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Abstract 
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Superhydrophobic surfaces are extremely water repellent
1
,but proteins have been shown to adhere to 

them
2
. Here we show that although superhydrophobic surfaces can allow greater protein adsorption 

under static conditions, fluid flow over a nano-scale superhydrophobic surface can result in clean 

surfaces. Possible mechanisms that explain such behaviour include decreased contact between protein 

and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the 

liquid
3,4,5

. 

Keywords: superhydrophobic; Protein Adsorption; Slip; Anti-fouling, Topography 

 

 

 

Text 

 

Superhydrophobic surfaces have been explored for various applications including self-cleaning and 

anti-mist/fog surfaces, power-on-demand batteries and electrostatically controllable liquid optics. The 

basic correlations between surface roughness and water repellency were originally defined by Wenzel
6
 

and Cassie and Baxter
7
. In the simplest case, the Wenzel state, liquid conforms to the roughness; 

increasing its interfacial contact area. In contrast, the Cassie-Baxter state involves the liquid sitting on 

top of the roughness, giving potentially a lower solid-liquid contact area, (Figure 1a). Surfaces showing 

low interfacial areas allow water to slide or roll off very easily and are therefore of the most interest. A 

large number of techniques have been developed to produce different superhydrophobic surfaces for 

study, a small number have been developed into products.
8,9

 

Anti-fouling surfaces that show low protein adsorption are important in many areas, especially for 

surfaces that cannot be cleaned for extended periods such as boat hulls and some biomedical devices. 

Biofouling of boat hulls and some pipes considerably increases energy consumption. Protein adsorption 

is the first stage in biological contamination of surfaces, with cells binding to a pre-adsorbed protein 
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layer before proliferating and spreading. Surfaces that hinder or obstruct this early adsorption process 

would reduce cell growth. Another area where protein adsorption is problematic is in enzyme catalysed 

reactions, where enzyme adsorption reduces the rate of reaction. This is particularly evident as the scale 

of a reaction environment is reduced and the surface area-to-volume ratio increases. Micro- and nano-

fluidic devices, for example, are high-efficiency tools for chemical and biological processing typically 

consisting of wide, flat channels that maximise interfacial surface area and cross diffusion. Reducing 

protein adhesion has been approached in several ways in the past, including chemically coating the 

surfaces
10

, filling the surface sites with other molecules
11

 and attaching proteolytic enzymes to 

surfaces
12

. Surfaces that employ flow shear removal are used in a small number of applications, typically 

fast boats as the shear rate required is high and the material used can easily become damaged
13

. A recent 

publication highlights the possibilities of superhydrophobic coatings but also shows how little work has 

been undertaken in this area.
14

 

It is understood that proteins which do bind to hydrophobic surfaces have a lower cell and platelet 

binding ability, possibly due to conformational changes.
15

 It has been suggested that superhydrophobic 

surfaces could reduce the extent of protein adsorption due to the reduction in solid surface area at the 

liquid interface 
16,17,18

. However, protein adsorption has been shown to occur over long time periods on 

superhydrophobic surfaces, which may indicate a dependence on the relaxation of the protein 

structure.
19,20

 Furthermore, due to the surfactant nature of some proteins, adsorption onto pseudo-porous 

surfaces may be progressive, with an adsorbed protein layer driving the solvent front into the surface 

structure.
16, 21

 

