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Abstract

In this paper, a class of conjugate prior for estimating incomplete
count data based on a broad class of conjugate prior distributions is
presented. The new class of prior distributions arises from a condi-
tional perspective, making use of the conditional specification method-
ology and can be considered as the generalisation of the form of prior
distributions that have been used previously in the estimation of in-
complete count data well. Finally, some examples of simulated and
real data are given.

Key Words: Conditional specification, Bayesian analysis, truncated gamma
distribution, confluent hypergeometric distribution.

1Corresponding author. Tel.: +34-942-201635; Fax: +34-942-201603. E-mail address:
sarabiaj@unican.es (J.M. Sarabia), golnaz.shahtahmassebi@ntu.ac.uk (Golnaz Shahtah-
massebi).

1

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
. B

ib
lio

te
ca

],
 [

Jo
se

 M
ar

ia
 S

ar
ab

ia
] 

at
 0

0:
37

 2
4 

N
ov

em
be

r 
20

15
 



1 Introduction

Incomplete count data arises in problems where the true sample size is un-
known and the true count may be under-reported. The estimation of such
data is an important task in many fields of science, including biology (Barker
and Sauer,1995), insurance and criminology (Smit et al., 1997; Smyth and
Carleton, 2011). Bayesian methodologies for the study of this problem have
been proposed by Armero and Bayarri (1997) and Moreno and Girón (1998).

Let xi be an unobserved count variable, for example the number of homi-
cide crimes or accidents by the customers of a given insurance company in
a given time period i, which follows a Poisson distribution with unknown
parameter λ > 0. Assume that we only observe an unknown proportion of
xi, a count random variable denoted by yi. For example, yi can be the actual
number of reported crimes or the claims to the insurance company. Sup-
pose that the number of events xi are reported independently of each other
with probability θ and the same for all the events, then a possible model is
(Moreno and Girón, 1998):

Pr(X = xi;λ) =
(λ)xie−λ

xi!
, xi = 0, 1, 2, . . . (1)

with λ > 0 and

Pr(Y = yi|X = xi, θ) =

(
xi
yi

)
θyi(1− θ)xi−yi , yi = 0, 1, . . . , xi, (2)

where 0 < θ < 1. If we assume that X is independent of θ given λ and Y is
independent of λ given X and θ we have,

f(yi|λ, θ) =
∞∑

xi=yi

Pr(Y = yi|X = xi, λ, θ) Pr(X = xi|λ, θ)

=
∞∑

xi=yi

Pr(Y = yi|X = xi, θ) Pr(X = xi;λ),

and basic computations using (1) and (2) leads to,

f(yi|λ, θ) =
(λθ)yi exp(−λθ)

yi!
, yi = 0, 1, 2, . . . , (3)
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where λ > 0 and θ ∈ [0, 1], which will be denoted by yi ∼ Po(λθ). Thus,
the distribution of the reported counts yi given λ and θ is a Poisson with
parameter λθ.

Then, if y = (y1, . . . , yn) is a sample of size n from (3), the likelihood
function is given by,

f(y|λ, θ) =
(λθ)nȳ exp(−nλθ)∏n

i=1 yi!
. (4)

Note that in this likelihood it is obviously impossible to distinguish among all
the pairs (λ, θ) with the same product λθ, and then the maximum likelihood
method cannot estimate λ and θ, separately.

Alternatively, by defining a model in a Bayesian framework we are able
to distinguish between λ and θ. A possible model can be set as follows,

y|λ, θ ∼ Po(λθ), (5)

(λ, θ) ∼ π(λ, θ), (6)

where π(λ, θ) is a prior distribution to be specified.
If a conjugate prior distributions are adopted, a classical solution was

provided by Armero and Bayarri (1994) and Moreno and Girón (1998), which
considered the class of prior distributions,

π(λ, θ) ∝ θa0−1(1− θ)b0−1λc0−1 exp(−d0λ− e0λθ). (7)

The prior distribution (7) has three important properties: (i) it is conju-
gate for the likelihood (4), (ii) it includes the independent case and (iii) only
five parameters must be elicited.

The first property established a congruent model, which present impor-
tant computational advantages and has a large tradition in classical Bayesian
analysis. The fact of the model includes the independent case looks natu-
ral. With respect to the third property, five parameters can be sometimes
insufficient in practice. In many contexts, the expert has a great deal of
information for eliciting the prior distribution π(λ, θ). On the other hand
(7) only admits negative correlations and this fact makes the models some
restrictive.

As an alternative, the incomplete data can also be considered as missing
data. The missing data are also parameters to be estimated. Thus, under
the Bayesian framework, the prior distribution for missing data have its prior
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distribution. The Gibbs sampler for the approach only has the conditional
posterior distribution for θ and λ.

