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Abstract

Hierarchical organisation is a common feature of many directed networks arising in nature

and technology. For example, a well-defined message-passing framework based on managerial

status typically exists in a business organisation. However, in many real-world networks such

patterns of hierarchy are unlikely to be quite so transparent. Due to the nature in which

empirical data is collated the nodes will often be ordered so as to obscure any underlying

structure. In addition, the possibility of even a small number of links violating any overall

“chain of command” makes the determination of such structures extremely challenging. Here

we address the issue of how to reorder a directed network in order to reveal this type of hierarchy.

In doing so we also look at the task of quantifying the level of hierarchy, given a particular node

ordering. We look at a variety of approaches. Using ideas from the graph Laplacian literature,

we show that a relevant discrete optimization problem leads to a natural hierarchical node

ranking. We also show that this ranking arises via a maximum likelihood problem associated

with a new range-dependent hierarchical random graph model. This random graph insight

allows us to compute a likelihood ratio that quantifies the overall tendency for a given network

to be hierarchical. We also develop a generalization of this node ordering algorithm based

on the combinatorics of directed walks. In passing, we note that Google’s PageRank algorithm

tackles a closely related problem, and may also be motivated from a combinatoric, walk-counting

viewpoint. We illustrate the performance of the resulting algorithms on synthetic network data,
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and on a real-world network from neuroscience where results may be validated biologically.

1 Introduction

Determining hidden structure and substructure within a complex network provides us with a

plethora of clues concerning both its functional capabilities and its evolutionary history. This

motivates the need for quantitative tools to discover significant topological features, such as well-

connected communities, bipartite structures, bottle-necks, motifs, hubs and authorities [6, 16, 17,

22, 33]. In this work we focus on a particular type of structure, namely that of a directed hierarchy;

a notion that will be defined more precisely as we proceed.

We begin by noting that the phrase hierarchical may be used to denote a fractal type of

network organisation, whereby smaller modules repeat in a self-similar manner [32, 38]. In this work

we are using the alternative meaning of hierarchical to denote a directed network structure that

supports a well defined message-passing or “chain of command” scenario, such that the processing of

information or the exercise of managerial control proceeds sequentially in a top-to-bottom fashion.

This is the viewpoint taken in the recent articles [4, 27, 35]. Our work differs in that we aim to use

first principle arguments based on quantitative measures of network hierarchy in order to derive

algorithms that reveal these structures. We also aim to provide a quantitative summary of the

overall tendency of a given network to be hierarchical, and in doing so we introduce a new class of

random graphs with a hierarchical structure.

We use the following notation. Given an unweighted, directed network consisting of N nodes,

we denote by A ∈ R
N×N the corresponding adjacency matrix. So A is generally unsymmetric and

has aij = 1 if there is an edge from node i to node j, and aij = 0 otherwise. We assume aii = 0 for

i = 1, . . . N , discounting self-loops. The out and in degree of node k are specified as

degoutk :=
∑

j

akj and degink :=
∑

i

aik,

respectively. We denote by P the set of all permutations of the integers 1, 2, . . . , N , and use pi to

denote the ith component of member p ∈ P. The Euclidean vector norm is denoted by ‖ · ‖2 and

1 ∈ R
N represents the vector with all components equal to one.

2



The layout of the paper is as follows. In Section 2 we recall how the widely used Fiedler vector

is relevant as the solution to an optimization problem that emphasizes similarity between nodes.

We then introduce a new optimization problem as a means to quantify hierarchy, and show how

it can be solved. This results in a simple network reordering algorithm based on the difference

between out and in degrees. In Section 3 we exploit ideas from random graph theory that can be

used to reorder a network from a maximum likelihood perspective. We show that the algorithm

from Section 2 may be viewed as a maximum likelihood reordering under a new, directed, range-

dependent random graph hypothesis. In addition to providing an alternative motivation for the

algorithm, this viewpoint also allows us to quantify the level of hierarchy in a network by comparing

log-likelihood ratios for hierarchical versus non-hierarchical range-dependent structure. We give

some illustrative computational results on synthetically generated networks, quantifying the extent

to which this approach is tolerant of noise. Section 4 then looks at an alternative, combinatoric

approach. We show how the level of hierarchy in a particular node can be conveniently quantified

by counting directed walks. We show in section 5 how Google’s PageRank algorithm performs a

related task. In section 6 we evaluate the new methods on a neuronal network where the hierarchical

structure has biological significance.

