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ABSTRACT 

 

The experiments reported in this thesis investigated the use of temperature 

measurement using infrared thermography (IRT) as an objective, non-

invasive method to identify the physiological stress response in the horse. The 

primary area of investigation was the eye area within the medial posterior 

palpebral border of the lower eyelid and the lacrimal caruncle as in existing 

work in other species. The application of these findings to horse management 

and welfare was discussed. 

 

Horses were exposed to potentially stressful situations that were acute (<20 

seconds), short term (ten minutes) and long term or repetitive (one week) in 

duration. Temperature was measured using IRT in addition to measurement 

of salivary cortisol, faecal corticosterone and behavioural assessment, all of 

which are currently accepted measures of the stress response. 

 IRT was shown to be an unsuitable method to assess acute stress in the 

horse due to the species specific behavioural response of flight. Rapid evasive 

movement of the horse meant that recording temperature using a thermal 

camera was difficult. A modified experimental design may have made it 

possible to capture the thermal response to acute stress however restraint of 

the horse would have been stressful in itself and confounded results.  

A significant (p=0.005), positive correlation was found between eye 

temperature and the stress hormone salivary cortisol when horses were 

exposed to the short term potentially stressful husbandry procedure of 

clipping. Behavioural assessment of the horses during clipping did not support 

the physiological findings.  

Finally IRT was shown to be an unsuitable method to identify long term or 

repetitive stress associated with restrictive housing. Faecal corticosterone and 



 

 

behavioural assessment were found to be more appropriate methods to 

monitor stress chronic duration.  

These experiments provide evidence that IRT is able to identify temperature 

change associated with short term stress and offers an objective, non-

invasive and instant physiological measure of the equine stress response. Use 

of IRT as a research tool will allow a better understanding of how horses 

perceive short term husbandry procedures and management techniques and 

allow alterations to be made if necessary in order to improve equine welfare 

and maintain well being. 
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Chapter 1. Introduction and review of the literature 
 

 
1.1 Introduction  

 
Domestication has removed horses from their natural environment and  

eliminated many of the challenges faced in the wild including predation and 

the acquisition of food. These challenges have been replaced with new 

challenges associated with management practices and training procedures 

that some horses may perceive to be stressful. Domestication requires the 

horse to expend energy for the benefit of another species which conflicts with 

the evolutionary processes that shaped the behaviour of its predecessors 

(Diamond, 2002). Confinement in stables restricts movement and limits the 

opportunity to display natural behaviour and interaction with con-specifics. 

This can lead to stress related disease and the development of abnormal 

behaviours that may compromise welfare. 

 

The question of how to assess equine welfare is still under debate, however a 

combination of behavioural and physiological measures can give an indication 

of how a horse perceives its environment (Bassett and Buchanan-Smith, 

2007). A potential indicator of welfare is the absence of stress. There is no 

standard definition of stress, however an environmental stimulus that leads to 

an imbalance of homeostasis is often termed a “stressor” and the 

corresponding defence reaction of an animal “the stress response” (Mostl and 

Palme, 2002). The word “stress” has been used in several different contexts 

and can therefore be interpreted to mean more than one thing, but for the 

purpose of this project stress will be defined as “the experience of intrinsic or 

extrinsic demands that exceed an individual’s resources for responding to 

those demands” (Dantzer, 1991). 

 



 2 

Various methods are currently used to assess how an animal perceives the 

situation it is in including evaluation of the stress hormone cortisol and 

analysis of behavioural response. These currently accepted methods have 

limitations. Plasma cortisol assessment requires the invasive procedure of 

blood sampling which can be stressful in itself and potentially confound 

results. Faecal sampling for cortisol can only be carried out on an 

opportunistic basis and is not suitable for assessment of short term stress as 

it reflects an average cortisol level over time rather than the point in time 

sampling offered by plasma. In addition laboratory analysis for cortisol 

assessment is time consuming and expensive.  

 Behavioural assessment can be subjective and as a prey species horses may 

mask signs of stress as a survival mechanism. This means behavioural 

response is not a reliable measure of welfare however it is the only method 

available to everyday horse owners and handlers to assess how their horses 

perceive the training practices and management procedures imposed upon 

them. Due to these limitations there is currently no single, instant, reliable 

and non-invasive measure of the stress response for the horse.  

 

Recent work into assessment of the stress response has investigated changes 

in thermal output as an indicator that an animal finds a situation stressful. 

Skin temperature directly reflects the underlying circulation and metabolism 

(Eddy et al., 2001) therefore rapid changes in blood flow due to sympathetic 

activation and stimulation of the hypothalamic–pituitary-adrenocortical (HPA) 

axis associated with the stress response will alter the amount of radiated heat 

(Stewart et al., 2007). The associated changes in surface temperature can be 

measured non-invasively using infrared thermography (IRT) and could 

provide an objective, more immediate indication of the stress response when 

compared to behavioural assessment and hormone analysis. The response of 

the horse to management practices and husbandry methods could then be 
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objectively assessed and adapted if necessary to prevent long term or 

repetitive activation of the stress response which could manifest as abnormal 

behaviour or ill health.  

 

1.2 Natural habitat of the horse and implications of domestication 

In their natural habitat horses are social animals that live in permanent family 

bands consisting of an adult stallion, one to three mares and their offspring 

(Feist and McCullough, 1975). Young or old stallions that have lost their 

mares will join a bachelor band of up to sixteen horses (McCort, 1984).        

 Horses are a free ranging species with home ranges that incorporate grazing 

sites and water resources that can be up to 78km2 (Green and Green, 1977). 

Like many large grazing herbivores, group living is an important survival 

strategy in that it reduces the likelihood of individual predation in addition to 

an increased chance of predator detection. This can best be observed in large 

mixed groups of zebra, wildebeest and other ungulates on the African 

savannah (Goodwin, 1999). Wild horses also form large social groups and are 

therefore pre-adapted to form associations with other species and are highly 

social animals (McCort, 1984).  

Domestic and captive species are faced with a wide range of potentially 

challenging situations that are often related to husbandry procedures or 

training techniques. Restricted movement is one of the greatest challenges for 

domestic and captive species (Morgan and Tromborg, 2007) and is thought to 

be one of the primary contributors to captivity induced stress. The impact of 

restricted space on 35 different species of carnivore was investigated by Clubb 

and Mason (2003) who found that infant mortality and stereotypic behaviour 

(pacing) was found to correlate positively with species home range size in the 

wild. This suggests that the impact of restrictive housing will be greater for 

animals that originate from open spaces such as the horse.  
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 Many animals spend a large amount of their daily time budget searching for 

and consuming food (Herbers, 1981). The restricted space provided by a 

domestic or captive environment inhibits the opportunity to forage and the 

amount and type of food that is provided for both domestic and captive 

animals takes far less time to consume than in the wild. The reduced 

opportunities for natural foraging behaviour due to restrictive housing may be 

inherently stressful and can result in the emergence of stereotypic behaviour. 

This is due to frustration as the animal attempts to search for food in a 

restricted environment (Mason, 1993). Stereotypic behaviour as a result of 

restrictive housing has been reported in primates (Mariner and Drickamer, 

1994), giraffe and okapi (Bashaw et al., 2001). In stabled horses the 

provision of an “Equiball” (an enrichment device that requires work to extract 

food with the aim of extending foraging time) resulted in a reduction of 

stereotypic behaviour (Henderson and Waran, 2001).  

 

1.2.1 Potential sources of stress in the horse 

Everyday challenges in the wild are primarily acute (predator avoidance, 

social disputes) however the domestic horse is placed in potentially stressful 

situations for extensive periods of time (restrictive housing, transportation) 

which may result in prolonged stress. In addition domestic horses are 

subjected to potentially stressful procedures which are often repetitive in 

nature and from which there is no escape. 

Restrictive housing is potentially detrimental to welfare especially in social and 

free ranging species. It is therefore important that current housing types are 

objectively assessed to evaluate their impact on equine welfare. It is also 

important to objectively assess new housing designs that allow natural 

behaviour to be displayed. This will allow adaptations to housing design to be 

made in order to reduce the impact of captivity and improve welfare. 
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1.2.2 Housing   

In its natural environment the horse is a social animal that spends most of its 

time in close contact with con-specifics (Christensen et al., 2002). Harem 

bands are typically comprised of mares and their foals, yearlings and one 

stallion (Rivera et al., 2002) and these cohesive bands can roam vast areas of 

land. In contrast domestic horses are kept in a variety of housing systems 

which offer differing levels of physical freedom and contact with con-specifics. 

The predominant housing system used is individual stabling (Christensen et 

al., 2002). The dimensions of box stalls are variable but typically they 

measure 9-13m2 (Rivera et al., 2002) and horses are often confined in these 

stalls for large proportions of the day. This management style is used for 

several reasons, including injury prevention, lack of pasture and convenience 

for the owner (Goodwin, 1999). To the human eye the stable appears safe 

and inviting and is based on an anthropomorphic belief of what the horse 

finds comfortable (Pedersen et al., 2004; Jørgensen et al., 2009) however, to 

a prey species such as the horse, isolation, restriction of sensory input and 

preventing escape if needed could be potentially stressful. In addition 

restriction of foraging time and reduced opportunity to express natural and 

social behaviour is thought to be linked to stereotypic behaviour (McGreevy et 

al., 1995) therefore other forms of housing are being introduced where 

contact is possible, including group stabling and turnout. To fully understand 

the impact of housing design it is important to first understand the behaviour 

of the horse in its natural habitat and then compare that to behaviour in 

different housing conditions. Where this comparison shows a reduction in the 

horse’s behavioural repertoire or a change in time budget, it is thought to be 

a sign of reduced welfare (Benhajali et al., 2008). 

 A study by McGreevy et al. (1995) found that stable design allowing visual 

contact between horses was associated with a reduced risk of abnormal 

behaviour. Cooper et al. (2000) reported that increasing visual and tactile 
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contact between horses significantly reduced stereotypic weaving and nodding 

when compared to conventional stables where horses have no contact with 

one another. When physical or visual contact is not possible due to risk of 

infection, injury or cost, an alternative such as a stable mirror could be used 

and appears to have a similar effect to social contact (McAfee et al., 2002; 

Mills and Davenport, 2002). A study by Waters et al. (2002) investigated 

potential factors that may influence the development of abnormal behaviour 

in young horses. Horses that were barn or singly housed after weaning were 

at significantly greater risk of developing abnormal behaviour than horses 

kept at pasture with con-specifics and the authors suggest housing plays a 

critical role in the development of stereotypical behaviour in young horses. 

Rivera et al. (2002) aimed to investigate the effects of the domestic 

environment on the trainability of young horses and found group housing 

exerts a positive effect on behaviour. Group housed horses took less time to 

complete a training procedure than horses singly housed in stalls. In addition, 

singly housed horses showed more objectionable behaviour toward the trainer 

(biting and kicking) than group housed horses. It seems that housing horses 

in a way that reflects their natural habitat and allows social interaction has 

welfare benefits. This new form of housing where group housed horses are in 

contact with each other needs to be objectively assessed and compared to 

traditional box stalls to allow the design with optimal welfare benefits to be 

selected.  
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1.2.3 Husbandry procedures 

How stressful an animal perceives an event to be may be associated with the 

characteristics of the event in relation to its evolutionary history. With regards 

to the horse, physical stressors including darkness, sudden or unfamiliar 

noise, sudden movement and isolation may evoke an innate fear response 

mainly due to these situations increasing the chance of predation for the 

horse. Many of these situations are found in the domestic environment and 

there are several management procedures that horses behaviourally appear 

to find stressful. An example of a potentially stressful management procedure 

is clipping.  

 Horses coats are clipped for a variety of reasons. By the end of October in 

the United Kingdom a horse will have grown a thick winter coat. This can 

cause excessive sweating whilst being exercised and result in the horse losing 

condition. Removing the hair and providing artificial warmth through the use 

of rugs enables owners and handlers to keep the horse clean, dry and 

comfortable as well as maintaining condition. Despite being totally non-

invasive and pain free, some horses appear to find the procedure of clipping 

stressful (Gough, 1999) which could be due to a number of factors. It is 

thought that stress is mainly due to the noise of the clippers rather than the 

touch (Gough, 1997). However, often the areas that horses are particularly 

sensitive to having clipped, including the underbelly and flanks are the 

primary attack area for predators (Farmer-Dougan and Dougan, 1999). 

  Due to their size and innate flight behaviour horses that are behaviourally 

non compliant during clipping can prove dangerous. This has led to various 

counter measures being applied which may be stressful in themselves 

including severe bits to allow better control and extreme methods of restraint 

so that “If the horse realises it cannot escape, it may submit to the clipping” 

(Gough, 1997). Horses that become stressed whilst being clipped do not 

appear to become habituated to this procedure despite clipping being carried 
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out at least twice each winter and often develop reputations for being difficult 

to manage. Some success has been reported using behavioural conditioning in 

order to improve behaviour towards clipping. Ponies (n=6) were exposed to 

clipping on the cranial crest of the neck for five minutes and evasive head 

movements recorded. Ponies were then exposed to a recording of clipper 

noise during daily feeding for a period of fourteen days and then clipped for a 

second time. Results show that after behaviour modification the conditioned 

ponies were less reactive to the clippers and displayed less evasive head 

movements when compared to a control group (Gough, 1999). This is further 

supported by a similar study that observed number of head tosses during five 

minutes clipping of the neck and then subjected the seven study horses to 

twenty five days of behavioural modification treatment. Horses were exposed 

to clipper noise during feeding for ten minutes per day for twenty five days. 

At the conclusion of the treatment horses were clipped again and the number 

of evasive head movements was significantly lower than the pre treatment 

clip (Mackenzie et al., 1987).  

 

Behavioural conditioning may offer some improvement in equine behaviour to 

clipping however it is not known how long the effects last and as it was not 

reported how the ponies responded to clipping the following year it may be 

necessary to repeat conditioning which can be time consuming. Furthermore 

no physiological measures were taken therefore it may be the horses had 

simply learnt not to respond and perhaps were still physiologically 

compromised. In the wild, prey species have been shown to not display their 

suffering but conceal it as far as possible, in order not to attract predators or 

lose protection from their social group (Sapolsky et al.,2000; Berger et al., 

2003). Seaman et al., (2002) state that some individual animals respond to a 

stressful situation with no outward signs and appear to be unaffected. This 

type of behavioural response has been termed ‘passive coping’ and is the 
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opposite reaction to actively coping animals that deal with stressful situations 

by trying to escape or remove the stressful stimulus. Wechsler (1995) states 

that passively coping animals will stop performing behaviour during a stressful 

situation and wait for a change. This may result in these animals being 

perceived to be comfortable in a potentially stressful situation. Despite horses 

being flight animals Seaman et al., (2002) suggests that they cannot be 

grouped into either passive or active copers, as horses have been categorised 

as overtly passive in one type of behavioural test and overtly active in 

another. This is supported by Wechsler (1995) who suggests that only 

passively coping animals are consistent in their response to stressful 

situations with actively coping animals adopting various strategies. These 

findings suggest that horses could appear unaffected during a potentially 

stressful situation however, the horses could be experiencing psychological 

stress and the subsequent physiological response and detrimental effects on 

health. Lack of any behavioural stress response would result in the 

physiological stress response going undetected by the human handler. This 

highlights the need for an objective measure of the physiological stress 

response in order to better interpret behavioural changes during a stressful 

situation. Husbandry procedures could then be evaluated objectively and 

altered if necessary in order to avoid stress related disease and improve 

welfare. 
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1.2.4 The effect of predictability and control on equine response to stress 

In addition to the stress caused by restrictive housing, domestic and captive 

species must cope with situations they may perceive to be unpredictable or 

are unable to control. An unpredictable situation has been shown to contribute 

to stress and the predictability of an event is known to affect an animal’s 

response to it (Weinberg and Levine, 1980) and variations in predictability 

have been shown to have pronounced effects on the behavioural and 

physiological impact of stress (Bassett and Smith, 2007). The consequences 

of predictability are closely related to control, which is thought to be 

psychologically and physiologically important to animals (Overmier et al., 

1980; Mineka et al., 1986).  An event is deemed controllable if there is a 

difference in the likelihood of it occurring depending on an animal’s behaviour 

(Overmier et al., 1980) therefore the inability to respond appropriately to 

stressful stimuli with adaptive behaviour may be stressful for the animal and 

result in compromised welfare (Weinberg and Levine, 1980). A trickle feeder 

such as the horse that cannot forage due to restrictive housing may become 

stressed. Even offering a small element of control such as the opportunity to 

move away from a stressful stimulus but not escape entirely has been found 

to reduce the physiological stress response (Weinberg and Levine, 1980). 

 

 The impact of stressful stimuli or stressors is also partly determined by the 

ability of the horse to cope with the situation (Irvine and Alexander, 1998). It 

is a consistent finding across species that if environmental stressors are too 

demanding and the individual cannot cope, its health is in danger (Koolhaas 

et al., 1999). Coping can be defined as the behavioural and physiological 

effort to master the situation (Wechsler, 1995) and successful coping depends 

highly on the predictability and controllability of the stressor (Ursin and Olff 

1993). In the domestic horse many of the potentially stressful training 

procedures and management practices are neither controllable nor 
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predictable, increasing the occurence of stress-related disease and 

behavioural problems.  

 

1.3 The behavioural and physiological response to stress 

It is essential to understand the physiological changes and behavioural 

reaction of the horse when challenged in order to effectively measure and 

interpret the response of horses to potential stressors. Management and 

training techniques can then be assessed and altered accordingly in order to 

improve welfare. When an animal is confronted with environmental challenge 

it adapts through a range of physiological and behavioural mechanisms in 

order to maintain homeostasis. This response can be acute, which prepares 

the animal for an immediate reaction, or chronic, which involves substantial 

physiological adjustment and may result in long term alterations in behaviour.  

 

1.4 Behavioural response to stress 

The behaviour of an animal is its most potent interaction with the 

environment and largely determines survival (Goodwin, 1999). The 

behavioural repertoire of the horse has evolved to respond to the challenges 

faced by a herd dwelling social species that survives predation through flight. 

Domestication has removed many of the challenges faced by horses in their 

natural environment however the psychological need to respond may still 

exist even though the biological need to perform these behaviours does not 

(Cooper and Albentosa, 2005).  

The horse’s innate reaction to sources of perceived danger is one of active 

avoidance. This immediate behavioural response serves to remove the horse 

from a potentially dangerous or stressful situation and is supported by 

physiological mechanisms. From an evolutionary standpoint this response is in 

place to promote fitness in the wild; the life expectancy of an animal is 

increased if it can react to avoid sources of danger (Forkman et al., 2007). In 
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the domestic horse this acute behavioural reaction can prove dangerous both 

for the horse and human handler. Another behavioural indicator of stress 

involves throwing the head in the air when startled which may serve to bring 

the stimulus into clearer view (Mcgreevy, 2004). Horses are primarily visual 

communicators and they are very sensitive to subtle changes in body posture 

of con-specifics (Waring, 2002). The alarm posture of the horse serves as a 

signal to alert con-specifics (Forkman et al., 2007) and elevated head carriage 

displayed in domestic horses when adopting an alert stance is similar to the 

vigilant stance taken by wild horses when a predator is detected. Mares that 

were subjected to isolation in a pasture spent increased time standing 

immobile and in an alert stance and decreased time spent grazing when 

compared to time spent with conspecifics. The authors suggest these changes 

in behaviour could be indicative of increased anxiety or stress (Strand et al., 

2002). 

 In the wild prey animals often do not display their suffering but conceal it as 

far as possible in order not to attract predators or lose protection from their 

social group (Berger et al., 2003) and lack of movement has been found to be 

an important behavioural indicator of stress in prey species (Erhard and 

Mendl, 1999). Horses that were restrained in their stables by tying with leads 

for one hour whilst their heads were covered by a hood spent significant 

periods of time immobile in an alert stance (Minero et al., 2006). This 

response makes evolutionary sense as restraint and the inhibition of vision 

could potentially cause stress to a prey animal that relies heavily on sight to 

recognise and avoid predation. However, in the domestic environment this 

behavioural response could be interpreted by the human handler to suggest 

the horse is comfortable with the situation (Seaman et al., 2002).  
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It has been proposed that whether a stressor has adverse affects or not 

depends on whether the animal can predict and control the stressor (Keeling 

and Jensen, 2002; Bassett and Smith, 2007). Control may be achieved by 

performing a coping behaviour which is why behavioural problems may 

emerge when horses are placed in inadequate environments (Rietmann et al., 

2004). It has been suggested that stereotypic behaviour in the horse may be 

associated with reduced welfare or stress caused by an inadequate 

environment (Broom, 1991; Mason, 1991; McBride and Cuddelford, 2001) or 

indicative of a situation in which a horse lacks a certain degree of control 

(McAfee et al., 2002). Traditional single housing isolates the horse from con-

specifics and its association with limited exercise, inability to forage and 

reduced social interaction appears to contribute to the development of 

stereotypic behaviour (Cooper and Mason, 1998; McGreevy et al., 1995; 

Nicol, 1999).  

 

Abnormal or stereotypic behaviour has been defined as behaviours which are 

repetitive and invariant with no obvious goal or function (Mason, 1991). One 

example of stereotypic behaviour in the horse is crib-biting, which involves 

the horse grasping a fixed object with its incisor teeth, contracting the neck 

muscles and drawing air into the cranial oesophagus (Lebelt et al., 1998). 

Because crib-biting is an oral behaviour that involves activity of the teeth and 

lips as well as distension of the oesophagus, it has been suggested that it may 

have a regulatory function in meeting unsatisfied foraging needs (Toates, 

1981). Weaving is also a common locomotor stereotypy involving an obvious 

lateral swaying of the head and often the neck and forequarters (McGreevy et 

al., 1995). It has been suggested that weaving may be a response to the 

confinement of the stable and the frustrated motivation of horses attempting 

to reinstate social contact (Nicol, 1999). Weaving can cause uneven muscular 

development in the neck, weight loss, fatigue and lameness (Fraser and 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T48-469W3BR-3&_user=2471587&_coverDate=09%2F10%2F2002&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1709256963&_rerunOrigin=scholar.google&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=e7df9d578e80f2c9eb0a236ca74b1b55&searchtype=a#bib26#bib26
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Broom 1990; Winskill, 1995; Cooper et al., 2000). Other abnormal behaviours 

include box walking, wood chewing, pawing and head nodding and aside from 

potentially causing physical damage to the horse, they can also be destructive 

to the horse’s stable and are considered undesirable (Cooper and McGreevy, 

2002). Foals that were singly stabled post weaning were found to be at 

significantly higher risk of developing stereotypic behaviour than those which 

were pastured with con-specifics (Waters et al., 2002). Paddock housed 

weanlings have been reported to display time budgets similar to feral horses 

and showed strong motivation to be near con-specifics when compared to 

stalled weanlings, who spent significantly more time engaged in abnormal 

behaviour (Heleski el at., 2002). In addition to reduced incidence of 

stereotypic behaviour, horses managed in ways that allow natural behaviour 

to be expressed have shown improvements in response to training (Rivera et 

al., 2002) and increased social behaviour (Christensen et al., 2002). The 

functional significance of stereotypic behaviour is unclear, however it is 

possible that it acts to protect the animal from the physiological consequences 

of stress (Mason, 1991) and is a mechanism to help an animal cope with 

environmental change (Barnett and Hemsworth, 1990) and adapt to stressful 

conditions (McBride, 1980). Despite lack of clarification, these possibilities 

have contributed to the general hypothesis that stereotypies may be stress-

coping mechanisms (Levine et al., 1978). The emergence of stereotypic 

behaviour may be indicative of reduced welfare through poor management or 

a restrictive environment which could have detrimental effects on equine 

health. Consequently the occurrence of stereotypical behaviour should form 

one of the behavioural measures used when assessing the response of the 

horse to its environment. If reported in conjunction with physiological 

parameters then a more robust evaluation can be achieved. 
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1.4.1 Assessment of activity patterns as a measure of welfare. 

The behaviour of horses in their natural state is often used to assess the 

welfare of domestic horses (Veasey et al., 1996). The assumption is that a 

healthy wild horse is likely to have adequate welfare as it has the opportunity 

to socialise, forage and display natural behaviour and a captive horse that is 

restricted in its expression of certain behavioural patterns may be a welfare 

concern. It is worth noting that a wild environment does not always offer 

optimum welfare and domestication has removed many dangers faced by wild 

horses including predation, hunger and some diseases. A more practical 

approach may be to use studies of wild horses to identify those behaviours 

that are most important. This knowledge can then be used to modify 

management practices in order to allow natural behaviour to be performed. It 

could also be used to try and identify possible causes of behavioural 

abnormalities associated with human management and captivity (Winskill et 

al., 1995).         

 

A characteristic for the healthy unimpaired animal is repetition of daily routine 

(Berger et al., 2003) and studies report more or less identical time patterns of 

behaviour from day to day in stress free horses (Mayes and Duncan, 1986).  

Allowing domestic horses the opportunity to display natural behaviour and 

managing horses in a way that reflects their natural habitat has resulted in 

horses displaying time budgets similar to those of wild horses. Figure 1.1 (a-

d)  shows the gradual decrease in similarity to natural behaviour of horses as 

housing design becomes more restrictive and reflects the horses natural 

habitat less.  
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Figure 1.1 Basic time budgets for horses living in different environments from free ranging to 

restricted living conditions.  (a) 9 adult free ranging Carmargue horses with data averaged over 

one year (Duncan, 1980); (b) 89 adult Przewalskis horses group housed in a large grass pasture 

and observed for a total of 1319 hours (Boyd, 1988); (c) 2 adult mares housed together in a pen 

and observed for ten hours (Houpt and Houpt, 1988); (d) 44 densely housed mares observed for 

six days. Data revealed restricted behavioural repertoire with missing behaviour including 

allogrooming and lying down (Benhajali et al., 2007). 

(a)

3%

27%

60%

10%

Eat/Forage Stand Lie Other

(b)

19%

2%

25%

54%

Eat/Forage Stand Lie Other

(c)
0%

49%

29%

22%

Eat/Forage Stand Lie Other

(d)

30%

0%

45%

25%

Eat/Forage Stand Lie Other



 17 

1.4.2 Methods to assess the behavioural response to stress  

Numerous experimental tests have been designed to study animal behaviour 

in response to potentially challenging situations and although many were 

originally developed for laboratory species (Hall, 1934; Archer, 1973) they 

have since been adapted and applied to horses. In order to reduce the 

frequency of potentially stressful events and to improve safety of horse and 

human handler, experimental tests have been designed to study equine 

behavioural response to potentially stressful stimuli (Forkman et al., 2007; 

Wolff et al., 2007) and preference of management methods (Houpt and Houpt 

1988; Krawczel et al., 2006) and can aid in the selection of horses for specific 

uses (Anderson et al., 1999; Minero et al., 2005). As behavioural testing is 

used to recommend appropriate management methods then consequently the 

welfare of the horse often depends on the reliability and validity of such tests. 

  

Arena tests can be used to measure response to a challenging environment. 

They involve a single animal being placed in an open area and the amount of 

activity recorded and interpreted as a reflection of the response to novelty 

(Forkman et al., 2007). This type of test has been used to measure reactivity 

of rats (Cowan and Barnett, 1975), cows (Kilgour, 1975) chickens 

(Vallortigara et al., 1990) and horses (Wolff et al., 2007). The arena test was 

originally designed for laboratory animals and species that display thigmotaxis 

(fear of open areas) (Forkman et al., 2007) therefore there are limitations in 

extrapolating patterns and examples of behaviour to the horse. Horses are a 

free ranging species therefore an open area is unlikely to prove stressful 

perse and may lead to an inaccurate estimation of response to novelty. A 

study by Seaman et al. (2002) found no correlation between the behaviour of 

horses in an arena situation with their behaviour in a startle response test. An 

additional limitation of arena tests for behavioural assessment of social 

species is that stress due to a novel environment cannot be totally separated 
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from social isolation. Due to these reasons arena tests are not widely used to 

test the stress response in horses and more specific tests have been adapted 

which may be more appropriate. 

  

Novel object tests are often performed after a habituation period to the 

surroundings of usually one to five minutes (Visser et al., 2001; Seaman et 

al., 2002; Gorecka et al., 2007). The novel object used is often visual and 

introduced by a human (Gorecka et al., 2007) or lowered from the ceiling 

(Momozawa et al., 2003). Horses are usually tested alone and objects include 

inflated balls (Le Scolan et al., 1997), a brightly coloured sledge (Seaman et 

al., 2002) and balloons (Anderson et al., 1999; Momozawa et al., 2003). 

Behaviours recorded include locomotor activity, interest towards the novel 

object and exploration. Novel object testing is used to assess suitability of the 

horse for use in the mounted police and therapeutic riding programmes where 

the horse must have a calm, tolerant temperament and not be highly reactive 

to novel stimuli (Anderson et al., 1999; Minero et al., 2005). Difficulties may 

arise in novel object testing due to the behavioural variables measured. 

Exploration or latency to approach the object is one commonly used 

behavioural variable however a non-curious or indifferent animal and a fearful 

animal will both show a long latency to approach the novel object (Forkman et 

al., 2007). Lack of exploration or willingness to approach a novel object could 

indicate fear or indifference in the horse and so an accurate assessment of 

how the horse perceives this form of stressor may be difficult to achieve.  

 Novelty is a particularly strong stressor when a horse is suddenly confronted 

with it (Grandin, 1997). Startle tests are adapted novel object tests and are 

used to measure reactivity of an animal to a potentially stressful situation. 

They involve sudden presentation of a novel object (Visser et al., 2003;)  or  

unfamiliar sound (Romeyer and Bouissou, 1992). From an evolutionary point 

of view, suddenness, unfamiliarity and unpredictability are the key features of 
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predator attack (Shelton and Wade, 1979) therefore this type of test is more 

appropriate to assess the response of the horse to acute stress than the tests 

previously discussed. The use of visual stimuli is particularly relevant to the 

horse as in its natural habitat it is particularly sensitive to subtle changes in 

stimulus motion and relies on vision as a major sensory avenue for predator 

detection (Christensen et al., 2008).  

 

In order to quantify the reaction of an individual horse and allow comparison 

with other horses, studies have assigned a predetermined score of reactivity 

according to the intensity of the response (Andersen et al., 1999; Gorecka et 

al., 2007). Behaviours measured as indicators of stress include vigilance (Le 

Scolan et al., 1997; Wolff et al., 1997; Seaman et al., 2002), elevated head 

carriage (Anderson et al., 1999; Visser et al., 2003), pinned back ears (Kaiser 

et al., 2006), avoidance movement or flight attempts and snorting (Anderson 

et al., 1999; Minero et al., 2006; Christensen et al., 2008). Ethograms are 

used to record specific pre-determined behaviours and for the purpose of 

acute or short term observations usually involve the number of occasions the 

behaviour is observed or the duration for which the behaviour is performed 

(Martin and Bateson, 2007). A study by Reitmann et al., (2004) used an 

ethogram to record the frequency of behaviours indicative of stress during a 

challenging ground training task. Behaviours observed included elevated head 

position, explosive or evasive behaviour, tail swishing and defaecation.   
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1.4.3 Limitations of measuring behavioural response to stress  

Many factors can influence the equine behavioural response to a potentially 

stressful situation including temperament, past experience (Visser et al., 

2003; Minero et al., 2006) and nature, predictability and severity of the 

stressor (Koolhaas et al., 1999). What one horse perceives as stressful 

another may not, therefore a definitive decision on how the species as a 

whole perceives a specific situation or stressor cannot be made. Even 

stereotypic behaviour that is often used as an indicator of poor welfare does 

not have a direct relationship with specific stressors and the presence of 

stereotypies should not be used as the sole indicator of poor welfare (Mason 

et al., 2007).  

 

Habituation to novelty or learning not to respond to a repeated stimulus has 

clear evolutionary advantages. If the horse learns not to respond to every 

inconsequential stimulus then vital energy can be conserved. Through training 

the horse can memorize objects and situations that initially evoked fear, 

stress or a flight reaction and learn to tolerate these situations with a 

decrease in escape response (Gorecka et al., 2007). Therefore, repeated 

testing using the same stimulus during a novel object or startle response test 

could result in a decrease in escape reaction and an inaccurate assessment of 

how the horse perceives the stressor. Furthermore just because a horse has 

learned not to respond behaviourally through training does not mean it is 

comfortable with the situation it is placed in. Previous exposure throughout 

the horses’ life to potentially fearful situations and the training given to cope 

with such situations can offer some form of habituation or desensitisation to 

startle tests (Visser et al., 2003, Minero et al., 2006).  
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The experimental design of behavioural tests may also impact upon the 

horses reaction. It was reported by Grandin (1997) that cows and pigs 

approached and manipulated a piece of paper dropped on the ground but 

refused to approach and displayed flight behaviour when led towards it by a 

handler. Therefore, the paper is perceived as threatening in one situation and 

non-threatening in another and may confound results of such a test. 

 

Behavioural observation is often the only means available to horse handlers to 

assess how horses perceive the situation they are in however behavioural 

assessment can be subjective and as a prey species, passive coping (showing 

no outward signs of stress) or masking stress can occur as a survival 

mechanism (Seaman et al., 2002, Berger et al., 2003). A horse that appears 

behaviourally unaffected possibly through training may still be physiologically 

and psychologically compromised therefore a combined use of behavioural 

and physiological parameters are often used for a robust and more objective 

evaluation of animal welfare (Anderson et al., 1999; Strand  et al.,  2002; 

Momozawa et al., 2003; Pritchett et al., 2003; Minero et al., 2006).   
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1.5 Physiological response to stress  

The physiological response to stress supports the behavioural reaction by 

preparing the horse for the increased physical activity involved during the 

flight response. The physiological response involves the immediate activation 

of the sympathetic nervous system (SNS) followed by stimulation of the 

hypothalamic–pituitary-adrenal (HPA) axis.  

 

 

1.5.1 Activation of the sympathetic nervous system (SNS) in response to 

stress. 

Within seconds of perceiving a stressor, the sympathetic nervous system 

(SNS) is activated. This immediate reaction is termed the “fight or flight” 

response because the physiological changes in cardiovascular tone and blood 

flow could support either behavioural reaction (Cannon, 1929). The SNS 

prepares the horse for the muscular action involved in the defence against 

external challenges by quickly mobilising energy reserves in the body. The 

eyes dilate, the rate and force of heart contractility increases, blood vessels 

constrict and blood pressure increases (Porges, 1995). Blood is diverted from 

areas not necessary for the flight response including the gastrointestinal tract, 

reproductive, and immune system and taken to the sensory organs, skeletal 

muscle, lungs, heart and brain. Cognitive vigilance is also increased (Sapolsky 

et al., 2000). The cardiovascular system is directly involved in the coping 

mechanism of the horse. It is stimulated and facilitated by production of 

adrenaline, resulting in increased heart rate. This short term physiological 

response supports the flight reaction due to an increase in heart rate 

subsequently increasing circulation to allow rapid delivery of available energy 

to the working muscle. As a result changes in heart rate have been used as a 

physiological measure of reactivity during potentially stressful situations. 

Studies have reported changes in circulation and heart rate in the horse in 
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response to transportation (Stewart et al., 2003), exposure to novelty (Visser 

et al., 2002) and restraint (Momozawa et al., 2003).  

 

1.5.2 Measurement of the SNS response to stress 

Transportation has been reported to cause stress and subsequent activation 

of the SNS in horses (Waran and Cuddeford, 1995; Stewart et al., 2003,). A 

study that investigated a particular approach to training based on the 

Tellington touch equine awareness method (Tellington Jones and Bruns, 1988) 

aimed to determine whether training horses according to this method would 

decrease stress during loading in horses with a history of reluctance to load. 

The study used ten horses that were non-compliant with the loading process 

and seven horses that were compliant with the loading process as a control. 

Elevated heart rate in addition to an increase in the stress hormone cortisol 

was reported in horses that displayed behavioural stress during loading and 

transportation with cortisol levels elevated from seven minutes post loading. 

Both heart rate and cortisol level decreased when horses were subjected to a 

training programme and the loading protocol repeated (Shanahan, 2003). 

Horses that were behaviourally compliant with the procedure displayed no 

increases in the parameters measured.  

Stress caused by handling in previously unhandled Konik poines resulted in an 

increase in heart rate. In comparison the heart rates of intensively handled 

Konik ponies were found to be lower than the heart rates of their non handled 

counter parts. The treatment involved the ponies being caught and led away 

from their paddock, having their feet picked up and being approached by an 

unfamiliar handler. Intensively handled ponies also scored better on a 

behavioural manageability score which may be due to habituation to the 

treatments and positive contact with people resulting in a reduced fear 

response towards humans (Jezierski et al., 1999). 
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It is difficult to identify whether changes in heart rate are due to metabolic 

activity, or excitement. Heart rate also increases in response to movement 

and therefore has limited use in monitoring stress in ridden horses or 

husbandry practices that require movement by the horse. Due to these 

limitations the response of the hypothalamic–pituitary-adrenal axis is also 

used to assess reactivity to potentially stressful situations.  

 

1.5.3 Activation of the hypothalamic–pituitary-adrenocortical (HPA) axis in 

response to stress 

During a stressful event physiological homeostasis is disrupted. The 

hypothalamus in the brain releases corticotrophin releasing hormone (CRH) 

which travels to the anterior pituitary gland and stimulates release of 

adrenocorticotrophic hormone (ACTH). ACTH enters the bloodstream and 

stimulates the adrenal cortex (outer portion of adrenal gland situated on 

dorsal aspect of the kidney) to secrete glucocorticoids. The glucocorticoid 

produced is species specific and in equines it is primarily cortisol (Queyras and 

Carosi, 2004). The endocrine response takes several minutes to be fully 

functional (Nelson, 2005) and cortisol is responsible for several adaptive 

effects necessary for the flight response. Energy is rapidly mobilised from 

storage sites in the body in the form of fatty acids and glucose. The activated 

SNS and subsequent increased circulation then serves to rapidly deliver this 

extra energy to the working muscle. Oxygen intake is increased, sensory 

function is enhanced (Sapolsky et al., 2000; Morgan and Tromborg, 2007) 

and blood flow is decreased to areas not necessary for movement (Nelson, 

2005). As well as acting as a coping mechanism the stress induced rise in 

cortisol may also help to prepare the animal for the next stressor (Sapolsky et 

al., 2000).    

In the wild the median chase time for a zebra by a hyeana is 46 seconds with 

similar times for a lion chase (Kruuk, 1972). Cortisol response would not be 
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activated within this time frame therefore it has been suggested that it may 

play a role in recovering from acute stress and preparing for the next 

challenge and that the SNS is the primary system involved in the response to 

acute stress. This means that stressors must be predictable to some extent as 

is often the case with a social prey species. For example, dominance related 

aggression is often the predictable culmination of hours or days of escalating 

acute threats (Sapolsky et al., 2000) therefore the stress hormone would be 

active by the time the actual conflict occurred. There are also a number of 

circumstances in which an individual is predictably at greater risk of a 

predation attempt including during parturition (Estes, 1967), individuals at 

the perimeter of the social group (FitzGibbons, 1993) and sick or injured 

animals (Kruuk, 1972). These situations and cues could result in stimulation 

of the HPA axis to release stress hormones in anticipation of a stressful event.  