In this paper, a general methodology for estimating incomplete count data
based on a broad class of conjugate prior distributions is presented. The new
class of prior distributions arise in a natural way from a conditional per-
spective, making use of the conditional specification methodology proposed
by Arnold, Castillo and Sarabia (1999, 2001). The new family of prior dis-
tributions is very flexible and contains as special cases many of the usual
priors used previously in the estimation of incomplete count data, includ-
ing the independence case and the proposals of Armero and Bayarri (1997)
and Moreno and Girón (1998). As well as its flexibility, one of the main
advantages of this distribution is that, because of its dependence on a large
number of parameters, it is possible to incorporate a wide amount of prior
information.

The remainder of the paper is organised as follows. In Section 2, we
present the gamma, truncated gamma and confluent hypergeometric distri-
butions, which will be used in the rest of the paper. Section 3 introduces and
investigates the so-called gamma confluent hypergeometric conditionals dis-
tribution (BGCHC). We describe the Bayesian approach used to this problem
in Section 4. The application of BGCHC distribution is illustrated though
a sets of simulated and real data in Section 5. Finally, some conclusions are
included in Section 6.

2 Basic distributions

2.1 Classical and truncated gamma distributions

A classical gamma distribution with shape parameter α > 0 and scale pa-
rameter β > 0 will be denoted as X ∼ Ga(α, β), with probability density
function (PDF),

f(x;α, β) =
βαxα−1 exp(−βx)

Γ(α)
, x > 0. (8)

If X ∼ Ga(α, β) then E(X) = α
β
.

A truncated gamma distribution in the interval [0, 1] has the following
PDF,

f(x;α, β) =
βαxα−1 exp(−βx)

γ(α, β)
, 0 ≤ x ≤ 1, (9)
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and γ(a, x) denotes the lower incomplete gamma function defined as,

γ(a, x) =

∫ x

0

ta−1 exp(−t)dt,

where a > 0. A truncated gamma distribution with PDF (9) will be denoted
as X ∼ T Ga(α, β).

If X ∼ T G(α, β), the raw moments are given by,

E(Xr) =
γ(α + r, bβ)

βrγ(α, β)
, r > 0.

2.2 Confluent Hypergeometric distribution

A random variable X is said to have a confluent hypergeometric distribution
if its PDF is given by,

f(x; a, b, c) = Kxa−1(1− x)b−1 exp(−cx), 0 ≤ x ≤ 1, (10)

where a, b > 0, c ∈ R, where

K−1 = B(a, b)1F1[a; a+ b;−c], (11)

and B(a, b) = Γ(a)Γ(b)/Γ(a+b) denotes the beta function and 1F1[a, b, c] the
confluent hypergeometric function (Abramowitz and Stegun, 1964), defined
as,

1F1[a; a+b;−c] =
1

B(a, b)

∫ 1

0

ta−1(1−t)b−1 exp(−ct)dt =
∞∑
k=0

(a)k
(a+ b)k

· (−c)
k

k!
,

and (a)k = a(a+ 1) · · · (a+ k − 1) is the ascending factorial. A distribution
with PDF (10) will be denoted as X ∼ CH(a, b, c) and was considered by
Armero and Bayarri (1997), Gordy (1998) and Ng and Kotz (1995).

The confluent hypergeometric distribution can have the following partic-
ular forms if in (11):

• c = 0, then we obtain the classical beta distribution.

• b = 1, then we obtain the truncated gamma distribution in [0, 1] defined
previously.

5

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
. B

ib
lio

te
ca

],
 [

Jo
se

 M
ar

ia
 S

ar
ab

ia
] 

at
 0

0:
37

 2
4 

N
ov

em
be

r 
20

15
 



Finally, the raw moments are given by,

E(Xr) =
Γ(a+ r)Γ(a+ b)

Γ(a)Γ(a+ b+ r)
· 1F1[a+ r; a+ b+ r,−c]

1F1[a; a+ b,−c]
,

where r > 0.

3 Prior Distributions based on Conditional

Specification

A flexible and conjugate prior distribution for the specification (5)-(6) is
based on the following reasoning. If θ is a known parameter, the gamma
distribution is a conjugate distribution for λ and if λ is known, the confluent
hypergeometric distribution is a conjugate prior distribution for θ. Conse-
quently, it has sense to ask for the most general prior distribution π(λ, θ)
such that the distribution of λ|θ is a gamma and distribution of θ|λ is a
confluent hypergeometric distribution such that,

λ|θ ∼ Ga(α1(θ), β1(θ)), (12)

θ|λ ∼ CH(α2(λ), β2(λ), γ(λ)), (13)

where α1(θ), β1(θ) : [0, 1]→ R+, α2(λ), β2(λ) : R+ → R+ and γ(λ) : R→ R.

