

A Framework for Proving the Correctness of Cryptographic Protocol

Properties by Linear Temporal Logic

Abdullah Alabdulatif, Xiaoqi Ma, Lars Nolle

School of Science and Technology, Nottingham Trent University

Abstract

 In this paper, a framework for cryptographic

protocol analysis using linear temporal logic is

proposed. The framework can be used to specify and

analyse security protocols. It aims to investigate and

analyse the security protocols properties that are

secure or have any flaws. The framework extends the

linear temporal logic by including the knowledge of

participants in each status that may change over the

time. It includes two main parts, the Language of

Temporal Logic (LTL) and the domain knowledge.

The ability of the framework is demonstrated by

analysing the Needham-Schroeder public key

protocol and the Andrew Secure RPC protocol as

examples.

1. Introduction

Designers of protocols use the trial-and-error

method to design for analysing security protocols.

Therefore, without the use of formal methods for the

verification of protocols errors can remain

undetected[1]. One of the advantages of formal

verification is that it provides a systematic way to

discover weaknesses in protocols. However, formal

verification is not an easy task because there are

wide ranges of complicated behaviours involved in

verifying security protocols. A number of methods

have been proposed by researchers to formally

analyse security protocols [2]. Several researchers

have developed formal methods with different

techniques to raise assurance level in the correctness

of security protocols. The BAN logic is one of the

methods used early to prove security protocols.

Burrows, Abadi and Needham developed the

BAN logic method for analysing security properties

of protocols. The BAN logic method is an important

early attempt to examine the security of protocols.

The BAN logic is a method for analysing the

authentication of protocols [2,3]. However, the BAN

logic is inappropriate to express the properties and

processes of dynamic system as security protocols

[4]. Subsequently, a number of researchers have

worked to propose other formal logic for analysing

the cryptographic protocols. For instance, semantics

for the analysis of cryptographic protocols [5], and

Syverson and van Oorschot have built a framework

to unify some cryptographic protocol logics [6]. All

of the proposed logics have syntax and semantic

which can be used as a formal system for analysing

the security protocols.

Researchers have found that time is important to

express the properties of security protocols.

Temporal logic is a formal logic that can be used as a

method for analysing security protocols. The

temporal logic can specify dynamic systems that

change over time[7]. The proposed framework has

been built by combining temporal and epistemic

logic. It can be used to guarantee the specific

knowledge of participants over time[2].

On the other side, Lei et al agreed that temporal

logic is suitable to reason the properties such as

safety and liveness [8]. However, they have found

that there are some difficulties in using temporal

logic to model security protocols. The difficulties

are firstly, the time in the temporal logic is abstract,

which is not appropriate to model protocols.

Secondly, modelling security protocols needs to

express a concrete process over a series of time that

is hard to model by temporal logic. For these reason

Lei et al built a framework that can express the time

dependent properties[8].

The framework presented in this paper will use

linear temporal logic to present the knowledge of

participants over running the protocol. It analyses the

knowledge in each state of the protocol to ensure

participants have knowledge they should know at

specific states. It describes what participants do not

know and what they should not known at specific

states of the protocol.

The paper is structured as follows. Section 2 will

present the framework that includes two parts, the

language of the logic and the domain knowledge.

Section 3 will describe the steps of Needham-

Schroeder public key protocol. Section 4 will show

how the framework can be used to analyse the

Needham-Schroeder public key protocol. Section 5

will illustrate the Andrew Secure RPC protocol

steps. Section 6 will shows how we can analyse the

protocol and detect the Claek-Jacob Attack by use

the framework. Section 7 will present conclusions

and future work.

2.The framework

This proposed framework is based on linear

temporal logic. The knowledge-based framework is

proposed to prove the correctness of security

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 749

protocols. The language of the logic is used to write

protocol steps and to represent the properties of

protocols in a formal language.

2.1. The language of temporal logic

This part is representing the syntax and semantics

language of the framework. The language is

basically an instance of linear temporal logic.

2.1.1. Syntax of the language of temporal logic

The Language of temporal logic is composed of an

alphabet, terms, formulae, axioms and deduction

rules of the framework as follows:

Definition 1 (Alphabet): The alphabet of the logic

language is based on symbols defined in [9], and was

extended by adding the statuses and temporal

operators that are appropriate to the proposed

framework. The alphabet for the framework is as

follows:

a. (Constants).

b. (Variables).

c. (Function symbols).

d. (Predicates).

e. ⋀ ⋁ (Logical connectives).

f. (Temporal operators).

g. (Quantifiers).

h. (Statuses).

i. () . (Punctuation marks).

