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Abstract

We develop and test a new mapping that can be applied to directed unweighted networks.

Although not a “matrix function” in the classical matrix theory sense, this mapping converts

an unsymmetric matrix with entries of zero or one into a symmetric real-valued matrix of the

same dimension that generally has both positive and negative entries. The mapping is designed

to reveal approximate directed bipartite communities within a complex directed network; each

such community is formed by two set of nodes S1 and S2 such that the connections involving

these nodes are predominantly from a node in S1 and to a node in S2. The new mapping is

motivated via the concept of alternating walks that successively respect and then violate the

orientations of the links. Considering the combinatorics of these walks leads us to a matrix

that can be neatly expressed via the singular value decomposition of the original adjacency

matrix and hyperbolic functions. We argue that this new matrix mapping has advantages over

other, exponential-based measures. Its performance is illustrated on synthetic data, and we

then show that it is able to reveal meaningful directed bipartite substructure in a network from

neuroscience.

1 Background and Notation

Large complex networks can be represented as matrices and studied using the tools of linear alge-

bra. Perhaps most notably, spectral information involving eigenvectors or, more generally, singular
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vectors, can be used for data mining tasks such as clustering, reordering and discovering various

types of substructure [1, 6, 9, 13].

We focus here on the case of an unweighted, directed network of N nodes, with no self-loops.

This may be represented by the unsymmetric adjacency matrix A ∈ RN×N , where aij = 1 if there

is a link from node i to node j, and aij = 0 otherwise.

Quantifying bipartite structure in large complex directed networks has proved to be very

informative [6, 11, 15], and our aim here is to consider a specific bipartite pattern that takes

account of the orientation of the connections in a directed network. If the set of nodes contains

two distinct subsets, S1 and S2, such that

• the members of S1 have very few links between themselves,

• the members of S2 have very few links between themselves,

• there are many links from members of S1 to members of S2, and very few other links in the

graph involve the nodes of S1 and S2,

then we will say that S1 and S2 form an approximate directed bipartite community. We are interested

in the task of identifying one or more of these communities in a network. We emphasize that this

concept has been left deliberately vague in order to acknowledge the fact that real networks are

typically noisy—in particular, we do not completely rule out “missing” links from S1 nodes to S2

nodes and we also allow the possibility of “spurious” links from S2 to S1.

In the next section, we motivate and develop a new mapping that is designed to reveal this

type of structure, and test it on a synthetic network. Section 3 gives illustrations that compare

the new mapping with the matrix exponential function. In section 4 we describe a method for

generating networks to test the significance of bipartite subgraphs and in section 5 we implement

these tests on synthetic data. In section 6, we show how meaningful information can be extracted

from a network in neuroscience.

2 Motivation and New Mapping

We begin with a definition.
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Definition 2.1. An alternating walk of length k − 1 from node i1 to node ik is a list of nodes

i1, i2, i3, . . . , ik

such that ais,is+1 6= 0 for s odd, and ais+1,is 6= 0 for s even.

Loosely, an alternating walk is a traversal that successively follows links in the forward and

reverse directions.

From the definition of a matrix product it is immediate that

(
AAT AAT · · ·

)
ij

(1)

with k factors, counts the number of alternating walks of length k from node i to node j.

Suppose now that S1 and S2 form an approximate directed bipartite community, as described

in section 1. If nodes i and j are both in subset S1 then there is unlikely to be a link from i to j, but

there are likely to be many ways to traverse from i to j by following one link forwards and another

link backwards. Hence we expect few alternating walks of length one between i and j but many

alternating walks of length two. More generally, we would expect an over-abundance of even length

alternating walks and a paucity of odd length alternative walks. Incorporating information about

longer walks is an intuitively reasonable way to compensate for possible noise in the network—

it smooths out the all-or-nothing issue of whether two nodes are connected. However it is clear

that shorter length walks are generally more informative. Hence, motivated by previous work on

undirected networks [5, 6], we propose to scale the total number of alternating walks of length k

by the factor 1/k!, and to give negative weight to odd length walks, which produces the mapping

f(A) = I −A +
AAT

2!
− AAT A

3!
+

AAT AAT

4!
− · · · (2)