Theorem 1 The most general distribution with conditional distributions (12)
and (13) is given by,

π(λ, θ;a) = λ−1θ−1(1− θ)−1 exp{u>λAvθ}, λ > 0, 0 ≤ θ ≤ 1, (14)

where the vectors uλ and vθ are given by,

u>λ = (1, log λ,−λ), (15)

v>θ = (1, log θ, log(1− θ),−θ), (16)

and A = {aij}, i = 0, 1, 2 and j = 0, 1, 2, 3. The parameter a00 is the
normalizing constant and must be chosen to satisfy

∫ ∫
π(λ, θ;a)dλdθ = 1.

The parameters {aij} must be selected to satisfy
∫
π(λ, θ;a)dλ < ∞ or∫

π(λ, θ;a)dθ <∞.

6
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Proof: The gamma and the confluent hypergeometric distributions can
be written as,

f(λ|θ) ∝ λα1−1e−β1λ = λ−1 exp{α1 log λ− β1λ},

and

f(θ|λ) ∝ θα2−1(1−θ)β2−2e−γθ = θ−1(1−θ)−1 exp{α2 log θ+β2 log(1−θ)−γθ},

and then both families belong to the exponential family of distributions with
canonical functions (log λ,−λ) and log θ, log(1− θ),−θ), respectively.

Now, we define r1(λ) = λ−1, r2(θ) = θ−1(1− θ)−1 and u>λ and v>θ as (15)
and (16), respectively. Since both conditional distributions belong to the
exponential family, and using Theorem 4.1 in Arnold, Castillo and Sarabia
(1999), the most general bivariate distribution with conditionals (12) and
(13) is given by,

π(λ, θ;a) = r1(λ)r2(θ) exp{u>λAvθ},

which is (14), being A = {aij}, i = 0, 1, 2 and j = 0, 1, 2, 3.
We call this type of prior distribution bivariate gamma confluent hypergeo-

metric conditionals distribution (BGCHC), denote it by (λ, θ) ∼ BGCHC(a).

3.1 Properties of the BGCHC distribution

3.1.1 Joint PDF

If we expand (14) we obtain (changing the signs of some coefficients),

π(λ, θ;a) = λ−1θ−1(1− θ)−1 exp{a00 + a10 log λ− a20λ+ a01 log θ + a02 log(1− θ)
−a03θ + a11 log λ log θ + a12 log λ log(1− θ)− a13θ log λ

−a21λ log θ − a22λ log(1− θ)− a23λθ}, (17)

where λ > 0, θ ∈ [0, 1] and a00 is the normalizing constant, which is a function
of the rest of the parameters.

7

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
. B

ib
lio

te
ca

],
 [

Jo
se

 M
ar

ia
 S

ar
ab

ia
] 

at
 0

0:
37

 2
4 

N
ov

em
be

r 
20

15
 



3.1.2 Conditional distributions

The conditional distributions of (17) are (12) and (13), where the conditional
parameters are given by,

α1(θ) = a10 + a11 log θ + a12 log(1− θ)− a13θ, (18)

β1(θ) = a20 + a21 log θ + a22 log(1− θ) + a23θ, (19)

α2(λ) = a01 + a11 log λ− a21λ, (20)

β2(λ) = a02 + a12 log λ− a22λ, (21)

γ(λ) = a03 + a13 log λ+ a23λ, (22)

where these parameters must satisfy one of the two following sets of con-
straints:
Case 1 (independent case):

a11 = a12 = a13 = a21 = a22 = a23 = 0,

a10, a20, a01, a02 > 0

Case 2 (dependent case):

a11 < 0, a21 < 0, a01 + a11 log(
a11

a11

) > a11,

a12 < 0, a22 < 0, a02 + a12 log(
a12

a22

) > a12,

a13 < 0, a23 > 0, a03 + a13 log(−a13

a23

) > a13,

and
g(x

(1)
0 ; a10, a11, a12,−a13) > 0, g(x

(2)
0 ; a20, a21, a22, a23) > 0,

where: x
(1)
0 = x0(a10, a11, a12,−a13), x

(1)
0 = x0(a20, a21, a22, a23) being

x0(a, b, c, d) =
−b− c+ d−

√
(b+ c− d)2 + 4bd

2d

and g(x; a, b, c, d) = a+ b log(x) + c log(1− x) + dx, with 0 < x < 1.

3.1.3 Marginal distributions

The marginal distributions of λ is given by,

π1(λ;a) =
ea00λa10−1e−a20λ

K(α2(λ), β2(λ), γ(λ))
, λ > 0,

8
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where K(a, b, c) is defined in (11) and α2(λ), β2(λ) and γ(λ) are defined in
(20), (21) and (22) respectively.

The marginal distribution of θ is,

π2(θ;a) =
ea00θa01−1(1− θ)a02−1e−a03θΓ(α1(θ))

β1(θ)α1(θ)
, 0 ≤ θ ≤ 1,

where α1(t) and β1(t) are defined in (18) and (19) respectively.

