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Abstract 

The vanishing gradients problem inherent in Simple Recurrent Networks (SRN) trained with 

back-propagation, has led to a significant shift towards the use of Long Short-term Memory 

(LSTM) and Echo State Networks (ESN), which overcome this problem through either second 

order error-carousel schemes or different learning algorithms respectively. 

This paper re-opens the case for SRN-based approaches, by considering a variant, the Multi-

recurrent Network (MRN). We show that memory units embedded within its architecture can 

ameliorate against the vanishing gradient problem, by providing variable sensitivity to recent 

and more historic information through layer- and self-recurrent links with varied weights, to 

form a so-called sluggish state-based memory.  

We demonstrate that an MRN, optimised with noise injection, is able to learn the long term 

dependency within a complex grammar induction task, significantly outperforming the SRN, 

NARX and ESN. Analysis of the internal representations of the networks, reveals that sluggish 

state-based representations of the MRN are best able to latch on to critical temporal 

dependencies spanning variable time delays, to maintain distinct and stable representations of 

all underlying grammar states. Surprisingly, the ESN was unable to fully learn the dependency 

problem, suggesting the major shift towards this class of models may be premature. 
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1. Introduction 

 

Recent studies have demonstrated that the ability to learn nonlinear temporal dynamic 

behaviour is a significant factor in the solution of numerous complex problem-solving tasks, 

such as those found in many practical problem domains e.g. natural language processing [1, 2, 

41, 42, 43], speech processing [3] and financial modelling [4, 5]. Recurrent neural networks 

(RNNs) are a class of connectionist network whose computational neurons produce activations 

based on the activation history of the network [6]. RNNs have nonlinear dynamics, allowing 

them to perform in a highly complex manner; network activations from previous time steps are 

fed back as input into the RNN at future time steps. In theory, the states of the hidden units can 

store data through time in the form of a distributed representation, and this can be used many 

time steps later to predict subsequent input vectors [7]. This particular characteristic 

distinguishes them from their feedforward counterpart (the Multi-layer Perceptron, MLP) and 

enables them to act as vector-sequence transducers [6].  

Although there are numerous connectionist techniques for processing temporal information, 

historically, the most widely used RNN has been the Simple Recurrent Network (SRN) [1]. 

The SRN is a state-based model, similar in complexity to a Hidden Markov Model, and 

represents sequences of information as internal states of neural activation [8]. The SRN has 

proven remarkably useful for temporal problem domains such as natural language processing, 

and in particular, learning to model regular and simple context-free languages. Moreover, much 

research has been conducted to investigate the temporal processing ability of SRNs  [8–15]. It 

has been shown that in some cases, the SRN and its variants are unable to learn time lagged 

information (dependencies) exceeding as few as 5 to 10 discrete time steps between relevant 

input events and target signals [18]. This is most likely due to their use of gradient descent 

learning where the gradient of the total output error, from previous input observations, vanishes 

quickly as the time lag between relevant inputs and errors increases [17]. SRNs have also been 

severely criticised for their lack of ability to model the combinatorial systematicity of human 

language [16, 36]. This, however, has cogently been refuted by Christiansen & MacDonald [47] 

who demonstrate that the SRN is able to make non-local generalisations based on the structural 



regularities found in the training corpus [3] and appropriate constituent-based generalisations, 

providing further support for non-parametric usage-based models of language [48]. 

Researchers have investigated various architectural configurations to enhance the memory 

capacity of SRNs. For example, Ulbricht [19] introduced the Multi-Recurrent Network (MRN), 

which utilises variable-length memory banks with variable strength recurrent and self-recurrent 

links, to form a so-called sluggish state-based memory mechanism. The integration of variable 

state activations with the replication of state nodes, to form memory banks for representing 

temporal dependency, is a particularly distinctive feature, relative to other models in the SRN 

family. Dorffner [20] states that these sluggish state spaces can exploit the information from 

both recent time steps and the distant past to form a longer averaged history, and that this can 

help to solve long term dependency problems.  The MRN has been successfully used to solve 

a number of complex prediction problems, yielding very competitive results over traditional 

SRNs, and has also faired competitively with Kernel methods [5, 19]. These published results 

justify the additional connections and resulting complexity of the MRN. Another approach 

which utilises additional memory units within the architecture to overcome the vanishing 

gradient issue, is the Nonlinear AutoRegressive model process with eXogenous input (NARX) 

network, introduced by Lin et al [34]. Unlike the MRN, the NARX does not utilise past state 

information; it was introduced to process temporal dependencies, primarily within the 

continuous domain. The NARX network is essentially an RNN. It contains feedback from the 

output layer and the input layer to create a context layer. This context layer represents temporal 

information explicitly, in the form of a shift-register of the previous activations. NARX 

networks therefore overcome the limitations of SRNs for encoding temporal dependency, by 

associating nodes with temporal information rather than state activations.  

Despite the promise shown by the MRN and NARX networks over SRNs, there has been a 

strong shift away from the traditional SRN family of networks and towards more complex 

second order RNNs and those with different learning regimes. One such innovation is the Long 

Short-Term Memory (LSTM) introduced by Hochreiter & Schmidhuber [37] and developed 

further by Gers et al [21]. This is a second-order RNN that consists of multiple recurrently 

connected subnets, called memory blocks. Each block contains a set of internal units having 

activations controlled by three multiplicative units (input gate, forget gate and output gate). 

This block-based mechanism enables an error carousel to be formed which enables the LSTM 

to latch on to appropriate error information. The LSTM is considered to provide state-of-the-

art performance in numerous temporal modelling tasks, however without appropriate external 



resets, internal unit values can grow uncontrollably, creating instability. Ad hoc reset methods 

may therefore be required which adds to the complication of the design process. 