In words, the i, j element of f(A) for i 6= j is the difference between the total number of even and

odd length alternating walks, with walks of length k scaled by 1/k!. We have included the identity

matrix I in (2) simply for convenience. Using the singular value decomposition (SVD), A = UΣV T ,
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where U ∈ RN×N is orthogonal, Σ ∈ RN×N is diagonal and V ∈ RN×N is orthogonal [8], we have

f(A) = I − UΣV T +
UΣ2UT

2!
− UΣ3V T

3!
+

UΣ4UT

4!
+ · · · ,

which can be written

f(A) = U

(
I +

Σ2

2!
+

Σ4

4!
+ · · ·

)
UT − U

(
Σ +

Σ3

3!
+

Σ5

5!
+ · · ·

)
V T .

This could also be written

f(A) = U cosh (Σ) UT − U sinh (Σ) V T , (3)

which shows that f(A) may be computed via the SVD. We note that f(A) does not comply with the

usual definition of a matrix function in linear algebra [10]. However, it is a well–defined mapping

from RN×N to RN×N .

Based on this motivation, we would expect f(A)ij to take large positive values when i, j ∈ S1,

and large negative values when i ∈ S1 and j ∈ S2.

To test this idea, the picture on the left in Figure 1 shows an adjacency matrix for a 50

node directed network that we constructed where nodes {1, 2, . . . , 10} were made to point to nodes

{11, 12, . . . , 25} with independent probability 0.65. Similarly, nodes {30, 31, . . . , 39} point to nodes

{40, 41, . . . , 49} with independent probability 0.8, and all other links occur with independent prob-

ability 0.05. Hence, there are two approximate directed bipartite communities in the network. In

the right of Figure 1 we show a heat map of f(A), and it is clear that the dominant regions of

positive and negative values are highlighting the S1 → S1 and S1 → S2 relationships, respectively,

as expected.

We note at this stage that the node ordering in Figure 1 was chosen to make it easy to visualize

the results—the communities share contiguous indices. However, it is clear from the derivation,

or from the relation f(PAP T ) = Pf(A)P T for any permutation P , that the same hot/cold values

relating two nodes would be preserved under any node reordering. Entirely analogously, we may

argue that f(AT ) will have positive entries for S2 → S2 relationships and negative for S2 → S1.

Hence the sum f(A)+ f(AT ) should be a useful tool for revealing inter-cluster (S1 → S1 and S2 →
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Figure 1: Left: Adjacency matrix. Right: f(A) from (3).

S2) relationships through positive entries and extra-cluster (S1 → S2 and S2 → S1) relationships

through negative entries. It is straightforward to show that f(A) + f(AT ) is a symmetric matrix,

and hence it is amenable to standard clustering techniques, with positively connected clusters

representing the common parts of the bipartite communities and negatively-connected clusters

representing the disparate parts. We note that the SVD can be used for clustering or reordering

this type of symmetric two-signed data into the desired two-by-two checkerboard patterns [9].

Hence, we propose that two separate SVDs may be computed, one to create f(A) + f(AT ) and

another to analyse it.

3 Comparison with the Matrix Exponential

In the case of undirected networks, arguments based on the combinatorics of walks between nodes

have been used to show that exp(A) and exp(−A) can be useful to reveal connectivity patterns

[5, 6]. In order to show that the new mapping f(A) + f(AT ) is better suited for pre-processing

directed networks, we may consider a hierarchical structure where there are three sets of nodes, S1,

S2 and S3, such that

• nodes in S1 tend to point to nodes in S2,

• nodes in S2 tend point to nodes in S3,

• few of the other possible links are present.
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Figure 2: Left: Unsymmetric adjacency matrix A and three different mappings.

Then, considering how they represent counts of walks around the network, we can argue that the

exponentials of A and −A will have 3-by-3 block structure of the form

exp(A) ≈


0 + +

0 0 +

0 0 0

 and exp(−A) ≈


0 − +

0 0 −

0 0 0

 ,

whereas f(A) + f(AT ) will take the form

f(A) + f(AT ) ≈


+ − 0

− + −

0 − +

 .

