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Abstract

The level of moisture a construction is exposed to may have an adverse effect 

on health and structure. Using straw, an organic material, as the construction 

medium, introduces concerns about biodegradability and spore germination, 

highlighting the uncertainties surround the level at which straw is susceptible to

decay. A physical model is presented in this thesis offering a method by which 

to quantify and evaluate the risk posed to straw bale constructions from 

moisture. The model, utilising the development of an innovative Risk 

Assessment System based on fuzzy logic, is supported by empirical research 

conducted in static and dynamic environments.

The model relies upon the interpretation of data provided by monitoring 

devices, and an understanding as to the complexities of vapour transition 

through a straw bale and the interaction of moisture within. Using commonly 

descriptive terminology to describe the risk posed to the straw, the model, is 

capable of providing a greater understanding of straw bale construction and 

advising interested parties on potential weaknesses, taking into account: 

moisture, temperature, historic and predicted environmental conditions, 

limitations of analytical techniques, and the affect of direct sunlight. The 

concept of the model is to provide an early response mechanism to warn of the 

potential of adverse effects and thereby averting the need for destructive 

investigation and remedial action.

The interpretation of monitoring device data underpins the research conducted 

in this thesis, prior to which, there existed a gap in knowledge concerning the 

understanding of how moisture interacts with straw. The development of a 

novel compressed straw probe, as a monitoring device, offers the ability to 

establish an immediate moisture content measurement using a resistance 

meter, or of recent moisture levels using gravimetric analysis, supported by 
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olfactory and visual verifications, enhancing the accuracy. Monitoring device 

results, compensated for temperature and density by equations developed from

empirical data, are applied to a contour plot, via the Risk Assessment System, 

to provide an diagrammatic interpretation of the risk posed. Any potential 

problem is then flagged and a report generated providing advice.

Other contributions to knowledge made within the thesis consist of: monitoring 

device evaluations, determining the rate at which moisture is transferred 

through a bale, defining the interaction of moisture with straw, the capacity for 

moisture storage of renders and the subsequent implications, identification of 

transient moisture and the effect of solar gain, resistance meter calibration, and

the hygroscopic, hydrophobic and hydrophilic tendencies of straw.
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I.1   Aim and Objectives

The aim of this thesis was to quantify and evaluate the risk posed to straw bale 

constructions from moisture. It brings into question the perceived confidence 

afforded to the construction method whilst investigating the following 

objectives:

1. To Confirm the point at which moisture becomes an issue to the straw.

2. To define the term 'risk'.

3. To assess different monitoring devices for strengths and weaknesses.

4. To describe the interaction between moisture in the atmosphere and the 

straw within a bale.

5. To assess how moisture occurs within a bale.

6. To determine the rate at of transfer of moisture and temperature through

a bale.

7. To produce a basic visual identification system and model to promote 

confidence in different monitoring techniques.

The thesis begins by analysing the need for more sustainable construction 

methods within the built environment taking into consideration a growing global

population and the impacts straw bale construction could potentially have on 

the economy, environment and society.
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I.1.1-  Population Increase

The global human population reached 7.2 billion in 2012 (UN 2013) rising from 

6.1 billion in 2000 with the potential to rise to 9.22 billion by 2075 (UN 2004a). 

The predicted figure was revised in the 2013 report which states a population 

rise of one billion in the next 12 years settling at 9.6 billion by 2050 (UN 2013) 

considering a medium fertility trend as illustrated by Figure I.1. This will place, 

amongst other strains, an additional demand on the construction industry. 

Engleman (2011) questions the further impact of this on the future of the 

planet; the unabated depletion of non-renewable resources together with 

questions over the availability of homes and the effect on the environment for 

food production.

Figure I.1: UN Prediction of Global Population (geohive 2013)

The UK's projected population is estimated to be around 71.6 million by 2033 

increasing by 10.2 million from 2008 figures (Directgov 2009). The National 

Housing and Planning Advice Unit (NHPAU) calculated that to keep up with the 
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demand an average of between 223,000 and 255,000 new houses per year 

(dependant on migration) will be required by 2026 (NHPAU 2007), a figure 

revised by the Institute for Public Policy Research (IPPR) that suggests, based 

on 2011 trends, that in a high migration scenario 26.3 million households will 

be needed in the UK by 2025. The  Institute for Public Policy Research figure 

shows an increased requirement of 750,000 new homes, more than currently 

being constructed, alternatively the requirement may be as low as 440,000 

scenario dependant (IPPR 2011).

The questioning stance of Engleman (2011) is supported by a variant of the 

Malthusian model which assumes that the worlds resources are finite and that 

population growth is a cause for concern indicating that there will come a point 

in time at which man's technological achievements cannot overcome the issues

it has created and vital resources will run out (Furedi 1997); for example oil. 

Furedi also discusses the counter argument suggesting that people's standards 

of living are not necessarily dependent on the availability of land and resources.

Despite this Ranganathan (2011) argues that resources underpin business and 

that this places a dependence on ecosystems, citing finding's made in the 

Millennium Ecosystem Assessment Report, written by the United Nations 

(2004b), the report suggests that global ecosystem services have been 

degraded by two-thirds due to human activity. Governments and agencies (GCC

2012) are seeking therefore to address the need to live more responsible 

lifestyles whilst balancing the need for social and economic growth by reversing

the negative impact homo sapien has on the planet.

I.1.2-  Construction Resources

In evaluating the indicators for environmental pressure, amongst many other 

countries, the UK (HMSO 1994) and Estonia (Statistics Estonia 2008) were two 

countries that signed 'The Convention on Biological Diversity' at the 1992 Earth 
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Summit, United Nations Conference on Environment and Development. 

Statistics Estonia suggest that the rate that resources are consumed is placed 

secondary to the economy and that for minerals, energy and water, amongst 

other resources, consumers and manufacturers do not pay for resource 

depletion; including the greenhouse effect, landscape destruction, pollution or 

loss of biodiversity. The 2008 paper concludes  that a general view is taken is 

that “wasting the treasures of nature is reasonable” (Statistics Estonia 2008, 

pp.53). 

The reduced dependence on non-renewable resources depends on society 

changing to embrace a sustainable future, the definition of sustainability was 

initially defined by the World Commission on Environment and Development in 

1987 as “Development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” 

(Edwards 2010). This statement however identifies many conflicts and eludes 

to a highly complex subject.

The World Bank Group (DEPweb 2001) identifies the need to balance, with 

sustainability as the focus, the conflicts generated between (Figure I.2) the 

Economic sector (industrial growth, agricultural growth, household needs, 

services and efficient use of labour), the Social sector (equity, empowerment, 

participation, social mobility and cultural preservation) and the Environment 

sector (biodiversity, natural resources, carrying capacity, ecosystem integrity 

and clean air and water). 
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Figure I.2: Sustainability concerns

Destruction of the natural environment (air, earth and water) from man’s 

continuing quest to become more civilised and technologically advanced has in 

recent years provoked a worldwide debate culminating in amongst other 

agreements the Kyoto Protocol which set targets for 37 industrialised countries 

to reduce the amount of greenhouse gasses they produce (United Nations 

2011). Wihan (2007) reports that 11% of all global carbon dioxide (CO2) 

produced comes from the production of new materials for the construction 

industry. Analysing the UK's pollution statistics shows that the construction 

industry accounts for 47% of the nation's CO2 emissions (BIS 2010) with 

housing contributing to 27%, of which 73% is used for heating space and water 

(Moore et al. 2007). 

The UK government has in response set a target to reduce green house gas 

emissions by 80% by 2050, relative to 1990 levels, and aims to encourage new-

build developments to be carbon zero from 2016 onward (DCLG 2007, Wienand 

et al. 2008) however, this will only address part of the problem.
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The concerns over Man's impact on the planet signals a warning that new 

technologies must not only be able to provide a wider range of functionality, 

but must also be responsibly produced “personally fulfilling, socially just and 

economically and ecologically viable” (Dickson 1974, p.40). This in part extends

responsibility to designers and manufacturers who need to understand not only 

the impact of a product, but should also assess the products life cycle (Wimmer 

et al. 2010). These needs can be extended for buildings which must be made 

more energy efficient in their use and construction and be capable of providing 

a continuing improvement in the standard of living without having a 

detrimental effect on the planet, or other societies (including the plant and 

animal kingdoms). Yet, buildings should be a place, as De Botton (2007, pp. 

137) describes from the point of view of architecture, that “will speak to us of a 

degree of serenity, strength, poise and grace” a reminder of the buildings 

historic significance and what additional effects a construction had on the 

world; extensive mining, refining of hazardous chemicals, basic housing 

provision, social interaction, exploitation of the poor, provision of employment, 

political reform, breaking the boundaries?
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I.1.3-  Embedding Sustainability

As noted in the general description of sustainability (Section I.1.2 p13), the 

question of what should constitute a sustainable development, or construction, 

is unresolved. It should seek to resolve conflicts between the social, economic 

and environmental sectors; BREEAM, LEED, NIBE and SBAT are examples of 

design and assessment tools that can be applied to address these issues whilst 

contributing to knowledge on the planning, construction and operation of 

buildings. However, each of the assessment tools approaches sustainability 

from different perspectives a point raised in Chen et al.'s (2008) evaluation 

which aimed to identify the different characteristics of some of the available 

assessment tools.

Another solution may be found in unison with the type of construction method 

applied; building with a renewable by-product that is locally sourced and has a 

natural life cycle. Using the stems of a harvested crop such as oats, wheat, rice,

barley, or rye may provide a partial answer; in the UK wheat straw is the most 

widely available by-product of the agricultural industry. Straw as an organic 

material has a potentially low embodied energy, contains no toxic chemicals 

and, if baled and used as a construction material, provides exceptional energy 

efficiency ratings (King, B. et al. 2006). If the natural life cycle of straw between

harvest and decay could be postponed through use as a building material, the 

construction of the building could be used to gain local interest in the 

immediate ecosystem. The interest could be used to draw attention to local 

biodiversity conservation issues bringing the community together to focus on 

sustainability and potentially highlighting conflicts between aspects of the 

economy, society and the environment.
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I.1.4-  Wheat Straw as a Resource

Resources are assets that, at a given moment, have a use or potential use. 

Society will dictate what a resource is according to their need for it; until 

recently coal was a highly prized resource yet recent changes in mindset have 

reduced this value (Furedi 2010). Wheat throughout human civilisation has 

been a valuable resource and regarding human nutrition wheat forms one of 

the most important of all cultivated plants (Evans et al. 1981). It is intrinsically 

linked to nutrition (grain), agriculture (grain and plant) and the built 

environment (stem of the plant). 

Figure I.3: Wheat Field

Cultivated wheat species include common wheat (bread wheat), spelt, durum, 

emmer and einkorn and each one has different characteristics to the other. 

Evans et al. (1981) describes wheat's value throughout human history, from the

first evidence of cultivation near Aswan, banks of the Nile, around 16000-15000

BC, to more substantiated evidence in Greece towards 6000 BC; the ancient 

Egyptians having different symbols for barley and emmer demonstrating that 

they had different values for each. Germanic tribes preferred Spelt for disease 
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resistance, the ability to be sown in autumn at higher altitudes and farther 

north than other wheat species, and for the quality of its flour. The Romans 

experienced civil disorder over grain prices as their empire expanded and 

farming methods changed to accommodate more bread wheat; it was Augustus

who was heralded for quelling the disorder and his name has therefore always 

been associated with his relationship to wheat harvesting; hence August. The 

Gauls were more accepting of the Romans for their wine and bread, the 

Germanic tribes preferred their own beer, porridge and dark breads.

The spread of wheat, and it's different varieties, continued and is considered an

important method of “determining the nutritional status of millions of human 

beings” (Evans et al. 1981, pp.149). This close relationship with cereal crops 

extended to construction, the stems of the plants are used as a binder to 

provide strength to reinforce the structural capabilities of bricks and renders 

(Lacinski 2000) and for use as thatching material. This abundant resource is 

intrinsically linked with human history, primarily due to the grain production, 

but also as a construction material.

In present day farming the by-products of harvesting, the stem and roots of the 

plant, remain on the field and whilst the root may be turned with the soil during

ploughing it is not recommended, unless finely chopped, that the stem be 

disposed of in the same way; “large quantities of straw, partially buried in soil, 

provide an ideal breeding habitat for specific pests and many diseases of 

cereals survive on undecomposed straw.” (Grossbard 1979). To dispose of the 

straw, as Atkinson (2010) notes, it can be used for dietary fibre for livestock, to 

grow mushrooms, mulch for vegetables and fruit, energy production in power 

stations, for biobutanol production, and for bedding with the added advantage 

of being able to be used as a fertiliser at a later date saving energy on the 

manufacture of fertilisers. Sodagar et al. (2011), using data from the Biomass 
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Energy Centre, indicates that 40% of all straw is shredded behind the harvester 

to provide the soil with added nutrients, modifying the structure, and improving

water and nitrogen retention yet there remains a significant amount of unused 

straw.
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I.2   Straw and Construction    

Straw has been used in construction for thousands of years, in adobe blocks, 

plasters, thatch and Lehmwickelstaken (straw and clay infill) however, in 1857 

John F. Appleby from Wisconsin (USA) invented the twine binder (Cornways [no 

date]). It was the advent of the first baling machines in the mid 1800's that 

would provide a quick and effective solution for resource deprived settlers of 

Nebraska to achieve sufficient shelter from the elements. With few other 

available building resources it was quickly discovered that walls could be 

constructed by stacking straw and hay bales on-top of one another; straw bale 

building was born. The authors King, B et al. (2006) and Jones, B (2002) give 

the history, challenges and art of building with straw, the UK television station 

Channel 4's Grand Designs programme (2011) has also featured an oak frame 

straw bale house constructed by Kelly and Masoko Neville in the 

Cambridgeshire fens and Ben Law's self-sufficient woodland cottage made 

famous for it's planning setbacks. 

I.2.1-  Straw Bale Construction

Baling has allowed a loose and somewhat awkward by-product of the 

agricultural industry to be secured in tight uniform blocks with the ability to 

stack and store the material neatly and simply. 'Uniform' is used here in general

terms as bales may vary as Carfrae (2011) reports from Ashour's findings by up

to ±7.2% in size, ±25.1% in weight and ±21% in density.

During photosynthesis a plant will absorb CO2 and release oxygen effectively 

locking-in the carbon molecule that governments are looking to reduce. 

Therefore, a renewable organic material that is readily available such as timber 

would provide a large carbon store (Fix et al. 2011) however, the timber must 

be grown in synchronisation with demand, noting the ecosystem that develops 
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as a part of it, trees taken from an an ecosystem that has taken hundreds of 

years to develop may consist of complex intertwined relationships and 

therefore may not be viewed as renewable. The argument concerning timber's 

use in construction is therefore dependant on the species and practices 

implemented in the harvesting. Sodagar et al. (2011) discuss the concerns 

surrounding the potential for carbon reduction of straw bale housing, the use of 

straw as the major contributing material over timber.

It can be argued that because the straw has to be collected from the field to 

make way for the next crop, the CO2 emissions produced during harvesting can 

be attributed to an offset for grain production (Atkinson 2010) however, at 

present the grain is the resource not the straw and this view could only be 

changed if straw became a more valuable resource. The transportation of bales 

to site if kept to a short distance provides another potential emissions saving in 

comparison to many other building materials transported from potentially 

thousands of miles away; if not necessarily the actual product directly, the raw 

materials used in the manufacturing process.

Straw can be used as a main construction material, in bale form, and with the 

provision of adequate protection in the form of a 25mm thick application of a 

lime render or stucco, this renewable resource can be preserved from the 

natural life cycle, post harvest, prior to decomposition. Watson (2010) suggests 

that in the UK alone it is estimated that with the surplus four million tonnes of 

straw produced every year 450,000 houses, of 150m2, could be built using 

around 400 bales over a 100 m2 footing (Bigland-Pritchard and Pitts 2006).  The

National Housing and Planning Advice Unit requirements of 255,000 new 

houses per year could easily be fulfilled and progress towards reducing the total

carbon emissions of the construction industry. In 2011 out of 12.2 million 

tonnes of straw produced in the UK 5.6 million tonnes remained unused (AHDB, 
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2013). This figure is variable however, one year may produce a bountiful crop 

compared to another year, as in 2009 in the UK which saw a decrease of 17% in

wheat grain production due to poor planting conditions and low cereal prices in 

2008 combined with wet harvesting conditions in 2009 (NFU, 2010). Potential 

disruptions to a construction project include unfavourable growing conditions 

for a particular season and the ability to source the straw locally.

I.2.2-  Construction with Straw Bales

One benefit of a straw bale construction is the thermal efficiency generated by 

the walls with reported values for thermal conductivity between 0,038 and 0,1 

Wm-1K-1 (Grmela et al. 2010). The underlying principle of construction with 

straw bales is simple, consisting of two basic methods of construction: 

Nebraskan style (load-bearing) and framed structured (infill) (Jones 2002). 

Goodhew et al. (2010) discuss the use of structurally insulated panels, framed 

structures and hybrid designs including Strammit boarding, evaluating the 

Carfrae House in Totnes (awarded Federation of Master Builders: Eco-house of 

the year 2007) which has a primary energy use conforming to German 

PassivHaus standard.

The range of different types of construction and how and why they are 

constructed are numerous, from individual self builds including extensions, to 

the hybrid designs of MODcell, or the community based settlement of Sieben 

Linden.

I.2.3-  Effect on Society

Due to the ease of construction many straw bale buildings around the world 

have been raised by unskilled volunteers, representing communities and 

individuals, happy to help with a build in exchange for the sense of personal 

achievement, promise of a hot meal and social union that comes with the 
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experience, or as Bigland-Pritchard and Pitts (2006. pp. 374) state from 

Edminster observations a “sense of belonging and a connection to place”. This 

is normally done under the instruction of at least one skilled site manager 

(Wihan 2007) and Goodhew et al. (2010) also raise the subject of skilled on-site 

personnel.

As described by the World Bank Group (DEPweb 2001): the economy and 

environment must be balanced with society (equity, empowerment, 

participation, social mobility and cultural preservation). The ability for inclusion 

that straw bale construction offers can engage people on a social and 

personally intimate scale corresponding to the Marxist view regarding the 

aspects of alienation, now adopted by sociologists and psychologists as being a

feeling of powerlessness (individuals feel controlled or manipulated by other 

people or systems), meaninglessness (normally work related, a division or 

fragmentation from the production task), self-enstangement (the experience of 

depersonalised detachment from their work) and normlesness and isolation 

(social alienation and the breakup of integrated communities) (Dickson, 1974). 

By involving local communities and regarding the individual's need for personal 

fulfilment a number of complex issues could be addressed. 

In 1994 the Ecovillages and Sustainable Communities Conference suggested 

that the development of Eco-villages would require highly developed social 

skills together with carefully designed communities. The vision stated that it 

must encompass consideration of the ecosystem, built environment, economics

and government, and group visions supporting the health of residents “on a 

physical, emotional, and spiritual level”(Kennedy et al. 2002. pp.88). Possibly a 

more controversial approach would involve a total change to the economy and 

society; “environmental governance and sustainable consumption is proposed 

by a broad body of thought known collectively as the 'New Economics'” 
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promoting well-being above economic growth seeking to reunite economics 

with the foundations of the environment and society, curbing the negative 

impact of globalisation (Seyfang 2010, pp.7627). The paper proposes five topics

to influence sustainable consumption under New Economics: “localisation, 

reducing ecological footprints, community-building, collective action and 

building new infrastructures of provision.”

There are a growing number of communities world wide that are attempting to 

readdress complex social issues in a number of different ways, from Sieben 

Linden's model of how a variety of different human communities can live more 

responsibly amongst Nature, to the Findhorn Foundation who's vision is to help 

“unfold a new human consciousness and create a positive and sustainable 

future” (Findhorn Foundation, [no date]), or the Canelo Project (2011) which 

seeks to connect people, culture and Nature. All of these communities have 

employed straw bale construction to some degree however, a more detailed 

review falls outside the scope of this thesis.

I.2.4-  Effect on the Environment

'The environment' within the context of this section relates to the natural world.

The built environment is: “the physical world that has been intentionally 

created through science and technology for the benefit of mankind” (NARSA 

2008, pp.2). Intensive non-sensitive agricultural practices is a human 

engineered environment that subjects land to unsustainable resource 

production to keep up with a global demand, but as Rands et al. (2010) explains

leads to elevated prices and encourages expansion. 

Research conducted by the European Commission into biodiversity highlighted: 

“the well-being of every human population in the world is fundamentally and 

directly dependent on ecosystem services” (UK-GBC 2009, pp.2), yet there is a 

dramatic decline in habitats and species the world over. The report highlights 
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the potential of the built environment to impact negatively on biodiversity, 

suggesting, that with careful development and refurbishment the ecology of a 

site could be increased; it provides details of the Westfield Living Wall at 

Shepherds Bush, West London as a case study.

Straw bale building offers a way to reconnect with nature; if examined from a 

holistic approach it could become a mechanism to promote biodiversity 

conservation through use as an educational tool to allow people to re-engage 

with nature and themselves, a strategy also proposed by Atkinson (2010). As a 

crop wheat can support a significantly diverse range of life, if grown organically 

(Siddiqui et al. 2005), and, as with any construction, a straw bale building can 

provide shelter for birds and bats which will come to an area that can support 

populations of insects and other wildlife present through effective land 

management. At the end of a building's life the straw could be used as compost

extending the usefulness of the material to provide an ecosystem for bacteria 

and fungus to decompose the material to basic nutrients (fertilisers) in order 

that the process could be restarted (Robinson et al. 2011). 

I.2.5-  The Problem with Straw

Lawrence et al. (2009a) provides a comprehensive list of literature detailing 

research conducted into fire resistance, vermin resistance and structural 

performance, while Walker (2004) concluded that the numerous different 

building styles and methods of construction associated with straw bales 

complicate the study of structural analysis. Both studies identified one 

overriding concern linked with straw bale construction; moisture. With sufficient

moisture the straw will decompose reducing the longevity of the construction 

(Leary et al. 1998), without moisture however, micro-organisms cannot survive 

and the material will be preserved. 
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Straw bales must be kept dry during storage, construction, and as part of the 

building fabric. The lack of moisture will prevent the colonisation of bacteria, 

moulds and fungi, inhibiting the potential risk to the health of the occupants 

and of the structure of the build (Clynes 2009). Jollie (2000) sums up the effect 

of sustained high levels of moisture as causing structural damage, serious 

health problems due to mould growth, and a reduction in the thermal insulating

property of the plant material. Moulds will attack the constituent parts of straw 

differently, at different rates depending on environmental conditions and the 

plant characteristics.
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I.3   Plant Physiology    

Evans, et al. (1981) give an account of wheat’s DNA and gene profiling, 

explaining how different strains have been bred to become more disease and 

pest resistant, standing up to harsher climates and producing greater yields; 

although technology has advanced since the book was written the principles 

remain the same.

I.3.1-  Physical Structure

In analysing straw's susceptibility or resistance to moisture it is important to 

understand the structure of the plant. Describing the general physiology of 

plants Forbes and Watson (1992) explains that cell walls are constructed of 

cellulose, a carbohydrate consisting of long sugar chains, that are bound 

together with pectin another carbohydrate, while lignin provides the main 

reinforcement material within the plant also providing protection from microbial

attack. Beginning in the root, dead tubular cells joined end to end known as 

xylem transport pure water around the plant by osmosis due to the high ion 

concentration within the cells. Xylem provide some structural rigidity while the 

phloem transport the nutrients as highly concentrated sap containing sugars 

and other products (Salisbury 1992). Wheat is a Monocotyledon having only 

one embryonic leaf, the atactostele vascal tissue (xylem and phloem) is 

scattered around the tube of the stem in an disorganised arrangement (Figure 

I.4). 
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Figure I.4: Image of untreated wheat straw (Kristensen et al. 2008)

There are three elements to describe the way in which sap ascends a plant. In a

living plant water is drawn into the xylem by osmosis, passes through to the 

leaves and is transpired back to the atmosphere through the stomates; a 

process known as 'the driving force'. 'Adhesion' is the hydration force between 

cell walls and water molecules, while 'cohesion' is the attraction between water 

molecules themselves both caused by hydrogen bonding. Cohesion is a very 

powerful force that allows water to be drawn up through the plant (osmosis), 

evaporation occurring at the top of the plant. (Boundless [no date])

The structure of a plant is maintained by the pressure and incompressibility of 

the water within the protoplasts (Grossbard 1979) and the cohesive properties 

of water create a high tensile strength within the xylem of a plant thus, water 

can be pulled up the stem. Diffusion although a slow process within the plant 

causes pressure differences allowing 'bulk flow'. A felled tree starts to loose 

sap-water due in part to the hygroscopic nature of the cell walls equilibrating 

with the relative humidity of the surrounding atmosphere; a process referred to 

as 'seasoning'. The moisture loss will cause shrinkage of cell walls and a change

in dimensions.

I.3.2-  Degradation of Plants

Only when a cell wall contains enough water can it be attacked. Micro-

organisms must therefore have access to moisture before acquiring the ability 

to produce enzymes that can break the cell walls down allowing access to the 
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moisture and sugars used for growth and development. Oxygen and the sugars 

are converted into water, carbon dioxide and energy (Coggins 1980).

Prior to the attack, on the more easily digestible cellulose and hemi-cellulose, 

primary colonising micro-organisms must remove the silica and lignin that form 

part of the plants natural defences. Silica forms the waxy external surface 

properties of straw, the content of which is dependant on growing conditions 

(Wihan 2007). Crestini and Argyropoulos (1997) discuss the mechanical 

properties and biodegradability of the alkali soluble lignin in straw: “the nature 

of lignin-hydroxycinnamic acid-polysaccharide interactions in plant cell walls is 

fundamental to our understanding of cell wall biosynthesis and 

biodegradation”. (Crestini and Argyropoulos 1997, pp.1212) 

The decomposition of straw is a complex process, the process will lower the pH 

of adjacent liquids causing manganese and iron to become soluble. The soluble 

minerals provide further development hastened further in the presence of 

cobalt, yet decay is limited without an interacting mixed population of micro-

organisms; some micro-organisms cannot exist without others first establishing 

a foot hold. In this case there are various stages at which decay will happen, 

without the primary micro-organisms, the secondary and tertiary cannot be 

established (Evans et al. 1981). Bowen and Harper (1990) discuss the natural 

resistance of straw, along with lignin and silica, and identified phenolic acid 

levels of 1-3% that inhibit decay; the paper continues by discussing the 

enzymes produced by the micro-organisms to overcome resistances. “Actual 

growth of mould on a special material not only depends on suitable 

environmental conditions but also on its chemical and physical characteristics” 

(Sedlbauer 2011, pp.2)

The presence of moisture will affect rates of decay, yet temperature must also 

be considered; some moulds are capable of growth at -5oC and 62% relative 
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humidity, yet the optimum temperature for most is above 20oC and 95%RH 

(Jolly, 2000). The rate at which straw will decompose is listed by Summers 

(2003) as being dependant on nutrient and oxygen availability, temperature, 

and free moisture. For those problems to occur in a construction the following 

conditions must be satisfied (Straube 2009):

• an available moisture source, 

• a route for moisture to travel, 

• a driving force to encourage movement of the moisture, and 

• the susceptibility of the material to damage.

Straube also highlights the main sources of moisture in building fabrics: driving 

rain causing moisture penetration through the protective measures, 

condensation from air cooling within the fabric, built-in moisture present from 

initial construction, and wicking and splash-back from insufficient clearance 

above foundation level ('good boots'). However, the paper also identifies the 

drying potential of a fabric as being as important, highlighting the need for a 

construction to have effective evaporation from internal and external surfaces 

together with good drainage, and vapour transportation by diffusion and air 

flow.

I.3.3-  The Wheat Plant

Wheat accounts for the majority of cereal crop production in the UK (Figure I.5), 

in 2007 6,323,000 tonnes of straw was produced (Copeland and Turley 2008) 

and is therefore the crop of choice in UK straw-bale construction.
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Figure I.5: Proportion of British straw production (2007) (Copeland and Tirley
2008)

Wheat straw consists of around 41% cellulose, 29% hemicellulose and 11% 

lignin (Butterworth 1985), the remainder includes silica of which rice has a 

higher content than other crops and hence is slightly more resistant to 

microbial attack. The wheat plant is for the most part self-pollinating, yet cross-

pollination can occur depending on the climate, genome and the pollen 

distribution (GMO Compass, 2006). Harvest occurs during the 'Dry Down' stage,

beginning around 30 days after fertilisation, the grain moisture content is 

closely monitored and is harvested around 20%MC, then mechanically dried to 

under 14.5% to prevent decay or germination (Wheat Genomics [no date]). The

stem remains on the field to air dry prior to baling.

Wihan's thesis (2007) reports on studies into the tissue development of straw: 

nodes, which are the sections of the plant used for development during growth,

are more susceptible than the remainder of the stem to decomposition due to 

the nutritional value of the tissue. The leaves of cereal crops (in all except rice) 

have twice the amount of nutrients as the internodes; it may therefore be 
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expected that micro-organisms attack leaves and nodes prior to the stem 

tissue.
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I.4   Straw's 'Nemesis'    

The resulting presence of moisture in the UK's temperate maritime climate 

enhances the need for protection and good design compared to other drier 

climates potentially more suited to straw bale construction. 

I.4.1-  'Know your Enemy'

Moisture is the 'enemy', the main fuel for degradation without which micro-

organisms will not develop; the main question should therefore be: 'at what 

level will degradation occur'? In discussing this subject, in general terms, Oliver 

and Stirling (1996) provides the basis for Figure I.6 stating that: “most buildings

are not made under factory conditions, and therefore contain a variety of 

inherent weaknesses”. If the materials used are organic then they will be 

susceptible to decay at certain moisture contents or relative humidities.

Figure I.6: Diagram based on idea from Oliver et al.,1996 p24

The Collins Dictionary defines moisture as ”water or other liquid diffused as 

vapour or condensed on or in objects” (Collins 2014). Concerning water, it's 

state or presence, is as either an incompressible solid (ice) of a definable shape

and volume in which molecules are packed into a rigid array, a slightly 

compressible liquid (water) of a definite volume but indefinite shape due to the 

mobility of molecules, and as a gas (vapour) of uncertain shape or volume and 

with a high compressibility as a result of the independence of molecules.
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I.4.2-  The Chemistry of Moisture

The strong bond between water molecules is known as the Van de Waals force, 

hydrogen's covalent bond together with the highly electronegative atom of 

oxygen, these dipoles of positive and negatively charged forces attract the 

atoms in the same way as a magnet. The orientation of the atoms is due to the 

electron arrangement and the forces produced by hydrogen bonding, it is the 

strong negative force that arranges the molecules in one direction (Burns 1995 

pp.383). The hydrogen atom gives up it's electron to the oxygen atom, allowing

it to become similar to a positively charged bare proton acting to attract 

negative charges and giving water its high boiling point (Callister 1994).

The greatest molecular attraction appears at the centre of a liquid and is the 

reason water forms droplets drawing the molecules away from the external and 

less attractive atmosphere. The exceptions to this effect are in the presence of 

surfactants and other pollutants that cause a hygroscopic effect. Hydrophilic 

and hydrophobic effects are generated by a materials electromagnetic forces.

Water has a specific heat value of 1.0 cal/gK (4.184 J/gK) requiring one calorie 

of energy to raise one gram of water by 1.0oC. A large amount of thermal 

energy is therefore required to heat water is due to it's strong hydrogen bond 

conversely, a large amount of energy is released with just a small drop in 

temperature. This high thermal capacity can therefore create temperature 

depressions within a material as heat is drawn from the material to evaporate 

the moisture (Saïd 2007). As a highly polar substance water (Figure I.7) is a 

good solvent for many ionic substances, it's chemical formula H2O has 1.0x10-7 

M H3O+ (Hydronium) and OH- (Hydroxide) at 25oC. 
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Figure I.7: Arrangement of water molecules

A molecule escaping the liquid phase must have enough kinetic energy to break

free of the bonds and become vapour (vaporisation). The energy comes from 

chance collisions with other molecules which raises the molecules latent heat 

and cools the remaining liquid (McMullan 2002). As a note evaporation will only 

occur when the liquid is in a volatile state and vapour is released into the 

surrounding atmosphere.

Burns (1995) states, when describing John Dalton's discovery, that if water 

vapour was added to dry air the pressure would increase, surmising that: 

vapour pressure is the total of the combined partial pressures of each separate 

gas. Water vapour will: “rapidly occupy any given space and exert a vapour 

pressure on the sides of any surface they are in contact with” (McMullan 2002, 

pp99). The maximum amount of vapour that can be held by air at a given 

temperature is termed the Saturated Vapour Pressure (SVP). The pressure 

caused by vapour in a warm area will encourage moisture transfer to a colder 

area of lower pressure where the moisture vapour will condense.
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A system in equilibrium is obtained when the rates of condensation equal that 

of vaporisation, therefore, in a closed environment heating a liquid will increase 

the rate of vaporisation and reduce condensation giving a higher equilibrium 

vapour pressure yet eventually dynamic equilibrium would balance it out once 

more. When air is cooled to saturation then any surface in contact with this air, 

that is at the same temperature or cooler, will be subject to condensation and is

referred to as being at: dew point temperature. The point at which this occurs 

within a building fabric will cause interstitial condensation to occur (Figure I.8).

For the purposes of experimentation it is possible to generate an atmosphere 

using moisture, a sealed container and salt solutions (Duggal 1981), using a 

selection of salts as documented by BS EN ISO 12571:2000 the salt will exact 

an equilibrium with the immediate environment modifying the relative humidity

irrespective, to the most part, of temperature.

Figure I.8: Basic diagram of Interstitial Condensation within a building fabric 
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I.4.3-  Scales and Measurement

Moisture can be measured in various different ways; relative humidity is the 

measure of the amount of moisture in the air at any given temperature 

(Equation I.1).

Equation I.1: Relative Humidity. 

From the knowledge of relative humidity and temperature several aspects of 

the environment may be calculated using either a Psychrometric chart or by 

individual calculations including dew-point, enthalpy, humidity ratio, absolute 

humidity and densities.

For example: If air in a bathroom, at 15oC and 60%RH, is raised to 20oC and 

95%RH by someone taking a shower, then the dew point will be increased from 

7.3oC to 19.2oC thereby increasing the risk of condensation forming on any 

surface offering a lower temperature. Therefore, there is a requirement for 

ventilation; indeed this is a mandatory requirement in the UK in both kitchens 

and bathrooms.

Obtaining a gravimetric analysis of a sample presents the results for the 

measurement of the moisture content of a material as a percentage of mass. 

Two methods can be employed, using either wet basis or dry basis, these offer 

a percentage in the difference in mass of dry material weight against wet 

(Equations I.2 to I.5).

Page 38 of 335

ϱ=
P
Ps

×100

ϱ= RelativeHumidity
P= Vapour Pressure of sample
Ps= SaturatedVapour Pressure of sample



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

Equation I.2: Moisture content wet basis Equation I.3: Moisture content dry
basis

Equation I.4: Wet from Dry Basis Equation I.5: Dry from Wet Basis

Cwet = Moisture Content wet basis
Cdry = Moisture Content dry basis

mwet = wet weight
mdry = dry weight

Both the wet and dry basis methods appear in literature concerning straw bale 

construction however, there is often a lack of clarity between which result the 

data is presented in leading to confusion over the limitations of straw as a 

building material. The importance therefore of stating whether results are 

presented in wet or dry basis is critical to the advanced understanding of the 

subject.

This thesis will present all data in dry basis (%MCdry) unless otherwise stated for 

comparative review or citation. Using dry moisture content provides a higher 

degree of division for data analysis and thus a larger range to enable the 

results to be viewed in greater detail (Figure I.9).
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Figure I.9: Comparison of wet and dry basis moisture content

Figure I.9 illustrates the difference between measurements taken in dry basis 

(x-axis) and wet basis (y-axis) highlighting the range difference; for example an

MCwet of 20% corresponds to a reading of 25%MCdry . If readings are confused 

then a misinterpretation of results could lead to a misdiagnosis of the level of 

moisture resulting in a potentially dangerous situation developing, or remedial 

work being carried out for no reason. 

The implications of this and the boundaries of moisture content for straw are 

discussed in Section II.1 (p46). Wihan (2007) presents results in wet basis 

following Summers et al.'s (2003) advice that the majority of agricultural, food 

and straw bale building industries use this measurement over the dry based. 

King et al. (2006) draws attention to the need to describe bale density in terms 

of dry density. 
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I.5   Justification of Research    

Straw bale construction may offer not only a way to reduce the impact of 

current construction techniques on the environment, but also to re-engage 

people with Nature allowing them to envisage what is involved in the life cycle 

of a construction. However, straw bale construction is not an established 

method and although there are a number of buildings in the UK a mainstream 

acceptance remains in the future.

I.5.1-  Public opinion

Hamilton-Maclaren et al's. (2013) investigation analysed the potential for the 

reluctance of a customer to purchase a property constructed using a particular 

method and the effect that has on the construction industry. There were 572 

responses to the survey rating answers on a scale of one to five with the 

provision of an additional comments box concerning factors important to 

purchasers of houses and in particular of alternative constructions. The authors 

constructed a questionnaire identifying cost, energy efficiency, maintenance 

and mortgage availability as factors likely to affect a purchaser's choice. The 

questionnaire found that around 81% of people had heard of straw bale 

construction, 29% would consider buying and 32% returned a maybe. Amongst 

the greatest concerns offered as suggestions, that reduced the appeal of this 

method of construction, were: that of fire, followed by a concerns over potential

for rot, the appearance of the construction, maintenance, and the strength of 

the building. Conversely the appeal of low environmental impact and good 

insulation values were given as positive aspects. The paper suggests that 

respondents are interested in minimising their environmental impact, but would

require more guarantees attached to the building, the presence of which could 

influence mortgage and insurance companies also. In conclusion it states that 
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greater awareness and education is needed to encourage potential buyers to 

choose something other than what they find familiar.

Hamilton-Maclaren et al.'s (2013) work is encouraging for the straw bale 

construction industry; general awareness raised due to the promotion of the 

method on Grand Designs (2014) and in community based projects such as 

Sieben Linden (no date). If however, the questionnaire had been aimed at a 

better informed group or potential straw bale home owners, respondents may 

have cited concerns differently. The main concern of moisture and guarantees 

against rot may have scored significantly higher in this case, indicating that a 

greater knowledge of moisture, moisture monitoring and modelling would be 

needed to convince potential buyers to accept the method. Greater acceptance 

would in turn convince the construction industry to rise to the demand, and for 

insurers and mortgage companies to do likewise. 

I.5.2-  Thesis structure

Chapter 2 (p45) gathers together the existing literature in order to determine 

the extent of knowledge in the relation to moisture, perceived risk and of straw 

assessing techniques used to obtain a reliable indication as to the straw's 

moisture content together with the interpretation of the results. The chapter 

concludes by discussing the identified gaps in knowledge formulating the 

research problem and refining the objectives as laid out on page 11.

Chapter 3 (p88) describes the methodological approach adopted by the thesis 

investigation defining different subject areas and variables associated with the 

method of study. The chapter continues to define the research problem 

identifying areas of research to be discounted, defining the term 'risk', and 

evaluating the potential benefits of the overall research aim.
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Chapter 4 (p104) presents the method and results for Part 1 of the Preliminary 

Investigation. Part 1 encompasses a preliminary case study investigation and 

laboratory experimentation conducted using wood-block probes.

Chapter 5 (p127) presents Part 2 of the Preliminary Investigation representing a

change in research procedure based on weaknesses observed with the wood-

block probe. Part 2 introduces two new monitoring devices and initial results of 

a Test Rig investigation, detailing the construction and application of a model to

interpret the risk posed from moisture. The chapter culminates in an 

experiment to investigate the effect of bale density on resistance meter 

measurements.