 

Elevated cortisol levels have been reported in response to acute and chronic 

stress in a variety of wild and captive species. Social isolation and 

confrontation have been found to alter cortisol profiles in primates (Sapolsky 

et al., 1997) and captivity related stressors such as inadequate housing and 

restraint have been shown to increase species specific glucocorticoid levels in 

carnivores (Smith et al., 1990; Carlstead et al., 1993; Hennessey et al., 

1997). Transportation has also resulted in elevated cortisol levels in cattle 

(Palme et al., 2000) and sheep (Lowe et al., 2005). Many hormones are 

linked to the stress response, however cortisol is routinely used in clinical 

evaluations and is medically termed the stress hormone (Lane, 2006). In 

humans cortisol has been reported to be elevated in patients suffering from 

depression (Bakke et al., 2004), post traumatic stress disorder (Sher, 2004) 

and in suicidal individuals (Westrin et al., 1999). These findings suggest that 

animals with glucocorticoids elevated above the normal range could have 

compromised welfare.  
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1.5.4 Measuring activation of the HPA axis in response to stress  

Unlike adrenaline which is another  hormone associated with the stress 

response, cortisol has been shown to not increase in situations that could be 

deemed exciting or arousing rather than stressful, including light to moderate 

exercise (Few, 1974; Alexander and Irvine, 1991) sexual excitement (Exton 

et al., 1999) and grooming (Hennessey et al., 1998). This could be due to the 

action cortisol has on the body. The physiological changes that take place in 

response to a challenging situation are incredibly energy demanding which 

results in a cost the body will not pay unless absolutely necessary (Lane, 

2006). Cortisol can be measured in the blood plasma, faeces and saliva of 

animals (Hughes and Creighton, 2007) and each method has associated 

advantages and limitations. 

 

1.5.4.1 Measurement of cortisol levels in blood plasma. 

 In blood approximately 75% of cortisol is transported via binding proteins, 

principally albumin and corticosteroid binding globulin (Rosher, 1991) leaving 

the remaining unbound cortisol to pass through capillaries and exert a 

biological effect (Stabenfeldt, 1992; Beerda et al., 1996). The time taken for 

an increase in cortisol secretion to be reflected in the plasma of horses is 

approximately five minutes (Ralston et al., 1988). Maximum levels post 

stressor have been reported within thirty minutes although time to maximum 

levels and time to return to basal level varies significantly (Marlin and 

Nankervis, 2002). Elevated plasma cortisol has been reported as a result of 

weaning stress in foals (McCall et al., 1987), transportation (Smith et al., 

1996) and post operative pain in horses (Pritchett et al., 2003).  

Since it has been proposed that stereotypic behaviour arises in response to 

stress (Mason, 1993), the relationship between plasma cortisol level and 

stereotypic behaviour has been investigated in several species, including 

horses. Pell and Mcgreevy (1999) found mean baseline and response levels of 
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plasma cortisol were significantly higher in crib biting horses than in non crib 

biting horses and stereotypic horses that were restricted from both ad libitum 

hay and crib biting for a twenty four hour period showed an increase in 

plasma cortisol levels, while no rise in plasma cortisol was detected when crib 

biting alone was prevented. This supports the theory that stereotypic 

behaviour may have a role as a coping mechanism for stress (Broom, 1991; 

Mason, 1991) and crib biting may serve as a function in satisfying innate 

foraging needs when these are prevented by stabling.  

 

Blood sampling for plasma cortisol analysis requires handling and restraint 

and may be perceived as stressful in itself, which may confound results 

(Hopster et al., 1999; Cook et al., 2001; Mormede et al., 2007). Furthermore 

the physical act of venipuncture elevates glucocorticoid levels so samples 

must be extracted rapidly (Broom and Johnson, 1993). This has implications 

for studies that require repetitive sampling.  

 Cortisol in the blood circulation is predominantly bound to proteins leaving 

approximately 25% of cortisol in the free state and biologically active (Rosher, 

1991). In the bound state the hormones are unable to fit into receptors in the 

body and therefore will not be delivered to tissues. They are considered 

inactive, or non-bio available. This means that not all cortisol detected in 

blood plasma will have a biological effect on the body. In contrast cortisol 

measured in saliva is in the bio-available state (unbound) and is able to exert 

a biological effect. This is because the bound hormones in the blood are too 

large to pass through the cell membrane of the salivary glands. Only the 

unbound biologically active part of the hormone pass through into the saliva 

therefore, the cortisol measured in the saliva will be delivered to the receptors 

in the tissues of the body (Cook et al., 1997; Irvine and Alexander, 1998).  

 

 



 28 

1.5.4.2 Measurement of cortisol levels in faeces  

As faecal collection can be carried out with no disturbance to the animal, 

analysis of faeces for corticosterone, (another glucocorticoid produced in the 

adrenal cortex) has been used extensively to monitor HPA activity in a 

number of free ranging species including African wild dogs (Monfort et al., 

1998), spotted hyaena (Goymann et al., 1999) and leopards (Wielebnowski et 

al., 2002).  

 

In horses the lag time to peak concentration of glucocorticoids and their 

associated metabolites in faeces post stressor can vary. This is a reflection of 

the intestinal passage duration for the species, which can be influenced by the 

body weight and condition of the horse (Miraglia et al., 1992), type and 

quality of feed (Van Weyenberg et al., 2006) and exercise (Duren, 1990).  

Passage rate through the equine gastrointestinal tract is best described by 

mean retention time (MRT). MRT has been investigated using a variety of 

markers including coloured beads (Wolter et al., 1974) and the acid marker 

co-EDTA (Pearson et al., 2001). A review by Van Weyenberg et al. (2006) 

details MRT of digesta in horses fed various diets and measured with different 

markers (Table 1.1) which shows that MRT can vary from 18 hours up to fifty 

hours.  

 

Elevated glucocorticoids in the faeces of horses have been reported in 

response to potentially stressful situations including artificial insemination 

(Berghold et al., 2007) and during post operative veterinary treatment (Merl 

et al., 2000). Faecal sampling reflects an average glucocorticoid level over 

time rather than the point in time sampling offered by plasma and therefore is 

more suitable to assess management practices that cover a longer duration 

and could cause chronic or repetitive stress (Queyras and Carosi 2004; 

Hughes and Creighton, 2007). As the level of glucocorticoid metabolites in 
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faeces is the result of accumulation over a prolonged period, they may not 

reflect fluctuations in cortisol and corticosterone and as the ratio of faecal to 

plasma cortisol levels may vary by individual faecal sample, a single faecal 

sample will not truly represent HPA activity during a particular situation 

(Queyras and Carosi 2004).  

Faecal collection for hormone analysis is non-invasive however collection of 

faeces is on an opportunistic basis therefore samples cannot be collected at 

pre-determined times. It has been suggested that diet may affect metabolite 

variability (von der Ohe and Servheen, 2002) and while this must be 

considered when interpreting data it is likely that as faecal glucocorticoid 

analysis is usually part of long term studies, a difference in lag time is unlikely 

to impact on the accuracy of the final data.  

 

Table 1.1 Mean retention time (MRT) (h) of digesta in horses (1) and ponies 

(2) fed various diets and measured with different markers. Taken from Van 
Weyenberg et al. (2006). 

 

Reference 
 

Diet Marker MRT (h) 

Hintz and Loy 

(1996) 

Barley Styrofoam 

particles 

25 

Wolter et al. (1974) 
 

Meadow Hay Coloured beads 36 

Wolter et al. (1974) Chopped 

meadow hay 

Coloured beads 25 

Uden et al. (1982) 

 

Timothy hay Co-EDTA 18 

Pearson and Merrit 
(1991) 

Meadow hay Co-EDTA 31.3 

Cuddeford et al. 

(1995)  

Alfalfa Co-EDTA 53.5 
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1.5.4.3 Measurement of cortisol levels in saliva  

Cortisol is transported in the plasma of animals primarily in association with 

binding proteins however the fraction that remains unbound is able to cross 

into saliva (Beerda et al., 1996). Saliva is produced by three pairs of salivary 

glands (parotid, submandibular and sublingual) with a small contribution from 

the buccal glands which line the mouth (Bayazit, 2009) Hormones enter saliva 

by a variety of mechanisms but for unconjugated steroids, including cortisol 

the route is rapid diffusion through the cells of the salivary glands and as such 

their concentration is independent of the rate of saliva flow (Vinning et al,. 

1983; Eckersall, 1984; Bayazit, 2009). Salivary cortisol has been found to 

reflect plasma cortisol levels in the horse (Lebelt et al., 1996; Van der Kolk et 

al., 2001) and one of the main advantages of measuring cortisol in saliva is 

that it is non-invasive and unlikely to cause stress, particularly in domestic 

horses that are habituated to having their mouth handled on a daily basis for 

fitting of riding and training equipment, grooming and dental treatment. This 

method is far less stressful than blood collection and therefore less likely to 

confound results especially if subsequent samples are required. Studies report 

close correlations between free cortisol in plasma and salivary cortisol levels 

(Vincent and Mitchell 1992; Pell and McGreevy 1999; Lebelt et al., 1996; Van 

der Kolk et al., 2001; Le Roux et al., 2002) and research suggests the time 

taken for salivary cortisol levels to increase post stressor is similar to that in 

plasma (Hughes and Creighton, 2007). Saliva sampling can also be carried 

out frequently and repetitively.  
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An increase in salivary cortisol was reported in horses in response to the 

routine management technique of clipping (Hughes et al., 2006), with a 

positive correlation between behavioural stress score and difference in cortisol 

levels.  The horses attributed with a high behavioural stress score showed a 

trend toward a statistically significant increase in salivary cortisol post 

stressor. A significant increase in salivary cortisol that correlated with 

increased heart rate was reported in horses that showed behavioural stress 

during loading and transportation (Shanahan, 2003) with cortisol levels 

elevated from seven minutes post loading. Significant increases in salivary 

cortisol have also been reported in response to abrupt weaning in foals with 

levels rising from 0.86ng/ml pre weaning to 70.79ng/ml post weaning (Moon 

et al., 2004). Stewart et al. (2007) reported an increase in salivary cortisol 

levels due to isolation in cows from pre isolation levels of 4.7ng/ml  to peak 

levels of 14.1ng/ml twenty minutes post isolation.  

 

Salivary cortisol represents the biologically active part of the hormone. Due to 

its size the bound fraction is unable to cross the blood-saliva barrier (Lane, 

2006). Antibodies have been produced that will only recognise and measure 

this free form of cortisol and have been used effectively for plasma 

measurement (Lewis et al., 2003). These antibodies have been utilised to 

confirm that salivary cortisol levels are a direct reflection of the free cortisol 

present in plasma (Le Roux et al., 2002). The non-invasive nature of sampling 

saliva for cortisol analysis and the ability to sample repetitively and frequently 

offers clear benefits when compared to other methods of cortisol analysis. The 

lag time that exists between presentation of a stressor and appearance of 

cortisol in the saliva needs to be taken into account however if only one 

source of stress is being investigated this can be overcome by repeated 

sampling (Lane, 2006).  
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Hormones whose secretion is regulated through the hypothalamus and 

pituitary gland in the brain including cortisol regulate their own secretion 

through negative feedback. The purpose of negative feedback is that it results 

in hormonal homeostasis, which is the maintenance of hormone levels within 

a particular appropriate physiological range. During a stressful situation 

cortisol levels will increase. However, as the feedback regulatory system 

works to reduce levels of cortisol, high cortisol levels will tend to decrease and 

usually last no longer than ninety minutes (Van de Kolk et al., 2001; Manser, 

1992) therefore plasma and salivary cortisol are most suited to assessing 

acute or short term stressors. 

 

1.5.5 Limitations in measuring activation of the HPA axis in response to stress 

Measuring HPA axis activity is the standard approach to the study of stress 

and welfare in domestic animals (Mormede et al., 2007). However, care must 

be taken when interpreting the results of assays as a number of factors are 

known to influence cortisol production. Like most hormones circulating in the 

body, glucocorticoids are produced in a circadian manner under basal 

conditions (Lane, 2006). Diurnal rhythm of total plasma cortisol in horses was 

reported by Irvine and Alexander, (1994) with peak secretions occurring in 

the early morning. This circadian rhythm was fragile and could be obliterated 

by placing the horses in a different environment. A study by Van der Kolk et 

al. (2001) that reported diurnal rhythm of plasma cortisol did not find there to 

be a demonstrable diurnal rhythm of salivary cortisol. Diurnal rhythm in 

salivary cortisol was reported in a study by Hughes et al. (2006) with levels 

that mirrored plasma cortisol. Saliva was only sampled between 0900h and 

1600h therefore the pattern of salivary cortisol over a full twenty four hour 

period is unknown and a more thorough assessment is needed. The diurnal 

rhythm of cortisol is thought to be linked to preparing the body for daily 

activity with a peak in the morning and subsequent decrease in the evening in 
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diurnal species (Moore-Ede and Sulzman, 1977; Lane, 2006). In human 

subjects experiments have shown that the sleep-wake cycle is a major cue for 

entraining circadian rhythm (Weitzman et al., 1983). This is less likely to be 

the case in horses since sleep occupies only 12% of the 24 hour cycle 

(Ruckebusch, 1972). Although short term stress does not seem to impact 

upon the overall circadian pattern (Becker et al., 1985), chronically stressful 

conditions have been shown to disrupt daily rhythm and the absence of a 

normal cortisol circadian rhythm is a reliable indicator of chronic stress and 

poor welfare in horses (Most and Palme, 2002).  

 

Exercise has also been cited as a variable that may alter cortisol production 

(Momozawa et al., 2003). As one of the main functions of glucocorticoids is 

the breakdown of proteins to synthesise glucose for energy, it seems logical 

that energy expenditure through exercise could result in elevated cortisol 

levels. Studies that have involved and documented exercise have only 

observed significant increases in cortisol at extreme levels of exercise 

whereas mild and moderate exercise has been reported to have no effect on 

plasma cortisol (McCarthy et al., 1992) or salivary cortisol (Jacks et al., 

2002).  This may be due to energy expenditure being met by fat mobilisation 

and carbohydrate stores, resulting in no measurable increase in 

glucocorticoids. However, if stores are depleted through intense activity then 

catabolism is required and glucocorticoids will increase (Maestu et al., 2003; 

Ratamess et al., 2005). This is supported by the fact that high intensity 

exercise of short duration and low intensity exercise of long duration do not 

cause an increase in glucocorticoids (Monnazzi et al., 2002). Furthermore, 

extreme exercise could be seen as a stressor in itself therefore glucocorticoids 

could still act as stress markers.  

Although it is clear that hormone analysis has a place in assessing equine 

welfare many of the techniques are opportunistic and/or invasive and the 
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required laboratory analysis is time consuming and expensive. Because 

salivary cortisol collection is less stressful than venipuncture and reflects 

plasma cortisol concentration, it has been suggested that measurement of 

cortisol in saliva is a suitable alternative to measurement of cortisol in plasma 

to assess the stress response (Beerda et al., 1996; Lebelt et al., 1996). 

Furthermore salivary cortisol collection allows frequent and repetitive 

sampling in a non-invasive manner. There are however practical issues 

associated with all biological sampling techniques including storage and 

refrigeration requirements and expensive and time consuming laboratory 

analysis meaning results are not instantaneous. Due to these limitations and 

the importance of monitoring welfare, there is still a demand for alternative 

non-invasive and instant ways to measure the physiological stress response 

which cannot be masked as behaviour can.  
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1.6 The negative impact of the stress response 

When a stressor is identified the sympathetic nervous system and 

hypothalamic-pituitary-adrenal axis are activated to support the “fight or 

flight” response (Selye, 1950). While this immediate stress response can be 

considered adaptive, enabling horses to escape from danger, evidence 

suggests that stress related disease emerges predominantly due to a system 

that has evolved to respond to acute emergencies being activated repetitively 

or chronically (Sapolsky et al., 2000). If the stressor persists then the horse 

will attempt to cope and adapt to the situation. It does this through 

behavioural and physiological changes including the release of glucocorticoids. 

If challenged with long term stress the physiological responses that allow an 

animal to adapt are activated for extended periods of time. Resources are 

therefore continuously diverted from ongoing biological activities and this can 

have long term adverse effects on health (Keeling and Jensen 2002). Long 

term activation of the stress response and subsequent elevation in 

glucocorticoids is unlikely to be adaptive in a free living individual as it may 

result in suppression of growth, metabolic exhaustion and increased 

susceptibility to illness (Wingfield and Ramenofsky, 1999). Occasional 

exposure to environmental stressors has to be accepted as part of 

domestication and everyday life; however relentless exposure to persistent 

stressors can have deleterious consequences (Morgan and Tromborg, 2007). 

The physiological stress response is designed to suppress processes not 

necessary for immediate survival therefore persistent inhibition of these 

systems can have detrimental effects on digestion of food (Goncalves et al., 

2002) immunity (Alexander and Irvine, 1998, Minero et al., 2005) and 

reproductive status (Berghold et al., 2007) all of which are detrimental to 

welfare. In order to reduce potential stressors and minimise their negative 

impact upon health we have to know what is perceived as stressful by the 

horse. 



 36 

Cortisol is termed the stress hormone as it plays a critical role in the stress 

response. While excess cortisol in the system for a few hours or even days is 

harmless, it can be fatal if prolonged (Saposky et al., 2000). An animal is  

said to be stressed when concentrations of cortisol are increased by 40% or 

more from basal level (Barnett and Hemsworth, 1990).  

 

The general effect of cortisol on immunity is to inhibit synthesis of cells that 

mediate and promote immune and inflammatory reactions (Almawi et al., 

1996). In the context of survival for animals in the wild an obviously injured 

animal becomes a target for predators or a dominance challenge therefore 

masking injury through absence of inflammation is beneficial. However, 

repetitive or chronic suppression of the immune system which could 

potentially occur in the domestic environment can leave an animal with 

increased susceptibility to illness (McEwan et al., 1997). 

 

Corticotrophin releasing hormone (CRH) promotes cortisol release during the 

stress response, however CRH inhibits reproductive physiology and behaviour 

(Rivier et al., 1986). Cortisol itself also disrupts reproduction by decreasing 

gonadatrophin releasing hormone and reducing gonadal responsiveness to 

luteinising hormone (Dubey and Plant, 1985), both hormones are associated 

with reproductive function. These effects have been documented when cortisol 

exceeds basal levels (Sapolsky 1985). Reproduction is a costly state 

particularly in females, therefore the anti-reproductive effects of the stress 

response can be rationalised as it defers an expensive physiological process 

during a stressor until a less challenging time.  

Cortisol elevates blood glucose in part from existing stores but also through 

inhibition of further storage in order to divert available energy to exercising 

muscle. Depletion of fat occurs over the entire dose range of cortisol (Dallman 

et al., 1993) however, cortisol has been shown to have muscle wasting effects 
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when present at concentrations found during stress, (Tomas et al., 1979, 

Irvine and Alexander, 1998). The muscle wasting effects of sustained 

elevation of cortisol will have implications on the performance of elite sport 

horses as well as impacting the everyday pleasure horse. In addition to 

muscle wastage stress has been shown to suppress feeding behaviour in less 

than one hour, even in food deprived animals (Krahn et al., 1986) and 

anorexia is a well accepted symptom of chronic stress resulting in weight loss 

or reduced weight gain (Harris et al., 2002). This is due to CRH being a potent 

anorexic agent (Arase et al., 1988) and high concentrations of cortisol acting 

as appetite suppressants (Devenport et al., 1989, Irvine and Alexander, 

1998). As feeding is a costly process and provides energy slowly it is 

obviously an expendable process during a crisis however prolonged activation 

of the stress response and therefore prolonged suppression of feeding will 

have negative consequences on the health of an animal, especially the horse, 

which relies on trickle feeding to maintain gut health.  

Finally, numerous studies indicate that stress is an important contributing 

factor in gastrointestinal ulcer formation and that development of ulcers is low 

when animals can control or predict a stressor and high when repeated 

uncontrollable stressors are experienced (Koolhaas et al., 1999). 

In addition to detrimental effects upon equine health, the species-specific 

flight response to a stressful situation can prove dangerous to horse and 

human handler. It is for these reasons that knowing how horses perceive the 

management practices and training procedures they are subjected to, is very 

important in order to maintain optimum welfare.  

 Assessment of behaviour is not a conclusive means of assessing welfare in 

the horse. Training of horses by human handlers not to react to a given 

stimulus and the horse potentially masking stress as a survival method means 

that behavioural response cannot be relied upon as a single measure. It is 

therefore vital to include physiological measures of the stress response that 
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cannot be masked in order to provide a robust interpretation of how the horse 

perceives the situation it is in. 

  

1.7 The importance of monitoring equine welfare  

The importance of animal welfare is apparent within the scientific community 

and also in the public domain. The introduction of the most recent Animal 

Welfare Act 2006 aimed to improve animal welfare. Under the new act even if 

not compelled from an ethical point of view, owners and keepers are now 

under legal obligation to ensure that all the welfare needs of their horses are 

met, including a suitable environment, protection from suffering and the 

ability to exhibit normal behaviour patterns (Animal Welfare Act 2006 c.45). 

This increases the need for a reliable means of assessing equine welfare. 

Existing methods used to assess the physiological and behavioural stress 

response are not without limitations and there is no single reliable, non-

invasive and instant measure. 

Currently accepted methods used to measure the stress response can be 

invasive and stressful in themselves. This can confound results (Herd, 1991). 

Many of the available techniques are time consuming, expensive and results 

are not instantaneous. Existing methods to assess the stress response have 

been discussed however the associated limitations with existing methods 

emphasise the need for a reliable, non-invasive technique to assess current 

equine management and training practices. This will allow a review of the 

impact of equine husbandry upon welfare and enable management techniques 

to be altered if necessary.  

Temperature change due to increased metabolism from cortisol production 

and alterations in circulation also forms part of the physiological stress 

response. Thermal change has been assessed in other species using infrared 

thermography (IRT) and validated with currently accepted measurement 

techniques (Levine et al., 2001; Pavlidis et al., 2001; Nakayama et al., 2004), 
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Cook et al., 2006; Stewart et al., 2007). Infrared thermography potentially 

offers an alternative and non-invasive method to assess reactivity to a 

potentially stressful situation however it has not been validated in the horse. 

The validation of IRT to measure temperature change associated with the 

stress response in horses would enable a more reliable, objective assessment 

of welfare to be carried out. IRT is non-invasive, accessible and provides near 

instantaneous results and could therefore be utilised in a range of situations. 

In addition to IRT being a potentially valuable research tool, once the impact 

of specific husbandry practices upon equine welfare has been established then 

this information can be disseminated to horse owners and handlers who do 

not have access to hormonal assessment and currently rely on potentially 

subjective behavioural assessment as a measure of welfare. 

 

 

1.8 The thermal response to stress  
 

When an animal is faced with a challenging situation the stress response is 

activated and the resultant increase in cortisol and metabolic activity in 

addition to alterations in blood flow will produce changes in heat production 

and heat loss (Schaefer et al., 2002). As a result surface and core 

temperature has been measured as an indicator of stress in various species. 

Ear pinna temperature of sheep was found to decrease and correlate with an 

increase in heart rate during the potentially stressful situation of 

transportation (Ingram et al., 2002). The authors suggest the decrease in 

peripheral temperature may be due to vasoconstriction and diversion of blood 

in response to stress-induced activation of the SNS. This initial acute response 

acts to redirect blood flow to areas with more urgent metabolic requirements 

(skeletal muscle, heart and lungs) and may also be a protective mechanism to 

reduce blood loss in the case of injury (Blessing,  2003; Vianna and Carrive, 

2005). Stress related decrease in ear pinna temperature (measured with 
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temperature sensors) that correlated with an increase in stress hormones has 

also been reported in sheep subjected to isolation (Lowe et al., 2005) and 

rabbits when subjected to a startle test (Yu and Blessing, 1997). 

Monitoring body temperature has limitations including handling and 

manipulation of the animal and invasive surgical implantation of biotelemetry 

equipment (Parrott et al., 1999) or rectal and vaginal probes (Ingram et al., 

2002). External sensors and remote devices used to measure surface 

temperature require the animal to carry bulky equipment and this can cause 

physiological changes in itself, regardless of how stressful the animal finds a 

situation (Stewart et al., 2005), in addition to potentially disrupting normal 

behaviour patterns. External sensors can act as insulators that may confound 

results (Nakayama et al., 2005; Stewart et al., 2005) and solid probes can 

give false readings due to disruption by hair fibres (Cena, 1974). 

It is possible to measure surface temperature without contact between 

handler and animal using infra-red thermography (IRT) and overcome all of 

these problems associated with traditional methods of thermal measurement. 

 

1.9 Infrared thermography (IRT) 

Infrared thermography (IRT) is the measurement of radiated electromagnetic 

energy (Stewart et al., 2005). Electromagnetic energy is a stream of particles 

with no mass called photons. Photons travel at the speed of light in a wave 

like pattern. The photons with the highest energy correspond to the shortest 

wavelengths. The wavelengths of infrared radiation are longer than visible 

light and in animals 40-60% of heat loss falls within this range (Kleiber, 

1975).  

The infrared energy emitted from a body is proportional to its temperature. 

Small fluctuations in temperature result in substantial amounts of radiated 

energy and surface temperature changes that can be accurately detected 

using IRT (Stewart, 2007). Infrared energy is not visible because its 
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wavelength is too long to be detected by the human eye; therefore IRT is 

used to convert infrared energy (radiant heat) into a visible image. Specialist 

cameras can produce images that display variation in thermal output through 

coloured or grey shading. Analytical software is then used to assess patterns 

and changes in temperature. Operation of the camera is similar to 

conventional photography equipment, offering a simple and non-invasive 

method of measuring temperature. 

   

Skin temperature directly reflects the underlying circulation and metabolism 

(Eddy et al., 2001) therefore rapid changes in blood flow due to sympathetic 

activation and stimulation of the HPA axis will alter the amount of radiated 

heat (Stewart et al., 2007). The associated changes in surface temperature 

can be measured using IRT and could provide a novel, more immediate, 

objective indication of the stress response when compared to hormone 

analysis and behavioural assessment. 

 

Initially developed for military purposes and then utilised for industrial and 

medical applications (Burnay Williams and Jones, 1988) IRT is now applied to 

animal science and has been used to conduct population surveys (Croon et 

al., 1968; Brooks, 1972; Cuyler et al., 1992) study thermal physiology 

(Lancaster et al., 1997, Sumbera et al., 2007) and as a veterinary diagnostic 

tool (Turner, 1991).  

 

1.9.1 The use of infrared thermography to conduct population surveys  

A major problem with studying animals in their natural habitat is locating 

them. Trapping and marking techniques are time-consuming and invasive 

therefore some researchers may rely on visual sightings for census purposes 

(Boonstra et al., 1994). Such surveys are constrained by camouflaged 

animals and the limits of human vision. Visual censusing can be enhanced 
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through the use of IRT that can detect dens or individual animals by their 

warm signal against a cooler background. Population surveys of deer (Croon 

et al., 1968) polar bear (Brooks, 1972) whales (Cuyler et al., 1992) and bats 

(Sabol and Hudson, 1995) have been carried out using this method. IRT is 

particularly useful for survey of nocturnal species as the medium measured is 

heat and reliance on light is not necessary (McCafferty, 2007). IRT also has 

the advantage of allowing remote and automated surveying of large numbers 

of animals. If the species being studied are warmer than their surroundings 

by 0.1 degree, a high specification thermal camera can detect them at 

distances of over 500 metres (Boonstra et al., 1994). Aside from overcast 

days, after rains or when snow cover is present, surveys are best carried out 

in the early morning before the sun has heated the environment as this 

makes it increasingly difficult to distinguish between solar heat and radiation 

from animals. Insulative fur or nest material may also prevent detection of 

animals and a clear line of sight is also needed through thick vegetation 

however IRT offers ecologists a non-disruptive means of surveying a 

population of animals that is superior to human vision alone (Ditchkoff et al., 

2005). 

 

1.9.2 The use of infrared thermography to investigate thermal physiology 

IRT has been used to explore many aspects of thermal physiology in a variety 

of species including a comparison of wing temperature to body temperature of 

flying bats (Lancaster et al., 1997), dorsal, ventral and lateral body surface 

temperature in mole rats to determine areas for dissipating heat (Sumbera et 

al., 2007) and heat exchange by the ear pinna of the African elephant to 

investigate the thermoregulatory mechanisms involved in dust bathing (Rees, 

2002). Elevated testicular temperature in bulls has been associated with 

reduced fertility (Barth and Oko, 1989) and IRT has been used to assess 

scrotal and testicular thermoregulation with an accuracy of 0.1°C (Purohit et 
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al., 1985; Coulter, 1988). IRT of the gluteal region was found to be a more 

reliable way of detecting early oestrus in cattle when compared to manual 

identification by an experienced herdsman in the fifty days postpartum 

(Hurnik et al., 1985). It was believed that the African Elephant used its ear 

pinna as a convector and radiator of heat. This was confirmed in a study by 

Phillips and Heath (1992) using IRT to show that the elephant can divert 

blood flow to the ear pinna and dissipate or conserve heat through dilation or 

constriction of the blood vessels. 

 

1.9.3 The use of infrared thermography in veterinary diagnostics 

 Due to its high sensitivity and instantaneous results, as well as improved 

safety due to absence of radiation when compared to radiography, IRT has 

proved useful as a veterinary diagnostic tool (Fonseca et al., 2006). The dairy 

and beef industry has focussed on the use of IRT to detect the early stages of 

disease. Conditions such as mastitis which is a major welfare and economic 

concern for the dairy industry (Gill et al., 1990), can now be detected much 

earlier than was previously possible by IRT of the mammary gland (Scott et 

al., 2000; Berry et al., 2003). Eye temperature change measured by IRT was 

found to be most effective and consistent at detecting illness in cows when 

compared to temperature change of other anatomical areas including the 

nose, ear and hooves. Increases in eye temperature were observed several 

days before clinical signs of bovine viral diarrhoea became apparent (Schaefer 

et al., 2003) with an increase of less than 1°C being clinically significant. This 

particular study incorporated an infrared scanning station coupled with an 

electronic identification system into a water trough. The system could 

automatically identify an animal and collect an infrared image of the eye. This 

could then advise an owner or manager if the animal was showing early signs 

of disease. 
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Veterinary assessment of performance horses using IRT can predict joint and 

tendon problems up to two weeks before they become clinically apparent 

(Turner et al., 1996). Research suggests IRT to be a rapid and efficient 

method for the diagnosis of lesions across the whole thoracolumbar region 

(Fonseca et al., 2006) and it has proved particularly useful in the diagnosis, 

prognosis and evaluation of arthritis, laminitis, soft tissue injury and 

superficial orthopaedic lesions (Turner, 1991) with an asymmetry or change 

of 1°C or more being indicative of a problem (Turner, 1996). Figure 1.2 

displays a thermal image of the forelimbs of a horse imaged during the 

current project. The horse was suffering from osteoarthritis and the difference 

in radiated heat due to inflammation is evident.   

 

In addition to diagnosis of disease IRT has been used to evaluate topical 

treatments including magnetic therapy and cryotherapy (Turner et al., 1989) 

and to detect illegal practices in the performance horse including the 

application of irritants to the perineal region to accentuate tail carriage 

(Turner and Scroggins 1989) and procedures used to obscure lameness 

including local injections of various pharmaceuticals (van Hoogmoed et al., 

2000). 
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Figure 1.2. Thermal image of forelimbs of horse suffering from osteoarthritis 

with four areas marked using polygon analysis function and temperature scale 
on right side. The image shows a clear difference in radiated heat with the 

affected right limb being warmer due to inflammation (actual temperatures 

not shown). 
 

1.9.4 Potential Limitations of IRT  

There are some potential limitations cited in the literature when using IRT to 

measure animal thermodynamics. In many mammals hair or fur can obscure 

the underlying skin temperature and infrared radiation originating from the 

skin surface is altered due to insulative properties of the coat and the 

temperature gradient between the skin and the coat (Cena, 1974; McCafferty, 

2007). Dirt in an animal’s coat alters emissivity (ability to radiate absorbed 

energy) and excess moisture in the coat will increase local heat loss to the 

environment or to dryer areas of the coat (Palmer, 1981; Kastelic et al., 

1996), both of which could confound temperature results. Dirt can be 

removed by grooming however an acclimatisation period would then be 

required in order to ensure transient heat due to brushing had dissipated.  
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Since the variable measured is heat and not light, thermal cameras are not 

affected by the intensity or quantity of light in the scene and as they operate 

in the long wave infrared region (7-14µm) they are less affected by sunlight 

compared to shorter waves (Eddy et al., 2001) Despite these findings, coat 

colour has been shown to affect surface temperature output from animals 

with areas of differing colour displaying large variation in temperature when 

influenced by solar heating (Cena and Clark, 1973). This is clearly 

demonstrated in infrared images of zebras (Figure 1.3 a and b) that show 

black stripes to be more than 10°C warmer than white stripes in full sun 

(McCafferty, 2007). This is not a reflection of underlying circulation as the 

temperature pattern disappears within a few minutes of standing in shade.  It 

is therefore recommended that images be collected out of direct sunlight in a 

draught free area (Schaefer et al., 2002). The limitations that are associated 

with the coat can be avoided through IRT of the eye which is the primary area 

assessed in existing work (Cook et al., 2001, Cook et al., 2006, Stewart et al., 

2007, Stewart et al., 2008). 
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Figure 1.3 (a) Thermal image and corresponding temperature scale of 
zebra in direct sunlight displaying large variation in surface 

temperature between the black and white stripes. The corresponding 
chart details the temperature variation between black and white stripes 

at various points along the line marked on the thermal image 
(McCafferty, 2007). 
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Figure 1.3 (b). Thermal image and corresponding temperature scale 
of zebra in shade displaying small variation in surface temperature 

between the black and white stripes. The corresponding chart 
details the temperature variation between black and white stripes at 

various points along the line marked on the thermal image  
(McCafferty, 2007). 
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Ambient temperature has been cited as a potential limiting factor in the use of 

IRT. Kastelic et al. (1996) found that abrupt changes in ambient temperature 

(using a climatic chamber) resulted in confounding results during IRT of the 

bovine scrotum. The authors suggest that moderate to cool temperatures of 

between 5-15°C are ideal to capture thermal images provided abrupt changes 

in temperature are avoided. Where this is not possible it is necessary to 

carefully monitor ambient temperature in order to rule it out as a contributing 

factor to thermal change (Eddy et al., 2001; van Hoogmoed and Snyder 

2002) and to allow for atmospheric influence when analysing temperature 

data (Ingram et al., 2002; Nakayama et al., 2005; Stewart et al., 2007). 

 

Population studies and work in free-ranging species position the thermal 

camera at distances of up to five hundred metres from the animal (Boonstra 

et al., 1994) however such studies only utilise IRT to count individuals 

therefore only require visual identification and not detailed temperature 

measurement. Studies that use IRT as a diagnostic tool and as a tool to 

monitor stress are in agreement that the camera should be positioned or held 

at a ninety degree angle approximately two metres away from the subject 

being imaged (Nakayama et al., 2005, Cook et al., 2006, Stewart et al., 

2007). This will allow small changes in temperature to be accurately 

measured. The peak temperature within the eye region has been shown to be 

the most consistent measure giving the least variance (Cook et al., 2006, 

Stewart et al., 2007).  
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In order to collect accurate thermal images it is necessary to understand the 

thermal behaviour of the target being studied. Body temperature is amongst 

the physiological variables that exhibit circadian rhythm (Refinetti and 

Menaker, 1992) and a clear circadian rhythm of core body temperature has 

been reported in horses (Piccione et al., 2002, Green et al., 2005) with 

temperature starting its daily ascent at dawn, coinciding with the start of the 

light phase, and reaching a maximum fourteen hours later. Temperature 

patterns have also been reported to peak in the late afternoon or evening and 

trough in the morning in Kangaroos (Brown and Dawson, 1976) and various 

African ruminants (Bligh and Harthoorn, 1965) and could be a reflection of the 

storage of heat gained throughout the day.  

 

Scott et al. (2000) found a distinct circadian rhythm in udder temperature 

when using IRT as a tool to detect early stages of mastitis however not all 

studies report a rhythm in temperature. Whilst using IRT to measure bovine 

scrotal surface temperature Kastelic et al. (1996) found no significant effect of 

diurnal rhythm on thermal output.  

Studies investigating thermal rhythm in horses have used temperature probes 

which can be invasive (Green et al., 2005) and contribute to temperature 

change through their insulative properties, and climatic chambers that do not 

offer temperature assessment in a real life situation (Morgan et al., 1997, 

Piccione et al., 2002). It is therefore important for the purpose of this project 

to establish if there is any circadian rhythm in eye temperature in order to 

better interpret any thermal changes associated with the stress response. 

Veterinary diagnostic studies report that anxious patients can have significant 

skin temperature reductions (Eddy et al., 2001), which could confound results 

from a diagnostic aspect. However, for the purpose of stress assessment 

these findings only serve to reinforce the ability of IRT to detect physiological 

changes associated with potentially stressful situations. 
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1.10 Infrared thermography as a measure of the response to stress 
 

An instant rush of blood to the eye area is a phenomenon that has been 

linked to telling lies and the subsequent stress in humans and can cause eye 

temperature to rise by several degrees (Levine et al., 2001). An IRT system 

developed to screen passengers as a security measure at airports was able to 

detect liars with a comparable accuracy to polygraph equipment. In 20 tests 

performed at the United States department of defence, a thermal camera 

capable of detecting temperature change of 0.025°C identified 75% of 

candidates who had lied and 90% who had told the truth based on blood flow 

changes to the eye and surrounding area (Figure1.4) (Levine et al., 2001). 

 

 

 

Figure 1.4 Temperature change around the human eyes after 

telling the truth (upper image) and telling a lie (lower image) 
Levine et al.,(2001) 
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Humans that were subjected to an acoustic startle stimulus displayed 

warming of the periorbital area associated with increased blood flow and 

associated cooling of the cheeks (Pavlidis et al., 2001). Both studies into the 

thermal response of the human eye area to stress suggest that the results 

make physiological and evolutionary sense as they could represent a 

mechanism to facilitate rapid eye movements during preparedness for flight 

and escape. 

IRT can be used to non-invasively identify these changes in temperature 

(McCafferty, 2007) and the focus of recent research has been the use of IRT 

to detect the response of animals to stressful situations. Temperature change 

of various species specific anatomical areas in response to stress has been 

recorded and validated against currently accepted measures  (behavioural 

assessment and cortisol analysis) to assess whether IRT can be used reliably 

to measure the stress response in a number of species including monkeys 

(Nakayama et al., 2004), elk (Cook et al., 2006) and cows (Stewart et al., 

2007). Studies have used a number of species specific body sites alone or in 

combination to assess the impact of potentially stressful events.  

 

When confronted by a threatening handler the nasal temperature of rhesus 

monkeys (n=4) measured using IRT decreased significantly (mean of 0.2 

degrees) within ten seconds and continued to decrease throughout the 

stimulation period of three minutes (Nakayama et al., 2004). This was 

associated with an increase in temperature on the eyelids and adjacent area 

(Figure 1.5). Lip temperature also decreased however nasal temperature was 

shown to be the most consistent measure for this species. The authors report 

that the decrease in temperature originated from an area in the uppermost 

portion of the nasal region and then spread to the lower nasal regions. 