As an illustration, the upper left picture in Figure 2 shows results for a directed network of 30

nodes where S1 = {1, 2, 3, . . . , 10}, S2 = {11, 12, 13, . . . , 20}, S3 = {21, 22, 23, . . . , 30}. In a similar

manner to the network in Figure 1, links were chosen probabilistically with a strong bias towards

the directed bipartite community connections.
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We note in passing that f(A) can be connected to matrix functions of the original adjacency

matrix through the relation

f(A) = cosh(B1/2)− sinh(B1/2)B−1/2A,

where B = AAT .

In the next two sections we address the issue of judging whether results from the algorithm

are significant. On one hand, it is unrealistic to expect that all nodes in a real network can be

partitioned into two sets, S1 and S2, such that all S1 → S2 links are present and no others. On the

other hand, simply identifying a pair of nodes i and j such that aij = 1 and aji = 0 is clearly not

of interest. We will use the classic notion of a p-value to assess the question “How likely is it that

the level of bipartivity identified by the algorithm would arise in an arbitrary network of the same

form?” Perhaps the most widely-used random graph classes are the Erdös-Rényi (ER) and Gilbert

models [4, 7]. However, it is intuitively clear, and easy to check experimentally, that networks from

these classes are extremely unlikely to admit bipartite substructure. Hence, any attempt to fit this

type of model to a given network, for example, by matching the expected total in and out degrees,

is likely to give a favourable p-value. In an attempt to deal with this, in the next section we develop

a new class of directed random networks that are designed to match, in expectation, in and out

degrees specified for each node.

4 Directed Stickiness Model

For each node i we define two quantities, θ
[i]
in and θ

[i]
out, such that these are a measure of the likelihood

of that node having a connection to/from another node in a particular direction. We define the

probability of a connection from node i to node j as the product

P(i → j) = θ
[i]
outθ

[j]
in .

Our aim is that the expected out-degree of node i in the model matches the out-degree of node i

in the initial data.
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This requires
n∑

j=1

aij = E(out-degree of node i)

=
n∑

j=1

θ
[i]
outθ

[j]
in

= θ
[i]
out

n∑
j=1

θ
[j]
in .

But since
n∑

j=1

θ
[j]
in does not depend on i, this shows that

θ
[i]
out ∝

n∑
j=1

aij .

So let

θ
[i]
out =

1
K1

n∑
j=1

aij . (4)

Similarly we wish the expected in-degree of node i in the model to match the in-degree of node i

in the data, giving
n∑

j=1

aji = E(in-degree of node i)

=
n∑

j=1

θ
[j]
outθ

[i]
in

= θ
[i]
in

n∑
j=1

θ
[j]
out.

Since
n∑

j=1

θ
[j]
out does not depend on i, we have

θ
[i]
in ∝

n∑
j=1

aji,

so we let

θ
[i]
in =

1
K2

n∑
j=1

aji. (5)

Having determined their general form, we now wish to find appropriate constants of propor-

tionality, K1 and K2, such that the expected in and out-degrees in the model match those of the
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initial data. Returning to the out-degree of node i, using Equations 4 and 5, we require

n∑
j=1

aij =

(
1

K1

n∑
j=1

aij

)(
1

K2

n∑
j=1

n∑
k=1

akj

)
,

which leads to
1

K1K2

n∑
j=1

n∑
k=1

akj = 1. (6)

Likewise, considering the in-degree of node i we require

n∑
j=1

aji =

(
1

K2

n∑
j=1

aji

)(
1

K1

n∑
j=1

n∑
k=1

ajk

)
,

which becomes
1

K1K2

n∑
j=1

n∑
k=1

ajk = 1. (7)

Since the summations in Equations 6 and 7 involve all entries in the adjacency matrix, they are

equivalent, and we arrive at

K1 = K2 =

√√√√ n∑
j=1

n∑
k=1

ajk. (8)

We can now write down an algorithm to produce an instance of such a random graph.

• Input degin and degout, vectors of in/out degrees.

• Compute the scaling factor w =
√∑

i

deg[i]
in .

• Let θ
[i]
in = w−1deg[i]

in and θ
[i]
out = w−1deg[i]

out.

• For each pair of nodes i and j, connect i to j with independent probability θ
[i]
out × θ

[j]
in .