Chapter 6 (p179), the Focussed Investigation, details the experiments 

conducted in light of the literature review, and both parts 1 and 2 of the 

Preliminary Investigation. The effect of density on resistance meter readings is 

assessed first, followed by detailed temperature experiments conducted in both

the laboratory and the Test Rig. The chapter concludes with an investigation 

into moisture transfer.

Chapter 7 (p234), the Model chapter, represents a culmination of the data and 

arguments used to critically analyse each monitoring method with relation to 

defining an evaluative technique to utilise in the monitoring of a straw bale 

construction. This discussion feeds a model which is presented, evaluated, then

applied to straw moisture data obtained during the Test Rig and Monitoring Site 

investigation. It includes also the development of equations to compensate for 

both temperature and density of straw, and presents a novel method of 

evaluating risk.

Chapter 8 (p282)concludes the thesis with a review of progression to date, 

listing the contributions to knowledge and further work that is required.
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I.5.3-  Summary

Straw bale construction offers a method by which to replace non-renewable 

resources with a by-product that is intrinsically linked with human nutrition and 

grown annually in many parts of the world. A material locally sourced, with the 

potential to improve biodiversity conservation, and by including local 

communities in the construction project, promote well-being and education with

the potential benefit of reducing the impact of alienation.

One identified weakness inherent in straw bale construction can be found due 

to straw's organic origins. Without the correct protection the natural cycle of the

planet will cause the breakdown of the cellular structure into base components;

a return to state. In order to promote the benefits of straw bale construction the

interaction of moisture and the level at which straw will decay needs to be 

known.
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Chapter II   Literature

Page 45 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

II.1   Introduction

Straw is an organic material that is subject to the natural life-cycle of the planet

and will be broken down by micro-organisms if adequate protection is not 

afforded. In using this material in construction the inevitable return to state 

must be delayed whilst utilising the benefits of high insulation values, local 

availability and non-toxic elements (Bigland-Pritchard and Pitts 2006). It could 

also provide potential for social inclusion and greater biodiversity conservation 

awareness amongst the general public. The key to preventing the onset of 

decay is to minimise the amount of moisture available to the micro-organisms 

associated with the degradation of straw.
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II.1   Straw and Moisture

To date there has been little agreement or definitive evidence to suggest the 

level at which moisture starts to cause decay in straw bales used for 

construction. Much of the literature implies 20%MC as being the limit at which 

decay will begin, although it also suggested that decay is not significant until 

25%MC is reached; the majority of literature is in agreement however, that 

moisture content's of below 15% provide adequate protection.

II.1.1-  Moisture Regimes

In explaining the relationship of moisture's interaction with straw, Straube (King

et al. 2006) describes the significance of pores in a structure and the resultant 

increase in surface area of the material. The paper continues to account for 

how capillary suction occurs as a result of water's polar nature, and how this 

polarization aids adsorption. Adsorption is the tendency of vapour molecules to 

be captured by the surface of hydrophilic materials; the force of this attraction 

is reduced as energy is added into the system.

Straube (King, 2006) provides insights into interactions of water vapour with 

porous materials, Figure II.1 shows the moisture content (y-axis) of a porous 

hygroscopic material related to relative humidity (x-axis) identifying five distinct

regimes that occur at varying relative humidity's. Regimes A-C occur within the 

hygroscopic regime, the build up of moisture's surface tension generates the 

ability to form a meniscus in the smallest pores leading to the second regime, 

D, in which the larger pores contain free water and the medium is assumed to 

be under a continuous liquid phase. Finally a supersaturated state is reached at 

100%RH (E) representing the maximum amount of water that will wick into the 

material beyond which an external force must be provided. In order that a 

wetted material dries completely the surrounding relative humidity must be 
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reduced because the: “Capillary and adsorbed moisture can only be dried by 

evaporation followed by diffusion” (King et al. 2006, pp.6).

Figure II.1: Moisture storage regimes within a porous hygroscopic material (King et
al. 2006, pp.4)
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II.1.2-  Chronology of Uncertainty

In recent years several attempts have been made to suggest the limits at which

straw is susceptible to decay; Table II.1 is a list of sources that have suggested 

likely values based on laboratory experiments, field trials or on construction 

knowledge gained from the field. A column has been added to clarify whether 

the results are presented in dry or wet basis (Section I.4.3).

The relationship between suggested advice is brought into question however; 

the uncertainty of defined limitations promoting a lack of confidence in the 

construction method. Figure II.2 tracks the history of the data highlighting the 

grounds for the advice, whether or not stated values are based on previous 

research, experimentation conducted by the author, or an unknown source. The

figure translates the authors original words into, 'safe' meaning there will be no 

damage from decay, 'of concern' suggesting that evidence is unclear, and 

'decay' meaning that decay is inevitable. Some of the suggestions are time 

dependant, shown on the diagram as 'td'; boxes highlighted yellow were not 

checked.

Lawrence et al. (2009a), Figure II.2, collated much of the advice and used this, 

together with the empirical research done by the authors, to draw on the 

conclusions presented. The figure also draws attention to the debate, or lack of 

debate, surrounding moisture content's between 20-25%, the majority of 

research avoiding this range as an unknown or inexplicable region to advise 

upon.
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Table II.1: Suggestion for moisture limits in straw bale walls

Reference Advice provided as to moisture content limits Basis
CMHC
2000

Recommend keeping straw under 20%, decay beginning 
typically at between 25 to 30%.

Not 
stated

Jolly
2000

Extreme diurnal variances in relative humidity with 
peaks of 98% did not indicate damage to the straw 
however, over 85% for prolonged periods does pose a 
problem.

N/A

Summers et
al.

2003

Rice straw was shown to withstand 27% before any 
development of micro-organisms or decomposition 
however, moisture contents of over 25% should be 
avoided. Moulds could initiate at between 15-18%MC 
when compared with a water activity of 0.7.

Dry

Straube and
Schumacher

2003

Recommend that the relative humidity be kept below 
80%.

N/A

USDoE 2003 When purchasing a bale ensure that bales are below 
14%MC and have always been dry.

Not 
stated

Goodhew et
al. 2004

Below 14%MC is believed to be insufficient for biological 
activity

Dry

Summers et
al.

2006

Micro-organisms are not very active at low 
temperatures. At certain temperatures between 20oC 
and 65oC most will thrive. At 15-18% moulds could 
develop but bulk moisture content over 25% should be 
avoided.

Dry

Bruce King
et al.
2006

Recommends that only bales under 25% be used in 
building structures; (referring to rice straw)

Dry

Lawrence et
al.

2009a

Below 15% generally accepted as safe. Decay is limited 
below 25% and is time dependant. Above 85%RH 
(25%MC) degradation will occur.

Dry

Carfrae et al.
2009b

A received wisdom sets the safe maximum at 25%, but 
Carfrae suggest that there be two caveats added to do 
with short and long-term exposure to higher levels of 
moisture.

Not 
Stated

Dick and
Krahn
2009

Microbial activity declines greatly at moisture content's 
under 20% (70%RH)
“All samples taken...remained under the ideal moisture 
content of 20%, indicating that the likelihood of bacterial
growth, or rot, within the bales was low.” (pp.3)

Dry

Straube
2009

At over 80% RH (equating to 20%MC) mould growth will 
occur over a sustained period, this is lower than wood 
due to straw's significantly higher surface area.

Dry

Goodhew et
al.

2010

Evidence suggests that straw not exceeding the capillary
saturation value around 37%MC for long time periods 
appear undamaged.

Dry
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Concerning the history of research in this area the report conducted by Jolly 

(2000) provided the research data and analysis for another report by the 

Canadian Mortgage Housing Corporation  (CMHC 2000); although the two 

reports are intrinsically linked they present different information in the writing 

up. The report by the Canadian Mortgage Housing Corporation (CMHC 2000) 

presents advice (Figure II.2) based on unreferenced knowledge possibly from 

advice given by owners, builders and the agricultural industry.

Jolly (2000) reasons that straw bale walls are highly dynamic due to the straw's 

hygroscopic nature together with the application of highly vapour permeable 

renders. Jolly's advice is based on empirical work and the initial development 

and use of hygrometers, wood-block probes and resistivity meters. The report 

suggests that although humidities of up to 98% can be tolerated for short 

periods, the straw, depending on the time period involved, will deteriorate at 

above 85%RH. Wihan (2007) commenting on relative humidity summarises 

Summers et al.'s (2003) advice that extensive decomposition of straw occurs 

only when the air in a wall remains above 98%.

Summers remarks on the apparent ability of straw to tolerate moisture 

content's in excess of 15%. The tolerance is due to uneven moisture 

distribution throughout the bale, as moisture tends to migrate and condense 

randomly (Summers 2003). The paper surmises that a margin of safety should 

be established at 25%MC. This supports reasons for using relative humidity as a

guide to assessing the risk posed rather than the direct moisture content of the 

straw as Straube (2009) rationalises; straw will not very effectively 'wick' water 

due to limited capillary suction. It would also indicate that the whole bale 

should be filled with relative humidity sensors in order to establish the risk 

posed to the straw.
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Goodhew et al. (2004), using wood-block probes developed from Fuller's 

original study, accept that moisture contents and temperatures are only part of 

the reason for straw degradation, adding: regional climate, building design, 

detailing, and building situation. Carfrae et al. (2009b) concluded from 

observations in a case study using a new design of wood-block probe and a 

Balemaster that a wall subjected to 37%MC exhibited “no apparent damage” 

(Carfrae et al. 2009b, pp.8). This level was recorded towards the external 

surface of a wall rendered in 25mm lime and took five weeks to return to below 

25%MC. This would conform to Jolly's (2000) advice (98%RH = safe (time 

dependant)) however the effective temperature was not apparent within the 

report, if the temperature below the external render rarely rose above 10oC the 

risk from microbial activity would be minimal.

Questions of pH have also been raised as to the effect of the render on the 

straw in the immediate vicinity, a more alkaline environment decreasing straw's

susceptibility to decay. King writing for the Building Safety Journal (2004, p.41) 

discusses the stucco/straw interface concluding that straw may eventually 

degrade where water is 'held' against it.

Carfrae's thesis (2011) identified two key areas of research to address, the 

effect of high moisture content on straw and the most effective method of in-

situ monitoring of a straw bale wall; in addition, the most appropriate method of

construction to use in a temperate maritime climate was investigated. The 

thesis explains that straw will tend to equilibrate with the air surrounding it due 

to the hygroscopic nature and based on research by Summers states that at 

moisture content's below 25%dry there is: “virtually no risk to the integrity of the

straw, and the health of any human inhabitants” (King et al. 2006, pp.64). 

However, it is unclear whether Summers applies this to rice straw, or all types 

of straw.
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The term risk is used in multiple sources of literature, Bigland-Pritchard and 

Pitts (2006) use risk with fire safety, negative aspects on human health from 

pesticides and fungicides, pests, mould growth and moisture, Hamilton-

Maclaren et al. (2013) from a financial and decomposition aspect, and 

Lawrence et al. (2009b) for durability. Bronsema (2010) comments on risk 

categories when commenting on isopleth studies utilising colours to identify 

high, medium and low risk environments with the potential for decay; see 

Figure II.9 page 71. Risk therefore is utilised in literature, but is generally not 

discussed or contextualised.

Carfrae questions, in summing up the literature, what constitutes a 'safe' level, 

identifying the levels between 20-25%MC as unknown in terms of long term 

exposure and risk of damage. Straube (2009, pp.9) poses the question: “how 

much moisture can be stored and for what duration without crossing a 

performance threshold?”. Summers et al. (2003), referring to water activity, 

reports that yeasts require a water activity of 0.8 and bacteria generally over 

0.9 to survive, calculating that a water activity of 0.7 would correspond to an 

moisture content of between 15-18% (13-15% wet basis) and little micro-

organism growth. Water activity is the equivalent moisture availability in a 

given substrate for microbial activity at which the sample is in equilibrium with 

the relative humidity (Wihan 2007, Ashour 2003, Summers et al. 2003). Water 

activity is one hundredths of the relative humidity.

Moisture interaction within a straw bale is a complex issue, in both the 

measurement and analysis of results in relation to decay. Relative humidity 

essentially only confirms the measure of moisture within the atmosphere for 

that particular temperature and at that particular point in time. A more direct 

measure of moisture content would therefore reveal the true moisture level 

dictated to by the rate at which moisture will condense and the rate of change 
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of the straw's temperature opposed to the air temperature. However, this is a 

multi-valence problem, that is not clear cut, therefore to further understand the 

complexities of straw and moisture's interaction Sorption Isotherms have been 

studied (Section II.2 p58). Sorption Isotherms attempt to relate relative 

humidity of the air to moisture content of the straw offering a simple conversion

scale that can be used to further describe the interaction of moisture with straw

by identifying desorption and adsorption trends.

II.1.3-  A fuzzy construction material

A straw bale is an amalgamation of randomly bound biodegradable organic 

matter consisting of either wheat, rice, barley, rye, or oat stems and 

occasionally unharvested seed-heads omitted by the combine-harvester, other 

plants from the previous years crop, and potentially some weeds. The straw is 

gathered, post harvest, by a baling machine (Figure II.3) which rakes the straw 

from the field into the screw or raking mechanism where it is passed into the 

compression chamber, rammed into a cuboid shape, tied and dropped back 

onto the field in the form of a bale. The bale therefore becomes a chaotic union 

of different lengths of stems; chopped, folded, broken, and bent, and laid in 

roughly the same direction.

The bale, in comparison to mass produced clay bricks, chiselled blocks of stone,

or sections of timber, are not 'standardised'. Bales can vary randomly in density

(Carfrae, 2009a. blog), moisture content (Grmela, 2010. p.2), size and 

contaminants (dust, alien plants, fungi spores, etc.) combined with a difference 

in the length of stems and quality of the crop. The potential for variability is 

therefore greater than most common building materials.

A question may therefore be proposed: are conventional measurement 

techniques able to evaluate a straw bale wall, or is a new approach required? 

Straw bales are sometimes referred to, in the industry, as 'fuzzy building blocks'
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because of their appearance however, this observation could be expanded to 

describe the physical properties and further interactions within the bale. The 

straw, once a living entity and now preserved (or mummified), is now a 

collaborative partner in a second life providing a structure, it is a series of 

tubular lengths collected together with internal and external surfaces, with 

pores and textures. The bale contains an internal atmosphere separated from 

the external atmosphere by some form of protection (lime render, stucco, clay),

and is subject, for the most part, to it's own environment; a place where objects

and space collide, and exchanges and interactions take place unseen to the 

naked eye, yet are potentially observable with the correct monitoring devices 

and techniques.

Figure II.3: Baling machine (FAO, 2002)
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The monitoring of a straw bale construction is advisable due to straw's 

propensity to decay if conditions are met (Lawrence et al. 2009a; Clynes 2009; 

Carfrae 2008); decay is a natural part of the life cycle of the planet, a return to 

state, the changing of one resource to another. Straw represents a potential 

breeding ground and home to micro-organisms and other infestations: a dining 

hall, an ecosystem, a universe of food and moisture. The  risk posed to the 

straw is paramount when being used as a construction material, keeping it 

protected from moisture is the first step to preserving the resource's abilities 

from the ravages of decay.

II.1.4-  Moisture

Within a bale there are collisions of objects in space, space being in this case 

everything within the dimension of the extremities of the bale. The comparative

size of a water vapour molecule, 2.75Å (Chaplin, 2012) or 2.75x10-07mm, to a 

1mm wide air gap in a bale may be considered as a grain of sand in a corridor 

1000 km's wide. Therefore, if Summers' (2003) unconfirmed assessment that 

90% of a bale is air, there is a comparatively large amount of free space for a 

water vapour molecule to travel, yet it is the ability of a straw bale walling 

system to slow air moment that provides straw with it's thermal capacity, using 

air's natural insulation value trapping and restricting thermal flow. 

The progression of moisture through a bale may therefore be impeded by the 

straw itself, air gaps in a bale occurring randomly will exhibit differences in 

dimensions, distribution and occurrence, varying also with bale density.
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II.2   Sorption Isotherms    

Sorption Isotherms are conducted to gain insight into the effect of relative 

humidity and temperature on the moisture content of a sample. There are two 

documented methods, both subject the sample to a specific relative humidity 

and temperature condition measuring the mass of a sample until stabilisation is

achieved. In the first method multiple samples are subjected to individual 

relative humidity, under the second method one sample is subjected to a cyclic 

regime of relative humidity. The dry mass of the straw may be obtained prior to,

or after the experiment. Therefore, a sorption isothermal study represents the 

absolute mass obtainable by the sample at the particular condition, given the 

method applied.

Figure II.4 illustrates an isothermal study conducted on timber together with 

different phases involved: desorption the removal of moisture from the surface 

of a material and adsorption the deposition of moisture onto the surface; 

differing from absorption which describes the passage of moisture into the 

structure of the material. As the relative humidity surrounding a sample is 

dropped (Figure II.4) the surface moisture content of the sample is reduced, 

highlighted by the 'initial desorption' and 'desorption' curves. Upon an increase 

in relative humidity the adsorption curve is produced as moisture collects on 

the surface of the sample. The two phases (or curves) will produce a hysteresis,

the oscillating desorption phase offers a midpoint and a compromise of data 

when the true phase is unknown; Carfrae et al. (2009b) suggests that the 

oscillating desorption is a constant ratio of around 0.85%.
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Figure II.4: Isothermal study of wood (Forest Products Laboratory 1999)

Concerning individual studies, Lawrence et al. (2009a) undertook to describe 

the moisture content of straw from the surrounding relative humidity by way of 

an empirical mathematical equation, building on Hedlin's sorption work for five 

different types of straw at 21.1oC (70oF). Hedlin's results were also compared to 

oats, barley, flax and another two wheat’s at 14 different relative humidity's 

giving similar results. Lawrence et al. (2009a) citing Perry and Green's 

argument states that temperatures between 15-50oC should not affect the 

straw's sorption isotherm results due to straw's porous structure and vapour's 

ability to condense into wider diameter pores at lower temperatures. It is also 

argued that there is less requirement for temperate studies below 10oC because

fungus generally can not develop at these temperatures; 20-65oc being 

optimum temperatures for growth (Summers et al. 2003).
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Figure II.5: Results of Lawrence et al. 2009a

A series of isotherm tests were undertaken (Figure II.5 reproduced from data 

given in Lawrence's 2009a paper) using salt solutions to generate atmospheric 

humidities at temperatures between 5-30oC (5o increments) on inorganically 

grown wheat straw samples, each sample measuring 20g (35mm diameter 

*185mm length) tied to a density of 125kg/m3. The samples were oven dried 

prior to the experiment, which subjected the samples to seven days at the 

required relative humidity and temperature, followed by further 24 hour 

intervals until the masses remained within 0.1%, a method contested by 

Phanopoulos et al. (2000). The results show that the moisture content is 

reduced by 1-2% at each relative humidity for temperatures between 5-26oC, 

except at 98%RH (not shown).

Equation II.1 (EquLaw) was developed by Lawrence et al. (2009a) and shows a 

close approximation to the results at 20oC; this shows that an atmospheric 

relative humidity reading of 90% equates to a moisture content of 33% for 
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straw (when i=1.6). The equation appears in another form (Lawrence 2009b) 

with 'i' represented as '1' altering the results (this is discussed in Section VII.3.6

p247). In conclusion these investigations were conducted to raise confidence 

levels concerning the risk posed to straw bale constructions from moisture, but 

the paper explains that this was an initial assessment for the approximation of 

a method to convert relative humidity to moisture content, therefore suggesting

that further work was required. For the purposes of this thesis 'i' will be read as 

'1.6'.

Equation II.1: EquLaw: Convert Relative Humidity to Moisture Content (Lawrence et
al. 2009a and b)

Carfrae et al's. (2009b) method differs to Lawrence's as Lawrence uses multiple

samples subjecting each to an independent atmosphere over time. Carfrae 

uses an environmental chamber to subject a number of samples to an 

increasing then decreasing relative humidity, effectively 'cycling' the samples. 

Carfrae used this technique to calibrate the Balemaster and four species of 

timber, identifying Ramin as the best timber for a new design of wood-block 

probe; the use of Ramin over Oak was published after several wood-block 

probes had been constructed for use in this thesis, as is discussed within the 

Preliminary Investigation Chapter – Part I (Section Chapter IV- p104).

Both Carfrae and Lawrence's approaches are different and provide subtly 

different results. Carfrae's method is able to show straw's adsorption and 

desorption isotherms which may provide clearer evidence as to what is 

happening to the straw within a bale in a dynamic situation. Carfrae's method 

however, has potential inherent inaccuracies due to the potential for mould 
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development when subjecting straw to high relative humidity's for sustained 

periods of time, or at least until the mass of the sample stabilises. The 

development of moulds whilst subjected to raised relative humidity's could 

change the mass readings affecting the gravimetric analysis (section II.4.1 

p72).

Lawrence's approach starts with dry straw and subjects it to an adsorption 

phase, therefore these results may read slightly low if compared to the 

desorption data. There is also a question over the physical changes brought 

about by drying the straw prior to the experiments and whether this may 

influence the results (Phanopoulos et al. 2000).

Forest Products Laboratory (1999) produced an isothermal study and equation 

for analysing timber. Equation II.2 (EquFPL) was developed to derive the 

equilibrium moisture content from relative humidity and temperature for timber

representing the oscillating desorption phase value.

Equation II.2: (EquFPL): Calculation of moisture content for timber (Forest Products
Laboratory 1999)

Table II.3 provides an overview of results obtained from the EquFLP, from the 

results it can be seen that at temperatures lower than 15oC moisture content 
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the timber remains constant irrespective of relative humidity, corresponding to 

Lawrence's advice.

Table II.2: Equation results for timber (Forest Products Laboratory 1999)

It could therefore be assumed, as an argument has been made on the grounds 

that timber can reflect the moisture content of straw due to the similarity in 

material structure, that this equation could be used to compliment EquLaw. 

Figure II.6 demonstrates the comparison of the equations, EquLaw (i=1) and 

EquFLP showing similar results.

Wihan (2007) in analysing Jolly's (2000) results from field trials identifies that 

the relative humidity, adjusted using isothermal conversion to moisture 

content, plotted against the measured moisture content, gave a 1-2% negative 

disparity in readings. Wihan concludes that the effect is a product of the diurnal

variations and represents an area for further investigation.
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Figure II.6: Comparison of Lawrence (Equation II.1)and Forest Products
Laboratory equations (Equation  II.2)

Through the combination of these techniques and equations a more robust and 

accurate model could be suggested for straw. Isothermal studies present a 

method of calculating the theoretical moisture content of the straw from the 

surrounding atmosphere, and rely therefore on acquisition of data from a 

relative humidity sensor, yet this can be expanded to describe the onset of 

decay. Decay is an important subject area to consider when discussing the risk 

posed to a straw bale construction and represents the vital area of knowledge 

required in order to assess this subject.
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II.3   Decomposition

Although this thesis does not address the decomposition of straw directly it 

remains an important consideration given the uncertainty of a defined point at 

which decay is certain to start both in space and time. Isopleth studies 

represent the study of decay taking into account changing temperatures and 

relative humidity.

II.3.1-  Decay

Citing Viitanen's work on decay in wooden materials, Jolly (2000) warns that 

temperatures of -5oC and humidities of 62% are enough for some moulds to 

develop, but that optimum temperatures are between +20 to 28oC and relative 

humidity's above 95%. Summers (2003) supports this stating that at 

temperatures below 10oC many micro-organisms cannot survive so growth rate 

is low. The simultaneous availability “over a certain period of time” (Sedlbauer 

and Krus 2003, pp.1) of different parameters such as temperature, humidity, 

and substrate are required to stimulate biological metabolic processes. 

Analysing the process of decay Summers (2003) explains the rate of CO2 

production of decaying straw as a potential aid to assessing a bale's 

deterioration together with signs of locally elevated temperatures, 

discolouration of the straw and the obvious smell associated with decay. The 

study conducted on rice straw showed a 0.009% loss in organic matter per day 

at 39%MC, a potential total of 3% per year suggesting that, alone humidity 

cannot cause significant decomposition. Summer's report does however 

suggest that this experiment be done again to confirm this hypothesis; the lines

of best fit applied to the graphs are somewhat speculative requiring a far 

greater and more intense study to be conducted.
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Bowen and Harper (1990) investigated fungal decomposition of wheat straw 

isolated from arable soils, the results suggested that plants with higher 

concentrations of lignin decompose more slowly, and although straw contains 

only around 15% lignin this is enough to protect the polysaccharides. Therefore,

for the cellulose and hemicellulose to be accessed, the delignification by acid-

chlorite oxidation must first occur. In Bowen and Harper’s experimental findings

F.culmorum and T.viride degraded only a small amount of straw over a 70 day 

incubation period whereas the five basidiomycetes were able to remove the 

lignin first before attacking the other constituent parts, resulting in 

Phanerochaete chrysosporium decaying 90% of the straw in 84 days. The paper

concludes that these experiments, conducted at 20oC highlight two stages of 

kinetic decay warning of the complexity of decay kinetics and the difficulty in 

describing decay under parameters based on a single set of conditions, for 

instance by a mathematical model. The paper suggests that straw is 

decomposed in soil by 'microbial communities' and the extent to which 

basidiomycetes can compete remains unclear (Bowen and Harper 1990).

In a later paper Robinson et al. (1994) conclude that the amount of moisture, 

the resource size and the range of substrates is key to the colonisation patterns

of fungus, explaining how the difference in structure of the leaves and the 

internodes of wheat straw is of importance. Robinson et al. conducted field 

trials subjecting internodes and leaves to buried conditions, results showed that

leaves decomposed almost entirely in the 33 weeks study, comprising of soft 

lamina tissue, yet the internodes presented greater resilience to decomposition 

suggesting a: “poor resource quality” (Robinson et al. 1994, pp.1057). It was 

also noted that a high proportion of lignin remained after 33 weeks implying a 

lack of basidiomycetes.
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Salvachúa et al. (2011) investigating the pretreatment of wheat straw for 

bioethanol production, traditionally using steam explosion to obtain the 

required cellulosic constituents, explains that biological degradation could be 

used to remove the lignin. The paper identifies certain complexities: “fungal 

strain, culture conditions, fungal enzymatic secretion and oxidative 

mechanisms” (Salvachúa et al. 2011 pp.7500). The study, using mainly white-

rot fungi, aimed to identify the most effective basidiomycetes to produce the 

fermentable sugars needed, but concluded that a proportion of the sugars 

released were used by the fungi for it's own development within the first 14 

days.

Although studies into degradation of straw in soil and bioethanol production are

not specific to the study of straw bale construction, parallels between the 

investigative results can be drawn: the complexities of modelling degradation, a

suggestion that the leaves are a good indicator of initial decay, and that 

colonies of micro-organisms are required to effectively breakdown a poorly 

resourced material. This alludes to a more comprehensive study into the 

moisture content limits advised by the straw bale industry, suggesting that a 

time dependence is applicable to moisture content's above 20%.

A microscopic study may reveal a previously unidentified small scale decay of 

the lignin elements of the straw, a preliminary colonisation of micro-organisms, 

allowing weaknesses to develop capitalised on by secondary and tertiary micro-

organisms that are able to breakdown the more nutrient rich cellulose and 

hemi-cellulose. Certain experiments have been performed to provide greater 

clarity using Isopleth Studies to display the findings and are portrayed by a 

three dimensional graph plotting the temperature (x-axis), at which either 

mycelium develop or spores germinate, for a given relative humidity (y-axis) 

against time (z-axis) (Figure II.8 p70).
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II.3.2-  Isopleth Studies

Isopleth Studies seek to produce a predictive model assessing the risk posed to 

a material, relating relative humidity and temperature to length of exposure. 

Holzhueter (2009) used isopleths to predict mould growth in walls of a case 

study based on Biglans-Pritchard’s isopleth study into highly xerophilic moulds 

and 30 day spore germination. It concluded from analysis of hygrothermal data 

from the monitored building that fungus would be present; further invasive 

investigation confirmed this. The paper uses a third order polynomial equation 

(Equation II.3) developed by Bigland-Pritchard to describe mycelium growth 

with Equation II.4 describing spore germination. It superimposed limits of 

growth curves onto isopleth studies based on empirical studies conducted using

multiple combinations of temperature and relative humidity in laboratory 

experiments conducted by Smith and Hill, and Clarke et al.

Equation II.3: Polynomial equation for mycelium growth (Holzhueter 2009)

Equation II.4: Holzheuter (2009) polynomial equation for spore germination

Independently, Wieland (2004) developed Figures II.7 and II.8 based on isopeth 

studies of Aspergillus Restrictus and Aspergillus Versicolo; two highly xerophilic 
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moulds. Isopleths are a useful tool in predicting mould growth; from the 

conclusions drawn in the illustrated examples more research is required to 

develop the technique. Both figures plot relative humidity (Relative Feuchte y-

axis) against temperature (Temperatur x-axis), Figure II.7 demonstrating the 

Wachstumsrate (rate of development in days) and Figures II.8 the Keimungzeit 

(time taken to spore germination per day).

Bronsema (2010) states that straw has a high propensity for mould growth, but 

acknowledges that predicting growth is difficult. Isopleth studies are one way to

investigate mould growth by subjecting the straw to combinations of relative 

humidity and temperature. The investigation identifies time taken to spore 

germination, mycelium growth, and dynamic hygrothermal conditions utilising 

both Lower Isopleth for Mould (LIM) and Multiple Isopleths. It suggests that 

further work is needed on the models including a prediction of the amount of 

growth and dormancy during unfavourable conditions.
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Figure II.7: Mycelium development (Wieland 2004)

Figure II.8: Germination of spores (Wieland 2004)

Sedlbauer et al. (2011), utilising LIM(0), presented a traffic light system tool to 

aid in the assessment and identification of mould infestation bound by ranges 

in an isopleth study (Figure II.9) under which mould growth is likely to develop 

(red), cannot be completely excluded (yellow), and is unlikely to develop 

(green). The raw data on which the graphs are based were collected under 
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steady state conditions, straw was placed in a wire mesh container and 

sterilised with gamma radiation thereby avoiding multiple spore contamination,

certain spores were then introduced prior to the experiment.

Figure II.9: Isopleth System detailing wheat: Substrate Class I (Sedlbauer et al.
2011)

The LIM(0) line is also shown on Figure II.9 describing the point at which, below 

the line, there will be no mould activity. Ambient humidity will determine the 

germination of spores (Sedlbauer and Krus 2003) both thermal and hygric, the 

LIM however, is substrate specific. The onset of decay is an important 

consideration when discussing the risk posed to a construction, the level at 

which moisture and other conditions are favourable to micro-organism 

development therefore requires quantifying, requiring the use of measurement 

devices and techniques to assess the construction's risk potential; see page

168 for examples of mould growth.
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II.4   Moisture measurement    

The CMHC's (2000) report concludes that it would be wise given rapidly 

evolving construction methods, to monitor straw bale walls. There were, as of 

2012, a number of monitoring methods and devices in existence, including 

isothermal and isopleth studies, the most common being in no particular order 

gravimetric analysis, resistance meters, relative humidity sensors, 

thermometers and Wood-block probes.

II.4.1-  Gravimetric analysis

This method offers an accurate way of obtaining the mass of moisture within a 

material however, it is generally confined to laboratory experiments as 

obtaining a sample from a wall is destructive (BS EN 14774-2:2009). The 

method simply involves placing a sample into the oven at 105oC and drying it 

until the weight is constant, Phanopoulos et al. (2000) noted during a study 

involving straw, evidence of changes in cell shape along with an increase in 

surface debris when viewed with an scanning electron microscope however, the

report does not state the temperature, or duration the sample was subjected to

and fails to provide any further evidence.

II.4.2-  Voltage based methods

Saïd (2007) reviewed amongst other monitoring devices the Sereda and  

Printed Circuit Condensation Sensor, surface moisture sensors both recording 

Time-Of-Wetness (TOW) measurements. The Sereda has a limited life 

expectancy of 1-4 years depending on the environment and uses an 

electrochemical cell to generate a voltage potential therefore, a wetness 

reading of the surface of the material can be generated; each sensor requires 

individual calibration. The Printed Circuit Condensation Sensor has a far shorter 

life of 4-6 weeks. Although these methods would produce valuable data the 
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cost of implementation in time and expense makes this equipment impractical 

for long term monitoring purposes.

II.4.3-  Resistance meters

Resistance meters  measure the resistance of a material across a set distance, 

the resultant readings depend on the material's dielectric properties together 

with additional temperature compensation. Jolly (2000) used a wood chip meter

to assess wood-blocks placed into straw bales however, the lack of graduations 

in scale of the meter above 14%MC reduced the accuracy of the results. The 

resistance meter provides a useful 'off-the-shelf' method to check the moisture 

content of a material, but is not able to provide in-situ monitoring, requiring 

both a temperature calibration and knowledge of how to interpret the reading. 

The Timbermaster (Appendix Figure XI.4) and Balemaster (Appendix Figure XI.3)

meters are both examples of resistance meters.

Equation II.5: Temperature conversion for Timbermaster (EquGM)  (GE
Measurement & Control 2014)

The documentation supplied with the Timbermaster  (GE Measurement & 

Control 2014) advises that results be corrected for temperature using Equation 

II.5. Table II.3 shows the results for a range of temperatures with and without 

the GE equation. It demonstrates the potential differences that could be 

obtained from a meter reading.

Table II.3: Compensated reading for display of 15%MC
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Temperature (  o  C) Uncompensated reading (%MC) Corrected using
EquGM     (%MC)

30 15.0 14.0

25 15.0 14.5
20 15.0 15.0

15 15.0 15.5
10 15.0 16.0

5 15.0 16.5
0 15.0 17

GE Measurement and Control also produce the Balemaster; designed to obtain 

a moisture level from straw via a 450mm long probe attachment. Both the 

Timbermaster and Balemaster have the capacity to add a thermocouple (Figure

II.10).

Figure II.10: Timbermaster, Balemaster, Balemaster Probe, Digital Thermometer
and Thermocouple
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II.4.4-  Relative humidity sensors & hygrometers

As previously discussed Sorption Isotherms (Section II.2 p58) can be used to 

convert the relative humidity of the atmosphere in a bale to an equivalent 

moisture content of the straw. The study conducted by CMHC (2000) utilised 

hygrometers, but questioned their lifespan in damp environments. Lawrence et 

al. (2009a) used relative humidity/temperature sensors placed throughout the 

depth of a bale to measure the moisture profile. However, Carfrae (2011) 

specifies that a system capable of providing enough information, 'off-the-shelf', 

could run to a total of £8000 (Stirling); based on £100 per sensor and £2000 for

the data-logger.

Wihan (2007) utilised the Lascar EL-USB-2 humidity, temperature and dew point

USB data logger in the survey of various field studies. In conclusion however, 

the thesis reports that the relative humidity did not fully correspond to moisture

content levels observed, but does provide a “satisfactory indicator of microbial 

growth” (Wihan, 2007. pp162).

Dick and Krahn (2009) placed three isolated  relative humidity/temperature 

sensors within a perforated PVC tube at different depths of a bale to measure 

the inner, middle and outer conditions. The identified problems, other than the 

expense at implementation, included a debate concerning the ability of the 

sensors to describe exactly the moisture content of the straw due to the 

indirect method of assessment and the potential for rapidly changing relative 

humidities as seen at the extremities of a bale walls.

Carfrae (2011) points out that this method is unable to describe the hysteresis 

effect seen in cyclic isothermal studies, yet as the Forest Products Laboratory 

(1999) report describes: the oscillating adsorption curve can be used in certain 

circumstances.
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There are a wide variety of  relative humidity/temperature sensors with a wide 

range of costs attached, one type used primarily in this thesis was the Maxim 1-

Wire/iButton Sensor DS1923 (Appendix XI.0.2 p324) measuring 17mm in 

diameter by 6mm thick. This self contained unit has a built in data-logger and 

has a lifespan of seven years recording at an hourly interval.

II.4.5-  Wood monitors

The CMHC (2000) gives one of the first accounts of the utilisation of wood-block

sensors stating that it may be a more realistic method of monitoring based on 

an assumption that relative humidity changes faster than the moisture content 

of straw. However, no evidence is provided to support this statement. The 

report highlights the importance of using correction factors such as 

temperature compensation, warning that; some of the results may be 

inaccurate due to a lack of adjustment. Using the sensors to monitor the straw 

close to the exterior the report suggested that: “straw bale walls do not exhibit 

any unique propensity for moisture retention” (CMHC 2000, pp.4), reasoning 

against the need for internal vapour barriers.

Goodhew et al. (2004) modified the original wood block design opting to use a 

wood-disc mounted in a perforated plastic tube. The probes were calibrated 

prior to use in a case study and returned an accuracy of ±1%. In analysing the 

data for the case study a disparity between the results of the probe and the 

bare wood samples suggested to the researchers that the plastic tube created a

barrier effect. It was noted also that an increase in temperature lead to a small 

increase in the moisture level of the probe.

On analysis of the case study results obtained by Goodhew et al. (2004) it was 

found that one corner returned a moisture content of 25% which was later 

confirmed when a sample of the wall was oven dried and found to be 27%; the 

field accuracy of the probe was thereby revised to ±2%. It concludes that the 
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probe provides a cheap, easy to use method of evaluating the moisture content

of a construction to a reasonable degree of accuracy.

The woodblock probe was further developed by Carfrae et al. (2009b) in a long-

term study that removed the perforated plastic tube and put the wood-block 

(now bullet shaped) in direct contact with the straw. The results produced a 

more accurate method: “almost exactly duplicating the readings given by the 

'Balemaster' and gravimetric analysis” (Carfrae et al. 2009B, pp.5) however, 

the results are not displayed in the paper.

Lawrence et al. (2009a) argues for the use of relative humidity sensors, stating 

that straw will have different sorption isotherms to that of timber and the 

installation of the probes is more destructive than the implanting of relative 

humidity sensors. A further issue is presented by the Forest Products 

Laboratory (1999) suggesting that each sensor must be individually calibrated 

as different sections of timber may have slightly different dielectric properties; 

heartwood and sapwood.
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II.4.6-  Temperatures

The study of temperature alone could be used to provide an assessment of a 

straw bale wall system as Carfrae (2011) reports that the thermal lag for a 

straw bale is around 12 hours. From work done by Goodhew et al. (2005), 

240mm of clay straw was applied to one side of a bale and a course of bricks to

the other, a time lag of 16.91 hours was recorded. Summers (2003) also 

proposes the use of a temperature study to assess the level of decay in a bale 

as micro-organisms will generate significant amounts of heat whilst 

decomposing the straw.

II.4.7-  Summary

The methods of analysing the risk posed to the straw from moisture, detailed 

above, are all valid and more so if used in combination. All methods have 

advantages and disadvantages however, the devices and techniques do not 

fully explain what is occurring within a bale, to evaluate this; the data, the 

restrictions of the device, and the method of analysis must first be understood 

before a confident assessment of risk may be made. Adopting a model to 

evaluate data and provide potential outcomes based on patterns of historical 

trends could also prove valuable in making an informed decision based on the 

evidence.

Page 78 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

II.5   Modelling    

The majority of literature refers to a building physics simulation program named

WUFI, developed by Fraunhofer IBP as an aid to assessing building fabrics. The 

program allows the simulation of an experiment through the section of a wall in 

one dimension, utilising different layered components of a building assembly, 

with the ability to adjust widths and physical properties of the material. A 

weather pattern may be introduced and results will demonstrate, based on set 

building physics criteria, the potential outcome for the construction method.

Reviewing the accuracy of WUFI Wihan (2007) describes how the results 

provided by the software at elevated humidities should be regarded as: 

“conservative estimates” (Wihan 2007, pp.110), referring to the 2005 Manual 

which warns of calculations distorting data at saturated level in straw. Wihan 

highlights the failure of WUFI to account for convection currents within the wall 

together with the effects of vapour penetration due to infiltration for 

inaccuracies in modelling the outside edge of the wall, identifying the need for 

weather data to improve accuracy. The detailed recording of weather data 

provides the model with greater capabilities; wind driven rain, strength of wind 

and temperatures may all have an effect on calculations within the simulation.

