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SUMMARY 

1. The ecological health of rivers worldwide continues to decline despite increasing 

effort and investment in river science and management. Bayesian belief networks 

(BBNs) are increasingly being used as a mechanism for decision-making in river 

management because they provide a simple visual framework to explore different 

management scenarios for the multiple stressors that impact rivers. However, 

most applications of BBN modelling to resource management use expert 

knowledge and/or limited real data, and fail to accurately assess the ability of the 

model to make predictions. 

2. We developed a BBN to model ecological condition in a New Zealand river using 

field/GIS data (from multiple rivers), rather than expert opinion, and assessed its 

predictive ability on an independent dataset. The developed BBN performed 

moderately better than a number of other modelling techniques (e.g., artificial 

neural networks, classification trees, random forest, logistic regression), although 

model construction was more time-consuming. Thus the predictive ability of 

BBNs is (in this case at least) on a par with other modelling methods but the 

approach is distinctly better for its ability to visually present the data linkages, 

issues and potential outcomes of management options in real time.  

3. The BBN suggested management of habitat quality, such as riparian planting, 

along with the current management focus on limiting nutrient leaching from 

agricultural land may be most effective in improving ecological condition. 

4. BBNs can be a powerful and accurate method of effectively portraying the 

multiple interacting drivers of environmental condition in an easily understood 

manner. However, most BBN applications fail to appropriately test the model fit 

prior to use. We believe this lack of testing may seriously undermine their long-
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term effectiveness in resource management, and recommend that BBNs should be 

used in conjunction with some measure of uncertainty about model predictions. 

We have demonstrated this for a BBN of ecological condition in a New Zealand 

river, shown that model fit is better than that for other modelling techniques, and 

that improving habitat would be equally effective to reducing nutrients to 

improve ecological condition.  

     

 

Keywords: Bayesian belief network, decision support, ecological modelling, multiple 

stressors, predictive ability, resource management, water quality  
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Introduction 

The ecological integrity, biodiversity, water quality and volume of water in rivers and 

streams are in global decline (Dudgeon et al., 2006;  Vorosmarty et al., 2010;  Feld et 

al., 2011). This decline is a result of multiple interacting stressors (Matthaei, Piggott 

& Townsend, 2010;  Wagenhoff et al., 2011;  Piggott et al., 2012) including water 

abstraction for consumptive and agricultural needs (Dewson, James & Death, 2007;  

Poff & Zimmerman, 2010),  invasive species (Olden et al., 2010) channelization, 

sedimentation, eutrophication (Carpenter et al., 1998;  Allan, 2004) and changing 

climate regimes (Palmer et al., 2008;  Death, Fuller & Macklin, in press). The decline 

in ecological condition is occurring despite unprecedented environmental monitoring 

(Davies et al., 2010;  Friberg et al., 2011), more sophisticated techniques for 

evaluating collected data (Reynoldson et al., 1997;  Boulton, 1999;  Linke et al., 

2005), increased access to data via frameworks such as online GIS (Snelder & Biggs, 

2002;  Snelder & Hughey, 2005), more widespread public concern (Cullen, Hughey & 

Kerr, 2006;  Hughey, Kerr & Cullen, 2010) and more ecologically-based legal 

frameworks (Fore et al., 2008;  Acreman & Ferguson, 2010;  Hering et al., 2010). 

Freshwater management involves assessing the current state and stressors of a 

waterbody and making educated decisions about the response of that state to changes 

in the stressors. Although a strong scientific basis underpins many of these decisions, 

the outcomes from particular options are never certain. However, there is weak, or 

usually absent, understanding of the relative level of uncertainty associated with 

alternative options, particularly among resource planners and lawyers associated with 

the decision-making process (Downes et al., 2002). This uncertainty is further 

complicated by the typical focus of traditional reductionist science on single stressors, 

while real-world stressors interact in potentially unknown ways (Downes, 2010;  
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Ormerod et al., 2010;  Harris & Heathwaite, 2012). Effective resource management 

will require the application of more complex multivariate models that incorporate the 

stressor interactions and that managers can use to explore different options and their 

implications (Harris & Heathwaite, 2012) . 

Machine learning techniques (e.g., artificial neural networks, classification trees, 

and random forests) are increasingly being used to describe and predict species’ 

distributions in relation to environmental variables (e.g., Joy & Death, 2004;  Elith et 

al., 2006;  Olden, Joy & Death, 2006). Bayesian belief networks (BBNs) are one such 

graphical, rule-based modelling technique that has emerged as a potentially useful 

research and management tool (e.g., McCann, Marcot & Ellis, 2006;  Uusitalo, 2007;  

Pourret, Naim & Marcot, 2008). In environmental management BBNs can provide a 

useful visual depiction of the causal linkages between multiple environmental drivers 

and ecological state (Aguilera et al., 2011;  Allan et al., 2012). They also allow 

managers to model changes in those drivers to explore the effects on the condition of 

that ecological state (McCann, Marcot & Ellis, 2006). For example a BBN can be 

used to investigate how changes in land use may directly and/or indirectly alter 

invertebrate community composition. BBNs have several advantages: 1) their 

graphical structure allows easy interpretation by non-modellers (McCann, Marcot & 

