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ABSTRACT 

 

FEN1 has key roles in Okazaki fragment maturation during replication, long patch base 

excision repair, rescue of stalled replication forks, maintenance of telomere stability and 

apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have 

clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA 

expression in multiple cohorts of breast cancer [training set (128), test set (249), external 

validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) 

negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. 

FEN1 mRNA overexpression was highly significantly associated with high grade (p=4.89 x 

10
-57

), high mitotic index (p=5.25 x 10
-28

), pleomorphism (p=6.31 x 10
-19

), ER negative 

(p=9.02 x 10
-35

), PR negative (p=9.24 x 10
-24

), triple negative phenotype (p=6.67 x 10
-21

), 

PAM50.Her2 (p=5.19 x 10
-13

), PAM50.Basal (p=2.7 x 10
-41

), PAM50.LumB (p=1.56 x 10
-

26
), integrative molecular cluster 1 (intClust.1) (p=7.47 x 10

-12
 ), intClust.5 (p=4.05 x 10

-12
) 

and intClust. 10 (p=7.59 x 10
-38

) breast cancers. FEN1 mRNA overexpression is associated 

with poor breast cancer specific survival in univariate (p= 4.4 x 10
-16

) and multivariate 

analysis (p= 9.19 x 10
-7

).  At the protein level, in ER positive tumours , FEN1 overexpression 

remains significantly linked to high grade, high mitotic index and pleomorphism (ps<0.01). 

In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour 

type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression 

(ps<0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is 

associated with poor survival in univariate and multivariate analysis (ps<0.01).  In ovarian 

epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage 

and poor survival (ps<0.05). We conclude that FEN1 is a promising biomarker in breast and 

ovarian epithelial cancer. 
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INTRODUCTION 

 

The flap structure specific endonuclease (FEN1) is critical for processing DNA intermediates 

generated during DNA long patch base excision repair (LP-BER) and Okazaki fragment 

maturation during replication. FEN1 is also essential for rescue of stalled replication forks, 

maintenance of telomere stability and apoptotic fragmentation of DNA (Shen et al., 2005; 

Zheng et al., 2011).  FEN1 belongs to XPG/RAD2 endonuclease family and FEN1 gene is 

located at 11q22. FEN1 possesses flap endonuclease, 5' exonuclease and gap-endonuclease 

activities to accomplish its various biological functions.  FEN1 is subjected to post-

translational modifications such as acetylation, phosphorylation, sumoylation, methylation 

and ubiquitylation that regulate nuclease activities as well as protein-protein interactions and 

sub-cellular compartmentalization (Shen et al., 2005; Zheng et al., 2011).  

 

FEN1 may have a role in carcinogenesis. A tumour suppressor function for FEN1 has been 

shown in preclinical models (Henneke et al., 2003a; Henneke et al., 2003b; Kucherlapati et 

al., 2007; Kucherlapati et al., 2002; Wu et al., 2012; Xu et al., 2011).  Whereas, FEN1 

homologous knock out in mice is embryonically lethal FEN1 heterozygous mice are viable 

(Larsen et al., 2003). A double heterozygous mouse model with a mutation in FEN1 and 

adenomatous polyposis coli (APC) gene displayed enhanced cancer development and poor 

survival (Kucherlapati et al., 2007). In addition, a FEN1 E160D mutant mouse model 

displayed altered DNA repair as well as apoptotic DNA fragmentation and associated with 

increased mutation frequency and cancer development (Larsen et al., 2008; Zheng et al., 

2007).  In human studies, polymorphic variants of FEN1 may be associated with increased 

cancer susceptibility (Liu et al., 2012; Yang et al., 2009). In established tumours, preclinical 

evidence suggests that FEN1 over expression may promote cancer progression and survival 
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(Kim, 1998; Kim et al., 2005; Krause et al., 2005; Sato et al., 2003). Proliferating cells 

consistently over express FEN1 compared to quiescent cells (Kim, 1998). In pro-myelocytic 

leukemia cells (HL-60), FEN1 gene expression was shown to be higher during mitotic phase 

compared to the resting phase of the cell cycle and FEN1 expression markedly decreased 

upon induction of terminal differentiation in cells (Kim, 1998). FEN1 mRNA over expression 

has also been demonstrated in lung cancer cell lines (Sato et al., 2003) and gastric cancer cell 

lines (Kim et al., 2005). In human tumours, frequent overexpression of FEN1 has been 

reported (Singh et al., 2008). In a small cohort of 50 breast tumours, FEN1 was shown to be 

upregulated in tumours compared to normal tissue in that study (Singh et al., 2008). 

However, clinicopathological significance of FEN1 upregulation remains unknown in breast 

and ovarian cancer (Singh et al., 2008).  

 

We hypothesised that FEN1 may be dysregulated in human breast and ovarian cancer, 

contributing to the aetiology of the disease. We investigated FEN1 mRNA as well as FEN1 

protein expression in large cohorts of breast and ovarian tumours and correlated to 

clinicopathological variables and outcome data. In the current study we demonstrate that 

FEN1 overexpression is associated with aggressive phenotype and poor survival in breast and 

ovarian cancer. The data provides evidence that FEN1 is a promising biomarker. 
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MATERIALS AND METHODS 

 

FEN1 gene expression (training set): The study population used was derived from the 

Nottingham Tenovus Primary Breast Carcinoma Series of women aged 70 years or less, who 

presented with stage I and II primary operable invasive breast carcinomas. The patient 

demographics for the training set are summarized in supplementary table 1 of supporting 

information.  Gene expression profiling has been previously described (Chin et al., 2007). 