3.1.4 Conditional expectations

The conditional expectations are,

E(λ|θ) =
α1(θ)

β1(θ)
,

and

E(θ|λ) =
α2(λ)

α2(λ) + β2(λ)
· 1F1[α2(λ) + 1;α2(λ) + β2(λ) + 1,−γ(λ)]

1F1[α2(λ);α2(λ) + β2(λ),−γ(λ)]
,

where α1(θ), β1(θ), α2(λ), β2(λ) and γ(λ) are defined in (18) to (22).

3.1.5 Mode

The mode is the solution of the system of equations,

1− a10 + a20λ+ (a13 + a23λ)θ − (a12 − a22λ) log(1− θ)− (a11 − a21λ) log θ = 0,

−1 + a01 + (2− a0+ + a21 − a2+λ)θ + (a03 + a23λ)θ2 + (a11 − a1+θ + a13θ
2) log λ = 0.

Numerical computations show that the solutions of previous equations do not
need to be unique, and bimodality is possible. The property of multimodality
appears in other models with conditional specification (see Arnold et al.,
2000, Arnold, Castillo and Sarabia (2001) and Sarabia et al. (2005)).

3.1.6 Special Cases

The gamma confluent hypergeometric conditionals distribution includes as
particular cases the following models:

1. The Armero-Bayarri (1997) and Moreno-Girón (1998) prior distribu-
tion: a03 = a11 = a12 = a13 = a21 = a22 = 0,

9
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2. The independence case. This situation corresponds to the choice: a11 =
a12 = a12 = a21 = a22 = a23 = 0.

3. The gamma truncated gamma conditionals distribution, which is ob-
tained when a02 = a12 = a2 = 0

4. The submodel considered by Gómez-Déniz et al. (2014), which corre-
sponds to a20 = a03 = a11 = a12 = a13 = a21 = a22 = 0.

3.1.7 A simple submodel

Let consider the following bivariate distribution,

π(λ, θ;a, b) =
aa1023

B(a01 − a10, a02)Γ(a10)
λa10−1θa01−1(1− θ)a02−1 exp(−a23λθ),

(23)
where λ > 0, 0 ≤ θ ≤ 1 and the parameters must satisfy the constraints,

a10, a01, a02, a23 > 0, a01 > a10.

This model was considered by Gómez-Déniz et al. (2014) in a contest of risk
theory.

In relation with (23) we have the following properties:

• The marginal distributions are:

π(λ;a) =
aa1023 Γ(a01 + a02 − a10)

Γ(a01 + a02)B(a01 − a10, a02)
λa10−1e−a23λ 1F1[a02, a01+a02, a23λ],

and θ ∼ Be(a01 − a10, a02) with PDF,

π(θ;a) =
θa01−a10−1(1− θ)a02−1

B(a01 − a10, a02)
, 0 ≤ θ ≤ 1.

• The conditional distribution of λ|θ is a classical gamma with parame-
ters,

λ|θ ∼ Ga(a10, a23θ),

and the PDF of θ|λ is,

π(θ|λ;a) ∝ θa01−1(1− θ)a02−1e−a23λθ, 0 ≤ θ ≤ 1, (24)

that is θ|λ ∼ CH(a01, a02, a23λ). It can be seen that (24) reduces to the
truncated gamma distribution for values of a02 = 1.

10

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
. B

ib
lio

te
ca

],
 [

Jo
se

 M
ar

ia
 S

ar
ab

ia
] 

at
 0

0:
37

 2
4 

N
ov

em
be

r 
20

15
 



• The mathematical expectation of θ and λ are,

E(λ) =
a10(a01 − a10 + a02 − 1)

a23(a01 − a10 − 1)
, (25)

E(θ) =
a01 − a10

a01 − a10 + a02

. (26)

• Since the first cross moment is E(λθ) = a10
a23

, the covariance of (λ, θ) is,

cov(λ, θ) =
a10b

a23(a01 − a10 + a02)(a10 − a01 + 1)
.

• The distribution (23) is unimodal with modal value (λ0, θ0) given by,

mode(λ) =
(a10 − 1)(a01 − a10 + a02 − 1)

a23(a01 − a10)
, (27)

mode(θ) =
a01 − a10

a01 − a10 + a02 − 1
. (28)

4 Bayesian analysis with BGCHC prior

In order to obtain the posterior distribution, the likelihood function can be
written as,

f(y|λ, θ) ∝ exp(nȳ log λ+ nȳ log θ − nλθ), (29)

where ȳ denotes the sample mean.
If we assign

(λ, θ) ∼ BGCHC(a(0)),

as a prior distribution and incorporate equation (17) with (29) we obtain the
following posterior distribution