Another type of RNN aimed at resolving the long temporal dependency problem is the Echo-

state Network (ESN). The ESN has again exhibited state-of-the-art performance. It is similar 

in architecture to the SRN but it has an entirely different learning mechanism and so does not 

suffer from the vanishing or exploding gradient problem [22]. Training is reduced to a one-

shot simple linear regression task applied to the output layer weights. ESNs have been applied 

with varying success to numerous problem domains such as behaviour classification, natural 

language processing [23, 42, 43, 44], and speech recognition [24]. ESNs are gaining particular 

popularity with those researchers seeking biologically plausible models of language and 

memory. For example, Dominey [42] used ESN-like models to better capture the principles of 

neurophysiology and address the issue identified by Friederici [45] to explore the role of 

subcortical structures in language processing. In particular, Dominey suggested ‘corticostriatal 

plasticity plays a role in implementing the structural mapping processes required for 

assignment of open-class elements to their appropriate thematic role’ and both Dominey [42] 

and Hinaut & Dominey [43] therefore sought to apply ESNs to implement a mechanism for the 

real-time parallel processing of conceptual and grammatical structures. Indeed, Pascanu & 

Jaeger [44] recognise that Dominey’s earlier work in cognitive neuroscience with the 

development of the Temporal Recurrent Network (TRN) [41], independently discovered the 

reservoir principle that underpins ESNs. Although state-of-the-art performance has been 

reported with ESNs for the iterated prediction of noiseless time series data, the usefulness of 

this for discrete problem domains such as grammar induction (and state representation) is 

questionable. Moreover, studies with ESNs for realistic problem domains have revealed the 

difficulty of creating the reservoir of interconnections (connections between hidden units) in a 

systematic way for a given problem. It can take the exploration of many reservoir 

configurations before a solution is found [22, 25]. Clearly, there is scope for advancing 

knowledge concerning the strengths and weaknesses of ESNs for different types of problem 

and a need for a principled approach to ESN application, appropriate to the problem domain in 

order to increase their utility. In particular, it will be interesting to determine whether the ESN 

learning algorithm is better able to discover the optimum solution for a complex grammar 

induction task than gradient descent-based learning methods used in traditional SRNs. This is 

important as RNNs, including SRNs and ESNs, are theoretically capable of representing 

universal Turing machines [46].  



In this paper, we seek to ascertain whether the strong shift away from the SRN family of models 

trained with gradient descent for language acquisition tasks is premature. In particular, we 

provide further exploration of the MRN variant of the SRN, which appears to have gone largely 

unnoticed in the literature since 1996. In particular, we are interested in whether the unique 

MRN approach to associating temporal features with both nodes and state values, is sufficient 

to endow SRNs with superior power over ESNs enabling them to implicitly capture the sort of 

temporal dependency over variable time delays that may be associated with a complex 

grammatical structure. If this is shown to be the case, then this will have significant 

implications for current models of human memory and sentence comprehension that are 

dependent on ESN-like approaches, including those posed by [23, 42, 43, 44]. 

2. Network Architectures  

2.1  Elman’s Simple Recurrent Network 

The SRN architecture employed in this study is depicted in Fig. 1. The activations of the hidden 

units of the network from time t are used as input to the network at time 1+t . Recurrent 

connections provide the network with access to its prior state so the network has the ability to 

detect and learn temporal relationships within the data. The Input units 𝐼𝐼 and hidden units 

(recurrent layer) 𝑅𝑅 and the output units 𝑂𝑂 are fully connected through the first order weight  

𝑊𝑊𝑅𝑅𝑅𝑅 and 𝑊𝑊𝑂𝑂𝑂𝑂, respectively, as in the feedforward Multilayer Perceptron (MLP). Time delay 

connections feed back the activities of recurrent (hidden) units 𝑅𝑅(𝑡𝑡) to the context layer, i.e. 

𝐶𝐶(𝑡𝑡) = 𝑅𝑅(𝑡𝑡−1). Thus, each recurrent unit is fed by activities of all recurrent units from the 

previous time step through recurrent weights, 𝑊𝑊𝑅𝑅𝐶𝐶 . The context unit, composed of the 

activities of recurrent units from the previous time step, is treated as an extension of input units 

to the recurrent units. They represent the memory of the network. 

Given input symbols in time 𝑡𝑡, 𝐼𝐼𝑡𝑡 = ( 𝐼𝐼1𝑡𝑡, . . . , 𝐼𝐼𝑗𝑗𝑡𝑡 , . . . , 𝐼𝐼|𝐼𝐼|
𝑡𝑡 )   and recurrent activities  𝑅𝑅𝑡𝑡 =

( 𝑅𝑅1𝑡𝑡 , . . . ,𝑅𝑅𝑗𝑗𝑡𝑡, . . . ,𝑅𝑅|𝑅𝑅|
𝑡𝑡 ), the recurrent unit’s net input 𝑅𝑅�𝑖𝑖𝑡𝑡 and output activity 𝑅𝑅𝑖𝑖𝑡𝑡 are computed as:  

 

𝑅𝑅�𝑖𝑖𝑡𝑡 =  ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅

𝑗𝑗 𝐼𝐼𝑗𝑗𝑡𝑡 + ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅  𝑅𝑅𝑗𝑗𝑡𝑡−1𝑗𝑗                                                                             (1) 

where 

𝑅𝑅𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑅𝑅�𝑖𝑖𝑡𝑡)                                                                                                              (2)     

The output unit k computes its net input 𝑂𝑂�𝑖𝑖𝑡𝑡  as: 



𝑂𝑂�𝑖𝑖𝑡𝑡 =  ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑂𝑂𝑂𝑂

𝑗𝑗 𝑅𝑅𝑗𝑗𝑡𝑡                                                                                                     (3) 

where 

𝑂𝑂𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑂𝑂�𝑖𝑖𝑡𝑡)                                                                                                             (4)     

|𝐼𝐼|, |𝑅𝑅|𝑎𝑎𝑎𝑎𝑎𝑎 |𝑂𝑂| are the number of inputs, hidden and output units, respectively, and f is the 

activation function.  
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Fig 1. Simple Recurrent Network 

2.2  Multi Recurrent Network 

 

A further development of the SRN to enhance performance is to employ multiple feedback 

connections. Ulbricht [19] introduced the MRN architecture, illustrated in Fig 2. The 

construction provides four levels of feedback: 

1. The output layer back to the input layer as established in Jordan networks [28]. 

2. The hidden layer back to the input layer, as found in SRNs [1]. 

3.  The input layer back to itself. 

4.  The context units within the input layer back to themselves (self-recurrent links). 
 



The above feedback connections form a memory bank that can be repeated with varying 

degrees of layer- and self-recurrency.  