Briefly, total RNA was extracted from a series of frozen breast cancers retrieved from 

Nottingham Hospitals NHS Trust Tumour Bank between 1986 and 1992. RNA integrity and 

DNA contamination were analysed using Agilent 2100 Bioanalyzer (Agilent Technologies, 

Palo Alto, CA, USA). Total RNA was biotin-labelled using the Illumina TotalPrep RNA 

Amplification kit (Ambion, Austin, TX, USA) according to manufacturer’s instructions. 

Biotin-labelled cRNA (1.5 µg) was used for each hybridisation on Sentrix Human-6 

BeadChips (Illumina, San Diego, CA, USA) in accordance with the manufacturer’s protocol. 

Illumina gene expression data containing 47,293 transcripts were analysed and summarised in 

the Illumina Bead Studio software. Analyses of the probe level data were done using the 

beadarray Bioconductor package. The expression data are available at the EBI website 

(http://www.ebi.ac.uk/miamexpress/) with the accession number E-TABM-576. 

 

FEN1 gene expression (Test Set): The Uppsala cohort originally composed of 315 women 

representing 65% of all breast cancers resected in Uppsala County, Sweden, from January 1, 

1987, to December 31, 1989. Demographics are summarized in supplementary Table S2 of 

supporting information and also described elsewhere (Bergh et al., 1995). Tumour samples 

were microarray profiled on the Affymetrix U133A&B genechips. Microarray analysis was 

carried out at the Genome Institute of Singapore.  All microarray data are accessible at 

http://www.ebi.ac.uk/miamexpress/
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National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/).  Data can be accessed via series accession number 

(GSE4922). RNA preparation, microarray hybridization, and data processing were carried out 

essentially as described (Pawitan et al., 2005).   All data were normalized using the global 

mean method (MAS5), and probe set signal intensities were natural log transformed and 

scaled by adjusting the mean signal to a target value of log 500. 

 

FEN1 gene expression (external validation): External validation was performed in the 

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) cohort. The 

METABRIC study protocol, detailing the molecular profiling methodology in a cohort of 

1980 breast cancer samples is described by Curtis et al (Curtis et al., 2012).  Patient 

demographics are summarized in supplementary Table S3 of supporting information. ER 

positive and/or lymphnode negative patients did not receive adjuvant chemotherapy.  ER 

negative and/or lymphnode positive patients received adjuvant chemotherapy.  RNA was 

extracted from fresh frozen tumours and subjected to transcriptional profiling on the Illumina 

HT-12 v3 platform.  The data was pre-processed and normalized as described previously 

(Curtis et al.). FEN1 expression was investigated in this data set.  The Chi-square test was 

used for testing association between categorical variables and a multivariate Cox model was 

fitted to the data using as endpoint breast cancer specific death. Recursive partitioning 

(Hothorn et al., 2006) was used to identify a cut-off in gene expression values such that the 

resulting subgroups have significantly different survival courses. 

 

FEN1 protein expression in breast cancer: The study was performed in a consecutive 

series of 1650 patients with primary invasive breast carcinomas who were diagnosed between 

1986 and 1999 and entered into the Nottingham Tenovus Primary Breast Carcinoma series.  

http://www.ncbi.nlm.nih.gov/geo/
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All patients were treated uniformly in a single institution and have been investigated in a 

wide range of biomarker studies (Abdel-Fatah et al., 2013b; Abdel-Fatah et al., 2013c; 

Abdel-Fatah et al., 2014a; Abdel-Fatah et al., 2014b; Sultana et al., 2013). 

Clinicopathological characteristics of ER negative cohort is summarized in Supplementary 

Table S8 of supporting information. Patient demographics for ER positive cohort are 

summarized in Supplementary Table S9 of supporting information. Supplemental treatment 

data 1 summarizes various adjuvant treatments received by patients in Nottingham Tenovus 

Primary Breast Carcinoma series.  

 

FEN1 protein expression in ovarian epithelial cancer:  Investigation of the expression of 

FEN1 in ovarian epithelial cancer was carried out on a tissue microarray of 195 consecutive 

ovarian epithelial cancer cases treated at Nottingham University Hospitals (NUH) between 

2000 and 2007. Patients were comprehensively staged as per International Federation of 

Obstetricians and Gynaecologists (FIGO) Staging System for Ovarian Cancer. Survival was 

calculated from the operation date until 1
st
 of October 2012 when any remaining survivors 

were censored. Patient demographics are summarised in summarized in Supplementary Table 

S14 of supporting information. Platinum resistance was defined as patients who had 

progression during first-line platinum chemotherapy or relapse within 6 months after 

treatment. Construction of TMAs and immunohistochemical protocols were similar to those 

described for breast cancer TMAs previously.  

 

Tissue Microarrays (TMAs) and immunohistochemistry (IHC): Tumours were arrayed in 

tissue microarrays (TMAs) constructed with 2 replicate 0.6mm cores from the centre and 

periphery of the tumours. The TMAs were immunohistochemically profiled for FEN1 and 

other biological antibodies (Supplementary Table S10 of supporting information) as 
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previously described (Abdel-Fatah et al., 2013b; Abdel-Fatah et al., 2013c; Abdel-Fatah et 

al., 2014a; Abdel-Fatah et al., 2014b; Sultana et al., 2013).  Immunohistochemical staining 

for FEN1 was performed using the Leica Bond Refine Detection kit according to 

manufacturer instructions (Leica Microsystems). Pre-treatment of TMA sections was 

performed with citrate buffer (pH 6.0) antigen for 20 minutes and heated further for 20 

minutes in a microwave. TMA sections were then incubated for 15 minutes at room 

temperature with 1:200 anti-FEN1 rabbit polyclonal antibody (NBP1-67924, Novus 

Biologicals, Littleton, CO, USA). Also, positive and negative (by omission of the primary 

antibody and IgG-matched serum) controls were prepared for each set of samples. To validate 

the use of TMAs for immunophenotyping, full-face sections of 40 cases were stained and 

protein expression levels of the different antibodies were compared.  The concordance 

between TMAs and full-face sections was excellent (k = 0.8). Positive and negative (by 

omission of the primary antibody and IgG-matched serum) controls were included in each 

run.  

