 0.261838 0.174468 0.105209 0.05688 0.270588 0.224845 0.266176
651.9106 2.986072 1.576596 1.555669 2.422292 4.383193 2.536646 2.819118
610.632 4.210306 3.842553 2.336057 1.383798 6.704202 4.554037 5.180882

 

The table below is the output from LINEST. The first column represents the 
wavelength of interest; the first row of columns 1 to 3 are values for β j  , the 

first value of column 3 is β j0  .  The second row contains the standard errors 

in the values in row 1. Row 3 column 1 is the correlation coefficient, row 3 
column 2 contains the standard error in calculated intensity values. Row 4 
column 1 contains the F statistic and column 2 is the number of degrees of 
freedom. Row 5 column 1 contains the regression sum of squares, and 
column 2 contains the residual sum of squares. 

671.5488021 247799.3389 72856.37344 153461.6851 -0.077728137 

  11213.3495 9982.859716 10834.54315 0.070976721 
  0.99875209 0.053970633 #N/A #N/A 
  266.7798918 1 #N/A #N/A 
  2.331252774 0.002912829 #N/A #N/A 
  #N/A #N/A #N/A #N/A 
       
       

639.4831456 477007.3262 104466.8295 168857.8657 -0.075353524 

  41227.09199 36703.06324 39834.36947 0.26095359 

  0.994252549 0.198428867 #N/A #N/A 

  57.66338816 1 #N/A #N/A 

  6.811317399 0.039374015 #N/A #N/A 
       
       

592.2238109 1101796.58 -197498.3531 8451.973011 1.343995514 
  15039.08784 13388.78309 14531.04143 0.095192355 
  0.999828768 0.072384178 #N/A #N/A 
  1946.346069 1 #N/A #N/A 

  30.59346102 0.005239469 #N/A #N/A 
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553.1065649 2130743.91 -277943.6071 5591.727864 1.683179418 

  45971.94289 40927.24095 44418.9311 0.290986896 
  0.999572355 0.221266165 #N/A #N/A 
  779.129188 1 #N/A #N/A 
  114.4354939 0.048958716 #N/A #N/A 
       

       

       

524.4369906 37504.79373 -11252.14403 3387.650137 0.071316253 

  5056.567317 4501.688115 4885.747722 0.032006366 
  0.983312168 0.024337611 #N/A #N/A 
  19.64130091 1 #N/A #N/A 
  0.034901765 0.000592319 #N/A #N/A 
       
       
       

651.9105764 404474.0765 84550.83675 227282.981 -0.188276061 

  40152.46989 35746.36412 38796.04996 0.254151594 

  0.993206013 0.193256636 #N/A #N/A 

  48.72966164 1 #N/A #N/A 

  5.459884842 0.037348127 #N/A #N/A 
  #N/A #N/A #N/A #N/A 

       
       

610.6320456 776108.1296 40703.33635 -58113.4642 0.879634291 
  23802.80308 21190.81761 22998.70319 0.150663717 
  0.999206034 0.11456455 #N/A #N/A 
  419.5001246 1 #N/A #N/A 
  16.51786295 0.013125036 #N/A #N/A 
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Appendix 2-Calibration of the Spectrograph 

0

100

200

300

400

500

600

700

800

900

1000

200 300 400 500 600

pixel number

flu
or

es
ce

nc
e 

in
te

ns
ity

 
Spectrum of lines in the calibrating lamp, taken through the spectrograph 
 

y = -6.216530E-05x3 + 7.105517E-02x2 - 2.790360E+01x + 
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The 3rd degree polynomial line used to convert pixel number to wavelength  
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Appendix 4-Persistence of dengue antigen in the serum of immunised mice 

In these experiments mouse sera were assayed for the presence of persisting 

antigen. The assays were performed using a secondary probe labelled with europium 

doped silica nanoparticles. In this assay, particles were counted. As can be seen, 

there is antigen present in the samples. 

sample particles/well 
blank 26 
blank 188 
blank 140 
Ab3 276 
Ab3 256 
Ab3 268 
Ab4 140 
Ab4 247 
Ab4 274 

Ab3+Ab4 215 
Ab3+Ab4 258 
Ab3+Ab4 204 

    
    

Sample Average 
blank 118 
Ab3 266.6666667 
Ab4 220.3333333 

Ab3+Ab4 225.6666667 
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Appendix 6 -Publications/ Conference Proceedings 

•  Murray, K., Cao, Y-C., Ali, S., Hanley, Q. Analyst 2010, 135, 2132-2138. 

•   Murray, K., Ali, S., Hanley, Q. Progress towards multiplexed nanoparticle 

based immunoassays for dengue fever. Presented at “Nanodots and 

Diagnostics” Symposium Spain 2009. 

• Murray, K., Ali, S., Hanley, Q. The Use of Nanoparticles, Quantum Dots 

and Fluorophores in Confocally and Spectroscopically Detected 

Immunoassays presented at MICROSCIENCE 2010 London 2010. 

• Murray, K., Ali, S., Hanley, Q. Multiplexed biochemical detection of the 

immunoresponse to dengue fever antigens presented in absentia at ACS 240th 

national meeting, Boston 2010. 
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