2 Out Minus In Degree

To motivate the work in this section, we begin with the two-sum [2, 21]

N∑

i=1

N∑

j=1

(i− j)2aij.

This nonnegative quantity is small when the presence of edges is biased towards nodes that have

nearby indices. Equivalently, it is small when the nonzeros in the adjacency matrix appear close to

the diagonal. Reordering the nodes corresponds to mapping i → pi for some permutation p ∈ P,

and the task of finding a minimum two-sum reordering may thus be written

min
p∈P

N∑

i=1

N∑

j=1

(pi − pj)
2aij . (1)
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In general, this discrete optimization problem is computationally intractable and it is therefore

common to consider a relaxed version where p is allowed to take real values. To avoid redundancies

from scaling and shifting, we also impose constraints ‖p‖2 = 1 and pT1 = 0. This leads to

min
p∈RN , ‖p‖2=1, pT1=0

N∑

i=1

N∑

j=1

(pi − pj)
2aij. (2)

We may now introduce the graph Laplacian L := D −B, where B := 1

2
(A+AT ) and the diagonal

matrix D has dii =
∑

k bik. In the case where the graph represented by B is connected, L is sym-

metric positive semi-definite with a single eigenvalue equal to zero and corresponding eigenvector

proportional to 1. It follows that (2) is solved by taking p to be the Fiedler vector, v; that is, the

eigenvector corresponding to the second smallest eigenvalue of L. We refer to [5, 34, 36] for further

details, noting that most authors treat the case where A is symmetric. Having obtained a relaxed

solution v, we may recover a permutation p ∈ P by the natural procedure of ordering the nodes

according to their real-valued components. More precisely, we compute p ∈ P such that

vi ≤ vj ⇐⇒ pi ≤ pj , (3)

with some rule for treating ties.

To illustrate this idea, the upper left picture in Figure 1 shows the adjacency matrix for a

network showing a strong preference for short-range edges (to produce this matrix, we computed an

instance of Grindrod’s range-dependent random graph model described in Section 3, with β = 0.015

and N = 100). After applying a random shuffle to the nodes we obtain the adjacency matrix shown

in the upper middle picture in Figure 1; any evidence of the range dependent structure has been

completely destroyed. Finally, the upper right picture in Figure 1 shows the adjacency matrix

when reordered via the Fiedler vector. We see that the hidden structure has been recovered. The

respective values of the two-sum starting from left to right are 32037, 1283966 and 30155. As

mentioned above, the reordering from the Fiedler vector is not guaranteed to minimize the two-

sum, as it solves only a relaxed version of the problem. However, in this case we note that it gives

a two-sum that is below the value produced by the original lattice ordering.

We now consider how this approach can be adapted to discover hierarchical structure. We use
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Figure 1: Left: adjacency matrix for a network with (a) short-range connectivity structure and (b)
hierarchical connectivity structure. Middle: in both cases the connectivity structure is hidden via
a random shuffle of the network nodes. Right: the respective structures are recovered via (a) a
Fiedler vector reordering and (b) reordering based upon out-in degree (see (6)).

the convention that nodes are to be ordered in descending order of importance, so node 1 is at the

top of the hierarchy and node N at the bottom. For a given network and a given node ordering,

we may then introduce the new concept of a directed one-sum

N∑

i=1

N∑

j=1

(i− j)aij , (4)

to quantify the level of hierarchy. In this expression, each edge is involved in the overall sum.

An edge that respects the hierarchy, i < j, contributes a negative amount, with the weight i − j

being more negative when i is further up the hierarchy than j. Similarly, an edge that violates the

hierarchy, i > j, contributes a positive amount, with the weight i− j being more positive when i is

further down the hierarchy than j. It follows that a more negative value for the directed one-sum
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corresponds to a more hierarchical combination of network and node ordering. In order to search

for the best way to reorder a given network in a manner that reveals hierarchical structure, it is

therefore reasonable to minimize the directed one sum:

min
p∈P

N∑

i=1

N∑

j=1

(pi − pj)aij . (5)

This is very simply re-written as

min
p∈P

N∑

i=1

pi
(
degouti − degini

)
,

and it follows that the problem (5) is solved by ordering the nodes according to the difference

between out and in degrees:

degouti − degini ≥ degoutj − deginj ⇐⇒ pi ≤ pj . (6)

We emphasize that, unlike in the two-sum case (1)–(3), this ordering solves the discrete formulation

of the problem, not just a relaxed version of it.