This enables an MRN to form a sluggish state-based memory that is both flexible and rigid: 

flexible in that some state units are very responsive to recent information; and rigid where 

others change more slowly, retaining past information for longer periods of time. The degree 

of rigidity and flexibility is dependent upon the ratio of the weight values for the self-recurrent 

weights and the layer-recurrent weights. The number of memory banks relates directly to the 

degree of granularity at which past and current information is integrated and stored.  

In this work there is no input-layer recurrency (i.e. level 3. above). As with Binner et al. [5], 

four memory banks are used, see fig 3. Ulbricht [19] and Binner et al. [5] demonstrated that 

moving beyond four banks does not lead to enhanced performance; preliminary experiments 

have confirmed this result for this grammar induction task. Rather, it is the number of hidden 

units per memory bank that is pivotal to the performance of the network. The MRN function 

can be represented as follows: 

𝑦𝑦 (𝑡𝑡 + 1) = 𝑔𝑔 �𝑓𝑓 �𝑐𝑐(𝑡𝑡), 𝑥𝑥(𝑡𝑡),𝑊𝑊𝑓𝑓(𝑡𝑡)� ,𝑊𝑊𝑔𝑔(𝑡𝑡)�                                                         (5) 

where: 𝑦𝑦(𝑡𝑡 + 1) indicates the predicted values of the symbol; x(t) is the external vector of input 

variables; c(t) is the concatenation of the previous hidden state vector with four delays of 

varying strength and summation of elements of previous output vector with four delays of 

varying strength; Wf(t) is weight matrix connecting the input layer to the hidden layer; Wg(t) is 

the weight matrix connecting the hidden layer to the output layer; vector function f returns 

activation vectors from the hidden layer; and function g returns activation vectors from the 

output layers.  
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Fig 2. Architecture of Multi-Recurrent Network  

We extended the MRN to include noise injection units (i.e. seven additional input units 

generating random values +/- 0.01) as prior experiments showed improved generalisation 

performance by up to 10% (noise injection did not give rise to any significant improvement 

for the other models tested here).  

2.3 Echo State Network 

ESNs were developed by Jaeger [29] to learn nonlinear systems for prediction tasks. Fig 3 

shows the architecture of the ESN used in this research. The premise for this type of RNN is 

that the recurrent, dynamic part of the RNN does not need training. Instead, it functions as a 

non-specific memory and is known as a dynamic reservoir. It keeps information about the input 

sequence by allowing activations to rebound around the recurrent units [13, 23]. An ESN is a 

simple discrete-time RNN that has three layers: an input layer; a recurrent layer (also called 

reservoir, internal units or hidden units); and output layer. The reservoir is the core of the ESN 

structure: the readout layer extracts information from the reservoir. The network is fed each 

time step t with input vector 𝑢𝑢𝑡𝑡, which drives the dynamics of the recurrent layer, 𝑥𝑥𝑡𝑡, and output 

vector 𝑦𝑦𝑡𝑡. All connections from the input to the hidden units and between the units within the 

reservoir are fixed. The trainable weights are from the reservoir nodes and input layer to the 

output units; equation 6 describes the formula.  



Dynamical 
Reservoir 

Input Units

Output Units

 Jumping connection ESN  

Fig 3. ESN Architecture: Solid arrows indicate fixed connections and dashed arrows indicate 

trainable connections. 

Vout(t)=Wout�Vin(t),Vhidden(t)�.                                                                                   (6) 

Vhidden(t)=tanh (Win�Vin(t)+ Whidden(Vhidden(t−1))�.                                                    (7) 

Where 𝑉𝑉(𝑡𝑡)  is a vector that indicates the activation of the units at time t;  𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 is the learned 

output weight matrix; 𝑊𝑊𝑖𝑖𝑖𝑖 are the weights from the input layer to the hidden layer; and 𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

are the recurrent connections from the previous state of the hidden layer to the current hidden 

layer.  

The Echo State Property (ESP) states that given a long string of input, the reservoir of the 

network will be uniquely determined by the input history. Practically, the existence of echo 

states is obtained by giving random, sparse connections to the hidden layer and scaling the 

recurrent connections to have a Spectral Radius (SR) of less than one. The magnitude of the 

SR determines the stability of the memory; the closer the SR is to one, the longer the history 

that determines the current hidden state. The initial weights 𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are scaled to a desired SR 

𝛼𝛼 (0 < 𝛼𝛼 < 1),  and are calculated as: 

Whidden = αẄhidden / |δmax| 

Where 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum eigenvalue found in the matrix of eigenvalues,  𝑊̈𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 



When these weights are assigned, the network can be trained. Training involves setting 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 

to map the training set to the desired output; if the output unit activations are linear or 

approximately linear, a simple linear regression can be used to train these connections. This 

frees the ESN from the lengthy training process associated with iterative algorithms such as 

backpropagation.   