Temperature started its desent between 10 and 110 seconds post onset of 

confrontation in all monkeys and had returned to pre stressor levels within 
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four minutes post removal of confrontation. The change in temperature was 

supported by the species specific behavioural response to a challenging 

situation of bared-teeth and lip smacking, suggesting that the monkeys found 

the treatment to be stressful. 

 

 

Figure 1.5. Thermal images and related temperature scale demonstrating 

decrease in nasal temperature of rhesus monkeys when threatened. The two 
larger images depict thermal pattern pre and post stimulation while smaller 

images detail successive cooling of nasal region over three minute stimulation 
period (Nakayama et al., 2006). 
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The possibility that changes in eye temperature were due to activation of the 

HPA axis during the stress response was investigated using IRT in cattle 

(Stewart et al., 2007). The HPA axis was artificially stimulated by  

administration of ACTH hormone. Blood was extracted via jugular catheter for 

plasma cortisol analysis and thermal images of the eye were captured at a 

distance of 0.5-1.0m at a ninety degree angle every two minutes throughout 

the treatment period. The maximum eye temperature was then determined 

within an oval area traced around the eye including the eyeball and 

approximately 1cm surrounding the eye. There were two treatment sessions 

over a two week period and catheters were removed after the first treatment 

before being reinserted for the second treatment. An increase in plasma 

cortisol post ACTH injection confirmed the HPA axis was stimulated however 

the authors found no evidence to support their hypothesis that eye 

temperature increases in response to artificial stimulation of the HPA axis. Eye 

temperature and cortisol concentration did not increase after catheterisation 

in week one however both parameters were higher after catheterisation when 

the procedure was repeated in week two. The authors suggest that this may 

be due to anticipation of the procedure, i.e., there was a perceived stressor as 

well as the artificially induced physiological response. Therefore it may be that 

a psychological component is required to evoke the thermal response to a 

challenging situation. 

 

A further study by Stewart et al. (2008) also investigated the possibility that 

stress in calves caused by disbudding can be detected from temperature 

changes in the eye area and heart rate. Eye temperature was chosen as the 

authors felt it was easily measured without the interference of fur or hair and 

had been shown to be a more consistent measure of temperature change 

when compared to other anatomical areas. The maximum temperature within 

the area of the medial posterior palpebral border of the lower eyelid and the 
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lacrimal caruncle was extracted (Figure 1.6). Calves were randomly assigned 

to four treatments of sham disbudded (control 1), local anaesthetic and sham 

disbudded (control 2), sham anaesthetic and disbudded and local anaesthetic 

and disbudded. The authors reported a rapid drop and then subsequent rise 

above basal levels in eye temperature in the calves disbudded without local 

anaesthetic. Eye temperature increased from five minutes post treatment in 

both disbudded groups by 0.6 and 0.66 degrees Celsius respectively and was 

significantly higher than in the two control groups. One week later the 

disbudded cows were split into two groups and given an ACTH hormone 

injection to artificially stimulate the HPA axis or saline injection (control). 

There were no significant differences in eye temperature before or after 

administration of either ACTH or saline, suggesting eye temperature change is 

not a direct consequence of changes in HPA activity. 

The authors suggest that the rapid drop in eye temperature following 

disbudding may have been caused by redirection of blood via sympathetically 

mediated vasoconstriction of the capillaries surrounding the eye. The 

magnitude of the change in eye temperature is consistent with that found 

following fright in cattle (Schaefer et al., 2006) and also with the decrease in 

nasal temperature in monkeys when confronted by a threatening handler 

(Nakayama et al., 2004). 
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Figure 1.6 Infrared image of the eye region showing temperature scale on 

right hand side and a circle drawn around the area of the eye where 
maximum temperature was extracted from (Stewart et al.,2008). 

 

Although Stewart et al., (2007) report no association with activation of the 

HPA axis and eye temperature change measured using IRT in cattle, Cook et 

al. (2001) did report a relationship in horses. Matched blood and saliva 

samples as well as IRT images of the eye were collected before and after 

artificial stimulation of the HPA axis through injection of ACTH. Temperature 

was extracted from each thermal image and minimum, maximum and mode 

temperatures calculated. Results showed a significant correlation between eye 

temperature and both plasma and salivary cortisol. Salivary cortisol 

demonstrated a maximum increase of 314% one hour post injection with the 

relationship between salivary cortisol and eye temperature being the 

strongest. All measures of infrared temperature demonstrated an increase 

during the sampling period however the measure most closely associated with 

time was maximum eye temperature when compared to mean and minimum 

temperature. The authors conclude that these findings demonstrate that 

salivary cortisol is a more responsive marker for HPA activity than plasma 

cortisol and that measures of HPA activity and infrared thermography of the 

eye are positively correlated. This study artificially induced the stress 
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response in the horse and it is likely that physiological changes occurred in 

response to the ACTH administration and blood sampling procedure rather 

than to the ACTH itself in comparison to the work carried out by Stewart et al. 

(2008) that investigated the stress response in a real life situation. 

 Existing work is in agreement that images should be collected at a distance 

of between 0.5-2.0 metres from the test subject at a ninety degree angle 

(Cook et al., 2001; Levine et al., 2001; Nakayama et al., 2004; Stewart et 

al., 2007; Cook et al., 2006; Stewart et al., 2008) when using IRT as a 

measure of the stress response. So far only thermal response to short term 

(<3 minutes) stress has been investigated. The study by Cook et al. (2001) 

artificially induced the stress response in the horse rather than investigating 

any physiological response to an actual potentially stressful husbandry 

procedure and offered limited results. No further study into the thermal 

response of the horse to stress has been carried out to date.  

 

Monitoring behavioural response is an important factor when assessing 

reactivity to management procedures and training techniques however as a 

prey species horses do not always flee from danger and can mask stress. As a 

result, additional physiological measures are required in order to accurately 

interpret behavioural response. IRT may offer a non-invasive and instant 

physiological assessment.  

Horses that are comfortable in their environment and with the management 

and training techniques they are subjected to as a consequence of 

domestication are safer to handle and are less likely to suffer illness and it is 

the duty of responsible horse owners to ensure that welfare needs are met. In 

order to do this an objective assessment of how horses perceive their 

environment is required. 

The limitations in current methods to assess welfare and the delay in 

obtaining results from salivary cortisol analysis indicate that there is no single, 
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immediate method capable of measuring response to potential stressors and 

there is a need for a reliable non-invasive and instant measure of stress in the 

horse (Reitmann et al., 2004).  

IRT is a novel, non-invasive tool that could potentially measure the stress 

response in horses. If temperature change occurs in response to stressful 

situations and corresponds with the currently accepted physiological measures 

then IRT could be validated and has the potential to provide an alternative, 

immediate, objective measure. IRT could then be used to assess management 

techniques when the horse may not necessarily exhibit a behavioural 

response, but is still physiologically and psychologically compromised. 

 

A search of the literature shows there are a number of anatomical areas that 

have been studied alone or in combination to monitor the impact of a range of 

potential adverse events using IRT. However, many of the limitations 

associated with IRT can be overcome through imaging of the eye, which is 

free from hair and dirt and has been reported to provide a consistent measure 

of temperature change associated with the stress response (Cook et al., 

2001; Pavlidis et al., 2002; Cook et al., 2006).  

 IRT is an excellent, original candidate as a research tool and could refine 

existing research methods. Developments in technology mean that thermal 

imaging devices are now the size of conventional video cameras making it 

easy to capture and store high resolution images. Image analysis is rapid and 

most models allow instantaneous temperature to be read straight from the 

camera. Despite these benefits and positive results in other species little is 

known regarding temperature change in response to stress in the horse and 

currently no investigation into the thermal response to longer term stress has 

been carried out. 

 



 59 

Domestication of horses has removed them from their natural environment 

and placed them into situations they may potentially find stressful. As a result 

stress related disease and abnormal behaviour may emerge and compromise 

welfare. It is therefore important that management practices are objectively 

assessed and altered if necessary. Existing methods of assessing welfare have 

limitations. The currently accepted measure of hormonal assessment is time 

consuming, potentially invasive and expensive and behavioural evaluation can 

be subjective. There is a need for a reliable and non-invasive, objective 

measure of the physiological response to stress. IRT potentially offers a non-

invasive, instant measure of the stress response and is able to measure 

physiological changes that cannot be masked as behaviour can. It can offer a 

more reliable assessment of how domestic horses perceive management 

practices and training procedures and allow us to alter them if necessary in 

order to improve welfare. Validation of IRT using currently accepted methods 

as a tool to measure the stress response is now needed. 

 

1.11 Aims and Objectives 

Project Aims; 

 To investigate the use of infrared thermography (IRT) as a measure of the 
stress response in the horse and compare thermal changes with currently 

accepted stress measurement parameters (behavioural and hormonal 
assessment).  

 

 Application of IRT as a non-invasive measure of acute, short term and long 
term stress in the horse during management procedures. 

 

Project Objectives; 
 

 Establish any diurnal and seasonal rhythm present in thermal output and 
hormone levels in the horse in order to improve interpretation of physiological 

data. 
 

 Investigate the thermal response of the horse to a potential acute stressor and 

compare against hormonal and behavioural response. 
 

 Investigate the thermal response of the horse to a potentially stressful short 

term husbandry procedure (clipping) and compare against hormonal and 
behavioural response. 
 

 Investigate the thermal response of the horse to various housing designs that 

could potentially cause long term or repetitive stress and compare against 
hormonal and behavioural response. 
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Chapter 2. Materials and Methods 

 
 

 
The following methods were used to assess the use of infrared thermography 

as a tool to measure the physiological stress response in horses. All of the 

studies were carried out at the Brackenhurst Equestrian Centre, Nottingham 

Trent University, between October 2007 and January 2010. Table 2.1 details 

each study. Thermal images were collected and temperature extracted using 

the same method for each study. Saliva was also collected and assayed for 

cortisol using the same method for each study. Both methods will be detailed 

in this chapter. Timings of the physiological samples, statistical analysis of 

data and method of behavioural assessment differed for each study and will 

be discussed in each relevant data chapter. Risk assessments and ethical 

approval forms can be found in Appendix 12. 

 

Table 2.1 Description of each preliminary and main study carried out during 

the project. 
 

Study Description 

Preliminary study 1 Investigation into the effect of distance on 
the accuracy of temperature 
measurement using infrared 

thermography 

Preliminary study 2 Investigation into eye and ear 

temperature output of horses in their 
usual environment measured using IRT 

Preliminary study 3 Investigation into the thermal response of 
a horse to a short term routine husbandry 
procedure measured using IRT. 

Main study 1 Investigation into the potentially limiting 
factors of thermal imaging and salivary 
cortisol analysis as indicators of the stress 

response 

Main study 2 Investigation into the use of IRT as a tool 

to assess thermal change associated with 
the physiological response to acute stress 

Main study 3 

 

Investigation into the use of IRT as a tool 
to assess thermal change associated with 
the physiological response to short term 

stress 

Main study 4 Investigation into the use of IRT as a tool 
to assess thermal change associated with 

the physiological response to long term 
stress 
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2.1 Horses and husbandry 

All horses involved in this project were provided by the Equestrian Centre and 

were regularly ridden by University students for up to two hours per day, six 

days per week during the academic terms. During the course of each study 

horses were removed from all ridden and practical lessons unless otherwise 

stated in the relevant chapter. Table 2.2 provides details of all horses used 

during the project. During the summer holidays the horses were out at grass, 

not ridden and brought into the stables when required for testing. Horses 

were fed a mixture of forage and concentrate feed during term time and 

forage only when brought into the stable during the summer holidays. All 

horses had constant access to water. 
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Table 2.2 Details of all horses used throughout the project. An X marks the 
studies taken part in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key 

Breed      Sex 

TB  Thoroughbred   M Mare 

DWBxTB  Dutch warmblood cross TB  G Gelding 

IDxTB   Irish draft cross TB 

ISP  Irish sport horse 

BWB  British warmblood 

DWB  Dutch warmblood 

WCxTB  Welsh cob cross TB 

WCxTB  Welsh cob cross TB       

BWBxTB  British warmblood cross TB 

 

 

 

 

NAME 

YEAR 

OF 
BIRTH 

 

SEX 
 

BREED 

PRELIM 

STUDY 
MAIN STUDY 

1 2 3 1 2 3 4 

Libby 1997 M IDxTB  X   X  X 

Sparky 1995 G IDxTB X X      

Oliver 2000 G TB  X      

Robbie 2001 G cob  X      

Angus 1998 G SWBxTB    X  X X 

Beau 1995 G IDxTB    X  X X 

Conan 1997 G IDxTB    X X X X 

Kitkat 2005 G WCxTB    X  X X 

Desmond 1995 G IDxTB    X  X  

Tosca 1995 M cob   X X  X X 

Brock 2005 G BWB     X   

Leisle 1995 M BWB     X  X 

Impy 1995 M TB     X   

Blackberry 1995 M IDxTB     X  X 

Dice 1999 G ID X    X   

Palmer 2001 G IDxTB X    X   

Nola 1990 M TB     X   

Annie 1998 M SWBxTB      X  

Harriet 1995 M IDxTB      X  

Visi 1990 G TB      X X 

Pie 1990 M cob      X  

Woody 1994 G BWBxTB X      X 

Del 1995 G Shire x X      X 

Herbert 1998 G TB X      X 

Ernie 1995 G TB X      X 

Ellie 1996 M ISP X      X 

Fanta 1990 M cob X      X 

Puzzle 1990 M cob X      X 
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2.2 Data collection  

2.2.1 Saliva sample collection. 

An initial pilot study was conducted to determine the most suitable method to 

collect saliva from horses (Appendix 1).  

Salivary cortisol was used as a physiological marker to indicate that activation 

of the hypothalamic-pituitary-adrenal (HPA) axis had occurred. Salivary 

cortisol was selected as it offers a non-invasive method of hormone sampling 

and research suggests it reflects plasma cortisol levels (Van der Kolk et al., 

2001, Creighton and Hughes 2007). Saliva is easy to collect and sampling can 

be performed frequently and non-invasively which was a requirement for this 

project. 

Saliva was collected using the commercially available salivette® (Sartedt, UK). 

This collection device is 97mm in length and provides a hygienic and effective 

means of obtaining saliva. The salivette consists of two plastic cylindrical 

tubes, one inside the other. The inner tube holds a cotton swab and has a 

small outlet in the base. The swab is placed in the mouth and chewed to 

stimulate production of saliva. The swab is then placed inside the salivette 

and centrifuged and the saliva collects at the base of the outer container 

(Figure 2.1). As the salivette was originally designed for human use it was 

necessary to modify them for use in horses. A cotton thread was stitched 

down the centre of the swab and could be held by the human handler as the 

horse chewed to prevent it from being swallowed. Each salivette was labelled 

on the outer container with the horse’s name, date and time of collection 

using a permanent marker pen. 
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Figure 2.1. Salivette separated into its constituent parts of inner and outer 

container, lid and cotton swab. The salivette was modified by stitching thread 

through the cotton swab. This allowed the human handler to hold the thread, 

preventing the horse from swallowing the swab. 

 

 

 

 

Lid 

Cotton 
Swab 

Inner container 

with opening in 

Outer container 
where saliva 

collects upon 
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Swabs were placed in the horses’ oral cavity at the height of the third 

premolar in the maxilla. The sampling period was approximately thirty 

seconds to prevent destruction of the swab through mastication. Salivettes 

were refrigerated at 4°C for no longer than two hours before they were 

transferred to a freezer and frozen at -20°C until analysis. All horses involved 

in this project were familiar with having their mouths handled for fitting of 

equipment and grooming. To avoid the horses associating the salivette and 

handling of the mouth with impending stress, all horses involved in the 

project had their mouths swabbed with a salivette at least twice per week. 

This was carried out in their stable and was not followed by any kind of 

stressful procedure.  

 

2.2.1.1 Salivary cortisol assay procedure. 

Salivettes were thawed and centrifuged (Rotina 380, DJB Labcare) at 1000x g’ 

for ten minutes. The collected saliva was then retrieved and transferred to 

1.5ml microtubes via pipette and assayed immediately. 

 The saliva was analysed for cortisol using a commercially available  Enzyme-

linked immunosorbent assay (ELISA) (DRG Diagnostics). The assay is based 

on the competition principle. An unknown amount of cortisol present in the 

sample and a fixed amount of cortisol conjugated with horseradish peroxidise 

compete for the binding sites of mouse monoclonal cortisol antiserum coated 

onto the wells. After one hour incubation the microplate is washed to stop the 

competition reaction. After addition of a substrate solution 

(Tetramethylbenzidine) the concentration of cortisol is inversely proportional 

to the optical density measured.  

The assay kit included Microtitrewells in twelve by eight well break apart 

coated strips (ninety six wells) that allowed the desired number of strips to be 

placed in the frame holder or plate. Seven cortisol standards of 0, 2, 5, 10, 

20, 40 and 80 ng/ml cortisol were used along with a high and low control. 
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Amounts of the high and low control were specific to each quality control 

datasheet included with each kit and contained 0.003% proclin 300 as a 

preservative. Figure 2.2 displays the layout of a typical plate with positioning 

of the standards and controls in triplicate and numbered equine saliva 

samples in duplicate. 

A total of eleven salivary cortisol assays were carried out. The % coefficient of 

variation of means for high control was 3.9% and the % coefficient of 

variation of means for low control was 15%.  The mean inter-assay coefficient 

of variation was 9.5%.  
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Standards containing known amounts of cortisol from 0ng/ml through to 80ng/ml in triplicate 
 

High control in triplicate 
 

Low control in triplicate 

  
Samples of equine saliva numbered 1-35 in this example in duplicate  

 
 

 
 

 
Figure 2.2. Typical layout of ELISA plate with labelled (A-H, 1-12) microtiterwells with standards and control (high and low) in triplicate, 

and numbered equine saliva samples in duplicate

 1 2 3 4 5 6 7 8 9 10 11 12 

A 0ng/ml 0ng/ml 0ng/ml 1 1 9 9 17 17 26 26 33 

B 2ng/ml 2ng/ml 2ng/ml 2 2 10 10 18 18 27 27 33 

C 5ng/ml 5ng/ml 5ng/ml 3 3 11 11 19 19 28 28 34 

D 10ng/ml 10ng/ml 10ng/ml 4 4 12 12 20 20 29 29 34 

E 20ng/ml 20ng/ml 20ng/ml 5 5 13 13 21 21 30 30 35 

F 40ng/ml 40ng/ml 40ng/ml 6 6 14 14 22 22 31 31 35 

G 80ng/ml 80ng/ml 80ng/ml 7 7 15 15 23 24 32 32 spare 

H High High High 8 8 16 16 25 25 low low low 
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Once the desired numbers of strips were secured in the plate then 100µl of 

each cortisol standard and control were dispensed into the appropriate wells 

in addition to 100µl of each saliva sample. Enzyme conjugate was then added 

(200µl) into each sample, standard and control well and then the plate was 

mixed thoroughly for thirty seconds (Boekel Microjive Microplate Shaker). The 

plate was incubated at room temperature for sixty minutes after which the 

contents were briskly shaken out by hand. The plate was rinsed three times 

with diluted wash solution (30ml provided with kit diluted in 1200ml deionised 

H20) and then residual droplets removed by striking the inverted wells on 

absorbent paper. Substrate solution (200µl Tetramethylbenzidine) was 

dispensed into each well and the plate incubated at room temperature for 

thirty minutes. The reaction was stopped by adding 100µl of Sulphuric acid 

(14mL, 0.5M) to each well and then the absorbance of each well determined 

(Lt 400 absorbance microplate reader) at 450nm. Data was then exported to 

Excel and formatted to correspond to the plate layout. 

 

2.2.1.2 Validation of ELISA for use in the horse 

A validation test was carried out on the kit used for the analysis of equine 

saliva for cortisol and the test used by Chester Zoo to measure corticosterone 

in equine faeces. Faecal corticosterone was measured during main study 4. 

This was to ensure that the assays were measuring cortisol and corticosterone 

accurately and there was no cross reaction with other components in the 

saliva or faeces. A pooled sample of saliva was assayed neat (10ng/ml) and 

diluted to 8ng/ml, 6ng/ml, 4ng/ml, 2ng/ml and 1ng/ml alongside the 

standards provided with the kit. Once the results were plotted if the standard 

curves of both the sample and the standards run parallel to each other this 

indicates that the kit is measuring what it is designed to measure (Mostl and 

Palme, 2002). The validation test for salivary cortisol assessment was carried 

out at Nottingham Trent University and the validation of the assay for faecal 
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corticosterone was carried out by Chester Zoo. Appendix 2 displays the results 

of both validation tests which show analysis for cortisol in saliva and 

corticosterone in faeces were the most appropriate methods.  

 

2.2.1.3 Calculation of values in salivary cortisol 

The average absorbance values for each set of standards, controls and 

samples (unknown concentration of cortisol) were calculated using excel and 

a standard curve produced by plotting the mean absorbance from each 

standard against the log of its concentration (Figure 2.3). Unknowns were 

interpolated from a semi-log plot of known standard concentrations. The same 

method was used to estimate the concentration of  high and low controls 

provided with the kit; if these were within the range given on the data sheet 

then the assay was valid. Once the concentration of cortisol (ng/ml) in the 

controls was calculated then it was entered into an Excel spreadsheet. This 

allowed cortisol concentration over time to be plotted to investigate the 

position and dispersion of the data. 

The standard curve and semi log plots for each study plot can be found in 

Appendix 3. 

 

 
Figure 2.3. Semi log plot of known cortisol standard concentrations used to 

interpolate unknown samples. 
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2.2.2 Infrared Thermography and temperature data collection 

Three types of thermal camera were used during this project depending on 

whether continuous or static thewrmal images were required. These were a 

Mobir® GuidIR M4 static thermal image camera, a Flir ThermaCAM SC640 and a 

FLIR ThermoVision A40M which all self-calibrated at regular intervals. The 

Mobir® GuidIR thermal camera has a thermal sensitivity of ≤0.1℃ and can 

detect temperature at a range of -20℃ to 250℃. It has the capacity to store 

up to 600 thermal images until they are uploaded via USB 1.1 connection to a 

PC. The Guide IR analytical software includes a polygon analysis function; this 

allows a polygon to be manually placed over a desired area of the thermal 

image. Once the polygon is in place then a range of temperature analyses can 

be carried out within the selected area (Figure 2.4).  

The Flir ThermaCAM SC640 has a thermal sensitivity of 0.6℃ with a range of 

temperature detection between -40℃ and 1500℃. It can also store thermal 

images, the amount depending on the size of memory card used and transfers 

data to analytical software (FLIR Quickreport) using either  Firewire, USB 2.0 

or SD card interfaces. 

 The study into acute fright (chapter 4) required a camera capable of video 

recording therefore a FLIR ThermoVision A40M thermal camera was used. 

This camera has a thermal sensitivity of 0.08°C at 30°C with a range of -40°C 

to 500°C and captures thermal images in sequence at 30 frames per second. 

Sequences of thermal images were captured to disk as the startle response 

test was carried out and uploaded to a PC for analysis using the FLIR 

analytical software package mentioned previously.   Static thermal images 

were taken at a distance of 1 metre ± 50cm from the horse at a 90 degree 

angle in accordance with recommendations from existing research (Nakayama 

et al., 2005, Cook et al., 2006, Stewart et al., 2007). The camera was aimed 

by previewing the image with the inbuilt display and images of the right and 

left lateral aspect of the horse were taken at each sampling time point for all 
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static images throughout the project. The acute nature of the startle response 

study required continuous thermal monitoring of the horse and as only one 

camera was available images were taken from the left lateral aspect only. 

 

Once the images were uploaded to the thermal analysis software, extraction 

of the temperature for each specific region was then performed. Initially a 

coloured or greyscale image without the temperature information is displayed. 

The human user’s task was to define the region to be analysed using a mouse 

interface.  The software then scanned this region in order to find the peak 

temperature. Eye temperature analysis recorded maximum temperature 

within the medial posterior palpebral border of the lower eyelid and the 

lacrimal caruncle as in Stewart et al., (2008) (Figure 2.4). For each time point 

a temperature for both left and right eyes was captured. Temperatures were 

entered into an Excel spreadsheet and a mean temperature calculated from 

left and right eye for each time point.  

 

 Ear temperature analysis recorded maximum temperature of the ear pinna. 

The polygon analysis tool was used to highlight the area on the back of the 

ear from the base to the tip (Figure 2.4). For each time point a temperature 

for both left and right ears was captured. Temperatures were entered into an 

Excel spreadsheet and a mean temperature calculated from left and right ear 

for each time point. This allowed temperature over time to be plotted to 

investigate the position and dispersion of the data. 
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Figure 2.4 Coloured thermal image illustrating right lateral profile of equine 

head with lateral and medial commissure labelled. Spot analysis function (1) 

and corresponding temperature in top left corner. Polygon function has been 

utilised to highlight eye and ear pinna regions. Markers (+) show area of 

maximum temperature within each polygon. Temperature range is displayed 

down the right side. 

 

2.2.2.1 Core body temperature data collection 

To allow a more robust interpretation of thermal change, core temperature 

was measured in order to investigate any potential contribution of change in 

core temperature to change in eye temperature. core temperature was 

measured using a digital thermometer (Boots, UK) inserted 2cm into the 

rectum. The thermometer had an in built alarm that indicated when core 

temperature had been reached. Temperatures were recorded manually on 

record sheets and then transferred to an Excel spreadsheet that also 

contained the corresponding eye and ear temperatures for each specific 

horse. 
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2.2.2.2 Ambient temperature data collection 

Ambient temperature was recorded throughout each study and compared to 

changes in equine thermal output in order to monitor the potential effect of 

microclimate as a contributing factor to thermal change. Study B (chapter 4) 

used a wet bulb thermometer to record ambient temperature. All other 

studies used a small and portable temperature data logger (Lascar EL-USB-2). 

The data logger is capable of continuously monitoring ambient temperature 

for up to one year if set to record at five minute intervals. The temperature 

logger is inserted into the USB hub of a PC and synchronises with Lascar 

configuration and analytical software. This enables required sampling rate to 

be set along with a starting date and time. Once data collection is complete 

the logger is inserted into the PC to enable data to be downloaded. A 

histogram is then produced showing temperature over time. Specific times 

can be selected with their corresponding temperature.  

 

2.2.3 Heart rate data collection 

A Polar Equine RS800G3 heart rate monitor was used for measurement of 

heart rate. It consists of a wireless textile transmitter in the form of an 

elasticated surcingle with two interwoven electrodes. The electrodes are made 

from conductive elastic fibres enabling them to adapt to the horse’s 

movement and ensure permanent contact with the skin. The surcingle was 

secured on the horse and the interwoven electrodes were positioned in the 

region of the upper left thorax and the ventral midline (Figure 2.5). Electrode 

gel (Signa gel, UK) was applied to the electrodes on the surcingle and their 

associated points on the horse to improve contact and enhance electrical 

conductivity. A detachable transmitter was clipped onto the surcingle which 

communicates with the electrodes and transmits heart rate data to a receiver 

that has the capacity to store up to ninety nine hours of heart rate data. The 

receiver can be worn by the human user as a wristwatch or in this case it was 
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attached to the surcingle. This allowed the horses to be left unattended if 

required. 

Data was continuously collected and stored in the receiver. It was later 

uploaded to PC based analytical software (Polar pro-trainer equine edition) 

using an infra-red interface. The analytical software allowed heart rate at 

specific times to be selected. 

 

 

 

 

 

Figure 2.5 Horse wearing heart rate monitor. Transmitter and receiver 

position and position of electrodes in the region of the upper left thorax and 
the ventral midline are labelled.  

 

 

 

 

 

 

 

Transmitter and 
receiver attached to 
surcingle 

Electrode 
1 

Electrode 
2 



 75 

2.2.4 Behavioural data collection. 

To provide a more robust assessment of the horses response to aversive 

stimuli, physiological measures were used in combination with behavioural 

analysis. Each study involved a behavioural assessment suitable for the length 

and type of potentially stressful procedure being investigated. A detailed 

description of behavioural analysis will be provided in each relevant chapter. 

 

The studies into behavioural and physiological response to acute aversive 

stimuli and behavioural and physiological response to a short term potentially 

aversive husbandry practice were video recorded using a hand held camera 

(Hitachi DVD/HD digital video camera) mounted on a tripod. The study into 

behavioural and physiological response to long term or repetitive stress 

utilised the camera system installed throughout the equestrian centre. The 

method used for behavioural assessment was specific to each study and will 

be discussed in each relevant chapter. 

 

Analysis of data is specific to each study and will be discussed in the relevant 

chapter. SPSS v 15.0 for windows was used for all statistical data analysis 

throughout this project. The significance level for each null hypothesis was set 

at p<0.05.
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Chapter 3 Study A; Investigation into the potentially limiting factors 

of thermal imaging and salivary cortisol analysis as indicators of the 

stress response 

 

3.1 Introduction 

The insulative properties of the coat in addition to coat colour have been 

shown to affect temperature readings taken using IRT (Mcafferty, 2007). 

These limitations can be overcome by thermal imaging of the eye area within 

the medial posterior palpebral border of the lower eyelid and the lacrimal 

caruncle (Figure 2.4). However, body temperature is amongst the 

physiological variables that exhibit circadian rhythm (Refinetti and Menaker, 

1992) and a clear circadian rhythm of core body temperature has been 

reported in horses (Piccione et al., 2002, Green et al., 2005) with 

temperature starting its daily ascent at dawn, coinciding with the start of the 

light phase, and reaching a maximum fourteen hours later.  

Investigation into diurnal rhythm of surface temperature measured using IRT 

is limited. Scott et al. (2000) found a distinct circadian rhythm in udder 

temperature when using IRT as a tool to detect early stages of mastitis 

however whilst using IRT to measure bovine scrotal surface temperature 

Kastelic et al. (1996) found no significant effect of diurnal rhythm on thermal 

output.  

As findings of existing work into diurnal rhythm of surface temperature 

measured using IRT are limited (Morgan et al., 1997, Piccione et al., 2002), 

contradictory and carried out in species other than the horse (Kastelic et al., 

1996; Scott et al.,2000), it is important to investigate whether the equine eye 

exhibits any daily pattern in temperature output in order to better interpret 

any thermal changes in subsequent studies during this project.  

It has also been suggested that changes in ambient temperature may 

confound results of IRT (Eddy et al., 2001; van Hoogmoed and Snyder 2002) 
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therefore the extent to which ambient temperature affects surface 

temperature of the eye needs to be explored.  

Like most hormones circulating in the body, glucocorticoids are produced in a 

circadian manner under basal conditions (Lane, 2006). Daily rhythm in 

plasma cortisol concentration has been reported in horses with levels peaking 

between the hours of 0600h and 0900h and decreasing to their lowest 

between 1900h and 2300h (Irvine and Alexander, 1994; Van der Kolk, 2001).  

Daily rhythm in salivary cortisol has been reported in one study (Hughes et 

al., 2006), other studies have been unable to demonstrate a diurnal rhythm 

(Van der Kolk et al., 2001 Harewood and McGowan, 2005). In addition to 

these conflicting results, lack of diurnal rhythm in plasma cortisol has been 

linked to long term stress (Harewood et al., 2005) therefore before any 

investigation into long term potentially aversive situations is carried out, 

presence or absence of diurnal rhythm in salivary cortisol needs to be 

investigated in the study horses. This will allow a more robust interpretation 

of physiological data. This study allowed the investigation of the presence of 

circadian rhythm in both eye and surface temperature measured using IRT in 

addition to salivary cortisol.  

 

A review of the literature into the use of IRT as a measure of the stress 

response shows that the distance from the subject from which the thermal 

image is taken is standardised at between 1-1.5 metres (Nakayama et al., 

2005, Cook et al., 2006, Stewart et al., 2007). A preliminary study carried out 

during this project revealed that eye temperature decreased significantly 

(p=0.001) when thermal images were taken at a greater distance from the 

horse (Appendix 4). This highlighted the importance of a standardised 

distance when capturing thermal images during this project.  

 A second preliminary study provided an opportunity to investigate the 

functionality of the University thermal camera and assess whether it was able 
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to meet the requirements of the project in addition to providing an initial 

investigation into the most suitable anatomical areas to capture thermal 

images (Appendix 5). Preliminary results showed that eye temperature 

fluctuates less over time when compared to ear temperature. This is in 

agreement with existing work that has used eye temperature as a measure of 

temperature change associated with the stress response in other species 

(Cook  et al., 2001; Pavlidis et al., 2002 Cook et al., 2006; Stewart et al., 

2008T). A significant (p=0.006) effect of time on eye temperature was found 

however a limited number of samples (3 per day) were available. Therefore, a 

larger and more detailed investigation into the daily pattern of eye 

temperature was now needed, in addition to salivary cortisol measurements, 

in order to investigate diurnal rhythm. This would allow better interpretation 

of the thermal and hormonal data collected as a measure of stress.  

 

3.2 Aim and objectives 

Aim; 

 Assess the impact of potentially limiting factors of thermal imaging and 

salivary cortisol analysis as indicators of the stress response 

 

Objectives; 

 Establish whether there is a daily rhythm in eye temperature measured 

using IRT and compare to ambient and core temperature in the study 

horses. 

 Establish whether there is a daily rhythm in salivary cortisol in the 

study horses. 
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3.3 Methodology 

3.3.1 Animals and husbandry 

Horses (n=6) were a mix of sex, age and breed representative of horses found 

in a riding school. Horses were managed as previously discussed in chapter 

2.0 with details of the individual animals shown in table 2.1. The horses were 

housed in single box stalls and remained there over four consecutive days. 

This was to standardise feeding and exercise. Horses were placed on a horse 

walker (Monarch equestrian) for one hour between 0900h and 1000h after 

physiological samples had been taken and for a further hour at 1500h. Horses 

had access to water at all times and were fed 5kg hay twice daily. 

The study took place over four consecutive days during spring (April). Sunrise 

was at approximately 0630h and sunset at approximately 2000h 

 

3.3.2 Infrared thermography data collection 

The Mobir GuideIR thermal camera was used to capture a static thermal 

image of the head (left and right lateral aspect) every three hours for each 

horse, starting at 1500h on a Monday and continuing for 72 hours until 1500h 

on the Thursday. Images were processed and eye temperatures extracted as 

previously discussed in chapter 2.2 

Temperatures were plotted over time using Excel to descriptively analyse any 

daily pattern in thermal output. Initially this was done for each individual 

horse and then a mean eye temperature for all horses for each sampling time 

point was also plotted against time.  
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3.3.3 Infrared thermography data analysis 

Distribution of data varied significantly from normal (Kolmogorov-Smirnov 

Test, p=0.001).  A Friedman test was conducted to investigate any difference 

in eye temperature between each day and a second Friedman test was carried 

out to investigate any difference in eye temperature between each sampling 

time point. A Wilcoxon signed rank test was used to investigate between 

which time points there was a significant difference in eye temperature 

 

3.3.4 Salivary cortisol data collection 

Saliva was sampled every three hours for cortisol analysis for each horse, 

starting at 1500h on a Monday and continuing for 72 hours until 1500h on the 

Thursday. Saliva was collected, analysed and processed using the method 

previously discussed in chapter 2.2. saliva was sampled immediately after 

each thermal image was captured. 

Salivary cortisol for each time point was plotted against time using Excel to 

investigate any daily pattern. Initially this was done for each individual horse 

and then a mean salivary cortisol for all horses for each sampling time point 

was also plotted against time. 

 

3.3.5 Salivary cortisol data analysis 

Distribution of data varied significantly from normal (Kolmogorov-Smirnov 

Test p=0.02).  A Friedman test was conducted to investigate any difference in 

salivary cortisol between each day and a second Friedman test was carried 

out to investigate any difference in salivary cortisol between each sampling 

time point. 
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3.3.6 Core temperature data collection 

Core temperature was measured every three hours for each horse starting at 

1500h on a Monday and continuing for 72 hours until 1500h on the Thursday. 

Temperature was measured using the method previously discussed in chapter 

2.0. Temperatures were recorded by hand onto the horse’s data sheet and 

transferred to an Excel spreadsheet at a later date. 

Core temperature for each sampling time point was plotted against time. This 

allowed any daily pattern and any relationship between eye temperature and 

ambient temperature to be investigated. Core temperature was initially 

plotted for each individual horse and then a mean core temperature for all 

horses for each sampling time point was calculated 

 

3.3.7 Core temperature data analysis 

Distribution of data varied significantly from normal (Kolmogorow-Smirnov 

Test).  A Friedman test was conducted to examine the effect of time on core 

temperature. Separate tests were carried out to investigate any difference in 

core temperature between each day and also any difference in core 

temperature between each sampling time point.  A Wilcoxon signed rank test 

was carried out to investigate between which time points there was a 

significant difference in core temperature 

 

 

3.3.8 Ambient temperature and photoperiod data collection 

Ambient temperature was monitored for the duration of the study using a 

temperature logger (Lascar EL-USB-2). The temperature logger was set to 

record at three hourly intervals that corresponded with the physiological 

sampling times. Data were uploaded and processed using the methods 

previously discussed in chapter 2.2. The photoperiod (hours of daylight) for 

the days the study was carried out was obtained from the British 

Meteorological Office website (www.metoffice.gov.uk) in addition to sunrise 



 82 

and sunset timings. Ambient temperature for each sampling time point was 

entered into an Excel spreadsheet and plotted with eye and core temperature 

against time. This allowed any daily pattern and any relationship between the 

parameters to be investigated. Hours of daylight and darkness were also 

indicated on the charts generated by Excel to investigate any relationship 

between the physiological parameters and photoperiod. 

 

3.3.9 Correlation analysis 

A Spearman rank order correlation was used to investigate any relationship 

between  

1. Mean eye temperature of all horses and ambient temperature over the 

duration of the study. 

2. Mean eye temperature of all horses and mean core temperature of all 

horses over the duration of the study  

3. Mean core temperature of all horses and ambient temperature over the 

duration of the study. 
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3.4 Results 

 

3.4.1 Infrared thermography  

The results of a Friedman test indicated that there was no significant 

difference in eye temperature between day 1, 2 and 3, Χ2 (2, n = 6) = 4.0, 

p= 0.135 A second Friedman test indicated a significant difference in eye 

temperature between sampling times Χ2 (7, n = 6) = 19.485, p= 0.007. A 

Wilcoxon signed rank test revealed that this difference was between 1800h 

and 0900h z=-2.214, p=0.02, with a large effect size (r=0.63). The median 

temperature decreased from 33.2°C to 32.2°C so eye temperature was higher 

in the evening when compared to the morning.  

 

Figure 3.1(a) displays mean eye temperature for all horses throughout the 

duration of the study (with ambient temperature) and Figure 3.1 (b) displays 

eye temperature of one representative study horse (with ambient 

temperature). Eye temperature ranged from 28.3°C to 37.5°C in all study 

horses. Table 3.1 displays maximum and minimum eye temperature for each 

horse throughout the duration of the study. The thermal images from the 

1500h sample on the second day of the study showed that all horses had very 

low eye temperatures compared to the rest of the week. This has not been 

included in the minimum and maximum data as it is not representative of 

temperatures during the rest of the project.  
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Figure 3.1(a) Mean (±SD) eye temperature for all study horses and ambient 

temperature over the duration of the study. The black and white bars show 
hours of daylight (white) and hours of darkness (black). 