To illustrate this idea, the lower left picture in Figure 1 shows the adjacency matrix for a

network showing a strong hierarchical structure (to produce this matrix, we computed an instance

of the directed range-dependent random graph model described in Section 3, with α = 0.025 in (8)

and N = 100). An arbitrary node shuffle produced the adjacency matrix shown in the lower middle

picture in Figure 1. Finally, the lower right picture in Figure 1 shows the adjacency matrix when

reordered via the out minus in degrees (6). We see that the hidden structure has been recovered.

The respective one-sum values from left to right are −31309, −2602 and −32807, and we know

from the derivation above that the latter value is the global minimum.

We note that the authors in [27] considered the ratio of in to out degree in order to rank a node

within a hierarchy, without giving any justification for the measure. Of course, this is equivalent

to a ranking based on the log-difference log(degouti )− log(degini ); whereas the ranking that we have

derived via the directed one-sum does not use logs. Additionally, the new ranking derived here is

also able to deal with nodes containing no out-going connections.
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We also note a similarity between directed one-sum minimization and the task of finding a

topological ordering of a directed graph. Such an ordering may be viewed as having no positive

values in the directed one-sum (4). Alternatively it may be viewed as an ordering where all nonzeros

in the adjacency matrix have been placed in the upper triangle. This is possible if and only if we

have a directed acyclic graph (DAG) [1]. The minimization problem (5) has a different emphasis

in that (a) we seek a complete ordering of the nodes rather than a partial ordering, (b) we wish

to apply the concept to general directed networks rather than DAGs. Further, in (5) we measure

the extent to which the hierarchy has been respected or violated in the sense that a link from node

1 to node 100 makes a more favorable contribution than a link from node 99 to node 100, and

similarly, a link from node 100 to node 1 makes a more unfavorable contribution than a link from

node 99 to node 100. However, in the spirit of topological ordering for DAGs, in section 6 we use

the percentage of nonzeros in the upper triangle of the reordered adjacency matrix as one way to

compare algorithms.

3 Random Graph Viewpoint

In this section we show that the out-in ordering (6) can also be justified via a random graph

argument, and use this as a means to quantify the amount of hierarchy in a given network.

The general class of range-dependent random graphs introduced by Grindrod [18, 19] may be

defined as follows.

Definition 3.1. For a given function g that maps from {1, 2, . . . , N−1} to [0, 1], a range-dependent

random graph (RDRG) is an undirected graph that has an edge from node i to node j with inde-

pendent probability g(|i − j|).

Wth this definition we may think of node i as being positioned at location i on the integer

lattice. The chance of two nodes being linked is then a function of their lattice distance, |i− j|. In

The upper left picture of Figure 1 shows an instance of a RDRG with g taking the functional form

of (10), with β = 0.15. Because g is a decaying a function, ‘long-range’ connections are less likely

than those at ‘short-range.’

We now introduce a natural analogue of Grindrod’s RDRG class of models that allows directed

and hierarchical networks to be gerenated at random.
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Definition 3.2. For a given function f that maps from {1, 2, . . . , 2N − 1} to [0, 1], a directed

range-dependent random graph (dRDRG) has an edge from node i to node j with independent

probability f(i− j +N).

A hierarchical structure will arise when f is monotonically decreasing in this dRDRG setting:

in that case the edge from node i = 1 to node j = N is the most likely and the reverse edge from

i = N to j = 1 is the least likely.

Given a network and an ordering, the likelihood that this data came from the dRDRG model

is given by
∏

aij=1

f(i− j +N)×
∏

aij=0

(1− f(i− j +N)) .

We may then ask for the reordering that is most likely under this model:

max
p∈P

∏

aij=1

f(pi − pj +N)×
∏

aij=0

(1− f(pi − pj +N)) . (7)

The next result connects this problem to the directed one-sum minimization.