 

Evaluation of immune staining: The tumour cores were evaluated by specialist pathologist 

blinded to the clinicopathological characteristics of patients. Whole field inspection of the 

core was scored and intensities of nuclear as well as cytoplasmic staining were grouped as 

follows: 0 = no staining, 1 = weak staining, 2 = moderate staining, 3 = strong staining. The 

percentage of each category was estimated (0-100%).  H-score (range 0-300) was calculated 

by multiplying intensity of staining and percentage staining as previously described (Abdel-

Fatah et al., 2013b; Abdel-Fatah et al., 2013c; Abdel-Fatah et al., 2014a; Abdel-Fatah et al., 

2014b; Sultana et al., 2013).  Low/negative FEN1 (FEN1-) expression was defined by mean 

of H-score of ≤100.    Not all cores within the TMA were suitable for IHC analysis due to 

missing cores or absence of tumour cells. 



10 

 

Tumor Marker Prognostic Studies (REMARK) criteria, recommended by McShane et al 

(McShane et al., 2005), were followed throughout this study. This work was approved by 

Nottingham Research Ethics Committee. 

Statistical analysis: Data analysis was performed using SPSS (SPSS, version 17 Chicago, 

IL). Where appropriate, Pearson’s Chi-square, Fisher’s exact, Student’s t and ANOVA one 

way tests were used. Cumulative survival probabilities were estimated using the Kaplan–

Meier method, and differences between survival rates were tested for significance using the 

log-rank test. Multivariate analysis for survival was performed using the Cox proportional 

hazard model. The proportional hazards assumption was tested using standard log-log plots. 

Hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated for each variable. 

All tests were two-sided with a 95% CI and a p value < 0.05 considered significant.  For 

multiple comparisons, p values were adjusted according to Holm-Bonferroni correction 

method.  

Cell lines and culture: To evaluate the specificity of the FEN1 antibody used in the current 

study FEN1 deficient and proficient cells were investigated. FEN1 deficient HeLa SilenciX® 

cells and control FEN1 proficient HeLa SilenciX® cells were purchased from Tebu-Bio 

(www.tebu-bio.com). SilenciX cells were grown in DMEM medium (with L-Glutamine 

580mg/L, 4500 mg/L D19 Glucose, with 110mg/L Sodium Pyruvate) supplemented with 

10% FBS, 1% penicillin/streptomycin and 125 μg/ml Hygromycin B. Western blot analysis 

was performed as described previously (Sultana et al., 2013).  
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RESULTS 

 

 

High FEN1 transcript levels correlate to aggressive biology and adversely impact breast 

cancer clinical outcomes 

 

We evaluated FEN1 mRNA expression in multiple cohorts of breast cancer (training set, test 

set and external validation cohort). Clinicopathological characteristics are summarized in 

supplementary Tables S1, S2 and S3. In the training set (n=128), 40.6% of tumours had high 

FEN1 mRNA expression, which was significantly associated with high grade (p<0.0001), 

high mitotic index (p<0.0001), pleomorphism (p<0.0001), glandular de-differentiation 

(p=0.032), HER2 overexpression (p=0.003), oestrogen receptor (ER) negative (p=0.001), 

progesterone receptor (PgR) negative (p=0.005) and triple negative phenotype (p=0.001) 

(Supplementary Table S4). High FEN1 mRNA expression in tumours was also associated 

with adverse disease specific survival in patients (p=0.008) (Figure 1a).  In the test set 

(n=249), 50.2% of tumours had high FEN1 mRNA expression, which remained associated 

with high T-stage (p=0.007), lymph node positivity (p=0.012), high grade (p<0.0001), high 

molecular grade (p<0.0001), mutant p53 (p<0.0001) and ER negativity (p=0.001) 

(Supplementary Table S5). High FEN1 mRNA expression in tumours was associated with 

adverse disease specific survival in patients (p=0.00009) (Figure 1b).  

 

External validation was conducted in a large series of 1952 tumours comprising the 

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) cohort. 

52.25% (1020/1952) of tumours had high FEN1 mRNA expression, which was significantly 

associated with aggressive clinicopathological features (Table 1), including high histological 

grade (p<0.0001), high mitotic index (p<0.0001),  pleomorphism (p<0.0001), glandular de-
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differentiation (p=0.006), HER2 overexpression (p<0.0001),  absence of hormonal receptors 

(ER-/PgR-) (p<0.0001), lymph node positivity (0.02), presence of basal like phenotypes 

(p<0.0001) and triple negative phenotypes (p<0.0001).  High FEN1 mRNA expression was 

also found to be significantly associated with previously described molecular phenotypes in 

breast cancer: PAM50.Her2 (p<0.0001), PAM50.Basal (p<0.0001) and PAM50.LumB 

(p<0.0001) breast tumours. However, PAM50.LumA tumours were more likely to express 

low levels of FEN1 mRNA (p<0.0001).  