 
 

 

 

 

Figure 3.1(b) Eye temperature for one representative horse and ambient 

temperature over the duration of the study. The black and white bars show 
hours of daylight (white) and hours of darkness (black). 
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Table 3.1 Maximum and minimum eye temperatures (°C) recorded for each 
horse throughout the duration of the study. 

 

Horse Maximum eye 

temperature 

(°C) 

Minimum eye 

temperature 

(°C) 

Range (°C) 

Angus 

 

36.8 28.3 8.5 

Beau 
 

35.7 31.1 4.6 

Conan 

 

37.2 30 7.2 

Desmond 
 

37.5 31.4 6.1 

Tosca 

 

36.4 31 5.4 

Kitkat 
 

37.6 30.8 6.8 

 

 

3.4.2 Core temperature 

The results of a Friedman test indicated that there was no significant 

difference in core temperature between day 1, 2 and 3, Χ2 (2, n = 6) = 1.238, 

p= 0.538.  A second Friedman test indicated a significant difference in core 

temperature between sampling times Χ2 (7, n = 6) = 30.722, p= 0.000.  A 

Wilcoxon signed rank test was conducted to investigate between which time 

points the significant difference in mean core temperature occurred (Table 

3.2). 

 

Core temperature followed a similar trend to ambient temperature in all 

horses. Figure 3.2 shows core and ambient temperature for one 

representative horse throughout the duration of the study. There was a trend 

for core temperature to reach maximum levels at 1800h before descending to 

a minimum at 0600h. Core temperature ranged from 35.4°C to 37.9°C in all 

study horses. Table 3.3 displays maximum and minimum core temperature 

for each horse throughout the duration of the study. 
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Table 3.2 Results of the Wilcoxon signed rank test used to investigate any 
difference in mean core temperature between sampling time points. P values 

are given between each sampling time point. P values marked in bold 
indicate a significant difference between times. 

 

 

 

 

 

 

Figure 3.2 Core temperature for one representative horse and ambient 
temperature over the duration of the study. The black and white bars show 

hours of daylight (white) and hours of darkness (black). 
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Core temperature Ambient temperature

1800h 

0600h 

1800h 

0600h 

1800h 

0600h 

 1500h 1800h 2100h 0000h 0300h 0600h 0900h 1200h 

1500h 
 

 0.027 0.336 0.104 0.104 0.026 0.071 0.705 

1800h 

 

0.027  0.023 0.026 0.026 0.027 0.026 0.039 

2100h 
 

0.336 0.023  0.027 0.024 0.027 0.024 0.357 

0000h 

 

0.104 0.026 0.027  0.180 0.026 0.891 0.167 

0300h 

 

0.104 0.026 0.024 0.180  0.039 0.461 0.140 

0600h 
 

0.026 0.027 0.027 0.026 0.039  0.068 0.042 

0900h 

 

0.071 0.026 0.024 0.891 0.461 0.068  0.167 

1200h 
 

0.705 0.039 0.357 0.167 0.140 0.042 0.167  
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Table 3.3 Minimum and maximum core temperatures (°C) recorded for each 

horse throughout the duration of the study with times that temperature 
occurred in (). 

 
Horse Maximum core 

temperature 
(°C) 

Minimum core 
temperature 

(°C) 

Range (°C) 

1 

 

37.7 (1800h) 36.7 (1500h)  1 

2 

 

37.9 (0900h) 36.1 (0600h) 1.8 

3 
 

37.9 (1800h) 37 (1200h) 0.9 

4 

 

37.4 (1800h) 35.4 (0300h) 2 

5 
 

37.8 (1800h) 36.7 (0600h) 1 

6 

 

37.7 (1800h) 36.1 (0300h) 1.6 

 

 

3.4.3 Salivary cortisol 

The results of a Friedman test indicated that there was no significant 

difference in salivary cortisol between day 1, 2 and 3, Χ2 (2, n = 6) = 3.739, 

p= 0.154.  A second Friedman test indicated there was no significant 

difference in salivary cortisol between sampling time points Χ2 (7, n = 6)= 

5.796, p= 0.564.  

 Figure 3.3(a) displays mean salivary cortisol of all horses throughout the 

duration of the study and Figure 3.3(b) displays salivary cortisol of one 

representative horse throughout the duration of the study. 
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Figure 3.3(a) Mean (±SD) salivary cortisol for all horses over the duration of 
the study. The black and white bars show hours of daylight (white) and hours 

of darkness (black). 

 
 

 
 

 

 
Figure 3.3(b) salivary cortisol for one representative horse over the duration 

of the study. The black and white bars show hours of daylight (white) and 
hours of darkness (black). 
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Mean salivary cortisol ranged from 1.7ng/ml to 7ng/ml throughout the week. 

Table 3.4 details the minimum and maximum cortisol levels (ng/ml) for each 

of the horses involved. 

 

 
 

 
Table 3.4 Minimum and maximum salivary cortisol levels (ng/ml) recorded for 

each horse throughout the duration of the study with times recorded in (). 

 
Horse Maximum 

salivary 
cortisol 
(ng/ml) 

Minimum 

salivary 
cortisol 
(ng/ml) 

Range 

(ng/ml) 

1 

 

9.1 (1500h) 1.0 (0900h) 8.1 

2 

 

9.7 (0600h) 1.2 (1500h) 8.5 

3 
 

9.1 (1500h) 1.1 (1500h) 8 

4 

 

12.6 (1800h) 1.0 (1500h) 11.6 

5 
 

9.0 (2100h) 1.6 (1200h) 7.4 

6 

 

10.3 (0900h) 1.2 (1500h) 9.1 

 
 

 

3.4.4 Correlation 

 A Spearman rank order correlation test revealed that there was no 

relationship between mean eye temperature and ambient temperature (r= 

0.21, n=25, p=0.35).  

A Spearman rank order correlation test also revealed there to be no 

relationship between mean eye temperature and mean core temperature 

(r=0.235, n=25, p=0.259). 

There was a positive correlation between mean core temperature and ambient 

temperature (r=0.543, n=25, p=0.005); as ambient temperature increased, 

core temperature also increased (Figure 3.4) 
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Figure 3.4 Positive correlation between mean core temperature (°C) of all 

horses and ambient temperature over the duration of the study. 
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3.5 Discussion  

The primary aim of this study was to investigate potential factors that may 

affect reliability of eye temperature measured using IRT and salivary cortisol 

analysis. 

The results of the first preliminary study into the effect of distance on 

accuracy of temperature measurement using IRT indicate the importance of 

standardising distance when capturing thermal images. A finding of the 

second preliminary study suggests that sudden potentially aversive stimuli 

may result in warming of the eye area. 

There was no significant effect of day on eye temperature however there was 

a significant (p= 0.007) effect of time on eye temperature between two of the 

sampling times (1800h and 0900h). Mean eye temperature decreased by 1°C 

and may be a reflection of the drop in ambient temperature between the two 

times. The average ambient temperature at 1800h was 14°C and the average 

temperature at 0900h was 9.5°C. Eye temperature ranged from 28.3°C to 

37.5°C however at the fifth sampling point (1500h Tuesday) eye temperature 

decreased in all horses below this range. There was no observable association 

between ambient temperature change and eye temperature change at this 

point or throughout the duration of the study. No correlation between mean 

eye temperature and ambient temperature was found. In addition to this, at 

the time point that a decrease in eye temperature was recorded, ambient 

temperature was in fact increasing. The cause of the decrease in eye 

temperature in all horses is unclear but may be due to camera malfunction. It 

is possible that it was a result of a compensatory thermoregulatory 

mechanism in order to maintain thermal homeostasis due to the increase in 

ambient temperature, however no other decreases of this magnitude were 

recorded at any other point during the study and at no other point did an 

increase in ambient temperature result in a decrease in eye temperature. 

Core temperature also remained within normal range for all horses at this 
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time point and there was no correlation between mean eye temperature and 

mean core temperature. 

 

There was a significant (p= 0.000) effect of time on core temperature. Core 

temperature started its daily ascent at dawn (0600h), coinciding with the start 

of the light phase, and reached a maximum twelve hours later (1800h) in all 

study horses. This association of core temperature with the start and end of 

light phase is in agreement with existing work for the horse (Piccione et al., 

2002, Green et al., 2005) and other species (Brown and Dawson, 1976 in 

kangaroos; Bligh and Harthoorn, 1965 in African ruminants) and could 

possibly be a reflection of the storage of heat gained throughout the warmer 

daylight hours. Core temperature did follow the same daily pattern as ambient 

temperature, with warmer temperatures recorded during daylight hours and 

there was a positive correlation between core and ambient temperature. As 

ambient temperature increased, core temperature also increased.  The range 

in core temperature from minimum to maximum was minimal for each horse 

(0.9-1.8°C). This is to be expected due to the thermoregulatory mechanisms 

in place to maintain homeostasis of internal temperature (Cymbaluk and 

Christison, 1990). As there was no correlation between eye and ambient 

temperature this suggests eye temperature may be a better stress index than 

core temperature. 

 

There was no effect of day or time on salivary cortisol. This could have been 

due to a number of reasons. Seasonal changes have been reported in plasma 

cortisol levels, with higher levels and a more pronounced daily rhythm present 

during the autumn months (Donaldson et al., 2005). The circadian system 

provides animals with the ability to anticipate periods of activity and to time 

their behaviour and physiology in ways that will optimise survival (Murphy, 

2009), therefore the increased cortisol levels reported during autumn could be 
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related to anticipation of winter and the associated challenge of decreased 

forage (Donaldson et al., 2005). This study was carried out during the spring 

therefore it is possible that daily rhythm in salivary cortisol levels was less 

pronounced.  

 No investigation into seasonal effects on salivary cortisol was carried out 

during this project. The purpose of the project was to validate IRT as a non 

invasive measure of stress. No study spanned more than one season and no 

study was carried out during the autumn season therefore such an 

investigation was beyond the remit of the work.  

  

Other non photic cues that could potentially disrupt daily rhythm of salivary 

cortisol include exercise (Alexander and Irvine, 1991) and changes in diet 

(Donaldson et al., 2005). It is unlikely that exercise disrupted daily rhythm in 

this study as maximal or prolonged exercise is required in order to increase 

cortisol (Alexander and Irvine, 1991) and the horses were not subjected to 

this. Horses were fed a diet of hay and were conditioned to this diet prior to 

the study commencing therefore it is also unlikely that changes in diet 

disrupted daily rhythm.  

 

Irvine and Alexander (1993) suggest that as light is the primary 

environmental time cue serving to entrain circadian changes (Pittendrigh and 

Minis, 1964) it is possible that lack of circadian rhythm in plasma cortisol 

during their study was attributable to the dim night lighting in the area where 

the horses were housed. The horses in this study were stabled under artificial 

light that was present after daylight hours resulting in an artificially 

lengthened photoperiod. In addition lights were turned on during the 

overnight sampling which potentially could have further confounded results. 

Despite this, core temperature displayed a clear daily rhythm but it could be 

that this was associated more with ambient temperature change rather than 
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photic cues. It is also possible that the disruption to the horses during the 

overnight samples may have interfered with sleep patterns, which have been 

shown to alter cortisol secretion in humans (Weitzman et al., 1983).  

 

Chronic stress has been shown to disrupt daily rhythm in physiological 

variables and alter behavioural routine, making any daily pattern unclear. 

Irvine and Alexander (1998) report that moving horses from an open social 

environment into an enclosed housing design resulted in disruption of daily 

rhythm in plasma cortisol. Horses involved in this investigation had constant 

turnout in grass paddocks with their familiar companions prior to the study 

commencing however in order to standardise food intake and exercise they 

were placed in isolated stables with no turnout and no contact with con-

specifics for a four day period. This situation could potentially have been 

stressful to the horses and resulted in altered daily rhythm of salivary cortisol. 

Despite absence of a clear daily rhythm, cortisol levels did fluctuate 

throughout the course of the day, highlighting the importance of baseline or 

pre stressor measures in order for each horse to act as its own control during 

the course of the project.  

 Finally existing work that has reported a daily pattern in cortisol measured 

the hormone in blood plasma (Irvine and Alexander, 1994; Lane, 2006). In 

the blood 75% of cortisol is bound to proteins (Rosher, 1991) and biologically 

inactive in the body. The bound form of the hormone is unable to cross into 

saliva due to the large size of the protein molecule. As cortisol was measured 

in saliva during this study and was therefore free and biologically active, it 

may be that the unbound form of the hormone lacks daily rhythm. This 

supports the findings of Van der Kolk et al. (2001) who reported diurnal 

rhythm of plasma cortisol but did not find there to be a demonstrable diurnal 

rhythm of salivary cortisol. 
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3.6 Conclusion 
 

The results of this study indicate that the unbound fraction of cortisol present 

in saliva does not demonstrate the same daily rhythm as plasma cortisol. 

Alternatively it may be that it is potentially difficult to identify daily rhythm of 

salivary cortisol in a working yard environment due to potential disturbance 

from artificial lighting and changes in routine related to necessary 

experimental control of diet, exercise and housing. Eye temperature did 

fluctuate between each sampling time point although the only significant 

(p=0.007) effect of time on eye temperature was between two sample points. 

This may have been due the decrease in ambient temperature between the 

evening and early morning measure. Despite no significant effect of day and 

time on salivary cortisol, levels also fluctuated throughout the study period. 

This makes it important to sample salivary cortisol and eye temperature pre 

stressor in each horse to establish baseline levels and compare the changes in 

both physiological parameters during potentially stressful events to the 

baseline values recorded.  

In conclusion, although there was a significant difference in eye temperature 

between two of the sample times no other significant differences were found 

and no clear daily rhythm in eye temperature or salivary cortisol was 

observed.  It is still important to record pre stress measures of both 

parameters and repetitively sample at regular intervals as fluctuations 

(increase and decrease) between times were seen. Now that the potential 

limiting factors of distance, ambient temperature and time of day have been 

investigated and are better understood it is now possible to investigate the 

temperature response of the eye to an aversive situation and compare this to 

the currently accepted stress measure of salivary cortisol.  
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Chapter 4 Study B; Investigation into the use of IRT as a tool to 

assess thermal change associated with the physiological response to 

acute stress 

 

4.1 Introduction 

Everyday challenges for wild or free ranging horses are primarily acute (social 

disputes, predator avoidance) and the innate species specific response is to 

flee. Domesticated horses will also display flight behaviour during acutely 

aversive circumstances which is indicative that the horse finds the situation 

stressful. Previous work in other species has investigated and reported 

changes in eye temperature that correlate with elevated cortisol in response 

to acute and short term aversive stimuli (Cook et al., 2006, Schaefer et al., 

2006, Stewart et al., 2008). As work in other species has primarily examined 

the thermal response of the eye to acute aversive stimuli using IRT and found 

changes in temperature, it was logical to begin by investigating whether the 

response was mirrored in the horse.  Although domestication has brought with 

it new challenges of longer duration for horses it was important to first 

establish whether an increase in eye temperature in response to acute 

aversive stimuli was observable as this had already been established in other 

species. If eye temperature change in response to acute stress was observed 

then further investigation into eye temperature response to longer term stress 

during situations found in domestication could be carried out.    

The purpose of applying the startle response test during this study was not to 

assess response to the specific stressor (umbrella) but rather to elicit an 

stress response in order to measure the associated physiological changes in 

an attempt to replicate findings of existing work. A startle test was 

appropriate to assess the response of a prey species to acute aversive stimuli 

as from an evolutionary point of view suddenness, unfamiliarity and 

unpredictability are the key features of predator attack (Shelton and Wade, 

1979). It is reasonable to suggest that there will be some degree of 
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behavioural reaction during a startle response test as the horse’s species-

specific reaction is to flee when faced with a challenging situation. The use of 

visual stimuli is particularly relevant to the horse as in its natural habitat it is 

particularly sensitive to movement and relies on vision as a major sensory 

avenue for predator detection (Christensen et al., 2008). The behavioural 

response of flight in response to the startle test would indicate that the horses 

found the situation stressful and support the suggestion that any changes in 

eye temperature and cortisol were stress related.  

A preliminary study carried out during this project suggested that sudden 

potentially aversive stimuli may result in warming of the eye area (Appendix 

5). If it was possible to reproduce the results obtained in other species and 

capture a thermal change of the eye in the horse in response to an aversive 

stimulus, then use of IRT as an indicator of stress could be validated using 

currently accepted behavioural and physiological measures. 

 

4.2 Aim and objectives; 

Aim 

 Establish whether changes in surface temperature in response to an 

acutely stressful situation occurs in horses as it does in other species,  

 

Objectives 

 Investigate the thermal response of the horse to an acute aversive 

stimulus. 

 Compare any thermal response with the currently accepted indicators 

of stress (salivary cortisol and behavioural assessment).  
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4.3 Methodology 
 

4.3.1 Animals and husbandry 
 

Horses (n=10) included mares and geldings were supplied by Brackenhurst 

Equestrian Centre and were managed as previously discussed in chapter 2.0. 

Details of the individual horses can be found in table 2.1.  

 

4.3.2 Test area  

The test area was a covered barn measuring 10 metres long by 9 metres 

wide. The end of the yard facing the horse during the test procedure was 

totally enclosed by a stone wall to roof height and the sides were enclosed 

with stone walls measuring 1.5 metres high. Over one side of the wall a row 

of traditional box stables with half doors ran adjacent to the barn. The test 

horse was able to see horses housed in these stables. Over the opposite wall 

was a grass area with fields beyond. The end of the yard to the rear of the 

horse was a 2 metre wire fence and another sand covered area lay beyond 

which was empty for the duration of the testing. Horses were often housed in 

the barn and also took part in horse husbandry lessons in the same area 

therefore all were familiar with the area and were unlikely to associate it with 

aversive procedures or situations.  

 The horses were held by the same familiar handler during the testing to 

ensure handling consistency. They were allowed to express natural behaviour 

and move away from the aversive stimulus with no restrictions. A point was 

marked in the sand 1 metre from the side wall and five metres from the end 

wall to indicate where the horse was to stand. Another point was marked in 

the sand 2 metres back from this to indicate where the novel object was to be 

presented. See Figure 4.1 for a plan of the test area. 
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Figure 4.1 Plan of the test area with position of test horse, thermal and video cameras and point of presentation of 

aversive stimulus. Figure not to scale.
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4.3.3 Test procedure  

The test began with the horse in the familiar environment of its stable. A 

static thermal image was captured of the left and right eye, saliva was 

sampled for cortisol analysis and a heart rate monitor (Polar Equine RS800G3) 

was attached as described in chapter 2.  Recording of heart rate began 

immediately. After five minutes in the stable a second static thermal image 

and saliva sample was taken and the horse walked the short distance to the 

barn. 

Horses involved in the study were assessed individually and were not able to 

see the procedure being carried out on any of the other horses. Each horse 

was allowed five minutes to reach the crew yard and acclimatise to the new 

environment. Once in the crew yard a thermal recording (FLIR ThermoVision 

A40M thermal camera) of the left eye began five minutes pre presentation of 

aversive stimulus and lasted until five minutes post presentation of aversive 

stimulus.  

 The aversive stimulus used was a yellow and blue umbrella and was chosen 

as it is an unfamiliar object to a horse and offers sudden motion and noise. In 

addition to this yellow and blue were amongst the colours that caused the 

greatest number of adverse reactions in horses (n=16) when encountered for 

the first time in the form of ground mats (Hall and Cassaday, 2005). The 

umbrella was opened directly in front of the horse by the same person and 

then held out and rotated at waist level for ten seconds. The umbrella did not 

come into contact with the horse however the horse was free to approach and 

investigate it. The handler did not pull, touch or talk to the horse and if the 

horse wished to move away from the umbrella it was able to. Subsequent 

saliva samples and static thermal images were taken every five minutes from 

five minutes post presentation of aversive stimulus up to thirty minutes post 

presentation of aversive stimulus. Each individual test was videotaped for 
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behavioural analysis post procedure. When all samples had been taken the 

horse was returned to its stable.  

 

4.4 Data collection and analysis  

 

Data record sheets were produced for each horse and used to hand log when 

physiological measures had been taken. This ensured all necessary samples 

were collected for each horse. Data were then transferred from the record 

sheets into Excel spreadsheets at a later date.  

 

4.4.1 Infrared thermography data collection  

Both continuous and static thermal images were captured and temperature 

extracted as previously discussed in chapter 2.0. Thermal response of the left 

eye was continuously monitored from five minutes pre presentation of 

aversive stimulus until five minutes post presentation of aversive stimulus. 

The thermal recording camera was supplied and operated by a PhD student 

from the School of Computing and Informatics at Nottingham Trent University 

who also extracted and supplied the temperature data. Details of the camera 

can be found in chapter 2.2.2.  Static thermal images were captured every 

five minutes beginning five minutes pre presentation of aversive stimulus until 

thirty minutes post presentation of aversive stimulus. 

 

4.4.2 Infrared thermography data analysis 

Data from only one horse was available from the continuous video thermal 

recording. The sudden flight response of the horse’s upon presentation of the 

stimulus caused them to move out of the screen shot of the thermal camera 

therefore a thermal image could not be captured. One horse appeared less 

behaviourally responsive and did not step out of the range of the camera. A 

thermal profile for this horse was plotted against time using Excel software to 

investigate any temperature fluctuations (Figure 4.2). Once temperatures had 
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been extracted and processed from the static images as previously discussed, 

mean eye temperature of left and right eye for each horse for each time point 

was calculated. Distribution of data was normal (Kolmogorov-Smirnov Test, 

p=0.2) therefore a one way repeated measures ANOVA was used to 

investigate effect of time on mean eye temperature of all horses. 

 

4.4.3 Core temperature data collection 

The acute aversive nature of the study and the anticipated flight response of 

the horses prohibited core temperature being taken at the times it was most 

relevant. For the purpose of handler safety core temperature was not taken 

during this study. 

 

4.4.4 Ambient temperature data collection 

Ambient temperature was monitored in the barn for the duration of the study 

using a wet bulb thermometer. Temperature was recorded on a data sheet at 

five minute intervals beginning five minutes pre presentation of aversive 

stimulus until thirty minutes post presentation of aversive stimulus. 

 

4.4.5 Salivary cortisol data collection 

Saliva was sampled every five minutes, beginning five minutes pre 

presentation of aversive stimulus, until thirty minutes post presentation of 

aversive stimulus. Saliva was collected, analysed and processed as discussed 

in chapter 2.2.1  

 

4.4.6 Salivary cortisol data analysis 

Equipment malfunction resulted in only five complete and one partial (data up 

to 15 minutes post stressor) hormonal profiles being assayed. Salivary 

cortisol for each horse for each time point was calculated as previously 

discussed in chapter 2.2.2. This was carried out for the five complete 
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hormonal profiles and plotted against time using Excel software to investigate 

any fluctuations in cortisol over the study period. Distribution of data varied 

significantly from normal (Kolmogorov-Smirnov Test, p=0.04) therefore a 

Friedman Test was conducted to examine the effect of time on cortisol levels 

and the time point with the greatest effect on cortisol was also investigated 

(Wilcoxon Signed Rank Test). 

  

4.4.7 Heart rate data collection 

Heart rate was logged every twenty seconds from the time the heart rate 

monitor was attached to the horse in its stable pre procedure until five 

minutes post presentation of the aversive stimulus. Data were recorded, 

stored and uploaded to analysis software as discussed in chapter 2.2.3  

 

4.4.8 Heart rate data analysis 

Mean heart rates for all horses were plotted against time to investigate any 

fluctuations during the study period. Distribution of data varied significantly 

from normal (Kolmogrov-Smirnov Test, p=0.001) therefore a Freidman Test 

was used to investigate effect of time on heart rate.  

For comparison to salivary cortisol and behavioural reactivity the magnitude 

of increase in heart rate (bpm) was calculated from the pre stress measures 

to maximum value (bpm) post stressor for each horse.  

 

4.4.9 Behavioural assessment data collection 

Behaviour was recorded using a hand held video camera mounted on a tripod 

placed adjacent to the thermal camera (Figure 4.1). Recording the study 

allowed objective behavioural analysis to be carried out post data collection. 

Footage was uploaded to a PC using a USB interface and played back for 

assessment (Windows media player for Windows Xp) at a later date. The 

reactivity of each horse was ranked to assess the degree of behavioural 
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response to the acute aversive stimulus. Scores were first attributed to a 

behavioural definition according to degree of reactivity (Table 4.1.). Fourteen 

BSc Equine Science undergraduate students were separately shown the video 

footage of each horse at the point of presentation of the aversive stimulus 

and a score awarded. A mean score from the fourteen respondents was 

calculated for each horse to allow degree of reactivity to be compared to any 

change in salivary cortisol and thermal output.   

 

 

 
Table 4.1  Reactivity score with scores ranging from 1 (no reaction) to 5 

(large reaction). (Adapted from Anderson et al., 1999 and Gorecka et al., 
2007). 
 

Score Behavioural definition 

1 No reaction to novel object 

 

2 Minimal reaction, no foot movement, eyes widening, ear 

movement, head elevated/flinch and looking at object 

3 Foot movement 1-4 steps away from object and any of 

the reactions in #2  

4 Foot movement 5-10 steps or small jump where more 

than one foot leaves the ground at the same time and 

any of the reactions in #2 

5 Any jump where more than one foot leaves the ground or 

more than 10 steps/rearing and any of the reactions in 

#2 
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4.4.10 Correlation analysis 

The relationship between behavioural reactivity score of each horse and 

increase in heart rate (bpm) from baseline rate to maximum rate post 

presentation of aversive stimuli was investigated (Spearman’s Rank Order 

Correlation). In addition, the relationship between behavioural reactivity score 

and increase in salivary cortisol from baseline to maximum value (ng/ml) for 

each horse was investigated (Spearman’s Rank Order Correlation).  

 

 

 
4.5 Results 

  
4.5.1 Infrared Thermography 

 

The one available continuous thermal recording revealed eye temperature 

immediately decreased by 1.8°C from 34.4°C to 32.6°C within one second 

post presentation of aversive stimulus and then increased by 1.1°C to 33.7°C 

(Figure 4.2). The behavioural response of this one horse was atypical as it 

displayed limited evasive movement when compared with the other study 

horses. Eye temperature returned to basal level within four seconds post 

presentation of the aversive stimulus and remained at basal level for the 

duration of the recording. 
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Figure 4.2 Change in eye temperature for one horse over four second 

recording period. Marker (*) shows point of presentation of aversive stimulus. 
Frame speed was 23 frames per second. 

 
 

 

The results of the one way repeated mesures ANOVA revealed no significant 

effect of time on eye temperature  over the ten sampling points for the static 

thermal images (Wilks’ Lambda = 0.01, F (9,1) = 9.5,  p= 0.247). The means 

and standard deviations are presented in Table 4.2.  
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Table 4.2 Descriptive statistics for eye temperature across the ten sampling 
time points for ten horses 

 

 

 

 

 

 

 

 

 

 

 

4.5.2 Salivary Cortisol 

The results of the Friedman Test indicated that there was a statistically 

significant effect of time on salivary cortisol across the nine sampling time 

points, X2 (8, n=5)= 15.907, p=0.04. Pre and post stressor cortisol levels for 

each horse are presented in Table 4.3. A Wilcoxon Signed Rank test revealed 

that the greatest effect of time on salivary cortisol levels was between five 

and ten minutes post presentation of the aversive stimulus although this was 

not significant (p= 0.138). Figure 4.3 shows the mean salivary cortisol from 

the five available data sets for each sampling time point. See Appendix 6 for 

individual data which also details the large difference in basal levels and 

magnitude of increase in salivary cortisol. 

 

 

 
 

 

 
 

 
 

Time Mean 
Temperature (°C) 

Standard 
Deviation 

1 35.8 1.89 

2 35.2 1.69 

3 35.5 1.04 

4 35 0.96 

5 34.9 0.93 

6 34.8 1.08 

7 34.8 1.05 

8 34.8 1.15 

9 34.3 1.36 

10 34.4 1.51 
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Table 4.3 Salivary cortisol levels (ng/ml) pre stressor, maximum salivary 
cortisol post stressor (magnitude of increase) and time taken to reach 

maximum value for the five available hormonal profiles. Pre stressor salivary 
cortisol was calculated by taking the mean of the two pre stressor samples. 

 

Horse Pre stressor 
salivary cortisol 

(ng/ml) 

Maximum 
post stressor 

salivary 
cortisol 

(ng/ml) 

Time to maximum post 
stressor salivary cortisol 

(mins) 

1 5 8 (3) 15 

2 12.1 21 (8.9) 20 

3 2 14.3 (12.3) 15 

4 11.9 81.5 (69.6) 30 

5 4.5 17.1 (12.6) 20 

 

 

  

 
Figure 4.3  Mean salivary cortisol (ng/ml)(±SD) of five available hormonal 

data sets for each sampling time point. Marker (  ) indicates point of 
presentation of aversive stimulus. 
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4.5.3 Heart Rate 
 

The results of the Friedman Test indicate that there was a statistically 

significant effect of time on heart rate X2 (9, n=31) = 237.9  (p<.0001). Mean 

heart rate of all horses was plotted against time. Figure 4.4 clearly shows the 

increase in heart rate (bpm) occurs immediately post presentation of the 

aversive stimulus. Appendix 6 details the individual heart rate profiles for 

each horse and highlights the variation in baseline measures. 

 

 
Figure 4.4 Mean heart rate (bpm)(±SD) of all horses recorded every twenty 
seconds from five minutes pre presentation of aversive stimulus to five 

minutes post presentation of aversive stimulus. Marker (  ) indicates point of 

presentation of aversive stimulus. 
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4.5.4 Behavioural response 
 

A mean reactivity score was calculated for each horse from the fourteen 

scores assigned by Equine BSc undergraduate students. Table 4.4 details the 

descriptive statistics for the behavioural scores attributed to each horse. 

Horse number one is the animal that displayed minimal flight behaviour and a 

continuous thermal recording was able to be captured. This horse is known to 

be compliant with handling and has been described as having a calm 

temperament. Horse number four displayed the greatest behavioural reaction 

to the aversive stimulus. This horse has a nervous temperament and can 

often be difficult to handle. All horses showed some behavioural response and 

movement away from the aversive stimulus apart from horse number one 

who displayed elevated head carriage but did not move away.  

 

Table 4.4 Descriptive statistics for reactivity score assigned by fourteen 
observers for each horse. Higher scores relate to increased activity level 

 

Horse 
 

Mean Score Standard 
Deviation 

1 

 

1.3 0.5 

2 

 

4 0 

3 
 

2.9 0.4 

4 

 

5 0 

5 
 

3.1 0.3 

6 

 

2.9 0.3 

7 
 

2.1 0.3 

8 

 

4.1 0.3 

9 
 

4 0 

10 

 

3 0 
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4.5.5 Correlations. 
 

The relationship between change in salivary cortisol from pre presentation of 

aversive stimulus to maximum level and mean reactivity score for each horse 

(n=6) was investigated using Spearman’s Rank Order Correlation. There was 

a strong positive correlation (Figure 4.5) between the two variables, (r=.812, 

p=.05) with high levels of salivary cortisol associated with high behavioural 

reactivity. 

 

 

 
Figure 4.5. Relationship between change in salivary cortisol (ng/ml) from pre 

presentation of aversive stimulus to maximum level and mean reactivity score 

for each horse. Pre stressor salivary cortisol level was calculated by taking the 
mean of the two pre presentation samples. Data is shown from five horses 

with complete hormonal profiles and one horse with hormonal data available 
up to 15 minutes post stressor (*) (Increase in salivary cortisol 12.6ng/ml, 

reactivity score, 2.9). 
 

 

The relationship between mean reactivity score and increase in heart rate 

from basal level to maximum level post stressor (bpm) for each horse (n=10) 

was investigated using Spearman’s Rank Order Correlation. There was a 

strong positive correlation (Figure 4.6) between the two variables, r=0.694 , 

p=0.038 with a high reactivity score associated with a large increase in heart 

rate. Table 4.5 presents the reactivity score for each horse and the 

corresponding increase in heart rate from basal levels.  
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Figure 4.6 Relationship between mean reactivity score and increase in heart 

rate from basal level to maximum level (bpm) for each horse 

 

 

 

 
Table 4.5 Reactivity score and increase in heart rate from basal level to 

maximum for each horse.  
 

Horse Mean 

reactivity 

Score 

Increase in heart rate 

from basal level 

(bpm) 

1 1.3 13 

2 4 65 

3 2.9 62 

4 5 118 

5 3.1 125 

6 2.9 77 

7 2.1 30 

8 4.1 83 

9 4 58 

10 3 37 

 

 

 
4.5.6 Ambient temperature 

 

Ambient temperature fluctuated from 11°C to 23°C throughout the course of 

the day. Temperature changed a minimum of 1°C and a maximum of 8°C 

during the course of each horse’s treatment.  
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4.6 Discussion 

 
Due to the flight behaviour of the horses upon presentation of the aversive 

stimulus and the fixed position of the thermal video camera it was only 

possible to capture acute thermal response of the eye to the aversive stimulus 

in one horse. Restraining the horses to prevent movement would have caused 

stress in itself and assessment of behavioural reactivity would have been 

prevented. A decrease in eye temperature of 1.8°C was recorded for this one 

horse which is consistent with the drop in eye temperature found following 

acute fright (Schaefer et al., 2006) and disbudding (Stewart et al., 2008) in 

cattle. The magnitude of the decrease in eye temperature was also consistent 

with the drop in nasal temperature in monkeys that were threatened by a 

handler (Nakayama et al., 2004). Eye temperature of the one study horse 

then increased by 1.1°C back to basal level however it did not mirror the 

increase above basal levels reported in the disbudded cows (Stewart et al., 

2008). Data were from one study horse that was assigned the lowest 

reactivity score. Its behaviour upon presentation of the aversive stimulus was 

atypical for the horse and the magnitude of increase in salivary cortisol was 

also the lowest. This may suggest that eye temperature is a more sensitive 

measure of the stress response. The reduced physiological response and 

behavioural reaction may indicate that the horse did not perceive the 

procedure to be as stressful as the other study horses and this could account 

for the absence of any subsequent rise in eye temperature. The static thermal 

images for this study did not reveal any change in eye temperature over time. 

This, in addition to absence of any increase above basal levels in the 

continuous recording, may be due to the acute nature and immediate removal 

of the stressor being interpreted by the horse as the passing of danger rather 

than the disbudding procedure which is longer in duration and indicated pain 

not fright, therefore the stress response was no longer stimulated. Nakayama 



 114 

et al. (2004) reports that nasal temperature started its descent between 10 

and 110 seconds post onset of confrontation in all monkeys and had returned 

to pre stressor levels within four minutes post removal of confrontation 

therefore at the time of the first post stress static thermal image for this 

study any changes in eye temperature had possibly dissipated. This theory is 

supported by Stewart et al. (2007) who state that it is possible that studies 

which have only reported increases in temperature in response to acute 

stress, may have failed to detect an initial decrease in eye temperature due to 

its instantaneous nature. It is likely that thermal sampling was too infrequent 

or not constant and therefore could not capture such an immediate 

temperature change. 

Ambient temperature was recorded in order to better interpret any thermal 

changes of the eye, however static thermal images revealed no change in eye 

temperature across the ten sampling time points. The decrease in eye 

temperature in the one continuous recording available was of an acute nature 

(one second) and measurement of ambient temperature was limited to every 

five minutes. It is therefore hard to attribute any change in eye temperature 

to change in ambient temperature and a more accurate method of recording 

ambient temperature must be used for future studies. 

 Salivary cortisol was significantly (p=0.04) affected by time with levels 

peaking between fifteen and twenty minutes post stressor in all but one 

horse, which displayed maximum cortisol levels thirty minutes post stressor. 

The time to maximum cortisol level in this study is consistent with previous 

work that reports a peak in cortisol between ten and thirty minutes post 

stressor (Colborn et al., 1991, Shanahan, 2003, Stewart et al., 2007).  The 

highest cortisol level displayed was 81.5ng/ml which was an increase of 

69.6ng/ml in horse number 4 and is similar to the increase in salivary cortisol 

reported by Moon et al. (2004) in abruptly weaned foals. The remaining 

cortisol levels and magnitudes of increase were similar to the change in 
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cortisol reported in cows during disbudding (Stewart et al., 2007). Two horses 

displayed an increase in cortisol prior to the presentation of the aversive 

stimulus (Horse 2 and 5, Appendix 6) which may be due to anticipatory 

stress. In both horses cortisol increased post stressor. 

The resting heart rate of a horse is between 38 to 42 beats per minute 

(Hayes, 2002) and although presentation of the aversive stimulus evoked an 

immediate and statistically significant (p<.0001) cardiac response in all 

horses, mean pre stressor heart rate was greater than normal resting levels 

at 70 beats per minute. This is likely to be due to a combination of exercise 

from the horses walking a short distance to reach the barn and anxiety of 

certain horses due to unfamiliar equipment, a change in routine and the 

entrance of the person into the barn carrying the aversive stimulus.  

 It was clear from the behavioural reactivity score that all horses displayed 

some degree of evasive behaviour and therefore found the procedure 

aversive. Individual differences between horses in reactivity may be 

associated with temperament; breeding and past experience (Visser et al., 

2003).  

 There was a positive relationship between increase in salivary cortisol and 

reactivity of the study horses. The positive relationship between increase in 

salivary cortisol and reactivity score supports the findings of Hughes et al. 

(2006), who also reported that horses with a high behavioural score showed a 

trend toward a statistically significant increase in salivary cortisol post 

stressor.  
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4.7 Conclusion 

The physiological and behavioural response of the study horses indicates they 

found the test procedure to be stressful, however due to the species specific 

flight behaviour it was only possible to capture thermal change of the eye in 

all one horse. Data from the one available thermal recording revealed the 

immediate decrease and then increase back to basal level in eye temperature 

as a response to acute aversive stimuli, however there was no increase above 

basal levels as reported in existing work in other species.  

 The timing and magnitude of the change in salivary cortisol were similar to 

those reported in past work. All horses displayed an increase in salivary 

cortisol post presentation of the acute aversive stimulus although the 

magnitude of the rise in cortisol levels varied between horses.  

 Static thermal images showed no effect of time over the duration of the 

study, however it is possible that the acute nature of the stressor resulted in 

any thermal response of the eye having dissipated before thermal monitoring 

began. It may be that the immediate sympathetic response that prepares the 

horse to flee from a stressful situation quickly subsides whereas the slower 

activation of the HPA axis to further support the flight response is also slower 

to dissipate. Although investigation of the acute response of the equine eye to 

aversive stimuli was necessary to see whether results of work in other species 

were mirrored in the horse, it seems that the use of IRT to monitor acute 

stress is not appropriate for a flight species. Furthermore, situations that 

present the domestic horse with an acute challenge are limited and the 

potentially stressful situations that domestication has exposed the horse to 

and that owners and trainers can influence are of longer duration than ten 

seconds. If IRT is to be validated as a tool to monitor how horses perceive 

these procedures it is necessary to investigate thermal response to potentially 

stressful situations, some of which have been discussed in chapter 1., that are 

of longer duration and are more specific to the horse.  
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Chapter 5 Study C; Investigation into the use of IRT as a tool to 
assess thermal change associated with the physiological response to 

short term stress 
 

 
5.1 Introduction  

 

The startle response study revealed that IRT is an inappropriate measure to 

monitor acute stress in a flight species. Data collection was difficult due to the 

evasive behavioural response of the horse and the application of monitoring 

acute stress is limited although data collected from one horse suggests the 

response of eye temperature to acute stress is similar to that of other species. 