Result 1. The one-sum minimization problem (5) is equivalent to the maximum likelihood reorder-

ing problem (7) when the directed range dependency takes the form

f(i− j +N) =
e−α(i−j+N)

1 + e−α(i−j+N)
, (8)

for any fixed α > 0.

Proof. We may follow the technique used in [18] from the undirected case by re-writing (7) as

max
p∈P

∏

aij=1

f(pi − pj +N)

1− f(pi − pj +N)
×

∏

all i,j

(1− f(pi − pj +N)) .

The second factor, the probability of a null graph, is independent of p, so an equivalent problem is

max
p∈P

∏

aij=1

f(pi − pj +N)

1− f(pi − pj +N)
.
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Figure 2: An instance of a hierarchical dRDRG with N = 100 and α = 0.0262 (left). The model
connects node i to node j with probability f(i− j +N), where f has the form shown on the right.

When f has the form in (8), this may be re-written as

max
p∈P

∏

aij=1

e−α(pi−pj+N).

Taking logs and negating the objective function leads to

min
p∈P

α
N∑

i=1

N∑

j=1

(pi − pj +N) aij ,

which is clearly equivalent to (5).

The picture on the left in Figure 2 shows an instance of the hierarchical dRDRG model, with

the nodes ordered according to the range-dependency, in the case where N = 100 and α = 0.0262 in

(8). We see that the structure is consistent with the aims of the directed one-sum minimization—

nonzeros are most prevalent at the upper right hand corner of the matrix, and the density decreases

as we move towards the lower left hand corner. In the right of the figure we plot the range-

dependency function, f , from (8).

We see from Definition 3.1 that with Grindrod’s RDRG model we have, for a given decay

function g, aij = 1 with probability g(|i − j|) and aij = 0 otherwise. It was shown in [21] that the
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corresponding maximum likelihood reordering problem

max
p∈P

∏

aij=1

g(|pi − pj|)×
∏

aij=0

(1− g(|pi − pj|)) (9)

is equivalent to two-sum minimization (1) for the particular range dependency

g(|i− j|) =
e−β(i−j)2

1 + e−β(i−j)2
, (10)

where we have introduced a free parameter β > 0 to be compatible with the general case specified

in Result 1.

This insight puts us in a position to compare the likelihood that a given network arose from

each of these two model classes. We may summarize such an algorithm as follows.

Step 1 Fit the parameters α and β in the two models. This can be done by matching the number

of edges in the given network to the expected number of edges in the random graph model.

The latter is a monotonic function of the free parameter in both cases, so a simple bisection

root-finding method is guaranteed to succeed.

Step 2 Compute the maximum likelihood from the hierarchical model, say Lh, which is given by

inserting the minimum directed one-sum ordering into the objective function in (7) with f

defined in (8). Compute the approximate1 maximum likelihood from the non-hierarchical

model, say Lnh, which is given by inserting the Fiedler vector ordering into the objective

function in (9) with g defined in (10).

Step 3 Compute the normalized log likelihood ratio

L :=
2

N(N − 1)
log

(
Lnh

Lh

)
. (11)

A negative ratio indicates that the network data supports the hierarchical range-dependency

over the non-hierarchical alternative.

As a proof-of-principle, we give results for a large-scale experiment using synthetically gener-

ated networks. In each test, we began with an instance of a network from one of the two random

1This is approximate because the Fiedler vector solves a relaxed version of the minimum two-sum problem.
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N
s 50 100 200 500 1000

0.1 0.1150 0.1147 0.1149 0.1122 0.1151
0.2 0.1360 0.1354 0.1370 0.1361 0.1359
0.3 0.1472 0.1472 0.1479 0.1471 0.1478
0.4 0.1548 0.1552 0.1550 0.1547 0.1546
0.5 0.1572 0.1573 0.1577 0.1571 0.1572

Table 1: Proportion of spurious links tolerated when discovering a hierarchical dRDRG network.

N
s 50 100 200 500 1000

0.1 0.1290 0.1259 0.1256 0.1271 0.1274
0.2 0.1356 0.1339 0.1352 0.1353 0.1348
0.3 0.1366 0.1360 0.1368 0.1363 0.1357
0.4 0.1362 0.1362 0.1360 0.1365 0.1359
0.5 0.1359 0.1358 0.1358 0.1357 0.1355

Table 2: Proportion of spurious links tolerated when discovering a non-hierarchical RDRG network.

classes under consideration. To assess robustness to noise we then added spurious links at random.