 

3. Description of Dataset and Methodology 

The benchmark grammar used for this research is the Embedded Reber Grammar (ERG) [12, 

27] (depicted in Fig. 4). It is an extension of the simple Reber grammar. We use a more 

complicated version than in [12, 27], as we allow self-recurrent transitions on states 3 and 4 as 

shown (up to four iterations). The ERG is a useful benchmark as it has been used by numerous 

other researchers [12, 18, 26, 27] for evaluating recurrent neural networks. Prediction of the 

next symbol in a sequence generated by the ERG represents a challenging task because the 

neural network must learn to remember the second symbol within the sequence (i.e. T or P), 

for potentially many time steps, in order to correctly identify the matching penultimate symbol 

of the sequence (i.e. T or P), before exiting the embedded grammar with symbol, E.  Clearly, 

the longer the sequence of states traversed within one of the embedded sections, the more taxing 

this is on the memory mechanism. Such prediction tasks are thought to occur naturally within 

the brain as a fundamental feature of perceptual and cognitive processes [40].  

The grammar symbols are represented utilising binary one-shot encoding i.e. one node per 

symbol: activations of 0 and 1 are used in all networks to indicate the presence or absence of 

an input symbol, except for the Echo-State Network where 0.2 and 0.8 are used. As with 

Cleeremans et al [12], we bias the dataset generated from the ERG to aid learning and enhance 

the performance of the network. Without biasing, the transitional probabilities from each state 

would be equal and set to be 0.5 (as there are a maximum of two transitions from each state). 

This gives rise to symmetrical sequences with respect to the T and P paths within each sub-

grammar; they would be equally likely to be traversed, irrespective of whether they are in the 

top (T) sub-grammar or the bottom (P) sub-grammar. Servan-Schreiber et al [27] claim that 

this raises the difficulty of the prediction task (given the sub-grammars are identical) in a way 

that is unrealistic when considering how humans process natural language. 



 

 

 

 

 

 

 

 

 

 

Fig 4. The ERG - a complex finite-state grammar containing embedded sub-grammars 

They postulate that in natural language, when processing an embedded clause which separates 

say a subject from its auxiliary verb, the expectations of the concepts or words within the 

embedded clause are typically informed by the subject i.e. this expectation is maintained whilst 

anticipating and processing each word within the embedded clause. For example, consider the 

following two sentences (adapted from [27]):  

(a) The dog that chased the cat it saw is very playful 

(b) The dogs that chased the cat they saw are very playful 

 

After the subjects of sentences (a) and (b) have been processed then it is likely a number of 

expectations will be generated as each subsequent word is processed e.g. a pack of dogs might 

chase something more substantial than a cat; a different morphological form of chase will be 

expected if assuming present tense. Also, there may be clues within the embedded clause itself 

as shown above, with (a) using ‘it’ to indicate singular and (b) ‘they’ to indicate plural. Such 

expectations are likely to be maintained, and cues encountered, when processing embedded 

clauses and these subsequently aid in determining the correct auxiliary verb, ‘is’ or ‘are’ (i.e. 

the appropriate exit from the associated embedded clause/grammatical structure).  
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As per [12] we therefore add a statistical bias to generate ‘asymmetrical sequences’ by using 

transition probabilities of 0.7 or 0.3 (as shown in Fig 4). This generates embedded sequences 

with a higher frequency for the upper path relative to the lower path within the sub-grammar 

following T (upper embedded section) and a higher frequency for the lower path relative to the 

upper path within the sub-grammar following a P (lower embedded section). 

Table 1 shows the distributions of the paths in the training dataset. As per [12], a dataset of 

300000 sequences, generated randomly according to the probabilities in Fig 4, is used for 

training. 1000 randomly generated sequences are used for testing (sequence length 6 to 26, 

average 17.9). There is naturally occurring overlap within the training set, with only 212 

sequences being truly unique to the test set.  Note that other researchers, such as [12, 18, 27, 

47], also have this overlap but do not state the number of sequences unique to the test set and 

therefore do not provide true generalisation results. 

 Upper Embedded Section 
Lower Embedded 

Section 

Initial symbol(s) in sequence T TT TP P PT PP 

Number of sequences 150243 105204 45039 149757 44864 104893 

% of Total  50.08 35.07 15.01 49.92 14.95 34.96 

Balance of sequences within 
embedded sections (%)  

 70.02 29.98  29.96 70.04 

Table 1: Statistical distribution of the training sequences between the upper and lower paths 

through the grammar (Total sequences = Number of T + Number of P = 300000) 

 

In our experiments, the task of each network is simply to predict the next symbol in a sequence, 

given the current symbol and previous state (resulting from being presented with the preceding 

symbols in sequence). The prediction is considered correct if the highest output activation is 

for a valid successor symbol. If this criterion is not met, the network is considered to have 

failed in the prediction task. A pattern error-sensitive learning rate [15] is used as it was found 

to aid learning of the problem, relative to other adaptive learning rate regimes. Each training 

experiment is repeated 15 times (with the same architecture and training parameters) to account 

for the sensitivity these models have to the initial starting state (determined by the randomly 

generated initial weight values).  

 



4. Performance of the Networks 

 

A range of experiments spanning over a 100 different hyper-parameter configurations was 

undertaken to arrive at the optimum parameter values reported in Table 2.  

We followed the methodology of  [12] for model fitting and selection to maintain comparability, 

although we used back-propagation through time [38] for the SRN and MRN. This has the 

advantage of ensuring errors, and thus weight updates, are generated relative to a sequence of 

input symbol presentations rather than an individual input symbol. To successfully learn the 

task, the RNNs must learn to maintain internal states that differentiate between the two 

embedded grammars, even though the details within the embedded grammars are the same, i.e. 

when processing the upper T sub-grammar, the internal network state must maintain 

representation that it is in T (upper) embedded section and not P (lower); the same applies 

regarding retaining the equivalent historic information when it is processing the P (lower) 

section. However RNNs naturally gravitate towards a stable state when processing long 

sequences of identical input/output mappings, such that every new presentation of the same 

input symbol (e.g. in a long string within one of the embedded grammars) will tend to produce 

the same hidden unit response and thus the same output response, until eventually any hidden 

unit information representing the entry symbol (i.e. T or P) is lost. 

