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Abstract

Urban population scaling of resource use, creativity metrics, and human behaviors has
been widely studied. These studies have not looked in detail at the full range of human envi-
ronments which represent a continuum from the most rural to heavily urban. We examined
monthly police crime reports and property transaction values across all 573 Parliamentary
Constituencies in England and Wales, finding that scaling models based on population den-
sity provided a far superior framework to traditional population scaling. We found four types
of scaling: /) non-urban scaling in which a single power law explained the relationship
between the metrics and population density from the most rural to heavily urban environ-
ments, ii) accelerated scaling in which high population density was associated with an
increase in the power-law exponent, iii) inhibited scaling where the urban environment
resulted in a reduction in the power-law exponent but remained positive, and iv) collapsed
scaling where transition to the high density environment resulted in a negative scaling expo-
nent. Urban scaling transitions, when observed, took place universally between 10 and 70
people per hectare. This study significantly refines our understanding of urban scaling, mak-
ing clear that some of what has been previously ascribed to urban environments may simply
be the high density portion of non-urban scaling. It also makes clear that some metrics
undergo specific transitions in urban environments and these transitions can include nega-
tive scaling exponents indicative of collapse. This study gives promise of far more sophisti-
cated scale adjusted metrics and indicates that studies of urban scaling represent a high
density subsection of overall scaling relationships which continue into rural environments.

Introduction

Scaling in the evolution and development of cities has been widely studied [1-24] with scaling
behavior providing indicators of resource needs and productivity [6, 25-27]. Cities promote
innovation evidenced by super-linear scaling, while providing economies of scale in areas such
as petrol stations and road surface [2]. While super-linear scaling is beneficial in the
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production of new inventions, GDP and R & D employment, cities also exhibit super-linear
scaling of undesirable behaviors like homicide and violence [6, 9, 11, 15]. Extensive study of
human environments has led to the urban scaling hypothesis [28] which considers that some
properties of cities change with size in scale invariant ways. Although scaling behaviour follows
similar mathematical forms, urban scaling parameters are not universal with coefficients vary-
ing between countries. For example, population scaling of homicide in cities in Colombia, Bra-
zil, Mexico, and the United States vary widely [6, 9, 11, 15] as well as vary over time for several
urban metrics in Brazil [26].

Region boundary definitions useful for understanding urban scaling remain challenging.
Bettencourt proposed a combination of population and infrastructure leading to social co-ordi-
nation and efficiencies as the most important properties of cities [29]. However, these key fea-
tures do not correspond to traditional definitions of cities which have more provincial origins.
For example, formal City status in the UK is given by the Monarch as an honorary designation
[30]. Urban administrative units consist of a mix of Unitary Authorities, Metropolitan Regions,
Boroughs, and other units like the Greater London Authority. Within these designations, there
may be several “cities” in a contiguous urban area. As a result, a robust definition of cities and
urban regions is needed in order to fully test the urban scaling hypothesis. In the UK context, a
model of cities was recently proposed based on population density thresholds and commuter
flow rather than total population [24]. This challenges the concept of population as the key pre-
dictor of urban scaling [22, 24]. Elsewhere, related studies [31] indicate scaling exponents are
sensitive to whether urban areas are defined by built up areas or built up areas together with a
surrounding commuter zone. Even with such definitions of cities and urban areas, the resulting
regions vary in their characteristics. The Tokyo-Yokohama region of Japan with a population
in excess of 30 million has a density of 44 people per hectare (p/ha) while Dhaka in Bangladesh
has fewer people but a population density of 435 p/ha [32]. Similarly, urban areas are not uni-
form across their footprint. They include regions with very low resident populations such as
parks and industrial areas.

Cities are important human environments and the proportion of the world’s population liv-
ing in urban areas has been consistently increasing. As of 2014, the urban population reached
54% of the total; however, the number of people residing outside of cities is large and countries
range from 100% (Singapore) to 8.6% (Trinidad and Tobago) urban [33]. Many studies of
urban environments exist, however, nearly universally, these implicitly assume a fundamental
difference between cities and surrounding regions while not examining more rural environ-
ments in detail. In England and Wales, urban areas are connected built-up areas containing at
least 10,000 people [34]. All other areas are considered to be rural. Notably, England in 2011
had 82.4% of people living in urban areas. However, rural areas made up 85% of the land [35].
This leaves an open question related to the more general applicability of scaling laws obtained
from cities to understand the full range of human environments.