 

The METABRIC study by joint clustering of copy number and gene expression data has 

identified 10 novel biological subgroups [labelled integrative clusters (intClust) 1-10] with 

good, intermediate or poor prognosis (Curtis et al.).   We investigated whether FEN1 mRNA 

expression would associate with these distinct biological subgroups. High FEN1 mRNA 

expression was significantly associated with intClust.1 (p<0.0001), intClust.5 (p<0.0001), 

intClust.9 (p<0.0001) and intClust.10 (p<0.0001), which had the worst clinical outcome in 

the METABRIC study (Curtis et al.).  Low FEN1 mRNA expression was associated with 

intClust.3 (p<0.0001), intClust.4 (p<0.0001), intClust.7 (p=0.003) and intClust.8 (p<0.0001), 

which had intermediate to good prognosis in the METABRIC study (Curtis et al.). High 

FEN1 mRNA expression in tumours was associated with adverse disease specific survival in 

the whole cohort (p<0.0001) (Figure 1c). In multivariate Cox regression analysis that 

included other validated prognostic factors, such as lymph node stage, histological grade and 

tumour size (NPI components),  FEN1 mRNA expression was a powerful independent 

predictor for clinical outcome (p<0.0001) (Table 2). Moreover, in patients who received 

adjuvant endocrine therapy (n=1199), high FEN1 mRNA expression remained significantly 

associated with adverse disease specific survival (p<0.0001) (Figure 1d). In patients who 
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received adjuvant chemotherapy (n=413), high FEN1 mRNA expression was likewise 

associated with adverse disease specific survival (p=0.019) (Figure 1e).  

FEN1 mRNA expression analysis in the training set, test set and in the external validation 

cohort provides confirmatory evidence that high FEN1 mRNA expression is associated with 

adverse clinicopathological features, aggressive molecular phenotypes and poor survival in 

patients.  

 

FEN1 protein expression is linked to aggressive breast cancer and poor survival 

 

As the multifunctional roles of FEN1 are likely regulated by several mechanisms, including 

sub-cellular compartmentalization between, for example, the nucleus and 

cytoplasm/mitochondria, we proceeded to evaluate FEN1 protein expression in independent 

cohorts of 568 ER negative breast tumours and 894 ER positive breast tumours. 

Clinicopathological characteristics are summarized in supplementary Tables S6 and S7. 

Treatment data is summarized in supplementary treatment data 1. We also correlated FEN1 

protein expression to other biomarkers of aggressive phenotype (ER, PR, EGFR, CK14, 

CK5/6, CK17, CK18, HER2) and DNA repair (PARP1, BRCA1, ATM, XRCC1 and 

TOP2A). Antigens, primary antibodies, clone, source, optimal dilution and scoring system for 

each immunohistochemical marker are summarized in supplementary Table S8.   

 

We first confirmed the specificity of FEN1 antibody used in the current study. As shown in 

figure 2a1, FEN1 proficient cell line shows robust FEN1 protein expression whereas FEN1 

knockdown cell shows almost complete absence of FEN1 protein expression. We then 

conducted immunohistochemical investigations. In 568 ER negative tumours (Figure 2a2), 
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we found significant associations between FEN1 expression and pleomorphism (p= 0.012), 

tumour type (p<0.0001), lymphovascular invasion (p=0.007), progesterone receptor 

(p<0.0001), EGFR overexpression (p=0.04), HER2 overexpression (p=0.029) and triple 

negative phenotype (p=0.032). FEN1 expression was also significantly associated with 

expression of other DNA repair factors, including BRCA1 (p<0.0001), PARP1 (p<0.0001), 

XRCC1 (p<0.0001) and TOP2A (p<0.0001) (full data is summarized in supplementary Table 

S9). High nuclear/high cytoplasmic FEN1 expression was associated with poor survival 

(p=0.003) (Figure 2b). In patients with early stage lymph node negative (low risk) tumours 

who did not receive adjuvant chemotherapy, high nuclear/high cytoplasmic tumours 

remained significantly associated with poor survival (p=0.009) (Figure 2c). In patients who 

received CMF (cyclophosphamide, methotrexate and 5-Fluoruracil) chemotherapy, high 

nuclear/high cytoplasmic was associated with poor survival (p=0.05) (Figure 2d). The group 

that received anthracycline adjuvant chemotherapy did not reach significance (p=0.211), 

although there was a trend toward poor survival in high nuclear/low cytoplasmic tumours 

(Supplementary Figure S1a). In the multivariate COX model, FEN1 expression is 

independently associated with breast cancer specific survival (p=0.007), as well as 

progression free survival (p=0.003) (Table 3).  

 

In 894 ER positive breast tumours, we similarly found significant association between FEN1 

expression and tumour size (p= 0.004), grade (p<0.0001), pleomorphism (p= 0.0004), tumour 

type (p<0.0001), tubule formation (p<0.0001) and lymphovascular invasion (p=0.007). FEN1 

expression was also associated with other DNA repair factors, such as BRCA1 (p= 0.003), 

XRCC1 (p<0.0001), ATM (p<0.0001) and TOP2A (p<0.0001) (Full data is summarized in 

supplementary Table S10).  High cytoplasmic/low nuclear FEN1 tumours were associated 

with poor survival (p=0.00016) in ER positive tumours (Figure 2e). In patients with early 
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stage lymph node negative (low risk) tumours who did not receive adjuvant tamoxifen, high 

cytoplasmic/low nuclear FEN1 tumours remained significantly associated with poor survival 

(p=0.003) (Supplementary Figure  S1b). In patients with high risk tumours who did not 

receive adjuvant tamoxifen, high cytoplasmic/low nuclear FEN1 is associated with poor 

survival (p=0.026) (Figure 2f). On the other hand, patients with tumours that had low  

cytoplasmic/low nuclear FEN1 had better survival implying that these tumours could be 

spared long term adjuvant endocrine therapy.  In patients with high risk tumours who 

received adjuvant tamoxifen, high cytoplasmic/low nuclear FEN1 was associated with poor 

survival (p=0.003) (Figure 2g). On the other hand, patients with tumours that had high  

cytoplasmic/high nuclear FEN1 had better survival implying that FEN1 could be predictive 

biomarker of response to endocrine therapy.  In the multivariate COX model, FEN1 

expression was independently associated with breast cancer specific survival (p=0.003), as 

well as progression free survival (p=0.004) (Table 3).  