 

 
Memory 

Banks 

Hidden 

 Units 

Learning  

Rate 
Momentum 

Weight  

Range 

Spectral  

Radius 

Connectivity 

MRN 4 10 0.15 0.75 0.3 - - 

SRN - 15 0.15 0.75 0.3 - - 

ESN - 150 - - 0.3 0.75 0.85 

Table 2. Optimum hyper-parameters for each network. Note that the learning rate regime for 

the SRN and MRN is adaptive as per [15].  

 

Servan-Schreiber et al [27] showed that increasing the number of hidden units, enables small 

but crucial information to be retained within the hidden state, for learning a prediction task for 

a limited range of embedding. However beyond this limited range, training becomes 

exponentially difficult, as previous input information, encoded within error gradients, is lost; 



this is now known as the vanishing gradients problem [17]. This can be alleviated with some 

success by extended memory architectures designed to retain past input information, as shown 

by Lin et al [34]. It is therefore expected that this limitation will be clearly evident within the 

SRN performance; evident to a much lesser extent in the MRN performance (due its complex 

memory architecture for latching onto past information); and even less evident in the ESN 

performance (due to its entirely different learning mechanism). Table 3 shows the results of 

both the training and testing of the networks. As the test set is randomly generated from the 

ERG it is very likely that there is a natural overlap with those sequences generated for the 

training set. Table 3 therefore shows performance on the full test set (containing all sequences 

including those overlapping with the training set) and also the subset of the test sequences that 

do not overlap with the training set (thus providing for a more pure measure of generalisation 

performance). It can be observed clearly that the MRN has the superior performance over the 

ESN and surprisingly, that the SRN also out-performs the ESN, albeit much less significantly 

than the MRN.  

 SRN MRN ESN 
Training set  

(300000 seq) 92.91% 99.91% 91.7% 

Full Test set   
(All 1000 randomly 

generated seq) 
61.1% 97.7% 60.7% 

Pure Test set   
(212 unique seq) 50.94% 95.28% 48.58% 

Table 3. Comparative network performance: correctly predicted training and test 

Asymmetrical sequences. 

In order to understand why the MRN is superior, we follow the methodology of Cartling [8] to 

analyse the resulting internal representations formed by each of the different models. 

 

5. Analysis of Internal Representation 

So far the underlying representations or ‘hypotheses’ formed by the recurrent networks have 

been treated as if they were in a ‘black box’. The hidden units inside these networks express 

the grammatical knowledge encoded by the weights. By understanding how these units respond 

to each input symbol over time, it is possible to determine whether or not these networks have 

formed an adequate representation of the underlying ERG. Numerous researchers have studied 

the internal representation of RNNs [1, 30, 31, 32]. Due to its simplicity and clarity, we use the 



same approach as Cartling [8] who applied Principal Component Analysis (PCA) to the hidden 

state activations of an SRN, trained on a similar grammar induction task. The internal 

representation formed by the weights of an RNN after training can be revealed by analysing 

the resulting hidden unit activations and how they vary with respect to each new input within 

a sequence[33]. This can be determined by calculating the principal components of the 

covariance matrix of hidden unit activations and their respective mean values as follows. 

𝐶𝐶𝑖𝑖𝑖𝑖 = ∑��𝑦𝑦𝑖𝑖ℎ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑦𝑦𝑖𝑖
ℎ� �𝑦𝑦𝑗𝑗ℎ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑦𝑦𝑗𝑗

ℎ�� ,   𝑖𝑖 = 1, …𝑛𝑛ℎ, 𝑗𝑗 = 1, … , 𝑛𝑛ℎ      (6) 

The average activation for each hidden unit is based on the unit’s response to all symbols in 

the training set. The resulting principal components are ordered according to the magnitude of 

the corresponding eigenvalues, where the highest eigenvalue represents the most feature 

information captured within the internal (hidden) state and the lowest represents the least. Two 

Principal Components (PCs) can then be used to generate a two-dimensional view of the state-

space of the networks. During the training process, it is expected that within its internal state, 

a trained RNN will form clusters of activations in state-space that represent the grammar states 

of the underlying ERG. It is further expected that where training has been successful, these 

grammatical state-based activations will themselves be arranged in patterns that distinguish 

between the upper and lower embedded grammar sections. The aim of the analysis based on 

PCA is to allow two-dimensional views of the networks’ state-space to be generated, thereby 

facilitating visualisation of the above clusters and patterns and providing opportunity for 

further insight into the networks’ inner workings and testing of our understanding of their 

operation. In this work, various two- dimensional subspaces formed by applying PCA to the 

hidden unit state activations after training were examined. Although different grammar states 

could be distinguished in a number of PC subspaces, the subspace relating to the eigenvectors 

corresponding to the first and second largest absolute eigenvalues of the covariance matrix 

(PC1 and PC2), proved to be the most useful.  

In order to delineate the representations formed of the underlying embedded grammars in PCA 

space (using PC1 and PC2), we calculated the centroid for each grammar state (i.e. seven states 

for the upper sub-grammar and seven for the lower). This is easily calculated by passing all 

training or test sequences through the trained network and calculating the average PC1 and 

PC2 values for each grammar state. These average coordinates can then be plotted to reveal the 

RNN’s representation of the underlying sub-grammars. 



Figure 5 shows the resulting centroid plots in PC space computed for each of the RNNs under 

evaluation when all test sequences that were correctly predicted by the MRN were passed 

through. We selected the MRN as it correctly classified most of the unique test sequences i.e. 