Ellis, 2006); 2) they can be used with incomplete data sets (Uusitalo, 2007); 3) they 

can incorporate expert knowledge (Pollino et al., 2007;  Uusitalo, 2007);  4) they can 

combine categorical and continuous variables (Marcot et al., 2001); 5) there is an 

explicitly documented level of uncertainty (Uusitalo, 2007); 6)  they can predict in 

both directions (e.g., water quality can be predicted from the biota present and can 

also predict what biota will be present with different conditions; (Paisley et al., 2011); 

and 7) there is relatively inexpensive user-friendly software that allows BBNs to be 
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constructed. One major drawback of available software for BBNs in ecology is 

arguably the requirement to discretize continuous variables, as most biological data is 

continuous rather than discrete. Hybrid or non-parametric BBNs offer considerable 

future potential for the use of continuous variables in BBNs but are not available in 

commonly used software at present (e.g. Morales-Napoles et al., 2014;  Ropero et al., 

2014).  

Reflecting these advantages, BBNs have increasingly been applied to model 

environmental outcomes (Pourret, Naim & Marcot, 2008;  Aguilera et al., 2011). 

Published accounts of the application of these models have stressed the ability of 

BBNs to integrate expert knowledge (Pollino et al., 2007;  Aguilera et al., 2011). 

They are often used simply as a heuristic framework for identifying the important 

issues, environmental drivers and potential interactions that require consideration. In a 

review of BBN applications in environmental modelling, Aguilera et al. (2011) found 

that a third of studies used only expert opinion to build the BBN, while over half had 

no independent assessment of the accuracy of the BBN predictions. While experts 

have considerable knowledge, their ability to integrate that knowledge in an objective 

multivariate and predictive manner can be limited, particularly if there is no 

independent validation of their assessment (Marcot, 2012). Effective use of BBNs in 

resource management must rest not only on their ability to integrate differing forms of 

data and visually depict potential linkages, but also on their ability to make accurate 

predictions. More frequent and confident BBN use in resource management requires 

greater emphasis on constructing BBNs using data and/or independently assessing 

model fit against that data (Marcot, 2012). 

We used field-collected and GIS data to develop a BBN model for an invertebrate-

based measure of ecological condition (QMCI; Quantitative Macroinvertebrate 
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Community Index (Stark, 1985)) in the Manawatu River, New Zealand. We then used 

the BBN to explore management options for improving the QMCI in river reaches 

where it is currently low. We also used the BBN to predict ecological condition in 

unsampled river reaches and to map the results in a GIS. Before using the BBN to 

examine different management scenarios, we independently (of the data used to build 

the model) assessed its predictive ability and compared that to the accuracy of other 

linear and machine-learning approaches. We hypothesised that the BBN would 

outperform the linear model, but would perform similarly to the other machine-

learning techniques in its ability to model ecological condition.  

 

Methods 

Study area 

The Manawatu River (catchment area 3694 km
2
) is a 7

th
 order river in the southern 

North Island of New Zealand. It arises in native forest in the Tararua and Ruahine 

Mountain Ranges then flows through predominantly sheep, beef and dairy farmland 

for most of its length. This land use, along with variably treated sewage discharges 

from several small towns and one city (Palmerston North, population 78,800) has 

contributed to the Manawatu River having some of the highest nutrient levels, gross 

primary production, deposited sediment and lowest water quality in New Zealand 

(Roygard, McArthur & Clark, 2012). In response to public concern over the river’s 

condition, NZ$30 m was allocated in 2011 by local and regional government to 

ameliorate some stressors by stream fencing, riparian planting, sewage plant upgrades 

and nitrate leaching restrictions. 
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Data from over 40 river catchments in the southern North Island (Fig. 1) were also 

used to help with BBN construction (see below). This larger area generally has similar 

characteristics to the Manawatu River catchment, with rivers and streams arising in 

higher-altitude forested areas before flowing downstream through predominantly 

pastoral farmland. 

 

Data sets used in model development 

Invertebrate communities were sampled at 963 sites throughout the southern North 

Island (including 194 sites in the Manawatu River catchment; Fig. 1), during studies 

conducted at Massey University between 1994 and 2007. Most of these sampling 

occasions involved 5 replicate 0.1 m2 Surber samples, although some collections 

comprised a single 1-minute kick-net sample (see Death & Joy, (2004) for more 

details). Samples were filtered through a 500 µm mesh sieve and identified to the 

lowest possible taxonomic level (usually genera) using Winterbourn, Gregson & 

Dolphin (2006). Where samples were collected from a site in multiple years, only the 

most recent was used in the analysis. The QMCI was used as an index of biological 

water quality that incorporates the pollution sensitivity and abundance of genera. It is 

relatively independent of sampling effort and season (Duggan, Collier & Lambert, 

2002), and we are therefore confident that the measures of biological water quality 

used are an accurate representation of ecological condition, even though data were 

collected for a variety of reasons.  