The current study demonstrates the effect of superhydrophobic surface dimensions and surface 

chemistry on static protein adsorption and efficacy of protein removal under flow. The hypothesis is that 

proteins may adhere to superhydrophobic surfaces, but several additional factors may contribute to their 

effective removal under flow, particularly if micro-metre scale roughness is replaced with nano-metre 

scale roughness. Interfacial slip between the liquid and solid would cause an increase in liquid flow rate 

near the surface; adsorbed molecules will experience greater shear forces and are therefore more likely 
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to be swept away. On nano-scale roughness the curvature of the surface approaches protein molecular 

dimensions, reducing the contact area unless the protein molecules deform.
22

 The copper oxide nano-

filaments used here have flat ends that are around 60 nm wide and 10 nm thick (Figure 1d) with possible 

roughness of a smaller scale
23

; so the thickness is similar to the dimensions of the protein used. In this 

case the interfacial surface area onto which a protein molecule could adsorb is smaller than the protein 

and so could greatly reduce its binding strength and resistance to flow shear. A reduction of protein 

adsorption due to flow shear has been reported on nano-wires
24

 and polymer brushes
22,25

. Nano-scale 

superhydrophobic surfaces remain in the Cassie-Baxter bridging state under much higher hydrostatic 

pressure compared to micro-structured surfaces. Fluorocarbon terminated superhydrophobic surfaces are 

additionally relatively resistant to ingress of liquid into the structure under the action of surfactants (such 

as proteins). 

Measurements were performed by adsorbing protein from solution for 1h, samples were then rinsed in 

buffer and then a portion of the samples were placed in a flow cell and buffer solution flowed over them. 

The amount of protein remaining adsorbed was then assessed by fluorometric assay after detachment 

from the surface. This technique has previously been demonstrated to quantify small amounts of protein; 

considerably less than a monolayer on a surface of a few cm
2
.
16

 Surfaces with micro- to nano-sized 

topographic structures were investigated. Rough sol-gel thin films of two different grain and pore sizes
26

 

and copper hydroxide needle
23

 surfaces, having roughness with critical dimensions ca. 4 µm, 800 nm 

and 10 nm respectively, (Figure 2) were used as model surfaces. All surfaces were subsequently 

chemically modified to give hydrocarbon or fluorocarbon surface chemistry; giving water contact angles 

of 169
o
 for micron and 152

o
 for nano-rough fluorinated surfaces. Flat copper reference samples coated 

with either coating showed identical BSA adhesion properties to flat glass samples with the same 

coatings under both static conditions and after flow, indicating that the copper was not influencing the 

adsorption process. Details of surface preparation can be found in the electronic supplementary 

information. 
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Bovine serum albumin (BSA) was chosen as a model protein since it is known to adhere well to 

surfaces. Moreover, it is important in various biological applications such as PCR, found in high 

abundance in serum and is commonly used as a surface blocking agent due to its binding characteristics. 

This protein is of the order of 15 nm in size, but is known to deform when strongly adhered.
27

 

 

 

 

 

 

 

  

Figure 1: (a) diagram showing Cassie-Baxter superhydrophobicity and the critical dimension used to 

define surfaces here. Electron micrographs of (b) the larger scale sol-gel material used, (c) the smaller 

scale one and (d) the copper oxide nano-pillars. 
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Under static conditions similar amounts of albumin are observed to adsorb to flat glass and the nano-

structured copper oxide surfaces with the sol-gel surfaces showing much higher adsorption (Figure 2). 

The small sized sol-gel surface (~800 nm particle size, ~4 µm pore size) had a lower degree of protein 

adsorption compared to the larger sized (~4 µm particle, ~20 µm pore) material. This indicates that the 

pressure in the system combined with the surfactant nature of the protein used, is sufficient to 

significantly penetrate the structure of the larger pored material, which presents a larger available 

surface area for adsorption.
16

 

 

Greater adsorption was observed on fluorinated flat glass and copper oxide needle surfaces compared 

to the corresponding methylated surfaces. This may be due to the greater hydrophobicity of these 

surfaces
28

. It is possible that the fluorocarbon waterproofing agent generates some small scale roughness 

and thus increases the area available for adsorption, but results using silane coupling agents were similar 

(data not shown), which suggests that this result is due to the greater hydrophobicity of these surfaces 

than hydrocarbon surfaces, increasing the binding strength of hydrophobic interactions between BSA 

and the surface. 