Definition 2 (Operation , Next and binary

relation): Let be the set of statuses and

and be time of occurrence, then the status function

can be defined as follows [10]:

a. Next Next () () () .

b. The operation applies to status

then will give status such that Next

().

c. () ().

Definition 3 (Terms): Let be the set of constant

symbols, be the set of variables and be the set of

functions. The set of terms can be defined as

follows:

a. .

b. If and , then

 () where
c. The set of all terms is created from (a) and (b). No

other string is a term.

Definition 4 (Formula): Let be a set of variables,

be a set of predicate symbols, be a set of terms.

And a set of statuses. The set of formulas can be

defined as follows:

a. If and then

 () where . It can be

called atomic formula.

b. If then () .

c. If and then the follows are formulas:

 and .

d. If and then the follows are formula:

e. If then the follows are formulas:

To know the truth of a formula at a moment in

time, a status formula is introduced by defining the

set that includes all individual statuses in the path.

The set can be defined as follows:

 where .

Now the definition of formula can be extended as

follows:

Definition 5 (Extended Formula): Let where

is the set of formulas, and where is the

set of statuses, then the follows are formulas:

a. ()
b. Next ()
c. .

In Addition, there are a number of axioms and

deduction rules used in the framework which will be

introduced later. The deduction rules include three

kinds of rules: propositional rules, temporal rules and

quantifier rules.

2.1.2. Semantics of the language of temporal logic

To give the semantics of the language of temporal

logic, which is based on the Kripke structure model

[11], we will firstly define the Kripke structure.

Definition 6 (Kripke Structure): Let denote the

suffix of the path . and be a set of

atomic propositions which is not empty. A Kripke

structure is a four tuple (), where

a. is a finite set of statuses,

b. is the current status,

c. is a transition relation, for which it

holds that () ,

d. is labelling, a function which labels

each status with atomic propositions which hold in

this status.

Definition 7 (The model): Assume is a Kripke

structure, and is a path in . If the well-formed

formula is satisfied in the path at specific status

 , it can be abbreviated as 〈 〉 . The relation

 can be define as follows:

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 750

〈 〉 ()

 〈 〉 () 〈 〉 ()
〈 〉 () () 〈 〉 ()

and〈 〉 ()

〈 〉 () () 〈 〉 ()
or〈 〉 ()

〈 〉 () () 〈 〉 ()
or〈 〉 ()

 〈 〉
 ()

 〈 〉 ()

〈 〉 ()
 〈 〉 ()

〈 〉 () 〈 〉 ()

2.2. The domain knowledge

The domain knowledge defines the knowledge of

agents who are participants during the running of a

protocol. In the domain knowledge, three types of

participants involved in the protocol are defined. The

first type is a server or trusted third party. The

second type is a friend agent, including all legitimate

agents participating the protocol. The third type is a

malicious agent or attacker, which includes agents

trying to obtain information during running the

protocol in an unauthorised way.

Definition 8 (Agents):

Agents can generate random numbers called

Nonces. A Nonce should be fresh and unique for

identifying a protocol session. Also, the domain

knowledge has defined two types of keys. For the

asymmetric cryptosystem there is a public and a

private key. For a symmetric cryptosystem there is a

shared session key. The time during running the

protocol can be divided into statuses each of which

indicates a moment of time. The agents use messages

to talk over the network, where the combination of

two messages and can be represented as 〈 〉. In

the domain knowledge there are different types of

messages as defined below.

Definition 9 (Message):

 () () ()
 () () () ()
 ().

There are actions, functions and predicates used

to represent the processes and properties in the

protocol. Let and be agents and be message,

the agent can generate a new message using the

action (). The agent can send the

message to the agent and receive message by

using the actions () and ()

respectively. There are a number of functions

an agent might use to help in the network

to meet the cryptographic requirements.

There are two kinds of functions depending

on the techniques of the cryptographic

protocols, which are either symmetric or

asymmetric. The asymmetric functions are

defined as follows:

 (): denoting the public encryption

key of agent .

 (): denoting the private encryption

key of agent .

 (): denoting the public signature

key of agent

 () denoting the private signature

key of agent .