Eighty-five catchment and reach GIS variables (Appendix 1) were extracted for 

each site from the River Environment Classification (REC; Snelder & Biggs (2002) or 

Freshwater Ecosystems of New Zealand (FENZ) geodatabase (Leathwick et al., 

2010).  These variables included environmental measures likely to influence instream 
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biology at the reach and/or catchment level, such as land cover, land use pressures, 

typography, geology and climate (for more detail see Snelder, Dey & Leathwick 

(2005) and Wild et al.,( 2005)). The  variables were derived for each section of the 

region’s river network (average length = 700 m) by modelling variables from a 30 m 

Digital Elevation Model and/or digitised 1:50,000 maps of typography, geological 

rock type or land cover from the REC (Snelder & Biggs, 2002). All variables had 

been weighted by total annual runoff; however, for the study streams, these were 

highly correlated with the unweighted variables and were thus excluded from further 

analysis. 

 

Variable selection and discretisation 

QMCI is an index of ecological condition used for invertebrate bioassessment in New 

Zealand rivers that combines the abundance of taxa in a sample and a sensitivity score 

for that taxa (from 1 – 10). Higher QMCI indicates better ecological condition and 

range from 0 to 10. QMCI scores are continuous but are usually assigned to one of 

four classes for assessing water quality (Boothroyd & Stark, 2000). However, as there 

were few sample sites in the two intermediate QMCI categories, these were pooled 

into one moderate category for analysis. Thus, in the full data set, 496 (51%) sites 

were classed as clean (QMCI ≥ 6), 262 (27%) as moderate (QMCI 4 > x > 6) and 205 

(21%) as poor (QMCI ≤ 4) ecological condition. Of these data, 194 sites were in the 

Manawatu River catchment, where there were 105 (54%) sites in the clean, 49 (26%) 

sites in the moderate and 40 (21%) sites in the poor categories. 

For the 85 GIS variables for potential inclusion in the BBN, strongly correlated 

variables (r > 0.8) were represented by only one of the correlates leaving 47 potentials 

for inclusion in the BBN. The Waikato Environment for Knowledge Analysis 
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(WEKA) machine learning software (version 3.6.1) (Witten, Frank & Hall, 2011) was 

used to further reduce the dataset using the CfsSubsetEval (correlation-based feature 

subset selection) procedure and BestFirst selection method that evaluates the 

individual predictive ability of each variable along with the degree of redundancy 

(Witten, 1999). BestFirst and CfsSubsetEval are both options in the WEKA attribute 

selection procedure. BestFirst is a mutual information search method that searches the 

attribute subset space by greedy hillclimbing augmented with a backtracking facility 

(Witten, Frank & Hall, 2011). CfsSubsetEval  evaluates the worth of a subset of 

attributes by considering the individual predictive ability of each feature to predict, in 

this case QMCI, along with the degree of redundancy between the subsets (Hall, 

1998;  Witten, Frank & Hall, 2011). This reduced the list of potential variables to 

nine, comprising four measures of water chemistry (nitrogen, phosphorus, calcium 

and hardness), upstream slope, one measure of catchment land use (percent pasture) 

and three measures of reach habitat condition (riparian shade, native riparian 

vegetation and habitat type). Habitat type (ReachHab) is a weighted average of 

proportional cover of flow types (1–still; 2–backwater; 3–pool; 4–run; 5–riffle; 6–

rapid; 7–cascade, predicted from a boosted regression tree model using GIS variables 

and is detailed in Leathwick et al. (2008). 

 

Bayesian Belief Network (BBN) construction 

The BBN was constructed using NeticaTM 5.02 (Pourret, Naim & Marcot, 2008). The 

network of interconnected variables is represented as a series of nodes (Fig 2). Each 

node has potential states for that variable e.g., good, moderate or poor. To discretise 

continuous GIS variables into states within a node, classification tree analysis (De'ath 

& Fabricius, 2000) was used to model QMCI group membership from the nine 
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predictor variables using WEKA. Thresholds for node states were garnered from the 

associated numerical values at any branch in the classification tree where that variable 

was important (Table 1). Thus the number of states differs across variables based on 

the number of branches involving that variable in the classification tree. Causation 

flows from a ‘parent’ node to a ‘child’ node. 

Two intermediate nodes in the network, one for water chemistry (Waterchem) and 

one for habitat quality (HabitatQual), were added (Fig. 2) to link their respective 

parent nodes and reduce the number of inputs into the QMCI node (Marcot et al. 

2006). Conditional Probability Tables (CPTs) were developed with the expectation-

maximization algorithm (EM Learning) in NeticaTM from the compiled data. The 

expectation–maximization (EM) algorithm is an iterative method for finding 

maximum likelihood estimates of parameters in statistical models, where the model 

depends on unobserved latent variables (Do & Batzoglou, 2008). CPTs calculate the 

probability of each state in a node occurring, given each combination of conditions in 

the parent (input) nodes (Pourret, Naim & Marcot, 2008).  

 

Alternative classification performance 

To compare the predictive ability of the BBN to other classification methods, a range 

of linear (i.e., logistic regression) and machine-learning (i.e., classification trees, 

random forests and artificial neural networks) techniques were applied to the same 

data as the BBN (i.e., predicting three QMCI classes with nine variables). Logistic 

regression was conducted with a multinomial logistic regression model and ridge 

estimator; a modified form of the technique of le Cessie & van Houwelingen (1992)  

(Witten & Frank, 2000). A classification tree was generated with the j48 option in 
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WEKA that generates a pruned or unpruned C4.5 decision tree (Quinlan, 1993;  

Witten & Frank, 2000). Artificial neural networks used backpropogation to classify 

with a learning rate of 0.3 and 6 hidden layers (Witten & Frank, 2000). The same nine 

GIS variables were used for these models, but in their quantitative form. WEKA was 

used for all four analyses to model QMCI from those GIS variables. 