95% of the 212 sequences. The resulting plots are assessed to determine if they reveal 

differences in the underlying representations that are responsible for the poorer performance of 

the SRN and ESN. 
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Fig 5. Trajectories of the centroid plots for each grammar state discovered by the: a. MRN; b. 
SRN; and c. ESN, in relation to both the upper (i.e. T entry/exit symbol) and lower (i.e. P 

entry/exit symbol) sub-grammars of the ERG.  
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We aim to understand, for the different network models, how well structured their internal 

representations of the ERG are. We consider how the centroid plots have been organised within 

and beyond each quadrant where Quadrant 1 (Q1) refers the top right quadrant; Q2 the top left; 

Q3 the bottom left; and Q4 bottom right. Fig 5a shows that the MRN has dedicated different 

quadrants to the entry and exit points of the embedded sub-grammars with Q4 used for entry 

to the upper (T) sub-grammar and exit of the lower (P) sub-grammar with different values for 

PC2 distinguishing between them. Q1 is dedicated to entry of the lower sub-grammar. Q3 

captures trajectories from state 2 to states 3 and 4 of both sub-grammars, using the low negative 

range (between 0 and -0.39) of PC1 and PC2 to represent transitions between these states, 

including the self-recurrent transitions. Q2 represents the transitions from states 3 and 4 to 

states 5 and 6 for both sub-grammars, with medium (0.4 to 0.59) positive values of PC2 used 

to represent state 5 and low (0 to 0.399) positive values to represent state 6 of the upper and 

lower sub-grammars. Q4 captures transitions from states 5 and 6 to the exit state of the sub-

grammars, state 7. Again, values of PC2 play a key role in distinguishing between states and 

in this case, the upper and lower sub-grammars. Negative medium (0.4 to 0.599) values of PC2 

are used to represent state 7 of the upper grammar and low (0 to 0.399) negative values exit 

from the lower sub-grammar. High (0.6 to 1.0) positive PC2 values of Q4 are then used to 

represent the transition from state 7 of the lower grammar to state 8, the final state. Finally, Q3 

captures the exit from the upper sub-grammar to the final state. Interestingly, whereas PC1 

remains in the negative low range for Q3, PC2 again is pivotal to differentiating the role of Q3, 

with low negative values representing states 3 and 4 of both sub-grammars (as mentioned 

earlier) and reserving medium negative values to represent the exit from the upper sub-

grammar. This is a strong illustration as to how the MRN’s embedded memory architecture has 

enabled it to dedicate fine granular regions of state space to represent crucial aspects of the 

underlying grammar, such as entry into and exit from the upper and/or lower sub-grammars.   

As can be seen from 5b, the SRN was less able to dedicate different regions of state space to 

the crucial states and transitions of the ERG. This is evident from the concentration of states 

within Q2 and in particular of the negative low values of PC1 and positive low values of PC2 

to represent states 1 to 3 of the upper and lower sub-grammars and state 4 of the upper sub-

grammar. This concentration of initial states around a narrow range of PC space is likely to 

make the SRN less able to distinguish transitions within the upper and lower sub-grammars (as 

reflected in its relatively poor generalisation performance). Q1 is only used (via a positive low 

value of PC1) to represent state 4 of the lower sub-grammar, with its nearest neighbour still 



being state 4 of the upper sub-grammar.  Q3 represents the transitions from states 3 and 4 to 

states 5 and 6 for both sub-grammars (similar to Q2 of the MRN), however, this again is within 

an extremely narrow range of PC space, with all representations of states 5 and 6 being 

contained within very low negative values of PC1 and PC2 illustrating a low separation within 

its representation of the underlying embedded sub-grammars. Likewise, its use of Q4 to 

represent transitions to state 7, the exit state for the embedded sub-grammars, does not 

sufficiently distinguish between the different sub-grammars, as the centroids are in almost 

identical positions. Finally, the SRN is able to adequately represent the transition from the sub-

grammar exit state (7) to the finish state (8), with Q2 used for lower sub-grammar and Q3 for 

the upper. Again, this is concentrated into a very narrow range of PC2 space, albeit in a different 

direction for each of the sub-grammars, and this is likely to be the reason for its limited 

generalisation performance. 

The ESN had learnt more of the training set than the SRN, however, its generalisation 

performance was slightly worse at 48.6% with it only able to generalise to novel sequences for 

the lower (P) sub-grammar – misclassifying all novel test sequences that traverse the upper (T) 

sub-grammar. When reviewing the differences between the use of the state space for the upper 

and lower grammar, it is clear that Q1 was used to capture the entry path to the lower sub-

grammar and the transition to the top (T) path within it i.e. state 2 of the lower sub-grammar; 

whilst Q3 is used to capture entry path to the top sub-grammar and also the top (T) path of the 

grammar (states 3 and 5). However, it is notable that the transitions from state 2 to 3 of the 

lower sub-grammar, and then from state 3 to 5 are all represented by transitions across 

quadrants (Q1 to Q3 and then Q3 to Q4 respectively) thus showing the broad utilisation of 

distinct areas of state space. This cohesive representation explains why the ESN generalises 

very well to all strings traversing this top path of the lower sub-grammar. Q4 also captures the 

bottom paths of both sub-grammars (transitions from states 2, to 4 and then to 6). We therefore 

suspect that the ESN’s poor generalisation performance is due to the lack of sufficient 

separation of the transitions from state 2 to states 4 and then 6 (of both sub-grammars). The 

centroids for state 3 are also noticeably clustered close together. Similar to the other models, 

the ESN learnt to associate the transition from states 5 and 6 to state 7, the exit point from the 

sub-grammars, with a dedicated region (Q1) of state space. Q1 is also used to traverse from 

state 7 of the lower sub-grammar to the finish state, 8. Clearly, activations clustered within Q1 

and Q4 are essential for accurate recognition of sequences that traverse the lower sub-grammar. 