On the other hand, the framework defines one

symmetric function as follows:

 (): denoting that agents and

share the symmetric key . In some cases, two

agents might share two or more symmetric keys,

which should be distinguished from each other.

A predicate takes parameters and returns true or

false. The framework defines some predicates to

describe the knowledge of agents. There are a

number of predicates identified as follows:

 (): denoting at status agent

knows the message . Either the agent has

generated the message or received from

another agent.

 () denoting at status the

message has not been altered when sent to

agent from agent .

 (): denoting at status , agent

verifies the message .

 () denoting at status , the

message is contained within the message .

 () denoting at status , two

elements of messages or agents are same as each

other.

2.3. Assumption and rules

There are a number of security assumptions and

rules used to prove the properties of security

protocols. The security assumptions are agreed by

most of researchers in the protocol verification field

[12]. The rules are used to infer new knowledge at

the current status. The assumptions and rules have

been formulated as follows:

Assumption 1: The symmetric key must originally

only be known by the two agents who share the key.

No other agent or spy can know this key.

 () ()
 ((())).

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 751

Assumption 2: The public key of a legitimate agent

is known to all agents in the network.

 ((()))

Assumption 3: Every agent knows his own private

key.

 ((())).

Assumption 4: The private key must not be sent over

the network.

 () ((())).

Assumption 5: Over the network an attacker should

not be a friend or the server.

 () () (
).

 Assumption 6: For all keys, is the inverse of the

key . The equation is () .

 ()

Rule 1: If an agent knows message and the key

 , then the agent can use the key to encrypt the

message. The final result is that the agent can know

the encrypted messages.
 () (())

 (())

Rule 2: If agent knows the message encrypted

with the key and knows the corresponding

decryption key, then can use the decryption key to

decrypt the message. The final result is that the agent

can know the content of the original message.

 (()) (())

 ()

Rule 3: If agent knows two different messages,

then the agent can combine them.

 () ()

 ()

Rule 4: If agent knows that there are two messages

combined together, then the agent can separate them.
 (〈 〉)

 () ()

Rule 5: If agent sends a message to another

agent , then agent must know this message

before he sends it.

 ()

 ()

Rule 6: The attacker can eavesdrop all messages in

the network.

 ()

 ()

Rule 7: If agent has received a message then

should know the content of this message, and nobody

can force agent to delete this message.
 ()

 ()

Rule 8: If agent receives a message at moment
then there is another agent who sent this message to

 before the moment .
 ()

 ()

3. The Needham-Schroeder public key

protocol

The Needham-Schroeder public key (NSPK)

protocol is a simple protocol with just three steps and

it has a known flaw. The flaw was found by Lowe in

1995 [13]. The aim of NSPK is achieving

successfully established authentication between two

agents , who are named the initiator and

responder respectively. The three steps of the NSPK

protocol can be represented as following:

 ()

 ()

 ()

Note:

1. ():Two messages are combined

and encrypted by the agent ’s public key.

2. : It denotes the random number generated by the

agent that should be unique and unknown to other

agents. It is called a nonce.

The messages of NSPK can be described as

follows:

Message 1: The agent initiates the protocol by

sending to agent an encrypted message that

containing 's identity and nonce encrypted with 's

public key.

Message 2: If receives message 1, can know

by decrypting the message. Then, responds to by

sending a message encrypted with public key of

containing the nonce and a sender nonce

which is generate by .

Message 3: If receives message 2, can know

by decrypting the message. Then, responds to by

sending a message encrypted with the public key of

 containing nonce .

After running the protocol, the agent can be

sure that he or she talks to agent . In the same way,

agent can be sure that he or she talks to the agent

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 752

 . Lowe has shown that this is not true as explained

in the next section.

4. Analysis of Needham-Schroeder public

key protocol

In this section, the framework presented in the

section 2 will be used to investigate the NSPK

protocol as a case study. There are four steps that are

guidelines for proving the correctness of security

protocols [12]. This part will follow these four step

to analyse the NSPK protocol.

4.1. Adjusting the framework

There are some minor differences among security

protocols where each protocol has different security

objectives. In this step, the framework will be

adjusted slightly to the specifications of the NSPK

protocol.