Models were evaluated by hold-out validation with a randomly selected 10% 

subset of the training data. There are a wide range of metrics that can be used to 

evaluate model fit and performance (for a detailed review see Witten, Frank & Hall 

(2011) and Marcot (2012)). We used several commonly used metrics that assess both 

raw predictive ability and ability relative to occurrence. The percentage of incorrect 

predictions (percent error) is a simple, easily understood metric but is sensitive to the 

number and size of the nodes. For example, if you have a very common state in the 

node and predict it will always occur (P=1.0) then you have a high probability of 

being correct simply because it usually occurs. Area under receiver operating 

characteristic curves (ROC) attempt to correct for this by plotting true positives 

against false positives to search for a balance between sensitivity and specificity 

(Hand, 1997). They range from 1 to 0, with 0.5 denoting totally random models and 

>0.5 improvement on random (Marcot, 2012). For BBNs Spherical payoff is similar 

to the area under receiver operating curves (Hand, 1997;  Marcot, 2012). Cohen’s 

kappa also ranges from 0 to 1, with 1 being perfect classification that also assesses 

correct predictions relative to how common a state actually is (Boyce et al., 2002;  

Olden, Lawler & Poff, 2008). The logarithmic loss score (Dlamini, 2010) was used to 

compare BBNs of alternate architecture. The index ranges from 0 to infinity, with 0 

the best possible score. Unlike the indices above that must be calculated outside 
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Netica
TM

, this index is provided within the program and gives a quick metric for 

evaluating alternate BBNs. 

 

Making predictions of current state from the BBN 

The developed BBN was used to predict the QMCI state for all river reaches in the 

Manawatu River catchment using the available GIS data sets and the results plotted in 

ESRI ArcMapTM 9.3.1. To determine the probability level at which a site was 

designated as poor, moderate or clean, the training data set (without the QMCI data) 

was run through the BBN. The output QMCI state predictions were then entered into 

Schröder’s ROC Plotting and AUC Calculation Transferability Test software 

(Schröder & Richter, 2000) to determine the critical probability to indicate a particular 

QMCI state. The Area Under the ROC-Curve (AUC) is a threshold-independent 

measure of predictive performance with bootstrapped confidence intervals calculated 

using the percentile method (Buckland, Burnham & Augustin, 1997;  Augustin, 

Mugglestone & Buckland, 1998). It seeks to optimise cut-off probabilities to indicate 

a particular class with respect to i) maximised Kappa, ii) minimised difference 

between sensitivity and specificity and iii) maximised correct classification rate taking 

into account different costs of false positive or false negative predictions. For example 

for a rare state a probability of 0.3, rather than say 0.5, might provide the greatest 

likelihood of a correct prediction, but at the same time the least likelihood of a false 

positive. Thus if the model predicts this particular class with a probability greater than 

0.3 (the critical probability from the AUC) then we allocate that class (e.g. clean 

QMCI) as the prediction of the model. Thus a clean state was designated for a site if 

the probability for a clean state was greater than or equal to 0.473, P≥0.625 for a 

moderate state and P≥0.523 for a poor state.  
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Results 

Bayesian Belief Network evaluation  

The architecture of the BBN for predicting QMCI state is presented in Figure 2. The 

ability of the network to describe the training data (the Manawatu catchment sites, 

n=194) was good. There was a 17.5% error rate, a logarithmic loss score of 0.38 (this 

ranges from 0 to infinity, with 0 the best possible score), a spherical payoff score of 

0.87 (this ranges from 0 to 1, with 1 being the best possible score) and a Cohen’s 

kappa of 0.70 (indicative of good model fit) (Landis & Koch, 1977). However, the 

BBN did not perform as well on an independent data set (i.e., regional sites not in the 

Manawatu River catchment, n=769): there was a 46.8% error rate, a log loss score of 

3.09, a spherical payoff score of 0.57 and a Cohen’s kappa of 0.21. A BBN built from 

the independent non-Manawatu test data (n=769) and evaluated against the Manawatu 

training data (n=194) performed better than the BBN model built on the Manawatu 

data: the error rate was 36.1%, log loss score 1.14, spherical payoff 0.71 and Cohen’s 

kappa 0.41. 

 The final BBN was built with 662 randomly selected sites from the full 963 site 

data set and was independently tested with the remaining held out 300 sites. This was 

repeated 10 times and the best performing model retained. The model error rate on the 

independent data set was 28.0% error rate, log loss score of 0.72, spherical payoff of 

0.76 and a Cohen’s kappa of 0.53 (indicative of moderate model fit). 
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Alternative modelling evaluation 

The ability of the four alternative classification techniques to describe the training 

data and predict test data (i.e. 10% of the training data) were slightly lower than those 

of the best BBN (Table 2). Error rates were between 33 and 38% and Cohen’s kappa 

values were between 0.39 and 0.44. There was not really much difference between the 

approaches used but the simple logistic regression performed best with respect to 

percent error and Cohen’s kappa, but Random forests with respect to AUC (Table 2). 