(λ, θ)|y ∼ BGCHC(a∗),

where the hyperparameters vector a(0) is updated to a∗ using the expression
in Table 1. Note that only three of the eleven parameters are updated by
data: a10, a01 and a23. The rest of the parameters do no change. However,
the existence of these parameters permits more flexibility when we select the
prior distribution.
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Table 1: Hyperparameter updating of the prior (17) with likelihood (29)
Parameter Prior value Posterior value

a10 a
(0)
10 a

(0)
10 +

∑n
i=1 yi

a20 a
(0)
20 a

(0)
20

a01 a
(0)
01 a

(0)
01 +

∑n
i=1 yi

a02 a
(0)
02 a

(0)
02

a03 a
(0)
03 a

(0)
03

a11 a
(0)
11 a

(0)
11

a12 a
(0)
12 a

(0)
12

a13 a
(0)
13 a

(0)
13

a21 a
(0)
21 a

(0)
21

a22 a
(0)
22 a

(0)
22

a23 a
(0)
23 a

(0)
23 + n

4.1 Parameter estimation

In the conditional context, Gibbs sampling is a natural estimation methodol-
ogy. Assume that we are interested in approximating the posterior moments
of a given function of λ and θ, say δ(λ, θ).

Then, to approximate E(δ(λ, θ)|y), we generate random values

λ1, θ1, λ2, θ2, . . . , λm0+m, θm0+m

using the conditional distributions gamma and confluent hypergeometric,

λ|(θ, y) ∼ Ga(α∗1(θ), β∗1(θ))

θ|(λ, y) ∼ CHa(α∗2(λ), β∗2(λ), γ∗(λ)),

where the expressions for obtaining aij are given in Table 1 and m0 is the
number of iterations before burn-in. Thus, we have the estimator,

E(δ(λ, θ)|y) ≈ 1

m

m0+m∑
i=m0+1

δ(λi, θi).

As a previous step, me must elicit the hyperparameters aij using the
methods proposed in Section 4.3.
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4.2 Posterior distribution of x given y

The posterior distribution of x given y can be computed using the formula-
tion,

π(x|y) ∝ π(x)π(y|x).

Then,

π(x) =

∫
π(x|λ)π(λ)dλ

=

∫ ∞
0

e−λλx

x!

ea00λa10−1e−a20λ

K(α2(λ), β2(λ), γ(λ))
dλ

=
1

x!
exp(a00 − ã00),

where ã00 is the normalizing constant changing a10 by a10 + x and a20 by
a20 + 1 keeping the rest of the hyperparameters constant.

On the other hand,

π(y|x) =

∫
π(y|x, θ)π(θ|x)dθ

=

∫ 1

0

(
x

y

)
θy(1− θ)x−y e

a00θa01−1(1− θ)a02−1e−a03θΓ(α1(θ))

β1(θ)α1(θ)
dθ

=

(
x

y

)
exp(a00 − ˜̃a00),

where we have assumed that π(θ|x) = π(θ) and ˜̃a00 is the normalizing con-
stant changing a01 by a01 + y and a02 by a20 + x − y keeping the rest of
the hyperparameters constant. Finally, multiplying the last two formulas we
obtain,

π(x|y) ∝ exp(2a00 − ã00 − ˜̃a00)

y!(x− y)!
, x = y, y + 1, . . . ,∞

In relation with previous formulation we point out the following difficulty.
For the computation of π(θ|x) the conjugate prior for (θ, λ) does not simplify
the computation. In order to avoid this difficulty, we have assumed that θ
and X are independent so that π(θ|x) = π(θ). However, note that this
equation does not hold when λ and θ are not independent. In fact, θ and
X are independent if and only if θ and λ are independent (this follows from
Theorem 1 in Moreno and Girón, 1998).

13

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
. B

ib
lio

te
ca

],
 [

Jo
se

 M
ar

ia
 S

ar
ab

ia
] 

at
 0

0:
37

 2
4 

N
ov

em
be

r 
20

15
 



4.2.1 Expected value of x given y

An important quantity to be computed is the expected value of x|y. We
have,

E(x|y) = y +

∫∞
0

∫ 1

0
λ(1− θ)f(y|λ, θ)π(λ, θ)dθdλ∫∞

0

∫ 1

0
f(y|λ, θ)π(λ, θ)dθdλ

. (30)

The proof of this formula can be found in Moreno and Girón (1998) and
some aspects of the proof have been included in the Appendix.

In the case of the general BGTG distribution, previous formula (30) is
given by,

E(x|y) = y + exp(a
(1)
00 − a

(2)
00 ), (31)

where a
(1)
00 corresponds to the normalizing constant changing a10 by a10+y+1,

a02 by a02 + 1, a01 by a01 + y and a23 by a23 + 1 and a
(2)
00 corresponds to the

normalizing constant changing a10 by a10+y, a01 by a01+y and a23 by a23+1.
In the case of the simple submodel (23), the quantity (31) can be written

as,

E(x|y) = y +
a02(a10 + y)

(a23 + 1)(a01 − a10 − 1)
.