Likewise, sequences of activations within Q3 and Q1, with some influence from activations 



within Q4, are essential for representing the upper sub-grammar. However, the key issue 

affecting generalisation performance is that there is insufficient separation between the bottom-

paths of both sub-grammars. 

In order to quantify the distances formed between respective states of the upper and lower sub-

grammars, we calculated the Euclidean distances between the centroids of each pair of 

corresponding states between the upper and lower sub-grammars (e.g. between both states 2 in 

Fig. 4). The results are presented in Figure 6, where it can be seen that the MRN is more able 

to consistently maintain a distinct distance between the corresponding grammar states of the 

upper and lower sub-grammars. 

 

Fig 6. Euclidean distances between centroid pairs representing corresponding states within 

the upper and lower embedded sub-grammars (for each model evaluated). 

We contend that this is due to the ability of its sluggish state-based memory to latch onto and 

maintain information about the entry points (T and P) of the respective sub-grammars 

throughout the respective sub-grammar sequences. 

In order to further assess the memory capacity of each of the models, we generated a number 

of test sequences that exceeded those found in the training data in terms of length and 

complexity. This was achieved by increasing the number of recursive transitions allowed at 

states 3 and 4 in within the embedded sub-grammars. Table 4 shows the results after testing 

the models on these long sequences; the minimum sequence length of this new test set was 28 

symbols and the maximum 900 symbols. On examining the performance of each model, at 100 

symbol intervals, it was clear that the MRN had learnt to more accurately recognise longer 



sequences that traversed a broader range of states across both embedded sub-grammars, up to 

length 100, but following this, performance declines as the sequences become very long. It is 

relatively successful in representing the task as a whole including the long term dependency. 

The ESN on the other hand seems to have learnt part of the ERG (the lower sub-grammar) 

perfectly, regardless of length. It consistently misclassifies the exit state for the upper grammar 

whilst successfully predicting most of the lower section, and has therefore not learnt the long 

term dependency problem (largely due to the lack of distinctness between states 4 and 6).  

SEQUENCE LENGTH SRN MRN ESN 
28 TO 100 40 70 40 

101 TO 200 20 32 40 
201 TO 300 16 20 48 
301 TO 400 4 12 48 
401 TO 500 0 8 56 
501 TO 600 0 0 48 
601 TO 700 0 0 44 
701 TO 800 0 0 40 
801 TO 900 0 0 40 

Table 4. The performance of the networks when tested with randomly generated long sequences (% 

correct). Note that all lengths are beyond that of the training set. 

Finally, Table 4 shows that the performance of the SRN degrades relatively rapidly as the 

sequence length increases beyond 100. In the state analysis it maintained very small distinct 

distances across most corresponding states of the embedded grammar. This enabled it to 

represent the breadth of states required better than the ESN, giving rise to a 2% improvement 

in performance for generalising to the 212 unseen test sequences. . We suggest that the poorer 

performance on the longer sequences is due to degradation of memory associated with the SRN 

feeding back and committing to 100% of current (as opposed to historic) state information at 

each time step.  

The performance characteristics of the models appears in keeping with their respective internal 

representations of the underlying ERG: the MRN maintained sufficient distances between all 

of the corresponding states of the embedded grammars, the SRN maintained much smaller 

distances across all states whereas the ESN only maintained substantial distances across a 

reduced set of states for which it generalised well.  

6. Discussion 

 



The present study makes a number of noteworthy contributions to connectionism. Firstly, it 

provides further support for the findings reported by Lin et al 1998 [34], i.e. that using 

embedded memory architectures within SRNs may help to alleviate the inherent disadvantages 

of gradient descent learning. It may therefore not be strictly necessary to seek recourse to more 

complex second-order schemes or radically different learning algorithms in order to solve 

complex grammar induction problems. Assuming the number of hidden units and the ratio of 

weight values for the self-recurrent and layer-recurrent weights (and thus the number of 

memory banks) are optimised for the ‘next symbol prediction’ task, our results suggest that an 

MRN trained with back-propagation through time and simple noise injection, will be able to 

induce a stable and robust representation of the underlying temporal structure (or context-free 

grammar) that is generating the input sequences..  

To further evaluate the significance of the MRN’s architecture, we also applied the NARX 

network to the ERG task and although the NARX had slightly better generalisation 

performance than the SRN and ESN for the 212 unique test sequences with 51.9% accuracy, it 

was significantly below that of the MRN (95.3%). The sluggish memory mechanism of the 

MRN therefore appears superior to the NARX’s input/output shift-register memory 

architecture in solving the prediction task. It seems better able to retain important input features, 

latching onto them and propagating them through time (within its context units) for use at future 

time-steps.   

Secondly, we are the first to apply the ESN to the ERG induction task and reveal its serious 

limitations for long term dependency problems. This is in sharp contrast with the findings of 

Tong et al [23] who found the ESN was comparable to the SRN for the next symbol prediction 

task using Elman’s context free grammar [1]; the advantage for the ESN here being that it 

required less adjustable parameters and training time and is therefore more efficient than the 

SRN. Little information, however, was reported regarding: the complexity of the input 

sequences; overlap between training and test data; the internal representations formed and 

whether the ESN preferred particular paths through the grammar. In our experiments, the ESN 

did not learn the dependency problem, unlike the MRN. However, the potential of the ESN is 

clearly exhibited through its ability to learn one of the ERG’s sub-grammars perfectly, 

appearing to generalise to all strings traversing the lower sub-grammar irrespective of length. 

This is an interesting finding, particularly for those researchers, such as [23, 42, 43, 44], who 

prefer the ESN for modelling human memory and sentence comprehension. 



Finally, Table 5 provides a high level comparison of the MRN performance presented in this 

paper, with published results from other connectionist approaches to the ERG prediction task.  