The management practices and training procedures that may potentially be 

stressful to the horse and require objective assessment are of longer duration. 

In order to validate IRT as a non-invasive measure of stress and apply this to 

equine welfare it was logical to investigate any potential thermal response to 

a stressor of longer duration and in a situation more relevant to how domestic 

horses are managed.  

Clipping was used as a potentially stressful husbandry procedure in order to 

investigate the thermal response of the equine eye to a short term stressor 

and compare this against currently accepted measures. Clipping was chosen 

as it would allow an immediate, objective and non-invasive way of assessing 

how aversive the horses found the procedure, particularly in trained horses 

who may not show an overt behavioural response. 

Clipping is a routine husbandry practice necessary for the welfare of ridden 

horses. In the UK by the end of October a horse will have grown a 

considerably longer and denser winter coat. A horse carrying this thick coat 

will quickly overheat when exercised and as a mechanism of thermoregulation 

it will sweat to dissipate this excess heat. This can lead to discomfort whilst 

being exercised which in turn can lead to problems maintaining fitness. 

Keeping the horse clean and free from parasites is also difficult with a long 

winter coat and so it is removed and artificial warmth is provided through 
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specialised rugs. Although this procedure is totally non-invasive and causes 

no physical harm to the horse, the noise and feel of the clippers seem to 

cause stress to some horses whilst others appear unaffected (Gough, 1999).  

 

5.1.1 Preliminary study 

A preliminary study was carried out to investigate the thermal and hormonal 

response of a horse to a short term potentially aversive procedure (Appendix 

7). This small preliminary study revealed an increase in eye temperature and 

salivary cortisol in response to sham clipping. The increase in both eye 

temperature and salivary cortisol warranted further investigation using a 

larger study into thermal and hormonal response of the eye to a short term 

husbandry practice.  

 

5.2 Aims and objectives 

Aim 

 Determine whether there is a thermal response to short term stress in 

the horse 

Objectives 

 Investigate the thermal response of the horse to the short term 

potentially stressful husbandry procedure of clipping 

 Compare any thermal response with the currently accepted indicators 

of stress (salivary cortisol and behavioural assessment).  
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5.3 Methodology 

Data record sheets were produced for each horse and used to hand log when 

physiological measures had been taken. This ensured all necessary samples 

were carried out for each horse. Data was then transferred from the record 

sheets into Excel spreadsheets at a later date.  

 

5.3.1 Animals and husbandry 

Horses (n=10) were a mix of sex, age and breed representative of horses 

found in a riding school. Horses were chosen by the manager of Brackenhurst 

equestrian centre and included five who were consistently behaviourally 

compliant with the clipping procedure and five known to consistently show 

behavioural signs of stress during clipping. Horses were managed as 

previously discussed and details of the individual horses can be found in 

section 2.2.  

  

5.3.2 Test area. 

Clipping was carried out in an enclosed barn familiar to all of the horses but 

not previously associated with the clipping procedure. The layout of the barn 

has been previously described in section 4.2.2 

 

5.3.3 Test procedure 

Each horse was led the short distance from its stable by the same familiar 

handler and tied up using a conventional head collar and lead rope in the 

barn. The horses were tied so they could not escape the barn but were still 

able to move around in the immediate area as is usual during clipping. As it is 

possible that exercise and anticipation may have contributed to pre stressor 

changes in physiological measures during the startle response study, each 

horse was allowed to acclimatise to the new environment for ten minutes and 

the first physiological measure (ten minutes pre sham clipping) did not start 
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until after this period. The horse was then exposed to ten minutes of sham 

clipping using guarded electric clippers (Lister, UK) with the blades removed. 

Clippers were placed on the cranial crest of the neck (two minutes each side), 

flanks (two minute each side) and each front leg (one minute per leg). The 

horses could feel and hear the clippers but no hair was removed. Both the 

handler and the operator remained silent for the duration of the sham clipping 

and at no time verbally or physically comforted, coaxed or rewarded the 

horse. 

 The timing for taking samples was altered to reflect the time taken for 

physiological measures to peak and return to basal level observed so far 

during the investigation into the use of IRT as a tool to assess thermal change 

associated with the physiological response to acute stress and the associated 

pilot work. Thermal images were taken every five minutes from ten minutes 

pre onset of clipping until thirty minutes post onset of clipping. The primary 

anatomical area under investigation was the eye as this had been reported to 

be a more consistent measure of thermal change (Cook et al., 2006, Stewart 

et al., 2008) and had indeed increased in response to a potentially distressing 

procedure during pilot work. Eye temperature also avoided the confounding 

variables of hair and dirt reported in past work (Cook et al., 2001). The 

investigation into thermal change of ear temperature in response to a 

distressing situation was also included as there is evidence that ear pinna 

temperature does alter in stressful situations in other species (Ingram et al., 

2002) and the results of the pilot study involving one horse was not sufficient 

to rule this out as an option. Saliva was sampled for cortisol analysis at ten 

and five minutes pre clip and then every ten minutes until forty minutes post 

onset of clipping. The larger time difference between saliva samples compared 

to five minute intervals for thermal images was necessary due to time and 

human resources available at the time of the study. These timing parameters 

were considered appropriate as work to date had shown the response time of 
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salivary cortisol post stressor to be ten minutes and the maximum time to 

return to basal levels thirty minutes. However, the extended saliva sampling 

time was chosen to allow for any potential changes in cortisol response times 

especially as times reported so far were as a result of an acute (ten second) 

stressor and the stressor in this study would remain for a longer duration.  

 Horses involved in the study were individually sham clipped for ten minutes 

duration and were not able to see or hear the procedure being carried out on 

any of the other horses.  

 

5.3.4 Repeat study with no clipping  

A repeat study was carried out on a separate day using the same horses and 

same order of testing and involved the same experimental design. However, 

the potentially stressful stimulus (presence of the clippers) was not included. 

This second study was carried out to ensure that any physiological changes 

and behavioural response observed during the sham clipping treatment was 

due to the presence of the clippers. 

 

 

 

5.4 Data collection and analysis for sham clipping and no clipping 

treatments 

 

5.4.1 Infrared thermography data collection  

Static thermal images were captured using the method previously discussed 

in chapter 2.2.2. Images were captured every five minutes from five minutes 

pre onset of sham clipping until thirty minutes post onset of sham clipping. 

Sham clipping began immediately following the second pre clip sample. 
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5.4.2 Infrared Thermography data analysis 

Temperature was extracted from the thermal images as previously discussed. 

Mean temperature of left and right eye and left and right ear were calculated 

for each horse for each time point. Initially eye and ear temperature for each 

horse for each time point was plotted against time using Excel software to 

investigate any fluctuations in temperature over the study period. Distribution 

of data for both eye and ear temperature varied significantly from normal 

(Kolmogorov-Smirnov Test).  A Friedman test was conducted to examine the 

effect of time on both eye and ear temperature over the duration of the study 

and the time point with the greatest effect on eye and ear temperature was 

also identified (Wilcoxon Signed Rank Test). A Mann Whitney-U Test was also 

carried out to determine any differences in eye and ear temperature between 

the compliant and non compliant groups. Thermal data for the no clipping 

treatment was managed in the same way. 

 

5.4.3 Salivary cortisol data collection 

Saliva was sampled for cortisol analysis ten minutes and five minutes pre 

sham clipping and then every ten minutes thereafter until thirty minutes post 

onset of sham clipping. Saliva was collected, analysed and processed using 

the method previously discussed in chapter 2.2.1.  

 

5.4.4 Salivary cortisol data analysis 

Initially salivary cortisol for each horse for each time point was plotted against 

time using Excel software to investigate any fluctuations in cortisol over the 

study period. Distribution of data varied significantly from normal 

(Kolmogorov-Smirnov Test). A Friedman test was conducted to examine the 

effect of time on salivary cortisol over the duration of the study and the time 

where salivary cortisol peaked was also investigated (Wilcoxon Signed Rank 
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Test). A Mann Whitney-U Test was carried out to determine any differences in 

salivary cortisol between the compliant and non compliant groups. Hormonal 

data for the no clipping treatment was managed in the same way. 

 

5.4.5 Heart rate data collection 

Heart rate was logged every five minutes from five minutes pre onset of sham 

clipping until thirty minutes post onset of sham clipping using a heart rate 

monitor (Polar Equine RS800G3). Data was recorded, stored and uploaded to 

analysis software as previously discussed in chapter 2. 

 

5.4.6 Heart rate data analysis 

Mean heart rate for each sampling time point for the compliant and non 

compliant groups was calculated using Excel. Distribution of heart rate data 

during the sham clipping treatment was normal (Kolmogorov-Smirnov, 

p=0.250 non compliant horses, p=0.246 compliant horses) therefore an 

independent samples t-test was conducted to compare the mean heart rates 

of the compliant and non compliant horses. Distribution of heart rate data for 

the no clipping treatment varied significantly from normal (Kolmogorov-

Smirnov, p=0.001 non compliant horses, p=0.008 compliant horses) 

Therefore a Mann-Whitney U Test was conducted to compare the mean heart 

rates of the compliant and non compliant horses.  

 

5.4.7 Core temperature data collection 

Core temperature was taken every five minutes from five minutes pre onset 

of sham clipping until thirty minutes post onset of sham clipping using the 

method previously discussed in chapter 2. Data was recorded by hand on the 

horses log sheet and then transferred to an Excel spreadsheet post study.  
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5.4.8 Ambient temperature data collection 

Ambient temperature was monitored for the duration of the study (Lascar EL-

USB-2). The temperature logger was set to record at five minute intervals 

that corresponded with the sampling time of the thermal images. This was 

checked and altered if necessary between each horse through the use of a 

laptop computer in the test area. Data was uploaded and processed using the 

methods previously discussed in chapter 2.2.2.2 

 

5.4.9 Behavioural data collection 

Behaviour was recorded using a hand held video camera mounted on a tripod 

and placed adjacent to the horse. Recording the study allowed objective 

behavioural analysis to be carried out post data collection. Footage was 

uploaded to a PC using a USB interface and played back for assessment 

(Windows media player for Windows Xp) at a later date. 

 The video recording for each horse was divided into three stages which were 

pre sham clipping, during sham clipping and post sham clipping (the no 

clipping study video footage was also split into stages that mirrored the 

timings of the sham clipping session). A five minute sample from each stage 

for each horse was extracted from the footage. The pre sham clipping footage 

was from the first five minutes of the recording which started as soon as the 

horse was tied in the barn, the during sham clipping footage was from the 

first five minutes of sham clipping and the post sham clipping footage was 

from the first five minutes after sham clipping had ceased. Five minutes was 

chosen for the duration of the clip to avoid interference from saliva samples 

and thermal images being taken.   

 For each stage, each horse was assigned an activity score. Scores were first 

attributed to a behavioural definition according to degree of avoidance or 

flight behaviour (Table 5.1) The video was shown to twenty BSc equine 

science students in a blind random order of horses, stage of the session and 
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treatment (sham clip or no clip) and a score assigned to each horse for each 

stage. A mean activity score for the compliant and non-compliant groups was 

calculated for pre-clip, during clip and post clip for the sham clipping session 

and the no clipping session. 

 

 
Table 5.1 Activity score relating to avoidance or flight behaviour with scores 

ranging from 1 (low degree of activity) to 5 (high degree of activity). The 
score system was used for both sham clipping treatment and no clipping 

treatment. 
 

Score Behavioural definition 

1 Very relaxed stance, lowered head, relaxed lower lip, 

eyes half closed, ears turned to side. 

2 Relaxed stance, absence of restless behaviour, very little 

movement. 

3 Neutral stance, absence of whole body movement but 

vigilant head and ears. 

4 Active with some restless behaviour, movement of head, 

neck and ears including elevated head, snorting.  

5 High degree of activity, very restless, raising of the head, 

whole body movement including feet. 

 

 

5.4.10 Behavioural data analysis 

Mean activity score from the twenty responses for pre sham clipping, during 

sham clipping and post sham clipping was calculated for each horse in 

addition to a mean score for each segment for all compliant horses and all 

non compliant horses. This was done for both the sham clipping treatment 

and the no clipping treatment. Following a Kolmogorov-Smirnov test a Mann 

Whitney-U test was conducted to investigate any difference in activity level 

for pre, during and post clip scores in the compliant and non compliant 

horses. Within the compliant group a Wilcoxon Signed Rank Test was 

conducted to investigate any difference in activity level between the pre and 

during stage, the during and post stage and the pre and post stage behaviour 

score Within the non compliant group a Wilcoxon Signed Rank Test was 
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conducted to investigate any difference in activity level between the pre and 

during stage, the during and post stage and the pre and post stage behaviour 

score. The tests were repeated for the no clipping study data. 

 

 
5.4.11 Correlation Analysis 

 
Change in eye temperature from baseline to each subsequent sample for each 

horse and change in ear temperature from baseline to each subsequent 

sample for each horse was calculated and the relationship between the two 

parameters investigated (Spearman’s Rank Order Correlation). In addition 

change in eye temperature from baseline to maximum temperature and 

change in salivary cortisol from baseline to maximum was calculated for each 

horse and a Spearman’s Rank Order Correlation was used to investigate any 

relationship between the two physiological variables.  

 

 
 

5.5 Data analysis for comparison of sham clipping and no clipping 

treatments 

Data from the horses were analysed together rather than as compliant and 

non compliant groups as there was found to be no significant difference in 

physiological measures between the two groups during the sham clipping and 

no clipping treatments. 
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5.5.1 Infrared thermography 
 

As the same horses were involved in both studies and therefore measured 

using the same scale on two separate occasions a Wilcoxon Signed Rank Test 

was used to investigate any difference in eye temperature and ear 

temperature between the no clipping treatment and the sham clipping 

treatment.  

 

 
 

5.5.2 Salivary cortisol 

 
A Wilcoxon Signed Rank Test was used to investigate any difference in 

salivary cortisol between the no clipping treatment and the sham clipping 

treatment.  

 

5.5.3 Heart rate 

A Wilcoxon signed rank test was conducted to investigate any difference in 

heart rate of the non compliant horses between the sham clipping and no 

clipping treatment and the heart rates of the compliant horses between the 

sham clipping and no clipping treatment.  

 

5.5.4 Summary of comparisons of data 

1. Sham clipping treatment – comparison of physiological and behavioural 

measures between the compliant and non compliant horses 

 

2. No clipping treatment - comparison of physiological and behavioural 

measures between the compliant and non compliant horses 

 

3. Comparison of sham clipping and no clipping treatment – All horses 

were treated as a whole group for comparison of IRT and cortisol between 

sham clipping and no clipping treatments as there were no significant 

differences in these parameters between compliant and non compliant 

animals in either of the studies (1 and 2).  
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5.6 Results  

5.6.1 Infrared thermography sham clipping 

The results of the Friedman test reveal a statistically significant effect of time 

(X2 (2, n= 10) = 31.02, p<0.001) on eye temperature in all horses with eye 

temperature increasing during the sham clipping stage. There was no 

significant difference in eye temperature between the compliant and non 

compliant groups (Mann Whitney-U) however mean eye temperature of the 

non compliant horses was elevated above eye temperature of the compliant 

horses from the beginning of the study until sham clipping ceased (Figure 

5.1). Eye temperature increased over the duration of the sham clipping 

treatment in all horses with the greatest effect of time at five minutes post 

onset of sham clip (Wilcoxon Signed Rank Test p=0.008). Mean eye 

temperature peaked at ten minutes post onset of sham clip and started to 

decline when sham clipping ceased however it had not returned to basal level 

by the end of the study duration. The means and standard deviations are 

presented in Table 5.2 

 A Friedman Test was conducted to investigate the effect of sham clipping on 

ear temperature over the duration of the sham clipping treatment. There was 

a statistically significant effect of time on ear temperature in all horses 

(p<0.001) during the sham clipping stage, with no difference in ear 

temperature between the compliant and non compliant groups (Mann 

Whitney-U), however ear temperature of the non compliant horses was lower 

than that of the compliant horses for the duration of the study (Figure 5.2). 

Ear temperature decreased over the duration of the sham clipping treatment 

in all horses with the greatest effect of time at five minutes post onset of clip 

(Wilcoxon Signed Rank Test p=0.005). Mean ear temperature began to return 

to basal level when clipping ceased however it had not returned to basal level 

by the end of the study duration. Figure 5.3 shows the change in mean eye 

temperature and mean ear temperature over the duration of the clipping 
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treatment. Details of the change in eye temperature for each individual horse 

can be found in Table 5.3 and details of the change in ear temperature for 

each individual horse can be found in Table 5.4. There was a mean (±SD) 

increase in eye temperature of 3.6°C (± 5.2°C) and a mean decrease in ear 

temperature of 7.4°C (± 9.9°C). 

 

 

Figure 5.1 Mean (±SD) eye temperature (°C) of the compliant and non 
compliant horses over the duration of the sham clipping treatment. The arrow 

marker indicates when sham clipping occurred starting immediately after the 
second pre clip sample and lasting ten minutes. 
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Figure 5.2 Mean (±SD) ear temperature (°C) of the compliant and non 
compliant horses over the duration of the sham clipping treatment. The arrow 

marker indicates when sham clipping occurred starting immediately after the 
second pre clip sample and lasting ten minutes. 

 
 

 

 

Figure 5.3. Mean (±SD) eye temperature (°C) and mean ear temperature 
(°C) for all horses (n=10) over the duration of the sham clipping treatment. 

The arrow marker indicates where sham clipping occurred starting 
immediately after the second pre clip sample and lasting ten minutes. 
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Table 5.2 Descriptive statistics for eye and ear temperature across the eight 
sampling points during the clipping treatment.  

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

Table 5.3 Eye temperature data for individual horses for sham clipping 
treatment. Data includes horse with behavioural group compliant (C) or non 

compliant (NC), pre stressor eye temperature, maximum eye temperature 
(with change in temperature),  time to maximum eye temperature post onset 

of sham clipping and time to return to basal temperature. A * indicates that 
eye temperature had not returned to basal levels by the end of the study. Pre 

stress eye temperature was calculated as a mean of the two pre stress 
measures 

 
 

Horse Pre stressor 
eye 

temperature 

(°C) 

Maximum eye 
temperature 

(°C)  

Time to 
maximum eye 
temperature 

(mins) 

Time to 
return to 

basal levels 

(mins) 

Annie (NC) 

 

33 36.8 (3.8) 5 10 

Angus (NC) 

 

30.9 34.7 (3.8) 5 * 

Conan (NC) 

 

29.3 31.7 (2.4) 20 * 

Desmond 
(NC) 

31.2 32.7 (1.5) 5 10 

Harriet (NC) 
 

33.3 35.9 (2.6) 5 5 

Beau (C) 
 

29 34.5 (5.5) 5 * 

Kitkat (C) 
 

28.7 35.4 (6.7) 5 * 

Pie (C) 
 

27.3 33.2 (5.9) 5 * 

Tosca (C) 
 

34.1 35.8 (1.7) 5 * 

Visi (C) 
 

32.9 34.6 (1.7) 25 * 

Time Mean eye 
temperature 

(°C) 

Standard 
deviation 

Mean ear 
temperature 

(°C) 

Standard 
deviation 

1 30.8 2.5 19.4 5.5 

2 32.6 1.8 16.7 5.7 

3 33.7 1.5 13.3 6.2 

4 34.4 1.7 12.2 7.1 

5 32.8 1.4 15.1 6.5 

6 32.4 1.8 16.3 6.5 

7 32.5 1.9 17.3 5.9 

8 32 2.3 17 5.6 
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Table 5.4 Ear temperature data for individual horses for sham clipping 
treatment. Data includes horse with behavioural group compliant (C) or non 

compliant (NC), pre stressor ear temperature, minimum ear temperature 
(with change in temperature),  time to minimum ear temperature post onset 

of sham clipping and time to return to basal temperatures from minimum. A * 
indicates that ear temperature had not returned to basal levels by the end of 

the study. Pre stress ear temperature was calculated as a mean of the two 

pre stress measures 
 

 

 
 

 
 

5.6.2 Infrared thermography no clipping treatment 

 
 

Distribution of data was normal (Kolmogorov-Smirnov test), however non 

parametric tests were applied in order to compare results of the no clipping 

treatment to the sham clipping treatment which had data that varied 

significantly from normal. The results of the Friedman test indicated there was 

no significant effect of time on eye X2  (7, n = 10) =4.837, p=0.68  or ear  

temperature X2  (7, n = 10) = 10.901, p=0.14   during the no clipping 

Horse Pre stressor 

ear 
temperature 

(°C) 

Minimum 

ear 
temperature 

(°C) 

Time to 

minimum 
ear 

temperature 
(mins) 

Time to 

return to 
basal levels 

(mins) 

Annie (NC) 

 

13.6 1.8 (11.7) 5 5 

Angus (NC) 
 

18.1 8.6 (9.5) 10 15 

Conan (NC) 

 

15.6 10 (5.6) 5 * 

Desmond 
(NC) 

 

12.4 8.3 (4.1) 15 10 

Harriet (NC) 
 

21.4 15 (6.4) 5 * 

Beau (C) 

 

21 9.1 (11.9) 5 * 

Kitkat (C) 

 

19.1 9.9 (9.2) 5 * 

Pie (C) 
 

15.3 5.6 (9.7) 5 * 

Tosca (C) 

 

24.1 22.1 (2) 20 * 

Visi (C) 
 

27 23.1 (3.9) 5 15 
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treatment There was also no significant difference in eye and ear temperature 

between the compliant and non compliant horses (Mann Whitney-U test).  

 Figure 5.4 displays mean eye temperature and ear temperature for all horses 

across the duration of the no clipping treatment. The means and standard 

deviations of eye and ear temperature for the duration of the no clipping 

treatment are presented in Table 5.5.  

 

 

 
 

Figure 5.4 Mean (±SD) eye temperature (°C) and mean ear temperature (°C) 

of all horses over the duration of the no clipping treatment. The arrow marker 
indicates when sham clipping occurred during the sham clipping treatment 

starting immediately after the second pre clip sample and lasting ten minutes. 
The temperature scales on the Y axis mirror the scales used to display eye 

and ear temperature change in the clipping treatment (Figure 5.7) as close 
as possible to allow clearer comparison between sham clipping and no clipping 

studies. 
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Table 5.5 Descriptive statistics for eye and ear temperature across the eight 

sampling points during the no clipping treatment.  
 

Time Mean eye 

temperature 
(°C) 

Standard 

deviation 

Mean ear 

temperature 
(°C) 

Standard 

deviation 

1 36.8 1.8 24.3 3.0 

2 36.4 1.3 25.3 3.4 

3 36.4 2.0 25.2 3.6 

4 35.9 2.0 25.6 3.4 

5 34.9 2.9 25.2 3.5 

6 35.2 2.6 25.7 2.8 

7 35.3 2.6 25.2 2.9 

8 35 2.5 25.5 3.2 

 
 

 

 
5.6.3 Salivary cortisol sham clipping treatment 

 
The results of the Friedman Test indicated there was a statistically significant 

effect of time on cortisol X2 (5, n= 10)= 18.214, p=0.003 with cortisol 

increasing during the sham clipping stage. Mean and standard deviation for 

each sampling time point over the duration of the sham clipping treatment are 

presented in Table 5.6. There was no significant difference in salivary cortisol 

between the compliant and non compliant groups (Mann Whitney-U) (Figure 

5.5). Mean salivary cortisol increased over the duration of the sham clipping 

treatment in all horses with the greatest effect of time at twenty minutes post 

onset of sham clip (Wilcoxon Signed Rank Test p=0.05). Mean salivary 

cortisol peaked at twenty minutes post onset of sham clipping and had begun 

to decrease at the final sampling point however it had not returned to basal 

levels by the end of the study.  
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The peak in mean eye temperature ten minutes post onset of sham clip and 

the peak in mean salivary cortisol twenty minutes post onset of sham clip 

resulted in a lag time of ten minutes between the maximum values of both 

physiological parameters (Figure 5.6). 

Details of the change in salivary cortisol for each individual horse can be 

found in Table 5.7. There was a mean increase in salivary cortisol of 

3.43ng/ml (± 1.2ng/ml). 

 

 
Table 5.6 Descriptive statistics for salivary cortisol across the six sampling 

points during the sham clipping treatment.  
 

Time Mean Standard 
Deviation 

1 2.9 0.9 

2 2.7 0.8 

3 2.7 0.9 

4 3.1 1.4 

5 5.3 4.1 

6 4.1 4 
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Figure 5.5 Mean (±SD) salivary cortisol of the compliant and non compliant 

horses over the duration of the sham clipping treatment. The arrow marker 
indicates when sham clipping occurred lasting ten minutes. Samples were 

taken at 10 minutes and five minutes before sham clipping and then every ten 
minutes thereafter 

 

 
 
Figure 5.6 Mean (±SD) eye temperature (°C) and mean salivary cortisol (ng/ml) of all 
horses over duration of the sham clipping treatment. Arrow marker indicates when 
sham clipping occurred lasting ten minutes. A lag time of ten minutes between 
maximum value of both physiological measures can be seen at ten minutes post onset 

of clip for eye temperature and twenty minutes post onset of clip for salivary cortisol  
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Table 5.7 cortisol data for individual horses for sham clipping treatment. Data includes 
horse with behavioural group complaint (C) or non complaint (NC), pre stressor 
salivary cortisol, maximum salivary cortisol (with change),  time to maximum salivary 

cortisol post onset of sham clipping and lag time between peak in eye temperature(ET) 
and peak in salivary cortisol (SC). 

 

 

 
 

5.6.4 Salivary cortisol no clipping treatment 

 
The results of the Friedman Test indicated there was no statistically significant 

change in cortisol over the duration of the no clipping treatment X2 (5, n= 

10)= 3.204 p=0.669. Mean and standard deviation for each sampling time 

point over the duration of the no clipping treatment are presented in Table 

5.8. In addition there was no significant difference in salivary cortisol between 

the compliant and non compliant groups (Mann Whitney-U).  

 

 

 

 

 

 

 

Horse Pre 
stressor SC 

(ng/ml) 

Maximum 
SC 

(ng/ml) 

Time to 
maximum 
SC (mins) 

Lag time 
between ET 

and SC 
Annie (NC) 

 
2.9 7.5 (4.6) 20 10 

Angus (NC) 

 
3.4 6.1 (2.7) 20 10 

Conan (NC) 

 
2.9 3.6 (0.7) 30 10 

Desmond 

(NC) 

 

2.8 3.7 (0.9) 10 5 

Harriet (NC) 

 
2.1 3.7 (1.6) 10 5 

Beau (C) 

 
1.3 5.3 (4) 20 10 

Kitkat (C) 

 
2.7 6.8 (4.1) 20 10 

Pie (C) 

 
3.9 15.6 

(11.7) 

20 10 

Tosca (C) 

 
2.1 2.6 (0.5) 20 5 

Visi (C) 

 
2.1 3.5 (1.4) 30 20 
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Table 5.8 Descriptive statistics for salivary cortisol across the six sampling 

points during the no clipping treatment. The shaded row indicates when sham 
clipping occurred during the sham clipping treatment. 

 

Time Mean Standard 

Deviation 

1 4.2 1.8 

2 4.0 2.5 

3 4.1 1.8 

4 3.5 1.2 

5 3.8 1.8 

6 3.4 1.3 

 

 

 

5.6.5 Heart Rate sham clipping treatment 

An independent samples t-test was conducted to compare the mean heart 

rates for the compliant and non-compliant horses over the duration of the 

sham clipping treatment. There was a significant difference in mean heart rate 

between the compliant (M=35.8, SD=2.3) and non compliant (M=53.6, 

SD=6.1) horses (t (14) = 7.72, p<0.001), with the compliant horses 

displaying consistently lower heart rates throughout the duration of the study 

(Figure 5.7). The magnitude of the differences in the means (mean 

difference= 17.8, 95% CI: 12.8 to 22.7) was large (eta squared = 0.8).  

Mean heart rate in the non compliant horses increased by 20bpm and peaked 

ten minutes post onset of sham clip. Once sham clipping ceased heart rate 

then declined for the remainder of the sampling period however it had not 

returned to basal levels by the end of the study. Mean heart rate of the 

compliant horses remained stable throughout the duration of the study. Table 

5.9 details the descriptive data for the compliant and non-compliant horses. 
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Figure 5.7. Mean heart rate (±SD) (bpm) of the compliant and non compliant 
horses for the duration of the sham clipping treatment. Arrow marker 

indicates when sham clipping occurred. 
 

 
 

 

 
Table 5.9 Descriptive statistics for mean heart rate of compliant and non-

compliant horses during the sham clipping treatment. 
 

Group Mean Standard 

Deviation 

Compliant 
horses 

 

35.8 2.3 

Non 
compliant 

horses 

53.6 6.1 

  
 

 
 

5.6.6 Heart rate no clipping treatment 
 

A Mann-Whitney U test was conducted to compare the mean heart rates for 

the compliant and non-compliant horses. There was no significant difference 

in mean heart rate between the two groups at any sampling time point during 

the duration of the no clipping treatment. Mean heart rate remained within 

the range of 39.8 – 42.8bpm for both the compliant and non compliant horses 

for the duration of the study. Table 5.10 details the descriptive data for all 

horses for the duration of the no clipping treatment. 
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Table 5.10 Descriptive statistics for mean heart rate across the eight sampling 
time points of the no clipping treatment.  

 

Time Mean Standard 
Deviation 

1 

 

40.4 3.4 

2 
 

40.9 3.1 

3 

 

41.1 3.3 

4 
 

41 3.1 

5 

 

42.1 3.4 

6 

 

41.7 2.5 

7 
 

41.4 1.6 

8 

 

40.8 1.0 

 
 

 
5.6.7 Behavioural assessment sham clipping treatment 

 

The results of the Mann Whitney-U Test indicate a significant difference in 

activity level between the compliant and non compliant horses during the pre 

sham clipping video segment (p=0.03) during sham clipping video segment 

(p=0.008) and post sham clipping video segment (p=0.01) with the non 

compliant horses displaying higher activity. The results of the Wilcoxon Signed 

Rank Test show no significant difference in activity between pre (p=0.22), 

during (p=0.42) and post (p=0.28) sham clipping in the compliant horses. 

There was a significant difference in activity level in the non compliant horses 

between pre (p=0.04), during (p=0.04) and post sham clipping (p=0.04) with 

the activity of the non compliant horses increasing at the onset of sham 

clipping (Figure 5.8).  
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Figure 5.8. Mean (±SD) activity score for the compliant and non compliant 
horses for a five minute segment of pre sham clipping, during sham clipping 

and post sham clipping footage during the sham clipping treatment. Non 
compliant horses were significantly more active than compliant during pre 

(p=.03), during (p=.008) and post (p=.01) sham clipping. 
 

 

5.6.8 Behavioural assessment no clipping treatment 

The results of the Mann Whitney-U Test indicate no significant difference in 

activity level between the compliant and non compliant horses during the pre 

sham clipping video segment (p=0.052) during sham clipping video segment 

(p=0.056) and post sham clipping video segment (p=0.056) with the 

compliant and non compliant horses displaying similar activity. The results of 

the Wilcoxon Signed Rank Test show no significant difference in activity 

between pre (p=0.68), during (p=0.63) and post (p=0.66) sham clipping in 

the compliant horses. There was no difference in activity level in the non 

compliant horses pre (p=0.09), during (p=0.2) and post sham clipping 

(p=0.07) (Figure 5.9). All horses were less active during the no clipping 

treatment than the sham clipping treatment but during the sham clipping 

treatment the non compliant horses were more active than the compliant 

horses. 
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Figure 5.9  Mean (±SD) activity score for the compliant and non compliant 
horses for a five minute segment of pre sham clipping, during sham clipping 

and post sham clipping footage during the no clipping treatment. 
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5.6.9 Correlations between measures for sham clipping treatment 
 

The relationship between change in eye temperature from baseline to each 

subsequent measure for each horse and change in ear temperature from 

baseline to each subsequent measure for each horse was investigated using 

Spearman’s Rank Order Correlation. There was a strong negative relationship 

between the two variables (r=-.568, P=0.000); as eye temperature 

increased, ear temperature decreased (Figure 5.10). 

 
Figure 5.10 Relationship between change in eye temperature (°C) from 
baseline to each subsequent measure for each horse and change in ear 

temperature (°C)  from baseline to each subsequent measure for each horse 

during the sham clipping treatment. 
 

 

The relationship between change in eye temperature from baseline to 

maximum temperature and change in salivary cortisol from baseline to 

maximum value was calculated for each horse. Data was managed in this way 

rather than as in the correlation analysis of eye and ear temperature due to 

the lag time between the two variables.  A Spearman’s Rank Order Correlation 

was used to investigate any relationship between eye temperature and 

salivary cortisol. There was a positive correlation between the two variables 

(r=.809, p=0.005) with high levels of salivary cortisol associated with high 

eye temperature (Figure 5.11).  
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Figure 5.11 Relationship between change in eye temperature from baseline to 
maximum value and change in salivary cortisol from baseline to maximum 

value for each horse during the sham clipping treatment. 
 

 
 

5.6.10 Core and ambient temperature  

 
Core temperature remained within the normal range of 38-42°C for all horses 

throughout the duration of the treatment. As the study was carried out over a 

full day, air temperature fluctuated from 0°C to 5°C between the early 

morning and midday procedures, however it remained constant throughout 

each sham clipping treatment for each horse. 
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5.7 Comparison of sham clipping treatment data and no clipping 

treatment data 

 

5.7.1 Infrared thermography 

As there were no significant differences in eye temperature between the 

compliant and non compliant horses for both the clipping treatment and no 

clipping treatment, the comparison of eye temperature between the two 

treatments used all horses together. The results of the Wilcoxon Signed Rank 

Test indicate that there was a significant difference in eye temperature 

between the sham clipping treatment and the no clipping treatment, z=-

4.523,  p<0.001. The horses displayed a higher eye temperature during the 

no clipping treatment than during the sham clipping treatment (Figure 5.12) 

however eye temperature during the no clipping treatment remained constant 

and there was no increase in eye temperature throughout the no clipping 

treatment segment as was seen in the sham clipping treatment.  

 

 

Figure 5.12 Mean (±SD) eye temperature (°C) of all horses during sham 
clipping treatment and no clipping treatment. The arrow marker indicates 

where sham clipping occurred during the sham clipping treatment. 
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5.7.2 Salivary cortisol 
 

All horses were used to compare the sham clipping and no clipping salivary 

cortisol levels. The results of the Wilcoxon Signed Rank Test indicate a 

significant difference in salivary cortisol between the sham clipping and no 

clipping treatment, z=-0.2796, p=0.005. The horses displayed higher salivary 

cortisol levels during the no clipping treatment than the clipping treatment 

however, salivary cortisol did not display an increase during the no clipping 

treatment as it did during the clipping treatment (Figure 5.13).  

 

Figure 5.13 Mean (±SD) salivary cortisol (ng/ml) of all horses during sham 
clipping treatment and no clipping treatment. The arrow marker indicates 

where sham clipping occurred during the clipping treatment. 
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The results of the Wilcoxon signed rank test indicate a significant difference in 

heart rate between the sham clipping and no clipping treatment in the non 

compliant horses (p<0.001) and no significant difference in the heart rates of 

the compliant horses between the sham clipping and no clipping treatment 

(p=0.076). Figure 5.14(a) details the change in mean heart rate over time for 

the non compliant horses during the sham clipping and no clipping treatment 

and figure 5.14(b) details the change in mean heart rate over time for the 

compliant horses during the sham clipping and no clipping treatment. 
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Figure 5.14(a) Mean (±SD) heart rate (bpm) for the non compliant horses 

during the sham clipping and no clipping treatment The arrow marker 

indicates where sham clipping occurred during the sham clipping treatment. 
 

 

 
 
Figure 5.14(b) Mean (±SD)  heart rate (bpm) for the compliant horses during 

the sham clipping and no clipping treatment The arrow marker indicates 
where sham clipping occurred during the sham clipping treatment.  
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5.8 Discussion 

There was a significant (p=0.001) increase in eye temperature in response to 

sham clipping in both compliant and non compliant horses during the sham 

clipping treatment whereas no increase in eye temperature was recorded for 

either group during the no clipping study. The greatest incremental increase 

in eye temperature was found to be at five minutes post onset of sham 

clipping with a peak in eye temperature at ten minutes post onset of sham 

clipping as in the initial pilot study (Appendix 7). The mean increase in eye 

temperature of 3.6°C is larger than that reported in cows (Stewart et 

al.,2007) and monkeys (Nakayama et al., 2004) when confronted with a 

potentially aversive situation however the stressor in this study (sham 

clipping) was maintained for a longer duration. Eye temperature decreased 

after the ten minutes post onset of sham clipping sample which coincides with 

removal of the stressor therefore it may be that eye temperature would have 

remained elevated if the stressor had persisted, however this would need to 

be investigated further.  

Despite the decrease in eye temperature upon removal of the stressor it had 

only returned to basal levels in three horses by the end of the treatment. This 

may be due to increased metabolic activity and therefore increased thermal 

output due to the effects of cortisol. 

The increase in eye temperature was mirrored by the decrease in ear 

temperature and a strong negative relationship was found between the two 

parameters. As eye temperature increased, ear temperature decreased and 

the greatest incremental increase in temperature for both anatomical areas 

was five minutes post onset of sham clipping. This may suggest that both are 

driven by the SNS due to the rapid response at onset of the stressor. The 

decrease in ear temperature may be indicative of diversion of blood in 

response to stress-induced activation of the SNS. It may even have served to 

divert blood to the eye area as reported in humans when subjected to an 
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acoustic startle test (Pavlidis et al., 2001). This initial acute response has 

been suggested to have the purpose of redirecting blood flow to areas with 

more urgent metabolic requirements and may also be a protective mechanism 

to reduce blood loss in the case of injury (Blessing, 2003, Vianna and Carrive, 

2005). This response was also observed in the decreased ear temperature of 

sheep in response to transportation stress (Ingram et al., 2002). 

The study into temperature change in rhesus monkeys during confrontation 

by a handler reports that the decrease in temperature originated from an area 

in the uppermost portion of the nasal region and then spread to the lower 

regions (Nakayama et al., 2004). The origin and spread of blood flow 

alteration and therefore temperature change was not able to be investigated 

during the current project. This is a limitation as it could have aided in further 

explaining the reasons or mechanisms behind temperature change.  

 

 There was a significant (p=0.003) increase in salivary cortisol in response to 

sham clipping in both the compliant and non compliant horses during the 

sham clipping study. Two horses displayed an increase in cortisol of 40% and 

43% from basal levels which is suggested to be in the ‘stress range’ (Barnett 

and Hemsworth, 1990) and could potentially predispose the horse to stress 

related disease. This contradicts the results of Shanahan (2003) who found 

horses that were behaviourally compliant to loading had no increase in 

cortisol when compared to the behaviourally non compliant animals that 

displayed an increase in cortisol from seven minutes post loading. The results 

of the study by Shanahan (2003) may indicate that even the compliant horses 

in this study found the sham clipping procedure aversive. Cortisol levels were 

higher in the no clipping treatment when compared to the sham clipping 

treatment however, during the no clipping treatment cortisol levels remained 

constant with no increase or peak as was found in the sham clipping 

treatment. Salivary cortisol had begun to increase within ten minutes post 
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onset of stressor as found by Shanahan (2003) in horses stressed by 

transport and suggested by Ralston et al (1988) for stress induced increases 

in plasma cortisol. The increase in salivary cortisol within ten minutes post 

onset of stressor during this study supports the suggestion that salivary 

cortisol reflects plasma cortisol levels (Van der Kolk et al., 2001) and the time 

taken for salivary cortisol to increase post stressor is similar to plasma cortisol 

(Creighton and Hughes, 2007). salivary cortisol level peaked at twenty 

minutes post onset of sham clipping, which is consistent with findings of past 

work (Marlin and Nankervis, 2002, Stewart et al., 2007).  