 

The structured fluorinated surfaces showed considerably lower protein adsorption than the equivalent 

hydrocarbon terminated surfaces. On fluorocarbon surfaces the increased hydrophobicity will result in a 

lower interfacial surface area available for protein adsorption. The nano-structured surfaces with both 

coatings were the most resistant to protein adhesion under static conditions ~12 ng cm
-2

. It has 

previously been reported that proteins and peptides are affected by nano-structures of similar size to 

those used here
27,29,30

. 
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Figure 2: Albumin adsorption onto micro-scale and nano-scale surfaces: (a) hydrocarbon terminated and 

(b) fluorocarbon terminated under static conditions and after subsequent flow of buffer. 

 

 A proportion of the adsorbed protein was removed from all surfaces under flow conditions. 

Considerably greater amounts of protein, however, were lost from the superhydrophobic sol-gel surfaces 

than from flat surfaces, with the amount remaining being lower on successively smaller structured 

surfaces (Figure 2a). This suggests that micro-structures, despite being very large compared to the 

protein molecules, have a strong effect on protein retention under flow. Interfacial slip, if present, would 

create high shear-fields around the edges of contact areas, which would induce protein desorption. Our 

results demonstrate that on fluorocarbon terminated surfaces a higher degree of desorption was found on 

smaller structured surfaces, where higher shear fields would be expected (Figure 2b). This trend was 

also generally observed on the hydrocarbon surfaces, although a relatively large proportion of the protein 

was lost from the larger scale sol-gel surfaces. 

The nano-structured copper oxide surfaces showed similar adsorption to flat surfaces under static 

conditions, but also showed greater losses after exposure to flow. The fluorinated surfaces show slightly 

lower levels of adsorption than flat surfaces under static conditions, but after flow were clear of protein 
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within the detection limits of the measurement ~3 ng cm
-2

. This continues the trends observed on the 

sol-gel surfaces.  

 

The amount of protein adsorbed onto superhydrophobic surfaces in the absence of flow was similar to 

or greater than that onto flat reference samples, except for fluorocarbon terminated nano-structured 

surfaces with critical dimension of ca. 10 nm. However, when buffer was flowed over the sample 

surfaces, more protein was removed from the superhydrophobic surfaces than flat ones. Fluorinated 

nano-structured surfaces became almost completely clear of protein where equivalent flat surfaces only 

lost around 10%-20% of their protein. It is not clear from these measurements if the enhanced effect at 

nano-structured surfaces is due to reduced distance of any point from an area of slipping fluid or to 

reduced contact area between protein molecule and surface due to the small size of the tips of the nano-

pillars and their roughness. Reduced binding strength has previously been reported for BSA on high 

curvature surfaces
27

. 

 

The almost complete removal of protein films from some superhydrophobic surfaces under flow 

conditions is of significant interest in applications where flow is already present, such as in micro- and 

nano-fluidics or where flow cleaning is typically used, however, the use of surfactants may significantly 

reduce the effect observed.  Other proteins may be affected to different extents, the size, shape and 

alignment of protein molecules on the structures will affect how much force the washing liquid can exert 

as it slips past on the surface. If intrusion into the structure occurs a large increase in adsorption would 

be expected. 

 

Surfaces that hinder or prevent protein adsorption are sought after for use in many industries including 

biomedical, optical, electronics and engineering, where devices are prone to contamination. Here we 

have shown how nano-scale superhydrophobic surfaces can be used, firstly to obstruct adsorption taking 

place in the absence of fluid flow, but mainly to reduce the amount of adsorbed protein under flow 
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conditions. The effect demonstrated here is of particular use in micro- / nano-bioreactors, where the 

surface area to volume ratio favours enzyme loss from solution. We have also shown that larger scale 

superhydrophobic surfaces can have the opposite effect, causing increased adsorption; which goes some 

way to explaining the mixed results achieved by other studies. 
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