 

Mapping the predictions 

The QMCI predictions from the BBN for the Manawatu catchment are mapped in 

Figure 3. The good ecological condition of streams draining the native vegetation of 

the central Tararua and Ruahine State Forest Park is clear. Further downstream, the 

cumulative agricultural effects shift the streams from moderate to poor in the western 

Manawatu Plains and in the high-density dairy farmland on the eastern side of the 

Ruahine Ranges around the town of Dannevirke. Large areas of the south-eastern 

catchment have waterways with moderate ecological condition reflecting the lower 

intensity agricultural land use in this region. 

 

Model predictions 

To investigate management options for improving ecological condition within the 

BBN, the effects of changes to water chemistry, habitat quality and the amount of 

catchment in pasture were examined (Table 3). Not surprisingly, altering the state 

(i.e., good, moderate, poor) of the variables directly linked to the QMCI node 

(WaterChem and HabitatQual; Fig. 2) had the biggest effect on QMCI condition. 
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Changing habitat condition from good to poor resulted in a reduction in the likelihood 

of a clean site by 0.53 and an increase in the chance of a poor site by 0.29. Changes to 

the water chemistry node (WaterChem) from good to poor had a similar effect in 

increasing the chance of a poor site by 0.26 and decreasing the chance of a clean site 

by 0.58 (Table 3). The state of the Habitat Quality node was determined by the 

percent of the catchment in pasture (USPasture), riparian vegetation (SegRipShad) 

and ReachHab (type of microhabitats). The state of the Water Chemistry node was 

determined by water hardness and concentrations of nitrogen, phosphorous, and 

calcium in the upstream reaches. Thus reduction in pasture catchment land use and/or 

increased riparian planting to increase shade yielded, or reductions in inflowing 

nutrients had similar effects on QMCI (Table 3). If all nodes were held constant 

except USPasture and its’ linked nodes, the biggest change in QMCI state (a reduction 

of 0.19 in the likelihood of a clean stream) occurred with a shift from low to moderate 

state (i.e., as percent catchment in pasture increased above 28%; Tables 1 and 3). 

There were minimal changes (i.e. reductions in chance of a clean stream of 0.02 or 

0.05) to QMCI between the very high (>90%), high (>68%) and moderate (>28%) 

pasture states.  

Altering the state of other nodes not directly linked to the QMCI node (e.g. 

USCalcium, USHardness LogNConcen; Fig. 2) had considerably less effect on the 

state of the QMCI node in the BBN (results not presented). For example, changing the 

state of the Nitrogen node (LogNConcen) only had a weak effect on the QMCI value 

(increasing the LogNConcen from below 0.1 mg/l (low) to above (high) resulted in a 

14% lower chance of getting a clean stream and a 6% increase in the chance of a poor 

stream) . However, for this all unconnected nodes were left fixed, and it is 

questionable how often this would actually occur in the real world. It seems unlikely 
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streams with high nitrogen levels actually occur in the Manawatu catchment that are 

not also high in phosphorus, percent catchment in pasture and low in riparian shade. 

 

Discussion 

Bayesian Belief Network performance 

Although Bayesian Belief Networks have been advocated by many as effective 

environmental management tools there have been few efforts to evaluate their 

predictive ability and/or performance relative to other modelling techniques  

(Uusitalo, 2007;  Aguilera et al., 2011;  Allan et al., 2012;  Marcot, 2012). We 

constructed a BBN of ecological condition in a New Zealand river using data, rather 

than expert opinion, and evaluated the network predictive ability on independent data. 

The BBN performed moderately well when evaluated with the independent data and 

we would consequently be confident that management decisions made with the 

network are accurate. Few previous studies that have evaluated BBNs with 

independent data used the same evaluation metrics (which makes comparison 

difficult) for model fit that we applied, but the BBN used by Marcot (2012) to predict 

the age of martens had spherical payoff indices between 0.70 and 0.96, similar to 

ours. If BBNs are to become credible tools for integrating data and making resource 

management decisions their predictive ability must be evaluated appropriately. No 

one would consider presenting a regression equation for use in management unless it 

was statistically significant and with an appropriately high r2, yet many BBNs are 

presented without any measure of how good the network is (Aguilera et al., 2011). 

Marcot (2012) provides a comprehensive review of metrics that can be used to 

evaluate different aspects of BBN performance and uncertainty. However, as a 
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balance between statistical rigour and ease of calculation, we recommend, as a 

minimum, to report the error rate, log loss score, spherical payoff score and Cohen’s 

kappa for the training data set used to build the BBN. Furthermore, if the BBN is to be 

used to make predictions or evaluate management alternatives, then these same 

statistics for an independent test data set should also be reported. This will be more 

challenging for BBNs that are developed with expert knowledge; however we still 

believe that some form of independent assessment of the accuracy of model 

predictions are needed before the BBN is used. This might involve consulting experts 

not involved in the original workshops, or comparing outcomes with some real 

examples of the possible combinations in the BBN.  