 There was a positive correlation between increase in eye temperature and 

increase in salivary cortisol during the sham clipping treatment. This is 

important as the increase in salivary cortisol indicates that the horses found 

the procedure aversive and therefore the increase in eye temperature could 

suggest the same. This is reinforced by the fact that neither parameter 

increased during the no clipping study when the presence of the potentially 

aversive stimulus was removed.  The large variation in mean salivary cortisol 

and eye temperature is due to inter animal variation in basal levels. All 

animals displayed a similar pattern of increase (mean increase of 15.9% ± 

5.8%) and time to maximum values however they began at differing basal 

levels (Appendix 8) therefore it is important that pre stress measures are 

taken to allow each horse to act as its own control.  Despite this large 

variation in basal levels, all horses did display a significant increase in both 

eye temperature and salivary cortisol in response to sham clipping.  

The compliant horses’ activity scores were lower than the non compliant 

during the sham clipping treatment, however physiological measures indicate 

that they found the procedure aversive. This could be due to past training and 

habituation towards the procedure resulting in increased behavioural 

compliance or it could be the horses masking stress as a survival mechanism 

(Berger et al., 2003). It could also be that the compliant horses were 
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generally less active individuals. This reinforces the importance of 

physiological measures in order to have a robust interpretation of how the 

horse perceives the situation it is placed in. In this case  behavioural analysis 

would not have been sufficient. A potential flaw in the methodology may have 

been that the compliant and non compliant horses were selected based on the 

yard managers opinion of the horses past behaviour. However the scoring of 

the behavioural data was carried out by individuals who were unaware of 

which group the horse belonged to and activity level assigned to individual 

horses was consistent between scorers. 

 Overall, eye temperature of the compliant horses was not as high as the non 

compliant horses and ear temperature of the compliant horses was not as low 

as the non-compliant horses during the sham clipping treatment however, the 

magnitude of increase and decrease in temperature was larger in the 

compliant horses than the non compliant horses. Salivary cortisol in the 

compliant horses also increased above cortisol levels of the non compliant 

horses although this was not significant. It could be that this increased 

physiological response in the compliant horses is a compensatory mechanism 

for the lack of behavioural response and that the act of masking stress is 

stressful in itself. As the inhibition of natural behaviour has been shown to 

contribute to the development of abnormal behaviour (McGreevy et al., 1995, 

Nicol, 1999), which may be associated with stress (Mason, 1991; McBride and 

Cuddelford, 2001) then the training of the horse to comply with training 

procedures and management techniques may serve the same purpose as 

restriction of natural behaviour through inadequate housing and feeding 

regimes. This means that training of the horse may only reduce the 

behavioural reactivity to a stressor and not the physiological response and 

could still compromise health and well being. 
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Heart rate peaked at ten minutes post onset of sham clipping in the non 

compliant horses during the sham clipping treatment and was significantly 

higher (p=0.001) than the heart rate of the compliant horses which remained 

stable and within normal range. This may have been due to increased activity 

of the non compliant group compared to the compliant.  

During the no clipping treatment no increase in heart rate for either group 

was observed.  

 

5.9 Conclusion 

The most important finding of the study was that eye temperature and 

salivary cortisol increased in all horses in response to clipping, despite some 

horses showing no behavioural signs of stress. The lag time between the two 

measures reflects the response time for both the SNS, which could be driving 

eye temperature change, and the HPA axis, which drives the cortisol response 

to manifest post stressor. It appears that elevated eye temperature can 

indicate stress in the horse during a short term potentially aversive procedure 

and concurs with evidence of the cortisol response which is a currently 

accepted measure of stress. Two horses displayed increases in salivary 

cortisol that reached levels that could potentially cause stress related disease 

if prolonged. This reinforces the need for a non-invasive and reliable measure 

to assess everyday management practices and improve welfare. 

Domestic horses are often placed in situations that they may potentially find 

aversive that are of longer duration (i.e housing, transport). The positive 

results of this study into short term aversive stimuli prompted further 

investigation into the ability of IRT to assess temperature change as part of 

the response to more long term stress.  
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Chapter 6 Study D; Investigation into the use of IRT as a tool to 

assess thermal change associated with the physiological response to 

long term or repetitive stress 

 

6.1 Introduction  

 
Isolation is probably one of the main causes of stress in social species 

(Forkman et al., 2007) therefore certain restrictive housing designs may have 

detrimental effects upon the welfare of the horse. Research suggests that a 

primary cause of stereotypical behaviour in horses is limited social contact 

and prolonged isolation through individual housing (McGreevy et al., 1995). 

Results of both epidemiological and empirical studies show that enhancing a 

horse’s social environment can reduce the incidence of such behaviour 

(McGreevy et al., 1995; Cooper et al., 2000; McAfee et al., 2002; Mills and 

Davenport 2002). Irvine and Alexander (1998) report that moving horses 

from an open social environment into an enclosed housing design resulted in 

disruption of daily rhythm in plasma cortisol, which could be indicative of 

chronic stress. Horses involved in the study that investigated the potential 

limitations of IRT for this project had constant turnout in grass paddocks with 

their familiar companions prior to the study commencing. However, in order 

to standardise food intake and exercise they were placed in isolated stables 

with no turnout and no contact with con-specifics for a four day period. This 

situation could have been potentially stressful to the horses and contributed 

to disruption of daily rhythm of salivary cortisol. 

 Work so far has demonstrated that IRT is an inappropriate measure to 

monitor acute stress in a flight species. Data collection was difficult due to the 

evasive behavioural response of the horse and the application of monitoring 

acute stress is limited, however IRT was able to identify the thermal response 

to a short term (ten minute duration) potentially stressful husbandry 

procedure and has been shown to correlate with an increase in the stress 

hormone cortisol. It is now important to ascertain whether the increase in eye 
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temperature observed during a short term husbandry procedure is observable 

in periods of potentially chronic stress.  

Faecal glucocorticoid analysis was used as a validatory physiological measure 

during this study as it is a more appropriate measure of chronic stress when 

compared to salivary cortisol (Queyras and Carosi 2004; Hughes and 

Creighton, 2007). Flight behaviour was an unreliable measure of stress during 

a short term husbandry procedure however, stereotypic behaviour and 

changes in daily activity have been shown to be indicators of stress in horses 

(Broom, 1991; Mason, 1991; McBride and Cuddelford, 2001; Benhajali et al., 

2008) therefore behavioural assessment was included in this study in an 

attempt to evaluate how the horses perceived the housing treatments and 

compare behavioural observations to any physiological (thermal, hormonal) 

response. 

 Many of the training and management techniques that domestic horses are 

subjected to and may potentially find stressful are of longer duration than 

tested so far during this project (housing, transport, foot care, training 

methods) and therefore validation of IRT as a measure of more long term 

stress would increase its usefulness as a research tool. Housing design has 

been found to have a substantial impact on the trainability of horses. Rivera 

et al. (2002) found group housing exerts a positive effect on behaviour. Group 

housed horses took less time to complete a training procedure than horses 

singly housed in stalls. In addition, singly housed horses showed more 

objectionable behaviour toward the trainer (biting and kicking) than group 

housed horses. Housing designs that offer increased contact with con-specifics 

have been shown to result in a reduction in stereotypical behaviour 

(McGreevy et al., 1995; Cooper et al., 2000) therefore housing design is an 

important factor in the everyday welfare of horses and may also have an 

impact on training performance.  
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Housing designs allowing differing levels of physical and social contact were 

used to investigate the thermal response of the eye to a potentially stressful 

situation of prolonged duration. 

 

6.2 Aims and objectives 

Aim 

 Determine whether the change in eye temperature observed during 

a short term potentially stressful husbandry procedure is present in 

horses during periods of potentially long term or repetitive stress 

Objectives 

 Investigate the thermal response of the equine eye to four housing 

designs that allow differing levels of physical and social contact. 

 

 Investigate faecal glucocorticoid levels between four housing 

designs that allow differing levels of physical and social contact and 

compare this to eye temperature. 

 

 Assess activity patterns of horses housed in four housing designs 

that allow differing levels of physical and social contact and 

compare this to eye temperature 
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6.3 Methodology 

6.3.1 Animals and Husbandry 

Horses (n=16) were aged 6 to 21 years (mean age 15 years ± 3) and breed 

representative of horses found in a riding school. Details of the individual 

horses can be found in section 2.1. The horses were divided into four groups 

(four horses per group) according to sex, with two groups of four geldings and 

two groups of four mares. The study was conducted during the summer 

(August) and one month prior to it commencing the horses were turned out in 

grass paddocks in their experimental groups of four to remove the effect of a 

new social group. Horses were brought in for one hour per day to be given 

approximately 3kg of meadow hay. This was to prevent any digestive upset 

due to a rapid change in forage type and availability when the study began. 

Horses were managed as previously discussed in section 2.1 and had all been 

stabled in each of the housing designs used in this study at some point prior 

to the study commencing.  

 

6.3.2 Housing treatments 

The four housing treatments used were single housed no physical contact 

(SHNC), single housed semi contact (SHSC), paired housing full contact 

(PHFC) and group housing full contact (GHFC). Figure 6.1 (a-d) displays the 

four housing treatments as viewed from the cameras used to record 

behaviour in each treatment. Horses had access to water at all times however 

hay was withheld throughout the day whilst in their experimental housing. 

Horses were bedded on shavings and rubber mats in the indoor housing 

treatments. Table 6.1 details each of the four housing designs. 
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Figure 6.1 (a) Paired housed full contact housing design. Image shows the 

barn housing each pair of horses with position of camera. The smaller image 
in the bottom left hand corner shows the view produced from the camera. 
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Figure 6.1 (b) single housed semi contact design. Image shows the stables 

housing each horse with position of camera. The smaller image in the bottom 
right hand corner shows the view produced from the camera. 
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Figure 6.1 (c) single housed no contact design. Image shows the stables 

housing each horse with position of camera. The smaller image in the bottom 
right hand corner shows the view produced from the camera. 
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Figure 6.1 (d) group housed full contact. Image shows the paddock housing 

each experimental group of four horses with position of camera. The smaller 
image in the bottom right hand corner shows the view produced from the 

camera. 
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Table 6.1. Four housing designs used in the study with differing levels of 
social and physical contact. 

 

Housing Design Description 

 

 

Group housing full contact (GHFC) 

Horses were turned out in their experimental 

group of four into a paddock which had been 

grazed down prior to the study commencing. 

The horses had full physical contact with all 

other members of the group and had visual 

and auditory contact with horses in nearby 

paddocks.  

 

 

 

 

 

Paired housing full contact (PHFC) 

 

Horses were housed in pairs in the barn 

previously discussed in section 4.2.2. The barn 

lies adjacent to indoor single box stables which 

allowed the study horses visual and auditory 

contact with the horses stabled in them. In 

addition there were two horses housed in the 

neighbouring barn (from the same 

experimental group of four) which allowed 

visual and auditory contact through a wire 

partition separating the two enclosures. Each 

pair of horses had full physical contact with one 

another.  

 

 

 

 

Single housing, semi contact (SHSC) 

 

Horses were individually housed in box stables 

measuring 3 x 3.6 metres with a solid wall to 

ceiling height at the rear. The front, sides and 

integrated sliding door of the stable measured 

a total height of 2.5 metres with solid walls to  

1.2 metres high and vertical metal bars spaced 

at 5cm apart for the remainder of the height. 

Visual, auditory and tactile communication with 

the neighbouring horse at either side was 

possible through the bars and the horses were 

also able to see their companions stabled 

opposite in the same housing treatment. 

 

 

 

 
Single housed no contact (SHNC) 

 

Horses were housed in box stables measuring 3 

by 3.6 with 2.5 metre high solid brick walls to 

the rear and side. The horses only had visual 

contact if they and a neighbouring horse looked 

over the traditional half door. No physical 

contact with other horses was possible.  
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6.3.3 Experimental design 
 

Horses were exposed to each housing treatment for a period of five days. 

They were brought from their paddocks where they were turned out in their 

experimental groups of four by the same handler at 0800h every day and 

walked the short distance to the relevant housing treatment. Horses remained 

in the housing treatment until 1600h at which point they were walked back to 

their paddock where they spent the night. At the end of the five day period 

they were turned out in their paddocks in their experimental group for two 

days and then the groups rotated to the next housing treatment. Table 6.4 

details the four groups and the order they were rotated through the 

treatments. Human disturbance was limited to three times daily for 

approximately ten minutes when physiological measures were taken.  

 

 

 
Table 6.2. Order of rotation of the four experimental groups through the four 

housing treatments 

  

 Week 1 

 

Week 2 Week 3 Week 4 

Group 1 
 

GHFC PHFC SHNC SHSC 

Group 2 

 

PHFC SHSC GHFC SHNC 

Group 3 
 

SHNC GHFC SHSC PHFC 

Group 4 

 

SHSC SHNC PHFC GHFC 

 
Key 

 
GHFC Group housed full contact (paddock) 

PHFC Paired housed full contact (barn) 
SHSC Single housed semi contact 

SHNC Single housed no contact. 
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6.3.4 Data collection  

The horse order in which the physiological measures were sampled remained 

the same each day regardless of the housing treatment the horse was in at 

the time. This ensured all images were captured as close as possible to the 

same time every day for each horse. Each horse was caught with a head 

collar and tied to a tie ring for physiological samples to be taken safely and 

also to standardise the procedure regardless of the housing treatment. The 

horses could move around freely but were not able to walk away whilst tied 

up. Two handlers were responsible for taking physiological measures and each 

handler was responsible for two of the four groups of horses and remained so 

for the duration of the study. 

 

6.3.4.1 Infrared thermography data collection 

Thermal images of the left and right lateral aspect of the head were captured 

three times per day for each horse at approximately 0830h, 1200h and 

1530h. As the whole profile of the head was captured this allowed eye 

temperature, which had shown to be the most reliable measure of 

temperature change, to be extracted and measured. It would also allow ear 

temperature to be extracted if required at a later date. 

 
6.3.4.2 Faecal collection. 

Faeces were collected for glucocorticoid analysis from two randomly chosen 

horses in each group. One sample per day was collected from each horse on 

an opportunistic basis during each rotation, however the sampling protocol 

used for the study guaranteed the sample would be less than two hours old. 

Faeces were collected into a 100ml sterile plastic container and refrigerated at 

4°C for no longer than two hours before they were transferred to a freezer 

and frozen at -20°C until analysis.  
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Samples from day 1, 2 and 3 in each housing treatment were assayed for the 

eight horses. This would allow sufficient time for any hormonal response to 

each housing treatment to appear in the faeces due to gut transit time (Van 

Weyenberg et al., 2006). 

 A validation assay test was carried out by Chester zoo as described in 

chapter 2.2.1.2. The results of the test revealed the assay for corticosterone 

to be the most appropriate (Appendix 2). Extraction and analysis was then 

carried out by Chester Zoo (see Appendix 9 for extraction and analysis 

protocol). 

 

6.3.4.3 Core temperature data collection 

Core temperature was taken using the method previously described in chapter 

2.2.2.1 Temperature was measured three times daily using the same timing 

parameters as the thermal image collection. Temperatures were recorded by 

hand onto the horses data sheet and transferred to an Excel spreadsheet at a 

later date.  

 

6.3.4.4 Ambient temperature data collection 
 

Ambient temperature was monitored for the duration of the study (Lascar EL-

USB-2). The temperature loggers were set to record at thirty minute intervals 

Data was uploaded and processed using the methods previously discussed in 

chapter 2.2.2.2 This would allow any thermal changes in the eye to be fully 

investigated and ambient temperature ruled out or confirmed as a 

contributing factor. 
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6.3.4.5 Behavioural activity data collection 

The camera system installed throughout the equestrian centre was utilised to 

record the behaviour of the horses in each housing treatment (Figure 6.2). 

The system works by having cameras fed through cables to a digital video 

recorder (DVR) in a central location which accepts high quality footage and 

records it in a compressed format (DAV). This footage can then be 

downloaded from the unit via a USB device or a DVD. For the purpose of this 

study the system was set to record in high definition quality. The DVR can 

store data for over a week in this format, allowing the footage to be 

downloaded when required. Figure 6.1 (a-d) details the positioning of the 

cameras in each of the housing treatments and also shows the corresponding 

footage produced which was used at a later date to record behavioural 

observations. Recording the studies allowed objective behavioural analysis to 

be carried out post data collection and reduced observer effects. It also 

ensured that all horses were visible and could clearly be observed for the 

whole of the study. 
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Figure 6.2 The camera system at Brackenhurst Equestrian centre 

GHFC design - Fixed Camera to the 

rear of the ménage outside facing the 
rear paddock.  

SHNC design - High 

mounted fixed camera, 1 
for each stable  

SHSC design - High 

mounted fixed camera, 1 

for each stable  
 

GHSC design - High mounted 

fixed camera, 1 for each end  

Paddock 
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The video footage was used to form a time budget of the horses' activity in 

each housing treatment. An ethogram (Table 6.2) adapted from Cooper et al. 

(2000) and Heleski et al. (2002) was used. The listed categories were 

recorded and the sub-categories used to define what is included in each 

category. Only behaviours lasting longer than five seconds were recorded. 

Behavioural observations were obtained for seven hours for ten of the horses 

(three from group 1, three from group 2, two from group 3 and two from 

group 4) on the fourth day the horses spent in each of the housing 

treatments. The fourth treatment day was the last complete day the horses 

spent in each housing treatment having already been housed there for three 

complete days. Data were not collected whilst the horse was having 

physiological measures taken.  

The behaviour of each horse and the time of initiation were recorded so the 

minutes spent in each behavioural state could be calculated and then 

expressed as a percentage of the total time observed. Two of the four housing 

treatments prevented the expression of social behaviour however it was 

included in the ethogram in order to investigate whether horses would 

participate in social behaviour in the other two housing treatments where they 

were able to interact with con-specifics and whether the time spent was 

similar to horses in their natural environment.  
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Table 6.3  Ethogram of behavioural states measured for analysis of activity 
patterns in ten study horses with definitions and sub categories to define the 

behaviors Adapted from Heleski et al, (2002) and Cooper et al. (2000). 
 

Behavioural state 

 
Sub category Definition 

Feed Concentrate 

Forage 
Bedding 
Drinking 

Ingestion of concentrate food 

Ingestion of grass or hay 
Ingestion of bedding 
Intake of water 

Standing Standing alert apart 
 

 
 
 
 

Standing alert together 
 
 

 
 
Standing resting apart 

 
 
 
 

 
Standing resting together 

Standing with eyes fully open, ears 
forward, and body  

position showing alertness, more than a 
metre (approx.) away from another horse 
 
Standing with eyes fully open, ears 

forward, and body position showing 
alertness, within a metre (approx.) away 
from another horse 

 
Stood still, one or both ears back, relaxed 
neck (lower than when alert) and eyes 

fully or partially closed,  more than a 
metre (approx.) away from another horse 
 
Stood still, one or both ears back, relaxed 

neck (lower than when alert) and eyes 
fully or partially closed,  within a metre 
(approx.) away from another horse 

Lying Lying sternally 
 

Lying prone 
 
Rolling 
 

Lying with the sternum in contact with the 
ground 

 
Lying stretched out on their side 
 
Number of times the horse rolls 

Active Walk 
 

Trot 
 
 

Canter 

Four beat gait of forward movement 
 

Two beat diagonal gait of forward 
movement 
 

Three beat gait of forward movement 

Social Positive social 

 
 
 
Negative social 

Interactive behaviour; nuzzling/sniffing 

another horse or mutual grooming 
 
Aggressive behaviour, laid back ears, 
lowered head and neck, dominant body 

position, threat to kick/bite or actual 
kick/bite 

Stereotypic 
behaviour 

Box walking 
 
 

Weaving 
 
 
Nodding 

 
Crib biting 

 

 
Licking 

Repetitive pacing around the perimeter of 
the enclosure 
 

Repeated lateral movement of the head 
from side to side 
 
Horse swings its head up and down 

 
Grasps an object with teeth and draws air 

into oesophagus 

 
Repetitive licking of surfaces 

Other Self grooming 
 
Defecate/urinate 

Scratching body using teeth, foot or object 
 
times the horse defecates/urinates. 
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6.3.4.6 Ease of handling data collection  

The video footage from the fourth day of each housing treatment was utilised 

for this test. This was the last complete day the horses were stabled in each 

treatment having already been stabled there for three complete days. During 

the seven hour recording period each horse had a thermal image and core 

temperature taken and was swabbed for saliva at 0830h, 1200h and 1530h 

by the same handler. Saliva was swabbed to provide an example of a 

handling procedure and samples were kept in case they were needed for a 

secondary hormonal measure at a later date.  An ease of handling score was 

designed to assess whether housing design affected the level of behavioural 

compliance toward human handlers as evasive behaviour can suggest 

discontent (Anderson et al., 1999; Minero et al., 2006; Christensen et al., 

2008). Scores were first attributed to a behavioural definition according to the 

behaviour of the horse and the ease of which the saliva sample was obtained 

(Table 6.3). The definitions used were kept as objective as possible with a 

scale of evasive head and foot movement only. One BSc equine science 

undergraduate that was unaware of the study was shown the footage of each 

sample point for each horse in a random order. A mean score from the three 

sampling points for each horse for each housing treatment was calculated. A 

mean score for all horses in each housing type was then calculated and 

plotted using Excel.  
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Table 6.4 Ease of handling score with scores ranging from 1 (compliant to 
swabbing for saliva) to 5 (resistant to swabbing for saliva). Evasive 

movement of head is an elevated head carriage or lateral movement away 

from the handler. 
 

Score Behavioural definition 

1 Sample obtained with no evasive movement of head or 

steps away from handler 

2 Sample obtained after 1-3 attempts due to evasive 

movement of head with no steps away from handler 

3 Sample obtained after 3-5 attempts due to evasive 

movement of head and/or steps away from handler.  

4 Sample obtained after more than five attempts due to 

evasive movement of head and/or steps away from 

handler.   

5 Sample obtained after more than five attempts due to 

evasive movement of head and steps away from handler  

 

 
 

 

6.3.5 Data analysis 
 

6.3.5.1 Infrared thermography data analysis 
 

Temperature was extracted from the thermal images as previously discussed. 

Mean temperature of left and right eye was calculated for each horse for each 

sampling time point. Mean eye temperature for all horses for each sampling 

point was calculated for each housing design. Distribution of data was normal 

(Kolmogorov- Smirnov) therefore a one way repeated measures ANOVA was 

conducted to examine any difference in eye temperature. A pairwise 

comparison (Bonferroni) was used to test for differences between each 

housing treatment.  
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6.3.5.2 Faecal corticosterone analysis 

Raw data for each horse was provided in the form of a spreadsheet by 

Chester zoo (Appendix 10). 

Initially faecal corticosterone for day 1, 2 and 3 were plotted for each horse in 

each of the four housing treatments using excel (Appendix 11). Faecal 

samples were unable to be collected on certain days for one horse. This horse 

was removed from the analysis. Mean faecal corticosterone for all horses on 

day 1, 2 and 3 were then plotted for each housing treatment. 

Distribution of data was normal (Kolmogorov- Smirnov) therefore a one way 

repeated measures ANOVA was conducted to examine any difference in faecal 

corticosterone levels. A pairwise comparison (Bonferroni) was used to test for 

differences between each housing treatment.  

 

6.3.5.3 Core temperature data analysis  

Distribution of data was normal (Kolmogorov- Smirnov) therefore a one way 

repeated measures ANOVA was conducted to examine any difference in core 

temperature. A pairwise comparison (Bonferroni) was used to test for 

differences between each housing treatment.  

 

6.3.5.4 Ambient temperature data analysis  

Distribution of data was normal (Kolmogorow- Smirnov) therefore a one way 

repeated measures ANOVA was conducted to examine any difference in 

ambient temperature. A pairwise comparison (Bonferroni) was used to test for 

differences between each housing treatment. 
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6.3.5.5 Activity pattern data analysis 

Following a Kolmogorov-Smirnov test for normality a Friedmann test was 

conducted to test for differences in feeding, standing, lying, social positive, 

social negative, stereotypic and other behaviours between housing 

treatments. A one way repeated measures ANOVA was conducted to 

investigate any difference in active behaviour between housing conditions. A 

pairwise comparison (Bonferroni) was used to test for differences between 

each housing treatment.  

 

6.3.5.6 Ease of handling data analysis  

Mean ease of handling score for all horses during each treatment was plotted 

using Excel. A one way repeated measures ANOVA was conducted to examine 

any difference in ease of handling between housing treatments. 

 

6.3.5.7 Correlation analysis 

The relationship between eye, core and ambient temperature was 

investigated using Pearson product-moment correlation coefficient. This was 

carried out for each group of four horses using temperature data from each 

horse from all four housing treatments. Mean ease of handling and mean 

corticosterone for all horses for each housing treatment were also plotted to 

investigate any relationship between the two measures. 
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6.4 Results 
 

6.4.1 Infrared thermography  

A one way repeated measures ANOVA was conducted to compare eye 

temperature measured using IRT between housing treatments. The means 

and standard deviations are presented in Table 6.5. There was a significant 

effect of housing treatment on eye temperature, Wilks Lambda = 0.68, F (3, 

221) = 34.1, p<0.001, multivariate partial eta squared =0.32. 

A pairwise comparison (Bonferroni) was used to investigate differences 

between treatments (Table 6.6). There was no significant difference in eye 

temperature between the PHFC and SHNC treatments and no significant 

difference between the SHSC and SHNC housing treatments. Significant 

differences in eye temperature were found between all other treatments  

 

 

 

Table 6.5 Descriptive statistics for eye temperature during the four housing 

treatments  
 

Housing 

treatment 

N Mean (±SD) 

eye 
temperature °C 

GHFC  224     36.8  (±1.5)     

PHFC  224 38.2 (±1.2)    

SHSC  224 38  (±1.1)        

SHNC 224 38  (±1.3)       
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Table 6.6 Pairwise comparison (Bonferroni) to investigate difference in eye 

temperature between housing treatments. Significance levels highlighted in 
bold indicate a significant difference in eye temperature between housing 

treatments.  
 

Housing 

treatment 

Housing 

treatment 

Mean 

Difference  

Std. 

Error 

Significance 

GHFC 
  

  

PHFC 
SHNC 

SHSC 

-1.408 
-1.114 

-1.115 

.142 

.137 

.139 

.000 

.000 

.000 

PHFC 

  
  

GHFC 

SHNC 
SHSC 

1.408 

.293 

.292 

.142 

.117 

.110 

.000 

.077 
.049 

 
SHSC 

GHFC 
PHFC 

SHNC 

1.115 
-.292 

.001 

.139 

.110 

.109 

.000 

.049 

1.000 

SHNC 

  
  

GHFC 

PHFC 
SHSC 

 

1.114 

-.293 
-.001 

.137 

.117 

.109 

              .000 

              .077 
1.000 

  
 

Key 

 
GHFC - Group housed full contact (paddock) 

 
PHFC – Paired housed full contact (barn) 

 
SHSC – Single housed semi contact 

 

SHNC – Single housed no contact 
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6.4.2 Faecal corticosterone 

Mean faecal corticosterone levels for all horses for each housing treatment 

were plotted. Corticosterone levels were higher in the SHNC treatment for all 

three sample days in comparison to the other three treatments (Figure 6.3). 

 

Figure 6.3 Mean (±SD) faecal corticosterone concentrations for seven horses 

for three sample days in each housing treatment. 
 

 

A one way repeated measures ANOVA was conducted to compare faecal 

corticosterone between housing treatments. The means and standard 

deviations are presented in Table 6.7 There was a significant effect of housing 

treatment on faecal corticosterone, Wilks Lambda = 0.58, F (3, 18) = 4.29, 

p=0.01, multivariate partial eta squared = 0.42. with higher levels of faecal 

corticosterone during the single housed no contact housing treatment which 

was the most restricted. 
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Table 6.7 Descriptive statistics for faecal corticosterone during the four 
housing treatments  

 

Housing 
treatment 

Number of 
samples 

Mean (±SD) 
faecal 

corticosterone 
(ng/g) 

GHFC  21 31.0 (±7.8) 

PHFC  21 33.6 (±10.3) 

SHSC  21 34.4 (±13.6) 

SHNC 21 41.1 (±16.5) 

 

 

6.4.3 Core temperature 

 

A one way repeated measures ANOVA was conducted to compare core 

temperature between housing treatments. The means and standard 

deviations are presented in Table 6.8 There was a significant difference in 

core temperature between housing treatment, Wilks Lambda = 0.38, F (3, 

220) = 118, p<0.001, multivariate partial eta squared = 0.62. 

A pairwise comparison (Bonferroni) was used to investigate differences 

between treatments (Table 6.9). There was no significant difference in core 

temperature between the PHFC and SHSC treatments and no significant 

difference between the SHSC and SHNC housing treatments.  
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Table 6.8 Descriptive statistics for core temperature during the four housing 
treatments  
  
 

Housing 

treatment 

N Mean core 

temperature 
°C 

Standard 

Deviation 

GHFC 

 

224 36.9 0.5 

PHFC 

 

224 38.3 1.2 

SHSC 
 

224 38 1.1 

SHNC 

 

224 38 1.3 

 

 

 
 

 

Table 6.9 Pairwise comparison (Bonferroni) to investigate difference in core 
temperature between housing treatments. Significance levels highlighted in 

bold indicate a significant difference in eye temperature between housing 
treatments.  
 

 Housing 
treatment 

Housing 
treatment 

Mean 
Difference  

Std. 
Error 

Significance 

GHFC 

  
  

PHFC 

SHNC 
SHSC 

-1.445 

-1.151 
-1.146 

.095 

.100 

.085 

.000 

.000 

.000 

PHFC 
  

  

GHFC 
SHNC 

SHSC 

1.445 
.294 

.300 

.095 

.117 

.110 

.000 
.079 

.041 

SHSC 

  
  

GHFC 

PHFC 
SHSC 

1.151 

-.294 
.006 

.085 

.110 

.109 

.000 

.041 
1.000 

SHNC 
  

  

GHFC 
PHFC 

SHNC 

1.151 
-.294 

.006 

.100 

.117 

.109 

000 
.079 

1.000 

 

 
 

. 
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6.4.4 Ambient temperature 
 

A one way repeated measures ANOVA was conducted to compare ambient 

temperature between housing treatments. The means and standard 

deviations are presented in Table 6.10. There was a significant difference in 

ambient temperature between housing treatment, Wilks Lambda = 0.88, F (3, 

220) = 9.8, p<0.001, multivariate partial eta squared = 0.12. with ambient 

temperature higher in the GHFC treatment 

A pairwise comparison (Bonferroni) was used to investigate differences 

between treatments (Table 6.11). There was a significant difference in 

ambient temperature between the GHFC housing treatment and all other 

housing treatments (p=<0.001). There were no other significant differences 

in ambient temperature between any of the other housing treatments  

 

 
 

 
Table 6.10 Descriptive statistics for ambient temperature during the four 

housing treatments  
 
  

 Housing 
treatment 

Mean (±SD) 
temperature °C 

N 

GHFC 

 

21.2 (±4.7) 224 

PHFC 

 

19.48 (± 4) 224 

SHSC 
 

19.48 (±4) 224 

SHNC 

 

19.44 (±4) 224 
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Table 6.11 Pairwise comparison (Bonferroni) to investigate difference in 

ambient temperature between housing treatments.  
 
  

 Housing 
treatment 

Housing 
treatment 

Mean 
Difference  

Std. 
Error 

Significance 

GHFC 

  
  

PHFC 

SHNC 
SHSC 

1.767 

1.812 
1.771 

.423 

.406 

.379 

.000 

.000 

.000 

PHFC 
  

  

GHFC 
SHNC 

SHSC 

-1.767 
.045 

.004 

.423 

.372 

.412 

.000 
1.000 

1.000 

SHSC 

  
  

GHFC 

PHFC 
SHSC 

-1.771 

-.004 
.040 

.379 

.412 

.414 

.000 

1.000 
1.000 

SHNC 
  

  

GHFC 
PHFC 

SHNC 

-1.812 
-.045 

-.040 

.406 

.372 

.414 

.000 
1.000 

1.000 

 

 
6.4.5 Activity pattern assessment 

 

There was no significant difference in time budget for lying and social positive 

behaviours between housing conditions however there was a significant 

difference in time budget for feeding, standing, active, social negative, 

stereotypy and other behaviours between housing conditions (Table 6.12). 

Standing behaviour was significantly reduced in the group housed full contact 

condition in addition to a significant increase in feeding behaviour (Figure 6.4 

a-d). There was also an increase in active and social negative behaviour in the 

group housed full contact and paired housed full contact housing conditions.  
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 Table 6.12 Data for the effect of housing design on time budget (%) of ten representative horses in the four housing treatments  

 

 Feed Stand Lying Active 
Social 

positive 

Social 

negative 
STB Other 

Single 

housed no 

contact 

0.91 ±1.0 

A 

88.52 ±7.7 

A 
2.97 ±9.0 

1.76 ±0.5 

A 
0.00 ±0.0 

0.00 ±0.0 

A 

3.94 ±4.4  

A 

1.90 ±1.3 

A 

Single 

housed semi 

contact 

3.65 ±4.5 

A 

89.84 ±10.9 

A 
2.84 ±7.4 

2.06 ±0.7 

A 
0.00 ±0.01 

0.04 ±0.1 

A 

0.23 ±0.5  

B 

1.35 ±1.3 

A 

Paired 

housed full 

contact 

5.86 ±7.8 

A 

81.18 ±6.6 

A 
3.70 ±5.9 

5.42 ±4.2 

B 
1.39 ±1.9 

1.56 ±2.3 

B 

0.07 ±0.2  

B 

0.83 ±0.5  

AB 

Group 

housed full 

contact 

34.89 ±14.3 

B 

56.27 ±14.4 

B 
0.08 ±0.1 

7.36 ±2.7 

B 
1.34 ±1.9 

0.02 ±0.03  

A 

0.00 ±0.0  

B 

0.02 ±0.2 

B 

Values are means ± SD 

Within a column means with different letters are significantly different (p<0.05). 
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Figure 6.4 Average time budget of ten study horses in each housing treatment. a) single housed 

no contact, b) single housed semi contact, c) paired housing full contact d) group housed full 

contact. Other category is the average time spent performing social positive, social negative and 

stereotypic behaviours. 

a.

2%

88%

6%

1%

3%

stand lie feed active other

b.

1%

2%4%

3%

90%

stand lie feed active other

c.

81%

4%

6%

5%
4%

stand lie feed active other

d.
1%

7%

35%

0%

57%

stand lie feed active other
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Significantly more stereotypical behaviour was observed in the single housed 

no contact housing treatment. The stereotypies performed were box-walking, 

head nodding, weaving and crib-biting. Stereotypical behaviour was observed 

in seven of the ten study horses used for time budget assessment.  Only two 

of the ten horses displayed stereotypical behaviour in both the single housed 

semi contact and paired housed full contact treatments. No stereotypical 

behaviour was observed in the group housed full contact housing treatment.   

 

6.4.6 Behavioural ease of handling  

 

Figure 6.5 details the mean ease of handling score for all horses for each 

housing treatment. The group housed full contact and paired housed full 

contact treatments scored 1.1 with the single housed semi contact and single 

housed no contact scoring 1.2 and 1.6 respectively. As the level of isolation 

increased the difficulty of handling the horses due to evasive behaviour also 

increased. No horse was attributed a score higher than 3 from the footage 

used to assess handling on the fourth day in each treatment however, 

informal observation suggests horses did display higher levels of aggression 

and non-compliance with handlers throughout the trial in certain housing 

designs. It was noted by handlers that three horses in group A and one horse 

in group C displayed high levels of aggression and non-compliance in the 

single housed semi contact and single housed no contact treatments in 

addition to displaying stereotypic behaviour however in contrast they were 

compliant when being handled in the paired and full contact housing 

treatments.  
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A one way repeated measures ANOVA was conducted to compare behavioural 

ease of handling score between the four housing treatments. The means and 

standard deviations are presented in table 6.13. There was a significant 

difference in ease of handling between housing treatment, Wilks Lambda =  

0.36, F (3, 13) = 7.63, p = 0.003, multivariate partial eta squared = 0.63. 

A pairwise comparison (Bonferroni) showed the significant difference in ease 

of handling across the four treatments was between the single housed no 

contact design and each of the other three designs, Group housed full contact 

(p = 0.003), Paired housed semi contact (p = 0.001) and single housed semi 

contact (p=0.02). Horses were more difficult to handle in the SHNC design 

when compared to the other designs. 

 

Table 6.13 Descriptive statistics for behavioural ease of handling score during 

the four housing treatments in sixteen horses 
 

Housing 

treatment 

Mean (±SD) 

GHFC  1.08 (±0.13) 

PHFC  1.13 (± 0.18) 

SHSC  1.24 (±0.25) 

SHNC 1.64 (±0.5) 
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Figure 6.5 Mean (±SD) ease of handling score for all horses during the fourth 

day in each housing treatment 
 

 

 
6.4.7 Correlation analysis 

 
6.4.7.1 Temperature data 

 
The relationship between core, eye and ambient temperature during all 

housing treatments was investigated for each group of four horses using 

Pearson product-moment correlation coefficient. Horses were assessed in 

their individual experimental groups as each group were housed in each 

treatment at a different time. This means ambient temperature was not 

standard for each treatment and it was not possible to compare temperatures 

of all horses together.  

 

Group 1. There was a negative correlation between core and ambient 

temperature, r=.-325, n = 224, p<.001. As ambient temperature decreased, 

core temperature increased.  

There was a positive correlation between eye and core temperature, r=0.133, 

n = 224, p=0.046. 

There was no correlation between eye and ambient temperature (p=0.934). 
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Group 2. There was a positive correlation between eye and core temperature, 

r=0.177, n = 224, p=0.008 with high core temperatures associated with high 

eye temperatures. There was no correlation between core and ambient 

temperature (p=0.315) or eye and ambient temperature (p=0.231)  

 

Group 3. There was a positive correlation between eye and core temperature, 

r=0.223, n = 224, p=0.001 with high core temperatures associated with high 

eye temperatures. There was no correlation between core and ambient 

temperature (p=0.919) or eye and ambient temperature (p=0.09). 

 

Group 4. There was a negative correlation between core and ambient 

temperature, r=-0.164, n= 224, p=0.014. As ambient temperature 

decreased, core temperature increased. There was no correlation between eye 

and core temperature (p=0.16) or eye and ambient temperature (p=0.47). 
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6.4.7.2 Faecal corticosterone and behaviour 
 

Mean ease of handling score for all horses in each housing treatment was 

plotted alongside mean faecal corticosterone level of the eight selected horses 

for each housing treatment (Figure 6.6). It is clear that both measured 

parameters increased as the housing type became more restrictive. 