For each network instance, we placed a new link between all possible pairs of nodes with small

independent probability, q. If the likelihood ratio correctly identified the structure of interest, we

increased the noise parameter q and repeated the analysis. Tables 1 and 2 record the smallest value

of q (averaged over an ensemble of 1000 random graphs) for which the likelihood ratio incorrectly

classified the structure. We used graphs of order N = 50, 100, 200, 500, 1000, which had on average

(N2 − N) × s edges; here s ∈ {0.1, 0.2, 0.3, 0.4, 0.5} denotes the proportion of edges present, on

average, for each network instance.

From Tables 1 and 2, we see that the likelihood approach continues to classify the network mod-

els correctly even after some 10%–15% of additional links have been added. Note that robustness

generally improves as we increase the proportion of connections present in the initial instance; a

trend that is particularly evident for the hierarchical model. This observation is consistent with the

idea that the presence of additional links translates into additional information concerning network

architecture. To match the case of typical real networks, we have focussed on sparse structures. If

we tuned α and β to allow for increasingly dense connectivity patterns, then, intuitively, we would

expect to see the test become less reliable—as both networks models approach the complete graph,
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they become indistinguishable.

4 Directed Walks and Matrix Functions

The out-in ordering studied in the previous two sections is computationally convenient and was

justified from first principles. However, it has the possible drawback that, being based on integer-

valued quantities, nodes may frequently be tied. In particular, for the simple case of a directed

binary tree, all nodes except the root have an equal out-in score.

A more global strategy that looks beyond the degree structure was considered in [27], where

the concept of attraction basin hierarchy was introduced. The resulting algorithm is based upon

counting the number of shortest paths to/from a particular node from/to all other nodes, which

is a hard combinatorial problem in general. Here, we propose an alternative measure that uses

directed walks rather than paths2. Recent work has shown that walk-based measures provide an

effective tool for determining other types of connectivity patterns [7, 11, 12, 20], and there are at

least four specific arguments in their favour:

• information does not generally flow along geodesics [3, 28],

• walk counts are less sensitive than pathlength counts to spurious or missing edges [20],

• walk counts can be computed conveniently using basic operations in linear algebra [15],

• as we will show below, Google’s successful PageRank algorithm has a walk-based interpreta-

tion.

The computational convenience arises because the element (An)ij counts the number of directed

walks of length n that start at node i and terminate at node j. We may then introduce coefficients

c0, c1, c2, c3 . . . and consider the expansion

F (A) = c0I + c1A+ c2A
2 + c3A

3 + · · · . (12)

Because longer walks are generally (a) more numerous, and (b) less important than shorter walks,

it is reasonable to choose a decreasing sequence of coefficients. Estrada and Rodŕıguez-Velázquez

2A walk differs from a path in that nodes and edges may be re-used during the traversal.
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[14] suggested ck = 1/(k!), so that F (A) = exp(A), and this choice has proved to be very useful in

many scenarios [7, 8, 10, 11, 12, 13]. The resolvent function F (A) = (I − δA)−1, corresponding to

ck = δk, was considered in [15] and can be traced back to earlier work on node centrality indices in

social network analysis [24, 29]. It is also possible to interpret δ as the probability that a message

will successfully traverse an edge.

We may now classify the hiererchical rank of a node by measuring

•
∑

j 6=i(F (A))ij , which quantifies how effectively node i is able to pass information to or exert

control over the other nodes in the network, and

•
∑

j 6=i(F (A))ji, which quantifies how effectively the other nodes in the network are able to

pass information to or exert control over node i.

We therefore propose that node i be assigned the hierarchical ranking

ri =
∑

j 6=i

(F (A))ij −
∑

j 6=i

(F (A))ji, (13)

leading to a reordering in descending rank order; that is

ri ≥ rj ⇐⇒ pi ≤ pj .

Note that the walk based hierarchy measure of (13) can be considered as a natural generalisation of

the degree based algorithm introduced earlier, in the sense that by choosing F (A) = A we recover

the out-in degree ordering.