We are not aware of any previous evaluations of whether BBNs perform better at 

modelling than other classification techniques. For our data on ecological condition in 

a New Zealand river, the BBN did perform moderately better than all other techniques 

(i.e., logistic regression, classification trees, random forests, artificial neural 

networks). These other classification techniques may be easier and quicker to use than 

a BBN because data does not require discretization. To hasten BBN development, the 

BBN software can perform discretization on entered quantitative data, often into 

evenly sized or distributed data chunks; however, the outcomes often do not yield 

accurate predictions. Most biological data does not fit nicely into discrete groups, and 

such discretization strategies are thus fraught with problems. We avoided such 

problems by using classification trees to identify thresholds for the node classes that 

provided the most informative links with QMCI. BBN accuracy indicated that this 

worked well, although we did not directly compare the approach with other 

discretization strategies such as evenly divided groups. In the future Hybrid or non-

parametric BBNs, where discretization is not needed, may avoid the need for this 
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approach in BBN construction (e.g. Morales-Napoles et al., 2014;  Ropero et al., 

2014).  

For communicating research findings to the resource managers who use a 

developed model, the visual linkage diagram (e.g. Fig. 2) and the ability to observe 

the effect of changing variables immediately with a simple click of the mouse (by 

clicking on different node states in Netica
TM

) are major advantages of the BBN over 

the other modelling approaches. Compared to other classification techniques, it also 

offers the unique benefit of being able to both predict biota from the environment 

and/or diagnose environmental condition from the taxa present (Paisley et al., 2011). 

Therefore if the predictive ability of a BBN is good (as assessed on independent data) 

then the BBN will be a superior technique for communicating the complex interaction 

of multiple stressors and for evaluating the efficacy of alternative management 

options. 

 

Managing ecological condition with the Bayesian Belief Network 

The constructed BBN provided a good description of the combined outcome of the 

multiple stressors affecting one measure of ecological condition (QMCI) in the 

Manawatu River. This is reassuring given that all the environmental variables used 

were GIS-derived, rather than actual field measures; however, they were still able to 

accurately predict QMCI values across the catchment. We had chosen GIS variables 

specifically so we could also predict ecological condition in reaches where 

invertebrates had not been sampled. It is then possible to map the predicted patterns at 

a catchment level for a more complete perspective on ecological condition. The map 

facilitated observation of the gradual change in ecological condition from the pristine 

mountain streams in the forest parks to increasing degradation as the river flows 
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downstream through increasingly agricultural land use at lower elevations. Similarly, 

the map clearly shows the more dramatic transition from clean to poor ecological 

condition in streams and rivers around the town of Dannevirke, where dairy farming 

is more intensive. Linking the BBN directly with a GIS map would further enhance 

the ability of the BBN to communicate outcomes from alternative management 

decisions. 

The BBN provides some interesting insight into the potential options for 

improving ecological condition (as measured by QMCI) in the Manawatu River. For 

example, a current focus of several environmental management and advocacy groups 

involved in enabling the river clean-up fund is to limit nutrient leaching into the river 

from agricultural land (Roygard, McArthur & Clark, 2012). However, our model 

suggests that modification of the stream and riparian habitat may be equally effective 

to nutrient management in increasing the QMCI, despite the strong links between 

agriculture, nutrient levels and the QMCI found elsewhere (Boothroyd & Stark, 2000;  

Wagenhoff et al., 2011;  Clapcott et al., 2012). Increases in QMCI may come from 

improving habitat quality through provision of more riparian shading or reducing 

nutrient leaching from the land. Furthermore, we observed a threshold (28%) for the 

percentage of pastoral agriculture in the catchment that will degrade ecological 

condition, with further increases in agricultural land use having few concomitant 

effects on condition, a phenomenon also found elsewhere in New Zealand (Death & 

Collier, 2010) (but see Wagenhoff et al., 2011). 

When evaluating management options, it is important to avoid presenting 

unrealistic scenarios to the BBN. For example, changing the nitrogen node status had 

a limited effect on QMCI, despite the known links between nitrogen and QMCI 

(Clapcott et al., 2012). This partly reflects the fact that many node combinations are 
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unlikely to occur in reality, such as high levels of upstream pastoral agriculture and 

low levels of nutrients; such combinations therefore remain untested by the model. 

However, in many cases these are the scenarios that require evaluation, for example to 

determine if reducing nitrogen leaching in pastoral catchments can improve ecological 

condition. This is one disadvantage of models constructed from real world data, rather 

than expert opinion; although the latter must also be based on limited real world 

experience. If such scenarios are explored it therefore needs to be stressed to users the 

difficulty of modelling artificial scenarios where variables are manipulated outside 

those normally seen in reality, e.g., can we really ever have a catchment with a high 

percentage of pasture and low nutrient levels? That said, it may still be useful to 

explore the effect of increasing percentage of pastoral catchment in the BBN model, 

while keeping other factors constant, and observe that the biggest effect on the QMCI 

is the change from little or no agriculture (< 28% pasture) to some, with no dramatic 

decreases in ecological condition as percent pasture in the upstream catchment gets to 

be very high. 