 

 

Figure 6.6 mean (±SD) ease of handling score for all horses in each housing 

treatment and mean (±SD) faecal corticosterone of seven horses for each 
housing treatment 
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6.5 Discussion 
 

Mean eye temperature was significantly (p<0.001) lower in the group housed 

full contact (paddock) treatment compared to all other housing treatments. In 

addition to recent work in other species (Levine et al., 2001; Pavlidis et al., 

2001; Nakayama et al., 2004; Stewart et al., 2008) the study into short term 

potentially aversive stimuli found that increased eye temperature is indicative 

of a horse perceiving a situation to be stressful. Based on eye temperature 

alone this suggests the horses found the paddock housing treatment less 

stressful in comparison to the more restrictive housing types, however, this is 

in no way conclusive. Eye temperatures recorded during the group housed 

treatment were similar to many of the pre stressor eye temperatures recorded 

in the study into a potentially aversive husbandry procedure. However, due to 

large variation between horses during the study into a potentially aversive 

husbandry procedure there were also post stressor eye temperatures 

recorded that are similar to temperatures recorded during the group housed 

treatment. The initial study design was to compare eye temperature between 

housing treatments therefore it is impossible to say whether eye temperature 

increased upon entering any of the treatments as pre housing measures are 

not available. In addition, potential factors affecting temperature 

measurement must be taken into account. Mean paddock ambient 

temperature was significantly (p=<0.001) higher than in all other housing 

treatments. There was no correlation between eye and ambient temperature 

in any of the groups of study horses which initially suggests any difference in 

eye temperature was not a direct result of ambient temperature change. 

However, there was a negative correlation between core and ambient 

temperature in two of the experimental groups of horses. As ambient 

temperature decreased core temperature increased.  

A positive correlation in eye and core temperature was found in three of the 

experimental groups of horses. An increase in eye temperature may be a 
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reflection of increased core temperature due to the effects of 

thermoregulation and could explain why eye and core temperature were 

significantly lower in the paddock where the ambient temperature was at its 

highest and significantly higher in the indoor housing where ambient 

temperature was at its lowest.  

From a physiological point of view it seems that eye temperature may be 

driven by the SNS due to its rapid response upon presentation of a stressor as 

eye temperature mirrored the SNS driven cardiovascular response in chapter 

4 and 5 of this project. In evolutionary terms this makes sense as enhanced 

sensory awareness and a mechanism to facilitate rapid eye movements during 

preparedness for flight and escape are reasons suggested for increased eye 

temperature (Levine et al., 2001; Pavlidis et al., 2001; Sapolsky et al.,2001). 

Such mechanisms are required immediately in a potentially dangerous or 

stressful situation. During this study the horses were subjected to potential 

stress of a more chronic nature. Horses may not have perceived isolation due 

to initial stabling in the various treatments to be stressful and by the time it 

became apparent that they were to remain in an inadequate environment an 

immediate reaction would be of no use. 

 
Faecal corticosterone was significantly (p=0.01) higher in the SHNC housing 

treatment in comparison to all other treatments for the three days that 

samples were taken and supports the results of the behavioural assessment. 

Horses displayed significantly more stereotypic behaviour in this treatment 

(Table 6.13) in addition to the highest handling score. There was no 

significant difference in corticosterone between any of the other housing 

treatments. It may be that the change in level of restriction between these 

treatments was not severe enough to evoke a hormonal response. The 

difference in restriction of social contact is clearly large between the group 

housed full contact treatment and the treatment that imposed total isolation 
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upon the horses. Another reason for no difference in corticosterone between 

the other housing treatments is that all horses had been housed in them at 

some point prior to the study commencing. Perhaps if horses were exposed to 

the single housed treatments having never been housed there previously it 

may have potentially been more stressful. The horses involved in this study 

are riding school horses that are often stabled and isolated. This may reduce 

the perceived aversiveness of semi restrictive housing. It cannot be ruled out 

that a stressful incident in the holding paddock during the two days between 

treatments may have stimulated a hormonal response before the horses were 

placed in their housing. Elevated levels may be indicative of this prior event 

rather than the aversiveness of the housing design. Despite a potentially 

stressful situation in the paddock potentially contributing to elevated levels of 

corticosterone in the first sample, it was decided that samples from day 1, 2 

and 3 would be the most appropriate samples to use with faecal 

corticosterone levels reflective of the past two days due to rate of passage of 

digesta (Van Weyenberg et al., 2006). 

 In addition to gut passage rate, corticosterone levels may not have remained 

elevated into the fourth and fifth day as the horses may have become 

habituated to their housing treatment. Horses were still displaying stereotypic 

behaviour and altered time budgets during the fourth day however this may 

have been a coping mechanism for a sub optimal environment (Rietmann et 

al., 2004) which would possibly not be reflected physiologically.  

 

 
As the housing treatment became increasingly restricted and isolated for the 

horses they became increasingly difficult to handle. The ease of handling 

assessment revealed that horses were significantly more difficult to handle 

(p=0.003) in the single housed no contact housing treatment compared to all 

other treatments. This was the most restrictive and isolated treatment and 

supports the findings of Rivera et al. (2002), who found singly housed horses 
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showed significantly more objectionable behaviour (biting and kicking) toward 

their trainer than group housed horses.  

Assessment of time budget revealed horses displayed significantly less 

stereotypical behaviour in the group and paired housed treatments. No 

stereotypical behaviour was observed in any of the ten horses in the group 

housed full contact treatment however seven out of the same ten horses 

observed in the single housed no contact treatment displayed stereotypic 

behaviour. This number was reduced to two horses during the single housed 

semi contact and paired housed treatments. Informal observations include 

one horse displaying chronic head nodding in the single housed treatments 

that was not displayed in the group or paired housed treatments. 

Stereotypical behaviour observed in the single housed treatments included 

box walking, weaving and crib biting. This supports the suggestion that 

increasing access to con-specifics and providing opportunity to display natural 

behaviour reduces stereotypical behaviour and subsequently improves welfare 

(McGreevy et al., 1995; Cooper, et al., 2000; McAfee, et al., 2002). Horses 

also displayed time budgets similar to feral horses in the group housed 

condition. Grazing (mean 34.89 ±14.3) was below that reported in feral herds 

(Duncan, 1980; Boyd, 1988) however Przewalski horses have been reported 

to peak in grazing behaviour between 2000h and 0000h in summer (Boyd, 

1991). As the time budget recordings stopped at 1600h this peak in grazing 

would not have been seen, indicating that for the recording time, 0830-1600h 

during August, the level of feeding may be representative of that seen in feral  

horses. The time spent active in the group housed and paired housed 

treatments conditions was also similar to that observed in feral horses 

(Duncan, 1980; Boyd, 1988) and highlights the restriction of movement in the 

single housed treatments. There was also an increase in active and social 

negative behaviour in the group and paired housing conditions, play and 

agonistic behaviour are a predominant part of the horse’s behavioural 
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repertoire (McDonnell and Haviland, 1995) and the demonstration of play 

behaviour is thought to be an indicator of good welfare (Christensen et al., 

2002). Horses in this study were moved through a series of housing designs 

which included exposure to a group of horses, a single horse and isolation. 

This may have disrupted dominance hierarchies and contributed to elevated 

aggression. 

 

The primary aim of this study was to investigate and potentially validate IRT 

as a measure of chronic stress. Although eye temperature was significantly 

lower in the group housed treatment which was consistent with low faecal 

corticosterone and the behavioural assessment, the confounding effects of 

ambient temperature cannot be ruled out. The correlation between core and 

ambient temperature and core and eye temperature suggest that 

thermoregulatory mechanisms responding to an increased ambient 

temperature result in a decrease in core temperature which is reflected in eye 

temperature. The increased duration of the study could possibly have allowed 

a greater chance for changes in ambient temperature and subsequently core 

temperature to confound results. During the study into the potentially 

aversive husbandry procedure ambient temperature remained constant over 

the sampling period which was much shorter duration. In addition it makes 

physiological and evolutionary sense that eye temperature change be short 

term. Increased cognitive vigilance and rapid eye movements are associated 

more with acute and short term stress (e.g predation) and it would be 

impractical and of great energetic cost to maintain increased sensory 

awareness over a longer duration. In this case faecal corticosterone was a 

more appropriate measure to assess potential chronic stress when compared 

to eye temperature.  
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6.6 Conclusion 

During this study horses showed a wider range of behaviour similar to that of 

free ranging horses, in addition to decreased incidence or absence of 

stereotypic behaviour when in the social housing treatments. These 

treatments provided an environment where horses were able to display 

natural behaviour and allowed contact with con-specifics. The behavioural 

findings imply that the social housing treatments were less aversive than the 

single housing and provided an improved standard of equine welfare. In 

addition horses were easier to handle in these treatments. Faceal 

corticosterone results support the behavioural findings with significantly 

higher levels reported in the isolated treatment, however it is unclear whether 

differences in eye temperature were a result of housing design or due to the 

confounding factors of ambient temperature and subsequent 

thermoregulatory mechanisms. It appears that IRT may not be suitable to 

monitor chronic stress due to the physiological mechanisms that drive such 

change. This study has highlighted the importance of housing design and its 

contribution to the physiological and behavioural welfare of domestic horses. 
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Chapter 7. General discussion 
 

7.1 Main findings of the project 

Horse owners and handlers are often unaware of the elements of 

domestication that animals may find stressful. Stress is often caused by 

factors associated with an animal’s evolutionary history, including natural 

habitat, behaviour and social structure being disrupted or altered through 

captivity. Acute stress has an adaptive role however if this stress becomes 

repetitive or chronic then stress related disease and behavioural problems 

may emerge and compromise welfare.  It is therefore necessary from both a 

legal and ethical point of view to objectively assess the domestic environment 

in order to identify these potentially stressful situations and alter them if 

required in order to improve welfare. 

The results of existing work that measured temperature change using infrared 

thermography as a measure of the stress response prompted this project. The 

aim of the project was to determine whether a thermal response to stressful 

stimuli was present in the horse and whether it could be measured using IRT. 

 

Existing work reports an instant change in the nasal and eye temperature of 

monkeys (Nakayama et al., 2004) and the eye temperature of cows (Stewart 

et al., 2008) in response to acute stress. This project began by investigating 

whether the same response was present in the horse using a startle response 

test. Data from one horse revealed the same rapid change in eye temperature 

when the horse was exposed to an acute stressor, however capturing this 

response was difficult due to the species specific behavioural response of 

flight. A modified experimental design may make capturing this response 

possible however the use of IRT to monitor such acute stress is limited as 

many of the potentially stressful management practices and training 

procedure that domestic horses are exposed to and that need to be 

objectively assessed are of longer duration. The evasive flight behaviour 
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displayed by the horses was sufficient to confirm that they found the situation 

they were in to be stressful. 

Eye temperature measured using IRT increased during a short term 

potentially stressful situation (clipping) and correlated with an increase in the 

currently accepted stress measure of salivary cortisol. However, eye 

temperature measured using IRT was shown to be unsuitable as a measure of 

chronic stress. 

 

7.2 Temperature change in response to acute stress 

Initially the thermal response of the eye to acute fright was investigated. This 

was a logical place to begin as existing work had measured temperature 

change in response to acute or very short duration aversive stimuli. In the 

bovine species an initial decrease in eye temperature was reported followed 

by a significant rise above basal levels when calves were exposed to an acute 

husbandry stressor (Stewart et al., 2008). When the response to acute stress 

was investigated in the horse during this study it became apparent that the 

use of IRT to measure eye temperature change inappropriate. Thermal 

recordings of the eye were difficult to capture due to sudden movement of the 

horse caused by species specific flight behaviour. Eye temperature data from 

a single horse did indicate a similar response of eye temperature to that 

reported cows (Stewart et al., 2008) and humans (Levine et al., 2001; 

Pavlidis et al., 2001) when subjected to acute stress.  

The one thermal profile available displayed a decrease in eye temperature of 

1.8°C which is consistent with the drop in eye temperature found following 

acute fright (Schaefer et al., 2006) and pain during disbudding (Stewart et 

al., 2008) in cattle. The magnitude of the decrease in eye temperature was 

also consistent with the drop in nasal temperature in monkeys that were 

threatened by a handler (Nakayama et al., 2004). Eye temperature of the one 

study horse then increased by 1.1°C back to basal level however it did not 
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mirror the increase above basal levels reported in the disbudded cows 

(Stewart et al., 2008).  

Two explanations for the absence of an eye temperature increase above basal 

levels in the continuous recording may be the acute nature and immediate 

removal of the stressor. This may have been interpreted by the horse as the 

passing of danger therefore the stress response was no longer stimulated. In 

addition, the stressor used in cattle was a disbudding procedure (Stewart et 

al., 2008), which is longer in duration and eye temperature possibly indicated 

stress caused by pain and not fright. The single horse from which thermal 

data was available was also assigned the lowest behavioural reactivity score 

and displayed the smallest increase in salivary cortisol. The reduced 

physiological response and behavioural reaction could indicate that the horse 

did not perceive the procedure to be as stressful as the other study horses 

and this could also account for the absence of any subsequent rise in eye 

temperature. Despite a small increase in salivary cortisol and a reduced 

behavioural response eye temperature did display a change consistent with 

that found in other species (Nakayama et al., 2004; Schaefer et al., 2006; 

Stewart et al., 2008). This may suggest that eye temperature is a more 

sensitive measure of the stress response compared to cortisol measurement 

and behavioural assessment. 

Thermal data from only one horse meant that findings were inconclusive and 

it is unlikely that any further investigation would capture enough data to allow 

validation of the response. Past studies into the thermal response to acute 

stress involved animals that displayed forms of defence behaviour other than 

flight (Nakayama et al., 2004) or employed restraint of the test subject 

(Nakayama et al., 2004; Stewart et al., 2008). It would be possible to restrict 

horses’ movement however the level of restraint could prove dangerous to 

handlers and detrimental to the horse, in addition to being stressful in itself 

which could confound results. IRT would have limited use in the horse in 
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potentially stressful situations that last a few seconds.  None of the equine 

management practices and training procedures currently under scrutiny by 

are of longer duration and include transportation, husbandry procedures, 

housing design and ridden training methods.  

 

7.3 Temperature change in response to short term stress 

Chapter 5 (study C) revealed that IRT can identify an increase in eye 

temperature associated with the stress response when horses are exposed to 

aversive stimuli of short duration. Eye temperature increased in ten horses 

when exposed to ten minutes of sham clipping and correlated with an increase 

in the stress hormone salivary cortisol. This is an important finding of the 

project as many of the husbandry procedures that could potentially cause 

stress are of short duration (clipping, transport, farriery, dentistry, abrupt 

weaning).  

Eye temperature response in other species is immediate when presented with 

acute aversive stimuli (Levine et al., 2001; Pavlidis et al., 2001; Nakayama et 

al., 2004; Stewart et al., 2008) and during this project it has been shown to 

occur within five minutes of exposure to aversive stimuli. It is therefore 

unlikely that the hypothalamic-pituitary-adrenal system is responsible for 

initial temperature change as this system takes longer to be fully functional 

and for physiological signs to show post stressor (Nelson, 2005). Rapid 

thermal change was mirrored by the cardiovascular response during this 

project (chapter 5, section 5.6.5). As the cardiovascular response is driven by 

the sympathetic nervous system then it seems logical that the same system is 

driving the mechanisms to facilitate eye temperature change. An explanation 

for an increase in eye temperature was put forward by Levine et al. (2001) 

and Pavlidis et al. (2001). Both authors suggest that the immediate increase 

in eye temperature in response to stressful stimuli make physiological and 

evolutionary sense as it could represent a mechanism to facilitate rapid eye 
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movements during preparedness for flight and escape. This is particularly 

relevant in the horse which is a flight animal and relies on enhanced sensory 

function to survive predation and danger (Sapolsky et al., 2000).  

 

Eye temperature increase during sham clipping was greater (up to 6.7°C, 

Table 5.3 chapter 5) and remained elevated for longer (>20 minutes post 

removal of stressor) than in other species including monkeys (Nakayama et 

al., 2004) and cows (Stewart et al., 2008). This may be due to species 

specific differences in survival mechanisms. The horses primary defence 

mechanism is flight and they have evolved bio-mechanically to accommodate 

this response. In comparison monkeys have alternate primary forms of 

defence including aggressive behaviour, facial expressions and vocalisations. 

As flight is so important to survival in horses and their innate reaction is to 

flee from danger, the supporting physiological mechanisms of increased 

sensory function and rapid eye movement will be equally as important as the 

behavioural response. If reliance on these defence mechanisms is paramount 

to the horse, this could explain the higher or longer reported temperatures 

when compared to other species that rely on other types of defence. Eye 

temperature remained elevated for the duration of the stressor and declined 

once the stressor was removed. It is not possible to say how long eye 

temperature would have remained elevated if the stressor were maintained, 

however this is an important factor to consider during future work as it will 

highlight the working limits of IRT and the types of procedure it can assess.  

An alternate theory to species specific survival mechanisms resulting in a 

larger increase in eye temperature in comparison to other species may simply 

be that the differences in eye temperature are a reflection of the longer 

duration for which the stressor was maintained. Monkeys subjected to 

aversive stimuli were exposed for three minutes (Nakayama et al., 2004) and 

eye temperature had returned to baseline four minutes post stressor. Cows 
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and humans were subjected to acute stress of a few seconds (Levine et al., 

2001; Pavlidis et al., 2001; Stewart et al., 2008). During this study the 

stressor was maintained for ten minutes which could have allowed eye 

temperature to continue rising until removal of the aversive stimulus. The 

longer duration of exposure could account for eye temperature being elevated 

above levels previously reported. Finally the type of stressor may have 

contributed to the larger reaction in horses. The placement of the clippers 

represented the target areas for predator attack in this species (Farmer-

Dougan and Dougan, 1999) which could have evoked an innate and stronger 

fear. Disbudding in cows (Stewart et al., 2008) and human handling in 

monkeys (Nakayama et al., 2004) may not have been stressful enough to 

produce a response of the same magnitude 

 

Ear surface temperature was recorded using IRT during study C. There was a 

negative correlation with eye temperature in response to sham clipping. As 

eye temperature increased, ear temperature decreased. This is consistent 

with findings of a study by Ingram et al. (2002) who found a negative 

correlation between ear temperature and heart rate of sheep during the 

potentially stressful situation of transportation. As ear temperature decreased, 

heart rate increased. Ingram et al., (2002) suggest the decrease in peripheral 

temperature may be due to vasoconstriction and diversion of blood in 

response to stress-induced activation of the SNS. This initial acute response 

acts to redirect blood flow to areas with more urgent metabolic requirements 

(skeletal muscle, heart and lungs) and may also be a protective mechanism to 

reduce blood loss in the case of injury (Blessing,  2003; Vianna and Carrive, 

2005) both of which would be beneficial to the horse as a prey species. Stress 

related decrease in ear pinna temperature (measured with temperature 

sensors) that correlated with an increase in stress hormones has also been 
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reported in sheep subjected to isolation (Lowe et al., 2005) and rabbits when 

subjected to a startle test (Yu and Blessing, 1997). 

 The decrease in ear temperature of horses during study C ranged from 2°C 

to 11.9°C which is a greater range than eye temperature (1.5°C to 6.7°C) 

and may suggest that ear temperature is affected more by environmental 

temperature change due to its role in thermoregulation. Despite providing 

another potential anatomical area to assess the thermal response to stress it 

seems that during this study, eye temperature provided a more reliable 

measure of the stress response. 

 

7.4 Temperature change in response to chronic stress 

The explanation put forward by Levine et al. (2001) and Pavlidis et al. (2001) 

that the immediate increase in eye temperature in response to stressful 

stimuli could represent a mechanism to facilitate rapid eye movements during 

preparedness for flight and escape, implies that the difference in eye 

temperature between housing treatments during the study into chronic stress 

(chapter 6) are likely to be as a result of thermoregulatory mechanisms rather 

than as a stress response. The immediate need for enhanced sensory function 

and eye movement in a prey species is likely to be required during acute or 

short term stress (predation, aggressive encounters). Activation of this 

mechanism for longer duration would be impractical and energetically costly. 

Furthermore, horses may not have perceived isolation due to initial stabling in 

the various treatments to be stressful and by the time it became apparent 

that they were to remain in an inadequate environment an immediate 

reaction would be of no use. 

It seems that horses may use behavioural coping mechanisms including 

stereotypic behaviour and alterations in time budget rather than flight and 

related defence mechanisms to combat stress of chronic duration. Study D 

that investigated the thermal response to chronic stress for this project 
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indicated that faecal cortisol is an appropriate measure to assess how animals 

perceive management practices of longer duration and supports the findings 

of extensive work that has used this established technique as a measure of 

long term welfare in horses (Berghold et al., 2007; Merl et al., 2000) and 

other species including African wild dogs (Monfort et al., 1998), spotted 

hyaena (Goymann et al., 1999) and leopards (Wielebnowski et al., 2002).  

 

7.5 Hormonal response to stress 

The time to maximum salivary cortisol level during the study B (chapter 4) is 

consistent with previous work that reports a peak in cortisol between ten and 

thirty minutes post stressor (Colborn et al., 1991, Shanahan, 2003, Stewart 

et al., 2007).  The highest cortisol level displayed was 81.5ng/ml which was 

an increase of 69.6ng/ml in horse number 4 and is similar to the increase in 

salivary cortisol reported by Moon et al. (2004) in abruptly weaned foals. The 

remaining cortisol levels and magnitudes of increase were similar to the 

change in cortisol reported in cows during disbudding (Stewart et al., 2007). 

Two horses displayed an increase in cortisol prior to the presentation of the 

aversive stimulus (Horse 2 and 5, Appendix 6) which may be due to 

anticipatory stress. In both horses cortisol increased post stressor. This 

increase in salivary cortisol supports the idea that the horses found the 

situation to be stressful and supports the findings of the one thermal profile 

available. As previously discussed this single horse did display an increase in 

salivary cortisol however this was the smallest increase from all of the study 

horses and suggests that eye temperature is a more sensitive measure of the 

stress response when compared to salivary cortisol.  

Salivary cortisol also increased in response to sham clipping during study C 

and demonstrated peak concentrations consistent with those reported in 

existing work (Marlin and Nankervis, 2002, Stewart et al., 2007).  In two 

study horses levels increased by 40% and 43% from basal level which is 
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suggested to be within the ‘stress range’ (Barnett and Hemsworth, 1990) and 

could potentially predispose the horse to stress related disease. This 

highlights that a stressful procedure lasting only ten minutes can still be of 

detriment to the health of domestic horses. Salivary cortisol increased within 

ten minutes post onset of stressor which is similar to plasma cortisol levels 

(Van der Kolk et al., 2001) and the time taken for salivary cortisol to increase  

post stressor is similar to that reported in plasma cortisol by Creighton and 

Hughes, (2007). Salivary cortisol can therefore offer a less invasive and 

stressful means of collecting reliable hormonal data from the horse.  

The results of the faecal corticosterone assessment in chapter 6 (study D) 

support the suggestion that isolated housing which limits interaction with con-

specifics can be stressful for horses (McGreevy et al., 1995; Cooper et al., 

2000). Higher levels of corticosterone were displayed when the horses were 

housed in the restricted stable designs when compared to housing that 

mirrored the natural habitat and allowed increased contact with con-specifics. 

During study D faecal corticosterone was suitable to assess how the horses 

perceived each housing design. Hormonal results were supported by the 

behavioural findings of increased stereotypic and objectionable behaviour in 

the restricted housing designs which have been associated with reduced 

welfare or stress caused by an inadequate environment (Broom, 1991; 

Mason, 1991; McBride and Cuddelford, 2001) or indicative of a situation in 

which a horse lacks a certain degree of control (McAfee et al., 2002). Despite 

collection of faeces being on an opportunistic basis the experimental design 

and sample times of the other physiological measures meant that each 

sample was less than two hours old. In this case faecal hormone analysis was 

shown to be a good method of assessing well being in terms of long term 

welfare and could also be suitable for assessing well being in free ranging 

species including horses.  
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7.6 The relationship between temperature change and hormonal response to 

stress 

During this project in all cases of an increased eye temperature in response to 

a potentially stressful situation an increase and positive correlation with the 

stress hormone cortisol was also reported.  

Both eye temperature and salivary cortisol increased in response to the 

potentially stressful procedure of sham clipping with a positive correlation 

between the two physiological variables. This is important as the increase in 

salivary cortisol indicates that the horses found the procedure aversive and 

therefore the increase in eye temperature could suggest the same. This is 

reinforced by the fact that neither parameter increased during the no clipping 

study when the presence of the potentially stressful stimulus was removed.  

There was a lag time between the peak in eye temperature and the peak in 

salivary cortisol which reflects the timings of the physiological mechanism 

behind each response. Cortisol release is controlled by the hypothalamic–

pituitary-adrenocortical (HPA) axis and the response takes several minutes to 

be fully functional (Nelson, 2005). Eye temperature mirrored the 

cardiovascular response during this project which is facilitated by the 

sympathetic nervous system. This mechanism is activated within seconds of 

perceiving a stressor which is reflected in the timing of eye temperature 

change and explains why a peak in eye temperature is observed followed by a 

peak in cortisol level. This means that eye temperature offers a more 

immediate assessment of how the horse perceives its situation without the 

need for prolonged sampling. 
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7.7 Behavioural response to stress 

During this project behavioural assessment did not always reflect the 

physiological stress response. The single horse from which thermal data was 

available during study B was assigned the lowest behavioural reactivity score 

despite physiological measures indicating it found the situation to be stressful. 

Horses appeared tolerant and behaviourally complaint with sham clipping 

despite physiological indication that they found the procedure to be stressful.  

Therefore in both cases, behavioural assessment was not a reliable method of 

assessing how the horses perceived the procedure. The inconsistency between 

behavioural and physiological measures could be due to training by human 

handlers resulting in horses learning not to react to these particular stressors. 

These results support the suggestion that physiological measures, which 

cannot be masked in the way behaviour can, are needed to allow a robust 

interpretation of equine welfare (Anderson et al., 1999; Strand et al., 2002; 

Momozawa et al., 2003; Pritchett et al., 2003; Minero et al., 2006) and 

overcome the behavioural limitations of masking stress, habituation or 

training effects in the horse.   

An increase in cortisol of 40% from basal levels is suggested to be 

contributory to stress related disease (Barnett and Hemsworth, 1990). Two 

horses involved in this project displayed cortisol levels that increased by 40% 

and 43% from pre stress measures and both were in the group that were 

behaviourally complaint with the clipping procedure. This again highlights the 

importance of physiological measures in assessing current management and 

training procedures and may even suggest that masking any behavioural 

response is just as stressful for the horse or maybe more stressful than 

displaying the behavioural response. Despite this horses are trained to learn 

that such a behavioural reaction will not be tolerated and this may have 

reinforced the masking of the behavioural stress response and could 

ultimately compromise the horses’ health and well being. As clipping is usually 
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limited to between one and four occasions per year it is unlikely that this 

particular repeated stimulation of the stress response and subsequent rise of 

cortisol into “stress levels” would impact on the horses’ health. However, 

there are other husbandry procedures of a more repetitive nature that may 

evoke the same response and that may not be identified by behavioural 

observation alone therefore the effects of such procedures may be going 

unnoticed. 

Despite these findings behavioural assessment still has a place in assessing 

welfare. It can be used to differentiate between ‘non-threatening’ stress and 

threatening stress for example a stallion covering a mare. During study D 

behavioural assessment during potentially chronic stress revealed an 

increased incidence of stereotypic behaviour in the restrictive housing designs 

which can be associated with reduced welfare or stress caused by an 

inadequate environment (Broom, 1991; Mason, 1991; McBride and 

Cuddelford, 2001. When used in the appropriate situation alongside 

physiological measures behaviour still has a place in assessing equine welfare.  

 

7.8 Limitations of Infrared thermography 

The main limitation of IRT during this study was the capability of the thermal 

camera (Mobir® GuidIR M4 static thermal image camera). Study B utilised a 

camera capable of continuous thermal recording (FLIR ThermoVision A40M) 

however this camera was only available for the one study. The camera utilised 

for the reminder of the research (Mobir® GuidIR M4 static thermal image 

camera) was not capable of continuous recording and captured only static 

thermal images. This meant that any instant thermal response reported in 

existing work (Stewart et al., 2008) was potentially overlooked. It was 

therefore impossible to report on any thermal change within the period 

between initial presentation of the stressor and the first static thermal image 

for example any sudden temperature change between the pre stressor and 
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first post stressor thermal images during the study into short term stress 

(study C). Nakayama et al. (2004) reports that nasal temperature started its 

descent between 10 and 110 seconds post onset of confrontation in all 

monkeys and had returned to pre stressor levels within four minutes post 

removal of confrontation therefore at the time of the first post stress static 

thermal image for study B at five minutes post stressor, any changes in eye 

temperature had possibly dissipated. This theory is supported by Stewart et 

al. (2007) who state that it is possible that studies which have only reported 

increases in temperature in response to acute stress may have failed to detect 

an initial decrease in eye temperature due to its instantaneous nature. It is 

likely that the static thermal sampling during this project was too infrequent 

and therefore could not capture such an immediate temperature change. 

 

The study into temperature change in rhesus monkeys during confrontation 

by a handler reports that the decrease in temperature originated from an area 

in the uppermost portion of the nasal region and then spread to the lower 

regions (Nakayama et al., 2004). The authors were able to investigate the 

origin of temperature change and how it spread through use of a thermal 

camera with video recording capabilities and subsequent pixel analysis of the 

footage. The origin and spread of blood flow alteration and therefore 

temperature change was not able to be investigated during the current 

project. This is a limitation as it could have aided in further explaining the 

reasons or mechanisms behind temperature change. The stress induced 

change in monkeys was due to fear of a threatening handler. It may be that 

pain and environmental stress elicits a different pattern of temperature 

change to fear induced stress and without a continuous thermal recording 

these potential differences cannot be investigated. 
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Another functional limitation of the camera was the effect of sunlight during 

outdoor measures. The glare of the sun on the camera screen (which 

previewed any captured images to the user) made the positioning of the study 

horse difficult and increased the length of time needed to capture an image. 

The camera preview screen had to be shaded by hand or moved out of direct 

sunlight in order to confirm that the image was adequately positioned and of 

sufficient quality to assess at a later date. This would have been more 

problematic if temperatures were required to be read straight from the 

screen.  The distance capability of the camera was also a limitation. Once the 

camera was held approximately five metres from the horse the image 

produced by the camera was greatly reduced in quality making it impossible 

to select the specific eye area accurately. At greater distances the horse 

appeared as a blurred shape making it impossible to select even larger 

anatomical areas. This limitation did not impact on this project as images 

were captured at a set distance of 1-1.5 metres from the study horse, 

however it does have implications for this particular model of camera being 

used in a free ranging setting where it may be impossible to get close to the 

horses.    

 Aside from these limitations the image quality of the thermal images, if 

images were taken carefully within the set distance from the study horse, was 

sufficient to extract the required temperatures. The Mobir® GuidIR thermal 

camera has a thermal sensitivity of ≤0.1℃ and the FLIR ThermoVision A40M 

thermal camera a thermal sensitivity of 0.08°C. Therefore both cameras can 

reliably measure the temperature changes reported during this project and 

would also be capable of measuring the temperature change of 0.6°C seen in 

cattle (Stewart et al.,2008) and  0.2°C in monkeys (Nakayama et al., 2004).      

 

Individual variation in basal eye temperature questioned the value of using 

group means, however despite this variation, all horses in study C displayed 
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similar patterns of increase and time to maximum temperature (Appendix 8) 

and a significant (p<0.001) increase in mean eye temperature was reported 

therefore mean data may still have value when assessing horses as a group. 

It is, however, important that pre-stress temperature measures are taken to 

allow each horse to act as its own control and enable investigation of 

individual animals to be carried out if necessary. 

 

Existing work has cited ambient temperature as a possible confounding factor 

during the use of IRT (Kastelic et al., 1996; Eddy et al., 2001; van Hoogmoed 

and Snyder 2002). Ambient temperature remained stable with only minor 

fluctuations throughout study C and there was no correlation between eye 

temperature and ambient temperature during preliminary study 1 (Appendix 

4). However, it appears that ambient temperature may have confounded 

results of the study into long term stress by activating thermoregulatory 

mechanisms. If core temperature had not been measured in addition to eye 

temperature this may have gone unnoticed, however a correlation between 

core and eye temperature suggests that changes were due to changing 

environmental temperature rather than as a response to stress. As no 

definitive answer can be given on the effect of ambient temperature upon eye 

temperature measured during this project, it is important that environmental 

temperatures are monitored in a research setting when utilising IRT in order 

to better interpret any physiological thermal change. 

If the main limitation of IRT is the confounding effects of ambient 

temperature then this is something that can be monitored and taken into 

account during scientific research. In comparison many of the limiting factors 

of existing methods to assess the stress response cannot be controlled. These 

include the effects of horse temperament and past experience during 

behavioural assessment and the time to analyse physiological samples in the 

laboratory. Advances in technology mean that the one off costs of high 
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specification cameras which offer better quality images are lower in 

comparison to the ongoing costs of laboratory based studies.  

 

7.9 Application of IRT as a tool to assess the stress response in the horse 

After consideration of the practical limitations of thermal imaging in the 

domestic equine environment it is clear that as a research tool IRT is of most 

use in assessing the thermal response to stress during short term potentially 

stressful situations. Despite some of these short term management practices 

and training procedures being sporadic or rare on an individual basis (clipping 

up to twice per year lasting approximately one hour), it may be that the total 

biological cost of such procedures has an impact on equine welfare. If horses 

are being subjected to many different situations involving potential short term 

stress then the stress response may be being repeatedly or even chronically 

activated. Often horse owners plan aspects of horse care and management 

practices to occur on the same day from an organisational and time 

management point of view. A possible scenario may be that a horse will have 

new shoes fitted, a dental check and be clipped and then placed in an isolated 

stable all within a twenty four hour period. If the horse found more than one 

of these procedures to be stressful then the stress response could be 

activated for a prolonged period and this could predispose the horse to health 

problems. IRT could be used as a tool to assess these short term practices in 

order to evaluate their impact upon the horse. If it was apparent that the 

horse found more than one procedure to be stressful then one or more of the 

procedures could be carried out at a separate time. This could minimise the 

effects of the activated stress response by allowing the horse time to recover 

and cortisol levels to return to basal level. 

 

IRT would be most appropriately used as a research tool to identify which of 

the many short term husbandry procedures evoke a stress response. These 
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procedures could then be limited or altered if necessary and avoided 

altogether if more than one procedure needed to be carried out on the same 

day.  

 

IRT has been used to assess the stress caused by pain (Cook et al., 2006; 

Stewart et al., 2008). However, IRT also offers an objective means of 

investigating environmental causes of stress which are often more difficult to 

identify than stress caused through pain. Environmental causes of short term 

stress are common and cover diverse situations including abrupt weaning, 

transportation, grooming techniques and ground and ridden training 

techniques. A horse that finds any of these situations stressful may mask the 

stress response, either due to training or simply as a survival mechanism and 

so environmental stress is of potentially greater risk to equine health than 

pain which is often site specific and produces obvious behavioural signs. Pain 

can also be controlled or even alleviated in the domestic situation however; 

environmental stress cannot be managed or avoided without altering the 

procedure which is causing the stress. This is difficult if outward signs are not 

always apparent.  
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7.10 Future work 

It is not possible to say how long eye temperature would have remained 

elevated if the stressor of sham clipping were maintained during study C, 

however this is an important factor to consider as it will highlight the working 

limits of IRT and the types of procedure it can assess with regards to duration 

of the stressor. It may be that after a certain period of time eye temperature 

will begin to decline or it may remain elevated until removal of the stressor. 

Longer studies are therefore needed both with short term stressors with 

prolonged thermal imaging post stressor and longer term stressors to assess 

how long eye temperature remains elevated. 

 As discussed earlier an increase in cortisol of 40% from basal levels is 

suggested to be contributory to stress related disease (Barnett and 

Hemsworth, 1990). It may be that there is an equivalent eye temperature 

increase that indicates the same. The actual temperature increase itself is 

unlikely to cause detrimental effects to health however it may reflect the 

corresponding increase in cortisol. Further work would be required to 

investigate if specific increases in cortisol correlate with rise in eye 

temperature. If this is the case then IRT would be a non-invasive tool to 

measure whether stress caused by specific procedures would increase cortisol 

levels and thus have detrimental consequences for equine health.  

 There are many short term husbandry and training procedures involved in 

the equine industry which could be perceived as stressful to the horse and 

only one (clipping) has been investigated during this project. IRT could now 

be utilised to assess other aspects of equine domestication for example 

weaning methods and transportation. Now that better quality cameras are 

becoming available, with improved capabilities of capturing temperature from 

a greater distance, it should be possible to apply IRT to free ranging horses to 

assess welfare. 
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7.11 Conclusion 

The Animal Welfare Act 2006 is in place to ensure that the main welfare needs 

of animals are met. This includes the provision of suitable housing and 

protection from illness. The Federation Equestrian Internationale (FEI) has 

called for an objective method to identify ‘the happy equine athlete’ however 

horse owners and trainers are not sure what the signs of a stress free ridden 

horse are, or what are the most suitable methods of husbandry and 

management of horses. Interpreting short term stress in terms of welfare is 

difficult as it is essentially a normal protective response. However assessing 

short term stress can serve to help horse owners and trainers decide which 

are the most appropriate management and training methods in terms of how 

stressful horses perceive them to be and subsequently improve welfare. This 

project has revealed that although IRT is not appropriate to assess acute or 

chronic stress in the horse, it can be utilised as an indicator of stress during 

short term potentially aversive management and training practices. IRT of the 

eye area overcomes the confounding effects of hair and dirt, as well as the 

invasive and time consuming limitations of existing laboratory based methods. 

IRT is non-invasive, instant and measures a physiological stress response that 

cannot be masked in the same way that behaviour can. IRT can also be used 

as an objective physiological measure to help identify which behaviours are 

most reliable in indicating that the horse finds the situation it is in to be 

stressful. 

It is always difficult to predict the impact of training and management 

practices on a population of horses as each individual horse will perceive 

procedures differently due to the influencing factors of past experience and 

temperament. However, IRT can be used in an experimental setting with 

horses acting as their own controls to carefully observe and monitor the 

thermal response to elements of the domestic environment. This will allow 
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horse owners and trainers to decipher which procedures may be causing 

stress at a given place and time and alter them accordingly.  
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Appendix 1 
 

 
Assessment of salivary cortisol collection methods  

 
During the preliminary stages of the study various methods were explored to 

allow collection of saliva from the horses for cortisol analysis. In order to 

assay each sample in duplicate a minimum volume of 200μl of saliva was 

required. Five horses were used to investigate the efficacy of each swabbing 

method. Horses were allowed to chew the swab for one minute. This length of 

time was chosen as it was anticipated that some studies would require quick 

and frequent sampling in addition to any longer sampling duration potentially 

resulting in destruction of the swab through the horses chewing action. Swabs 

were taken at the same time of day (0800h) from the same horses and frozen 

at -4°C. Each swab was then thawed and centrifuged (Rotina 380, DJB 

Labcare) at 1000g for ten minutes. Saliva was transferred into 1.5ml 

microtubes via pipette. 100μl increments had been marked onto the 

microtubes by pipetting set amounts of distilled water into the tubes and 

marking the level. This allowed volume of saliva to be calculated to the 

nearest 50μl once it was transferred. Swab types used were cotton buds, 

cotton gauze wrapped around a wooden stick that was held in the mouth and 

a salivette. Table 1.1 displays the amount of saliva collected using each 

method. 
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Table 1.1 Amount of saliva (μl) collected using each of three sampling 

methods in five horses. 
 