5 Links to Google’s PageRank

The well-known PageRank algorithm is used by Google to quantify the importance of web pages

based on the hyperlink topology of the WWW [25, 30]. Letting A represent the web adjacency

matrix, so aij = 1 means that page i has a hyperlink to page j, this algorithm assigns rank according

to the vector

(I − θATDout−1
)−11, (14)
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with a higher value in component i denoting more importance for page i. Here θ ∈ (0, 1) is a

free parameter and Dout is the diagonal out degree matrix, so Dout
ii = degouti . We assume for the

moment that degouti ≥ 1 for all i. Writing Â := ATDout−1
we see that, for sufficiently small θ, the

ranking in (14) may be expanded as

(
I + θÂ+ θ2Â2 + θ3Â3 + · · ·

)
1.

This shows that PageRank may be interpreted as a directed walk counting algorithm, with a few

twists3.

Link direction is reversed and edges are scaled. The new matrix Â has âij 6= 0 if and only if

there is a hyperlink from page j to page i. This is intuitively reasonable—the j 7→ i hyperlink

may be interpreted as page j deferring to, or handing control over to, page i. (In the WWW

context it is also extremely pertinent that page i has no direct influence over the creation

of a j 7→ i hyperlink. This makes it difficult to boost artificially your own page’s ranking.)

Supposing that the hyperlinks ik+1 7→ ik, ik 7→ ik−1, . . . , i2 7→ i1 exist on the WWW. Then

the walk of length k given by i1 → i2 → · · · ik+1 exists in the reversed network, but in addition

to the θk scaling that penalizes long walks, there is also a scaling

1

degout2

1

degout3

. . .
1

degoutk+1

penalizing walks involving “promiscuous” nodes that make themselves available for many

other such walks. This method for nullifying the influence of overactive nodes that are likely

to be lowly ranked is clearly relevant in the WWW setting. However, in the context of this

work, where we are seeking to discover a hierarchical “chain of command,” it seems less

appropriate to normalize in this way. If node i gives orders to (i.e. has a hyperlink from) a

node that also gets orders from (i.e. has hyperlinks to) many other nodes, then this could be

regarded as sound evidence for placing node i near the top of the hierarchy.

Closed walks are considered. Node i is given a ranking based on the sum over all j of a weighted

count of directed walks that begin at i and end at j, including the closed walk case j = i.

3We note that this is distinct from the well-known random walk interpretation of PageRank [25, 30].
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Figure 3: Adjacency matrix for the local network of 131 frontal neurons for C. elegans.

6 Local C. elegans Network

In his PhD thesis in 1987, Durbin [9] went about the task of sorting the neurons in the nerve ring of

C. elegans4 vertically, in such a way that as many of the synapses as possible pointed downwards.

Durbin used an ad hoc combinatoric algorithm to create an ordering. Here, we propose to repeat

Durbin’s analysis using the automated algorithms that we have derived. We consider a local

subnetwork of 131 frontal neurons and 782 chemical synapses of the neuronal network for C. elegans

[23, 31, 37]. We exclude gap junctions5 from the analysis since (a) it remains an open question

whether or not such connections exhibit directionality; and (b) current experimental techniques are

unable to extract this information regardless. The adjacency matrix is shown in Figure 3.

Figure 4 shows the results of reordering the local C. elegans network based upon (i) out-in

degree, (ii) the walk based measure (13) with F (A) = exp (A), (iii) the walk based measure (13)

4A 1mm long, transparent, roundworm.
5Gap junctions are channels that provide electrical coupling between neurons.
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out minus in exponential resolvent (δ = 0.025) PageRank

Directed one-sum −32857 −27198 −32809 −22649
Proportion of non-zeros 0.8095 0.7724 0.8056 0.7366
in upper triangle

Table 3: Hierarchy scores for the C. elegans network.

with F (A) = (I − δA)−1 and δ = 0.025, and (iv) Google’s PageRank. In the latter case, dangling

nodes, where degouti = 0, require a slight modification of the Google matrix in (14) [25]. We used

the widely quoted teleporting parameter value θ = 0.85.