 

Taken together, the FEN1 mRNA expression as well as FEN1 protein expression data 

provides compelling evidence that FEN1 expression is a prognostic and a predictive 

biomarker in breast cancer.  

 

FEN1 protein expression is linked to aggressive epithelial ovarian cancer and poor 

survival 

We then proceeded to investigate the significance of FEN1 protein expression in 156 ovarian 

epithelial cancers. Demographics are summarized in supplementary Table S11. Positive 

nuclear expression of FEN1 was seen in 71/156 (45.5%) tumours, and 85/156 (54.5%) 

tumours were negative for FEN1 protein expression (Figure 3a). FEN1 nuclear expression 

was associated with serous cystadenocarcinomas (p=0.05), higher pathological grade (p= 
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0.009), higher FIGO stage (p=0.046) and larger residual tumour burden following surgery 

(p=0.034) (full data is summarized in supplementary Tables S12). Positive cytoplasmic 

expression of FEN1 was seen in 126/156 (80.8%) tumours and 30/156 (19.2%) tumours were 

negative for FEN1 cytoplasmic expression. FEN1 cytoplasmic expression was significantly 

associated with serous cystadenocarcinomas (p<0.0001), more likely to be sub-optimally 

debulked (p=0.002), higher FIGO stage (p=0.025) and larger residual tumour burden 

following surgery (p=0.005) (full data is summarized in supplementary Tables S13). 

Investigating nuclear as well cytoplasmic expression together, we found that high 

cytoplasmic/high nuclear FEN1 tumours had the worst ovarian cancer specific (p=0.006) 

(Figure 3b) and disease free (p=0.008) (Figure 3c).  Evaluating nuclear expression alone or 

cytoplasmic expression alone, FEN1 over expression remains associated with poor survival in 

ovarian epithelial cancers (Figures 3d, 3e, Supplementary figures S1c,d). In the multivariate 

COX model, patients with FEN1 nuclear expression showed 2-fold increase in risk of death 

(p=0.018) (Supplementary Table S14). The multivariate Cox model was adjusted for CA-125 

response, FIGO stage and tumour grade.  

 

Taken together, the data provides evidence that FEN1 overexpression is a promising 

biomarker in ovarian epithelial cancers.  
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DISCUSSIONS 

 

This is the largest and the first comprehensive study to evaluate FEN1 in breast and ovarian 

cancers. In breast cancer, high FEN1 mRNA is linked to aggressive features such as high 

grade, high mitotic index, pleomorphism, de-differentiation, PAM50. Her2 and PAM50. 

basal molecular phenotypes. FEN1 is essential for the repair of oxidative base damage 

through long-patch base excision repair. The data presented here suggests that high FEN1 

mRNA expression is an adaptive response to oxidative stress that is common in breast cancer 

cells (Brown and Bicknell, 2001). Although not fully understood, a recent study suggested 

FEN1 promoter hypomethylation as a mechanism for FEN1 mRNA over expression in 

tumours (Singh et al., 2008). High FEN1 mRNA seen in tumours with high mitotic index also 

concurs with previous studies demonstrating FEN1 upregulation in cycling cells (Kim, 1998; 

Kim et al., 2005; Krause et al., 2005; Sato et al., 2003). In the current study, we have also 

provided the first evidence that FEN1 mRNA levels are linked to biologically distinct 

integrative clusters reported in the METABRIC study (Curtis et al., 2012). High FEN1 

mRNA level was frequent in intClust 10 subgroup which is the most highly genomically 

instable sub group with basal-like features.  Interestingly, low FEN1 mRNA level was seen in 

intClust 3 subgroup that is characterised by low genomic instability. Together the data 

provides evidence that high FEN1 mRNA could be utilised as a biomarker of genomic 

instability in human tumours. In addition, high FEN1 mRNA level is also frequently seen in 

intClust 5 (HER-2 enriched with worst survival), intClust 9 (8q cis-acting/20qamplified 

mixed subgroup), and intClust 1 (17q23/20q cis-acting luminal B subgroup) subgroups that 

also manifest an aggressive phenotype. On the other hand, low FEN1 mRNA level is linked 

to  intClust 4 (includes both ER-positive and ER-negative cases with a flat copy number 

landscape and termed the ‘CNA-devoid’ subgroup with extensive lymphocytic infiltration), 
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intClust 7 (16p gain/16q loss with higher frequencies of 8q amplification luminal A 

subgroup) and intClust 8 subgroups (classical 1q gain/16q loss luminal A subgroup) (Curtis 

et al., 2012). The data implies differential roles for FEN1 in distinct molecular phenotypes of 

breast cancer. High FEN1 mRNA is associated with poor survival in univariate as well as in 

multivariate analyses in the whole cohort which is likely to be related to the aggressive 

phenotype described previously. As expected, intClust 10, intClust 9, intClust 5 and intClust 

1 sub-groups that are associated with high FEN1 levels were also associated with poor 

prognosis in METABRIC study (Curtis et al., 2012). On the other hand, intClust 3, intClust 4, 

intClust 7 and intClust 8 that are associated with low FEN1 expression, are associated with 

good to intermediate prognosis (Curtis et al., 2012). Together, the data provides conclusive 

evidence that FEN1 mRNA level has prognostic significance in breast cancer. To investigate 

if FEN1 mRNA expression may also have predictive significance, we conducted sub-group 

analysis in tumours treated with adjuvant chemotherapy or endocrine therapy. In patients 

treated with endocrine therapy, we provide the first evidence that high FEN1 mRNA level is 

associated with poor survival implying resistance to endocrine therapy. The link between 