In the NSPK protocol there are two honest agents

(and) and an attacker. Hence, the types of agent

can be defined as follows:

And the set of friends is defined as:

So, the assumption of attacker can be changed

according to the definition of the agents, as follows:

 () ()

4.2. Modelling the protocol

In this step, the three steps of the NSPK protocol

will be converted from an informal language as

written in section 3 to a formal language using the

frameworks notations as follows:

 ((〈 ()〉

(()))).

 ((〈 ()〉

(())) (

(〈 () ()〉 (()))).

 (

(〈 () ()〉 (())))

 ((()
 (()))).

These three steps above are enough for the

friends (honest users) to successfully run the

protocol. On the other hand, it should not be

overlooked that the attacker does not necessarily

follow the protocol rules. According to the

assumptions and rules in the framework, from the

fake message rule and the attacker rule two

additional rules can be used:

 (
 (〈 ()〉 (()))

 ((〈 () ()〉
 (()))).

 (
 (〈 () ()〉 (())))

 ((()
 (()))).

4.3. Proving basic properties

There are a number of basic properties that are

common among most of protocols such as knowing

the content of received message. The basic properties

of the protocol need to be proved. All these basic

properties can be reused in proving other protocols.

In this paper we will prove two basic properties.

The lemma 1 will be proved, (Knowledge of

message): () (). This

lemma consists of one goal, which is ()

and one antecedent, which is (). The

lemma says that, if agent sends message to

another agent , the agent can read the message

 . The steps of proving the lemma 1 are as follows:

 () Consequent

 assumption

 () 1,2,always elimination

rule

 assumption

 () 3,4, rule 7

 assumption

 () 5,6, rule 8

 () 7,Existential

introduction rule

9.done

 The lemma 2 will be proved, (Knowing encrypt

message): (((())))

 (). This lemma consists of one goal,

which is () and one antecedent, which is

 (((()))). The lemma

says that if agent know message encrypted

using 's public key, then agent can know the

content of message . The steps of proving the

lemma 2 are as follows:

 () Consequent

 assumption

 (

((())))
 ((()))

1,2, rule 2

 ((())) 3, conjunction

introduction rule

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 753

 4, assumption3

 (

((())))

3, conjunction

introduction rule

4.4. Proving security properties

Proving the correctness of the NSPK protocol

will be based on the nonce secrecy. If agent and

agent have successfully completed a run of the

protocol, then should believe that is his partner

if and only if believes that he is talking to . So,

there are two properties, which are important to

prove the correctness of the NSPK protocol:

)
 (()).

B)
 (()).

With the assumption that nonces will never be

sent out over the network without encryption, the

attacker does not have the opportunity to know the

value of the nonces unless somebody sends the

nonces encrypted by the attacker's public key.

 (
 ()) (
 (() (())))

Lowe Attack: Lowe (1995) found that in step 3 of

the protocol there is a potential attack. The figure 1

shows the six steps to break the protocol [13]. If we

assume agent sends 's nonce to the attacker, then

by reviewing the steps of the protocol backwards we

can easily find the attacker can be impersonating

another principal (agent) and illegally knows the

value of 's nonce. As shown in Table1 at session

1, step 3, agent has sent 's nonce to the attacker,

before session 2 has been completed. Therefore, the

attack breaks the secrecy of the nonces.

Session Step Sent to Message

Seession1 Step1

Seession2 Step1 ()

Seession2 Step2 ()

Seession1 Step2

Seession1 Step3

Seession2 Step3 ()

The scripts show the attack can know B’s nonce

before agent B as follows:

 (()) Consequent

 Assumption

 (

(() (())))

1, lemma 2

 (

(() (())))

2,3, lemma1

 assumption

 ((

〈 () ()〉 (

())))

4, 5, Reply

NS3 to

Attacker

 assumption

 ((

〈 () ()〉 (

())))

6,7, rule 5

 assumption

 ((

〈 () ()〉 (

())))

8,9,

lemma 1

 assumption

 (
 (〈 () ()〉
 (())))

10,11, Reply

NS2 to

Attacker

 ((
〈 () ()〉 (

())))

12, fake

message

 (
〈 () ()〉)

 ((

()))

13, rule 1

 ((

()))

14, conjunction
introduction

rule

 15, assumption2

17. (
〈 () ()〉)

14, conjunction

introduction

rule

 ((

〈 () ()〉 (

())))

15, lemma 2

 assumption

 ((

〈 () ()〉 (

())))

18, 19, lemma1

The framework has used to analyse the NSPK

protocol. The ability of the framework demonstrated

by detects the Lowe attack. Also, there are two basic

properties have proved and used in the analysis of

A Attacker B

Figure1. Attack NSPK protocol

Table1. Attacking the Needham-Schroder

protocol by Lowe.