 

Conclusion 

Despite the caveats above, the BBN is a very useful tool for exploring the efficacy of 

different management options before expending time and money in activities that may 

not work, and/or for which there will be a considerable time lag before outcomes are 

clear (Parkyn et al., 2003). It is also very easy for non-experts to select different node 

states and explore the ecological outcomes once the model is built, without any need 

to conduct complicated analysis (c.f., artificial neural networks); provided they 

appreciate some node combinations may not occur in reality. Therefore, provided that 

the BBN makes accurate predictions they are considerably more useful, than other 
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classification techniques for modelling, forecasting and management of resources 

exposed to multiple interacting stressors.   

The BBN constructed to predict ecological condition in the Manawatu River 

catchment performed well on independent data. It provided some insightful direction 

as to the best strategies for improving ecological condition of the river, which have 

not been given much attention prior to this. The BBN also allowed mapping of 

catchment wide ecological condition, which in turn provided a more holistic 

perspective on the water management issues. We support the view of many others 

(e.g. McCann, Marcot & Ellis, 2006;  Pollino et al., 2007;  Uusitalo, 2007;  Aguilera 

et al., 2011;  Leigh et al., 2011;  Allan et al., 2012) that BBNs are extremely useful 

and intuitive tools for understanding and managing environmental issues. Although 

modelling of any kind can seem difficult for non-experts; the readily available 

software makes the task relatively straightforward. We have outlined the general steps 

in BBN development in Table 4, many of which do not require specialised software. 

The most important step is the appropriate testing and reporting of their efficacy 

(Table 4). If the developed models are not independently validated, but are still used 

for management decisions because they appear rigorous to non-scientist managers, the 

outcomes are likely to be different from those expected and undermine the power 

BBN modelling could offer environmental management. 
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Figure Legends 

 

Figure 1. Map of lower North Island with aquatic invertebrate sampling sites used to 

construct and test the Bayesian belief network: blue dots indicate sites in the 

Manawatu River catchment; red dots represent other rivers and streams in the region. 

 

Figure 2. Screen capture of Bayesian belief network model developed in NeticaTM. 

 

Figure 3. Map of river segments in the Manawatu catchment, colour-coded based on 

the water quality of the predicted QMCI state. Blue = clean, orange = moderate and 

red = poor water quality, as indicated by the QMCI. 
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Table 1. Thresholds for states used in BBN nodes. See Appendix 1 for abbreviation 

definitions and Leathwick et al. (2010) for details on how the variables were 

derived. 

 

 

 
 

Very 

High 

High Moderate Low 

USCalc  > 1.64 1.64 > x > 1.48 < 1.48 

UsHard  > 2.82  < 2.82 

USPhosporus  > 1.77 1.77> x > 1.55 < 1.55 

LogNConcen  > 0.1  < 0.1 

USPasture > 0.9 0.90 > x > 0.68 0.68 > x > 0.28 < 0.28 

ReachHab  > 4.0 4.0 > x > 3.6 < 3.6 

SegRipNat  > 45 45 > x > 20 < 20 

SegRipShad  > 0.45 0.45 > x > 0.20 < 0.20 

USAvgSlope  > 15.6 15.6 > x > 2.89 < 2.89 
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Table 2. Metrics of the fit of 300 test sites to five models, for predicting QMCI, 

created with different algorithms in WEKA from 663 sites. 1 Spherical payoff, 

a similar but slightly better metric for BBNs than the area under receiver 

operating characteristic curves (ROC) (Marcot, 2012). 

 

 

 

 

 

 

 

 

 

 

 

  

 

Percent 

error 

 

Area 

under 

ROC 

Cohen’s 

kappa 

 

BBN 28.0 0.7601 0.53 

Classification tree 38.0 0.729 0.39 

Random forests 35.3 0.788 0.42 

Artificial neural network (with 

QMCI classes) 38.0 0.768 0.39 

Simple logistic regression 32.7 0.784 0.44 
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Table 3. Effect of node state on the probability (as a percentage) of clean or poor 

ecological condition as measured by QMCI based on the developed Bayesian 

belief network (Fig. 2). 

 

 

  

 Ecological condition 

 

Clean 

% 

Poor 

% 

Water chemistry (WaterChem)   

  Good 69 15 

  Moderate 57 14 

  Poor 11 41 

Habitat quality (HabitatQual)   

  Good 73 14 

  Moderate 37 11 

  Poor 20 43 

Percentage upstream catchment in pasture (USPasture)   

  Low 65 15 

  Moderate  46 19 

  High 41 25 

  Very high 44 25 
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Table 4. Steps to develop a Bayesian belief network (BBN) to model the effect of the 

environment on a metric or metrics using software such as NeticaTM. 

Step Task Potential methods to achieve task 

1 Identify target metric(s)  

2 Identify potential 

environmental drivers of 

metric state 

Can use statistical (e.g. WEKA as in our 

study), expert panel, critical thinking, or 

literature review approaches. Caveat: too 

many variables will make development 

challenging. 

3 Arrange in influence 

diagram 

Can use software (e.g. Netica
TM

; our 

study), pencil or whiteboard. For 

examples see Figure 2 or Allan et al. 

(2011). 

4 Divide all variables into 

states (i.e. discretise).  