FEN1, oestrogen and oestrogen receptors (ER) are beginning to emerge. FEN1 not only 

interacts directly with ER-α but can also augment the interaction of ER-α with oestrogen 

response element containing DNA and impact upon estrogen-responsive gene expression in 

cells (Buterin et al., 2006; Moggs et al., 2005). Our data suggests that FEN1 mRNA over 

expression is a novel biomarker for endocrine resistance and is likely related to the role of 

FEN1 in cell proliferation. We have also demonstrated for the first time that high FEN1 

mRNA level is associated with poor survival in patients who received adjuvant chemotherapy 

implying resistance to cytotoxic therapy.  
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We then investigated FEN1 protein expression immunohistochemicaly in large cohorts of 

breast cancers. Although strong association between FEN1 mRNA level and high tumour 

grade as well as high mitotic index was evident, FEN1 protein level analysis revealed a 

complex association in breast cancer.  In the ER positive cohort, grade 3 and higher mitotic 

index tumours were more likely in low nuclear/high cytoplasmic FEN1 tumours compared to 

high nuclear/low cytoplasmic FEN1 or high nuclear/high cytoplasmic FEN1 tumours. 

Surprisingly, grade 3 and high mitotic index tumours were also seen frequently in low 

nuclear/low cytoplasmic FEN1 tumours in the ER positive cohort. In ER positive tumours 

cytoplasmic over expression correlated to poor survival.   In ER negative tumours, although 

no significant clinicopathological associations were seen, high nuclear FEN1 was associated 

with poor survival. A limitation of our study is that it is retrospective and prospective studies 

will be needed to confirm our observation.  Given the complex multifunctional role of FEN1 

protein that is likely regulated by sub-cellular compartmentalization and post-translational 

modification mechanisms, our data suggest that detailed preclinical mechanistic studies will 

be required to evaluate the roles of FEN1 protein in breast cancer pathogenesis. However, it 

is important to note that the clinical data presented here is consistent with a recent preclinical 

study where FEN1 knockdown by siRNA was shown to be associated with reduced cellular 

proliferation (van Pel et al., 2013). Moreover, treatment with specific FEN1 inhibitors 

isolated in that study also resulted in reduced proliferation in cells (van Pel et al., 2013). In 

another preclinical study, FEN1 mRNA depletion by siRNA resulted in increased sensitivity 

to chemotherapy such as alkylating agents and platinum chemotherapy (Nikolova et al., 

2009). Taken together the data suggest that FEN1 mRNA levels are likely to be the best 

predictors of response to chemotherapy or endocrine therapy in breast cancer.   
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Interestingly, FEN1 protein expression also linked to other DNA repair factors such as 

BRCA1, PARP1, XRCC1 and TOP2A implying altered genomic stability in breast tumours. 

In contrast to ER negative tumours, in ER positive tumours we found an association between 

high FEN1 and ATM expression. Previous studies indicate a functional link between FEN1 

and ER. FEN1 may regulate ER induced transcriptional response by enhancing the 

interaction of ER with oestrogen response elements- containing DNA (Schultz-Norton et al., 

2007). Interestingly a recent study suggests that ER may be involved in the regulation of 

ATM expression (Guo et al., 2013). In light of the preclinical evidence presented above, the 

clinical data presented here suggest a complex network that may be operating between ER, 

FEN1 and ATM in breast cancer cells. However, detailed mechanistic studies are required to 

confirm this hypothesis.   In ovarian cancer, similarly, FEN1 expression is linked to 

aggressive phenotype and poor survival. Recently, we investigated FEN1 in gastric cancers 

(Abdel-Fatah et al., 2013a). FEN1 protein over expression was associated with high T-stage 

(p=0.005), lymph node-positive disease (p=0.02) and poor disease specific survival (p=0.006) 

(Abdel-Fatah et al., 2013a). In another study in prostate cancer, FEN1 protein over 

expression was associated with aggressive disease (Lam et al., 2006). Taken together the data 

suggest that FEN1 protein expression has prognostic and predictive significance in cancers. 

 

Our clinical data suggests that FEN1 may be a promising drug target in cancer. Interestingly, 

a recent study extrapolating yeast genetic interaction data has also identified FEN1 as an 

attractive anti-cancer target  (van Pel et al., 2013).  We have recently initiated a FEN1 drug 

discovery programme. To facilitate the search for novel FEN1 inhibitors, we developed a 

fluorogenic donor/quencher reporter pair to monitor generation of reaction product in real 

time(Dorjsuren et al., 2011). A high-throughput screen was recently conducted on 391,275 

compounds arrayed as dilution series within a total of 1,407 plates. Primary screening data 
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has been uploaded to a public database (http:// 

pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=588795). Detailed in vitro and in vivo 

evaluation and validation of novel FEN1 inhibitors is an area of on-going investigation in our 

laboratory.  

In conclusion, the data presented in the current clinical study suggests that FEN1 is promising 

biomarker in breast and ovarian epithelial cancers.  