4.3 Hyperparameter elicitation

In this section we consider the elicitation of the hyperparameters aij.
We begin with the submodel considered in Section 3.1.7, which depends

on four parameters: a10, a01, a02 and a23. For the elicitation we consider the
means and modes of λ and θ given by the equations (25), (26), (27) and (28)
respectively. We consider the nonlinear system,

E(λ) = λ̄, (32)

E(θ) = θ̄, (33)

mode(λ) = λ0, (34)

mode(θ) = θ0. (35)
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If we solve (32) to (35) for a10, a01, a02 and a23 we obtain,

a10 =
λ̄(θ̄ − θ0 + θ0θ̄)

θ0(λ̄θ̄ − λ̄− λ0θ̄) + λ̄θ̄
,

a01 =
θ2

0(λ0θ̄
2 + λ̄− λ̄θ̄2)− 2θ0λ̄θ̄ + θ̄2λ̄

(θ0 − θ̄)(λ0θ0θ̄ + θ0λ̄− λ̄θ̄ − θ0λ̄θ̄)
,

a02 =
θ0(1− θ̄)
θ0 − θ̄

,

a23 =
θ̄

θ0(λ̄θ̄ − λ0θ̄ − λ̄) + λ̄θ̄

It can be seen that in order to have a02 > 0 we must have θ0 > θ̄.
For the elicitation of the hyperparameters in the general case we can use

the methods proposed in Arnold, Castillo and Sarabia (1999) and Sarabia et
al. (2005). Assume that we have information about the mean and variance
of the two conditional distributions λ|θ and θ|λ, i.e.,

E(λ|θi) = ξi, i = 1, 2, . . . , n1,

var(λ|θi) = ηi, i = 1, 2, . . . , n1,

E(θ|λj) = ψj, j = 1, 2, . . . , n2,

var(θ|λj) = χj, j = 1, 2, . . . , n2,

where the values ξi, ηi, ψi and χi are known and 2n1+2n2 ≥ 11. Then, the aij
value can be obtained by nonlinear least squares, minimizing the sum of the
squares of the differences between the components of the pairs (E(λ|θi), ξi),
(var(λ|θi), ηi), (E(θ|λj), ψj) and (var(θ|λj), χj), for i = 1, 2, . . . , n1 and j =
1, 2, . . . , n2.

5 Numerical experiments

In this section we describe the implementation of the model incorporating
simulated and reals sets of data. These examples illustrated the proposed
methodology is easily automated, widely applicable and flexible with respect
to the choice of function structure. We obtain the posterior distribution of
λ and θ for special cases:

(a) The truncated gamma conditional prior distribution (a02 = a12 = a22 =
0).
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Table 2: Posterior mean (SD) and 95% HPD regions of θ and λ for the
simulated data with λ = 3, θ = 0.3 for special case (a).

θpost λpost

mean (SD) 95% CI mean (SD) 95% CI
n = 50 0.361 (0.114) (0.205,0.584) 2.878 (0.996) (1.427,5.023)
n = 100 0.362 (0.114) (0.205,0.583) 2.717 (0.900) (1.428,4.600)
n = 150 0.371 (0.115) (0.206, 0.585) 2.815 (0.923) (1.539,4.742)

(b) The simple submodel where θ|λ ∼ CH(a01, a02, a23λ).

All computations and simulations were done using R2.15.2 on a 3.20 GHz
i3 processor desktop. Since confluent hypergeometric distribution is not a
predefined distribution in R, functions for evaluating the CH probability dis-
tribution function and generating random samples from such distribution
are written by the authors. A rejection sampling algorithm (Gamerman and
Lopez, 2006) was used to generate random samples from a CH distribution.
In our analysis the Gelman and Rubin’s convergence diagnostic with the
statistic values of 1.01 suggested that we can consider the convergence of the
Gibbs sampler after m0 = 10000 iterations (Gelman and Rubin, 1992). A
further 5000 samples were collected after burn-in.

5.1 Simulation Study

We simulated random sets of incomplete data with the probability distribu-
tion given by (3) of size n = 50, 100 and 150 with parameters λ = 3 and
θ = 0.3, 0.8. Tables 2-5 present the posterior means, standard deviations
(SD) and 95% highest probability density (HPD) region for the parameters
of interest for special cases (a) and (b). It can be seen for all cases both
models provide a close posterior mean to the true values of the parameters.

Finally, the posterior summary of δ(λ, θ) = λδ are provided in Tables 6
and 7. Visualisations of the posterior density of δ(λ, θ) at different values
of parameters and n = 50, 100 and 150 are given in Figures 1 and 2. It
can be seen that our belief about δ(λ, θ) becomes stronger by the number
of samples n. However, δ(λ, θ) was overestimated (the posterior distribution
was not centred around the true value) for larger values of θ when n is small.
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Table 3: Posterior mean (SD) and 95% HPD regions of θ and λ for the
simulated data with λ = 3, θ = 0.3 for special case (b).