Grmela et al. (2010) conducted a review of a case study monitored with the 

Balemaster and Balemaster probe against the predictions of WUFI. The authors 

evaluation shows that WUFI presented inaccuracies in comparison to the 

Balemaster data. Grmela et al. reason that this may have been caused, in part, 

to inaccurate input parameters and the lack of climactic data with which to run 

the simulation. The paper concludes that the calculation of thermal resistance, 

heat transfer and moisture content in a straw bale wall requires a new 

methodology taking into account bale density, thermal gradient and moisture 

dependent thermal conductivity.
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Bronsema (2010) suggests that WUFI should be capable of modelling a straw 

bale wall system provided accurate climate data including sun and rain records 

can be provided. The author argues for the addition of a rain gauge to be 

placed on the external render, thereby increasing the accuracy of the modelling

software.

Other contributions to modelling include generic modelling methodologies such 

as Kesik and De Rose (2004) aiming to provide guidance on complexities of wall

performance classification.

In summary a model may only be considered accurate once it has been applied 

to a real environment in order to test the theory and verify effectiveness of 

laboratory experiments with some degree of success. Case studies or 

monitoring sites, and test rigs offer a method of evaluating a model with the 

prospect of developing it and implementing it with confidence.
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II.6   Case Studies (Monitoring Sites)    

Several papers and theses have utilised case studies to investigate the effects 

of the real world environment on straw bale construction and to compare data 

against laboratory experiments.

The Canadian Mortgage Housing Corporation (CMHC 2000) notes that northern 

walls (in the northern hemisphere) retained comparatively more moisture than 

other elevations. The CMHC report identified a Canadian West Coast study that 

showed sustained high moisture levels despite no external wetting, identifying 

high humidity as the likely cause. The CMHC report proposed the hypothesis 

based on results showing that hygrometers placed immediately behind the 

stucco showed levels of 95%RH, suggesting that: “the concept of a quick 

moisture redistribution in bale walls is probably not valid“ (CMHC 2000, pp3). It 

concluded that leaks, lack of rain protection, and high humidity and 

precipitation environments make straw constructions more susceptible to 

decay.

In the analysis of nine monitoring sites Jolly (2000) noted issues of concern 

including inadequate protection from splash-back and precipitation, minimal 

exposure to solar gain, insufficient roof overhang, watering of a flowerbed 

situated against a wall, use of below grade bales, northern exposures, and 

stucco extending beyond the damp course. In a more detailed explanation than

that reported in the Canadian Mortgage Housing Corporation  (CMHC 2000) 

report, Jolly suggested that, moisture levels in the north wall of the West Coast 

study, were caused in part by the proximity of vegetation (forest) restricting air 

circulation and thereby the drying process. The report also records, in study 

nine, the lack of moisture build-up even though there are cracks in the interior 

earthen plaster; it suggests that significant ex-filtration may be the cause.
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A timber frame infill building with uninsulated roof and no heating was chosen 

for a case study by Goodhew et al. (2004). The northern and eastern elevations 

were surrounded by mature trees and the humidity of the site was reported to 

be unusually high. The analysis demonstrated a high moisture content for the 

straw in the exterior of the southern wall exposed to moisture penetration from 

wind driven rainfall, but identified that the probe located at the same level 

100mms further into the interior of the bale gave a low reading. Goodhew 

therefore suggests that moisture migration is slow in protected straw bales, 

which agrees with the findings of the CMHC (2000) and Straube (2009). The 

behaviour of a straw bale wall in absorbing rain, Bronsema (2010) concludes, 

has a strong impact on its performance and should be studied in more detail. 

The results of a fault in the case study investigated by Carfrae et al's. (2009b) 

highlighted a trend in the drying process of a straw wall. The straw to the 

exterior of the wall was saturated up to 37%MC compared to 15%MC towards 

the interior. Over the initial five weeks, post repair, the exterior straw dried 

quickly to around 24%MC, yet the interior increased to around 19%MC. The 

author explains that vapour pressures are equalising across the wall causing 

the spread of moisture. After the initial five weeks there is a second trend, the 

moisture content continues to fall, but at a far reduced rate taking a further four

months for the external to reach around 15%MC.

Lawrence et al (2009b) conducted a study into the protection of straw by 

exposing nine wall sections with different surface treatments to the same south

westerly climate. The field trials were monitored using relative humidity sensors

and converted to a comparable moisture content using the Equation II.1 (p61) 

proposed in Lawrence et al. (2009a). The external relative humidity varied over 

the 11 month study between 40-99% averaging 83% and although the trial was

abandoned due to technical difficulties conclusions on surface protection could 
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still be drawn. Deliberately damaged panels showed localised decay whereas 

correctly detailed ones equilibrated at 14%MC (83%RH) with no decay.

The effect of protective surfaces have also been investigated by Carfrae et al. 

(2009b), demonstrating that cladding can offer significant protection reducing 

moisture content of the straw by up to 3.8%. Concerning render, Wihan's 

(2007) study of a straw bale house in Brittany, France, discovered that 

degradation of straw was due to a failure of the lime render to carbonise due to 

inappropriate environmental conditions and late application, finally completed 

in early October. In conclusion Wihan cites wind driven rain as the main 

protagonist for raised moisture content conditions, solved by the addition of 

cladding. Poor design was also cited as a reason for the majority of problems, 

but the thesis does highlight that condensation from water vapour diffusion in a

simple plaster-straw-plaster assembly: “doesn't prove to be a potent enough 

source of moisture to cause straw decay” (Wihan 2007, pp.167).
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II.7   The knowledge gap

A fundamental requirement of any construction is to provide a healthy 

environment, minimising the risk posed to the occupants. The minimisation of 

risk posed from moisture is paramount to a constructions functionality; the 

presence of moisture is described by Brand (1997) as quoted in Oliver et al's 

book (1996) 'Dampness in Buildings':

“The root of all evil is water. It dissolves buildings. Water is elixir to unwelcome 

life such as rot and insects. Water, the universal solvent, makes chemical 

reactions happen every place you don’t want them. It consumes wood, erodes 

masonry, corrodes metal, peels paint, expands destructively when it freezes, 

and permeates everywhere when it evaporates. It warps, swells, discolours, 

rusts, loosens, mildews and stinks...”

This overtly dramatic description highlights the issues surrounding elevated 

moisture levels in construction of all types, not just straw, it is however, an 

inability to confidently assess a straw bale construction where moisture is 

concerned that removes confidence from the construction method (Section I.5.1

p41).

In essence the moisture content of the straw will largely be dictated to by the 

amount and type of protection it receives from external influences in the form 

of renders, plasters, cladding, topography and extraction methods; for high 

moisture environments such as bathrooms. A study conducted into the effect of

variable thickness, application and imperfection of protection methods applied 

to straw bale construction, although vital, would not however address an issue 

of greater importance; the risk that moisture poses to the straw.

The confidence to interpret the results comes from the knowledge of how each 

monitoring methods works and the shortfalls of each. The resistance meter, the
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Balemaster with probe attachment for instance, measures the path of least 

resistance between interconnected strands of straw, unlike the measure of 

relative humidity which provides a measure of the percentage of moisture in 

the atmosphere in the immediate location of the sensor depending on the 

temperature of the air. A wood-block probe together with a resistance meter will

provide a comparable moisture content based on the assumption that wood 

and straw, both cellulosic materials, will demonstrate similar moisture contents 

and finally gravimetric analysis will provide the researcher with the total 

amount of moisture within a bale; the atmosphere and surface moisture 

combined with moisture contained within the plant's cellular structure.

This line of enquiry raises a specific question concerning how exactly results 

obtained by the different monitoring devices relate to the overall risk posed to a

straw bale wall and thereby how the data should be interpreted. To date there 

has been little comparison or discussion surrounding these questions, only 

separate investigations. In order that these questions can be addressed it is of 

importance to describe how moisture occurs within the bale and, what and how 

that interaction with the straw takes place. If it is assumed that a straw bale 

varies in moisture content influenced purely by the presence of water vapour 

and temperature then the risk posed would be time dependant and would also 

rely on dew point temperatures; the requirement of water vapour condensing 

out of the atmosphere onto the straw surfaces, one variable measurable by an 

relative humidity sensor the other by a resistance meter.

The assumption should also include the external atmosphere's tendency to 

drop in temperature during the night and for the humidity to rise subject to a 

natural 24 hourly cycle notwithstanding seasonal flux. The rate at which 

moisture is capable of travelling through a bale compared to temperature is 

also significant, at the edges of the bale a high rate transfer of moisture and 
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temperature may be seen. However, in the centre of the bale can the same 

hypothesis be applied confidently?

The rate of transfer of moisture and temperature through a straw bale is 

important as it will provide evidence to suggest the rate  at which moisture 

could potentially be brought to, or removed from, an internal area of the bale. 

Subsequently, there is a question of how the moisture interacts with the straw 

and whether the relative humidity is purely a reflection of the moisture content 

of the atmosphere rather than of the straw.

In attempting to design a building fabric simulation to investigate the moisture 

and thermal properties of a straw bale construction, previous studies have 

demonstrated, that conventional building models struggle with the unique and 

unconventional amalgamation of a straw bales structure (Section II.5 p79). It 

was concluded by the studies that detailed knowledge of weather patterns and 

wetting of the protective coatings applied to the straw is required to perform an

accurate comparable of a case study with a computer simulation.

The gap in knowledge therefore is in an understanding of how moisture reacts 

with the straw and in the confidence to interpret monitoring results to a 

significant degree of accuracy for a simple visual system or model defining the 

'Risk' posed to the construction to be created. Chapter three describes the 

methodological approach adopted to further progress the research.
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II.8   Summary

The research aim is to quantify and evaluate the risk posed to straw bale 

constructions by moisture. The following list has been drawn from the gaps in 

knowledge as discovered by the literature review:

1. Lack of definitive agreement concerning the risk posed to straw from 

moisture (Table II.1 p50). 

2. An unclear definition of the term 'risk' when related to straw and 

moisture (Section II.1.2 p54).

3. The literature does not clarify how results produced by each monitoring 

device should be interpreted (Section II.4 p72-78). 

4. There is a lack of critical analysis involving the relationship between the 

monitoring devices and the risk to straw (Section II.4 p72-78). 

5. Beyond Straube's (King 2006) explanation of moisture storage regimes 

there is a lack of factual and researched descriptions of how moisture 

interacts with straw within a bale (Section II.1.1 p47). 

6. The literature review failed to uncover research conducted to establish 

the way in which moisture transfers through a bale.

The gap in knowledge exists in part due to the youthfulness of the method of 

construction, and the lack of categorical research evidence. The disagreements 

concerning the risk posed to straw from moisture do little to promote 

confidence in the use of this renewable resource. The following chapter 

presents the methodological approach taken to address the aims and objectives

(section I.1 p11) together with the subsequent questions in this summary.
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Chapter III   Methodology
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III.1   Introduction

Quantifying and evaluating the risk posed to straw bale constructions from 

moisture was highlighted as a gap in knowledge (section II.7 p84). The main 

aim and objectives (p11) set out to: define the term 'risk', explain how moisture

interacts within a bale, and to develop a basic visual identification system and 

model to promote confidence in the construction method. 

The methodological procedure began by establishing  a method of study and 

investigating potential boundaries utilising: critical evaluation, discussion of 

relevance, alternative approaches, assessment and acquisition of resources, 

evaluation of the design goals and the establishment of precautions, variables 

and limitations (Whisker 2008). 
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III.2   Methodological Approach

The initial research approach was designed to begin collecting data 

quantitatively in order to establish a contribution to knowledge. A deductive 

investigation was then used to explain the relationship between and apply 

controls to applicable variables by use of a structured research approach to 

scientific investigation and collection of data. Information was then transferred 

into a data stream creating significant sample sizes in order to provide an 

informed conclusion.

During the research and planning stages of each individual experiment, 

inevitable assumptions were identified (Clough and Nutbrown 2007). The 

significance of the results were then discussed and any hypothesis was 

accepted or rejected, terminating in a suggestion for further work.

III.2.1-  Generalised Methodological Approach

The research problem was approached using scientific method requiring the 

systematic collection and analysis of data in order to propose a model to reflect

reality and bridge the gap in knowledge. Figure III.1 illustrates the scientific 

procedure adopted for each experiment.
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Figure III.1: Scientific approach

The adopted approach (Figure III.1) generalises the thinking process behind 

each decision taken with the desired aim of refining an original question down 

to the 'One Idea'. From this principle it is possible to identify knowledge gaps, to

criticise current thought and to evaluate results of the process; or discover, 

develop, and interpret the system. 

Wisker (2008) provides a breakdown of different research approaches, this 

thesis initially followed an exploratory approach, extrapolating an exploratory 

procedure to investigate underlying subsidiary, and complex questions and 

variables. Support was provided by explanatory research specifically 

investigating the cause and effect between two or more variables culminating 

in a predictive stage of research.

III.2.2-  Variables

Table III.1 shows some of the variables that will be considered in this thesis 

although not all relate to each of the subject areas (section III.2.3 p92), or 

individual experiments (chapters IV to VII).

Page 91 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

Table III.1: A variable list

The highlighted variables were specifically considered throughout the research 

procedure however, all may have some impact on overall results and outcomes.

III.2.3-  Subject Areas

This investigation focused on five subject areas: 

III.2.3.1   Laboratory Experiments

Laboratory Experiments formed the basis of the investigation, providing an 

environment that isolated variables, thereby allowing control and accuracy over

measurements. The laboratory studies also provided the ability to manipulate 

different scenarios in order to study cause and effect. The benefit of Laboratory

Experiments is in repeatability and standardisation however, Laboratory 

Experiments are also simulations based in an artificial environment and must 

be regarded with a limitation to mimic natural reactions under true 

environmental conditions.

III.2.3.2   Monitoring Site (Case Study)

A monitoring site (Case Study) was acquired to provide information concerning 

a practical environment, obtaining data and assessing conventional monitoring 

techniques, to be used as a comparative study and tested against modelling 

and descriptive techniques designed to investigate the risk posed to a straw 

bale construction.
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III.2.3.3   Test Rig

A Test Rig provided a means of bridging the gap between the monitoring site 

and laboratory experiments, it presented the opportunity to perform multiple 

experiments and destructive testing on a straw bale construction based in a 

real world environment whilst allowing unlimited access to the site. The Test Rig

was designed to be a cost effective solution to performing extensive research 

on a straw bale construction without the potential for costly failures, or 

inconveniencing the owners of a property.

III.2.3.4   Monitoring Techniques and Methods

The development and assessment of Monitoring Techniques and Methods was 

used to describe the risk posed to a straw bale construction, performed 

together with the above subject areas, it provides comparative and descriptive 

information that is utilised by the model.

III.2.3.5   The Model

The Model was designed as an evaluation tool; according to Epstein (2008) a 

model illuminates uncertainties in current procedures, offering crisis options 

based on comparative data and estimations, it educates and trains, and 

amongst other goals reveals the complexity of an apparently simple solution. 

The goal of the model is not to predict when a wall will decompose, but to 

suggest the possible outcome of certain scenarios, together with an evaluation 

of historical records.

The subject areas are interrelated and interlinked: methods of modelling, 

descriptive, comparative, and experimental approaches were used to address 

scientifically the knowledge gaps.
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III.2.4-  Areas of research discounted

Certain areas of research were not covered as part of this thesis due to the 

design scope, methodological approach and time constraints. Each area 

however, may have an influence on a straw bale construction to varying 

degrees.

III.2.4.1   Wheat strains

A none specified wheat strain was used in the research: one sourced batch of 

straw bales was used exclusively. It remains unclear how different crops, 

strains, or cultivation methods would affect the results obtained in the project 

however, this area may be addressed in future work.

III.2.4.2   Varieties of straw

Evans et al. (1981) identified the differences in varieties of straw inherent in the

husbandry, geographical location the crop was grown, and the types of straw 

used. In order to investigate the optimum type of straw to use in straw bale 

construction, a large scale research project beyond the scope of this study 

would have been required.

III.2.4.3   Decay

The identification of different microbial species is also outside the remit of this 

study as it encompasses not only too larger study, but also represents the bane

of which the study aims to avoid and of which moisture is one of the known 

catalysts. If mould takes hold in a wall then for that section the risk is already 

too great and all affected bales must be replaced. Section V.6 (p167) of the 

Preliminary Results chapter does however investigate differences between 

decay of straw subjected to a continuous liquid phase and another to high 

relative humidities. The experiments were conducted to demonstrate the 

general differences in mould development not in specific identification.
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III.2.4.4   Climate

The investigation into alternate climates was restricted by the research 

approach to climatic conditions that affect the UK; which has a Maritime 

climate. It is unclear whether the resultant data and model will be applicable in 

other regions of the world.

III.2.4.5   Renders and cladding

The knowledge and effect of renders and cladding, although recognised as 

important to moisture transition in a straw bale construction, represents an 

advanced stage of research, secondary to the importance of the interaction of 

moisture with straw. It is argued here that the effect and influence of moisture 

on straw within a bale must be understood prior to investigating protective 

remedies. Although the later stages of the thesis, Section VII.4.1 page 257, 

evaluate the application of render and cladding no further investigation 

concerning the topic was undertaken.
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III.3   Defining the Research Problem    

The main problem with identifying the risk posed to straw is the uncertainty 

surrounding the point at which straw becomes susceptible to decay (Table II.1 

p50) and thus, the method by which monitoring should be conducted (Steen et 

al. 1994, CMHC 2000, Goodhew et al. 2010, Lawrence et al. 2009a).

III.3.1-  Risk

'Risk' in the context of the thesis relates to the vulnerability of the straw within 

a walling system that is subject to change. It requires the definition of a system 

from which there is a lack of knowledge and unknown outcomes. Risk therefore 

requires an understanding of the uncertainties (Section II.1.2 p49) and the 

analysis of known probabilities (Hansson 2011). 

A wall at 'No Risk' would constitute one that is free from the potential for decay 

and one that is functioning both efficiently and effectively. Alternatively, a wall 

'At Risk' may be considered in degrees of Risk exhibiting symptoms of: reduced 

functionality, a drop in U-values, or a rise in 'decay potential', leading to 

concerns over structural stability and occupant health. Spengler and Chen 

(2000) raise concerns over the public's perception of risk in a paper reporting 

on air quality, therefore Risk requires categorisation to further explain the 

concept.

In diagnosing the Risk to a straw bale construction information concerning 

applicable variables as shown in Table III.1 (p92) must be collected and 

analysed; a reading of 35%MC at a certain position in a wall may be considered 

by the majority of literature as at 'High Risk'. However, if further variables are 

known:
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• 'the reading of 35%MC was taken during the winter period and was 

sustained for over two months at which time the temperature did not rise 

above 5oC' [scenario example]. 

From the scenario example above; a conclusion of 'Low Risk' to decay may be 

assumed based on isopleth studies and empirical data (Wieland 2004, 

Holzhueter 2009). However, the question remains: is the allocation of 'Low Risk'

a fair assessment of the situation?

An increased moisture content will affect the thermal insulation capabilities of 

straw bales (Grmela et al. 2010 and Goodhew et al. 2005) and a drop in thermal

efficiency may have a 'knock on impact', the rate at which the wall losses or 

gains heat will affect the internal temperature of the building. The occupants 

may therefore attempt to compensate for this by using heaters or air 

conditioning, if the method of compensation is produced from a non-renewable 

or polluting resource then, there is a secondary environmental impact. The 

evaluation of Risk in this case requires clarification or contextualisation; a 

construction rated at 'Low Risk' still requires an amount of consideration if it 

potentially causes undesirable secondary impacts.

The scenario example depends also upon the decay potential; the potential for 

the moisture content and temperature to rise or fall within a set amount of time

relating to the ranges of decay (Wieland 2004). For instance, in the given 

scenario, if temperatures rose with the onset of spring or the residents 

compensated for the loss of heat by increasing the heating output, the 

Wieland's isopleth studies (Figures II.7 and II.8 p70) would warn of a dangerous 

potential for highly xerophilic fungi to colonise the straw; spores may germinate

within eight days at temperatures of 15oC and 35%MC (92%RH). This would 

then indicate a review of the categorisation to 'High Risk', therefore Risk must 

also be defined with respect to the potential for changing conditions.
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In order to describe the risk posed to a straw bale wall the generation of a 

model with the capability for prediction based upon previous data and known 

responses to variables was required. It has to be intelligent enough to 

extrapolate different scenarios based on assumed future events taking into 

account worst case scenarios and normal trends; for instance, a worst case 

scenario may include a sudden warm wet spell unusual for the time of year.

Thermal efficiency of a wall will decrease with increased moisture content due 

to temperature transfer through moisture migration (Stone, 2003 and McCabe, 

1993) and isopleth studies provide an account for decay (Holzheuter, 2009 and 

Wieland, 2004). Risk may therefore be divided into 'No Risk', no potential for 

decay, and 'At Risk', potential for decreased efficiency or onset of decay. The 

potential for decay is time and scenario dependant; Figure III.2 demonstrates a 

basic evaluation of the Risk to a straw bale construction from moisture and 

temperature as ascertained from various sources in the literature review (Table

II.1 p50 and Figure II.2 p52).

Figure III.2: Risk decision

The level of moisture within a straw bale wall is of primary concern, if kept 

below 15%MC, the monitoring of other variables will be rendered null and void 
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as the moisture level is below that for biological activity (Summers, 2003). 

Above 15%MC, concern over the risk to straw increases with respect to 

efficiency and decay potential, temperature becomes the second variable to be 

of concern with relation to the moisture level; at temperatures over 10oC micro-

organisms can develop (Summers, 2003).

Figure III.2 however could not be used as a stand-alone model due to the 

simplistic nature, evaluating Risk not only involves the calculation of results, 

but also the effective combination of a descriptive terminology combined with 

an understanding of the data. The further development of a model to describe 

Risk must deal with a complex input data stream and present a simplified 

assessment that may be understood by a lay person (Spengler and Chen 2000).

III.3.2-  Defining a solution

Under conditions of excessive moisture and if other criteria are met micro-

organisms will begin to colonise straw and cause degradation. The overriding 

aim of a construction is to avoid conditions that promote decay, therefore a 

study to examine the exact point in which decay begins could be considered 

important. There is however a lack of agreement surrounding the issue (Table

II.1 p50), it may be prudent therefore to simplify the argument and suggest a 

colour coded method of assessment that encompasses the lack of agreement 

within broader terms (Figure III.3).

Page 99 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

Figure III.3: Visual identification for Risk Assessment System based on moisture
content only

Figure III.3 represents the precursor development to the overall model, the 

colours chosen to be printable in monochrome without loosing distinction. The 

Risk Assessment System relies on the correct interpretation of results in order 

to produce a simple analytical technique to diagnose the risk posed to a wall 

and thereby can be used to illustrate issues relating to structural stability and 

occupant health. The majority of literature states that a moisture content of 

below 15% is safe and therefore poses 'No Risk'. The system however puts in 

place a method of warning:

1. A measurement of between 15 and 20%MC suggests that greater 

vigilance is required.

2. At moisture contents above 20%  there is an elevated potential for 

decay and is classified at 'Medium Risk' and therefore represents 

greater urgency in discovering the cause of the elevated moisture 

level. 
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3. The classification of 'High Risk', although dependant on other factors 

(Figure III.2 p98), signals the potential onset of decay and the need 

for a detailed assessment to verify the risk posed to the construction.

In conclusion a reading of 35%MC would be viewed as at High Risk in Figure

III.3, yet if the temperature was below 5oC there is less risk for decay and the 

remedial action required will be different to that of a warmer temperature 

measurement. If the cause for the high moisture content can be discovered and

dealt with prior to the onset of a temperature rise the demolition of the wall 

may be averted; this analysis method is key to evaluating the risk posed to a 

straw bale wall. 

III.3.3-  Potential benefits

The development of a monitoring technique or model will benefit all parties 

involved in straw bale construction projects. The ability to provide an accurate 

assessment concerning the risk posed to straw combined with historical trends 

and future predictions gives rise to confidence for investors, builders and 

owner/occupiers to embrace this method of construction, and for engineers, 

designers and architects to consider effective protection strategies.

Figure III.3 (p100)presented a basic visual identification method to define risk 

showing that excessive moisture will increase the potential for mould 

development, the model therefore relies upon accurate data from monitoring 

devices together with correct interpretation.
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III.4    Summary

From the gaps in knowledge identified by the literature review (Section II.7 

p84), the methodology chapter discusses the method employed to critically 

evaluate and quantify the risk posed to straw bale construction from moisture. 

The summary of the literature chapter (Section II.8 p87) was investigated, 

identifying five subject areas (Section III.2.3 p92) allowing the application of 

descriptive, comparative, experimental and modelling methods to the research 

approach. The experimental phase of the research program was divided into 

three sections:

III.4.1-  Preliminary Investigation – Part I

The preliminary investigation sought to establish a platform on which to base 

initial investigative research. Designed to answer the main aim of the thesis, to 

quantify the risk posed to straw bale constructions from moisture, the 

investigative method began by aiming to compare the assessment of multiple 

case studies utilising wood-block probes as the moisture monitoring method of 

choice. 

III.4.2-  Preliminary Investigation – Part II

Part II of the Preliminary investigation represented a change in the original 

research approach due to the laboratory experiments revealing an issue of 

response rate of the wood-block probes. The original research approach to 

study multiple case studies utilising wood-block probes was changed to 

encompass a study involving a monitoring site, laboratory experiments, and the

construction and analysis of a test rig (section III.2.3 p92). 

The aims and objectives of the study remained unaffected and led to the design

of two new monitoring devices. The assessment of the test rig highlighted 
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several other limitations concerning moisture measurement with resistance 

meters; temperature and density. 

III.4.3-  Focussed Investigation

The third phase, the Focussed Investigation, sort to refine and analyse in detail 

the problems identified in the Preliminary Investigations (Parts I and II) using 

the data and knowledge gathered to advance the contribution to knowledge. 

The aim of the third phase of the investigative research was to verify the 

correct interpretation of results, and establish how each monitoring device 

relays information and to what that measurement relates; by further advancing 

this knowledge an accurate and reliable model could be produced.

The main problem with identifying the risk posed to straw bale construction 

stems from the uncertainty over the point at which straw will degrade in the 

presence of moisture (Table II.1 p50) and other influencing variables such as 

type of straw (Section I.1.4 p18) or husbandry (Table III.1 p92). In defining a 

solution Figure III.3 (p100) introduced a Risk Assessment System as a visual 

identification method grouping moisture contents into classifications of 'Risk'. 

However, Figure III.3 relies upon the collection and correct interpretation of 

accurate monitoring data, yet is not inclusive of other potentially critical 

variables (Table III.1 p92) of which a model of risk was proposed in Figure III.2 

(p98).
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Chapter IV   Preliminary Investigation – Part I
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IV.1   Introduction

The literature review highlighted certain gaps in knowledge concerning the lack 

of definitive agreement over the risk moisture poses to straw. The importance 

of the research is to provide interested parties with the confidence to proceed 

with straw bale construction given the potential for the social, economic and 

environmental benefits (Bigland-Pritchard and Pitts 2006, Kennedy et al. 2002 

and Atkinson 2010).  The acceptance of straw bale construction as a 

mainstream option would also provide sustainable housing for a growing 

population (NHPAU 2007 and UN 2013). Therefore, the monitoring of multiple 

case studies would provide a comparative and contrasting analysis of this 

method of construction, similar to the studies conducted by Jolly (2000) and 

Bronsema (2010). Jolly (2000), Goodhew et al. (2004), Carfrae et al. (2009b) 

and Wihan (2007) used case studies as part of the research method and 

highlighted the following areas of concern: sheltered sections of wall, northern 

exposures, and moisture penetration from wind driven rain.

With careful systematic evaluation, the research sought to address the 

identified gaps in knowledge and produce a conclusion based upon field work. 

The study of multiple case studies offer an opportunity to consider and explore 

fully an in-depth situation acknowledging the inherent limitations, and adopting 

scientific rigour (Wisker 2008).
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IV.2   Preliminary Case Study

The boundary conditions set for the Preliminary Case Study focused exclusively 

on the evaluation of the wood-block probes (section II.4.5 p76) as a monitoring 

solution and the use of one case study (section II.6 p81). The Preliminary Case 

Study would therefore be used, from an exploratory context, to gather 

information concerning certain variables (Wisker 2008) with the overall aim to 

inform and advise upon the establishment of further case studies.

The aim of the preliminary case study was to justify the use of wood-block 

probes as a monitoring device to reflect the moisture content of walls in a real 

world environment. The objectives were defined thus:

1. wood-block probes to establish moisture related problems within a 

construction. 

2. To identify reasons for data disparities between individual monitoring 

devices.

The research was designed to collect fieldwork data, the analysis of which 

would justify the continued progression into the analysis of multiple case 

studies.

Figure IV.1: WoodBlock Probe
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The design of the probe (Figure IV.1) was taken from Carfrae's work which refers

to them as bullet tip probes, but for a historical context and the purpose of this 

thesis will remain as wood-block probes. The probes utilised oak as the timber 

of choice for the wood block tips and the assembly consists of a main plastic 

body (PTFE tubing) and end cap (nylon), with two metal rods protruding 10mm 

from the cap running the length of the body to penetrate the wood-block tip to 

a depth of 10mm's; the space between the tip and end cap is a void.

The home of Wendy Graham, located on the banks of Loch Tey, Perthshire, 

Scotland, was secured as the Preliminary Case Study site in late 2009. 14 wood-

block probes were installed prior to this; wood-block probes at the time offered 

the best monitoring solution from a perspective of: cost, ease of use, 

robustness and track record (Carfrae et al. 2009b, Goodhew et al. 2004).

Previous studies conducted by Goodhew et al. (2004) concluded from a field 

study that wood-block probes offered an accuracy of ±2, with slight variations 

for temperature. Carfrae et al. (2009b) found that results from wood-block 

probes closely matched that of gravimetric analysis and the Balemaster 

readings. Timber probes have undergone several different modifications over 

recent years from the basic block methods used by the CMHC (2000) 

culminating in the bullet shaped probe developed by Carfrae. This provided the 

thesis with a base on which to begin addressing the research problem and 

identifying the risk posed to straw from moisture in a real world environment by

using wood-block probes as the monitoring device.

The house (Figures IV.2 and IV.3) was constructed in the summer of 2008, it has

a large overhanging roof, bales raised one foot above ground level, is rendered 

with lime both internally and externally, and has undergone a lime wash once 

every year. There is little protection afforded to the house by the local 

topography; to the north-east there is another house within a distance of six 
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meters, the north-west wall faces a 20 meter wide courtyard, rising slightly, 

leading to a single story barn conversion. The majority of the south-eastern wall

(Figure IV.2) is glazed and the whole of the south-west wall is timber clad;  

added protection is provided to the south-west ground floor wall by a lean-too 

(Figure IV.3).

The house (Figure IV.4) is heated by a solitary wood burner located in the living 

room which opens up into the spacious kitchen; both rooms providing a south-

easterly view across the loch. The larder adjoins the kitchen and the door is 

kept shut to maintain a low temperature, the study also remains cool being 

north facing and removed from the heat source. The roof is insulated by 

200mm of solid foam and southern facing double glazed skylights offer 

additional heat gain.
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Figure IV.4: Plan view of house at Loch Tay showing approximate locations of
woodblock probes

Figure IV.4 also shows the approximate locations of the 14 probes, identified as 

potential places of weakness in the building design, all of which are located 

200mm from floor level except probes 2, 4 and 6 located vertically above 
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probes 1 and 5 at 200mm increments. The results from these probes were 

collected monthly using a Timbermaster meter (reading set at group A); without

thermocouple attachment. The generated data could then be entered into a 

computer and analysed being flagged if the moisture content rose over 15%, 

the point at which the majority of literature agrees that there is no risk of 

degradation (Figure II.2).

The aim of the case study was to evaluate the benefits of using wood-block 

probes to monitor moisture levels within the walls of straw bale constructions, 

however, as the case study site is a home there were two limiting factors 

inherent in the research: the inability to perform destructive testing on wall 

sections, and secondly to make detailed routine assessments of the site. It was 

therefore decided to allow the monitoring of the house to continue with minimal

disturbance to the residents. Other restrictions imposed by the method of study

are by the confounding variables such as: weather patterns, heat and moisture 

generation from within the construction, and the time scale. There was a time 

limit imposed on the initial research as a decision was to be made on 

progression to the next stage; involving the investigation of multiple case 

studies.

The assumptions for the investigation were, that timber is capable of reflecting 

the moisture content of straw, and that the south-western wall would exhibit a 

lower moisture reading than the north-western as it had been afforded extra 

protection in the form of timber cladding (Carfrae et al. 2009b and Wihan 

2007).

At the end of each month the data was collected and analysed in a graphical 

format that would highlight areas deemed to be 'At Risk'. The format plotted 

the moisture content of each probe against the date; it was therefore possible 
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to identify disparities between monitoring devices and to evaluate the benefit 

of using wood-block probes to monitor the condition of a construction.

In summary the preliminary case study analysed, in a dynamic field study 

environment, the response of the wood-block probes to the conditions of a 

straw bale construction. If it was demonstrated that the wood-block probes 

provided an effective method of monitoring, then multiple case study 

assessment would be undertaken, alternatively further more rigorous 

assessment would be required.

IV.2.1-  Results: Preliminary Case Study 

Figures IV.5 to IV.8 present the preliminary results, the moisture content (y-axis)

plotted against the date (x-axis), aiming to establish the effectiveness of the 

wood-block probes as a monitoring tool in reflecting the moisture content of the

case study walls. The results also identify any disparity between individual 

probes. 

The overall trend of data suggests a rise in moisture content in early 2009, 

immediately post construction, followed by a drop in the moisture level of all 

the probes to a permanent record of under 15%MC by January 2010. The results

demonstrated that there were no problems inherent within the construction at 

the positions monitored, and although wood-block probes 09 and 10 did not 

surpass 13%MC or show a rise and fall, as illustrated by the other wood-block 

probes (Figure IV.7), there were no distinct disparities between the individual 

monitoring devices.
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Figure IV.5:Northwest Façade Preliminary Results Figure IV.6: Northeast Façade Preliminary Results

Figure IV.7: Southwest and Southeast Façade Preliminary Results Figure IV.8: First Floor Preliminary Results
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Upon evaluation the results of the year's study failed to demonstrate a need to 

progress with the analysis of multiple case studies. As the Preliminary Case 

Study could not be defined as being 'At Risk'. It was argued therefore that as a 

construction should in theory be designed against moisture penetration any 

case study undertaken would potentially provide no evidence on evaluating the 

Risk posed to straw bale construction from moisture.

The investigations limiting factors included the inability to perform destructive 

testing to verify the ability of the wood-block probes to reflect the moisture 

content of straw, or to control certain variables such as weather. The limiting 

factors would provide uncertainty for future research study results, the chance 

that multiple case studies would provide inconclusive data, not progress into 

areas considered to be 'at Risk', or that action would be taken on a section of 

wall without the ability to study prolonged effects of a high moisture 

environment gave doubt to the progression of this research course. It was 

therefore concluded that the investigation continue monitoring the preliminary 

case study and explore in a laboratory environment the effectiveness of the 

wood-block probes to changing conditions.
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IV.3   WoodBlock Probes

The ability to describe the risk posed to a construction, especially if the material

is susceptible to degradation, is clearly important and requires an effective 

monitoring system. The preliminary results chapter investigates, based on the 

findings of the literature review and the reasoning promoted by the 

methodology, wood-block probes as a cheap reliable form of monitoring device.

The Preliminary Case Study highlighted several inherent limitations and 

confounding variables that restricted the gathering of informative data, such as 

the limited control afforded over relative humidity and temperature. A series of 

laboratory experiments was therefore devised utilising an environmental 

chamber to assess the reaction of timber in the probes to a sudden change in 

environment. Previous literature (CMHC 2000, Goodhew et al. 2004, Carfrae et 

al. 2009b) assumed that timber has the ability to reflect the moisture content of

straw, but this was questioned by Lawrence et al. (2009a).

To build upon established research into wood-block probes the experiments 

were devised to verify Goodhew et al's. (2004) findings of a ±2MC accuracy, 

possibly a difference promoted by the differing dielectric properties inherent in 

different sections of timber (Forest Laboratory Products 1999), and the ability of

timber to provide an accurate measurement of straw moisture content.

IV.3.1-  Wood-Block Probes   Experiment 1

In exploring the functionality of the wood-block probes it was of importance 

(section III.3.3 p101) to know how the monitoring devices reacted to certain 

changes in conditions thus providing a level of confidence in the data being 

analysed. An empirical experiment was designed to investigate the effect of 

dramatic humidity change on the wood-block probes; achievable in an 

environmental chamber. There was no published literature at the time 
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concerning the effect however, Carfrae et al. (2009b) eluded to Ramin 

providing better response times than oak.

The experiment was to subject multiple wood-block probes to varying relative 

humidity's at a set temperature. The moisture content of the test samples were 

determined by gravimetric analysis and by use of a Protimeter Timbermaster 

resistance meter. The experiment's aim was to discover the effect of varying 

humidity on the wood-block probes readings but did not attempt to compare 

moisture content of the probes with straw moisture content at this stage of the 

study.

A number of the probes were manufactured to gain an understanding of how 

moisture interacts with the wood under sudden changes in humidity; nine 

individual probe tips, minus the bodies (Figure IV.1 p106), were used for a 

comparative study isolating any influence from the probe body and rods.

The tip's dry mass was obtained, as described in Section II.4.1 (p72), and then 

placed in an environmental chamber at a constant temperature of 23oC. The 

probe tips were subjected to a dramatic increase in humidity followed by 

several smaller sharp drops to simulate a dramatic changing environment. The 

relative humidity was set to 85% and held for one month, it was then adjusted 

to 80% until the moisture content readings had stabilised then reduced further 

to 70% for the remainder of the experiment. 

Each probe tip was removed individually from the environmental chamber and 

the mass was obtained followed by the resistance meter reading in which two 

metal conductance rods were firmly placed into the holes located at the butt 

end of the tip. It was assumed that based on the literature of Goodhew et al. 

(2004) and Carfrae et al. (2009b) the probe tips would all have demonstrated 

similar moisture contents of ±2 with respect to each other. This accuracy was to

be confirmed by analysing the nine probe tips and obtaining the statistical 
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analysis between each; if confirmed then the average of the moisture content 

would be taken and compared to the changes in humidity.

The limitation to the experiment was perceived to be in time restraints, as the 

confirmation of the wood-block probes response was to provide evidence to 

support the continued design method analysing multiple case studies. 

Therefore, if a null hypotheses were returned then the study would have 

undergone further expansion to encompass multiple case studies. The 

availability of multiple case studies would in turn provide a greater pool of 

results together with justification for further laboratory tests analysing the 

relationship between timber and straw; alternatively further laboratory 

experiments would have been required and the expansion of the case study 

portfolio would have had to be put on hold.

IV.3.1.1   WoodBlock Probes    Experiment 1  Results

Figure IV.9 compares the gravimetric analysis and resistance meter readings for

the wood block probe tips; days (x-axis) plotted against the moisture content 

results (left y-axis) and humidity of the chamber (right y-axis). The results are 

depicted as an average for the nine wood-block tips which demonstrated, as 

highlighted by Goodhew et al. (2004) and Carfrae et al. (2009b), an accuracy of

±1%MC (See Appendix A : Additional Data Figures X.1 p313 and X.2 p313). 

Figure IV.9 shows that the individual wood-block tips (minus probe bodies) took 

less than six days to stabilise from a 10% drop in humidity from 80%. It is also 

worth noting that a different degrees of pressure exerted on the contact rods 

produced differing readings, therefore to maintain a degree of consistency the 

exerted pressure was enough to bend the rods slightly thus confirming an 

adequate connection. In earlier experiments (not presented) it was found that 

the gravimetric analysis and resistance meter results could differ individually by

up to -3%MC with less force applied to the rods.
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Figure IV.9: Probe tip moisture content recorded by gravimetric analysis and
resistance meter

Although the results are based on averaged data for the nine wood-blocks and 

have not been repeated for confirmation, they indicate a lag effect inherent in 

the wood-block tip. Regarding the differences between the gravimetric analysis 

and resistance meter results; the gravimetric analysis read 2%MC higher than 

the resistance meter results at 80%RH, dropping to a similar result at 70%RH. 