We emphasize that this is a natural generalization of the original stickiness model in [16] to the

case of directed edges.

5 Statistical Analysis

In order to quantify the likelihood of a given directed bipartite structure arising by chance, we

conduct statistical tests based upon a simple measure of bipartivity. Consider a perfectly bipartite
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network consisting of two sets S1 and S2 containing m1 and m2 nodes respectively. Such a network

Figure 3: Directed bipartite network: (a) edge structure (b) adjacency matrix

may be represented by an adjacency matrix with a single off-diagonal nonzero block consisting of

the edges from S1 to S2 as shown in Figure 3. To quantify bipartivity in this subgraph we simply

take the ratio of the density of nonzeros in the S1 → S2 block to the density of nonzeros in the

remaining L-shaped block plus one (to avoid division by zero) i.e.

b =
|S12|/mn

(|S11|+ |S21|+ |S22|)/(m2 + mn + n2) + 1
.

Here |Sij | denotes the number of links from Si → Sj and m,n are the number of nodes in S1 and

S2 respectively. In the case of perfect directed bipartivity, this measure yields a value of 1. The

value decreases as nonzeros are added to the L-shaped block or removed from the S1 → S2 block.

This is analagous to adding edges in the “wrong” direction or edges within subsets.

Once a measure of bipartivity has been established for a given subgraph, random graphs

with the same expected degree distribution are generated and tested as outlined in the following

algorithm;

1. A directed graph with expected degree distribution the same as the original adjacency matrix

A is generated.

2. The mapping f(A)+ f(AT ) is applied to this matrix and it is reordered according to the first

eigenvector of the mapped matrix.

3. A subgraph consisting of sets of the same dimension as S1 and S2 is selected and the bipartivity

measure is applied to this subgraph.

Once this process has been repeated for a sufficiently large test set, the bipartivity values are plotted
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in a histogram. The data is plotted in a quantile-quantile plot, verifying that it fits a log-normal

probability distribution. The p-value for the original subgraph may then be computed.

p = 1− 1
σ
√

2π

∫ x

−∞
exp

(
− (u− µ)2

2σ2

)
du

where x is the bipartivity measure of our subgraph and µ and σ are the mean and standard deviation

respectively of the bipartivity measure on our sample of networks.

5.1 Test case 1

We consider a synthetic network consisting of 100 nodes where a connection between node i and

node j occurs with independent probability 0.9 if i ∈ {1, 2, . . . , 10} and j ∈ {11, 12, . . . , 20}, and

with probability 0.3 elsewhere. We then compute the matrix mapping and plot the reordered,

mapped matrix to determine what dimension of subgraph to extract as shown in Figure 4. The

subgraph comprising the first 20 and last 20 nodes is plotted. 1000 random graphs are then

generated by randomly shuffling the in and out degrees of the synthetic network and connecting

nodes accordingly. Subgraphs of the correct size are extracted from each of these graphs, their

bipartivity measures are computed and the results are plotted in a histogram. The probability

distribution of this data was found to be log-normal and thus the p-value for our original subgraph

may be computed. For the subgraph obtained from our synthetic network, this process yields a

bipartivity score of 0.6138. We measure the significance of this subgraph in two ways. First we

compute the quantity p1 = p as defined at the beginning of this section. Secondly we compute p2

which is simply the ratio of bipartivity scores larger than that of our subgraph to the sample size.

These values will vary depending on the class of graphs from which our samples are drawn. We use

four such classes. Standard ER graphs, directed stickiness graphs as defined in section 4 and two

variations of the stickiness model. The first of these is ’shuffled stickiness’ in which we randomly

permute the in and out degree vectors so that node i in the random graph may draw its expected in

and out degrees from two different nodes in the original network. The second is ’biased stickiness’

where the in and out degrees are assigned in an ordered manner so that the node with the highest

in degree will also have the highest out degree and so on. The results of these tests are listed in

Table 1.
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p1 p2

Erdös-Rényi 0 0/1000
Directed stickiness 2.33× 10−15 0/1000
Shuffled stickiness 5.05× 10−15 0/1000
Biased stickiness 0 0/1000

Table 1: Significance of subgraph in test case 1 for varying test matrix classes.