θpost λpost

mean (SD) 95% CI mean (SD) 95% CI
n = 50 0.399 (0.114) (0.211,0.589) 2.626 (0.933) (1.405, 4.860)
n = 100 0.404 (0.113) (0.211,0.590) 2.430 (0.832) (1.392,4.440)
n = 150 0.403 (0.118) (0.208, 0.591) 2.40 (0.901) (01.512,4.693)

Table 4: Posterior mean (SD) and 95% HPD regions of θ and λ for the
simulated data with λ = 3, θ = 0.8 for special case (a).

δ(λ, θ) = 0.3 · 3 = 0.9 δ(λ, θ) = 0.8 · 3 = 2.4
mean (SD) 95% CI mean (SD) 95% CI

n = 50 0.792 (0.145) (0.560, 0.919) 3.369(0.766) (2.387,5.339)
n = 100 0.781 (0.147) (0.467,0.991) 3.234 (0.738) (2.338,5.159)
n = 150 0.781 (0.150) (0.461, 0.991) 3.240 (0.755) (2.359, 5.252)

Table 5: Posterior mean (SD) and 95% HPD regions of θ and λ for the
simulated data with λ = 3, θ = 0.8 for special case (b).

θpost λpost

mean (SD) 95% CI mean (SD) 95% CI
n = 50 0.85 (0.57) (0.587, 0.987) 3.18 (0.58) (2.39,4.69)
n = 100 0.84 (0.10) (0.611, 0.987) 2.93 (0.45) (2.33, 4.07)
n = 150 0.85 (0.10) (0.803, 1.110) 2.92 (0.48) (2.35, 4.21)

Table 6: Posterior mean (SD) and 95% HPD regions of δ(λ, θ) = λθ for the
simulated data for special case (a).

δ(λ, θ) = 0.3 · 3 = 0.9 δ(λ, θ) = 0.8 · 3 = 2.4
mean (SD) 95% CI mean (SD) 95% CI

n = 50 0.938 (0.138) (0.684,1.222) 2.641 (0.229) (2.213, 3.099)
n = 100 0.890 (0.093) (0.720,1.082) 2.458 (0.154) (2.167, 2.765)
n = 150 0.947(0.081) (0.797, 1.115) 2.437 (0.13) (2.203, 2.688)
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Table 7: Posterior mean (SD) and 95% HPD regions of δ(λ, θ) = λθ for the
simulated data for special case (b).

δ(λ, θ) = 0.3 · 3 = 0.9 δ(λ, θ) = 0.8 · 3 = 2.4
mean (SD) 95% CI mean (SD) 95% CI

n = 50 0.955 (0.137) (0.710, 1.236) 2.651 (0.232) (2.216, 3.121)
n = 100 0.895 (0.097) (0.717, 1.092) 2.459 (0.157) (2.163, 2.776)
n = 150 0.951 (0.078) (0.807, 1.113) 2.442 (0.127) (2.193, 2.698)
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n = 50

(a) (b)

Figure 1: The posterior density of λθ with n = 50, 100, 150 for special cases
(a) and (b) for the simulated data with λ = 3, θ = 0.3.

5.2 Number of assaults

The data in the first column in Tables 8 and 9 are taken from Yannaros
(1993) and Moreno and Girón (1998). They mean the reported assaults in
Stockholm during seven years period 1980-1986. Let yi be the number of
of reported crimes of year i, for i = 1980, . . . , 1986. For the purpose of
parameter identifiability, after some experimentations, we found that for our
data a good choice of the lower boundary for θ is θmin = 0.28 and θmax = 1

and the median of θ (θ̃) is set to be 0.5 which was in agreement with Moreno
and Girón (1998). Note that values of θ̄, λ̄ and λ̃ are chosen to satisfy aij > 0
for i, j = 0, 1, 2. Our interest in this section specifically lies in E(x|y).

Tables 8 and 9 illustrate the posterior predictive mean, standard deviation
and 95% posterior predictive interval (PPI) of x. For this data, the E(x|y)
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Figure 2: The posterior density of λθ with n = 50, 100, 150 for special cases
(a) and (b) for the simulated data with λ = 3, θ = 0.8.

for the CH distribution are larger than the E(x|y) of the T G distribution.
This was compensated by smaller SD(x|y) for the CH distribution. This may
suggest that over 1980-1986, on average from every 2 crimes, only one crime
was reported, using the the CH prior distribution. On the other, the posterior
average of unreported crimes is smaller for the T G prior distribution. It can
be seen that the 95% PPIs for the CH distribution are narrower than the
95% PPIs for the T G distribution.

y E(x|y) SD(x|y) 95% PPI
3303 6615 1751 (4146, 10816)
3334 6677 1761 (4185, 10918)
3931 7873 2083 (4934, 12873)
3857 7725 2044 (4841, 12631)
4154 8320 2303 (5214, 13603)
4345 8702 2303 (5454, 14229)
4224 8460 2239 (5302, 13833)