The resistance meter relays a figure reflective of the path of least resistance, 

therefore as moisture is adsorbed and then absorbed into the wood-block from 

the external atmosphere a gradient of moisture content will develop, dependant

on the time taken to bring the core of the block to equilibrium, thus skewing the

mass measurement. After a change in humidity, the first few millimetres of the 

surface of the block will react to the external humidity at a faster rate than the 

core, thus the resistance meter measurement of the exposed surface may be 

considered as to be of greater accuracy. Further evaluation was therefore 

needed to assess the application of the wood-block probes. 

Page 117 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

IV.3.2-  Wood-Block Probes Experiment 2

Experiment 1, essentially a calibration exercise, confirmed that the wood-block 

probes fell within the ±2MC accuracy threshold however, the alternative 

hypothesis was accepted as a concern was raised by the probe tips response 

rate to dramatic changes in humidity. The concern with a slow response to rapid

changing conditions within a bale may promote the potential for the onset of 

degradation, whereas a rapid response warning may give interested parties 

sufficient time to assess the cause of a problem before it either escalates or 

causes damage. 

The first experiment focused on the wood-block tips and did not test the 

reaction of straw to the changes in humidity, therefore the aim of the second 

experiment was to compare the reaction to changes between readings for straw

and timber. The experimental design was devised to answer the following 

objectives:

1. Compare the response rate of straw, wood-block tips and fully 

assembled wood-block probes to a dramatic change in humidity. 

2. Determine if timber should be used to accurately reflect the moisture 

content of straw.

The design of the experiments focused on addressing the issue of response 

rate. It was hypothesised that the fully assembled wood-block probes may have

an inherent time lag issue. The concern was with the rate at which moisture can

pass from the external probe surface to the point of measurement in the probe 

tip (Figure IV.10), therefore applying a moisture gradient within the internal 

cellular structure of the timber. A moisture gradient may, under conditions that 

have not been equilibrated, provide errors in resistance meter and gravimetric 

analysis readings.
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Figure IV.10: Moisture passage through probe tip

The second experiment therefore undertook an empirical study based on 

previous observations and a predictive theoretical framework concerning 

moisture gradients. Straw samples (two bundles, measuring 200x120x80mm, 

bound with polypropylene string and placed in individual aluminium containers)

were placed in the environmental chamber together with four fully assembled 

probes, and the individual probe tips from Experiment 1. The straw, wood-block

probes and wood-block tips were spaced equally over the shelf in the centre of 

the chamber to ensure even exposure to the surrounding mechanically 

generated atmosphere. The straw had been stabilised in the laboratory 

environment at around 55%RH 23oC for three months beforehand. As there was

some uncertainty as to the effects on drying straw to 0%MC (Phanopoulos et al.

2000), the gravimetric analysis was conducted at the end of the experiment. 

Two of the wood-block probes were submerged in water prior to the experiment,

the remaining two were equilibrated to laboratory conditions (55%RH at 23oC); 

all were weighed in their entirety to obtain the gravimetric analysis reading. In 

detail the experiment was designed to observe the difference in moisture 

content readings of each of the materials and methods, and to demonstrate the

difference between adsorption and desorption rates. The experiment ran for 

one month at 75%RH and 23oC.

The approach of submerging the probes was to obtain a supersaturated regime 

from which to observe a recovery to a state of internal capillary condensation 
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(Figure II.2 p52), and similarly from a low starting moisture content. The 

experiment would then assess the time taken to reach the set relative humidity 

dictated to by the chamber. The straw bundle represented the control for the 

experiment thereby a measure by which to gauge respective response times 

and corresponding accuracies.

The full body probes were used as a comparative to the probe tips due in part 

to the concern raised regarding the potential for time lag promoted by the body

of the probe (Figure IV.10). Data was acquired by removing each individual 

experiment sample from the environmental chamber separately before 

obtaining the mass, and in the case of the timber materials the resistance 

meter measurement. Care was taken to minimise the amount of time each 

sample spent out of the chamber.

The limitations to the study are in the subjection of the samples to a constant 

unchanging environment that does not reflect the dynamic extremes 

experienced in the real world. However, the research remains valid as it 

removes confounding variables and satisfies the requirement of the aims and 

objectives that could only be achieved through prolonged exposure to a stable 

environment.

Further question raised by this experiment included the definition of what a 

reasonable response rate was and about a concern raised by the potential 

effect from the void space within the wood-block probes relating to additional 

buffering. 

The first hypothesis of the experiment to be tested was the response rate, if 

adequate in both the desorption and adsorption phases with respect to the 

straw sample, then the original aim of the thesis, to assess multiple case 

studies, would stand. The second criteria for acceptance of the original aim was

that the wood-block probes and the wood-block tips should accurately reflect 
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the straw moisture content to within ±2. The alternative to either of these 

failing would be to develop a new monitoring system maintaining all the 

advantages of the wood-block probes and removing any of the observed issues.

In relation to quantifying the risk associated with response rate this may 

depend on the potential for damage, the difference between the time taken for 

a straw bale to reach over 25%MC and the time for the monitor to reflect it with

the included complication of the bale temperature. The problem associated with

the potential time that it takes for a monitoring device to relate to the 

surrounding straw, in an ideal world this should be instantaneous, the delay of 

even a two days in the case of highly xerophilic mould spores coming to 

germination under relative humidities of 90% and 20oC (Figure II.8 p70) could 

signify the difference between large scale remedial action removing sections of 

a wall, or a less destructive option of fixing the cause.

IV.3.2.1   WoodBlock Probes Experiment 2  Results

Two straw bundles (the densities unconfirmed) were placed into the chamber to

equilibrate whilst Wood-Block Probes 1 and 3 were left to equilibrate under 

laboratory conditions (55%RH 23oC), Probes 4 and 5 were submerged in water 

(after equilibrating with Probes 1 and 3 for several weeks). The individual probe 

tips remained in the chamber at 85%RH 23oC. Probes 4 ,1 and 3 were placed 

into the chamber on day 72 however, Probe 5 was left to dry in the laboratory 

atmosphere for a further two days before being placed in the chamber to 

compare the rate of moisture loss with Probe 4. It was of interest to note the 

dimensional difference between the submerged timber and the laboratory 

dried, a difference of up to 20mm diameter adjustment.
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Figure IV.11: Comparison of woodblock probes, straw and probe tips

Figure IV.11 shows that the individual probe tips reflected the moisture content 

of the straw bundles to within ±1 and that Probes 4 and 5 dropped rapidly in 

moisture content from 70%MC (not shown) equilibrating to ±1 within five days. 

Probes 1 and 3 showed a far slower rate of change; after 1 month both return a 

gravimetric analysis of between 2-4%MC negative to the straw bundle moisture

content. The results continued to rise to within 2-3%MC, 1.5 months after the 

start of the experiment (not shown). The results are supported by the data 

presented by Carfrae et al's. (2010 pp.163) study investigating the walls of the 

case study (Figure IV.12).
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Figure IV.12: Results From Carfrae et al (2010)

The results from both Figures IV.11 and IV.12 suggested that there is a time lag 

inherent within the absorption phase of the wood-block probes (Figure IV.10). An

example of moisture gain, with respect to the physical reaction rate, within the 

probe tip and straw bundle can be seen earlier in the experiment, Figure IV.13 

shows straw bundles 1 and 2 increasing in moisture content within 12 days by 

around 10% from an equilibrated 20% and 17% respectfully. Although no data 

was recorded between days 30 to 40 the results indicate that oak probe tips 

gain moisture at a far slower rate than the straw. Probe tip 14 also exhibits a 

slower increase in moisture content compared to the averaged tips that have 

been dried in the oven suggesting, that the drier the core of the timber the 

greater the potential for absorption and therefore an increased response rate is 

noted.
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Figure IV.13: Effect of increasing moisture content

The results suggested that straw is more responsive to changes in external 

humidity due to it's structure, greater surface area and proportionally less core 

material, than timber block, in effect reducing the time to equilibrate. By day 

48, 19 days after the experiment started, the chamber was set to 85%RH, the 

wood-block tips continue to equilibrate (results not shown), suggesting that the 

type of wood and size of tip may inhibit results. In reference to the sorption 

isotherm studies (Figure II.5 p60), 85%RH equates to around 25%MC.

In monitoring a construction for moisture content the rate at which the 

monitoring system reacts could be of great importance in notifying interested 

parties of any potential problems. Figure V.18 shows the rate at which the probe

tips and straw bundles reacted to a decrease in humidity from 85% to 80% 

demonstrating the mass gained or lost in %MC per day (left y-axis). The results 

show that straw bundles lost moisture at twice the rate of the tips and that after

the initial desorption phase, the moisture content loss rate (right y-axis) settled 

to show the same results. 
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Figure IV.14: Transfer of mass

The comparative analysis shows that wood-block probes and individual tips 

react quickly during desorption, demonstrated by Figure IV.11, however, this 

rate is not reflected in the adsorption/absorption phase, arguably the more 

significant of the two phases when relating to moisture monitoring; probes 1 

and 3 (Figure IV.11) and tip 14 (Figure IV.13) show evidence of this.

The results in Experiment 2 cast doubt on the validity of using the wood-block 

probes to reflect the risk posed to the straw, not for accuracy as demonstrated 

by other authors and within this thesis, but the rate at which the probe can 

adjust to it's surroundings. After this investigation was conducted Carfrae et al 

(2010) published a paper suggesting that a reduction in the time lag may be 

attained by using Ramin as the timber of choice; the influence of the void space

within the assembled probe however, remains an unconfirmed potential for 

error.
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IV.4   Summary

In conclusion a monitoring device should accurately reflect the surrounding 

environment instantaneously, the results obtained by this study cast doubt on 

the use of oak tipped wood-block probes as a viable method of monitoring. The 

response and accuracy of the wood-block probes in the desorption phase poses 

no cause for concern, yet it is advised that an additional 4% moisture content 

be added to results obtained by the wood-block probes in the adsorption phase.

A model could potentially be used to compensate for a change in the moisture 

content of wood-block probes in the adsorption phase to predict the rate of 

straw moisture content increase; an area marked for future study together with 

the investigation of probe tip size reduction.

The associated risk with wood-block probes concerned not only the response 

rate relating to the adsorption phase, but also in the restriction to one 

monitoring point within a bale. The concern with monitoring one location in the 

width of a bale could only be appeased by introducing multiple probes at 

different depths in the same area of measurement; a point eluded to by 

Lawrence (2009a). Based on the results obtained during this experiment the  

first hypothesis was rejected and the alternative, to design a new monitoring 

device, was established. The results also dismissed the ability to confidently 

proceed with the research objective of assessing and comparing multiple case 

studies. The lack of certainty concerning the response rate of the wood-block 

probes together with the uncertainty of relevant and useful results being 

established during the study signified a change in the research procedure.
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Chapter V    Preliminary Investigation – Part
II
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V.1   Introduction

The results from the Preliminary Investigation (Part I) signified a change in 

research procedure, altering the original methodological approach to resolve 

the specified aims, objectives (section I.1 p11) and gaps in knowledge (section

II.7 p84).

The concern with the wood-block probe's rate of response to changing moisture

conditions, Experiment 2 (Section IV.3.2.1 p121), is restricted to the absorption 

phase which in the monitoring of a construction is the phase of most 

importance to interested parties. A sudden and unexpected rise in moisture 

content requires an immediate notification. This was noted by Carfrae et al. 

(2009b) who changed the type of timber to Ramin confirming increased 

response times however, this information was not acquired until after the 

experiments were completed.

Preliminary Investigation (Part II) began by investigating two new monitoring 

device concepts, one utilising the dimensional adjustments in timber, the 

second removing the use of alien materials and utilising straw as the 

measurement medium.
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V.2   Timber Dimensional Adjustment

An observation made whilst conducting Experiment 2 (section IV.3.2.1 p121) 

lead to the design of a new monitoring device, the physical difference between 

the swollen submerged probe tip diameter and the shrunken air dried probe tip.

V.2.1-  Timber Dimensional Adjustment – Method

The experiment aim therefore targeted the dimensional adjustment, as a result 

of the moisture content, to develop a new monitoring device under the 

following objectives:

1. Determine how stable the relationship between the dimensions of a 

probe tip are compared to the moisture content. 

2. Investigate the relationship between the dimensional adjustment and the

straw moisture content. 

3. Assess the potential validity of using such a device in field trials.

Figure V.1: Wood Block Tip dimensions

The preliminary investigation recorded the dimensions of three of the wood-

blocks as they were subjected to changing relative humidities. A digital 

micrometer recorded the variations in diameter of the tips (Figure V.1); it 

transpired that the measurement along the grain, opposed to across it, gave a 

higher degree of accuracy and was therefore chosen to demonstrate the data. 

Two of the tips were exposed to changing environments within the 
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environmental chamber, the third tip was extracted from the chamber and 

exposed to the air, prior to being oven dried until the mass remained constant, 

and returned to laboratory room conditions; the chamber and laboratory were 

maintained at stable 23oC and the oven 105oC. Care was taken to measure the 

diameter in the same position every time (Figure V.1) and the mass and 

resistance meter measurements were obtained also.

If the diameter of the probe tip reflected both the straw and the timber 

moisture content then a null hypothesis would be accepted leading to further 

development of the monitoring device. The development of this method would 

include the fabrication of oak discs, thin enough to reduce the effect of the 

time-lag and increase response times, a conclusion drawn from the wood-block 

probe experiments (section IV.3.2.1 p121). The alternative hypothesis would 

require the development of a different monitoring method.
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V.2.2-  Timber Dimensional Adjustment - Results

Figure V.2 shows the moisture content (y-axis) plotted against measured 

diameters of the wood-block tips (x-axis) comparing the dimensional change of 

the timber. 

Figure V.2: Measuring dimension of probe tip against moisture content

The investigation conducted on probe tips 2, 3 and 20 show a stable correlation

between diameter of the tip and the moisture content. Lines of best fit were 

applied to the data to illustrate the potential for a model based on the results. 

Probe tip 2 showed an error of 3.4% (rms 0.362) whilst Probe tip 3 showed an 

error of 2.9% (rms 0.298); both probes were subject to a change in relative 

humidity from 85% through 80% to 75%. The results obtained from the results 

of probe tip 20, maintained at laboratory conditions then oven dried over a two 

day period before being returned to the laboratory, indicated the effect of 

hysteresis (Figures II.1 p48 and II.4 p59).
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The hysteresis effect indicates the importance of knowing which phase the 

results are displayed under; a diameter of 22.1mm could imply an moisture 

content (Risk) of either 19.5% (Low Risk – Figure III.3 p100) or 21.5% (Medium 

Risk) dependant on the desorption and adsorption phases respectfully. In 

conclusion the dimensional stability reflected the moisture content of the 

timber under a stable temperature; the effect of varying temperature however 

was not assessed.

The following stage, in order to develop this monitoring method further, was to 

consider the method of application. A wood block would have to be in contact 

with the straw and allow for the relaying of information regarding the change in 

dimension. Applying a strain gauge to a 2mm thick wood disc would provide 

this ability and ensure a reduction in the time lag however, this does not bridge 

the disadvantages observed with the relative humidity sensors, the 

requirement of expensive data logging software and the potential loss of sensor

connection, or that it remains as a single point analytical technique. 

Subsequent research was halted in favour of the compressed straw probes 

which are able to transcend these issues.
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V.3   Compressed Straw Probe

Although the initial trial of the dimensional adjustment in timber relating to 

moisture content (section V.2 p129) was successful, further development, not 

documented here within, found that the method of measurement was 

impractical unless a strain gauge was attached to the timber disc inflating the 

cost of the monitoring device with the additional requirement for data-logging 

equipment. There was also concern over the effect of temperature on the 

results which was not researched.

V.3.1-  Compressed Straw Probe - Method

By using straw as the measurement medium the assumption of timber 

reflecting the moisture content of straw could be eliminated together with other

cellulosic materials. A similar method had already been suggested by the 

CMHC, but is criticised by Lawrence et al. (2009b) as being cumbersome with 

limited usability in a building due to the visual invasiveness and the possibility 

of compromising the integrity of the wall. However, the literature review failed 

to unearth any further mention of this method and therefore the avenue was 

investigated.

The development of a compressed straw probe was therefore investigated in a 

laboratory environment empirically, comparing the results to the wood-block 

probes and straw sample as described in Experiment 2 (Section IV.3.2.1 p121). 

The aim of the compressed straw probe was to provide a cheap, robust, easy to

use and install, reliable and accurate way to assess the moisture content of a 

bale. The objective was therefore to determine if the compressed straw probe 

would be an effective tool in evaluating the risk posed to a straw bale 

construction from moisture.
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The first prototype compressed straw probe unit, carefully packed with 4.1g of 

straw (dry weight), consisted of a hydrophobic plastic cylinder with 1mm 

diameter holes drilled at 5mm spacings beginning 50mm from the top of the 

cylinder, and an interference fit cap; also hydrophobic. Two 1.5mm welding rods

were inserted into the straw down opposite sides of the cylinder (Figure V.3) 

3mm in from the edge and to within 10mm of the cylinders base (also drilled 

with holes). Lengths of straw stem, air dried at 50%RH 23oC, were selected to 

be inserted into the probe if certain criteria were met: stems were longer than 

the cylinder, contained no breaks, and were stripped of leaves. The stems 

would then be slid into the cylinder manually until tightly packed. 

The compressed straw probe, it was reasoned, would be able to provide a 

complete overview of a section of straw wall with the ability to check results 

based both on mass and resistance meter readings; enforced by the ability to 

remove the probe from the wall and visually inspect the straw for signs of 

damage.

Figure V.3: Compressed straw probe Prototype 01
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The probe was to be placed in the environmental chamber together with the 

wood-block probes as per Experiment 1 (section IV.3.1 p114), reducing the 

chamber from 85%RH through 80% to 70%. The probe would then be extracted

to obtain a mass measurement, the entirety of probe, along with a resistance 

meter reading using the conductance rods, the dry mass of the straw in the 

probe was established at the end of the experiment. One limitation to the 

experiment was in the distribution and size of the holes drilled into the cylinder 

thus creating a perforated container.

If the compressed straw probe accurately reflected the moisture content of the 

straw sample in the environmental chamber together with an adequate 

response rate further investigative studies could be suggested however, the 

direction of the thesis had now been altered, from a comparative study of 

multiple case studies due in part to the uncertainty of the accuracy of available 

cheap monitoring devices. The problem had therefore evolved to require an 

explanation and understanding of how each individual monitoring system works

and how the data should be interpreted.
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V.3.2-  Compressed Straw Probe - Results

Figure V.4 demonstrates the findings of an 11 week study conducted in the 

environmental chamber at 23oC, the days shown in weekly cycles (x-axis) 

against dry moisture content (y-axis), the results are displayed together with 

WBP1 and Straw Bundle 1.

Figure V.4: Compressed straw probe Prototype 01 trial

The compressed straw probe is capable of providing two types of reading: the 

measurable changes in mass (gravimetric analysis section II.4.1 p72) and the 

meter reading (resistance meter section II.4.3 p73). The compressed straw 

probe results by mass in Figure V.4 showed that the moisture level had not 

increased to the level expected taking over 20 days to gain 5%MC. This result 

cast doubt on the initial viability of the monitoring device, yet could be 

explained by the limitation of perforation hole size and distribution.

Other possible explanations to the reduced rate of moisture uptake included the

dead space at the top of the cylinder, straw at the top of the cylinder does not 
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have direct access (Figure V.3) to gain moisture directly as the perforations do 

not continue for the length, the moisture must enter the cylinder lower down 

and be transferred up which may reduce the efficiency of the process. Another 

alternative explanation was in the straw sample containing moisture that was 

locked into the structure of the straw whereas, the probe freshly introduced to 

the atmosphere of 85%RH from laboratory conditions reflects the initial and 

rapid deployment of moisture on the surface of the straw, hence the 

compressed straw probe-meter results, with a lag effect as the internal 

structure of the straw remains comparatively unaffected. 

If the xylem are still active then this will determine the rate of osmosis and 

cohesive tendencies (Section I.3.1 p28) within the structure and thereby the 

rate at which moisture may be adsorbed into the plant tissue. It may also be 

feasible that the straw in the probe is slightly more protected from unstable 

humidities and air movement generated by the chamber, and exposure when 

removed from the chamber for measurement.

One observation in response rate was noted on day 91, an increase in moisture 

content of the Straw Bundle which is replicated immediately by the compressed

straw probe, both by gravimetric analysis and resistance meter, the wood-block

probes however does not respond to this increase for a further two days. The 

initial results demonstrated that the compressed straw probe had the potential 

to be an effective monitoring system conforming to the aims laid out in section

V.3.1 (p133) concerning the requirement for a cheap, robust, easy to use and 

install, reliable and accurate monitoring device. 

Subsequently an investigation was designed to assess the validity of this 

monitoring method more rigorously; focussing on response rate, accuracy, 

implications of straw density, differences between the gravimetric analysis and 
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resistance meter measurements, adaptation of analytical methods and 

ultimately the ease of use and comparison with other methods.

The removal of evaluative and comparative multiple case studies from the 

research program combined with the unresolved issue concerning wood-block 

probes and development of the compressed straw probe highlighted a potential

gap in the research study; the detailed and rigorous testing of a dynamic 

environment. In order to address this concern a test rig was designed and 

constructed.
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V.4   Test Rig

The construction of a Test Rig was commissioned in the summer of 2010 was to

represent a worst case scenario, built entirely by unskilled labour with limited 

construction experience, it was to be unheated, inadequately insulated and 

suffer from a lack of maintenance. 

V.4.1-  Test Rig - Method

The importance of the Test Rig (Figures V.5 to V.10) was: in the unimpeded 

access to the data stream, the ability to perform destructive testing if 

necessary, and to allow the risk of degradation to develop within the walls into 

advanced stages without compromising occupant health or safety. The rig 

provided a platform on which to test multiple experiments and monitoring of 

devices in a dynamic environment.

Page 139 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

Figure V.5: Location of rig construction Figure V.6: Car tyre foundations,
flooring, with 3 half bale loaded Blocks 

Figure V.7: Erection of Blocks (note bales
are place vertically)

Figure V.8 Application of second layer of
render

Figure V.9: Rig construction finished
view from NW 

Figure V.10: Rig construction finished
view from East

The research conducted on the test rig involved empirical investigations, 

comparing and contrasting findings as part of an exploratory study of 

observation and experimentation. The overall aim of the Preliminary Study into 

the Test Rig investigation was to establish the benefits and disadvantages of 
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using the Protimeter Balemaster as a reliable monitoring method and to assess 

the use of the proposed Risk Assessment Method (Figure III.3 p100) in a real 

world environment.

The Rig (Figure V.11) consists of twelve modular straw blocks, seven on the 

lower level and five on the upper, two window blocks and one door (Figure

V.12). Constructed from OSB3 (Oriented Strand Board) each modular block 

comprises of three ½ bales (1100x330x225mm) laid vertically and compressed 

into place. The module blocks were light enough for two people to carry into 

position and could therefore be constructed and stored off-site whilst being 

protected from the elements and consequently minimising on-site construction 

time.
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Figure V.11: Schematic of Test Rig
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Figure V.12: Test Rig block diagram

The Modular-Blocks were labelled clockwise from the door '1' to '7' (Figure V.12),

with the addition of 'B' to represent the lower blocks or 'T' the upper blocks. The

monitoring point for the insertion of the Balemaster with probe, to a depth of 

112 mm (half the wall thickness) totalling 108 positions in all, are shown in 

Figure V.14 as viewed from the interior of the rig. From this it is possible to 

describe via notation the location of each monitoring position; B5.3 would be 

the lower level straw block opposite the door and would represent the top right 

monitoring position at the top of the third bale in the block as viewed from the 

interior of the rig.

The rig was mounted on rammed earth car tires, the OSB3 floor was thereby 

raised 250mm from ground level onto which the individual blocks could be 

placed followed by a single skin roof, overhanging each side by 500mm, with an

underlay of breathable polypropylene membrane and coated with a protective 

rubber solution. The offcuts of OSB3 board were then used to create a sacrificial

skirt that ran around the bottom of the rig, masking the car tires and protecting 

the underneath of the rig from splash-back (Figures V.5 to V.10). The rig was not
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designed to be air tight and therefore has major air leakage paths due to the ill 

fitting windows and door. The east facing window consisting of two sections of 

transparent plastic sheeting, the west a shutter made from OSB3, and the door 

(incorrectly hung) was fabricated from single skin pine slats. The door, floor and

roof remained uninsulated for the entirety of the investigation.

Figure V.13: Model of Test Rig location

The Test Rig (Figure V.13) was constructed in the garden of a house near 

Grantham, Lincolnshire, exposed to the north, shadowed by a large farm 

building four meters to the east, a three meter high hedge to the south (two 

meters away), and within the proximity of an aged apple tree located in a 

sheltered section of garden to the west. The east façade of the rig butts up to a 

concrete path, the other walls are surrounded by vegetation.

The Test Rig would be subject to confounding variables: the atmosphere, 

weather patterns, seasonal variations that would have an uncontrollable effect 

on the experiment. The design of the rig assumed that the reduction in 

thickness of the bale, to half thickness (225mm), would have little impact on 
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the passage of moisture or temperature through the bale compared to a full 

width bale and was reasoned that a a faster reacting dynamic situation would 

be promoted; the reduction in thickness was necessary due to space 

constraints. 

The monitoring of the rig was initiated on completion of the structure, the 

rendering was undertaken over the following month incorporating two external 

applications of lime render and one internal application leaving the nine 

monitoring points (Figure V.12) in each of the Modular-Blocks without render 

and therefore accessible from the interior of the rig with the Balemaster probe 

(Figure V.14). 

Figure V.14: Monitoring of Moduleblock with Balemaster showing holes to interior
side of render

The data obtained from the Balemaster with probe was to be presented 

graphically, taking advantage of the suggested Risk Assessment Method (Figure

III.3 p100) to display a meaningful visual account of the preliminary study. The 

results would also be analysed statistically using standard deviation plotted 

against moisture content thus describing the historical progression of moisture 

throughout the walls.
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The Balemaster with probe was used during the entirety of the preliminary 

study phase of the test rig as it provided the most convenient way to record 

data directly from the straw, obtaining an instantaneous assessment at multiple

positions throughout the rig without the need to install 108 individual 

monitoring devices. Another assumption made at the beginning of the study 

was that nine measuring positions in each Block (Figure V.12) would provide 

enough data about each bale without impacting on time management and the 

generation of similar data from monitoring positions located close to each 

other, or a lack of relating data if the proximity was too distant. 

The experiment plan was to assess the straw with as little disturbance, and with

as fewer alternative materials and devices as possible. The use of the 

Balemaster with probe created an inherent confounding variable; the straw was

exposed to the internal atmosphere of the Test Rig at the point of measurement

to allow for the insertion of the probe (Figures V.15 and V.16). It was assumed 

that the influence of this exposure would be negligible due to the protection 

from the external atmosphere; namely wind driven rain.

Figure V.15: Holes marked for insertion
of Balemaster probe from rig interior.

Figure V.16: Hole for insertion of BM
probe.

A weather station was also erected to provide additional analytical benefits 

allowing the direct comparison of atmospheric conditions, both internal and 

external, and the resulting moisture content of the straw. In addition to the 
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empirical weather data study, a theoretical and explanatory investigation was 

carried out in order to assess the maximum amount of direct sunlight affecting 

each of the blocks. A scale model of the rig and surrounding area was 

fabricated and placed on a heliodome table (Figure V.13). From this it was 

possible to measure the maximum amount of time direct sunlight came into 

contact with each individual Block throughout the year corresponding with the 

approximate time. This would in turn provide a comparative assessment 

method to describing observations and results. The weather station was placed 

to the north of the rig (Figure V.13) in an unsheltered area and was set to log 

readings every 30 minutes ensuring an adequate amount of data was collected 

compared to the capacity for data storage; moisture content results were taken 

weekly based on the assumption that, barring dramatic failure, moisture would 

not be transferred through the bale at a fast enough rate to justify additional 

monitoring (Goodhew et al., 2004).

The construction of the rig provided the ability to perform extensive testing in a

dynamic environment. The overall assessment of the Balemaster with probe, 

weather station and Heliodome survey provided direction and instruction as to 

how to progress the thesis. The Heliodome table was set to 53o Latitude and the

amount of sunlight on each module block was noted at every hour for every 

month of the year.

V.4.2-  Test Rig - Results

The Test Rig was constructed to address the gap in limitations of both the 

laboratory experiments and the monitoring site. The aim of the preliminary 

investigation into the Test Rig was to assess the 'Risk' posed to the straw from 

moisture, using a weather station and Balemaster with Balemaster probe 

attachment.
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V.4.2.1   Risk Posed to T4 & B4

Figures V.18 and V.19 show the history of Blocks T4 and B4 respectfully(Figure

V.12 p143 for relative positions), plotted as contour graphs and showing the 

combined analysis of the three vertical bales within each module-block. Figure

V.17 describes how to use the contour plots; once the monitoring position has 

been selected from the Modular-Block (i.e. position 4) the results can be 

analysed by looking at the y-axis (Step 1). The results extent from the y-axis 

along the x-axis (elapsed time period) under Step 2, Step 3 (z-axis) then 

provides the application of the Risk Assessment Method (Figure III.3 p100). The 

application of the render is shown by Step 4 as a vertical drop down line, and 

Step 5 details the day a reading was taken.

Figure V.17: How to read the contour plot
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Figure V.18: Test Rig Block T4 moisture content

Figure V.19: Test Rig Block B4 moisture content

The first vertical bale section (positions 1,4,7) in Block B4 (Figure V.19) shows a 

progression from 'No Risk' to 'Medium Risk' suggesting that closer observation 

may be needed regarding the risk posed to the straw. The second (2,5,8) and 
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third sections (3,6,9) also indicate a level of concern, yet positions 5 and 6 show

spikes into levels considered 'High Risk'. The results have been interpolated, 

therefore a spike in the data stream is often overemphasised as demonstrated 

by positions 5 and 6 between day 35 and 38. The dangerous spike is somewhat 

misleading and is due to contamination of the probe tip from the wet render 

applied 14 days previously. A comparison between the other blocks can be 

made from the data shown in Chapter X- Figures X.4 to X.15, displayed in the 

same format, demonstrating  other errors in records caused by wet render in 

contact with the Balemaster probe.

Comparing the Upper Blocks to the Lower, B4 (Figure V.19) and T4 (Figure V.18),

B2 (Figure X.6 p316) and T2 (Figure X.7), and B3 (Figure X.8) and T3 (Figure X.9)

all exhibited higher moisture content's in the Lower blocks than the Upper. B6 

(Figure X.12) and T6 (Figure X.13), and B7 (Figure X.14) and T7 (Figure X.15) 

remained however at similar moisture levels. At this stage there was little 

conclusive evidence to indicate any conclusion other than to suggest that the 

application of the render did not appear to have any immediate effect on the 

moisture content of the straw. It remains unclear however why position B4.7, on

day 14 shows at 'High Risk' elevated and can only be explained by an error in 

data acquisition.

In conjunction with the Contour graphs, which offer a general overview of the 

data, comparative bar charts, Figures V.20 and V.21, show the risk posed to all 

the blocks grouped into the Risk Assessment Method (Figure III.3 p100) and 

separated into Upper and Lower Blocks. The contour plots were produced to 

provide greater clarity in reviewing all blocks simultaneously; plotting the 

number of occurrences of the moisture content ranges on the y-axis against the

days the readings were taken (x-axis).
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Figure V.20: Health of the Upper Blocks

Figure V.21: Health of the Lower Blocks

Both graphs show an increase in 'Risk' of the straw over the 45 day time period;

the Upper Block (Figure  V.20) results indicate that after 32 days no results are 

recorded below 15% moisture content, yet there is a significant rise in the 
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number of cases of results at 'Medium Risk' from 4 to 19 occurrences. No 

readings are made below 15% moisture in the straw of the Lower Blocks (Figure

V.21) after 21 days, the majority of results descending into the allocation of 

'Medium Risk'. On day 22 there was some data loss hence the drop in the 

number of occurrences.

The main observation made when analysing the results was a difference in the 

starting moisture contents of each bale and in some cases of the moisture 

content between each position within the same bale. It had previously been 

assumed that each of the bales used would have had very similar moisture 

contents, having been stored in the same dry environment for several months. 

The analysis of the starting moisture content's on Day 0 for the Upper Blocks 

produced an arithmetic mean of 16.2%MC with standard deviation of 2.838, a 

maximum reading of 23.9 and a minimum of 12.5. The incorrect assumption 

regarding the equality of starting moisture contents of the bales lead to a 

questions of accuracy, and of cause and effect. It was hypothesised that the 

variations were due to confounding variables, for example: temperature, 

density and naturally different starting moisture contents highlighting a further 

gap in knowledge requiring further in depth investigations.
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V.4.2.2   Further Investigations of Risk

In analysing the statistical results for the preliminary study of the Test Rig 

Figures V.22 and V.23 were produced to show the standard deviation for the 

data obtained from the mean moisture content (y-axis) plotted against the 

individual readings of moisture content (x-axis) presented for each day the 

readings were taken. This provides a detailed visualisation of the statistics for 

the data stream; when a comparison between V.22 (the Upper Blocks) and V.23 

(the Lower) is made the results illustrate the differences in progression of the 

moisture content. Designed to show the mean moisture content (standard 

deviation of zero), maximum and minimums and the moisture content at each 

standard deviation and concentration of data, the graphs also demonstrate the 

increase in moisture content of the straw over the 45 day period, and any 

outliers that may have affected the results.

Figure V.22 shows that on Day 0 the mean moisture content was 13.8% with a 

range of 5% (minimum of 11%) and a standard deviation of ±1.8 ignoring one 

outlier. Conversely Day 45 shows a mean of 19.2%, range of 7.8% (minimum of 

15.2%) and a deviation of ±1.9 ignoring two outliers. It shows that there was 

little moisture gained between the 12th and 21st, the 26th and 32nd, and the 37th 

and 45th. This suggests that the first application of external render may have 

had an effect on the moisture content of the straw, with a less noticeable effect

after the second application. The application of the internal render after day 21 

also provides evidence of an effect, raising the moisture level of the interstitial 

bale.
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Figure V.22: Statistical analysis of Upper Blocks

Figure V.23: Statistical analysis of Lower Blocks
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The range of moisture content of the straw increases over a 45 day period 

together with a disparity in the maximum and minimum readings, the 

difference between Days 0 and 45 for the minimum moisture content's is 4% 

opposed to the maximum readings of around 7%, this suggests that the 

moisture contents were not stabilising and an equilibrium moisture content was

not being obtained. This has highlighted the need for more detailed analysis to 

be conducted as the difference in the readings at the start of the study was 

11% between the maximum and minimum values compared to 19.2% after 45 

days. 

The results shown by Figure V.23 suggest the emergence of a different pattern; 

the disparity appears to be at the minimum end of the moisture content range 

a difference of around 5.4% opposed to 1.6% difference in the maximum 

moisture content. This suggests that around 16% (±1 s.d = 68% of distribution) 

of readings changed little in moisture content over the 45 day period.

The majority of the results are documented as reading below 25%MC. An 

important observation is that on Day 0 the readings obtained above 22% are 

exhibited by different bales; this suggested that another variable was affecting 

the results as the moisture content of each individual bale was expected to be 

the same at the beginning of the data acquisition.

The only rainfall in this 45 day period was from the north and west on light 

winds of less than 5m/s; totalling 13ml. Therefore, the rain during this period 

was deemed unlikely to have had a significant affect on the overall increase in 

moisture content of the bales, leaving humidity, temperature and the drying 

render as the possible causes. As the render cures it will absorb CO2 and expel 

water which will raise the moisture content of the straw; the changes in 

gradient and moisture content of the results on day 22 and 37 can be explained

by contamination of the Balemaster probe by the recently applied render.
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V.4.2.3   Environmental Factors

The analysis of temperature and relative humidity in Figure V.24 provides a 

greater degree of explanation when assessing the Risk posed to the straw. 

Upon initial examination the moisture content appears unaffected by 

temperature however, the literature (GESensing 2006) states that a 

thermocouple be used to provide a more accurate assessment; a drop of 5oC 

could equate to a reading 1%MC greater than the displayed moisture content 

(Equation II.5 p73).

Figure V.24: Temperature affecting bale moisture content

Adjustments of the results for the external temperature (t) can be seen in Figure

V.24, the mean lower block reading on the 32nd day potentially reading 1.6% 

lower than stated (equivalent to 20.2%MC) whereas the reading on the 37th 

read 0.8% lower, equating to a potential result of 22.1%MC. The use of the 

external temperature to modify the raw data leads to the generation of another 

error; the temperature of the bale in the centre will be different to the external 

temperature. The internal bale temperature was not available to this set of data
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and therefore it was suggested that future measuring techniques be adjusted to

incorporate this.

Factoring temperatures into the results would produce the results as illustrated 

for the moisture content against relative humidity in Figure V.25. The adjusted 

results show that the moisture content rises at a rapid rate stabilising within the

estimates of Lawrence's equation; a relative humidity between 80% and 85% 

equating to an moisture content of between 19% and 22.5%. The application of 

the internal render may produce an effect apparent in the results, post 20 days,

as the straw is sealed from both sides and the moisture content of the straw is 

raised.

Figure V.25: Relative humidity affecting bale moisture content

The use of external temperature to produce the corrected moisture content is 

an estimate of the real bale temperature, and has been used to demonstrate 

the effect of the correction. The temperature of the bale was not obtained 

during this stage of the study and is likely to be cooler than the external 

temperatures used when obtained in the morning. The temperature and 

relative humidity used in Figure V.25 is the average over a 24 hour period, but 
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the maximum and minimum data is included to demonstrate the extremes 

reached within the time-frame.

V.4.2.4   Sunlight Factor

The study of direct sunlight on the render was also of interest to the study, yet 

was not measured in real time, but obtained by measuring the path of the sun 

projected onto a scale model by a Heliodome (Figure V.13 p144). Table V.1 

shows the maximum amount of direct sunlight affecting the render over a year 

detailing the range of times at which each module-block is exposed. Module-

block's 6 and 7 have two phases of direct sunlight, early morning and late 

evening.

Table V.1: Average amount of sunlight per moduleblock per year

Module
Block

Average hrs/yr
sunlight

Phase 1 Phase 2

B1 27 07:00 11:00 - -
B2 34 08:00 16:00 - -
B3 33 08:00 16:00 - -
B4 32 12:00 19:00 - -
B5 36 13:00 19:00 - -
B6 7 06:00 07:00 17:00 19:00
B7 7 06:00 07:00 17:00 19:00
T2 33 08:00 16:00 - -
T3 26 08:00 16:00 - -
T4 29 14:00 19:00 - -
T6 10 06:00 07:00 17:00 19:00
T7 8 06:00 06:00 18:00 19:00

The study demonstrates how much effect the direct sunlight could potentially 

have on the construction in one year, naturally a share of these hours may be 

under cloud cover and the intensity of the sunlight will be different at midday 

than for the first few or last hours of the day. In conclusion the North facing 

module-blocks 6 and 7 will have not only a reduced amount of direct sunlight 

but the solar gain will also be at a lower intensity. 
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V.4.3   Block B5

During construction of the Test Rig it was discovered that one of the half bales 

had experienced elevated moisture levels whilst in storage, although there was 

no apparent degradation visible to the surface of the straw a decision was 

made to investigate the effect of retaining the bale in the construction. Advice 

given by literature and general practice is to disregard any bales of elevated 

moisture levels. The elevated bale was located in the first vertical position of 

Block B5 (positions 1, 4 and 7; Figure V.12 p143).