 Architecture/Method Training  Set Test  Set 
 Network HU SRT RBS NS Max 

SL ASL SDSL %L NS US %G 

Servan-

Schreiber 

et al. [27] 

SRN 

With BP 
15 0 80:20 

? 900K 

‘exemplars’ 
8 5.8 1.3 ? 

20K (? 

symbols) 
? ? 

O'Connell 

[33] 

SRN 

with PA 

And 

BPTT 

15 0 90:10 
2.5M 

strings (?) 
? ? ? 99.5 

1000 (? 

Symbols) 
? 

99.5 

(once 

out of 

20 

nets) 

Perez-

Ortiz 

Et al [18] 

LSTM 

with 

DEKF 

8 ? 50:50 
? (1M 

Symbols) 
N/A N/A N/A ? 

? (1M 

Symbols) 
? 

99.9 

SP (3 

errors) 

This work 

MRN 

with 

BPTT 

10 4 70:30 

300K 

(2.3M 

symbols) 

26 8.78 2.31 99.9 

1000 

(17.5k 

symbols) 

212 

 

97.7 

(95.3 

of 

US) 

Table 5. A comparison of the MRN performance on the ERG, with other published 
approaches. ?: Data not provided, N/A: Not applicable, Average ASL: Average Sequence Length, DEKF: 
Decoupled Extended Kalman Filter, G: generalisation, HU: Hidden Units, L: learnt, NS: Number of sequences 
(or symbols where stated), PA: Periodically Attentive, RBS: Ratio of Biased Sequences, SDSL: Standard 
Deviation for sequence length, SL: sequences Length, SP: Sustainable Prediction, SRT: Self-Recurrent 
Transitions Allowed in ERG, US: Unique Sequences.   

As can be seen, due to the lack of consistency in the way in which researchers approach the 

grammar induction problem, report training and test sets, and interpret the resulting 

performance, a direct comparison is not possible. For example, all but Perez-Ortiz et al reset 

the context units at the beginning of each new training or test sequence. Perez-Ortiz et al have 

positioned the ERG as a continuous time problem where there is only a single input stream i.e. 

sequences are generated from a recursive ERG where there is a transition from the last symbol, 

E, of the grammar back to the first symbol, B.  Learning continues even when the LSTM makes 

mistakes; and training and test are not divided into separate phases. They aim for the LSTM to 

generate error-free predictions (or sustainable predictions) for at least 1000 subsequent symbols 

where error-free refers to the LSTM only activating output nodes that correspond to valid next 

state transition symbols allowed by the ERG. Their rationale for this is that resetting the context 

units at the beginning of each sequence would require an ‘external teacher’ to segment the input 

into training sub-sequences; they are interested in not having any a priori knowledge of this 

kind, which gives rise to a continuous input stream. Given that in language, spoken or written, 



there are usually clear boundary cues between contiguous sentences (which may or may not 

relate directly to one another), we consider the mainstream approach of resetting the context 

nodes at the beginning of each sequence as being more aligned to naturally occurring 

conditions. Also, Perez-Ortiz et al do not indicate the complexity of their input strings (e.g. the 

level of embedding allowed or the maximum length of any single pass through the ERG).  Note 

that we have reported Perez-Oriz et al’s best results achieved with the LTSM rather than the 

average, which was substantially poorer. 

Servan-Schreiber et al do not explain whether their 900K training exemplars are strings or 

symbols (we assume strings) and whether or not the SRN had learnt them. Also, there was no 

indication regarding how distinct the test sequences were from the training sequences; to our 

knowledge, we are the only authors to explicitly report performance on unseen test cases for 

the ERG problem. Our results clearly show that the MRN is able to process unseen discrete 

sequences generated from the ERG of up to 500 symbols in length, whereas none of the other 

research has demonstrated such pure generalisation capacity in this way; in all cases their test 

strings overlapped significantly with their training strings i.e. a significant proportion of the 

test strings had been presented to the networks in training. 

 

7. Conclusion and Further Work 

 

In this study, we sought to ascertain whether the strong shift away from the SRN class of RNNs 

towards potentially more powerful alternatives such as the LSTM and ESN models may be 

premature for the task of grammar induction. More specifically, we re-opened the case for 

SRNs, by considering a variant of the SRN, referred to as the MRN. This uses an embedded 

memory architecture, consisting of layer recurrent and self-recurrent links, to ameliorate 

against the vanishing gradient problem associated with gradient-descent learning algorithms. 

We contrasted in detail, the performance of the MRN with that of the SRN and ESN, for the 

popular embedded Reber grammar induction task.  

Our results showed that the MRN significantly outperforms both the SRN and ESN for the 

complete ERG induction problem. Although the ESN was unable to capture the long term 

dependency within the grammar, it was able to perfectly learn the lower sub-grammar of the 

ERG. Surprisingly, we find that even the standard SRN is slightly superior (by 1 and 2%) to 

the ESN for shorter string lengths (< 28 symbols) and falls behind the ESN performance for 



strings with length that greatly exceeds the maximum found within the training set. Although 

the ESN has enjoyed much success in predicting continuous time-series, our results suggests 

caution when applying the ESN to discrete grammar induction tasks, and that further study is 

required. We suspect that the ESN’s limitations are due to the fixed reservoir weights and 

dependence on an echo-state property, which restrict the nature and complexity of the features 

it is able to learn to represent (as revealed in our state space analysis for the ERG). 

Unlike the other models, the MRN, due to its sluggish state-based memory, is able to dedicate 

well-defined regions of state space, in a co-ordinated fashion, to represent crucial temporal 

features of the full underlying grammar or generative model (e.g. long term dependency.) This 

work therefore provides support for further exploration of the MRN for modelling human 

memory and sentence comprehension. Our future work will investigate how better to optimise 

the MRN for such problems and also whether the generalisation performance of the MRN, 

when processing centre-embedded clauses, is akin to that of human working memory, building 

on the work of Cowan [39].  
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