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 754

NSPK protocol. Hence, the framework can analyse

complex protocols to discover a new flaws.

5. The Andrew secure RPC protocol

The Andrew Secure RPC protocol (ASRPC) aims

to authenticate handshake among two agents. This

protocol purposes to provide the client which a

new session Key
 from the server , whereas

both and have already had a shared session key

 [14]. The four steps of the ASRPC protocol can

be represented as following:

The messages of ASRPC can be described as

follows:

Message 1: The agent initiates the protocol by

sending to server a message containing 's identity

unencrypted and ’s nonce encrypted with the

share session key .

Message 2: If receives message 1, can know

by decrypting the message. Then, responds to by

sending a message encrypted with containing the

nonce and a new nonce ,which is generated by

 .

Message 3: If receives message 2, can know

by decrypting the message. Then, responds to

after it checks and is satisfied with content of

message 2 by sending a message encrypted with

containing nonce .

Message 4: If receives message 3, will send a

new session key with s new nonce by a

message encrypted with .

After successfully running the protocol, the client

 can be sure that he or she is authenticated by

server . Also, a fresh new session key can be

used to exchange the data with server . However,

Burrows et al in 1989 found that the client cannot

ensure that the
 is fresh [14]. In addition, Clark

and Jacob proposed a typing attack in which an

intruder eavesdrop the message 2 then resend it as

substitutes in place of message 4. The Clark and

Jacob attack is shown in next section.

6. Analysis of the Andrew Secure RPC

protocol

As we have done in the section 4, The framework

in section 2 will be used to analyse ASRPC protocol

and find the Clark and Jacob attack. The steps of

guidelines for proving the correctness of security

protocols will be followed.

6.1. Adjusting the framework

In the ASRPC protocol there are two honest

agents (and server) and an attacker.

Hence, the type of agents can be defined as follows:

And there are three different nonces

which are for client and and

for server . Moreover, in this protocol

there are two session keys which are

and .

6.2. Modelling the ASRPC protocol

The four steps of the ASRPC protocol will be

converted from an informal language as written in

section 5 to a formal language using the frameworks

notations as follows:

ASRPC 1 (
〈 ((()))〉)

 (
〈 ((()))〉)
 ((〈 〉

(()))).

 ((〈 〉

(()))) ((〈
 〉 (()))).

 ((〈 〉
(()))) (
(〈 (())

 〉 (())))

These four steps are able to achieve the aim of

protocol carrying out authentication handshake

among two agents and agreement in a new session

key . On the other hand, it should not be

overlooked that the attacker does not necessarily

follow the protocol rules. According to the

assumptions and rules in the framework, the attacker

can eavesdrop all messages and the fake message

rule can be used:

 (
(〈 〉 (())))

((〈 〉 (
 ())))

6.3. Proving basic properties

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 755

The basic properties are usually suitable to be

used within various protocols. Therefore, we will

use the basic properties in the section 4.3.

6.4. Proving security properties

Proving the correctness of the ASRPC Protocol

will be based on executing the successful handshake

and agreeing the new session key . If client A

and server B have successfully completed a run of

the protocol, then A should believe that new key

session is fresh and client A will use this key

for next session. So, there is a property which can be

used to prove the correctness of the NSPK protocol:

 ((〈

 〉 (

())))

We assume that the client and server share

session key , and all messages are never sent out

without encrypted by over the network. With

these assumptions the attacker has no chance to

know or modify the value of new session key
 .

However, the attacker can send a fake message

which has same format of a message as the new

session key
 to client . In this case, the attacker

can bogus the
 and convince the client to

accept it [1,15].

Claek-Jacob Attack: The ASRPC protocol has a

potential attack found in 1996 by Claek and Jacob.

The figure 2 shows the sequence steps to attack the

protocol. If we assume that the attacker is able to

send a fake message and eavesdrop all messages, the

attacker can impersonate server and reply the

message 2 to client when the client sends the

message 3 to server . At the end, client accepts

the to be the new session key with server

 [15].

The scripts below show the attack has ability to

achieve Clark-Jacob attack through impersonate

server B and replying message 2.