Table 3 quantifies the ability of each method to discover hierarchical structure. The first row

gives the directed one-sum; that is, the objective function in (5), for each ordering. We note from

Result 1 that the out-in degree ordering minimizes this quantity. From Table 3 we see that the

directed one-sum in (4) attains a minimum value of −32857; next came the walk based algorithms,

with scores of −32809 using the resolvent function and −27198 using the matrix exponential;

finally, the ordering obtained via the PageRank algorithm performed poorest according to this

measure with a score of −22649. The second row in Table 3 records the proportion of nonzeros

in the upper triangle of the adjacency matrix. With this alternative measure, there is no extra

benefit/penalty from violating/exploiting the hierarchy with a ‘long-range’ link that spans many

intermediate nodes. Instead we simply count the proportion of links that respect the hierarchy. We

see from the table that the out-in ordering is marginally better than that given by the walk based

algorithms according to this measure; all methods scoring between 77% to 81%, whilst PageRank

achieved around 73%.

To justify the choice of δ = 0.025 in the resolvent-based reorderings, Figure 5 shows how the

proportion of non-zeros in the upper triangle (left) and directed one-sum (right) vary as a function

of δ—both measures start to degrade beyond this level.

The normalized log likelihood ratio in (11) was L = −1.9319, giving further support for the

visually compelling evidence in Figure 4 that this network has a strong hierarchical element.

Let us now focus on biological significance of these results in the particular case of the walk

based measure with F (A) = (I − δA)−1 and δ = 0.025. Table 4 summarizes the results for the

reordered C. elegans data, where we report those neuronal classes represented by nodes in the top

and bottom 10% of the reordered network. Perhaps most noteworthy is the fact that neuronal
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Figure 4: Results for the C. elegans neuronal network: (a) reordered using out-in degree; (b)
reordered using the walk based measure with F (A) = exp (A); (c) reordered using the walk based
measure with F (A) = (I − δA)−1 and δ = 0.025; and (d) reordered using Google’s PageRank
algorithm.

classes representing sensory neurons are highly prevalent at the top of the hierarchy (some 85%),

whilst the foot of the hierarchy consists wholly of a mixture of motor neurons and command

interneurons. In general, we found that the ordering returned was in good agreement with that of

Durbin’s, with sensory neurons placed at the top, motor neurons at the bottom, and interneurons

placed in between.

The command interneuron classes AVA, AVB, AVD and AVE appearing at the bottom of the

hierarchy in Table 4 have been identified in previous studies [26] as being highly connected to both

sensory and motor neurons. This suggests that they should lie in the middle of the global hierarchy.

However, we note that the majority of postsynaptic connections made by these neurons are with

motor neurons outside of the local subnetwork studied here, which justifies their placement within
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Figure 5: Plots of both hierarchy scores versus δ when using the resolvent function, F (A) =
(I − δA)−1, to reorder the C. elegans network.

Top 10% Bottom 10%

Neuronal Class Description Neuronal Class Description

RIH Ring interneuron AVA Command interneuron
ADL Amphid sensory neuron AVE Command internueron
CEP Head sensory neuron RMD Ring motor
IL2 Head sensory neuron RME Ring motor
OLL Head sensory neuron AVB Command interneuron
AVH Interneuron SMD Ring motor
URY Head sensory neuron AVD Command interneuron

Table 4: Neuronal class and type for those nodes contained within the top and bottom 10% after
reordering the C. elegans network based upon the walk based measure with F (A) = (I − δA)−1

and δ = 0.025.

this subnetwork.

7 Discussion

This work considered a range of measures and algorithms relevant to discovering and quantifying

hierarchical structure in a given network. The basic out minus in degree ordering (6) has the benefit

of being the exact solution to an appropriate discrete optimization problem. Also its connection to

a random graph model model allows it to be incorporated into a likelihood test (11) for hierarchical

versus non-hierarchical structure. Walk-based measures of the form (13) directly generalize this

approach and have the appeal of taking a more global view of the network topology. Also, as shown
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in Figure 5, they can be used in conjunction with hierarchy measures to fine-tune parameters in

the algorithm.

These new reordering approaches use extremely simple combinatorics, and hence they scale

favourably for large, sparse networks. If the expansion (12) is truncated after a finite number, K,

of terms (for example, K = 10) then the walk-based ranking (13) requires only K sparse matrix-

vector multiplications. This gives an overall complexity proportional to the number of edges. The

degree-based ordering is comparable with the use of a single term in (12) and also has complexity

proportional to the number of edges.

Overall, we believe that this is a very promising methodology for discovering and quantifying

hierarchy in large, complex, directed networks.
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