Can use statistical approach (e.g. CART; 

our study), divide into even groups 

(around 4) or critical thinking. 

5 Populate Conditional 

Probability Tables. 

Can use software if suitable data are 

available (e.g. Netica
TM

; our study), 

regression equations, or expert opinion. 

6 Evaluate BBN model on 

independent data. 

See Marcot (2012). 

7 Repeat steps 3 – 6 if 

necessary to improve model 

fit to independent data 
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Figure 1 
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Figure 2 
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Figure 3 
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Appendix 1. Variables from the River Environment Classification (REC) (Snelder, 

1998;  Snelder & Guest, 2000;  Snelder & Biggs, 2002;  Snelder et al., 2004) or 

Freshwater Ecosystems of New Zealand (FENZ) (Leathwick et al., 2010) geodatabase 

used for initial testing of BBN to predict QMCI.   

 

Symbol Variable Symbol Variable 

DISTSEA Distance to sea DSAVESLOPE Downstream average slope 

CATCHAREA Catchment area Q_LRI_2 Flow weighted LRI land class 2 

AVEELEV Average elevation TOPALLUV Top rock alluvium 

ACCSLOPE Catchment Accumulated slope XSINUOSITY Channel sinuosity 

ACCRAIN Catchment accumulated rainfall XPASTORALP Percent pasture 

ACCTEMP Catchment accumulated temperature Impervious Percent catchment in impervious surface 

ACCEVAP 

Catchment accumulated 

evapotranspiration NaturalCov 

Indigenous vegetation cover in the upstream 

catchment (proportion) 

ACCFLOW Catchment accumulated flow LogNConcen 

Log10 nitrogen concentration (ppb), range from -4.1 

(very low concentrations) to 3.1 (very high 

concentrations) 

CTCHSLOPE Catchment slope Downstream Downstream effects of dams/barriers.  

CTCHRAIN Catchment rainfall UpstreamDa 

Upstream effect of dams/barriers on diadromous 

species 

CTCHTEMP Catchment temperature FishEffect Summed exotic fish effects 

CTCHEVAP Catchment evapotranspiration Saltru 

Predicted probability of capture for Salmo trutta 

(brown trout) 

CTCHFLOW Catchment flow SumAverage 

Pressure indices calculated from individual pressure 

factors (average)  

UPELEV Upstream elevation SumMinimum 

Pressure indices calculated from individual pressure 

factors (minimum) 

DOWNELEV Downstream elevation SegJanAirT Reach segment January air temperature 

RAINALL Rainfall SegMinTNor Reach segment minimum temperature 

URBAN Percent catchment urban SegFlow Reach segment flow 

FARMING Percent catchment farming SegLowFlow Reach segment low flow 

NATIVE Percent catchment native vegetation SegFlow4th Reach segment flow 4th rooted 

EXOTIC Percent catchment exotic forest SegFlowVar Reach segment flow variability 

SCRUB Percent catchment scrub SegSlope Reach segments slope 
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TUSSOCK Percent catchment tussock SegSlopeSq Reach segment slope squared 

BARE_GROUN Percent catchment bare ground SegRipShad Reach segment riparian shade 

TOPEAT Top rock as peat SegHisShad Reach segment historical shade 

TOPLOESS Top rock as loess SegRipNati Reach segment riparian native vegetation 

TOPALLUV Top rock as alluvium SegCluesN Reach segment CLUES nitrogen 

TOPOTHER 

Top rock classed as other than classes 

presented SegCluesLo Reach segment CLUES loss 

TOPMUD Top rock as mud DSDist2Coa Distance to coast 

BASELOESS Base rock as loess DSAvgSlope Downstream average slope 

BASEWIND Base rock as windblown sand DSAvgSlo_1 Downstream average slope 

BASEALLUV Base rock as alluvium DSMaxLocal Downstream maximum local temperature 

BASEOTHER 

Base rock as other than classes 

presented USAvgTNorm Upstream average temperature 

BASEMUD Base rock as mud USDaysRain Upstream days of rain 

BASEGREY1 Base rock as greywacke USAvgSlope Upstream average slope 

LLAKE Percent catchment as lake USCalcium Upstream calcium 

UR_Dairy Upstream catchment as dairy farming USHardness Upstream hardness 

UR_Beef Upstream catchment as beef farming USPhosporu Upstream phosphorus 

UR_Sheep Upstream catchment as sheep farming USIndigFor Upstream indigenous forest 

COND Conductivity USNative Upstream native vegetation 

PROPSLIP Proportion of land erosion slips USPasture Upstream pasture 

Q_LCDB_7 Flow weighted LCDB land class 7 ReachSed Reach sediment 

Q_W_RNVAR Flow weighted rain variability ReachHab Reach habitat quality 

Q_W_RD100 

Flow weighted rain days greater than 

100 mls   
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Map of lower North Island with aquatic invertebrate sampling sites used to construct and test the Bayesian 
belief network: blue dots indicate sites in the Manawatu River catchment; red dots represent other rivers 

and streams in the region.  

296x419mm (300 x 300 DPI)  
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Screen capture of Bayesian belief network model developed in NeticaTM.  

383x194mm (72 x 72 DPI)  
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