 (〈 〉) Consequent
 Assumption
 ((〈
 〉 (
())))
((()))

1, rule 2

 ((())) 3,

conjunction

introductio

n rule
 4,

assumption 6
 (
(〈 〉 (
())))

3,

conjunction

introductio

n rule
 (

(〈 〉 (
())))

2,6, lemma

1

 assumption
 (
(〈 〉
(())))

7,8, fake

message

 (
(〈 〉 (
())))

9,10,

always

elimination

rule
 assumption
 (
(〈 〉
(())))

11,12, rule

7

 (
(〈 〉 (
())))

13,Eavesdro

p attacker

ASRPC 2
 assumption
 ((
(())))

14,15,

ASRPC 2

7. Conclusion and future work

In this paper, a framework was presented that can

be used to analyse security protocols. The framework

approach is linear temporal logic with statuses,

which is used to prove the correctness of security

protocols. The NSPK protocol and ASRPC protocol,

which are well known security protocols used to

prove that the framework is capable of detecting

flaws. The result of the proof is that the framework

detected the known flaws in these two protocols.

A Attacker B

Figure 2. Attack ASRPC protocol

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 756

Future work will focus on investigating other

protocols using the framework in order to identify

the unknown flaws.

8. Acknowledgements

This research is supported by Saudi Arabian

Cultural Bureau in London, and the Ministry of

Higher Education in Saudi Arabia and Qassim

University.

9. References

[1] Boyd, C.; Mathuria, A. Protocols for Authentication

and Key Establishment.; Springer Verlag, 2003.

[2] Dixon, C.; Gago, M.C.F.; Fisher, M.; Van Der Hoek,

W. Using Temporal Logics of Knowledge in the Formal

Verification of Security Protocols. In Temporal

Representation and Reasoning, 2004. TIME 2004.

Proceedings. 11th International Symposium on; pp. 148-
151.

[3] Zhang, Y.; Varadharajan, V. A Logic for Modeling the

Dynamics of Beliefs in Cryptographic Protocols. In

Computer Science Conference, 2001. ACSC 2001.
Proceedings. 24th Australasian; pp. 215-222.

[4] Snekkenes, E. Exploring the BAN Approach to

Protocol Analysis. In Research in Security and Privacy,

1991. Proceedings., 1991 IEEE Computer Society

Symposium on; pp. 171-181.

[5] Syverson, P.F. Knowledge, Belief, and Semantics in

the Analysis of Cryptographic Protocols. journal of
Computer Security 1992, 1, 317-334.

[6] Syverson, P.F.; Van Oorschot, P.C. On Unifying some

Cryptographic Protocol Logics. In Research in Security

and Privacy, 1994. Proceedings., 1994 IEEE Computer

Society Symposium on; pp. 14-28.

[7] Manna, Z.; Pnueli, A. The Temporal Logic of Reactive
and Concurrent Systems: Specification.; Springer, 1992.

[8] Lei, X.; Xue, R.; Yu, T. A Timed Logic for Modeling
and Reasoning about Security Protocols.

[9] Ebbinghaus, H.-.; Flum, J.; Thomas, W. Mathematical

Logic, 2nd ed.; Springer-Verlag: New York; London,
1994; pp. 289.

[10] Simpson, A.K. The Proof Theory and Semantics of

Intuitionistic Modal Logic. Department of Computer

Science, University of Edinburgh, Edinburgh, Scotland
1994.

[11] Shigong, L.; Lijun, W. Analysis of Cryptographic

Protocols using LTL of Knowledge. In Networking and

Digital Society (ICNDS), 2010 2nd International
Conference on; pp. 463-466.

[12] Ma, X. A Knowledge Based Approach to Verifying
Cryptographic Protocols. 2007.

[13] Lowe, G. An Attack on the Needham-Schroeder

Public-Key Authentication Protocol. Information
processing letters 1995, 56, 131-133.

[14] Burrows, M.; Abadi, M.; Needham, R.M. A Logic of

Authentication. Proceedings of the Royal Society of

London.A.Mathematical and Physical Sciences 1989, 426,
233-271.

[15] Clark, J.; Jacob, J. Attacking Authentication

Protocols. High Integrity Systems 1996, 1, 465-474.

International Journal of Digital Society (IJDS), Volume 4, Issues 1 and 2, March/June 2013

Copyright © 2013, Infonomics Society 757