V.4.3.1-  Block B5 - Method

It was hypothesised that the inclusion of a bale with a high starting moisture 

content would create an area of weakness in the building, and potentially an 

area for degradation to begin forcing a critical failure within the construction. It 

was of interest to the study how this inclusion would affect other bales 

contained within the same block, addressing another important issue 

concerning the spread and effect of primary mould cultures leading to further 

colonisation.

The method of data collection was not altered from the method described in 

Section V.4.1 (p139) however, it was assumed that the straw would maintain a 

high level of moisture increasing the risk to degradation post the application of 

the render relative to the other bales in the test rig. The inability to inspect the 

straw visually was a limitation to the experiment, the method was therefore 

reliant on moisture content and temperature analysis to evaluate any signs of 

microbial activity.

V.4.3.2   Block B5  Results

Figure V.26 shows the results obtained from Block B5 positions 1, 4 and 7, 

demonstrating levels of moisture considered at 'High Risk' that could not be 
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attributed to render contamination of the Balemaster, with probe attachment, 

as observed in Section V.4.2.2 (p153), and may have seen elevated 

temperatures above 10oC for extended periods of time. The effect of the Risk 

Assessment System (Figure III.3 p100) is demonstrated by the contour plot, 

Figure V.26, indicating that a problem exists and that further analysis and 

possible rectification was required.

Figure V.26: Block B5

Positions 4 and 7 (Figure V.26) exhibit higher readings throughout the study 

however, the distinction between the exact levels of moisture is unclear from 

the contour plot; the difference between the results from Day 34 of Position 2 

cannot be distinguished from a moisture content reading of either 24.9% or 

20.1%. Figure V.27 shows a detailed breakdown of Positions 2, 4 and 7 

illustrating the differences and the limitations of the contour plot. It illustrates 

also the High Risk moisture levels recorded during the study at days 12 and 37.
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Figure V.27:  Detailed analysis of Block B5

The recorded mean air temperature was of concern during the monitoring of 

the Block reaching above 10oC at moisture levels in excess of 25% however, 

after the 45 day study a compressed straw probe was prepared for insertion 

into Position B5.7 thereby providing a medium on which degradation could 

potentially spread and be observed. In order to insert the compressed straw 

probe a hole was drilled into the wall and the extracted straw was collected and

inspected for signs of decay. The extracted straw had no smell synonymous 

with the decay of straw and provided no visual sign of mould or rot.

In conclusion the study suggested that the inclusion of a bale of high starting 

moisture content did not provide an observable area of weakness however, it 

maintained a level of high moisture in comparison to the other monitoring 

points and therefore qualified for further investigation utilising the compressed 

straw probe as an alternative to demolition of the wall section. 
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V.4.4   Test Rig Summary

The combination of the Risk Assessment System (Figure III.3 p100) and contour 

plot demonstrate a quick reference and highly visual guide to viewing the data. 

Although the plots do not demonstrate intricate data for each measurement 

point, the plots do highlight potential problems which may be analysed in 

greater detail at a later date (Figure V.27).

The use of the Balemaster represents a quick method of obtaining a moisture 

content reading from the straw, but disadvantages include: temperature 

calibration, effect of straw density, and the requirement to leave a gap in the 

render for insertion of the probe. The observations made during the overall 

initial study have demonstrated that further research is required concerning 

other variables including density of the straw at the point of measurement, and 

the effect of using a straw bale with a raised moisture level placed inside a 

construction’s walling system.

Page 162 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

V.5   Test Rig Resistance    Meter    study

The documentation provided with the Timbermaster resistance meter suggests 

a compensation factor for temperature (Equation II.5 p73) however, an 

experiment was performed on the test rig to verify the capability of the 

equation for the Balemaster and Timbermaster both with and without 

thermocouple measurements.

V.5.1-  Test Rig R  esistance Meter   study: Method

Equation II.5 was developed for timber therefore, the accuracy of the equation 

required confirmation when applied to straw. An empirical study was conducted 

in the Test Rig; the interstitial bale readings were taken (Figure V.28) from 

position five within each Modular-Block, a temperature reading was obtained 

from the point of measurement by use of the digital thermometer, and the 

resistance meter thermocouple was inserted into the wall; it is important to 

note however, that it is restricted to a depth of around 50mm and was therefore

unable to acquire the temperature at the point of measurement. The diagram 

(Figure V.28) also shows the position of a relative humidity sensor which was 

utilised in later experiments.

One hour prior to the commencement of the study the Balemaster probe was 

inserted into the wall starting at position B1.5; this was done to ensure 

equilibration with the internal bale temperature. The Timbermaster was 

connected to the probe and a moisture content measurement recorded, the 

thermocouple was then plugged into the Timbermaster and the reading noted, 

the process was then repeated for the Balemaster taking note of the digital 

thermometer temperature and care was taken not to disturb the probe during 

the analysis. The measurement procedure was then repeated for each of the 

Blocks every hour for 20 hours.
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Figure V.28: Test Rig monitoring diagram

There was a duel aim to the experiment: firstly to compare the Balemaster and 

Timbermaster results, both with and without the thermocouple, and to assess 

the change in moisture content of the interstitial bale moisture level over a 24 

hour period. The second aim was an exploratory study to assess moisture 

transfer within the construction's walls which highlighted a limitation: the Test 

Rig is subject to a dynamic environment with confounding variables such as 

temperatures.
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V.5.2-  Test Rig R  esistance Meter   study: Results

In light of utilising different resistance meter combinations throughout the study

an experiment was conducted on the Test Rig to compare the differences 

between the resistance meter's. The results (Figure V.29) of the resistance 

meters omitting the thermocouples have been corrected using the GM equation

(Equation II.5 p73) for straw, plotting moisture content (y-axis) against the 

digital thermometer temperature (x-axis).

Figure V.29: Raw data from resistance meter study with probe attachment

The moisture levels results recorded during the experiment for T1.5 and B6.5 

offer the minimum and maximum recorded moisture levels respectfully. The 

results as demonstrated in Section V.4 of this chapter show that the lower 

module-blocks have a higher moisture content than the upper blocks, as 

confirmed by Figures V.22 and V.23 (p154). 

From Figure V.29 it can be noted that the moisture content increases during the 

measurement phase; the slight increase could be a result of an increase 
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availability of moisture to the straw as the temperature increases at the 

external straw/render interface. The temperature increase drives humid air 

further into the bale, which then condenses at the cooler interstitial section; 

below the dew point temperature. This may be due to a product of: inaccurate 

conversion by the GM equation (Equation II.5), an unidentified variable, the 

observation of moisture transfer through the bale, or a combination of these.

Another observation includes the switch from heating to cooling of the straw 

and the effect it has on the moisture content reading. The results indicate the 

development of a cyclic pattern or hysteresis; the straw cools at a lower 

moisture content and does not retrace the original moisture content path. This 

evidence suggested that further work may be required in a laboratory 

environment investigating the cyclic pattern together with a repeat 

investigation conducted on the Test Rig at higher temperatures. The study also 

casts doubt on the ability for the GM equation to accurately correct the raw 

data; the graph appears to demonstrate the straw gaining moisture, albeit very 

slightly, as the temperature increases. The difference in readings between the 

Balemaster and Timbermaster is also apparent.
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V.6   Straw and Degradation

In quantifying the risk to straw posed by moisture and based on the findings of 

Block B5 a small scale investigation was undertaken to assess the affects of 

elevated levels of moisture on straw. 

V.6.1-  Straw and degradation: Method

The investigation consisted of two experiments, one subjected a sample of 

straw to a relative humidity in excess of 90% at temperatures of 23oC, whilst 

the second submerged a straw stem in water for a fortnight at 20oC. 

The aim of the experiment was to compare the differences between straw 

affected by a continuous layer of water and one subjected to high humidity 

(Section II.1.1 p47). The investigation findings were required to instruct in the 

identification of different base types of degradation thus enabling the cause of 

deterioration of straw within a bale to be explained. A photographic record of 

condition was conducted in order to track different situations and devise 

explanations for potential outcomes.

V.6.2-  Straw and degradation: Results

In determining the risk posed to a straw bale construction the thesis initially 

examined the effects of a worst case scenario, straw subjected firstly to a 

significantly elevated humid environment and then to a continuous liquid 

phase. Figures V.30 to V.32 show the extent of decay and mycelium 

development from the first experiment, subjecting the straw sample to a 

relative humidity of 90% at 23oC, the selected straw stem showed development

of spores photographed in Figure V.32.
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Figure V.33 shows two stages and types of decay present in the submerged 

straw stem, the 50mm stem section immersed in water developed a black rot 

and gelatinous slime over the two week period whilst, the section protruding 

5mm above the surface of the water developed a white mycellium growth. Both

experiments demonstrated what is to be avoided during the life of a straw bale 

construction, high humidities and constant wetting of the straw.

This study does not encompass a total investigation into mould development 

and this initial research provided a base set of knowledge in order to describe 

the cause of deterioration dependant on a constant liquid phase or high relative
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humidity level. During the experiments another observation that is not 

mentioned in the covered literature was made, straw's external surface is 

hygroscopic containing pores that will pool liquid water in favourable 

conditions, but it also has a waxy coating that causes a hydrophobic effect as 

demonstrated in Figure V.34. A small amount of water dropped onto the stem 

will bead due to the polar nature of the water; this is how straw is thought of. 

The internal surface (Figure V.35) however, is not commented on in literature; 

straw stems are hollow structures but do not exhibit the same properties as the

external surface, a similar amount of water added to the internal will 

immediately be absorbed into the structure. As a crop the internal structure of 

the stem is protected however, once the stem is cut the external atmosphere 

will penetrate and due to the hydrophilic nature of the internal structure this will

equilibrate with the humidity of the atmosphere differently to the external 

surface. There will also be a restriction to air flow in the hollow stem, which may

cause a lag effect acting as a buffer for the previous level of humidity. The 

monitoring of moisture's interaction with straw and the understanding of the 

obtained readings is therefore of importance with relation to this effect. This 
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challenges Summer's (2009) assumption that straw does not effectively wick 

water; this argument may hold for the external surface of the straw, but not for 

the internal.
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V.7   Density

During the construction of the Test Rig it was observed that there were 

significant variances between the densities of not only each bale, but also at 

different points within a bale. 

V.7.1-  Density: Method

The questions over the effect of density on the readings for the resistance 

meter with the Balemaster with probe attachment were highlighted in the early 

stages of the Test Rig monitoring (Section V.4.2 p147). Bales that were kept 

under the same storage conditions for several months, at the same 

temperatures, exhibited discrepancies in readings. One possible cause for the 

discrepancies was the difference in densities of each monitoring point and the 

subsequent pressure placed against the probe.

So far there has been little discussion concerning the topic of bale density 

relating to moisture measurement. Goodhew et al. (2004) suggested further 

work was needed to assess the effect of density on moisture and thermal 

performance whilst Carfrae (2011) offers the only published study. Other 

authors are concerned only with thermal conductivity relating to density (Stone 

2003, Bronsema 2010). 

The aim of this experiment was to demonstrate the effect of bale density on 

readings obtained with the Timbermaster and Balemaster probe attachment. 

The importance of this research is to contribute to an understanding of how 

resistance monitors work and to highlight any discrepancies between results. 

The objectives of this section were therefore to determine the significance of 

straw density relating to meter readings, demonstrate the effect of density 

when samples are subjected to extremes in moisture levels, and of obtaining 

readings at various densities with standardised straw samples.
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GEsensing claims, of the Balemaster, that “The instrument is calibrated for 

wheat straw and may be used to take relative measurements in other baled 

products”  (GE Measurement & Control 2014). However, as demonstrated by 

Carfrae (2011) there are certain unconsidered limitations regarding the meter's 

software and the adopted operation technique. It is worth noting that the exact 

density of a bale in a building may not be known at any one specific point, 

within a bale therefore, results of an investigative study into a real building 

conducted with a resistance meter and Balemaster probe attachment may 

generate uncertainty. At this point in the overall research agenda the use of the

Balemaster had given way to the Timbermaster, as the Timbermaster 

represented a closer reading to dry density and therefore involved less 

complexity of written code within the computer software used to analyse the 

data.

Figure V.36: Compression tests of straw

The design of the experiment consisted of an empirical study using a cylindrical

plastic pipe of diameter 104mm and 90mm depth (internal dimensions) with a 
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wooden plunger cut to provide a maximum clearance tolerance of 1mm, a base

plate adhered to the end of the cylinder and a slot cut into the cylinder to allow 

the Balemaster probe unimpeded travel as the straw was compressed (Figure 

V.36). A small sample size was chosen in order to minimise the issue of void 

space and unequal loading as experienced in Carfrae's work. The reading would

be taken from the centre of the sample to minimise edge effects and the straw 

would be laid carefully into the cylinder to simulate the section of a bale. 

A sample of straw was stored under laboratory conditions (50%RH and 23oC) for

several months before being loaded into the cylinder to a depth of 80mm and 

the mass obtained. The cylinder was then placed centrally under the 

compressive piston of a compaction machine (Instrom 3367), the Balemaster 

probe inserted into the cylinder and supported at the centre of balance by a 

retort stand to minimise any further loading effect, and finally the Instrom 

machine applied a vertical load in five millimetre increments up to a maximum 

of 40mm. Readings were normalised for 20oC with the attachment of the 

thermocouple; the laboratory was maintained at a constant 23oC.

By applying a load in the design of the experiment the difference in moisture 

content of the straw could be plotted against the effective load and the density 

of the straw. The experiment was also deigned to be repeatable. It was 

assumed that the sample, carefully packed into the cylinder, would replicate a 

bale, in addition it was assumed that the act of compression would not impact 

on the results. The limitations of the exercise were in dimensional constraints 

however, a larger sample may have been subject to uneven loading.
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V.7.2-  Density: Results

The disparity in results observed during the preliminary Test Rig investigations 

(Figures V.22 and V.23 p154) indicate straw density as a potential factor in the 

promotion of inaccuracies within readings obtained by the resistance meter 

with Balemaster probe attachment. To a lesser degree, yet a similar context, 

the wood-block probes are not immune from the issue of density as the 

pressure exerted on the rods inserted into the wood-block tips caused 

variations within the results (Section IV.3.1 p114). 

The study measured  a sample of straw of 50.4 grams (wet weight), previously 

stored in the laboratory at a stable 50%RH and 23oC for three months, then 

packed into the cylinder (Figure V.36) to undergo the first run of the inquiry. The

straw was then saturated with water under the tap and left to drain in the 

laboratory (encapsulated by the cylinder) for a further seven days before the 

second run was undertaken. On inspection the straw had started to develop 

mould prior to the second run, and felt damp to touch. 

Prior to, and after each run, the straw and cylinder were weighed to confirm the

moisture content level had remained constant throughout the experiment; the 

gravimetric analysis was confirmed at the end of the experiment, as per the 

reservations concerning oven drying the straw prior to experimentation.

Figure V.37 illustrates the findings of both runs, the first run (detailed results 

shown in Figure X.3 p314) compressing the straw from 52 to 102 kg/m3
d (dry 

density), the meter readings altered by 0.9% from 6.8%MC however, it failed to 

reach the 7.9%MC reading obtained by gravimetric analysis. In contrast the 

second run  shows moisture increasing by 63%, from an initial level of 32%MC, 

over an increasing density of 50 kg/m3
d. It is important to note however, that 

the straw had succumb to slight mould growth between the two runs which 
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may have affected both the gravimetric analysis results and the second run 

resistance meter moisture measurements. 

Figure V.37: Comparative results

The results of Run 1 show a spike in the moisture reading at 75 kg/m3
d, one 

possible explanation was that a void in the straw collapsed giving an elevated 

reading (Figure X.3). This however would have been matched by a drop in the 

load applied, the load remained constant throughout the experiment and 

therefore the reason remains unexplained.

In observing the results presented in Figure V.37 a 'Fan' effect was proposed; 

low levels of straw moisture content generating lines of shallow gradient, 

increasing in gradient with increasing moisture content. Figure V.38 illustrates 

the 'fan' effect hypothesis in which it is proposed that the gradient will plateau 

at the point where the moisture content reaches a maximum level for the 

resistance of the straw; the intersect. From these initial results it was proposed 

that a model could be developed using the 'fan' effect however, further detailed
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investigation would therefore be required to address the inconsistencies and 

weaknesses identified during the Initial Inquiry.

Figure V.38: Fan Effect

This part of the investigation represented an initial inquiry into an area as yet 

unexplored in previous literature and provides part of the thesis's Contribution 

to Knowledge. One important implication emerging from the inquiry was, that 

data is only comparable once the results have been calculated for the 

equivalent dry density, this then provides a standardisation of the results. The 

results of Run 2 suggest that free water may be forming as the moisture is 

compressed from the straw, thereby decreasing the resistivity illustrated by 

Straube's (King, 2006) moisture storage regime graph, Figure II.2 (p52).

In summary the experiment showed the importance of investigating density 

when relying on resistance meter readings to assess moisture levels and the 

requirement to develop a method of investigation to reduce uncertainty. The 

extremes of moisture content investigated during this experiment illustrated 

the effect of straw density and limit of the Balemaster compared to the 

Timbermaster. The moisture contents were out of range of the Balemaster and 

have therefore not been investigated further.
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V.8   Summary

The Preliminary Case Study (Section IV.1 p105) aimed to investigate the ability 

of the wood-block probes to reflect the moisture content of straw and to identify

disparities between readings however, the study was inconclusive causing a 

change in the initial research direction of multiple case study investigation 

towards a test rig with greater freedom to perform experimentation.

The development of an alternative monitoring device measuring the 

dimensional variations of timber with respect to moisture content (Section V.2.2

p131) achieved initial success, yet was rejected on the grounds of cost for 

strain gauges and data logging software. A second monitoring device was 

developed, the compressed straw probe (Section V.3 p133), which provided the 

ability to record a change in mass of the straw and obtain a resistance meter 

reading. The prototype compressed straw probe met the criteria for a cheap 

probe that is robust, reliable, easy to install and accurate.

The results from the test rig demonstrated the Risk Assessment System (Figure

III.3 p100) in the format of a Contour plot (Section V.4.2.1 p148) illustrating the 

'Risk' posed to the construction from moisture. The results show that although 

the bales had been stored in the same environment the initial moisture 

consents varied. The effect of render application (Section V.4.2.2 p153) was 

also noted; raising the straw's moisture level together with the potential effect 

of direct sunlight on the render surface (Table V.1 p158) and the introduction of 

a bale that had suffered moisture damage into the construction (Section V.4.3 

p159).

A comparison of resistance meters was conducted in Section V.5 (p165), due to 

the use in the test rig, suggesting potential inaccuracies of the temperature 

compensation equation supplied with the meters (Equation II.5 p73) and 
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evidence of a cyclic pattern (Figure V.29 p165) as an effect of temperature 

variations within the bale. A preliminary investigation was conducted into the 

effect of density on resistance meter readings demonstrating that higher 

moisture contents of straw produce greater variations in readings as load is 

applied.

The overriding concern highlighted within the Preliminary Results was one of 

moisture's interaction with straw. This represents the fundamental basis on 

which further work must be conducted, with this knowledge the data provided 

by a monitoring device can be clearly interpreted and understood providing 

interested parties with confidence. It was identified in Section V.6 (Figures V.34 

and V.35 p169) that a straw stem has both an internal hygroscopic surface and 

an external hydrophobic surface affecting the materials interaction with 

moisture, one side able to wick water, the other forcing it to bead. In the 

formation of a bale the straw may therefore promote unconventional behaviour 

when compared to mainstream construction materials.

Overall the Preliminary Results chapters (Parts I and II) established a basis for 

further research to be conducted, raising various questions concerning: the 

accuracy and interpretation of monitoring device data, the intensity by which 

readings should be conducted to obtain a categoric evaluation of a 

construction, and of the factors affecting a construction. The next chapter, 

Focussed Results, therefore begins by addressing the issue of density and in 

developing a compensation factor for the resistance meters, before explaining 

moisture transfer through a bale.
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Chapter VI   Focussed Results
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VI.1   Introduction

The results of the investigations in the Preliminary Investigations chapter (Part 

II) identified significant gaps in knowledge concerning monitoring of moisture 

and the association with risk. The main weaknesses exposed, encompass an 

inability to define an accurate moisture measurement in a construction when 

utilising resistance meters, due, in part to temperature (section V.5.2 p165) and

density effects (section V.7.2 p174). The technique of moisture data acquisition 

utilising different monitoring methods (section V.4.2 p147) is also an area of 

concern.

The development of the compressed straw probe offers a way in which to 

obtain a known density and record the temperature of the straw at the point of 

measurement. The Focussed Results chapter details the adoption of different 

techniques used to acquire accurate moisture related data, the research of 

which highlights the need to explain moisture transfer through a straw bale.
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VI.2   Focussed Density    

The focused density experiments represent a refinement of the Preliminary 

Investigation (Section V.7 p171) utilising two independent straw samples held 

at constant moisture contents. The Balemaster results were inconclusive at the 

lower moisture levels and have not been included in the study.

VI.2.1-  Focussed Density: Method

The preliminary investigation into density was limited by a lack of repeatability 

and the analysis of two extreme parameters from which the effect of density 

was demonstrated, but could not be quantified. The focussed method ensured 

that the straw was carefully placed into the cylinder thereby averting voids 

which may promote errors and was packed to a starting density of no less than 

80 kg/m3
d (dry density) thereby conforming to construction densities of between

100-120kg/m3 (Atkinson, 2010 p38). Another change encompassed multiple 

runs on the same sample to check for repeatability and consistency, together 

with the final change that set an upper moisture limit at which the straw could 

be held for a sustained period of time in laboratory conditions without 

promoting mould growth.

A modified restructuring of the method of data collection was therefore 

required; two independent samples of straw were prepared and placed in salt 

chambers for one month, the first chamber containing Magnesium Chloride 

(MgCl) and second Sodium Chloride (NaCl) giving atmospheres of 

approximatively 33% RH and 75% RH at 23oC respectfully. This would provide 

the straw samples with, when converted with EquLaw, a moisture content of 

around 7.1% and 16.8%. To ensure that the moisture remained the same during

exposure to the laboratory environment, the loaded cylinder was weighed 

immediately prior and after each experiment run; each run was restricted to a 
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maximum of 45 minutes to minimise interaction with the laboratory 

atmosphere.

VI.2.2-  Focussed Density - Results

The aim of the experiment was to obtain information concerning moisture levels

posing no more than a 'Low Risk' to the straw whilst demonstrating the 

proposed 'fan' effect presented under the Preliminary Results; Figure V.37 

(p175).

VI.2.2.1   MgCl (Magnesium Chloride)

Figure VI.1 illustrates the results obtained during the compression of the straw 

sample for runs conducted on the 23rd, 24th and 29th of May 2012; dry density

(x-axis) versus moisture content (y-axis). It can be seen that the straw 

'stabilises' under repeated loading cycling, the Timbermaster with Balemaster 

Probe and thermocouple attachment returned a measure of 8.9%MC, at a 

density of 81 kg/m3 on the 23rd, dropping to stabilise at around 7.3% by the 

fourth compression cycle (Run 1 on the 24th).
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Figure VI.1: Straw from MgCl environment

 A drop in moisture content of 0.5% (0.4 grams), due to moisture loss, was 

observed between the 24th and 29th and is reflected by the results. The 

gravimetric analysis returned a result of 10.3%MC for the straw sample, as 

shown in Figure VI.1, yet all the runs fail to reach this level, falling 1.3% short 

on the penultimate 'stabilised' readings at 131 kg/m3
d. 

VI.2.2.2   NaCl (Sodium Chloride)

Figure VI.2 provides the results of the straw sample held in an atmosphere of 

75%RH and 23oC, a similar pattern to the MgCl emerges showing the straw 

moisture content 'stabilising' during the initial compression runs. One 

unanticipated finding was demonstrated on the final run when a decision was 

made to compress the straw beyond 145kg/m3; once the Balemaster probe had 

reached its maximum travel on the final compression cycle it was removed and 

reinserted back at the top of the slot. In order to check that that this extension 

of the run had not disturbed the experiment significantly the last two densities 

were repeated. The results, as shown by the gradients of the moisture content 

readings, demonstrated that densities of between 90 and 145 kg/m3
d produced 

a constant rate of increase however, as the density increases beyond 145kg/m3 

the rate decreases tending possibly towards a plateau as hypothesised in the 

Preliminary Results chapter (Figure V.38 p176).

One issue that emerged from the findings concerns the first run of the 

experiment, straw that had not undergone any compressive cycle returns an 

artificially high reading that is reduced by subsequent loading cycles until a 

'stabilised' environment is met. This gives rise to questions of straw bale 

density in a real construction; how is an assessment of density to be made at a 

particular position in any randomly selected bale, secondly at what stage has 

the straw in a bale 'stabilised', and thirdly is the act of compressing a straw 
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sample an accurate reflection of a bale, or does the act of compression with the

Instrom alter readings significantly?

Figure VI.2: Straw from NaCl environment

From the variance in readings of these results a conclusion was drawn, that the 

direct use of a resistance meter with Balemaster probe attachment for the 

purposes of monitoring a construction can not generate the assurances 

required to confidently describe the risk posed to a straw bale construction 

from moisture. A reading of 13%MC from a resistance meter in an unknown 

bale density could be an under or over estimate of the true moisture value of 

the straw. If however, the straw could be standardised for density, as with the 

compressed straw probe, this confounding variable would be eliminated and 

the resistance meter would require further research as prescribed in the 

previous chapter (Section V.7 p171).
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VI.3   Focused Resistance Meter Study    

The limitations of the resistance meter with respect to temperature, as 

discovered during the Preliminary Investigation (Section V.5.2 p165), required a 

more systematic study to identify how different temperature scenarios affect 

the results for straw. A series of experiments were therefore conducted utilising 

the compressed straw probe as the measurement medium.

The compressed straw probe has the advantage of a known density of straw, 

the ability to gain a resistance meter reading, to observe temperature changes 

from the measuring point, and due to standardisation can be interchanged with 

real or laboratory environments. 

The verification of: the GM equation (Equation II.5 p73), temperature 

calibration, ability for the Timbermaster to reflect straw's moisture content, and

the conversion of a Balemaster reading to a dry basis, or equivalent 

Timbermaster results, is detrimental to the development of not only the 

compressed straw probe, but for the wood-block probes and surveys conducted

using the Balemaster Probe.

Resistance meters offer a easy and robust method of obtaining an 

instantaneous moisture measurement however, as the Preliminary Test Rig 

resistance meter study (Section V.5 p163) indicated, the temperature 

calibration requires further verification together with clarification as to the 

conversion of a Balemaster to a Timbermaster reading. The Balemaster is not 

shipped with any warnings of error bounds and the literature provided does not 

highlight the potential need for temperature calibration.

VI.3.1-  Static temperature test

In order to assess the Timbermaster's ability to cope with variable temperature 

ranges an empirical experiment was devised. A pre-calibrated compressed 
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straw probe was subjected to a constant temperature cocooned by an 

insulation blanket, whilst the thermocouple was placed in a water bath and the 

temperature varied. The moisture content was then recorded by the 

Timbermaster both with and without the thermocouple attached. The 

experiment consists of two tests holding the compressed straw probe at 4.0oC 

and then at 30oC both temperature extremes likely to occur in a real world 

environment.

The aim of the experiment was to demonstrate under extreme circumstances 

why the measurement of temperature must be obtained from the point of the 

resistance measurement and how effective the calibration equation is. 

VI.3.1.1   Static temperature test: Results

Assessing the effect of varying the thermocouple temperature for a straw 

sample held at constant temperature gave rise to the results presented in 

Figure VI.3. Table VI.1 shows that the temperature increased slightly over the 

course of the experiment due to inadequate insulation provided by the blanket. 

However, this does not alter the results significantly; it can be seen that results 

with the thermocouple attachment give rise to an error as the conversion 

software receives an incorrect reading and adjusts it appropriately.

Applying the GM equation (Equation II.5 p73) to Test 1 readings (left hand side) 

taken without the thermocouple suggests that the straw had a moisture content

of 16.5%; the gravimetric analysis of the compressed straw probe however, 

returns a moisture content of 21.0%. 

Raising the temperature of the compressed straw probe to 30oC (Test 2, Table

VI.2) gives a modified Timbermaster reading of 19.5% when Equation II.5 is 

applied. It can therefore be concluded that the Timbermaster in combination 

with the GM equation for temperature adjustment does not reflect the moisture 

content of the straw. The results with the thermocouple attached also show that
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the temperature at the point of measurement in a straw bale wall is critical in 

providing an accurate assessment of the straw and the potential for errors 

when adopting an incorrect method of measurement.

CSP
Temp

TMt TM Thrmcpl
Temp

CSP
Temp

TMt TM Thrmcpl
Temp

3.3 15.6 14.8 14.0 30.0 23.1 20.6 7.6

4.1 14.9 14.8 20.0 30.0 21.1 20.6 13.8

5.4 13.0 14.9 33.7 30.0 20.7 20.6 17.9

6.0 14.7 15.0 21.9 30.0 18.0 20.6 28.2

30.0 18.4 20.6 30.3

Figure VI.3: Results of varying the thermocouple temperature

This experiment was naturally biased, subjecting the Timbermaster to a false 

temperature reading thereby forcing inaccuracy however, this highlights the 

need to obtain the temperature at the point of measurement under observable 

extremes. The GM equation has, in the case of this experiment, been 

demonstrated to be ineffective as an accurate method of moisture 

measurement for straw.
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VI.3.2-  Dynamic Temperature Test

Following on from the previous static temperature experiments, the affect of 

temperature on Timbermaster readings as a consequence of adjusting the 

straw temperature in the compressed straw probe was investigated. The 

Timbermaster should be capable of returning a moisture content result 

equilibrated for a certain temperature and within a defined degree of accuracy. 

The compressed straw probe in the case of this experiment is recognised as a 

sample of straw bound in a rigid hydrophobic container with a standardised 

density. Two sets of experiments were conducted analysing the effect of 

temperature cycling, and observing the hysteresis effect (Figure II.4 p59).

The first experiment used two non-perforated compressed straw probes (CSP1 

and CSP2) placed within a layered insulation blanket that could be heated in an 

oven or cooled in a freezer and was designed to adjust the temperature of the 

compressed straw probe through conduction. As a result the straw underwent a

rapid temperature change as the blanket was placed over the body and the 

subsequent experiment monitored the adjustment of the temperature, 

returning to the laboratory temperature in a controllable method by way of 

removing insulation layers. The mass of the probes was recorded after every 

experimental run of which at least three were conducted per test. The straw 

loaded into CSP1 was placed in an sodium chloride environment for one month 

giving a gravimetric analysis measurement of 14.2%MC, the density was 

calculated at 110kg/m3
d. 

The straw in CSP2 was restricted to the laboratory environment returning a 

gravimetric analysis of 11.0% and 90kg/m3
d. The straw was restricted to a 

maximum of 15%MC as this is the limit agreed upon by the majority of 

literature at which straw will be free from decomposition, a concern at the time 
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not to allow the possibility of mould development which may influence the 

results (section V.7.2 p174).

The second experiment placed CSP3, a perforated probe, into a blanket that 

was used to eliminate moisture transfer but provided minimal insulating 

capability. The compressed straw probe was constructed from straw held at 

laboratory conditions and attained a density of 120kg/m3
d. This experiment 

controlled the temperature of the probe, eradicating rapid rates of adjustment 

as experienced in the previous test. Conducted during the winter months the 

probe would be cooled outdoors in temperatures reaching -5oC and heated 

gradually to temperatures of around 40oC in the vicinity of a wood-burning 

stove. Degrees of temperature between the two extremes were attained by 

placing the probe at incremental distances away from the heat source until 

stabilised.

In order to provide another comparative between the first experiment the 

moisture content of CSP3 was adjusted after each set of runs was completed. 

The initial moisture content was attained from insertion of the probe into the 

Test Rig, position B5.7, this reached a maximum of 19.9%MC. The probes was 

then subjected to a high moisture content for a restricted amount of time at 

temperatures of over 10oC. The probe was placed for 3½ minutes in a kitchen 

steamer, until the weight reached an equivalent of around 30%MC. The idea of 

the steamer was to provide a rapid change in moisture through vapour passage

similar to, but quicker than the environmental chamber forcing moisture into 

the internal structure of the straw. The probe was then removed, returned to 

the blanket and placed at 10oC for 18 hours, this time period and temperature 

was chosen to allow the moisture time to distribute throughout the probe, at a 

maximum temperature to provide the vapour with energy to distribute but 

avoid mould development. The moisture was then dropped to a level deemed 
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by the Risk Assessment System (Figure III.3 p100) to be at 'Low Risk' by leaving

the probe exposed, cap and blanket removed, to a low relative humidity 

environment.

The experiments were designed to confirm the ability of the resistance meter to

reflect an accurate assessment of the moisture level of the straw and to check 

the validity of the GM equation.

VI.3.2.1   Dynamic Temperature Test: Results

The results for the two dynamic temperature experiments are presented in 

Figure VI.4 and demonstrate the fan effect (Figure V.38 p176), Compressed 

straw probe 1 and 2 representing the first experiment restricted to an 

adsorption cycle at temperatures over 20oC and the desorption cycle at 

temperatures below. The temperature (x-axis) is plotted against moisture 

content (y-axis) providing the raw data, and the obtained gravimetric analysis 

result for each run is shown in the key; each test had at least three runs to 

check repeatability.

From the results of CSP3 the hysteresis effect is visible as the probe was 

subjected to cyclic temperatures, runs five and seven demonstrate an error 

band of around ±1%MC. Figure VI.4 demonstrates the potential inaccuracy of 

applying the GMSensing Equation (Equation II.5) to the illustrated data, as the 

equation disregards any increase in gradient over a range of moisture levels; 

the gradient of the lines increases with increasing moisture content. The 

evidence suggests that the GM equation is invalid in converting a resistance 

meter reading to an accurate reflection of the moisture content of the straw 

and therefore assessing the Risk posed by moisture. 
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Figure VI.4: Effect of Temperature on Timbermaster Results and lines of best fit

Lines of 'best fit' were applied to the data in order to reflect the results for each 

of the runs (not shown). Utilising the line of 'best fit' and extrapolating the 

results provided by compressed straw probe 1, 2 and 3, it was possible to 

obtain a point of intersect, due to the increase in gradient of the lines as the 

moisture content increases over temperature, to produce a single equation 

(Equation VI.1). From this equation a quick reference graph for moisture levels 

between 7-23%MC (Figure VI.4) could be developed. The point of intercept (-

125,-5.3) was selected to represent the point that produced the most accurate 

equation, with minimum of error, adjusting the resistance meter readings to a 

comparable and standardised 20oC. The intercept point is an approximation but 

alters the results insignificantly between a temperatures of 0 to 40oC 

(<0.1%MC).
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Equation VI.1: Equt: Calibration equation MCt for the Protimeter Timbermaster

The equation corrects any reading taken with the Timbermaster combined with 

the temperature at the point of measurement standardised for any desired 

calibration temperature as read from the meter. However, there remains the 

disparity between the resistance meter result and the gravimetric analysis 

results. CSP1:Run 1 (Figure VI.4) should return 14.2%MC gravimetric analysis, 

yet the equation suggests 13.0%. CSP3:Run7 suggests a gravimetric analysis of

24.8%MC whereas Equ20 (Equation VI.1) returns 19.4% on the adsorption cycle. 

The 20 in Equ20 refers to the application of 20oC as the desired calibration 

temperature and can be changed dependant on the desired output 

temperature; the equation can  therefore be referred to as Equt.

There also exists a maximum moisture content range for which the equation 

will work, beyond the results shown for CSP3:Run7 the equation fails to 

describe the moisture level accurately. This does not however present a 

problem when assessing the Risk level proposed by the Risk Assessment 

Method (III.3); the level of the moisture content falls within the category of 

'High Risk' that the cause of the elevated moisture content needs to be 

identified and the problem resolved.

One hypotheses made in the early stages of the study suggested that moisture 

content internal to the surface of the straw could not be detected by the 

resistance meter which finds the path of least resistance across the surface of 
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the straw, disregarding moisture held within the plants structure or within the 

spongelike structure of the hollow stems (Section V.6 p167). CSP3 Run 8 

provides evidence to support this; results show a low resistance meter moisture

reading of around 9.5%MC20 , whilst the gravimetric analysis reading suggests 

16%MC. This disparity in readings is an effect of the relatively rapid change, 

over a 24 hour time period, from a high to low moisture content done to avoid 

prolonged exposure to high levels of moisture. The disparity can be explained 

by regarding the external surface of the straw as drying more rapidly than the 

internal surface or internal structure of the straw stem thus the resistance 

meter reading is less than the gravimetric analysis result.

The consequence of this difference promotes the compressed straw probe as a 

monitoring device with multiple assessment methods. A results of 16%, 

gravimetric analysis, may provide the historical context to suggest that 

moisture was recently at a higher level opposed to the 9.5% reading displayed 

by the resistance meter that provides an instantaneous result based on current 

conditions within the atmosphere of the bale. This multiple method of assessing

the straw is an important observation that require a model capable of 

evaluating and assessing the health of a construction using this information.

At this stage the relationship between the resistance meter reading, the 

gravimetric analysis reading and the density of the straw being measured 

remained unclear. The emergence of a complex pattern suggests the 

requirement of a more comprehensive study focussing on refining and 

combining the density and temperature experiments. Alone Equation VI.1 

provides the Timbermaster results with greater credibility and accuracy 

dependant on interpretation of the data however, a conversion factor for the 

Balemaster was required, as documented earlier (Figure V.29 p165).

VI.3.3-  Balemaster to Timbermaster conversion
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There exists a requirement to develop, as demonstrated by Figure V.29, a 

conversion factor between the Timbermaster and Balemaster meters. The aim 

of this investigation was to develop an equation capable of changing the 

Balemaster results to an equivalent Timbermaster value. Existing results were 

analysed from the laboratory experiments and the Test Rig investigations; 

Experiment 1 from the Dynamic Temperature Test (Section VI.3.2.1 p190) 

together with the averaged results from the Test Rig Module-block B1 (Section

V.4.2 p147) and the individual records from B1.4. It is important to note that 

this study used a Balemaster purchased in the USA that measures moisture 

content in wet basis, in a conversation with Jim Carfrae it was established that 

the UK version provides data in dry basis.

VI.3.3.1   Balemaster to Timbermaster conversion  Results

In order to enhance the capability of the Balemaster, and of the compressed 

straw probe, a further assessment was performed to convert Balemaster (USA 

version) data to an equivalent Timbermaster value. Using the data from 

Experiment 1 in the Dynamic Temperature Tests (Section VI.3.2.1 p190), data 

from Test Rig position B1.4, and the mean data from Test Rig B1, Equation VI.2 

was produced to translate the Balemaster reading to a Timbermaster value.

Equation VI.2: Calibration equation converting Balemaster to Timbermaster
readings
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Figure VI.5: Conversion of Balemaster to Timbermaster results

Figure VI.5 demonstrates the effect of the equation plotting the Timbermaster 

results (x-axis) against the Balemaster results (y-axis) and applying the 

equation to the line f(x) which produces an error of less than ±0.15%MC. 
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VI.3.4-  Test Rig Resistance   Meter   Study Revaluation

Utilising the conversion equation for the Balemaster to Timbermaster (Equation

VI.2), together with the recommendations from the Dynamic Temperature Test 

(section VI.3.2.1 p190), the Test Rig resistance meter study results (section

V.5.2 p165) were re-evaluated comparing data for a real world study conducted 

with confounding variables.

VI.3.4.1   Test Rig    resistance meter    Study Reevaluated: Results

The development of an equation to confidently change the Balemaster data to 

Timbermaster values could consequently be applied to the Test Rig resistance 

meter Study (section V.5); Figure VI.6 shows the results of the four blocks 

highlighted in the earlier study compensated using equation's VI.1 (p192) and

VI.2 (p194). Balemaster and Timbermaster readings obtained with the 

thermocouple are back-compensated using the GM Equation (Equation II.5 

p73), prior to the application of Equation VI.1 (compensated for 20oC).