  

https://legacy.nottingham.ac.uk/OWA/redir.aspx?C=mHBSMSjTOESSXh8Y9OgCU95SE4Q67c9IZ7aBK7u7XivlJO7WtchopYgS9kGOYP9vcL0ACvamzg8.&URL=http%3a%2f%2fpubchem.ncbi.nlm.nih.gov%2fassay%2fassay.cgi%3faid%3d588795
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Table 1: Association between FEN1 mRNA expression and clinico-pathologic variables  

 

Variable 

FEN1 mRNA Expression  

 

X
2 

 

Adjusted p value 

Low  

 N=932 

(47.75%) 

    High  

N= 1020 

(52.25%) 

 

A) Pathological    Parameters 

Tumour Size     

T1 a + b (≤1.0) 5 (0.26%)   3 (0.15%) 0.629 

T1 c (>1.0 -2.0)  1 (0.05%)  2 (0.1%) 0.938 

T2 (>2.0-5)  10 (0.51%)  4 (0.2%) 0.131 

T3 (>5)    909 (46.57%)     999 (51.18%) 0.649 

Lymph node stage     

Negative 520 (26.64%)  492 (25.2%) 0.000991 

Positive (1-3 nodes)  225 (11.53%)  281 (14.4%) 0.0961 

Positive (>3 nodes) 184 (9.43%)    244 (12.5%) 0.0297 

Grade**    

G1  136 (6.97%)  28 (1.43%) 9.38 x 10
-21

 

G2   471 (24.13%)  293 (15.01%) 9.64 x 10
-23

 

G3 278 (14.24%) 673 (34.48%) 4.89 x 10
-57

 

Tumour Types    

IDC-NST  11 (0.56%)  6 (0.31%) 0.245
 

Tubular  24 (1.23%)  2 (0.1%) 1.18 x 10
-5

 

ILC      2 (0.1%)  2 (0.1%) 0.681 

Medullary 2 (0.1%)   23 (1.18%) 0.000143 

Others   754 (38.63%)   818 (41.91%) 0.737 

Mitotic Index    

M1 (low; mitoses < 10)   591 (30.28%) 410 (21%) 1.89 x 10
-24

 

M2 (medium; mitoses 10-18)    158 (8.09%)  220 (11.27%) 0.0117 

M3 (high; mitosis >18) 40 (2.05%) 216 (11.07%) 5.25 x 10
-28

 

Pleomorphism    

1 (small-regular uniform)      12 (0.61%)   5 (0.26%) 0.099 

2 (Moderate variation)    388 (19.88%) 208 (10.66%) 4.15 x 10
-24

 

3 (Marked variation) 390 (19.98%)  633 (32.43%) 6.31 x 10
-19

 

Tubule formation    

1 (>75% of definite tubule)  51 (2.61%)  6 (0.31%) 3.69 x 10
-10

 

2 (10%-75% definite tubule)  243 (12.45%)  111 (5.69%) 5.55 x 10
-18

 

3 (<10% definite tubule)  496 (25.41%)  729 (37.35%) 1.19 x 10
-16

 

Molecular phenotypes 

Her2 overexpression (No)   864 (44.26%)  846 (43.34%) 9.88 x 10
-11

 

                                  (Yes )    68 (3.48%)  174 (8.91%) 9.88 x 10
-11

 

Triple negative          (No)         859 (44.01%)  780 (39.96%) 6.67 x 10
-21

 

                                  (Yes)     73 (3.74%)  240 (12.3%) 6.67 x 10
-21
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Basal like                  (No)   900 (46.11%)  918 (47.03%) 1.69 x 10
-8

 

                                (Yes)    32 (1.64%)  102 (5.23%) 1.69 x 10
-8

 

ER                        (Negative)   95 (4.87%)  342 (17.52%) 9.02 x 10
-35

 

                            (Positive)   818 (41.91%)  667 (34.17%) 1.03 x 10
-30

 

PgR                     (Negative)  329 (16.85%)  593 (30.38%) 9.24 x 10
-24

 

                            (Positive)   603 (30.89%)  427 (21.88%) 9.24 x 10
-24

 

PAM50.Her2 61 (3.12%) 177 (9.07%) 5.19 x 10
-13

 

PAM50.Basal   43 (2.2%) 279 (14.29%) 2.7 x 10
-41

 

PAM50.LumA 548 (28.07%) 166 (8.5%) 3.78 x 10
-84

 

PAM50.LumB 129 (6.61%) 355 (18.19%) 1.56 x 10
-26

 

intClust.1 27 (1.38%) 112 (5.74%) 7.47 x 10
-12

 

intClust.2 29 (1.49%) 42 (2.15%) 0.287 

intClust.3 217 (11.12%) 70 (3.59%) 2.74 x 10
-24

 

intClust.4 227 (11.63%) 104 (5.33%) 1.37 x 10
-16

 

intClust.5 43 (2.2%) 142 (7.27%) 4.05 x 10
-12

 

intClust.6 42 (2.15%) 43 (2.2%) 0.839 

intClust.7 110 (5.64%) 79 (4.05%) 0.00316 

intClust.8 185 (9.48%) 110 (5.64%) 3.35 x 10
-8

 

intClust.9 36 (1.84%) 110 (5.64%) 1.06 x 10
-8

 

intClust.10 16 (0.82%) 208 (10.66%) 7.59 x 10
-38 

* Statistically significant; **: grade as defined by NGS;  BRCA1: Breast cancer 1, early 

onset; HER2: human epidermal growth factor receptor 2; ER: oestrogen receptor; PgR: 

progesterone receptor; CK: cytokeratin; Basal-like: ER-, HER2 and positive expression of 

either CK5/6, CK14 or EGFR; Triple negative: ER-/PgR-/HER2- 
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Table 2: Multivariate analysis using Cox regression analysis in the METABRIC cohort 

confirms that FEN1 mRNA over expression is a powerful independent prognostic factor 

Variable BCSS OS 

HR p HR 

 

p 

FEN1 mRNA 

over expression 

1.25 9.19
 
x 10

-7 1.14 4.39 x 10
-4

 

Tumour size 1.01 3.59 x 10
-7

 1.01 2.28 x 10
-8

 

Grade  0.01
  0.08

 

 
G1 1.0 1.0 

G2 1.64 1.23 

G3 1.90 1.31 

Lymph node  1.46 x 10 
-4

 

 

 2.01 x 10 
-3

 

 Negative 1.0 1.0 

Positive (1-3 nodes) 1.57 1.30 

Positive (>3 nodes) 3.30 2.31 

** Statistically significant 

BCSS; Breast cancer specific survival, OS; overall survival,  HR; hazard ratio, CI; 

confident interval 
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Table 3: Multivariate survival analysis using Cox regression for Nottingham breast cancer cohort. 