 Horse 1 Horse 2 Horse 3 Horse 4 Horse 5 

 

Cotton Bud 
 

0 0 100 100 50 

 

Cotton 
gauze 

 

150 50 150 200 200 

 
Salivette 

 

750 650 700 800 800 

 

Once centrifugation ceased the cotton bud and gauze swab both remained in 

the same container as the saliva and it is possible that some of the extracted 

saliva was re absorbed before it was able to be removed. The gauze swab was 

partially destroyed by the horses chewing action within the allotted one 

minute period which resulted in an unpleasant and unhygienic collection 

method. The unique design of the salivettes offered a hygienic and efficient 

collection method that yielded adequate amounts of saliva and collected saliva 

remained separate from the cotton swab post centrifugation. The salivettes 

withstood the chewing action however there was a concern that they could be 

swallowed by the horses. It was concluded that they should be modified from 

their design intended for human use by stitching cotton thread through the 

swab that could be held as the horses chewed to prevent swallowing. 
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Appendix 2 
 

 
Validation for cortisol assays 

 

 

 
Figure 2.1 Standard curve for pooled sample of saliva assayed neat (10ng/ml) 
and diluted to 8ng/ml, 6ng/ml, 4ng/ml, 2ng/ml and 1ng/ml alongside the 
standards provided with the kit. 
 

 
Figure 2.2 Semi log plot  for pooled sample of saliva assayed neat (10ng/ml) 
and diluted to 8ng/ml, 6ng/ml, 4ng/ml, 2ng/ml and 1ng/ml alongside the 
standards provided with the kit. 
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Figure 2.3 Standard curve of pooled equine faecal samples and corticosterone 

standards. Analysis carried out at Chester Zoo, see Appendix 8 for protocol 
 

 
Figure 2.4 Semi log plot of  pooled equine faecal samples and corticosterone 
standards. Analysis carried out at Chester Zoo, see Appendix 8 for protocol 
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Figure 2.5 Standard curve for pooled equine faecal samples and cortisol 
standards. Curve shows that analysis of faeces for cortisol is an unsuitable 

method. Analysis was carried out at Chester Zoo, see Appendix 8 for protocol. 
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Appendix 3 
 

 
Standard curves of cortisol assays 

 

 

 
Figure 3.1(a) Standard curve of cortisol assay for circadian study A 

 
 

 
Figure 3.1(b) Semi log plot of cortisol assay for study A 
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3.2(a) Standard curve for cortisol assay of saliva from study B 

 
 

 

3.2(b) Semi log plot of cortisol assay for study B 
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3.3(a) Standard curve of cortisol assay (plate 1) study C 

 

 
3.3(b) Semi log plot of cortisol assay (plate 1) for study C 
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3.4(a) Standard curve of cortisol assay (plate 2) for study C 

 
 

 
3.4(b) Semi log plot of cortisol assay (plate 2) for study C 
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3.5(a) Standard curve of cortisol assay (plate 3) for study C 

 

 
3.5(b) Semi log plot of cortisol assay (plate 3) for study C 
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Figure 3.6(a) Standard curve of cortisol assay (plate 1) for study C (control)  

 

 
Figure 3.6(b) Semi log plot of cortisol assay (plate 1) study C (control)  
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Figure 3.7(a) Standard curve of cortisol assay (plate 2) for study C (control)  

 

 
Figure 3.7(b) Semi log plot of cortisol assay (plate 2) for study C (control) 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100

ng/ml cortisol

m
e
a
n
 a

b
s
o
rb

a
n
c
e
 (

4
5
0
n
m

)

y = -0.3696x + 1.0505

R2 = 0.9798

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.5 1 1.5 2

ng/ml cortisol

m
e
a
n
 a

b
s
o
rb

a
n
c
e
 4

5
0
n
m



 243 

Appendix 4 
 

 
Preliminary study 1 

 
This preliminary study was carried out to investigate whether changing the 

distance that a thermal image is captured from the horse will affect the 

recorded temperature. It also investigated the effect of ambient temperature 

on eye temperature. 

 

Methods and materials 

Horses  

Ten horses from the University equestrian centre were involved in the study. 

The horses were a mixture of breed representative of riding school horses, 

details of the horses can be found in table 2.1.  Horses were managed as 

previously discussed in section 2.0 and were exercised for approximately two 

hours per day. 

 

Test area and apparatus 

The test area was an enclosed grass arena measuring 20x40 metres. A jump 

pole was placed on the ground to mark where the horse was to stand and 

then six further wooden jumping poles were placed on the ground at set 

distances of 1 metre, 3 metres, 6 metres, 9 metres and 12 metres from the 

horse (Figure 4.1). 
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Figure 4.1 Test area with jumping poles placed at set distances of 1, 3, 6, 9 
and 12 metres laterally from horse.  

 

Data Collection 

Horses were led one at a time to the test area by the same familiar handler 

and positioned laterally to the marker pole (Figure 4.1).Thermal images of the 

eye were taken at each jumping pole. This was carried out for both left and 

right lateral aspect. Thermal data was captured, uploaded and temperature 

extracted using the method previously discussed in section 2.0 

Core temperature was taken three times for each horse using the method 

previously discussed in section 2.0. Core temperature was measured when 

the horse first entered the arena, during the experiment (at the 6 metre 

marker pole) and before the horse left the arena. Ambient temperature was 

also recorded each time a thermal image was captured. 

 

Data Analysis 

Eye temperature 

Distribution of eye temperature data was normal (Kolmogorov-Smirnov, 

p=0.2) A one way repeated measures ANOVA) was carried out to investigate 

any difference in eye temperature when images were captured at different 

distances (1= 1 metre from horse, 2= 3 metres from horse, 3= 6 metres 

from horse, 4= 9 metres from horse and 5 = twelve metres from horse).  

Horse stood 

laterally to jump 

pole  

1m 2m 3m 3m 3m 
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Core temperature 

Distribution of core temperature data was normal (Kolmogorow-Smirnov, 

p=0.16). ) A one way repeated measures analysis ANOVA was carried out to 

investigate any difference in the three core temperature measurements over 

the study period (when the horse first entered the arena, during the 

experiment, at the 6 metre marker pole and before the horse left the arena) 

 

Correlation 

The relationship between eye temperature measured using IRT and distance 

the image was captured from the horse was investigated using Pearson 

product-moment correlation in addition to any relationship between ambient 

temperature and eye temperature. 

 

Results 

Eye temperature 

A one way repeated ANOVA indicated that there was a significant effect of 

distance on eye temperature (Wilks Lambda=.05, F (4, 6) = 28.637, 

p=0.001, multivariate partial eta squared =.95). Post hoc tests using the 

Bonferroni correction revealed that there was a decrease in mean 

temperature between each distance which was significant (Table 4.1) 

 

Core temperature 

A one way repeated ANOVA indicated that there was no significant effect of 

time on core temperature (Wilks Lambda= .56, F (2, 8) = 3.206, p=0.095). 

Core temperature remained. Table 4.2 details the descriptive statistics for 

core temperature for before, during and after the study 
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Table 4.1  Results of ANOVA test used to investigate the effect of distance on 

eye temperature when measured using IRT (1= 1 metre from horse, 2= 3 
metres from horse, 3= 6 metres from horse, 4= 9 metres from horse and 5 = 

twelve metres from horse) Table shows significant effect of distance on eye 
temperature.  

 

(I) distance (J) distance 

Mean 

Difference (I-J) Std. Error Sig.
a
 

95% Confidence Interval for 

Difference
a
 

Lower Bound Upper Bound 

dimension1 

1 

dimension2 

2 3.570
*
 .666 .005 1.112 6.028 

3 7.998
*
 .902 .000 4.669 11.326 

4 10.393
*
 .946 .000 6.902 13.883 

5 12.828
*
 1.088 .000 8.811 16.844 

2 

dimension2 

1 -3.570
*
 .666 .005 -6.028 -1.112 

3 4.427
*
 .493 .000 2.610 6.245 

4 6.822
*
 .842 .000 3.715 9.930 

5 9.258
*
 1.157 .000 4.987 13.528 

3 

dimension2 

1 -7.998
*
 .902 .000 -11.326 -4.669 

2 -4.427
*
 .493 .000 -6.245 -2.610 

4 2.395
*
 .563 .021 .317 4.473 

5 4.830
*
 .861 .003 1.652 8.008 

4 

dimension2 

1 -10.393
*
 .946 .000 -13.883 -6.902 

2 -6.822
*
 .842 .000 -9.930 -3.715 

3 -2.395
*
 .563 .021 -4.473 -.317 

5 2.435
*
 .459 .005 .740 4.130 

5 

dimension2 

1 -12.828
*
 1.088 .000 -16.844 -8.811 

2 -9.258
*
 1.157 .000 -13.528 -4.987 

3 -4.830
*
 .861 .003 -8.008 -1.652 

4 -2.435
*
 .459 .005 -4.130 -.740 

*. The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Table 4.2 Descriptive statistics descriptive statistics for core temperature for 
before, during and after the study 

 

 
Mean 

Std. 

Deviation N 

before 36.5100 1.04078 10 

during 36.5600 .79610 10 

after 36.3300 .81656 10 
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Correlation 

Pearson product-moment correlation revealed that there was a strong 

negative correlation between eye temperature measured using IRT and 

distance the image was captured from the horse, (r= -.783, n=55, p<0.001). 

As the distance the image was captured from the horse increased, eye 

temperature decreased Figure 4.2). 

 

 

Figure 4.2 Negative correlation between eye temperature (°C) measured 

using IRT and distance the image was captured from the horse (metres) 
 

 

Pearson product-moment correlation revealed that there was no correlation 

between eye temperature and ambient temperature (r= -.2, n=50, p<0.25) 

(Figure 4.3). 
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Figure 4.3 No relationship between eye temperature (°C) and ambient 
temperature (°C) throughout the duration of the study. 

 

Conclusion 

Recorded eye temperature decreased significantly when thermal images were 

taken at a greater distance from the horse. This highlights the importance of 

a standardised distance when capturing thermal images during this project as 

accurate temperatures are required. Furthermore, images captured at 1 

metre from the horse were clear and placement of the polygon for 

temperature extraction could be carried out easily and accurately. The 

decrease in eye temperature appears to not be a direct result of ambient 

temperature as no correlation was found between the two measures. 
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Appendix 5 

 

Preliminary study 2 

 

This preliminary study was carried out to investigate eye and ear temperature 

output of horses in their usual environment measured using IRT.  

 

Materials and Methods 

Horses 

Five horses from the University riding school were selected based on their 

availability throughout the week at the sampling times required. Details of the 

horses can be found in chapter 2.0. All horses were fed concentrate feed twice 

daily, offered ad libitum hay and water and were all familiar with the yard 

management routine.  

  

Data collection 

All horses were brought from their stable by the same familiar handler and 

loosely tied in the same area in order for thermal images to be taken. 

Static thermal images of the left and right eye and left and right ear pinna 

were taken of each horse using the method previously discussed in chapter 

2.0. Images were captured three times daily at 0800h, 1300h and 1800h over 

five subsequent days. Thermal data was uploaded and temperature extracted 

as previously discussed in chapter 2.0. The maximum temperature of eye and 

ear pinna were extracted for each horse and entered into an Excel 

spreadsheet. Initially this was carried out for each individual horse and then 

subsequently the mean eye and ear pinna temperatures for all horses were 

calculated for each sampling time point. Temperatures were then plotted 

against time in order to investigate any daily patterns or changes.  
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Data analysis 

Eye temperature data analysis 

Distribution of data did not vary significantly from normal Kolmogorov-

Smirnov test p=0.2) therefore a two way within subjects ANOVA was carried 

out to investigate any difference in eye temperature between days and also 

between sampling time points. 

A one way repeated measures ANOVA was used to investigate any difference 

in eye temperature between the five 0800h eye temperatures taken during 

the course of the study. This was carried out as initial investigation revealed 

eye temperature to be higher on the third 0800h sample. 

 

Ear pinna temperature data analysis 

Distribution of data was normal (p=0.2) therefore a two way within subjects 

ANOVA was carried out to investigate any difference in ear temperature 

between days and also between sampling time points. 

 

Results  

Eye temperature 

The results of the two way repeated measures ANOVA revealed no significant 

difference in eye temperature between days (F(2, 8)= 1.111, p=0.375, 

however there was a significant effect of time on eye temperature (F (2, 8)= 

10.149, p=0.006. Post hoc tests using the Bonferroni correction revealed that 

there was a decrease in mean temperature between times 1 and 2 (08.00h 

and 13.00h) (33.8±0.6 °C vs. 31.1±0.4 °C) which was statistically significant 

(p=0.04). 
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Ear temperature 

The results of the two way repeated measures ANOVA revealed no significant 

difference in ear temperature between days (F(2, 8)= 0.308, p=0.743 or 

between individual time points (F(2, 8)= 0.237, p=0.795. Mean ear 

temperature displayed larger variation between horses than mean eye 

temperature (Figure 5.1). Table 5.1 details maximum, and minimum 

temperatures for both eye and ear pinna temperature.  

 

 
Table 5.1 Minimum, maximum and range in temperature recorded for the eye, 

and ear pinna (°C). 
 

 Minimum 

temperature 
(°C) 

Maximum 

temperature 
(°C) 

Range 

(°C) 

Eye 

temperature 
 

 

32 

 

35 

 

3 

Ear 

temperature 
 

 

22 

 

32 
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Figure 5.1 Mean (±SD) eye and ear temperature of five study horses. 
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Further observations 

80% of the thermal images (75 images in total) displayed maximum eye 

temperature at the lacrimal gland (Figure 5.2).  

 

  

Figure 5.2 Thermal image displaying location of maximum eye temperature at 
the lacrimal gland with corresponding photograph. 

 

During the third day of the study eye temperature increased above 

temperatures recorded during the two previous days (sample 7). The increase 

above basal levels was observed in four of the five study horses and eye 

temperature did not increase again to the levels shown at any other point 

during the study (Figure 5.3). A one way repeated measures ANOVA revealed 

that this increase was not significant (Wilks Lambda = .013, F (4, 1) = 

18.907, p=0.17). 

Ear pinna temperature did not display any changes greater than those 

observed during the two previous days or at any other point during the study. 

 

Lacrimal gland 
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Figure 5.3. Maximum eye temperature for each horse throughout the duration 
of the study. The red circle highlights elevated eye temperature in four of the 

five study horses on the third study. 
 

Discussion  

A large proportion of the thermal images displayed maximum eye 

temperature at the lacrimal gland (Figure 5.2). This is in agreement with the 

study by Stewart et al. (2007) and may be because the vessels that supply 

the eye with blood are close to the skin surface in this area.  

In this preliminary study ear temperature fluctuated across a greater range of 

temperature when compared to eye temperature. This may be due to the ear 

being an outer extremity and therefore affected more by climate in addition to 

playing a role in dissipation of heat for thermoregulation. 

During the third day of the pilot study eye temperature increased above 

temperatures recorded during the two previous days although this increase 

was not significant (p=0.17). The increase above basal levels was observed in 

four of the five study horses. High winds resulted in noise and sudden 

movements amongst plastic covered hay bales in the vicinity where the 

horses were tied for their thermal images to be taken. All four horses 

exhibited flight behaviour. One of the horses was stabled adjacent to the bags 
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and it was therefore possible that it had become habituated to the noise and 

movement and subsequently did not exhibit behavioural signs of stress or an 

increase in maximum eye temperature. 

 The increase in eye temperature in response to exposure to a startling 

stimulus (in this case sudden movement and noise caused by plastic bags) 

supports findings of existing work into the thermal response of the eye to 

acute aversive stimuli (Pavlidis et al., 2001; Cook et al., 2006).  

Eye temperature displayed a significant decrease between morning and 

midday measure, however the frequency of eye temperature measurements 

was limited to three times over each twenty four hour period. It is impossible 

to know what temperature changes occurred if any during the five hour 

periods between daytime measures in addition to any changes overnight. 

Data were limited for this study due to the small sample size of horses and 

temperature measures therefore a larger more detailed study was required. 

 

Conclusion 

Preliminary results show that eye temperature fluctuates less over time when 

compared to ear temperature. This is in agreement with existing work that 

has used eye temperature as a measure of temperature change associated 

with the stress response in other species (Cook  et al., 2001; Pavlidis et al., 

2002 Cook et al., 2006; Stewart et al., 2008T). Less fluctuation in 

temperature of the eye area will be beneficial as it will allow clearer 

interpretation of any stress related changes.  

 A siginificant effect of time was found in eye temperature but a limited 

number of samples (3 per day) were available. A larger and more detailed 

investigation into the daily pattern of eye temperature was now needed, in 

addition to salivary cortisol measurements, in order to investigate diurnal 

rhythm and allow better interpretation of the thermal and hormonal data 

collected as a measure of stress. It appears that sudden potentially aversive 
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stimuli may result in warming of the eye area which supports the objective of 

investigation into the thermal response of the equine eye to a startling 

stimulus.  
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Appendix 6 

 

Individual physiological date for chapter 4. 
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Appendix 7 

 

Preliminary study 3 

Materials and methods 

Study horse and test area  

A horse known to show behavioural signs of stress when clipped was chosen 

by the Brackenhurst equestrian centre yard manager. The horse was a ten 

year old gelding at the time of the study and was a medium weight cob. Sham 

clipping was carried out in an enclosed barn that was familiar to the horse. 

The test area has been described in chapter 4.2.2.  

 

Test procedure  

The horse was led the short distance from its stable by a familiar handler and 

tied up using a conventional head collar and lead rope in the barn. As it is 

possible that exercise and anticipation may have contributed to pre stress 

changes in physiological measures during the startle response study, the 

horse was allowed to acclimatise to the new environment for ten minutes and 

the first physiological measure (10 minutes pre sham clipping) did not start 

until after this period. The horse was exposed to ten minutes of sham clipping 

(the clippers were placed on the horse so it could feel and hear them but hair 

was not removed). 

Physiological measures were taken every ten minutes from ten minutes pre 

onset of sham clipping until one hour post onset of sham clipping. The eye 

remained the primary anatomical area under investigation as it had been 

reported to be a more consistent measure of thermal change in previous work 

(Cook et al., 2006, Stewart et al., 2008) and a thermal response of the eye 

had been observed in four of the five study horses in the preliminary 

investigation into temperature output of horses in their usual environment 

(Appendix 5) in addition to one horse during study B (chapter 4.0). An 
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investigation into thermal change of ear temperature in response to a 

stressful situation was also included as there is evidence that ear pinna 

temperature alters in stressful situations in other species (Ingram et al., 

2002). 

 

Data collection and analysis 

 

Infrared thermography  

Thermal images of the eyes and ears were captured every ten minutes from 

ten minutes pre onset of sham clipping until one hour post onset of sham 

clipping. Temperature was extracted and processed from each thermal image 

as previously discussed and a mean temperature for left and right eye and left 

and right ear for each time point calculated. Temperatures were then plotted 

against time using Excel to investigate any changes in thermal output during 

the study. 

 

Salivary cortisol  

Saliva was sampled every ten minutes from ten minutes pre onset of sham 

clipping until one hour post onset of sham clipping. Saliva was collected, 

analysed and processed using the method previously discussed in chapter 2. 

Salivary cortisol for each time point was calculated using the methods 

previously discussed and plotted against time to investigate any changes 

during the study. 
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Heart rate  

Heart rate was collected every ten minutes from ten minutes pre onset of 

sham clipping until one hour post onset of sham clipping. Heart rate was 

collected for this one horse using a stethoscope (Medscope Ltd, UK) placed 

behind the point of elbow and heart rate counted for 15 seconds. Heart rate 

for each time point was extracted using the method previously discussed and 

plotted against time to investigate any changes during the study. 

 

Core temperature 

Core temperature was taken every ten minutes from ten minutes pre onset of 

sham clipping until one hour post onset of sham clipping using the method 

previously discussed in chapter 2.0. Temperatures were recorded by hand 

onto the horse’s data sheet and transferred to an Excel spreadsheet at a later 

date. 

 

Ambient temperature  

Ambient temperature was recorded every ten minutes throughout the 

duration of the study using a wet bulb thermometer 

 

Behavioural response 

The primary purpose of this pilot work was to investigate whether a 

potentially distressing management practice would activate the physiological 

stress response and warrant a larger investigation; therefore a behavioural 

assessment was not included at this stage. The horse was chosen as it was 

already known to show behavioural signs that it found clipping to be stressful. 
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Results 

Infrared thermography. 

Eye temperature remained constant pre and post sham clipping at 

approximately 40°C, however at the onset of sham clipping it increased by 

9.7°C (Figure 7.1). Eye temperature decreased upon removal of the sham 

clipping and had returned to basal level within ten minutes  

 

Figure 7.1. Eye temperature (°C) for one pilot horse over duration of the study. The arrow marks 

the time when sham clipping occurred. 

 

Ear temperature fluctuated throughout the sampling period between 34.7°C 

and 39.5°C. Core temperature remained stable for the duration of the study, 

only fluctuating by ±0.3°C. Ambient temperature increased from 16.3°C to 

19.2°C throughout the duration of the study. Table 7.1 details mean eye and 

ear temperature in addition to core and ambient temperature for each time 

point.  
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Table 7.1 Mean eye, ear and core temperature in addition to ambient temperature for 
each sampling time point. Shaded rows indicate that sham clipping was being carried 
out. 

Time 

 

Mean eye 

temperature 

(°C) 

Mean ear 

temperature 

(°C) 

Core 

temperature 

(°C) 

Ambient 

temperature 

(°C) 

1 40.1 

 

37.1 37.2 16.3 

2 40.3 
 

39 37.1 16.6 

3 50 

 

39.5 37.3 16.8 

4 39.7 
 

38.5 37.8 17.6 

5 39.7 

 

38 37.8 18.5 

6 39.3 
 

35.3 37.5 18.7 

7 38.5 

 

36.3 37.4 18.7 

8 37.2 

 

34.7 37.6 19.2 

 
Salivary cortisol. 

Salivary cortisol increased in response to sham clipping (Figure 7.2) from a 

basal level of 2.38 ng/ml to a maximum of 6.40ng/ml. Cortisol peaked twenty 

minutes post onset of clipping and had returned to near basal level at thirty 

minutes post onset of clipping. 

 

Figure 7.2 Salivary cortisol (ng/ml) for one pilot horse over duration of the 
study. The arrow marks the time when sham clipping occurred. 
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Heart rate 

Heart rate increased in response to sham clipping and mirrored the increase 

in eye temperature. There was also a second increase in heart rate after the 

stressor had been removed. Figure 7.3 details the increase in heart rate and 

eye temperature. 

 

Figure 7.3 Eye temperature (°C) and heart rate (bpm) for one pilot horse for the duration of the 

study. The arrow marks the time when sham clipping occurred. 

 

Relationship between eye temperature and salivary cortisol 

The rapid increase in eye temperature was followed by an increase in salivary 

cortisol with a lag time of ten minutes between the peak in eye temperature 

and the peak in cortisol. Both measures had returned to basal level by the 

end of the study period. Figure 7.4 details the change in eye temperature and 

salivary cortisol over the duration of the study period. 
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Figure 7.4 Eye temperature (°C) and salivary cortisol (ng/ml) for one pilot horse over the 

duration of the study period. The arrow marks the time when sham clipping occurred. 
 

Discussion 

An increase in eye temperature in response to sham clipping was evident in 

the study horse. No initial decrease in eye temperature was recorded, 

however as this has only been reported within seconds of the presentation of 

a stressor (Levine et al., 2001, Nakayama et al.,  2004, Stewart et al., 2008) 

it is possible that any decrease in eye temperature was not captured due to 

the timing parameters of the thermal images. Ear temperature fluctuated 

throughout the study. This is possibly due to the ear being an outer extremity 

and more prone to temperature fluctuations due to environmental 

temperature changes. Ambient temperature was measured using a wet bulb 

thermometer for this preliminary study and readings were not accurate 

enough to ascertain whether changes in ambient temperature directly affected 

ear temperature. This small study suggests eye temperature to be a more 

consistent measure of thermal change in response to stress than ear 

temperature and supports existing findings (Schafer et al., 2003, Stewart et 

al., 2008). Core temperature remained constant, which is to be expected due 

to mechanisms that are in place to maintain internal homeostasis (Cymbaluk 

and Christison, 1990).  Ambient temperature increased over the duration of 

0

10

20

30

40

50

60

-10 0 10 20 30 40 50 60

Time (mins)

E
y
e
 t

e
m

p
e
ra

tu
re

 (
°
C

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

C
o
rt

is
o
l 
(n

g
/m

l)

eye temp cortisol



 269 

the study, however whilst eye temperature increased and then subsequently 

decreased, ambient temperature continued to increase. This, in addition to 

the results of the preliminary study into the effects of distance on accuracy of 

IRT (Appendix 4), suggests that change in eye temperature was not 

associated with ambient temperature. 

 Heart rate increased at the onset of sham clipping and mirrored the increase 

in eye temperature. As heart rate is activated by the SNS this could suggest 

changes in eye temperature are also associated with the activation of the 

sympathetic nervous system in response to a stressor. However, heart rate 

declined and then increased again post sham clipping and this increase was 

not mirrored by a rise in eye temperature. The increase in heart rate post 

sham clipping may not have been stress related and could have been caused 

by movement of the study horse either physically around the point where it 

was tied up or possibly due to respiration sinus arrhythmia (the cyclic change 

in heart rate driven by the inhalation and exhalation of breathing).  

Salivary cortisol increased over the duration of the study with maximum 

values recorded twenty minutes post onset of clipping. This is consistent with 

findings of past work (Colborn et al., 1991, Shanahan, 2003, Stewart et al., 

2007) and consistent with the hormonal response of the horses during the 

startle response study.  

 
Conclusion 

This small preliminary study revealed an increase in eye temperature in 

addition to an increase in salivary cortisol in response to sham clipping 

however insufficient data was available to allow statistical testing as only one 

horse was used. The increase in both eye temperature and salivary cortisol 

warranted further investigation using a larger study into thermal and 

hormonal response of the eye to a short term husbandry practice.  
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Appendix 8 

 

Individual physiological data for chapter 5 

 

 

 
Figure 8.1 Salivary cortisol profiles of four individual horses during study C 

displaying differing basal values. 
 

 

 
Figure 8.2 Eye temperature profiles of four individual horses during study C 
displaying differing basal values. 
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Appendix 9 

 

Extraction and assay protocol used by Chester Zoo 

Wet Weight Shaking Extraction 
 

Pre Extraction Preparation 
 Prepare an excel spreadsheet to make labels with sample numbers for each 

faecal sample and extract (see label making protocol). Print labels. 
 Label 12x75mm polyethylene sample storage vials with labels. 

 Next - sort frozen faecal samples into boxes by animal and then by date 
 
Day 1  

 Take boxes of frozen faecal samples out of freezer. Spread faecal samples out 
on trays in order (animal then date) and let thaw for a few hours 

 Label extraction vials (small vials with black tops) with a Sharpie pen putting 

the sample number on both sides. 
 
 When samples are thawed - weigh 0.5 g of wet faecal sample into small weigh 

boats then and transfer into extraction vials. As pockets of hormones can be 

found in faecal samples mix samples well - use a combination of mixing with 
the weighing tool and crushing the bag between your fingers. Mark any 
unusual consistency or debris on sheet.   

o At the same time fill small polyethylene sample storage vial labeled 
with ‘faecal sample’ with remainder of mixed sample.  Cap the vials.  
These are for storage, they do not need to processed any further – 

place in freezer when your are finished with all your extractions.  
 
 Add 0.5 ml Milli-Q water and 4.5 ml methanol to every extraction vial.  If 

monitoring extraction efficiency add appropriate amount of endogenous 

hormone to each tube (follow extraction efficiency protocol) 
 Cap the vials. Vortex each tube until sample is well mixed (until all faecal 

material is freely mixing in the solution) ~10 seconds 

 Place extraction vials in order in boxes and place on rotator - agitate 
overnight. 

 

Day 2  
 Remove extraction vials from rotator in the morning  
 Vortex each sample 
 Remove green buckets from the centrifuge - Remove caps and place extraction 

vials in green buckets in order. Centrifuge extraction vials for 20 minutes at 
1800rpm (you only need to turn the timer to 20 – everything else is already 
set) 

 While tubes are spinning label a set of glass tubes (16mm x125mm) with 
sample numbers on both sides which are listed in the excel extraction sheet.  

 Pour off supernatant into corresponding # glass extraction tubes (16mm 

x125mm) and dry down supernatant in warm water bath under air in fume 
cupboard. Reconstitute in 1 ml methanol.  Vortex briefly, sonicate, covered, for 
15 minutes. 

 Store 1ml extracts in the set of polyethylene sample storage vials labeled 

‘faecal extracts’ 
 

  

PROTOCOL FOR CORTICOSTERONE (CC) EIA  
 

DAY 1 

 
Plate coating  
 
• use NUNC Maxisorb plates 

• CC antibody working dilution is 1:15,000 
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• add 33.3 uL antibody stock (1:100, -20°C) to 5 mL coating buffer in a glass beaker 
• add 50 uL per well antibody solution  
• do not coat column 1 - start at A2 and go down each column  

• pipet all solutions in this order 
• tap plates gently to ensure that coating solution covers well bottom 
• label, cover with acetate plate sealer and leave overnight at 4°C  

• Plates are not ready to use the following day (day 2), but can be used on day 3, 4 or 5 

 

DAY 3 

 

Standards  
 
• standard values are 1000, 500, 250, 125, 62.5, 31.2, 15.6, 7.8  

   and 3.9 pg corticosterone/well 
• dilute standard stock (20 ng/mL or 1000 pg/well, -20°C) serially 2-fold using  
   200ul assay buffer  
 

Samples/controls  
 
• dilute samples in EIA buffer to the appropriate dilution   

• Use prepared Corticosterone C1 and C2 neat in assay 
 
Control Plate  

 
• Run an additional plate, with standards, C1 and C2 as norma 
• Use a single pooled sample at the appropriate dilution across remaining wells (samples 1-26) 
• Run plate as normal 

  
HRP  
 

• CC-HRP working dilution is 1:70,000  
• add 7.14 uL stock (1:100, 4°C) to 5 mL EIA buffer in a glass beaker 
 

RUNNING THE PLATE 

 
Plate washing  
 
• purge the plate washer 

• wash the plates five times with wash solution  
• blot the plates on paper towel to remove excess wash solution  
• run plate immediately 

 
Plate loading  
 

• add 50 uL standard, sample, or control per well in duplicate as quickly and  
  accurately as possible 
• Immediately add 50 uL per well of diluted CC-HRP 
• cover the plates, label with the time and incubate at RT for 2 hours in the dark 

 
Plate washing  
 

• wash the plates 5 times with wash solution and blot dry 
• plates are fairly stable at this point and can be left in the dark until all plates are washed 
 

Substrate  
 

• Substrate buffer must be at room temperature before use 
• prepare substrate immediately before use 

• combine (40 uL H2O2, 125 uL ABTS and 12.5 mL RT citrate buffer) = substrate 

• add 100 uL substrate to all wells  

• cover/incubate at RT in the dark 
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Appendix 10 
 

Raw data from faecal glucocorticoid analysis 
 

Visi   Blackberry   Beau   Tosca   

Sample pg/well ng/g Sample pg/well ng/g Sample pg/well ng/g Sample pg/well ng/g 

Monday 1 131.256 52.50 Monday 1 98.102 39.24 Monday 1 60.881 24.35 Monday 1 79.607 31.84 

Tuesday 1 115.661 46.26 Tuesday 1 94.695 37.88 Tuesday 1 61.29 24.52 Tuesday 1 83.547 33.42 

Wednesday 1 98.895 39.56 Wednesday 1 72.278 28.91 Wednesday 1 59.329 23.73 Wednesday 1 77.962 31.18 

Monday 2 129.327 51.73 Monday 2 81.759 32.70 Monday 2 58.918 23.57 Monday 2 64.244 25.70 

Tuesday 2 143.498 57.40 Tuesday 2 91.561 36.62 Tuesday 2 68.191 27.28 Tuesday 2 67.144 26.86 

Wednesday 2 104.805 41.92 Wednesday 2 82.251 32.90 Wednesday 2 75.52 30.21 Wednesday 2 76.08 30.43 

Monday 3 120.166 48.07 Monday 3 77.734 31.09 Monday 3 68.191 27.28 Monday 3 66.97 26.79 

Tuesday 3 153.83 61.53 Tuesday 3 89.37 35.75 Tuesday 3 58.885 23.55 Tuesday 3 65.973 26.39 

Wednesday 3 146.68 58.67 Wednesday 3 68.848 27.54 Wednesday 3 113.097 45.24 Thursday 3 69.587 27.83 

Monday 4 166.115 66.45 Monday 4 104.016 41.61 Monday 4 83 33.20 Monday 4 58.87 23.55 

Tuesday 4 170.868 68.35 Tuesday 4 115.872 46.35 Tuesday 4 59.91 23.96 Tuesday 4 68.026 27.21 

Wednesday 4 149.809 59.92 Thursday 4 112.743 45.10 Wednesday 4 64.017 25.61 Wednesday 4 55.71 22.28 

 
Del   Ellie/Libby   Ernie   Woody   

Sample pg/well ng/g Sample pg/well ng/g Sample pg/well ng/g Sample pg/well ng/g 

Monday 1 65.428 26.17 Tuesday 1 (Ellie) 65.657 26.26 Monday 1 67.237 26.89 Monday 1 55.089 22.04 

Tuesday 1 70.65 28.26 Wednesday 1 (Ellie) 66.853 26.74 Tuesday 1 64.882 25.95 Tuesday 1 74.931 29.97 

Wednesday 1 54.622 21.85 Monday 2 (Ellie) 88.996 35.60 Wednesday 1 75.666 30.27 Wednesday 1 65.804 26.32 

Monday 2 73.554 29.42 Tuesday 2 (Ellie) 75.271 30.11 Monday 2 61.359 24.54 Monday 2 71.913 28.77 

Tuesday 2 62.107 24.84 Wednesday 2 (Ellie) 61.583 24.63 Tuesday 2 53.636 21.45 Tuesday 2 69.255 27.70 

Wednesday 2 67.545 27.02 Monday 3 (Ellie) 47.23 18.89 Wednesday 2 65.149 26.06 Wednesday 2 76.283 30.51 

Monday 3 65.771 26.31 Tuesday 3 (Ellie) 50.183 20.07 Monday 3 79.608 31.84 Monday 3 85.03 34.01 

Tuesday 3 90.179 36.07 Wednesday 3 (Ellie) 49.799 19.92 Tuesday 3 62.94 25.18 Tuesday 3 98.937 39.57 

Wednesday 3 79.368 31.75 Monday 4 (Libby) 106.63 42.65 Wednesday 3 65.276 26.11 Wednesday 3 89.32 35.73 

Monday 4 90.685 36.27 Tuesday 4 - am (Libby) 72.329 28.93 Monday 4 72.256 28.90 Monday 4 94.331 37.73 

Tuesday 4 106.088 42.44 Tuesday 4 - pm (Libby) 103.326 41.33 Tuesday 4 68.044 27.22 Tuesday 4 94.104 37.64 

Wednesday 4 111.203 44.48 Wednesday 4 (Libby) 91.208 36.48 Wednesday 4 71.626 28.65 Wednesday 4 91.16 36.46 
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                                           Appendix 11 
 

 

Individual faecal corticosterone data 
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Appendix 12 
 

Ethical approval and risk assessments 
 
Ethical Review of Post-Graduate Work in ARES – April 2008 

 

Please complete this form for the practical work undertaken that involves interaction with: 

 Other people (outside the group) 

 Animals 

 The natural environment 

________________________________________________________ 

 

1 PhD 

 

2 Principal Investigator: Kelly Yarnell 

          

3 List the practical activities giving a BRIEF description of practical work (making reference 

to standard methods where appropriate): 

 

For pilot studies: 

 

 Clipping horses (standard method necessary for welfare of horse) 

 Acoustic startle testing (horses) 

 Isolation study (horses) 

 Monitoring of equine temperature using thermal camera (non-invasive) during routine 

stable management. 

 

Further studies. 

 

 Transportation of horses (standard procedure) 

 Saliva sampling using cotton bud from inside cheek (horse familiar with having mouth 

handled) 

 Monitoring of heart rate using polar heart rate monitor (horse familiar with procedure) 

 Monitoring of thermal output using thermal camera (non contact and non invasive) 

 Behavioural observations (non contact) 

 

4 Please identify which of the following may be relevant to the practical work 

undertaken: 

Legislation/Best Practice Relevant? 

 (indicate if yes) 

Animal & Scientific Procedures Act Yes 

Animal Welfare Act Yes 

Animal Transportation Yes 

Control of pests (DEFRA)  

Countryside & Rights of Way Act  

Criminal Records Bureau check  

Data Protection Act  

Designated Areas  

Human health  

Human psychology  

Protected species  

Wildlife & Countryside Act  

Local legislation/ requirements overseas  

 

 
 
 

 



 278 

Ethical Review of Scientific Procedures involving 
Animals 
 
School of Animal, Rural and Environmental Sciences 

Nottingham Trent University 

 
Studies involving animals are currently being undertaken in the School of 

Animal, Rural and Environmental Sciences by some members of the following 

groups: 
 academic staff 

 postgraduate students 
 undergraduate students 

 
The principal aims of all studies carried out in the School are: 

 to increase animal welfare by furthering knowledge and 
understanding; 

 to further education of students with regard to scientific method and 

the importance of ethical considerations. 
 

The School of Animal, Rural and Environmental Sciences at Nottingham Trent 
University is committed to promoting the welfare of animals as outlined in the 

Animal Welfare Act 2006.  These include : 
(a) its need for a suitable environment, 

(b) its need for a suitable diet, 
(c) its need to be able to exhibit normal behaviour patterns, 

(d) any need it has to be housed with, or apart from, other 

animals, and 
(e) its need to be protected from pain, suffering, injury and 

disease. 
 

No study will be considered acceptable for application to an animal at 
the Brackenhurst site if it may have the effect of causing that animal 

pain, suffering, distress or lasting harm. 
 

No procedure will be undertaken which requires a Home Office 

Licence under the Animals (Scientific Procedures) Act 1986, unless 
this procedure has been submitted in advance for approval by the 

College of Science and Technology Ethics Review Committee 
(Animals) and a licence has been obtained. 

 
Before commencement of any study involving animals, an Ethical Review form 

must be completed and submitted to the School Research Committee.  The 
project shall not commence until such approval has been obtained. 

 

The remit of the School Research Committee with regard to Ethical Review is:  
1. To set up and maintain ethical review processes. 

2. To assess proposals in detail and to challenge, where necessary, the 
appropriateness of the animal use. 

3. To maintain a balance between the interests of science and animal 
welfare. 

4. To review ongoing projects on an annual basis. 
5. To ensure that any study is planned so that the health and well-being of 

the animals is maintained.   
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Risk assessments 
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