5.2 Test case 2

We now consider a test case in which a directed bipartite structure is embedded in a random graph

with 100 nodes. In this case, the independent probability of a link between one of nodes 1-20 to

one of nodes 21-40 is 0.8, whereas the probability of a link elsewhere is 0.4. Selecting a 40 by 40

subgraph and testing in the same manner as before as shown in Figure 5, a bipartivity score of

0.4083 is obtained. The various p-values are listed in Table 2.

p1 p2

Erdös-Rényi 5.91× 10−2 55/1000
Directed stickiness 8.46× 10−1 844/1000
Shuffled stickiness 9.03× 10−1 896/1000
Biased stickiness 7.00× 10−2 57/1000

Table 2: Significance of subgraph in test case 2 for varying test matrix classes.

6 Worm Brain Network

To assess the usefulness of the new mapping we consider two real-world networks: (i) the global neu-

ronal network of the nematode (roundworm) Caenorhabditis elegans, and (ii) a local subnetwork of

131 frontal neurons of the same organism; see [12] and the website “http://www.biological-networ

ks.org/?page_id2”. To obtain a directed network we firstly removed all gap junctions from the

data sets, this step is necessary, as experimental techniques used to reconstruct the nervous system

of C. elegans are unable to infer directionality of such connections. After non-neuronal cells are

removed, this results in a local network of 131 neurons and 964 chemical synapses, and a global
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network of 191 neurons and 1904 chemical synapses.

Our motivation is that Durbin [3, Figure 8.1] used an ad hoc combinatoric algorithm to search

for and display the type of directed bipartite structure that we consider. From a biological view-

point, this allows us to consider questions such as

“what is the processing depth from sensory input to motor output, i.e. how many

intermediary neurons are there?, and to what extent is the circuitry unidirectional,

progressing linearly from input to output?[3]”

In this preliminary work, we are simply using the worm brain network to demonstrate that the new

mapping gives a systematic way to discover this type of important structure.

Figure 6 shows how the new mapping can be used to extract useful information from a real

network. The upper left plot gives the original adjacency matrix for the local connectivity network.

A heat map for f(A)+f(AT ) highlighted certain node pairs as being hot or cold. Applying the SVD

to this matrix, and reordering with the first singular vectors to cluster the hot and cold regions [9]

produces the lower picture. We see that tight clusters have emerged via contiguous nodes at each

end of the new ordering. In the upper right picture, we have picked out the corresponding nodes

and plotted the resulting subnetwork. Here the S1 → S2 submatrix is respectively, 5, 35 and 9 times

more dense than the S1 → S1, S2 → S1 and S2 → S2 subnetworks. Performing a similar analysis

on the global network, allows us, in analogous fashion, to pick out two sets of contiguous nodes

such that the S1 → S2 matrix is respectively, 3, 80 and 27 times more dense than the S1 → S1,

S2 → S1 and S2 → S2 subnetworks.

Statistical significance was obtained by fitting a log-normal distribution to the bipartivity

scores of 1000 instances of each of the random graph models, as described in the previous section.

This was repeated for both the local and global neuronal networks of C.elegans. In the case of ER,

we found that both patterns were deemed significant and unlikely to arise by chance, see Table 3.

However, it is well known that the distribution for both the in and out degrees of the C.elegans

network deviate significantly from the Poissonian distribution of ER random graphs [17], so perhaps

this should not be too surprising. Using the three variants of the stickiness model, we find that

the bipartite structure discovered for the local C. elegans network is deemed significant only in

the case of the ‘biased’ stickiness model. Note however, that this apparent lack of significance,
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RG model p1 p2

Local
Erdos-Renyi 6.81× 10−5 0/1000
Directed stickiness 0.9556 951/1000
Shuffled stickiness 0.9683 958/1000
Biased stickiness 0.0468 42/1000

Global
Erdos-Renyi 8.47× 10−12 0/1000
Directed stickiness 5.82× 10−5 0/1000
Shuffled stickiness 5.15× 10−5 0/1000
Biased stickiness 8.63× 10−7 0/1000

Table 3: Significance of subgraphs found for the local and global networks for C. elegans using
varying test matrix classes

is due mainly to the fact that, although the S1 → S2 matrix has many more connections than

the S1 → S1, S2 → S1 and S2 → S2 subnetworks, it is still relatively sparse, thus resulting in a

low bipartivity score (bL = 0.2645). For the global network, the connectivity pattern determined

remains significant when the differing stickiness models are used (bG = 0.6415 and p < 0.01 in all

cases; again see Table 3 for the details).