 

 

* statistically significant 

Clinico-pathological 

variables 

ER Negative cohort, Breast cancer specific 

Survival at 10 years 

ER Negative cohort, Progression Free 

Survival  at 10 years 

ER Positive cohort, Breast cancer specific 

Survival at 10 years 

ER Positive cohort, Progression Free 

Survival  at 10 years 

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value 

FEN1 protein expression 

Nuc - / Cyt - 

Nuc - / Cyt + 
Nuc + / Cyt - 

Nuc + / Cyt + 

 

1 

1.314 (0.85 - 2.031) 
1.894 (1.239 - 2.896) 

1.958 (1.194 - 3.213) 

0.007*  

1 

1.617 (1.088 - 2.403) 
1.851 (1.254 - 2.731) 

1.817 ( 1.130 - 2.920) 

0.003*  

1 

1.53 (1.163 – 2.013) 
1.247 (0.828 – 1.883) 

0.842 (0.551 – 1.287) 

0.003*  

1 

1.75 (1.245 – 2.459) 
1.08 (0.605 – 1.929) 

0.947 (0.543 – 1.653) 

0.004* 

XRCC1 protein expression 

(Continuous)  
 

 

0.497 (0.347 - 0.713) 
<0.0001*  

0.502 (0.36 – 0.701) 
<0.0001*  

0.537 (0.384 – 0.753) 
<0.0001*  

0.418 (0.282 – 0.619) 
<0.0001* 

Tumour size  

(Continuous)  
 

 

1.051 (1.011- 1.092) 
0.012*  

1.042 ( 1.001 – 1.083) 

0.43  

1.101 (0.993 – 1.221) 

0.069  

1.052 (0.914 – 1.211) 

0.480 

Lymph node stage  

Negative 

Positive (1-3 nodes) 
Positive (>3 nodes) 

 

1 

1.13 (0.81-1.60) 
2.23 (1.48-3.37) 

<0.0001*  

1 

1.157 (0.807 – 1.685) 
5.286 (3.698 – 7.557) 

<0.0001*  

1 

1.666 (1.26 – 2.203) 
3.346 (2.198 – 5.094) 

<0.0001*  

1 

1.848 (1.303 – 2.622) 
4.331 (2.654 – 7.068) 

0.001* 

Chemotherapy 

No 
Yes 

 

1 
0.029 (0.64 - 0.976) 

0.029*  

1 
0.832 (0.687 – 1.007) 

0.832  

1 
1.147 (0.842 – 1.562) 

0.384  

1 
1.085 (0.739 – 1.594) 

0.676 

Tumour grade 

Grade 1(low) 

Grade 2 (intermediate) 
Grade 3 (high) 

 

1 

2.989 (0.379 - 23.579) 
3.329 (0.451 - 24.603) 

0.477  

1 

0.977 (0.282 – 3.382) 
0.841 (0.26 – 2.723) 

0.821  

1 

1.296 (0.903 – 1.86) 
1.56 (1.064 – 2.288) 

0.07  

1 

1.826 (1.036 – 3.22) 
 3.424 (1.952 – 6.008) 

<0.0001* 

Lymphovascular invasion 

No 
Yes 

 

1 
0. 941 (0.688 - 1.288) 

0.705  

1 
1.073 (0.803 – 1.432) 

0.635  

1 
1.324 (1.022 – 1.715) 

0.033*  

1 
1.71 (1.239 – 2.359) 

0.001* 

Her2 expression 

(Continuous)  

 

 

1.107 (0.769 - 1.594) 

0.585  

1.061 (0.761 – 1.479) 

0.726  

1.229 (0.775 – 1.947) 

0.381  

1.549 (0.925 -2.593) 

0.096 
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Figure legends 

 

Figure 1. FEN1 gene expression in breast cancer. Kaplan Meier curves showing breast 

cancer specific survival in the (a) training set, (b) test set, (c) external validation 

(METABRIC) cohort, (d) METABRIC cohort patients receiving endocrine therapy, and (e) 

METABRIC cohort patients receiving chemotherapy. 

 

Figure 2. FEN1 protein expression in breast cancer. (a) 1.Western blot showing specificity of 

FEN1 antibody. 2. Microphotographs of FEN1 protein expression in breast cancer tissue 

(magnification x 200).  Kaplan Meier curves showing breast cancer specific survival in the 

(b) ER negative (-) breast cancer (whole cohort), (c) ER negative (-) breast cancer patients 

who received no chemotherapy. (d) ER negative (-) breast cancer patients who received CMF 

chemotherapy, (e) ER positive (+) breast cancer patients (whole cohort), (f) high risk ER 

positive (+) breast cancer patients who received no endocrine therapy and (g) high risk ER 

positive (+) breast cancer patients who received endocrine therapy.  N= nuclear expression, 

C= cytoplasmic expression, ‘-‘= negative expression, ‘+’ = positive expression. (h)  

 

Figure 3. FEN1 protein expression in ovarian cancer.  (a) Microphotographs of FEN1 protein 

expression in ovarian cancer tissue (magnification x 200).  Investigating nuclear and 

cytoplasmic expression, Kaplan Meier curves showing cancer specific survival in epithelial 

ovarian cancer (b), disease free survival (c). (d) Investigating nuclear expression of FEN1 

alone, Kaplan Meier curves showing cancer specific survival. (e)  Investigating cytoplasmic 

expression of FEN1 alone, Kaplan Meier curves showing disease free survival (DFS) survival 

in epithelial ovarian cancer patients. 

 

 