Figure VI.6: Correction of Test Rig resistance meter Study
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The results show that by utilising equations VI.1 (p192) and VI.2 (p194) the 

readings can be translated with a ±0.3%MC degree of accuracy, the 

Timbermaster with thermocouple gaining around 0.5%MC over the range 13 to 

18.5%MC above other results, as illustrated by T2.5 and B6.5 in Figure VI.6.

The hysteresis effect is also evident as the temperature reaches the maximum 

for the experiment, 11oC, illustrating the appearance of a cyclic system posing 

the question: if the temperature returned to the starting point of -1oC, without 

loss of humidity in the bale, would the straw in theory return to the original 

moisture content thus completing the cycle (Section VI.4 p202)?
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VI.3.5-  Test Rig Resistance   Meter   Study 2

With the re-evaluation of the Test Rig data (Section VI.3.4) a second Test Rig 

study was conducted using the same method as discussed in section V.4.1 

(p139) with the exception that only one position, B1.5, was monitored. It was 

reasoned that the continual removal and insertion of the Balemaster probe may

disrupt, or influence the readings. The experiment was designed to assess the 

effect of a higher range of temperatures on the Test Rig results. A relative 

humidity sensor was also used and was placed at the point of measurement 

(Figure V.28 p164) to confirm the atmospheric bale conditions. One error made 

at the beginning of the experiment was not to stabilise the temperature of the 

Balemaster probe with the interstitial wall temperature prior to the experiment, 

this can clearly be seen in the results.

VI.3.5.1Test Rig Resistance Meter Study 2: Results

In order to obtain a comparative set of data, a second study of the Test Rig was 

conducted in the following summer based on the original Test Rig resistance 

meter study (Section V.5 p163). Figure VI.7 (left-hand graph) shows the results 

of the 10 hour study with the relative humidity converted using the Lawrence 

equation (Equation II.1 p61). The error in results with Equation VI.1 (p192) 

applied compared to an uncompensated reading is ±0.5%MC at temperatures 

above and below 20oC. The right-hand graph shows the results as temperature 

is substituted for time on the x-axis changing the shape of the curve as the 

optimum temperature is achieved.
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Figure VI.7: Results of the intensive study

The displayed relative humidity, obtained from the iButton sensor, gives the 

graph a jagged-stepping appearance due to the sampling accuracy 

(graduations of 0.6%RH/reading), the connecting line has therefore been 

replaced by a bezier curve to provide a smoother graduation of the data. It can 

be seen that the atmosphere becomes more humid as the temperature 

increases. The rise in relative humidity is small however, increasing from 

around 11.1% to 11.6%MC, this would potentially support reasoning to suggest 

that as the straw warms it releases moisture to the atmosphere thus increasing 

the atmospheric moisture level, or relative humidity as the temperature 

increases.

The path however, is not represented by the Timbermaster (TM20) readings that 

track the converted relative humidity bezier curve, at a reduced moisture 

content of 1.2%. The graph shows that in both cases the moisture content 

starts to increase after four hours at a temperature of around 20oC, increasing 
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by 0.5% before dropping whilst the temperature continues to increase by 

around 1-1.5oC. This suggests an alternative mechanism at work within the 

bale; the movement of warmer moisture laden air travelling through the bale, 

possibly from the warmer external straw/render wall surface subjected to solar 

gain. The warmer air makes contact with cooler straw as it progresses through 

the bale and the dew point is reached, thus depositing moisture onto the 

surface of the straw until equilibrium is reached however, further evidence was 

required to further the explanation.

From the study of direct sunlight on the render (Table V.1 p158) it was 

hypothesised that the sun directly affects module-block B1 from 07:00 to 11:00,

between which time temperature increases but relative humidity and moisture 

content remain similarly static. After 11:00 the temperature of the measuring 

point (interstitial measurement) continues to rise together with the moisture 

content for a further 2.5 hours at which point the rate of the temperature 

increase slows and the moisture content drops. The question brought about by 

this experiment concerned the interaction of moisture with straw in the 

environment of a bale. One hypothesis is that transient moisture is passed 

through the bale from the external straw/render interface as direct sunlight 

provides energy and a potential for the warmer moisture laden air to move 

through the bale to the cooler less moist areas. The warm moist air meets the 

cooler straw and moisture condenses thus raising the moisture content of the 

straw to equilibrate to the atmosphere. This is then reversed when cooling; the 

warmer moist air is drawn back towards the cooling straw/render interface 

bringing with it the moisture that condensed onto the straw, hence 'transient 

moisture'.

It is worth noting that the monitoring equipment must be at the same 

temperature as the measurement medium, as demonstrated by the first result 
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(Figure VI.7); the moisture content of the straw is 0.33% higher in moisture and 

0.4oC higher than the next reading, this is not echoed by the relative 

humidity/temperature sensor which was already equilibrated. The Balemaster 

probe being at a different temperature to the surrounding straw therefore 

influenced the result; this highlights an important monitoring technique and 

potential error in the readings.

The advanced study of the resistance meters gave rise to a number of 

observations and concerns with the evaluation of data provided by different 

monitoring techniques. The major interest involves the description of how 

moisture interacts with the straw in a bale and subsequently how this data can 

be evaluated.
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VI.4   Moisture Transfer    

As the thesis investigation advanced it became clear that the interaction of 

moisture with the straw together with the description of a transfer rate was 

required in order to describe the relationship between the monitoring devices 

and techniques, the related moisture measurement, and for the subsequent 

development of a model to assess the Risk.

Many laboratory studies have utilised isothermal studies (Lawrence et al. 

2009a, Carfrae et al. 2009b, Jolly 2000) to investigate and describe the 

interaction of moisture with straw. In general this involves the creation of a 

small sample (bundle) of straw placed in either an environmental chamber, or a

Dewal jar. The sample is then subjected to a set relative humidity for a 

sustained period of time at a constant temperature, then assessed for the 

resultant moisture content.

Whilst Isothermal studies have their uses in identifying different regimes (King 

et al. 2006) and absolute levels of moisture content at certain relative 

humidity's (Lawrence et al. 2009a) the type of investigation is of restricted use 

when representing an atmosphere within a straw bale  as experienced in the 

field; an atmosphere in a bale is limited to a certain amount of moisture for a 

limited amount of time and the effect of temperature must be taken into 

account. Isothermal studies can therefore be misleading if relied upon as model

in their own right. An isothermal study set in a laboratory environment will 

subject the sample to an atmosphere of a continuous unchanging humidity and 

temperature for extended periods of time; or a 'stable atmosphere' using static 

variables. The continued humidity provides an 'unabated' level of moisture 

'surrounding' the straw sample, rather than a 'limited' level 'within' the sample 

as would be experienced in a field study situation.
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The Isothermal study demonstrates the potential for straw's moisture content 

under a stable environment, with many of the other variables removed or 

controlled. One question raised by the Isothermal studies however, is that of 

cyclic analysis in an isolated environment. How would the straw in a bale of 

infinite dimensions, devoid of any external influence, react to it's own internal 

atmosphere (Figure VI.8)? If a section of that bale were taken, placed in an 

impermeable container and analysed then it could be quantified for moisture, 

carbon atoms, void space, lignin, etcetera. Assuming the only variable was 

temperature, how would the straw react? This would of course depend on the 

location (source) of the temperature change which would ordinarily come from 

the extremities of the bale or in this case of the sample.

Figure VI.8: Section of an infinite bale

The question now would be: what happens to the moisture within the system if 

the sample was placed into a sealed container and either heated or cooled? The

volume of the container will remain the same, the amount of straw will remain 

the same however, the relative humidity surrounding the straw will change 

together with the moisture content of the straw, if the moisture of the straw 

changes then so does the straw's density. Conventional building physics would 
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suggest that during heating the straw should give up moisture into the 

atmosphere raising the relative humidity and as the straw cools water vapour 

should condense back onto the straw's surface as the dew point is reached 

(Figure I.8 p37). 

The temperature however, is likely to drop from the extremities of the sample 

first, the moisture in the straw at the extremities will condense out at this 

position first leaving the centre of the bale at a warmer level and with less 

atmospheric water vapour, humidity, to affect the more centrally placed straw's

moisture content.

On another heating cycle the moisture will be taken up by the atmosphere and 

distributed equally into the atmosphere of the bale however, the temperature 

of the straw within the centre of the bale will be at a lower temperature and 

therefore may provide a surface for moisture to condense. This will set up an 

oscillation between moisture levels if performed in a sealed environment 

however, in a straw bale construction, a dynamic environment, moisture will be 

added or removed continually from the system.

The measure of humidity relating to the moisture content of straw could 

therefore be somewhat misleading as it is dependant on where the moisture is 

most likely to condense or vaporise from. Consequently, it may be more apt to 

refer to relative humidity as a 'potential' for influencing the level of moisture 

within a dynamic environment such as a straw bale construction. Developing 

this thought out of itself provides a question concerning transfer rate of 

moisture through a bale. Straw bales contain pockets of air and voids plus the 

stem of the straw is hollow posing the question concerning paths for moisture 

movement and areas of stagnation; how do the results of a monitoring device 

at a specified position in a bale differ from the results of another located 50, 

100, 200mm's away? This question can then be expanded to encompass other 
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monitoring methods and the ability of these to cope with a dynamic 

environment.

The questions raised by the experiments to this point of the thesis required 

further description of moisture's interaction within straw, together with, the 

transition through a straw bale. Further studies in the Laboratory and Test Rig 

were therefore required in order to gain an understanding of this interaction.
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VI.4.1-  Laboratory Study: Method

A laboratory experiment (Figure VI.9) was devised to test the rate at which 

moisture would pass through a straw bale, a straw sample (100.56g at 

10.6%MC) was packed into a rectangular plastic tubular section of air conduit 

(Containment Sleeve: 217x108x50mm) to an average density of 78kg/m3
d . 

Three relative humidity iButton sensors were placed in the sample, two 40mm 

from either end of the tube and the third located centrally. Care was taken to 

replicate the layering of the straw in a bale with the stems laid roughly 

longitudinally.

Figure VI.9: Moisture transfer experiment in humidity chamber

Due to an unforeseen circumstance that rendered the laboratory environmental

chamber unrepairable a replacement chamber was designed using salt 

solutions to regulate the chamber humidity (Figure VI.10), consisting of a salt 

chamber a main humidity chamber and fan. The fan circulated the air across 

the salt solution at around >0.4m/s and into the environment chamber (Figure

VI.11). Temperature was maintained by the laboratory at between 23oc and 26oc

over the entirety of the experiment; a confounding variable.
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Figure VI.10: Design of Environmental Chamber

The straw was not rendered as the application would provide an additional 

variable and therefore greater complexity as the experiment was interested in 

humidity passage through a bale irrespective of protection; the experiment was

shielded from any light source.

Figure VI.11: Environmental Chamber with Containment Sleeve Sample

The objective of the laboratory experiment was to demonstrate the pattern in 

the time lag as moisture is transmitted through the bale, not to measure 

moisture content, but to determine the moisture in the atmosphere that is likely

to affect the straw. At the time of the experiment there had been no scientific 

data published concerning this topic.

The experiment was allowed to stabilise for a duration of 10 days in a NaCl 

regulated environment, generating a humidity of 72%RH, the salt solution was 

then exchanged for MgCl reducing the humidity of the chamber to below 
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40%RH. Once the mass of the sample had stabilised the MgCl was replaced 

with NaCl. The aim of the experiment being to isolate relative humidity as the 

variable and subject a mock bale to a dramatic and prolonged change, and to 

investigate the potential influence that relative humidity has on the moisture 

content of the straw irrespective of temperature and therefore dew point. By 

extending the cycles of a fluctuating relative humidity the experiment sought to

compare the findings to a real wall. It was hypothesised that the experiment 

would demonstrate the effect of relative humidity on the straw's internal 

structure and external surfaces.

VI.4.2-  Laboratory Study: Results

Figure VI.12 shows the results of the  relative humidity/temperature sensors 

used to record the transition of atmospheric moisture within the straw sample 

enclosed by a containment sleeve (Figure VI.10), plotting time (x-axis) against 

the overall percentage decrease in relative humidity as the experiment is 

changed from an environment of 70%RH to 40% (left-hand y-axis). The right 

hand axis provides the overall gravimetric analysis of the straw sample as a 

whole.
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Figure VI.12: Reduction of humidity within the sample

Figure VI.12 demonstrates the effect of reducing the relative humidity of the 

chamber atmosphere from 70%RH to below 40%RH on the chamber sensor 

(Figure VI.10): inlet sensor (referring to the sensor located 40mm from the end 

of the sleeve closest to the inlet of the chamber), the interstitial sensor and the 

overall moisture content of the sample, which drops from 14.5%MC to 10.2% 

over the course of the experiment. After 24 hours the chamber humidity has 

been reduced by 80% compared to 50% for the inlet sensor, the interstitial 

relative humidity decreases less rapidly, 69% of the moisture still remaining in 

the atmosphere surrounding the sensor. The rate of vapour movement slows as 

the straw approaches equilibrium with the Chamber atmosphere, the interstitial

reading taking around seven days to reach 100% vapour loss. The rate at which

the straw equilibrates demonstrates the efficiency of the straw bale to retain 

it's own atmosphere.
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It is worth noting that an NaCl generated environment was chosen as it 

produces a humidity within the bounds of safety for the straw, it was 

considered important not to allow any degradation to affect the straw and 

thereby introduce another variable. The spikes in the chamber sensor results 

are an effect of the chamber being opened in order that the sample's mass 

could be determined.

The MgCl salt solution was changed for NaCl on day 50 of the experiment as 

demonstrated by Figure VI.13 however, on two separate occasions the salt ran 

dry producing interesting results. On the introduction of the NaCl environment 

to the chamber the Inlet sample humidity rises rapidly gaining a 15% increase 

in vapour within three hours, the rate then slows, peaking at 21% before 

receding to an relative humidity of 15% as the salt solution runs dry. The 

interstitial relative humidity continues unabated however, suggesting that it is 

attempting to stabilise with the environment external to it thereby reducing the 

Inlet relative humidity which in turn reduces the Chamber relative humidity. The

moisture content of the sample also stabilises at a 15% increase in overall 

moisture.
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Figure VI.13: Increase of humidity within the sample

The experiment was ended on day 56 with the intention of analysing the 

information obtained in order to influence the method adopted for the test rig 

(section VI.4.4 p214). There are several points to note however, the results in 

the appendix (Figure X.16 p321) demonstrate a difference in the humidity rates 

between the Inlet and Outlet sample monitoring points. Although the sensors 

are both located 40mm from either end of the containment sleeve the Inlet 

sensor is affected more readily by the changing humidity. One explanation of 

this could be due to an air flow of 0.5m/s through the chamber; air is blown 

against the inlet side of the sample but extracted from the outlet side. 

Alternatively it could be caused by differences in straw density, greater leakage

paths between the straw stems, or both in combination. 

In summary a pattern has been established providing evidence of a time lag; 

vapour transfer is restricted by the internal structure of the bale, the chaotic 

union of straw retarding the permeability. The experiment indicates also a 

model of vapour passage within the bale, and the attempt of the straw to 
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equilibrate with its surroundings distributing vapour evenly throughout the bale 

atmosphere. This would in theory disagree with Summers et al.'s (2003) 

assumption that moisture tends to migrate and condensate randomly however, 

the experiment does not take into account temperature as a variable. Figures 

VI.14 and VI.15 also provided evidence to suggest a difference in effects of 

moisture on the internal structure and external surface, the generation of a 

time lag and the change in moisture content of the sample obtained by 

gravimetric analysis. 

The relevance of this experiment depends on the transfer of the knowledge 

gained in combination with a study of a real world environment with dynamic 

and oscillating environments and multiple confounding variables. The 

laboratory experiment exposed one sample to one run at one temperature, 

over an extended period of time, although the design of the experiment was 

intentionally designed to observe moisture transfer a comparison was also 

required with a real world environment.
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VI.4.3-  Test Rig study: Method

The results from the laboratory study (Section VI.4.2) entailed a study 

researching the effects of moisture transition within a straw sample however, 

the straw was subject to long periods of static humidities and temperatures 

which will not be present in a real world environment; a comparable study on 

the Test Rig was therefore initiated. Three iButton sensors were utilised, one 

placed within 10mm's of the external wall (access gained from the interior wall),

the second was placed centrally and the third 10mm into the internal side of 

the wall (Figure VI.14). 

Figure VI.14: B3.4 of Test Rig Location of  relative humidity/temperature Sensors

The aim of this particular study was to assess moisture in a dynamic system 

focusing on positions B3.4 and T2.5 singled out due to the influence of the 

topography surrounding the section of wall and the difference in moisture 

content measurements taken between the two points.

B3.4 exhibited consistently higher values of moisture content than T2.5 with 

respect to the Timbermaster measurements. The study of moisture interaction 

based on evidence obtained from the laboratory results (Section VI.4.2) for the 

relative humidity of the atmosphere in a dynamic system was required 
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therefore to verify transfer rates through the bale, between the straw and the 

atmosphere, and to assess the interaction of moisture with the external 

atmosphere through the medium of the protective render. The study was also 

designed to evaluate the relationship between the measuring devices and the 

straw or bale atmosphere, and to provide information to influence the 

development of a model.

VI.4.4-  Test Rig Study: B3.4: Results

To contribute to the understanding of moisture transfer within a bale, position 

B3.4 and T2.5 of the Test Rig were studied with the insertion of three iButton 

sensors located towards the exterior of the wall, interstitially, and at the interior

side of the wall (Figure VI.14). The relative humidity of the internal and external 

atmospheres were also recorded. Note that the adoption of Equation VI.1 

(p192) is shown as the type of Resistance Meter used followed by the subscript 

for the desired calibration temperature: TM20 therefore refers to results 

measured using the Timbermaster meter standardised for 20oC.

Figure VI.15 shows the results of the study for B3.4, the rainfall appears as 

short-lived events on the back of light winds (lower graph) and is assumed 

therefore as inconsequential with respect to wind driven rain; the effect of the 

render, the overhanging roof and immediate topography providing protection. 

The sunlight at this point of the year is cast on the module for around 4-5 hours

per day between 10:00 and 14:00 (Table V.1 p158), the temperature lag is 

demonstrated in Figure VI.15 (central graph) and the MC20 drops by 0.6% over 

the 15 day course (upper graph). 
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Figure VI.15: Overall Moisture Transfer Rates of B3.4

An unexpected outcome was provided by the External Wall relative humidity, 

fluctuating in opposition to the atmospheric relative humidity. The vertical black

line has been placed on the graph (Figure VI.15) to illustrate the peak, or 

trough, in the readings highlighting the data recorded by the External Wall  

relative humidity/temperature sensor. It shows that, as the temperature of the 

External atmosphere and wall temperature increases the Interstitial Wall and 

External atmospheric relative humidity drops (see Figure VI.14 for sensor 

location details).
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The external wall relative humidity increases however, in one case by up to a 

relative humidity of 9% over a 20oC range suggesting that the render is acting 

partially as a storage medium for the warming moisture laden atmospheric air. 

Figure VI.16 focuses on the data depicted by the black vertical line in Figure

VI.15 detailing a period of 24 hours. During the time period between 06:00 and 

11:00 the relative humidity of the External Wall atmosphere rises along with the

temperature suggesting that there is an influx of moisture. At 11:00 the relative

humidity begins to decrease, yet the temperature continues to increase 

peaking at 17:30; this pattern is repeated throughout the study.

Figure VI.16: Focussed Comparison
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It is perhaps more informative to remove the variable of temperature and view 

the wall in terms of absolute humidity, the measure of the absolute mass of 

moisture per meter cubed of air. Figure VI.17 demonstrated a distinct difference

between the External Wall humidity and the Interstitial, External Atmosphere 

and the Internal Wall atmosphere, supporting the hypothesis that the render 

acts as a storage medium for moisture. The straw immediate to the external 

straw/render interface (Figure VI.16) is subject, by midday, to a higher 

proportion of moist air than the other measurements portray, indicating that 

moisture may be driven into the bale from the effectively wetted render as the 

sun comes into contact with the surface of the wall at around 10:00. The 

humidity subsides at 16:00 confirming that solar gain maybe influencing the 

moisture pattern when compared to the relationship between the internal 

atmosphere and the straw behind the internal straw/render interface.

Figure VI.17: Absolute Humidities of B3.4
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If the interaction was purely between the straw and the bale atmosphere 

without render then there would be little distinguishable difference in the 

External Atmosphere humidity and the External Wall humidity as demonstrated 

by the comparison of the Internal results and by the experimental results in 

section VI.4.2 (p208). However, it may be argued that the internal render is not 

subjected to an intense wetting drying regime as experienced by the external 

render from dew and rain, and therefore does not hold moisture to the same 

degree. The external straw/render interface is however subject to a greater 

availability of moisture and thus suggests that moisture has moved into the 

area from a greater source. This greater source may be the straw itself, as the 

straw warms it releases moisture into the atmosphere effectively raising the 

humidity and drying the straw, but it is impossible to discount the render 

effectively acting as a storage medium for moisture as the straw is likely to 

release moisture at a far slower rate, especially moisture that is contained by 

the internal cellular structure of the plant.

The absolute humidity for the External Wall straw/render interface (Figure VI.17)

suggests that there is a source of moisture greater than the external 

atmosphere, a comparable may be drawn between the External and Internal 

atmosphere and, Internal and External wall results. Although the Internal render

is only one layer thick and punctured by a hole to allow for insertion of the 

Balemaster probe, potentially affecting the results, the frequency of oscillation 

is similar in the Internal Wall as the Internal Atmosphere thus suggesting that 

there is no further source of moisture other than that provided by the 

atmosphere.

From these results it is possible to suggest that the external render is acting as 

a reservoir for moisture; moisture condenses from the high relative humidity of 

the warming morning atmosphere, at around 90%, onto the surface of the 
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render as the atmospheric temperature rises exceeding the dew point of the 

cooler render; this continues until sunlight begins to heat the render surface at 

around 11:00. Figure VI.16 shows that by 12:00 the temperature of the Exterior 

Wall has increased beyond the temperature of the External Atmosphere. 

Beyond 11:00 there must now exist a driving process generated by the solar 

gain that lowers the wall's relative humidity but increases the absolute humidity

until 15:00 by which time the sun is no longer heating the render surface, and 

the temperature of the module therefore decreases (Figures VI.16 and VI.17). 

The moisture is now passed back into the render from the warmer straw 

immediate to the cooling external render surface to vaporise or condense back 

into the cooling atmosphere.

Figure VI.18: South facing elevation of Test Rig

The effect of dew is one cause of External Wall moisture content, a secondary 

cause is from the protection offered to Module-Block B3 by the topography from

wind driven rain. There is a comparative lack of air movement towards the base
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of the Test Rig at Module-Blocks B2 and B3 in contrast to T2 and T3. The area is 

sheltered (Figure VI.18) by a high hedge and log store (see also Figure V.13 

p144), T2 and T3 exhibit less overall moisture content than the lower blocks 

and although the upper blocks receive less direct sunlight due to the 

overhanging roof section the movement of air is increased. The log store acts 

as a wind break for the lower blocks allowing the development of Sphagnum 

moss on the bricks piled to the corner, Sphagnum grows best in shaded high 

humid environments (Fletcher, 1991).
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VI.4.5-  Test Rig Study: T2.5: Results

To provide a comparable to the study of Position B3.4 (Section VI.4.4), T2.5 was 

analysed (Figure VI.19); this module-block is less 'protected' by the topography 

and the results show a far closer relationship between the External wall, 

Internal wall and Interstitial relative humidities. The External wall relative 

humidity fluctuates by around ±2.2%RH whereas, B3.4 observed ±5%RH flux. 

T2.5's straw lost moisture at around 0.23%/day, B3.4 at around 0.04%/day over

the periods analysed reflecting a gradual drop in relative humidity. 

Figure VI.19: Test Rig T2.5

The analysis of the External straw/render interface relative humidity and 

Interstitial wall relative humidity shows a similar outcome to each other. The 
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results are as expected with reference to basic description of this method of 

construction and of the analysis of relative humidity transition as detailed in the

containment sleeve (section VI.4.2 p208) where the Interstitial relative humidity

follows the External Wall relative humidity with a time lag. The analysis would 

suggest that the render is not acting a storage medium for moisture and must 

therefore be subjecting the straw immediate to it to less wetting, a greater 

drying regime, or combination of the two.

Figure VI.20: T2.5 Absolute Humidity

The analysis of the Absolute humidity (Figure VI.20) shows that the External 

Wall is not subject to any greater moisture source, supporting the case for the 

render as the cause of the increase in moisture content for the External Wall 

straw. One point to note is that the External Atmosphere is suppressed 

compared the Internal Atmosphere, this suggests that the Internal Atmosphere 

is not directly related to the External despite the unsealed nature of the 

construction and may be a reflection of the Internal Render moisture content.
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VI.4.5.1   Summary

Lawrence's Equation (Equation II.1 p61), equating relative humidity to moisture 

content of straw, returns a similar analysis to the TM20 results (Figures VI.21 and

VI.22). The equation must however be used with care, in a laboratory 

environment relative humidity remains constant for a set temperature, yet 

applying the equation to a rapidly oscillating condition, as experienced by the 

Internal Wall in Figures VI.21 and VI.22, could provide an error in recordings. 

How should a scenario where the internal bale atmosphere relative humidity is 

affected by a rapidly changing environment be described in relationship to 

straw moisture content, if the internal cellular structure of the straw is not 

affected by the vapour?

Figure VI.21: B3.4 conversion of relative humidity to moisture content using
EquLaw

Figure VI.22: T2.5 conversion of relative humidity to moisture content using
EquLaw
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The rate at which moisture will adsorb, absorb and desorb into, onto or from 

straw will affect the Lawrence Equation and any other calculation if variables 

are inconsistent. Figure VI.23 details the entirety of the laboratory experiment 

from the Preliminary Experiments (Section IV.3 p114), showing the moisture 

content by mass to the above graph and the log of the moisture transfer rate 

(percentage moisture content per day) to the underneath. The moisture 

transfer data was initially multiplied by 1000 in order to fit it to the graphical 

log display.

Figure VI.23: Moisture Transfer of Preliminary Experiments

The most apparent observations, ignoring the use of negative log, are on days 

-41 and +21, the Straw Bundles and Probe Tips are removed from the oven and

placed directly into the environmental chamber, attaining high initial absorption

and adsorption results, compared to a less dramatic increase in relative 

humidity from 80% to 85% (day 8). The straw samples on day -41 attain a 

reading of 4.15 equating to a 14.1%MC/day increase; utilising Equation VII.2 

below.
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The experiment officially started on day 0 however, checks and conditioning 

was carried out prior to this, hence the -42 days. A less incremental increase in 

relative humidity demonstrates a reaction, as shown on day -14, the straw 

samples attain 3.5 equivalent to 3.5%MC/day. The comparison between the 

wood-block probes and the compressed straw probe on day 72 suggest that the

closer the moisture content of the material to the humidity affecting it, the less 

potential it has to be modified.

Equation VI.3: Moisture rate conversion factor

In summary the transfer rates of moisture through a straw bale is a complex 

process involving not only the passage of moisture through the internal bale 

atmosphere but in the interaction between the straw and the atmosphere. The 

straw is affected by temperature and the location of the moisture is a 

significant part also, if the moisture is mainly affecting the surface of the straw 

then the rate at which it can be released into the atmosphere is rapid in 

comparison to the moisture held by the cellular structure. The rate at which 

moisture can be passed from the atmosphere to the straw is also apparent from

the results, the potential of the atmosphere is important, a small disparity may 

not be enough to change the moisture content of the straw. This appears not to 

be the case in reverse, the desorption cycle.

The effect of render in an area of poor air circulation can have a potentially 

negative effect on the straw acting to retain moisture whilst monitoring devices 

must be able to interpret any effect. The device must be able to monitor the 

whole width of the bale in order to provide data to allow interested parties to 
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make an informed assessment, or to inform a model capable of generating 

advice based on historic data and prediction.

VI.4.6-  Monitoring Site

Due to the change in research direction from the study of multiple case studies 

defined in Section IV.1 (p105) the identity of the Preliminary Case Study at Loch

Tay changed to become a monitoring site. A weather station (Watson W-8681: 

Appendix Figure XI.1 p323) was installed in early 2011 located 15 meters to the

south-east of the house; the data logger was placed in the living room but did 

not record any data during the first summer and was replaced in the 

September. It should be stated that this is not a precision instrument and 

results shall be viewed as general data localised to the immediate area. The 

introduction of the weather station provided more data from which to make an 

informed decision regarding reasons for moisture content within the walls. The 

recorded data could then be plotted against the wood-block probe data in order

to form a comparative study identifying areas that are influenced by certain 

weather patterns.

Prior to the analysis of results, as Carfrae et al. (2009b) and Wihan (2007) 

suggest, it was assumed that the south-western wall would exhibit a lower 

moisture reading than the north-western as it had been afforded extra 

protection in the form of timber cladding, although one drawback may have 

been that any moisture finding a path behind the cladding may remain trapped 

generating an area of high humidity. The sun may also affect the moisture 

content of the southern walls whilst the northern has far less solar gain; solar 

gain was not measured during this study however.

The establishment of the Monitoring Site offered the ability to assess a real 

world scenario comparing it against other data obtained by this thesis. Figure

VI.24 shows the house outline and orientation with an overlay detailing the 
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direction and strength of the prevailing wind (m/s) together with the amount of 

rain (mm/hr) set on a logarithmic scale. The time scale for data collection must 

be analysed with caution however, as it does not encompass the whole three 

year study as some data was lost and other weather situations may have 

occurred when monitoring was not undertaken.

Figure VI.24 Rain and wind in relation to the house

The results that are available suggest that the majority of the rain comes from 

a westerly direction combined with strong winds, a total of 6277mm of rain was

recorded falling at wind speeds of over 20m/s from the north-west opposed to a

maximum wind speed of 5m/s depositing only 43mm of rain from the south-

east, hence a conclusion may be drawn that the north-westerly and south-

westerly façades would be the most susceptible to external moisture 

penetration from wind driven rain.
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Figures VI.25 to VI.28 show the uncompensated results obtained by the 

Timbermaster; the data has been grouped together in relation to floor level and

wall direction (Figure IV.4 p109), plotting date (x-axis) against moisture content 

(y-axis) with the addition of the 15%MC safety factor margin and a Bezier 

algorithm highlighting the trend of the data. Analysing the results it is of 

interest to note the fluctuation in results, peaking during the summer months 

and descending into a trough in January/February, this may be as a product of 

temperature on the analysis of the results as discussed in Section VI.3.2.1 

(p190) as the moisture content was expected to peak during the winter months 

due to the wetter weather patterns. It is possible that the comparative warmth 

of the house offset against the temperature of the wood-block at the point of 

measurement within the wall has generated an error however, no temperature 

data exists as evidence to support this hypothesis.

In June 2011 (Figure VI.25) wood-block probes 01 and 02 were replaced as it 

was thought there may be a problem with the contact between the timber and 

the metal rods (Figure IV.1 p106), the replacement probes never regained the 

previous moisture content level, continuing however, to exhibit a similar wave 

pattern at a reduction of 4%MC. This may also be a reflection of the results 

discovered during Experiment 2 (Section IV.3.2.1 p121), the effect of a 

hysteresis as the new probes approaching the bale moisture content from a 

lower starting level, whereas the initial probes had dropped in moisture content 

with the bale level. This phenomenon may cast doubt as to the data obtained in

the first peak in 2009, the bales may have reached a higher level of moisture 

than suggested by the wood-block probes results.
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Figure VI.25: Northwest Façade Focussed Results Figure VI.26: Northeast Façade Focussed Results

Figure VI.27: Southeast and Southwest Façade Focussed Results Figure VI.28: First Floor Focussed Results
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The overall trend of data (Figures VI.25 to VI.28) suggests a rise in moisture 

content in early 2009 immediately post construction followed by a drop in the 

moisture level of all the probes to a permanent record of under 15% moisture 

content post 2010. It was hypothesised that the north-west wall would exhibit 

an elevated moisture content in comparison to the other façades, especially the

clad walls, as it is unprotected from ensuing wind driven rain (Figure VI.25). 

However, there appears to be a difference in moisture content values post 2010

throughout the data stream with the exception of Probes 09 and 10.

An encouraging result can be seen from the analysis of Probes 09 and 10, 

located in the clad wall on the ground level. The two probes show a reduced 

level of moisture together with a depressed flux despite facing the majority of 

the wind driven rain. It could therefore be proposed that the lean-too is 

providing this additional protection, by removing the affect of rain impacting 

the surface of the cladding.

Since February 2010 no readings have surpassed a moisture content of 15% 

when assessing the bezier curve, yet the individual readings can oscillate by 1-

2% in the course of a couple of weeks posing the following questions:

• Are these fluctuations a product of the resistance meter, 

environmental conditions, or a true representation of the straw? 

• Are the wood-block probes able to react quickly enough to the 

changes in the straw moisture content? 

• Is a schedule of monthly readings enough; would the Monitoring 

Site have benefited from a more intensive study?

Overall the findings suggest that there is no moisture related problem with the 

building at the particular monitoring points, all readings falling below the Risk 

factor threshold set at 15%MC and appear to show no future concerns. The 
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hypothesis concerning the added protection of cladding of the south-west wall 

compared to the unclad north-west wall, both subjected to driving rain, returns 

a null response as the evidence does not suggest a difference between the first 

floor results, probes 13 and 14, and probes 1, 2 and 4. However, the south-west

ground level does have the benefit of an additional lean-too acting as a second 

overhanging roof section, the results do not conclusively suggest that the 

reduction in moisture levels is caused by the additional protection, but could 

suggest that the addition of a breaker or screen between the oncoming driving 

rain and the affected wall could be of benefit. There must however be adequate

provision for air circulation as described by Jolly (2000) concerning a critical 

assessment of a West Coast construction (Section II.6 p81) and supported by 

the research conducted in Section VI.4.4 (p214) upon analysis of the Test Rig.

The main weakness of this study included the inability to perform destructive 

testing and to conduct a highly concentrated monitoring assessment. Questions

raised and concerns highlighted by this investigation given the inherent 

weakness of the study suggested that further investigations were required.
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VI.5   Summary

The Focussed Results chapter aimed to investigate in detail the gaps in 

knowledge as identified in Section II.8 (p87) and to refine previous experiments 

presented in the Preliminary Results chapter part II (Chapter IV-) based on the 

collated evidence. Continuing the previous chapter a refinement of the density 

experiments was conducted utilising repeated load cycling to obtain a 

'stabilised' record of results. The results show that direct use of a resistance 

meter cannot confidently describe the risk associated with straw bales from 

moisture unless the density can be measured and a compensation factor 

applied; the compressed straw probe offers this ability.

If the compressed straw probe was to be an effective monitoring solution the 

resistance meter reading accuracy had to be compensated for temperature 

also, Section VI.3 demonstrated that the GM equation (Equation II.5 p73) was 

ineffective for straw. In Section VI.3.2.1 a new compensation factor (Equation

VI.1 p192) was developed for the Timbermaster based on the temperature of 

the measuring point of the straw, Section VI.3.3.1 presents Equation VI.2 (p194)

a conversion equation for the Timbermaster and Balemaster (USA version).

The equations (VI.1 and VI.2) were checked against the previous Test Rig 

resistance meter study data producing a conversion error of ±0.3. A second 

Test Rig study (Section VI.3.5.1 p198) showed evidence of transient moisture 

relating to the temperature variance of the bale, the impact of direct sunlight 

providing energy which lead to the moisture transfer experiments (Section VI.4 

p202).

The moisture transfer laboratory experiment (Section VI.4.2 p208) 

demonstrated, over a prolonged study, an effective time lag when a straw bale 

is subject to a dramatic sustained change in humidity. Evidence also suggested 
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that moisture does not migrate and condense randomly in a bale, and that the 

internal cellular structure of the straw reacts to humidity at a different rate to 

the external surface. In order to elaborate on the laboratory study a similar 

experiment was conducted in the Test Rig comparing two sections of the South 

facing wall (Sections VI.4.4 p214 and VI.4.5 p221). The evidence suggested that

the render acts as a reservoir for moisture in areas that have little or no air 

circulation which affects the straw as direct sunlight heats the render, driving 

the moisture into the external straw/render interface. The moisture that is 

driven into the bale is mainly transient and upon cooling of the render is drawn 

back towards the external atmosphere.

In evaluating the Focussed Results chapter, the monitoring devices require 

interpretation for a number of complex factors. The interaction of moisture with 

straw involves not only the passage of moisture into the bale atmosphere from 

an external source but a requirement by the straw to equilibrate with the 

surrounding atmosphere. The difference in the moisture content of the internal 

cellular structure of a stem when compared to the external surface in a 

dynamic system of oscillating temperatures and humidities was evident 

throughout the results. Each monitoring device records a different aspect of the

moisture content of straw and although individually the devices can prove 

accurate in a steady state environment a combination of readings is necessary 

to evaluate the risk to the straw fully, hence the compressed straw probe 

provides a solution.

The compressed straw probe does however provide only part of a solution, 

combined with an understanding of the complex interactions of moisture and 

straw together with other variable such as temperature, and a model, the 

ability to quantify and evaluate the risk posed to a straw bale construction can 

be achieved.

Page 233 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

Chapter VII   Model
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VII.1   Introduction

It is proposed that, for a model that evaluates the risk posed to straw from 

moisture to be produced, the complexity of the moisture mechanics must be 

understood with relation to the monitoring method being used to quantify it. 

The Focussed Results chapter utilised the benefits of the compressed straw 

probe in addressing density and temperature issues, producing equations to 

increase the accuracy of data acquisition. The Focussed Results chapter, 

combined with the results and observation made in the Preliminary 

Investigative chapters, established a model and description for moisture 

transfer within a straw bale.

The Model chapter combines the knowledge gained in the previous chapters 

and assembles it to produce a meaningful equation combining the density and 

temperature calculations, before evaluating each type of monitoring device for 

usefulness and effectiveness. The risk assessment system proposed in Figure

III.3 (p100) is then revisited and undergoes modification with respect to the 

knowledge gained, feeding into the overall model which is in turn evaluated 

against the Test Rig data.
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VII.2   Density Analysis

From the density results presented in the Focused Results chapter (Section

VI.2.2 p182) it was demonstrated that moisture content readings stabilised 

under repeated load cycles. With the ability to compensate resistance meter 

results for temperature (Section VI.3 p185), the density experiments were re-

evaluated aiming to combine the method of compensating for temperature with

density thereby increasing the accuracy of the resistance meter and the ability 

to interpret the results. The adoption of an equation to compensate for this gap 

in knowledge would provide greater confidence in readings and evaluations of 

straw's moisture content.

VII.2.1-  Density Calculations

When adjusted for a standard of 20oC (Equation II.5 p73) the density 

experiment results for the NaCl environment (Section VI.2.2.2 p183) suggest 

that readings of below 145kg/m3 would fit a constant gradient between density 

and moisture content, above which the data suggests that the line takes a 

second order polynomial trend tending beyond the results indicated by the 

gravimetric analysis. Figure VII.1 utilises the straight line results of the density 

experiment data generated by the MgCl and NaCl environments to produce a 

graph demonstrating the fan effect hypothesis (Figure V.38 p176). Due to the 

lack of experimental data confirming the polynomial trend and the likelihood 

that straw used in construction will not conform to densities beyond 145kg/m3  

the straight line data was extrapolated to gain an intercept point with the 

gravimetric analysis. The intercept density for 15.3%MC (NaCl) is 152.7kg/m3 

and for 10.3% (MgCl) is 160.7kg/m3.