The neuronal classes 1 that were picked out by the algorithm along with a description of their

respective functionalities are given in Tables 4 and 5.

For the local neural network of C. elegans, neurons contained within S1 were mainly involved

in sensory processes (approximately 65%), whilst those in S2 involved a mixture of motor neurons

and so called ‘command’ interneurons. Similarly for the global C. elegans network, we found that

S1 consisted of a mixture of sensory neurons and nerve ring interneurons, whilst S2 was made

up entirely of command interneurons. Note that in [3], Durbin attempted to vertically order

the neuronal classes in the nerve ring of C. elegans, in such a way, that as many as possible

of the synapses pointed downwards. The resultant ordering placed sensory neurons towards the

top, motor neurons towards the bottom, and the remaining interneurons in between. Note that

the bipartite structures that we have picked out are in good agreement with the highly directed,

hierarchic picture presented by Durbin.

On closer inspection, 60% of neurons contained within S2 for the local C. elegans network, and

all neurons belonging to S2 for the global neural network, were found to belong to a group of neurons
1For simplicity we present the combined results for neuronal classes rather than individual cells.

14



Neuronal Class Description

S1 OLL Head sensory neuron
URY Head sensory neuron
IL2 Head sensory neuron
RIH Ring interneuron
ASH Amphids; sensory neuron
RIM Ring motor neuron
RIV Ring motor/interneuron
CEP Head sensory neuron
AVH Interneuron
ADL Amphids; sensory neuron

S2 SMD Ring motor neuron
RME Ring motor neuron
RMD Ring motor neuron
AVB Command interneuron
AVA Command interneuron
AVE Command interneuron
AVD Command interneuron

Table 4: Neuronal class and type for bipartite subgraph found in the local network of 131 frontal
neurons of C. elegans.

termed the lateral ganglion which are known to be highly interconnected with both sensory and

motor neurons - particularly those motor neurons in the ventral cord. Indeed, it has been suggested

that the lateral ganglion is the principal pathway between sensory and motor components of the

nematode C. elegans [2]. In addition, the neuronal classes AVA, AVB, AVD and AVE, which were

picked out both in the local and global networks, have been previously identified as ‘hub’ or ‘centre’

neurons that are essential for normal biological function [14]. For example, it is well known that

both AVA and AVB neurons are necessary for normal coordinated movement.

7 Conclusions

This paper addresses the problem of determining directed bipartite structures within complex net-

works via a new matrix mapping. Initial tests on a network from neuroscience show that the new

mapping can be used to successfully infer biologically relevant information using only the network

topology. We emphasise the importance of choosing the correct random graph model by comparing
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Neuronal Class Description

S1 DVA Interneuron
FLP Sensory neuron
DVC Ring interneuron
PVP Interneuron
ADL Amphids; sensory neuron
AIM Ring interneuron
ADE Anterior deirid; sensory neuron
ASH Amphids; sensory neuron
AQR Sensory neuron
ADA Ring interneuron
AVM Sensory neuron

S2 AVA Command interneuron
AVB Command interneuron
AVD Command interneuron
AVE Command interneuron

Table 5: Neuronal class and type for bipartite subgraph found in the global network of 191 neurons
of the C. elegans.

statistics for several such models. In particular, we see that the ‘significance’ or ‘non-significance’

of the determined connectivity patterns can be extremely sensitive to the class of random matrices

chosen. In future work in this area we plan to develop automated algorithms for discovering and

quantifying the quality of approximate directed bipartite communities and to test these ideas on

further real life data sets.
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nz = 964

A

Reordered f(A) + f(AT)
nz = 96

Subnetwork of A

Figure 6: Upper left: worm neural network with 131 nodes. Lower: reordered version of f(A) +
f(AT ). Upper right: subnetwork of 32 nodes obtained from the reordering.
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