Table 8: Reported assault y in 1980-1986, posterior predictive mean, stan-
dard deviation and 95% posterior predictive intervals, using the CH prior
distribution.
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y E(x|y) SD(x|y) 95% PPI
3303 4926 2051 (3307, 11359)
3334 4972 2071 (3338, 11466)
3931 5862 2441 (3936, 13519)
3857 5752 2395 (3862, 13264)
4154 6195 2580 (4160, 14286)
4345 6480 2699 (4351, 14943)
4224 6299 2623 (4230, 14527)

Table 9: Reported assault y in 1980-1986, posterior predictive mean, stan-
dard deviation and 95% posterior predictive intervals, using the T G prior
distribution.

6 Conclusions

In the context of Bayesian estimation with incomplete count data, we have
introduce a broad class of conjugate prior distributions for the corresponding
likelihood. The new class of prior distributions arise in a natural way from a
conditional perspective according to the conditional specification methodol-
ogy proposed by Arnold, Castillo and Sarabia (1999, 2001). The new family
of prior distributions depends on eleven parameters and is very flexible. The
new family contains as special cases many of the usual priors used previ-
ously in the estimation of incomplete count data, including the independence
case, the proposals of Armero and Bayarri (1997), Moreno and Girón (1998),
the gamma truncated conditionals distribution and the model considered by
Gómez-Déniz et al (2014). One of the main advantages of this distribution
is that, because of its dependence on a large number of parameters, it is
possible to incorporate a wide amount of prior information.

Finally, the applicability of the new distribution with CH and T G prior
distributions, was illustrated for sets of simulated and real data. It was shown
that under both priors, we are able to recover the true population. Possible
extension to the application of this distribution would be a time varying θ
for time dependent count data. In addition, its application in other areas
such biology and criminology can be further explored.

Our model currently has a basic form which assumes the unobserved vari-
able xi follows a Poisson distribution. This can be a restrictive model espe-
cially for overdispersed data or data with excess of zeros. Thus, an extension
to this model would be a negative binomial or a zero inflated Poisson distri-
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bution as the distribution of the unobserved variable.
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Appendix

In this appendix we include the R code for computing the Confluent Hyper-
geometric distribution and a brief indication about the Rejection Sampling
as well as the proof of the formula (30).
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Confluent Hypergeometric Distribution

library(coda)

library(truncdist)

library(fAsianOptions)

# CH probability density function

f_CHD<- function(x, a,b,g){

(x^(a-1)*(1-x)^(b-1)*exp(-g*x))/(beta(a,b)*Re(kummerM( x =-g,a=a,b=a+b)))

}

# cumulative distribution function of CH

F_CHD<- function(x, a,b,g){

n<- length(x)

F_chd<- numeric(n)

for(i in 1:n){

F_chd[i]<- integrate(CHD, lower = 0, upper = x[i], a,b,g)$value

}

return(F_chd)

}

Rejection Sampling

This method uses an auxiliary density for generation of random quantities
from distributions not amenable to analytic treatment. Our aim is to gen-
erate random samples from the CH distribution, fCH. We chose a uniform
distribution (q(a, b) = U(a, b)) as the auxiliary distribution from which draws
can be made. We use a standard uniform distribution, U(0, 1) to make gen-
erations from fCH. For the ith sample, i = 1, . . . , n

(1) Draw a random sample θcand ∼ U(0, 1).

(2) Generate U ∼ (0, 1).

(3) Calculate

r =
fCH

C U(0, 1)

where C <∞ is chosen such that fCH ≤ Cq(a, b) for every possible value
of θ.

(a) If r ≥ U then accept θcand and let θ(i) = θcand.
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(b) Otherwise reject θcand and go back to 1.

Note that we can change the limits of the uniform distribution in order to
generate samples from a truncated CH distribution. Also other distributions
with same range as the CH distribution can be used as the auxiliary density.

Proof of the formula (30).

This proof can be found in Moreno and Girón (1998). The posterior expec-
tation is,

E(x|y) =

∫∞
0

∫ 1

0

[∑∞
x=y xπ(y|x, θ)π(x|λ)

]
π(λ, θ)dθdλ∫∞

0

∫ 1

0
f(y|λ, θ)π(λ, θ)dθdλ

.

Now, on the one hand,

∂f(y|λ, θ)
∂λ

=
∞∑
x=y

(x/λ− t)π(y|x, θ)π(x|λ),

and on the other hand directly from the probability mass function,

∂f(y|λ, θ)
∂λ

=
y

λ
f(y|λ, θ)− θtf(y|λ, θ).

Equating previous two equations we get,

∞∑
x=y

xπ(y|x, θ)π(x|λ) = [y − λt(1− θ)]f(y|λ, θ),

and then we obtain (30) taking t = 1.
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