The underlying aim of the fan effect hypothesis is to provide an assessment 

tool to compensate for the density of the straw by using the data from the 
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Focused Experiments (Section VI.2.2 p182). Applying a line of best fit (Figure

VII.1) to the data for the MgCl experiment Run03 (29-05), used as the most 

stable data set, Equation VII.1 was produced, the NaCl experiment Run03 (01-

06) results produced Equation VII.2.

Figure VII.1: Density Fan Effect

Equation VII.1: Straight line equation for MgCl Run03 (2905)

Equation VII.2: Straight line equation for NaCl Run03 (0106)
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The intercept of the two equations (-97.95,-2.15) was then used to develop a 

formula capable of producing a series of gradient lines and therefore the fan 

effect (Equation VII.3).

Equation VII.3: Establishing an equation from the results obtained

In extracting the points at which the gravimetric analysis and experiment 

results intercept, Equation VII.4 was generated taking a straight line between 

the two gravimetric points and extrapolating it over the course of the graph, 

thus providing a line in which to determine the equivalent gravimetric analysis 

reading for any given density and resistance meter reading.

Equation VII.4: gravimetric analysis intercept equation
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yd = mx + c

m=
y + y i

d + x i

c = y − (m∗d)

yd = MC compensated for density
m =Gradient of line
c = Constant
y = Measured MC compensated for temperature
d = Dry density of measured straw
x i = Intercept of experiments x−axis (−97.95)

y i = Intercept of experiments y−axis (−2.15)

y =−0.638x + 112.7
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In essence it is possible to gauge the potential steady state gravimetric analysis

result from the knowledge of the resistance meter and density results by 

reading from the graph. Equation VII.5 represent a mathematical description to 

calculate the equivalent gravimetric analysis based on a single reading taken 

by a resistance meter reading for an established density of straw.

Equation VII.5: EquGA: Gravimetric analysis intercept equation
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CGA = (dGA ∗ k ) + ( y − (k∗ d))

dGA =
112.7 − ( y − d ∗ k )

k + 0.638

k = ( y + yi
d + xi )

CGA = MC of the straw atGA intercept
dGA = Density of the strawatGA intercept
k =Gradient of line
y = Measured MC compensated for temperature
d = Dry density of measured straw
x i = Intercept of experiments x−axis (−97.95)

y i = Intercept of experiments y−axis (−2.15)
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VII.2.2-  Application of Density Calculations

Re-application of the data from previous experiments produced Figure VII.2 

however, the fan effect remains unconfirmed whilst based on only two data 

sets, and therefore results must be interpreted with this assumption applied. It 

is therefore suggested that this area requires a greater independent study 

evaluating in detail the reactions of straw under alternative conditions of 

temperature, sample size and with a greater diversity of moisture contents.

Table VII.1: Results from FRC section 2.2

Probe TM20 (%MC) Density (Kg/m  3
d) GA (%MC) EquGA (%MC)

CSP1 12.9 100 14.2 16.0

CSP2 11.0 90 11.2 15.3

CSP3:Run5 16.0 120 19.9 18.3

CSP3:Run7 19.5 120 24.8 21.7

Figure VII.2: Application of Experimental Data
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Equation VII.5 was applied to the compressed straw probe temperature 

experiment results described in Section VI.3.2.1 (p190). Table VII.1 details the 

results, combining the Timbermaster records corrected for 20oC (TM20) with the 

established dry density values, the original gravimetric analysis is compared to 

the results predicted by Equation VII.5 (p239).

The TM20 results underestimate the gravimetric analysis value as discussed in 

Section VI.3.2.1 however, upon conversion of the data using Equation VII.5 

compressed straw probe 1 and 2 overestimate the gravimetric analysis whereas

CSP3 stipulates a undervaluation of the relationship. The lack of repeated load 

cycling of the straw prior to loading of the probe body creates a potential for 

this error as the straw is not under 'stabilised' conditions as demonstrated in 

Section V.7 (p171). Compressed straw probes 1 and 2 maintained previously in 

a stable environment are subjected to a dynamic situation and the difference 

can also be explained by the time lag created by the cellular structure in 

equilibrating to the external atmospheric relative humidity.

The development of Equation VII.5 has little relevance to a direct assessment of

a straw bale construction unless a method of obtaining the density of the straw 

at each monitoring point can be made. In the development of the compressed 

straw probe however Equation VII.5 is of value; as the density of each 

compressed straw probe can be established, and a correction factor applied to 

the resistance meter results, a more accurate assessment of the construction 

could be made depending on further studies undertaken to confirm this 

hypothesis.
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VII.3   Monitoring Device Evaluation

The evaluation of the monitoring devices forms the backbone of the thesis 

including the knowledge concerning: how the devices work, how the data 

should be interpreted, and perhaps most importantly the shortfalls of each. This

section therefore discusses the individual monitoring devices or techniques 

applicable to straw bale construction with the aim of informing the model and 

addressing the precautions required to avoid possible misdiagnosis.

VII.3.1-  Temperature

Alone the monitoring of temperature with a digital thermometer placed at 

intervals throughout the bale will provide an assessor with the knowledge to 

describe thermal efficiency and will also act as a warning signal signifying the 

onset of degradation. Unusually high temperatures are associated with micro-

organism activity (Summers 2003) as the straw is decomposed however, in the 

case of high temperature associated with degradation it will be too late to save 

the straw and therefore this monitoring method is not recommended as a sole 

indicator of risk, although in combination with other methods temperature can 

be used to increase accuracy and thereby confidence. The use of room 

temperature and temperatures external to the construction are also instructive.

VII.3.2-  Weather Stations

A Weather Station is a valuable addition to the analysis of a structure when 

providing a data input into a model as Wihan (2007), Grmela (2010) and 

Bronsema (2010) conclude. Obtaining weather patterns within the immediate 

area of a monitoring site offers an insight into the potential causes of problems,

Figure VI.24 (p227), and highlights significant weather events that could 

potentially be correlated with these problems. Determination of air movement 

in protected sections of a construction can also provide ￼benefit as discussed in 
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Section VI.4.4 (p214) together with an account for the exposure to wind-driven 

rain.

VII.3.3-  Gravimetric Analysis

Gravimetric analysis is the measure of the mass of the straw where the variable

is moisture; it can be a destructive method of analysis confined mainly to 

laboratory assessment, or in extreme circumstances analysis of a construction 

(Goodhew 2004, Holzhueter 2009). The method of analysis depends upon the 

amount of moisture present at the time of analysis however, this may not be an

accurate reflection of the immediate moisture content in a dynamic 

environment, as demonstrated in Section VI.3.2.1 (p190). The external surface 

moisture content of the straw is subject to rapid change by adsorption and 

desorption, the internal cellular structure and internal stem surface of the straw

on the other hand is comparatively delayed by the rate at which absorption 

occurs.

The external surface of a straw stem is highly dynamic in relation to moisture 

exchange adapting quickly to the surrounding atmosphere, yet in the case of 

high atmospheric flux the internal cellular structure is less able to equilibrate. 

With reference to the experiments conducted in this thesis it is concluded that 

the potential for the air to affect the cellular structure depends on whether the 

straw is undergoing absorption and desorption or, adsorption and desorption, 

the later being the fastest of the processes (Section VI.5 p232). 

The rate at which the internal cellular structure equilibrates affects the 

gravimetric analysis reading. The rate is in comparison to a resistance meter 

reading, or relative humidity equivalent moisture content calculation, which 

takes account of either surface moisture content or atmospheric vapour 

(Section VI.3.2.1 p190). The rate at which the straw's gravimetric analysis 

changes in a dynamic system can be viewed in the context of a historical record
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depicting conditions prior to a reading when compared to a resistance meter 

reading and should not be valued as an immediate indicator of moisture 

content (Section VI.5 p232).

In conclusion the gravimetric analysis in a steady state environment is a 

valuable tool, yet it can also be used to provide evidence as to the environment

recently imposed on the straw in a dynamic system. The evidence is due to the 

comparatively slow rate of absorption and desorption from the internal cellular 

structure compared to a surface moisture content reading; as obtained by a 

resistance meter. The draw back as Table VII.1 (p240) indicates is in the ability 

to provide an immediate and accurate moisture content reading. A gravimetric 

analysis reading from either a wood-block probe or compressed straw probe 

should only be used to assess the risk posed to a construction with the correct 

interpretation based on recent history.

VII.3.4-  Wood-Block Probes

The accuracy of the wood-block probes was researched in Section IV.3.1.1 

(p116) showing the probe tips under a desorption phase returning an error of 

±1%MC within five days of a raised moisture content however, when subjected 

to an absorption phase errors of -2% to -4% were recorded after one month 

(Figure IV.11 p122). This time lag illustrates a weakness in utilising oak as the 

timber of choice together with the time lag of a wood-block probe under rapidly 

rising moisture condition within a bale, reducing the confidence in the ability to 

highlight a severe problem within an adequate time period (Figure II.7 p70). The

restriction to the monitoring of only one immediate point within a wall is a 

concern also as the probe is effectively monitoring the straw in the immediate 

surrounding area and is incapable of providing a detailed assessment of a 

section of bale or, the overall wall.
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The research conducted on temperature effects for the resistance meters 

highlighted the requirement for the temperature at the point of measurement 

to be acquired before adjusting the readings (Section VI.3 p185). Caution is 

advised when wood-block probes are intended to be used in a construction and 

it is suggested that further studies are conducted on the temperature equation 

for timber (Equation VI.1 p192); the results in this thesis are bound to straw 

only.

The study of the straw and an equivalent resistance meter reading 

demonstrated that the density of the straw affects the results, although not 

directly associated, it was noted that the timber expanded and contracted with 

moisture content suggesting that contact may be lost with the probe under low 

moisture content conditions. Maintaining contact with the probe tip is naturally 

essential, yet it was observed also that different degrees of pressure placed on 

the contact rods produced differing results.

￼Wood-block probes offer a cheap and reasonably accurate method of 

monitoring a construction and with correct interpretation can be used with a 

high degree of confidence, therefore in conclusion the history of the moisture 

content should be tracked and as a safety guideline an additional 4%MC should 

be added to readings taken under adsorption conditions, whilst regarding the 

potential for delay in observing a rapid change in straw moisture content.

VII.3.5-  Resistance Meters

Resistance meters have a certain ability that differs from other monitoring 

devices, the Balemaster Probe with either the Timbermaster or Balemaster 

meters attached will provide a measure of the path of least resistance across 

the straw medium, most likely to represent the level of moisture to the external 

surface rather than the integral cellular structure of the straw. The readings are 

however not without potential inaccuracies, temperature at the point of 
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measurement (Section VI.3 p185) and density (Sections VI.2.2 p182 and VII.2 

p236) are significant influencing factors.

It must be noted that Equation VI.1 (p192) corrects the moisture content 

reading obtained for straw only and no further work was conducted to evaluate 

any other material. A potentially important difference in the measurement of 

timber and straw includes the underlying structure of the material, obtaining a 

resistance reading through the cellular structure of timber can produce a 

different reading compared to one obtained across the surface of a material 

such as straw.

It is concluded that a resistance meter should not be used directly to make an 

assessment of a straw bale construction without the calibration equations 

discussed in earlier chapters (Section VI.3 p185). It must also be considered 

that the resistance meter reading provides an instantaneous reading of the 

material at that particular point in time. In the case of direct measurement of 

straw, with the incorporation of the density and temperature equations, the 

overall risk to straw from moisture can not be obtained from a one off 

measurement, in order to perform an adequate survey the history of the straw 

must be ￼known. The history will then inform the interested parties of changes 

over a course in time, the combination of a gravimetric analysis and resistance 

meter assessment is an effective technique in the evaluation of Risk.

Another point to note is in the difference between the use of the Balemaster 

probe and the use of rods as used in the wood-block probes and compressed 

straw probe. The Balemaster probe will measure the path of least resistance 

down the length of a straw stem due to the way it is inserted into a bale (Figure

VII.3). The rods create in straw a partial separation between several individual 

stems thus relying on continuous contact between the electrodes. It remains an

Page 246 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

unresearched preliminary observation and this thesis has assumed that it has 

negligible influence on results.

Figure VII.3: Difference in measurement methods between Balemaster probe and
Rods

VII.3.6-  Relative Humidity

The assessment of humidity as an accurate reflection of the moisture content is

subject to a similar evaluative conclusion as the gravimetric analysis (Section

VII.3.3). In a laboratory environment under sustained humidity and temperature

a straw sample will provide a reading of steady state; the humidity will be 

comparable to the moisture content: as in Lawrence et al's equation (Equation

II.1 p61). If the humidity is altered the time taken for the straw to react to the 

change is two fold, the external surface responds rapidly however, the internal 

structure has a pattern of lag, the time influenced by the phase it is subjected 
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to, desorption or absorption, and the potential of the atmosphere to force the 

change.

Although relative humidity can be used without a conversion to moisture 

content as a guide to the Risk posed to a straw bale construction it remains 

that the moisture content is easier to read and understand due to relative 

humidity fluctuating dependant upon the influence of temperature. Assessing 

the application of isothermal studies within this thesis highlighted several 

disparities between the results portrayed in the literature and the conversion of 

relative humidity to moisture content at high levels and in dynamic situations 

(Table VII.2). These are addressed under the Discussion chapter rather than in 

the Literature Review in order to make an informed evaluation based on the 

studies conducted within this thesis.

The literature in Table VII.2 does not comment upon mould development at the 

higher relative humidities with respect to the Isotherm studies, in evaluating 

the methods adopted the straw took around 10 days in most experiments for 

the mass to stabilise however, using isopleth studies it can be demonstrated 

the there is a high potential for mould to develop within this time. For highly 

xerophilic moulds it could be expected, at relative humidities above 80% and 

temperatures of 20oC, for spores to begin germination within eight days (Figure

II.8 p70) and for mycelium to grow at a rate of over 0.1mm/day (Figure II.7 

p70). Increase the level to 90%RH and spores may germinate within two days, 

mycelium growing at a rate of 1.2mm/day.
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Table VII.2: Comparison of Isotherm studies

Researcher Page
ref.

Basis Pre-set
RH%

MC% Results Temperature
conducted (  o  C)

Medium Sample
Preparation

Results,
wet/dry basis

Duggal and
Muir (1981)

3 - 70
80
90

14 (Emp.)~16.3
20 (Emp.)~25.0
28 (Emp.)~38.9

15
(5-35)

Wheat
straw

Individual
GA after

Wet ~Dry

Straube
(2002)

10 Lamond and
Graham
(1993)

70
80
90

15 (Emp.)
20 (Emp.)
31 (Emp.)

21 Grasses Individual
GA after

Dry

Wihan (2007) 49 Bigland-
Pritchard
(2005)

70
80
90

14 (Emp.)
19 (Emp.)
29 (Emp.)

20 Straw Individual
GA before

Dry

Lawrence et
al. (2009a)

2766 EquLAW i=1.6 70
80
90

14.6 (Emp.)
20 (Emp.)
33 (Emp.)

5-26 Wheat
Straw

Individual
GA before

Dry

Lawrence et
al. (2009b)

2766 EquLAW i=1.0 70
80
90

12 (Equ.)
14.7 (Equ.)
20 (Equ.)

- Wheat
Straw

Individual
GA before

Dry

Carfrae et al
(2011)

159 - 70
80
90

12 (Emp.)
15.5 (Emp.)
20 (Emp.)

23 Wheat
straw

Hysteresis
GA before

Dry

Individual/Hysteresis: samples were subjected either an Individual set environment and experienced no other or were cycled through a 
range of humidities.
GA after/before: Sample's gravimetric analysis was obtained after or before the experiment by drying sample out completely in oven.
Emp: information based on empirical data
Equ: Information obtained from equation
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It could therefore be suggested that the experiments be repeated and 

measures taken to ensure no mould develops thereby clarifying the results 

obtained at higher relative humidities; possibly in an inert atmosphere with 

sterilised straw. Further work based on the doubt that this highlights is therefore

suggested.

Table VII.2 portrays three differing results, demonstrated by Carfrae, Duggal 

and Muir, and Bigland-Pritchard. There are two different experimental 

procedures, Carfrae cycling one sample through a range of humidities 

demonstrating the hysteresis effect and Bigland-Pritchard subjecting one 

sample to a static relative humidity, both drying the samples in an oven prior to

the experiments; the procedures are discussed in Section II.2 (p58). One 

experiment that does not dry the straw initially was performed by Duggal and 

Muir, presented in wet basis, and has been converted to dry using Equation I.4 

(p39) for the purpose of this section of the investigation. 

Duggal and Muir's experiments suggest that the equivalent moisture content 

for wheat straw is significantly higher than the other authors discovered. 

Previously concerns were raised by drying straw prior to conducting 

experiments (Phanopoulos et al. 2000), the effect may be that the straw's 

internal cellular structure is disrupted by the ￼process of extensive drying, thus it

will not return to the mass equivalent compared to straw that has not 

undergone extensive exposure to heat. Phanopoulos et al. note debris to the 

surface of the straw post drying and although there is no publication of the 

results the thesis noted changes to the smell, texture at a macroscopic scale 

and colour changing to deep yellow-brown from bright straw-yellow. It is 

therefore suggested that any experiment reliant on obtaining the mass of a 

sample performs the gravimetric analysis at the end of the experiment; an area

of study recommended for future investigation.
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Figure VII.4: Conversion of relative humidity compared to moisture content reading
of compressed straw probe and Timbermaster

￼Figure VII.4 shows the results of the study for B5.7 which included a relative 

humidity/temperature iButton sensor (located at the interstitial position within 

the Test Rig), a compressed straw probe and the Timbermaster data (TM20) 

adjusted for 20oC; the results using relative humidity have had a bezier curve 

applied for presentation purposes thus cutting down the noise and producing a 

clearer illustration. The lower graph illustrates the conversion of relative 

humidity with the Lawrence equation (Equation II.1 p61), demonstrating under 

and overestimation of the moisture content when compared to the TM20 (no 
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density calibration) and compressed straw probe mass readings. It is 

hypothesised that this disparity is generated by the inherent differences 

between the moisture regimes that occur in laboratory experiments opposed to 

field investigations.

Readings taken from June 2011 to October 2011 show the bale atmospheric 

temperature oscillating between 15-20oC with relative humidities ranging 

between 65-75%, the compressed straw probe remaining between 16-17%MC 

and the TM20 obtaining measurements between 12.5-16%MC. The Lawrence 

equation (i=1.6) based on empirical laboratory data suggests the moisture 

content varies between 13-17%. In December 2011 to June 2012 the relative 

humidity within the bale gave readings in excess of 90%RH equating to 

readings of 25-60%MC (Eqution II.1 p61), when compared with figures from 

Table VII.2 90%RH should return a reading of 20%MC (Carfrae et al. 2011, 

Lawrence et al. 2009b) or 29%MC (Lawrence et al. 2009a, Wihan 2007).

Equation VII.6: Lawrence et al. equation rearranged

In order however to take advantage of isopleth studies the relative humidity is 

required; back-calculating EquLaw (i=1.6) provides Equation VII.6, but as 

Lawrence et al. (2009b) note there is more work required in the development of

the equation to confidently correlate ￼the two figures. Figure VII.5 illustrates the 

use of EquLaw together with the application of the Risk Assessment System 

(Figure III.3).
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Figure VII.5: Conversion of moisture content to relative humidity using EquLAW

The issue affecting the relative humidity conversion equations is of moisture 

transfer between the straw surface, straw cellular structure, and the 

atmosphere. From April 2012 (Figure VII.4) the relative humidity remains 

between 82-96% however, the TM20 and compressed straw probe readings drop

suggesting that the bale atmosphere is not influencing the moisture content of 

the straw as the temperature increases. There are four processes affecting 

these results:

• Firstly the temperature is rising providing energy to the bale.

• Secondly the internal structure of the straw stems decreases in moisture 

content as demonstrated by the compressed straw probe mass 

conversion.

• ￼Thirdly the straw stem surface drops in moisture content shown by the 

TM20 results.
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• Finally the relative humidity of the bale is subject to two separate effects.

Initially the bale relative humidity decreases in mid May 2012 triggering 

a drop in the compressed straw probe and TM20 measurements. 

However, in June 2012 the relative humidity increases, yet the 

compressed straw probe results continue to decrease suggesting that 

the bale is loosing moisture to the external atmosphere, but this is 

replaced by the addition of moisture desorbing from the internal cellular 

structure of the straw, due in part to the temperature increase raising 

the potential of the bale atmosphere to hold a greater amount of 

moisture. The TM20 results from June 2012 suggest that despite the rising

relative humidity the straw surface is at a stable or slightly increasing 

moisture content.

Greater clarification is therefore required concerning the potential for moisture 

absorption and desorption of the internal structure of straw with respect to 

oscillating humidity and temperature together with a detailed analysis of 

moisture transfer through a bale. The use of relative humidity sensors in a 

construction should be viewed with caution in high relative humidity scenarios if

the temperature is also raised. The study of B5.7 shows that relative humidities 

in excess of 90% corresponded with temperatures below 10oC and moisture 

content's of between 20-23% signifying a 'Medium Risk' outcome when viewed 

against the Risk Assessment System (Figure III.3 p100). The straw at 

temperatures below 10oC is at little risk from micro-organism attack, yet if 

temperatures increase and relative humidity remains high then the risk is 

increased (Jolly 2000, Summers 2003).

A weakness that relative humidity sensors share with wood-block probes is the 

restriction to a one point analytic surrounding, the inability to analyse multiple 

positions or sections of a bale with one monitoring device. The cost therefore of
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monitoring a wall system utilising relative humidity sensors must be justified 

against the benefit of having a system installed. Further disadvantages include 

the sensor's limited life expectancy and the possible need to extract a failed 

sensor, a destructive process, together with the requirement for data-logging 

equipment to analyse results. 

The adoption of a relative humidity study to a construction or model however is

viewed as beneficial, it provides data concerning changes in moisture that may 

not be identified by analysis of the straw surface ￼or by mass measurement. In 

the case of Test Rig position B3.4 (Section VI.4.4 p214) evidence was provided 

to suggest that the render is potentially acting as a storage medium for 

transient moisture in areas of poor external air circulation. Further study is 

therefore suggested analysing the way in which relative humidity interacts with 

straw and also in confirming results presented in Table VII.2 corresponding with 

dynamic situations.

VII.3.7-  Compressed Straw Probes

Remaining under development the compressed straw probe has provided a 

method of analysing a straw bale wall through a linear section of bale, a 

resistance meter meter reading identifying the maximum moisture content in 

the width of a bale utilising the path of least resistance, a specific point within 

the bale, and an ability to describe the average moisture content of the straw 

throughout the depth of the wall by gravimetric analysis. This provides an 

advantage allowing the monitoring of the highest moisture content record 

through a bale, from interior to exterior, most likely to be generated towards 

the exterior straw/render surface, but providing peace of mind if this is not the 

case, together with an overall assessment of the moisture content level within 

the distribution, via mass measurement.
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The disadvantages of this method is in the identification of the exact position of

the resistance meter reading, and in using an average moisture content 

throughout the width of a wall, which may conceal high value moisture content 

readings. However, in utilising straw as the measurement medium there is less 

uncertainty concerning foreign material influence and the probe can be 

calibrated prior to installation with a known density and moisture content of 

straw, combined with an ability to record the straw's temperature. A further 

advantage of the compressed straw probe was discovered during experimental 

analysis of the probe, an optical (macro and microscopic) and olfactory 

evaluation which may be performed confirming the risk posed to the straw. 

Summers (2003), and Dick and Krahn (2009) also comment on elevated 

temperature and smell acting as an indicator to microbial degradation.

With further work this method of monitoring could be advanced, allowing the 

exact location of the maximum moisture level to be identified and with the 

potential for data-logging capacities to be linked to a piece of evaluative 

software to describe the risk posed to the construction. The development will 

depend somewhat on verification of the density calculations (Figure VI.1 p183) 

and the (Figure II.2 p52) ability to stabilise the straw in the probe body 

mimicking the repetitive load cycling (Figures VI.1 p183 and VI.2 p184).
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VII.4   Additional Evaluation

The model should have the capability to determine the difference between a 

high relative humidity caused by transitional moisture opposed to the actual 

straw moisture content, and a predictive ability to assess the outcome of a 

worst case scenario by recommending actions to be taken based on Isopleth 

studies.

VII.4.1-  Render

The transfer of moisture analysed in Section VI.4 (p202) assessed the 

interaction of moisture with straw through the protective render. The study was 

also designed to evaluate the relationship between the measuring devices and 

the straw or bale atmosphere, and to provide information to influence the 

development of a model.

As demonstrated by the laboratory results (Section VI.4.2 p208) the transfer of 

moisture through a bale is not a rapid process. Position B3.4 Figure VI.15 (p215)

illustrated this. The external straw render interface shows an increase in 

relative humidity on the 31st of May during a period of sustained high external 

atmospheric relative humidity, yet the Interstitial level of relative humidity 

decreases. In analysing the absolute humidity (Figure VI.17 p217) the external 

peak is offset from the other results indicating that the increased moisture 

content has no immediate impact on the interstitial relative humidity; an 

analysis supported by the Timbermaster results adjusted for 20oC over the 

course of the study which shows a drop of 0.6%moisture content.

If the rate of transfer is comparatively slow it remains that there must be an 

interaction between the straw and the surrounding air. Accepting that the 

transfer of moisture through the bale may have only a slight effect on the 

interstitial region of the bale over a short space of time, the concept introduced 
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in Section VI.4 (p202) concerning a sample of a bale of infinite proportions, may

be implemented. This is illustrated by Figure VI.7 (p199) the reaction to 

temperature of relative humidity and resistance meter measurements in which 

the moisture content of the straw and the atmosphere increased; it is therefore 

suggested that there is a greater ￼source of moisture influencing the internal 

bale atmosphere than the small amount transferred through the bale from 

external sources.

The structure and the internal surface of the straw stem provides a source for 

the subsequent moisture increase, yet these have not been monitored directly. 

Referring to Section VI.3.2.1 (p190), the Dynamic Temperature Tests 

demonstrate that drying a sample of straw rapidly will reduce the external 

surface moisture level however, the moisture locked into the structure cannot 

be released at the same rate and therefore a disparity between the resistance 

meter and gravimetric analysis is created. It is hypothesised that as the straw 

warms, it begins to release moisture from the internal structure of the straw 

thereby increasing the bale relative humidity, but as the air temperature is 

greater than the straw the additional moisture condenses back onto the 

external surface of the straw until an equilibrium is met; this equilibrium is 

described by the Lawrence Equation (Equation II.1 p61). As the temperature 

starts to cool from the external surface of the bale and if the external moisture 

level of the straw has dropped along with the relative humidity then the bale 

environment will attempt to equilibrate redistributing moisture throughout. This

explains moisture transfer through a bale and the reason as to why it is a slow 

process as noted in the Laboratory Tests Section VI.4.2 (p208) and due to the 

oscillations in temperature moisture may only condense on the straw cooling in 

the immediate area to a raised relative humidity.
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The direct impact of the render on the results is dependent on the situation, the

difference in readings between T2.5 and B3.4 Sections VI.4.4 (p214) and VI.4.5 

(p221) illustrate that in certain instances the render may act as a storage 

medium. In the instance of Blocks 2 and 3 the local topography inflicts a 

shaded area with little air movement thereby trapping morning dew. As the 

temperature of the moisture laden early morning external atmosphere 

increases moisture condenses on the cooler render that has not been warmed 

by solar gain. Once the sun falls on this section of the wall it will heat the 

moisture held by the render, vaporising it, an amount of moisture will pass back

to the external atmosphere, yet the remaining moisture will be driven into the 

straw/render interface behind. This does not ￼affect the rest of the bale and is 

unlikely to influence the moisture content of the straw permanently as the 

moisture in this region is transient. The transient moisture will be passed back 

to the render as the sun moves from the render surface and the temperature 

drops, becoming a point at which the vapour in the high relative humidity 

straw/render interface can condense back into the render; thus the moisture be

drawn away from the straw.

It is therefore important to consider: the impact of solar gain, areas of low air 

movement and the protective medium when evaluating data. These points 

must be addressed or recognised in order for the model to be used to a 

sufficient degree of confidence.
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VII.4.2-  Isopleths

The development of a model requires a predictive tool capable of utilising the 

data presented by the monitoring devices to assess possible future outcomes; 

based on either historical data or worst case scenarios. Isopleth studies offer a 

method by which to implement this however, the equations and graphs 

presented in the Literature Chapter Section II.3.2 (p68) represent a worst case 

scenario (highly xerophillic moulds). The worst case scenario would therefore 

present a safety threshold for implementation into a model, the combinations of

which together with other studies, models and knowledge, could advance a 

more accurate and robust modelling technique.

The adoption of a technique to assess the potential for growth of mould under 

dynamic conditions is discussed by Bronsema (2010, pp.45), pointing out that 

isopleth experiments are conducted in steady state environments and may 

therefore “overpredict mould growth”. Therefore, the adoption of isopleth 

studies into a model could be viewed as an early warning system alerting 

interested parties of the potential Risk associated with the current internal wall 

environment.
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VII.5   Model Development

In order to provide an accurate and meaningful assessment of a straw bale 

construction a model is required with the capability of using combinations of 

monitoring devices to evaluate the risk posed to the straw and provide 

interested parties with confidence in the construction method.

VII.5.1-  Fuzzy Implementation

As discussed in the Methodology Chapter (Section III.3 p96) using a Risk 

Assessment System may be of use in defining the level at which moisture 

becomes a problem (Figure III.3 p100). However, the simplicity of this method 

of identification, although effective as viewed in the contour plan, is of limited 

value when a detailed picture is required. Utilising a fuzzy method of analysis 

maintains the simplicity whilst adding a degree of sophistication capable of 

describing the data with more accuracy (Figure VII.6).

Figure VII.6: Implementing Fuzzy Risk Assessment System

The graph (Figure VII.6) demonstrates how the model can be improved to 

provide information in which to base an informed decision, the x-axis 
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presenting the moisture content of the straw whilst the y-axis represents a 

probability decision; see Table VII.3.

Table VII.3: Evaluation of Graph and Fuzzy Risk Assessment System

MC (%) No Risk Low Risk Medium Risk High Risk

12.00 100%

15.00 100% 0%

16.25 50% 50%

17.50 0% 100% 0%

20.00 50% 50%

22.50 0% 100% 0%

23.75 50% 50%

25.00 0% 100%

28.00 100%

Table VII.3￼ demonstrates the outcome for the Fuzzy Risk Assessment System. 

The system responds to the uncertainty surrounding the absolute values to 

which straw is susceptible to decay. The idea behind the system is to use 

commonly used descriptive language to explain the Risk posed to the straw, 

and to provide an assessor with a tool by which to more easily describe the risk 

posed; thereby make an informed decision (Table VII.4).

It is generally accepted that readings of below 15%MC are safe from decay, but 

it is more informative to say that a reading of 19%MC is quite concerning (70% 

Low Risk) and a little unsafe (30% Medium Risk). This could also be put as: the 

risk to the straw is Concerning verging on Unsafe, rather than stating it is at 

Low Risk because it falls within the categorical moisture content range between

15% and 20%.
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Table VII.4: Descriptive language

No Risk Low  Risk Medium Risk High Risk

Safe Concerning Unsafe Dangerous

Code-Black Code-Purple Code-Orange Code-Yellow

Risk-free Uncertain Risky Hazardous

Efficient Reduced Efficiency Inefficient Harmful

Effective Low Effectiveness Ineffective Vulnerable

Strong Poor Weak Critical

A moisture content reading of 25% is agreed by most experts as the critical 

level of moisture, possessing the potential to be highly damaging over 

extended periods of time. Attaining a reading of this level, or above, will signify 

a dangerous situation on which to base a detailed evaluative survey and to 

predict a likely outcome. The major priority in this circumstance will not be 

further monitoring, but in identifying the problem and solving it. The Fuzzy Risk 

Assessment System forms only one part of a much more complex model; there 

is a requirement for the provision of temperature analysis, which, is used to 

define the Risk posed to a construction based on the level of moisture present 

in the straw.
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VII.5.2-  Main Model

Using the Fuzzy Risk Assessment System (Figure VII.6 p261) and based on the 

evaluation and decisions made from the experiments conducted for this thesis 

Figure VII.7 was produced, depicting a control system for assessing a straw bale

construction. It relies on the collection and processing of data from multiple 

calibrated data sources, to perform an evaluation of the data. The correct 

interpretation of readings from each type of monitoring device is therefore vital 

in producing an informed output defined by the basic Risk Assessment System 

presented in general terms of the Contour Plan.

Figure VII.7 assumes, at levels of moisture below 20%, temperature is not a 

significant factor, but is not to be ignored and must therefore be included in the

evaluation on which ￼concluding advice is based. The advice given by the model 

should include the history of the last month depicting whether the increase of 

moisture was sudden, and therefore showing the early signs of a potentially 

major fault, or a slow progression. The inclusion of the Fuzzy Risk Assessment 

System will provide greater accuracy and confidence in describing the risk, and 

if supported by weather station data may enhance understanding.
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Figure VII.7: Main Model
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With temperatures over 10oC, based on isopleth studies for highly xerophilic 

moulds, and moisture contents in excess of 20%, an evaluation of 'High Risk' is 

given (Code-Yellow). The categorisation of this reading is due in part to the 

uncertainty concerning the Risk posed to straw with elevated levels of moisture 

and temperatures that may promote mould development. The history of the 

monitoring position is required to make a categoric assessment as to how long 

the straw has been at this moisture level, and at what temperature, together 

with an evaluation based on isopleth studies. 

There are two forms of advice in the scenario of moisture content's in excess of 

20% and temperatures above 10oC, either, fix the problem if there is little risk 

of mould development, or perform remedial work. In the event of a Code-

Orange, 'Medium Risk', there is a matter of urgency to locate and fix the 

problem based on advice; taking into account: isopleth studies, historic weather

patterns ￼and predictive climatic seasonal adjustments based on average data 

for the year. The time basis is less critical than the Code-Yellow, but requires an 

understanding of the reasons and potential outcomes. Hourly measurements of 

the monitoring devices are suggested given the level of concern and associated

risk.

The model presented here is the culmination of the research presented in this 

thesis; requiring a detailed knowledge of the monitoring devices chosen to 

assess the risk to the construction. Under the application of the Fuzzy Risk 

Assessment System, and a historical assessment method, interested parties are

able to use a tool by which confidence is promoted. The Test Rig and Monitoring

Site have therefore been used to test the model.

Page 266 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

VII.6   Model Evaluation

The following section assesses the application of the model presented in 

Section VII.5 (p261) utilising the Test Rig and Monitoring Site as test cases in 

order to establish the model's validity.

VII.6.1-  Evaluating the Test Rig

Module-block B5 was selected for assessment as a continuation of the 

Preliminary Investigation Chapter, Part II (section V.4.3 p159). The investigation 

introduced, into the Test Rig, a bale that had suffered previous elevated 

moisture levels. Equations MC20 (Equation VII.4 p238) and Timbermaster to 

Balemaster calculation (Equation VII.5 p239) were applied to the data 

producing Figure VII.8. The contour plan has also undergone modification with 

the removal of 'Day readings taken' and the addition of a time-line placed 

underneath the plots.

Figure VII.8: Block B5 Contour Safety Plan
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Figure VII.8 shows the Risk posed to the straw in positions 4 and 7 on Day 0 as 

at a 'Medium Risk', and rapidly developing to a level of 'High Risk' after render 

is applied (See Figure V.26 p160 for uncompensated early data). The hypothesis

presented in Section V.4.1 (p139)suggested that the use of a bale with a high 

starting level of moisture in a construction would create an area of sustained 

moisture, and of weakness in the construction. This would permit pioneering 

micro-organisms to capitalise on the advantage thereby promoting further 

breakdown by aggressive secondary and tertiary organisms. By January 2011 

however, all positions in Block B5 signified levels of moisture posing 'High Risk',

and by April 2011 all dropped to warn of a 'Medium Risk' environment; Block 5 

received a 'No Risk' designation by June 2011. After June 2011 positions 1,4 and

7 showed no weakness for sustained moisture retention when compared to 

elevated moisture levels beyond other positions and no signs of degradation, 

indicating that the original hypothesis was null in this scenario.

The return of null does not indicate however that installing wetted bales during 

construction should be recommended, on the contrary Figure VII.8 does not 

show enough information to make an informed decision. The data does not 

account for anything other than a level of moisture adapted for a reading of 

20oC. For a complete evaluation to be made the temperature of the straw, 

during this time period, must be taken into account. The external straw/render 

interface is also important, together with a prediction of mould development 

and spore germination; in conclusion the application of the model is required to 

provide further analysis. Another concern can be raised over primary micro-

organisms having removed sections of, or all, the lignin and silica; the straw 

may then be weaker in certain places, and therefore may be more susceptible 

to decay by more aggressive micro-organisms in the future (Section I.3.2 p29).
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The analysis of Position B5.7 is shown in Figure VII.9 detailing the adjusted 

Timbermaster and compressed straw probe readings. The readings have been 

compensated for temperature and density, and presented with the relative 

humidity and weather station measurements. The weather station has some 

missing data towards the end of 2011 however, the readings demonstrate that 

2012 received an increased amount of rainfall from a North/North-Westerly 

direction which had the potential of affecting Block B5; which faces west. Note 

that TM20D refers to a Timbermaster measurement adjusted for 20oC (Equation

VI.1 p192) and density (Equation VII.5 p239).

Figure VII.9: Analysis of B5.7
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Figure VII.9 shows individual data processed for evaluation as per Figure VII.7. 

Based on the overview presented by Figure VII.8 attention is drawn to day 350 

(end of September 2011) and a 'Low Risk' spike in the readings for B5.7. The 

spike should trigger an alarm if the moisture increase is due to a sudden 

change however, from further detailed analysis in Figure VII.9 the spike 

represents an increase in moisture content of less than 1% to 15.4%. This is 

recognised by the Fuzzy Risk Assessment System evaluation as safe, but of 

very slight concern (90% 'No Risk'-10% 'Low Risk').

From September (Figure VII.9) it can be noted that the temperature drops and 

relative humidity increases reflected by an increase in moisture measurements 

of the compressed straw probe and Timbermaster. The model (Figure VII.7) has 

therefore been implemented on a monthly review process assessing the 

findings on which to base further advice. The tables detailing Background 

Assessment Data (Figure VII.10) represent the review outcomes detailing: the 

maximum, minimum and mean values for each of the monitoring devices. The 

outcomes are presented by month, together with a log of events identifying 

important changes with reference to the Fuzzy Risk Assessment System.

In analysing the data for the tables in Figure VII.10, the Fuzzy Risk Assessment 

System classification reflects the highest recorded value achieved for the 

month concerned. However, the relative humidity maximum does not refer to 

the absolute maximum peak attained during the day, but the base value 

reading, the least value that could have affected the straw. The report proceeds

to make an evaluative summary based on the Holzheuter (2009) equation and 

isopleth studies (Wieland 2004) predicting spore germination and subsequent 

mould development (Figures II.7 and II.8 p70). The spore and mould 

development assesses the rate of moisture progression and shows potential 

outcomes of predictive scenarios based on temperature and time. The relative 
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humidity value is assessed with respect to Figure VII.5, and the equivalent 

moisture content is designated by the Fuzzy Risk Assessment System:

1. 71.6%RH ~ 15%MC,

2. 81.0%RH ~ 20%MC,

3. 86.3%RH ~ 25%MC.
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Figure VII.10: Implementation of Model: Report for B5.7 September 2011

Date Printed: 05/02/14 Page 272 of 335 Julian.Robinson2014.odt

Report for position B5.7: September 2011

Background Data Assessment

Device Min Max Mean
Alarms/Log

Date Level Duration No Low Med Hi

TM20 14.6 15.4 14.7 08/09
19/09

Below 15%
Above 15%

11 days
19 days

90
100

10

RH 71 76 74 01/09 Above 71.5% 30 days 10 90

CSPmass 16.9 16.9 16.9 01/09 Above 15% 30 days 20 80

CSPTM20D 11.7 12.6 12.2 01/09 Below 15% 30 days 100

DT 15 20  01/10 Below 20oC 30 days

Summary

TM RH CSPmass CSPTM

Spore germination potential None Low Low None

Mould growth potential None Low Low None

Rate of moisture change Low Low None Low

Straw smell & colour Good

Advice
Maintain daily monitoring cycle. Be aware of further increase in 
moisture content of monitoring devices.
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The assessment of September (Figure VII.10) suggests that there is a 'Low Risk' 

posed to the straw from moisture for the CSPmass and relative humidity readings.

When analysed by the Holzheuter (2009) equation (Equations II.3 and II.4 p68) 

and the isopleth studies (Wieland 2004; Figures II.7 and II.8 p70) no risk from 

degradation is reported. The straw in the compressed straw probe provides 

more information regarding smell and visual inspection returning a verdict of 

'good'. There is little in the way of advice from September to December's 

reports despite the rise in moisture content of the Timbermaster and 

compressed straw probe.

From the results in December (Figure VII.11), the Background Assessment Data 

shows a 'High Risk' alarm for the relative humidity however, the temperature of

the bale remains below 10oC minimising the risk to the straw, but the raised 

moisture content reduces the thermal efficiency of the wall. It is recommended 

that a solution to the high moisture level be sought based on the potential for 

micro-organisms to develop in the case of warming of the wall, either from an 

internal heat source, or a change in weather patterns.
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Figure VII.11: Implementation of Model: Report for B5.7 December 2011

Date Printed: 05/02/14 Page 274 of 335 Julian.Robinson2014.odt

Report for position B5.7: December 2011

Background Data Assessment
Device Min Max Mean Alarms/Log

Date Level Duration No Low Med Hi

TM20 19.5 21.5 21 05/12 Below 20% 5 days 20 80

RH 90.4 94.7 93 01/12 Above 86% All month 100

CSPmass 20.4 21.5 21 01/12 Above 20% All month 20 80

CSPTM20D 17.5 18.2 18 01/12 Below 20% All month 90 10

DT 2.2 9.1
 

01/12
04/12
20/12

Above 5oC
Below 5oC
Above 5oC

4days
16 days

Rest month

Summary

TM RH CSPmass CSPTM

Spore germination potential None None None None

Mould growth potential None None None None

Rate of moisture change Low Low None Low

Straw smell & colour Good

Advice
Although relative humidity suggests a level of High Risk of 
moisture within the bale. The low temperature will prevent micro-
organism development. There will however be a reduction in 
thermal efficiency.
Predictive Scenario: If temperature was to rise suddenly there 
may be an increased potential for mould development. Suggest 
four hourly cycle for monitoring of all devices and finding a 
solution to problem. 
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Figure VII.12: Implementation of Model: Report for B5.7 May 2012

Date Printed: 05/02/14 Page 275 of 335 Julian.Robinson2014.odt

Report for position B5.7: May 2012

Background Data Assessment

Device Min Max Mean
Alarms/Log

Date Level Duration No Low Med Hi

TM20 15.3 18.9 17 01/05 Below 20% All month 90 10

RH 83.5 96.5 90 27/05 Below 86% Rest month 10 90

CSPmass 18.6 20.2 20 11/05 Below 20% Rest month 80 20

CSPTM20D 15.3 16.1 15.6 01/05 Below 20% All month 90 10

DT 6.4 19.2  

01/05
08/05
14/05
20/05
22/05

Below 10oC
Above 10oC
Below 10oC
Above 10oC
Above 15oC

8 days
6 days
6 days
2 days
Rest month

Summary

TM RH CSPmass CSPTM

Spore germination potential Low Med. Low Low

Mould growth potential Low High. Low Low

Rate of moisture change Low Med. Low Low

Straw smell & colour Good

Advice
Maintain close monitoring of relative humidity and temperature, 
also smell of straw if possible. Microscopic inspection on a single 
random straw stem removed from the position surrounding the 
relative humidity sensor may demonstrate degradation.
Predictive scenario: If relative humidity continues to drop at 
current rate there will be no risk posed to the straw, however if 
temperatures continue to remain high there is a high potential for 
mould development and leading to remedial action.
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The temperature of B5.7 remains below 10oC until May 2012 (Figure VII.12). The

categorisation of risk at this point is given as: 'Medium Risk' from humidity 

however, returns a moisture content of over 25% when converted (Figure VII.5).

The temperature in May did however rise above 10oC for eight days, and above 

15oC for five days, generating a potential for mould development based on the 

Wieland and Holzheuter calculations. Further analysis of these results would 

suggest that the straw was not held for a sufficient time period to allow for the 

onset or development of highly xerophilic moulds.

The evaluation of the compressed straw probe and Timbermaster results (Figure

VII.12) show that there is; low to no potential for mould development, and that 

the moisture content drops steadily over the month. The advice therefore 

suggests as a precaution that the compressed straw probe be removed and 

inspected for signs of decay, with a microscopic analysis of the straw being 

used to confirm the integrity of the straw structure.

In conclusion the evaluation of the Test Rig using the Model (Figure VII.7 p265) 

agreed with the overall conclusion, based on the physical experience of 

monitoring the Test Rig,  that no decay was evident within the walls despite 

high moisture content being recorded.

The Model allows for the detailed evaluation of a straw bale construction to be 

undertaken, interpreting each individual monitoring device and producing 

advice to inform interested parties. It is proposed that the reports (Figures

VII.10 to VII.12) would only be highlighted, and therefore generated by a 

graphical user interface, if a potential problem was identified. This would in turn

enhance the use of the model as an efficient and effective monitoring tool.
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VII.6.2-  Evaluating the Monitoring Site

In evaluating the Monitoring Site and based on Figures VI.25 to VI.28 (p229), 

the Model (Figure VII.7 p265) produced a result of 'No Risk' to the straw from 

moisture for any of the probes. A final evaluation was therefore conducted at 

the end of the study removing four of the wood-block probes in order to verify 

the findings using the Balemaster, with probe attachment, calibrated for 

temperature, but not for density.

Wood-block probes 01 ,08 ,10 and 14 were removed from the wall and a 

Balemaster probe inserted. The moisture contents in the straw behind the 

internal render were recorded at a depth of: 25mm, 350mm (at the point of 

measurement of the wood-block probes), and 450mm (the external 

straw/render).

Table VII.5: Moisture content readings of Monitoring Site

Internal
Interface

100mm from
external

External
interface

Wood-block
Probe

WBP 01 10.5 16.6 22.3 10.8

WBP 08 10.5 17 23.2 17.5

WBP 10 10.2 13.6 17.8 9.6

WBP 13 13.2 18.6 20.7 13.6

￼It is evident from the results that the wood-block probes reflect only the 

moisture content in the immediate area. As the wood-block probes did not 

extend through to the external straw/render interface, a potential weakness in 

the monitoring of the construction had been identified. The high readings for 

the external straw/render interface however do not relay an entire picture. It 

was noticed, on extraction of the wood-block probes, a draft emanated from the

remaining hole, plus the Balemaster reading fluctuated by ±1.5% during the 

measurement for both the interstitial and external readings (the internal 

Page 277 of 335



Julian
Robinson

Quantifying and Evaluating the Risk Posed to
Straw Bale Constructions From Moisture

Nottingham Trent
University

readings produced a stable result). The initial concern was that an electrical 

field may be causing the ramping effect, this had been discovered in the early 

stages of the Test Rig trials when measuring in the vicinity of an electrical flex. 

In a telephone conversation with Jim Carfrae it was reasoned that the 

fluctuations may be due to the amount of render applied to the external wall; in

excess of 50mm lime. Jim suggested that this may be due to the weight of the 

render de-laminating from the straw interface and that the amount of render 

may also be prohibiting efficient drying. The identification of the fluctuation and

elevated moisture content, at the time of writing this thesis, is speculative, and 

will require further testing beyond the scope of this work.

In summary; although the Model could not be employed to the gathered data, it

has been concluded that the construction is at 'Low Risk' to 'No Risk' from the 

effects of moisture. The external straw/render interface, although 

demonstrating a 'Medium Risk' environment, is subjected to a yearly limewash 

which could potentially raise the pH of the straw, immediate to the straw/render

interface, producing too harsh an environment for the development of most 

moulds.
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VII.7   Summary

The model chapter began by producing a mathematical equation, Equation

VII.5 (p239). The equation obtains an equivalent steady state gravimetric 

moisture content from a temperature calibrated resistance meter reading; for a 

known density (Section VII.2 p236). The density of straw at a precise point of 

measurement in a construction cannot be determined however, the density of 

the compressed straw probe can. The compressed straw probe allows for the 

use of Equation VII.5  in generating a reading with a greater degree of accuracy.

The chapter proceeds to evaluating monitoring devices aiming to aid in the 

interpretation of the data provided by each device or method:

1. A temperature probe (Section VII.3.1 p242) can be used in conjunction 

with other devices to promote accuracy and warn of the process of 

decay. 

2. Weather stations (Section VII.3.2 p242) provide valuable additional data 

to the assessment of a construction.

3. Gravimetric analysis (Section VII.3.3 p243); due to the way in which 

moisture interacts with straw, gravimetric analysis can be used to 

identify recent conditions, but is less informative as an immediate study 

of straw moisture content in a dynamic system.

4. For oak wood-block probes (Section VII.3.4 p244) there is a concern over 

time lag in the absorption phase and it is recommended that a moisture 

content of 4% be added to the readings in this phase; as a function of 

safety.

5. Resistance meters (Section VII.3.5 p245) must be used with the 

temperature and density calibration equations in order to make an 

accurate assessment of risk. The meters obtain an instantaneous 
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reading of moisture in a straw bale, assessing, the external surface of 

the straw which is subject to rapid change, in comparison to the internal 

cellular structure.

6. Relative humidity sensors (Section VII.3.6 p247) offer the results of a 

bale atmospheric reading and must be used with caution when 

converting to an equivalent moisture content in a dynamic system. The 

availability of vapour in the air surrounding the straw may be transient 

and therefore may not affect the straw moisture content.

7. The compressed straw probe (Section VII.3.7 p255) is capable of 

measuring the moisture level through a section of a bale utilising both 

resistance meter readings (compensated for temperature and density) 

and gravimetric analysis. The distinct benefit of the probe is in the ability

to perform an optical and olfactory evaluation of the straw within the 

probe.

Each monitoring device must be used, with care being taken to evaluate the 

data, with respect to the device's abilities and restrictions. The use of the 

relative humidity sensors demonstrated the impact of render when subjected to

poor air circulation; illustrating transient moisture that could not have been 

analysed by other devices. It was concluded that the render (Section VII.4.1 

p257), when analysed with attention paid to the direct impact of sunlight, was 

acting as a storage medium for moisture. The moisture is driven into the 

external side of the bale by solar gain and then moves back into the render as 

the external surface of the render cooled.

In developing a model, isopleth studies offer an early warning system for decay 

however, it is important to note that the conducted studies (II.3.2 p68) are 

performed under steady state conditions with highly xerophillic moulds. The 

isopleth studies may therefore not demonstrate the true risk posed to the straw
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by moisture. To increase the impact of the model Figure VII.6 (p261), the Fuzzy 

Risk Assessment System aims to provide the model with a descriptive 

terminology based on the uncertainty of moisture limitations for straw.

Figure VII.7 (p265) represents the main model, illustrating the advice given 

under different scenarios and based on the correct interpretation of the data. 

The model together with the Fuzzy Risk Assessment System and contour plot 

(Figure VII.8 p267) was then applied to the test rig data summed up in a report 

for each individual monitoring position (Figure VII.10 p272). The report would 

only be produced for moisture contents in excess of 15% providing advice 

based on historical records and potential future events; for example a sudden 

rise in temperature uncommon for the seasonal average.

The chapter finishes by analysing the Monitoring Site (Section VII.6.2 p277) 

concluding that there was no risk to the construction at the point of 

measurement however, in a more comprehensive study it was demonstrated 

that the external straw/render interface  showed significantly higher moisture 

contents than 100mm's in from the external interface.

In conclusion the model is capable of providing a greater understanding of 

straw bale construction to interested parties by utilising commonly descriptive 

terminology to describe the risk posed to the straw.
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Chapter VIII   Conc   lusions
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VIII.1   Introduction

Straw bale construction, although not an established method of construction in 

the UK, possesses the potential to have a positive effect on a sustainable 

future. An increasing world population will consume more resources and require

more housing which in turn will place additional pressure on ecosystem 

services, unless a sustainable method of consumption and a balance between 

society, economy and the environment can be sort. In the UK, housing 

contributes to 27% of all the countries CO2 emissions of which 73% is used in 

the production of heat for space and water; by constructing thermally efficient 

housing the overall amount of CO2 generation could be cut, straw bale 

constructions offer a solution. 

To some degree a building should address social, economic and environmental 

needs, and should stand as a reminder as to the constructions historical 

significance. Straw bale construction uses a material that: can be locally 

sourced, is renewable (demonstrating a life cycle, due to the organic nature), 

and contains no inherent toxic elements. Intrinsically linked with human 

civilisation, wheat straw, a by-product of grain production, has been used as a 

construction material for thousands of years and with the advent of the baling 

machine allowed for the construction of the first straw bale constructions. 

Straw is effectively a carbon store, and depending on the farming methods 

adopted, may be used to increase biodiversity. Straw bale construction may 

also help engage people on a social and personal level, offering a sense of 

personal achievement and social union together with the power to educate, on 

a wider scale, as to the effects of a construction on ecosystem services; 

capitalising on people's curiosity in the construction method.
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VIII.2   Chapter Summary of Investigations

The problem with using an organic material is the propensity for it to be 

decomposed by micro-organisms in the presence of moisture. The Risk posed to

the straw by moisture is therefore one of the major concerns. Moisture can be 

measured by monitoring devices aimed at generating data by which interested 

parties may make an informed decision, yet uncertainty surrounding the 

susceptibility of straw to moisture remains under discussion. It is generally 

accepted that moisture contents of 15% and under will be safe from decay, and

that, dependant on time and temperature, levels above 25% will be at a high 

risk from decay.

The margins are unclear at moisture contents between 20-25%, some sources 

stating that there is virtually no risk from decay, others providing no comment 

on the subject area (Table II.1 p50 and Figure II.2 p52). The study of Isopleths 

(Figures II.7 and II.8 p70) show that moulds may develop within this range 

under certain conditions however, these studies are conducted under steady 

state conditions selecting certain types of spores and are therefore 

recommended for use in a model as part of an early warning system. The decay

of straw requires a community of moulds; pioneer moulds removing the plant's 

natural defence, lignin, followed by secondary and tertiary moulds with the 

ability to decompose the remaining cellulosic material, but decay kinetics is a 

complex subject to investigate. Signs of decay include production of CO2, 

discolouration of the straw, an increase in local temperature, and an obvious 

smell of decay.

Decay kinetics are difficult to predict, not only requiring the presence of 

moisture, but simultaneously the correct temperature range, time period for 

germination of spores, and nutrients (physical and chemical characteristics of 

the substrate) in order for the biological metabolic process of decay to be 
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stimulated. This explains part of the reasoning as to why there is an uncertainty

surrounding a definitive agreement to the risk posed to straw from moisture, 

highlighting a gap in knowledge. One of the aims of the thesis was to provide a 

resolution to the uncertainty whilst researching a definition to the term 'Risk'. 

The thesis also undertook to: interpret monitoring data and the relationship 

between monitoring devices and the straw, a description as to how moisture 

interacts with straw in a bale, and how the moisture is transferred throughout a 

bale.

The investigation began by assessing a Case Study using oak wood-block 

probes as the monitoring device of choice (section IV.1 p105); if successful the 

research was to be expanded to incorporate multiple case studies. The case 

study results were also to be combined with laboratory experiments (section

IV.3 p114) to verify the accuracy and effectiveness of the wood-block probes. It 

was noted during the laboratory experiments that a time lag exists in the 

absorption phase of the oak wood-block probes (Figure IV.10 p119), and that 

the difference in potential between the moisture content and the humidity of 

the surrounding air can affect the rate at which moisture is absorbed (Figure

IV.13 p124); the less the difference the less the potential for moisture transfer. 

Straw, due to the material structure, has a greater proportional surface area 

and proportionally less core material than timber, and therefore adjusts to 

changing moisture conditions at a faster rate (Figure IV.14 p125). 

The adsorption/absorption phase is the most significant for the purposes of 

monitoring, any delay with a reported increase in moisture may be the 

difference between destructive remedial work being carried out, or just locating

and solving the problem. Due to the issue of response rate noted during use of 

the wood-block probes the research progressed to develop a new monitoring 

device capable of combating the disadvantages encountered (sections V.2 p129
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and V.3 p133). The decision to develop a new monitoring device changed the 

path of the research from an investigation into multiple case studies to an 

investigation biased towards laboratory and test rig experimentation, also 

changing the case study to be viewed as a monitoring site.

Two new monitoring device concepts were devised to establish the moisture 

content of a straw bale construction. Firstly the relationship between the 

dimensional change in timber with regards to moisture (section V.2 p129); the 

experiment subjected timber to a range of humidities whilst measuring the 

change in diameter, along the grain, under a steady state temperature (Figure

V.2 p131). Further research was halted however, due to installation and data 

recording issues, in favour of the development of the compressed straw probe 

(section V.3 p133).

The compressed straw probe represents a contribution to knowledge allowing a 

resistance meter and gravimetric analysis  reading to be established both of 

which display different results when subject to a dynamic environment. Early 

investigations highlighted this disparity and hypothesised that the resistance 

meter reading takes account of the surface moisture of the straw only, whereas,

the gravimetric analysis encompasses the change in total mass; including not 

only the surface, but also the internal cellular structure (Figure V.4 p136). 

Further investigations were therefore required into both steady state and 

dynamic environmental conditions.

A field investigation was therefore designed to explore data produced in a 

dynamic environment. Due to the change in research direction a Test Rig was 

constructed with the ability to address the limitations of both: the monitoring 

site (24 hour site access, destructive testing and long term studies on 

potentially decomposing walls), and the laboratory studies (steady state 

environments, controllable variables and small scale investigations). The 
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preliminary study of the Test Rig introduced the first section of the model, a 

visual identification system (Figure III.3 p100) applied to a contour plot (Figures

V.17, V.18 and V.19 p148-149). The contour plot has the advantage as a quick 

assessment method for visualising the risk posed to the straw over a period of 

time however, the plot does not display detailed data for which further detailed 

investigations are required if a problem is highlighted (Figure  V.27 p161).

During the preliminary investigation of the test rig it was noted that although 

the bales had been stored in the same environment for several months the 

starting moisture content of each differed not just from bale to bale, but 

between each position within a bale. It was hypothesised that the variations in 

readings were due to confounding variables such as: temperature, density of 

the bale, and naturally different moisture contents of the straw.

During construction of the test rig the effect of render application was studied 

(Figures V.22 and V.23 p154) showing that the first layer of render both 

internally and externally affected the moisture content of the interstitial straw, 

whereas, the second application showed a reduced effect. A bale containing 

elevated levels of moisture (advised against by literature and in general 

practice) was included, surmising; that it would introduce an inherent weakness

into the building fabric. At the end of the preliminary investigation for the Test 

Rig (Figures V.26 p160 and V.27 p161) a hole was drilled into the bale that the 

elevated starting moisture. The straw was inspected finding no sign of decay 

despite the bale having experienced conditions of 'High Risk' moisture content 

at temperatures in excess of 10oC. A compressed straw probe was then inserted

into the hole to continue the monitoring process and demonstrate the onset of 

any decay.

The initial assessment of the Test Rig was conducted with a Balemaster 

resistance meter, with the Balemaster probe attachment, later to be replaced 
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by the Timbermaster. Both meters have the capability of automatically 

adjusting the reading for temperature with the addition of a thermocouple 

attachment. An experiment was conducted to verify the ability of the 

temperature adjustment equation and to calibrate both meters for use in straw 

(Section V.5 p163). The experiment produced evidence of a difference in 

readings between the Timbermaster and Balemaster; a cyclic pattern of 

temperature and moisture transfer within the bale, and the inaccuracy of the 

automatic temperature calibration inbuilt into the meters, or applied to the raw 

data using Equation II.5 (p73). 

The relationship between the resistance meter and straw is complex requiring 

compensation factors for temperature and density together with an 

understanding that the results provide a moisture content value based on the 

surface of the straw and not, unless in a steady state environment, an accurate 

reflection as to the total moisture content of the straw. Equation VI.2 (p194) 

converts a Balemaster reading to a Timbermaster reading; note that the 

Balemaster used throughout this research is the USA version. The application of

Equation VI.2 is illustrated by Figure VI.6 (p196) also showing the effect of 

Equation VI.1 (p192) that corrects any reading taken with the Timbermaster 

combined with the temperature at the point of measurement standardised for 

any desired calibration temperature.

Figure VI.7 (p199) demonstrated the process by which equilibrium within a bale 

is achieved. The experiment conducted in a dynamic environment (Test Rig) 

recorded moisture content from the Timbermaster with probe and  relative 

humidity/temperature sensor together with a temperature measured with a 

digital thermometer at the point of measurement. The evidence suggests that 

as the temperature rose in the bale the relative humidity and TM20 (Equation

VI.1 p192) measurement did likewise, contrary to an earlier hypothesis that the 
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straw moisture content was likely to drop due to the input of energy into the 

system. The revised hypothesis (Section VI.3.5.1 p198) suggested that 

transient moisture is driven into the interstitial bale by solar gain, raising the 

relative humidity and surface moisture content of the straw temporarily until 

the process is reversed.

Moisture transfer at a set temperature was studied in Section VI.4 (p202), a 

laboratory study demonstrating a time lag of relative humidity through a replica

section of bale. It was concluded that the structure of the bale (Section II.1.3 

p55), inhibits the migration of moisture, yet the bale will attempt to settle at 

equilibrium distributing the moisture throughout the system as observed in 

Figure VI.13 (p211) when the environmental chamber ran dry. The experiment 

also provided evidence suggesting that a difference in moisture interaction with

the straw exists; the internal structure of the straw differing in moisture content

from the external straw surface. The study into moisture transfer was then 

investigated in the test rig to evaluate a dynamic system.

In Section VI.4.4 (p214) the monitoring of the Test Rig provided evidence to 

suggest that render acts, in certain circumstances, as a storage medium for 

moisture, creating a reservoir for transient moisture that during solar gain 

(Table V.1 p158) is driven into the bale affecting the straw immediate to the 

external straw/render interface. The transient moisture as demonstrated in 

Section VI.4.2 (p208), cannot affect the interstitial relative humidity directly 

within the brief time-scale. The render acting as a storage medium is a product 

of poor air circulation (Figure VI.18 p219), dew forming externally to the 

construction on a surface that is cooler than the air temperature thus raising 

the moisture content. 

The rate at which moisture passes through and interacts with the straw in a 

bale is a complex process dependant on: temperature, bale density, disparity 
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between moisture levels, and location of the moisture. It is important to note 

that a small disparity between the relative humidity of a bale atmosphere and 

the moisture content of the internal cellular structure of the straw will not 

provide enough potential for absorption to affect the straw (Figure IV.13 p124).

The analysis of the Test Rig in comparison to the steady state laboratory 

experiments casts doubt on the oak wood-block probes and Lawrence's 

equation (Equation II.1 p61) to confidently and accurately reflect a dynamic 

environment relating to the moisture content of straw. Monitoring devices 

require the ability to react quickly to changing environments, such as a relative 

humidity sensor does, but be able to reflect the absorption-desorption and 

adsorption-desorption phases. Equation II.1 goes some way to promoting 

confidence however, the concept requires more development in the form of a 

model. Wood-block probes, with oak as the timber of choice, prove a useful and

potentially accurate method of monitoring, yet the issue of the time-lag must 

be addressed.

From the study of the monitoring site a conclusion concerning protection was 

established; cladding suppressed the diurnal variations of the results slightly, 

yet the addition of a lean-too suppressed and reduced the moisture content of 

the wall further by increasing protection from wind driven rain whilst 

maintaining air circulation.
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VIII.3   Model Summary

The Model Chapter sought to combine the knowledge gained by the thesis to 

provide a platform on which to 'Quantify and Evaluate the Risk Posed to Straw 

Bale Constructions From Moisture'. The chapter produced Figure VII.2 (p240) 

and sought to address the limitations of the resistance meter by marrying the 

temperature compensation calculation (Equation VI.1 p192) with a density 

correction model (Equation VII.5 p239). The density correction model adjusts a 

resistance meter reading previously compensated for temperature (RMt) for the 

dry density of the straw to an equivalent steady state gravimetric analysis 

however, the development of this method is only of use if the dry density of the

straw can be established for instance from a compressed straw probe.

There are a number of devices and methods available for the monitoring of 

straw bale constructions each with advantages and disadvantages, yet each 

requires the ability to interpret the results obtained:

VIII.3.1-  Thermometer 

A thermometer can be used to assess thermal efficiency and to warn of 

decomposition, but should be used in combination with another form of 

assessment. 

VIII.3.2-  Weather Station

A weather station offers the ability to observe localised weather patterns and to

correlate problems observed within the fabric of the construction with a 

weather event (Figure VI.24 p227). It can help instruct a model and be used to 

assess air movement surrounding a structure.
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VIII.3.3-  Gravimetric Analysis

Gravimetric analysis is a valuable tool for describing the risk posed to straw in a

steady state environment. It is however not a reliable or accurate way of 

obtaining an instantaneous reading of moisture in a dynamic system, due to 

the time-lag created by moisture movement through the internal cellular 

structure of the plant (Figure VI.4 p191). From a recent historical context 

however, it can illustrate previous conditions experienced by the bale.

VIII.3.4-  Wood-block Probes

The study of wood-block probes within this research project highlighted the care

required in interpreting data. It is recommended that a potential 4 points be 

added to the percentage result acquired in the absorption/adsorption phase 

and any dramatic change should be verified with a resistance meter to 

accommodate for a lag in the readings. It is important to note that the wood-

blocks analysed in this thesis were constructed of Oak; Ramin is identified by 

Carfrae as a competent replacement reducing the time-lag.

VIII.3.5-  Resistance Meters

A resistance meter whilst providing an instantaneous reading of straw moisture 

content requires compensation for density and temperature, and displays the 

result for the surface moisture level of the straw only. The surface moisture is 

subject to change at a rate determined by the energy within the system and 

the potential of the bale atmosphere.

VIII.3.6-  Relative Humidity

The analysis of humidity within a bale presents an issue when an attempt is 

made to convert the readings to an equivalent moisture content, Table VII.2 

(p249) demonstrates the different results obtained from isothermal studies on 
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which different methodological approaches were taken. Duggal and Muir's 

(1981) experiment stands out due to the adopted method, obtaining the 

gravimetric analysis at the end of the experiment and thus does not subject 

test specimens to extreme dry environments for sustained periods of time 

potentially disrupting the cellular structure of the straw; the drying of straw 

prior to experimentation requires further research to clarify the effect.

The evidence collected suggests that at relative humidities below 80% 

Lawrence et al's (2009b) equation (i=1.6) (Equation II.1 p61) is capable of 

converting relative humidity to an equivalent moisture content within a 

dynamic environment (Figure VII.4 p251). However, this thesis concludes that 

Isothermal studies should be re-evaluated taking into account the potential for 

mould development at high relative humidities. The study should also obtain 

the gravimetric analysis reading at the end of the study so long as the straw is 

in a steady state condition and the intracellular structure is in equilibrium with 

the surrounding environment.

In a dynamic environment the relative humidity of the bale atmosphere does 

not necessarily relate directly to the moisture content of the straw (Figure VII.12

p275) as the interaction depends on several variables including: position in the 

bale (the external render may be subject to moisture storage as illustrated in 

Section VI.4.4 p214), temperature, time, and potential difference in moisture 

content.

VIII.3.7-  Compressed Straw Probe

An advantage the compressed straw probe has over other mentioned 

monitoring devices is in the ability to monitor a section of a straw bale, from the

construction’s interior to the exterior straw/render interfaces; opposed to a 

single measurement position. The compressed straw probe also has the benefit 

as a removable device, allowing for the straw within the probe to be inspected 
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visually and sensed through olfactory perception, noting changes in colour and 

smell. The probe may also be disassembled and the straw inspected through 

microscopic evaluation. 

The compressed straw probe provides two sets of data, one an instantaneous 

moisture content reading acquired by a resistance meter, the second a 

measurement of recent conditions within the bale as obtained from the change 

in mass (Section VII.3.7 p255). The two data sets take advantage of the 

adsorption and absorption phases in a dynamic situation providing a monitoring

device that is accurate and informative.

VIII.3.8-  Isothermal Studies

Isopleth studies like isothermal studies are conducted in steady state 

environments and generally use preselected micro-organisms, therefore 

adopting this type of study into a model will demonstrate an over-prediction of 

mould development thus presenting an early warning system, but should be 

used with caution when basing a decision for destructive remedial action.

VIII.3.9-  Model

The implementation of the Fuzzy Risk Assessment System (Figure VII.6 p261) 

provides one of the contributions to knowledge utilising a descriptive language 

to explain the risk associated with the moisture level and addresses the 

uncertainty surrounding absolute values to which straw is susceptible to decay 

(Section II.1.2 p49). The Main Model (Figure VII.7 p265) is based on the Fuzzy 

Risk Assessment System, adding the caveat that moisture contents between 20

and 25oC must be below temperatures of 10oC to be classified at 'Medium Risk'.

The model seeks to categorise information and provide advice based on historic

trends, future scenarios based on previous seasonal weather data, a warning 

system to show the rate of moisture increase, and advice to suggest the 
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urgency of locating the cause of a problem, or the need for destructive remedial

action.
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VIII.4   Further work/Outstanding Questions

A number of research questions were raised during this research:

1. The identification of a cyclic system in Figures V.29 p165 and VI.7 p199 

questioned the affect of increasing and then decreasing the temperature

of a bale (section VI.4 p202); if the temperature of the straw in a bale 

was increased, and was then allowed to returned to the starting 

temperature, without loss of overall moisture, would the straw return to 

the original moisture content?

2. Further research is required to quantify the effect of the internal surface 

of a straw stem on moisture transfer (Figure V.6 p167).

3. Does the act of compression (Section VI.2.2.2 p183) affect the results of 

the density experiments?

4. Further development is required on the compressed straw probe and 

relating factors (confirmation of density and temperature calibration 

equations for the resistance meters, adaptation to remote monitoring 

and data logging capabilities) to allow for the correct interpretation of 

the data.

5. The model requires further testing in dynamic environments addressing 

desorption, adsorption and absorption effects.

6. A question remains as to the number of monitoring devices required in a 

construction and to verify the best locations to confirm adequate 

monitoring and provide confidence in the construction.

7. In identifying the way in which moisture interacts with straw, within a 

walling system, types of render should be analysed under the application

of the model. 
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VIII.5   Contributions to Knowledge

A lack of definitive agreement concerning the risk posed to straw from moisture

was highlighted in the summary of the literature chapter (Sections II.7 p84 and

II.8 p87) and discussed throughout the thesis, starting with a definition of the 

term Risk (Section III.3.1 p96). It is impossible to define an absolute point at 

which moisture will affect straw in a negative capacity due to the complexity of 

the variables. In order to define Risk a fuzzy method of analysis has been 

adopted (Figure VII.6 p261) providing the assessor with an ability to describe 

the risk through language and percentage risk providing a degree of 

sophistication.

The knowledge of how to interpret data provided by different monitoring 

devices involves an understanding of: the way in which moisture interacts with 

straw and is transferred through a bale environment, together with a 

knowledge of what the device is capable of recording; resistance meters 

measure surface moisture of straw, whilst relative humidity sensors reflect the 

atmosphere. 
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VIII.5.1-  Major Contributions

1. Main Model: Figure VII.7 p265 

A model capable of evaluating the risk posed to straw bale 

constructions signalling the conditions acceptable prior to the 

crossing of a performance threshold. 

2. Fuzzy Risk Assessment System: Figure VII.6 p261  

A system to quantify the risk posed to straw from moisture.

3. Contour plots: Figure V.17 and V.18 p148

Contour plots offer a quick reference visual display system to warn 

interested parties of previous and current moisture trends.

4. Compressed Straw Probe: Figure V.3 p134

Provides the ability to describe both instantaneous moisture content 

of the straw and a historical assessment of recent conditions together

with visual and olfactory data through a section of a bale avoiding the

issues of single point analysis.

5. Evaluation of monitoring devices: Section VIII.3 p291

The evaluation of monitoring devices relates to the overall risk posed 

to a straw bale wall and encompasses an understanding of how the 

data obtained should be interpreted and perhaps most importantly 

the shortfalls of each device.  

6. Moisture transfer within a bale: Section VI.4 p202

Determining the rate at which moisture will transfer through a bale is 

a complex process involving interactions with the surface and internal

structure of the straw, and is affected by temperature and density of 
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the bale. The straw in a bale will attempt to equilibrate with the 

surrounding atmosphere however, the straw in the centre of a bale 

will react at a slower rate to the external (Figure VI.13 p211).
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VIII.5.2-  Further Contributions

1. Moisture storage in render: Section VI.4.4 p214

In regions of poor air circulation, the render may act as a storage 

medium for moisture allowing for the generation of transient 

moisture.

2. Transient moisture: Section VII.4.1 p257

Transient moisture does not affect the straw in the bale significantly, 

but will be driven into areas of lower humidity in the external 

straw/render interface areas of the bale and will therefore be 

detected by relative humidity sensors. Transient moisture is a product

of moisture retention by the render and the impact of direct sunlight.

3. Heliodome: Table V.1 p158

The construction of a scale model, to evaluate direct sunlight 

obtained by measuring the path of the sun projected onto the model, 

provides an evaluative tool for assessment of moisture.

4. Resistance meter calibration: Equation VII.5 p239 

Equations were produced to switch between the Protimeter 

Balemaster (USA version) and Timbermaster readings (Equation VI.2 

p194) and to compensate for the errors produced by straw 

temperature and density.

5. Hydrophobic, hygroscopic and hydrophilic; Section V.6 p167

Water will bead on the external surface of straw however, the internal

surface of the stem will absorb liquid immediately; the internal 

surface (Figure V.35 p169) is not commented on in literature.
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VIII.6   Summary

In summary the model combines the understanding of moisture transfer and 

interaction with data interpretation of the employed monitoring devices. The 

model offers interested parties a method by which to assess the risk posed to a 

construction and therefore make an informed decision using current, historic 

and predictive values. The assessment of moisture levels and environmental 

conditions may promote the construction lifetime by identifying potential issues

prior to the onset of decay thereby increasing performance efficiency and 

reducing the need for repair leading to resource wastage and further CO2 

production.

In returning to the objectives of the research (Section I.1 p11); although there is

no clear definition as to the point at which moisture becomes an issue to straw 

(Section II.1 p47), the Fuzzy Risk Assessment System (Figure VII.6 p261 and 

Table VII.3 p262) provide a tool by which a description of risk may be made. In 

analysing the different strengths and weaknesses of monitoring devices 

(Section VII.3 p242) the innovation of the compressed straw probe provides a 

detailed monitoring device that can be used in a 'stand alone' capacity or linked

to a data logger. The compressed straw probe was designed to remove certain 

disadvantages experienced by other probes, but does not wholly replace the 

benefit of using a combination of monitoring methods to feed the model.

The interaction of moisture was highlighted as a major gap in knowledge with 

respect to straw (Section VI.4 p202), the resulting investigations revealed a 

complex system involving varying rates of adsorption, absorption and 

desorption dependant on the potential of the surrounding atmosphere. The 

investigations into moisture interaction lead to the identification of instances of 

transient moisture in renders exposed to poor air circulation (Section VI.4.4 

p214). 
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The final objective was to develop a visual identification system and model to 

promote confidence in straw bale construction and in different monitoring 

techniques; figures VII.7-VII.10 (p267-272) demonstrate the outcomes.

Table VIII.1: Addressing the Gaps in Knowledge 

Gap in knowledge Summary Reference

1 Agreement over Risk 
posed to straw.

Fuzzy Risk Assessment System. Figure VII.6
p261 

2 Unclear definition of the
term 'risk'.

Understanding of uncertainties and
analysis of known probabilities.

Section III.3.1
p96

3 Interpretation of 
monitoring device data.

Each device has individual abilities
and restrictions.

Section VII.3
p242

4 Relationship of straw to 
the monitoring device.

Correct interpretation of data 
required 

Section VIII.3
p291

5 How moisture interacts 
with straw.

Straw has an external hydrophobic
surface and a hygroscopic internal 
surface.

Section V.6
p167

6 How moisture transfers 
through a bale.

The rate of transfer depends on 
the potential of the surrounding 
atmosphere.

Section VI.4
p202

From the aims and objectives, and the literature review, six gaps in knowledge 

were identified (section II.7 p84); Table VIII.1 provides a brief description of how 

the gap was addressed together with a signpost reference.
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Figure X.1: Individual woodblock probes tip results (Resistance Meter)

Figure X.2: Individual woodblock probes tip results (gravimetric analysis)
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Figure X.3: Results of Density Investigation Inquiry 1
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Figure X.4: Preliminary Test Rig Data  B1 Figure X.5: Preliminary Test Rig Data  B5
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Figure X.6: Preliminary Test Rig Data  B2 Figure X.7: Preliminary Test Rig Data  T2
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Figure X.8: Preliminary Test Rig Data  B3 Figure X.9: Preliminary Test Rig Data  T3
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Figure X.10: Preliminary Test Rig Data  B4 Figure X.11: Preliminary Test Rig Data  T4
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Figure X.12: Preliminary Test Rig Data  B6 Figure X.13: Preliminary Test Rig Data  T6
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Figure X.14: Preliminary Test Rig Data  B7 Figure X.15: Preliminary Test Rig Data  T7
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Figure X.16: Moisture Transfer Laboratory Experiment
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XI.0.1-  W-8681 Touch screen weather station

Figure XI.1 W8681 specifications (Maes Electronics No date)
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XI.0.2-  relative humidity iButton sensor

Figure XI.2: The iButton sensor used to record temperature and humidity (Maxim
Integrated Timbermaster 2014)
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XI.0.3-  Balemaster

Figure XI.3: Balemaster specifications (GE Measurement & Control 2014)
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XI.0.4-  Timbermaster

Figure XI.4: Timbermaster specifications (GE Measurement & Control 2014)
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Abbreviations
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XII.1-  Glossary

Bezier curve – A parametric curve used to model a smooth line 

Basidiomycetes - “any fungus of the phylum Basidiomycota (formerly class 
Basidiomycetes), in which the spores are produced in basidia. The group 
includes boletes, puffballs, smuts, and rusts” (Collins 2014)

Degredation - “a breakdown of a molecule into atoms or smaller molecules” 
(Collins 2014)

Mycelium - “the vegetative body of fungi: a mass of branching filaments 
(hyphae) that spread throughout the nutrient substratum” (Collins 2014)

Polysaccharides - “any one of a class of carbohydrates whose molecules 
contain linked monosaccharide units: includes starch, inulin, and cellulose. 
General formula: (C6H10O5)n”  (Collins 2014)

Xerophilous - “(of plants or animals) adapted for growing or living in dry 
surroundings” (Collins 2014)
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XII.2   Abbreviations

BM Balemaster

BMp Balemaster with Balemaster probe
BMt Balemaster with thermocouple

CMHC Canadian Mortgage Housing Corporation
CO2 Carbon dioxide

CSP Compressed Straw Probe
EWD Expandable Wood Disc

FRAS Fuzzy Risk Assessment System
 GA Gravimetric analysis

kg/m3
d Dry Density-Kilograms per meter cubed

kg/m3
w Wet Density-Kilograms per meter cubed

MC Moisture Content
MCdry Moisture Content Dry Basis

RH/T Relative Humidity and Temperature
td Time dependant

TM Timbermaster
TM20D Timbermaster adjusted for temperature and density

TMp Timbermaster with Balemaster Probe
TMt Timbermaster with thermocouple

WBP Wood-Block probe
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Chapter XIII   Appendix D : List of Tables,
Equations and Figures
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