Crime is known to follow scaling laws in urban areas. The self-similarity of cities underlying
the urban scaling hypothesis is unlikely to change fundamentally based on the outcome of cur-
rent debates about the definition of cities. The acceleration of crime described by power-law
scaling will probably remain; however, a broader understanding of crime scaling over a greater
range of human environments can provide great insight into scaling phenomena of all types.

The UK government has published extensive data on property transactions and police
reported crime. These data are notable for their high spatial accuracy and good coverage within
England and Wales. Although police reported crime has been the subject of considerable con-
troversy in the UK [36, 37], the data set is extensive and can be mapped into a range of shapes.
This provides a unique opportunity to interrogate the scaling of crime reports and property
transactions over the full surface area of England and Wales.
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Here we investigate scaling relationships for a range of crime types and property transac-
tions values in England and Wales broken down by Parliamentary Constituencies. Parliamen-
tary Constituencies cover a wide range of communities from the most rural to heavily urban
and are well defined. This allows scaling to be studied using a wide range of crime and property
metrics. Using a continuum of rural and urban environments, the extent to which cities
extracted from their surroundings are sufficient to understand the scaling of human economic
and criminal behaviors can be assessed.

Methods
Data Sets

We have accessed data at the Parliamentary Constituencies level of all 573 constituencies in
England and Wales (see next section). These data are composed of population N, daytime pop-
ulation N, constituency area A, 15 crime types and transaction value of 9 property types
(Table 1). The population data were obtained from the Ordnance Survey mid-2013 estimates,
and daytime population estimates from the Office of National Statistics (www.ons.gov.uk). The
constituency boundary areas were calculated from geographic shape files of the Ordnance Sur-
vey Boundary Line dataset. Crime data were obtained from the Home Office via their open
data portal (https://data.police.uk/). Property data were obtained from the Land Registry.
These data were collated on the UKCrimeStats (http://www.ukcrimestats.com/) data platform
and provided as monthly reports. The crime data from 2014 were captured on 10/6/2015 and
property transaction value data on 17/7/2015. Prior to analysis the monthly values from each
constituency were summed over the 12 months of study. If a constituency did not have any
crime or property transaction of a particular type over the 12 month period it was removed
from the analysis. Only the Cities of London and Westminster (Semi-detached) and Bethnal
Green and Bow (Detached) in England reported no property transactions of a particular type
in the period and were dropped from the respective property analyses. The entire data set is
maintained and made freely available by the Office of National Statistics and the UK Home
Office. As these data are subject to updates, the snapshot has been provided as S1 Dataset.

Table 1. Crime and property types analyzed in this study.

Constituency metrics, Y

Crime type Property Type
Anti-Social Behavior (ASB) Detached

Bike Theft Flats

Burglary Freehold
Criminal Damage and Arson (CD & A) Leasehold
Drugs New

Order Ol

Other Crime Semi-detached
Other Theft Terraced
Robbery Total Property
Shoplifting

Theft from the Person
Total Crime and ASB
Vehicle Crime
Violence

Weapons

doi:10.1371/journal.pone.0149546.1001
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Overview of Parliamentary Regions

Parliamentary Constituencies were selected as regions with clearly defined shapes and similar
populations while not being exclusively urban. Parliamentary constituency data were obtained
for all 573 constituencies in England and Wales. The regions ranged in area from 331,440 ha
(Penrith and The Border) down to 738 ha (Islington North). Constituency populations were
from 56,651 (Aberconwy, Wales) to 163,398 (West Ham, England) while population density
ranged from 0.22 people per hectare (Brecon and Radnorshire, Wales) up to 150 p/ha (West-
minster North, England). Similar values for daytime population were from 55,453 (Aberconwy,
Wales) to 946,397 (Cities of London and Westminster, England) and daytime population den-
sities from 0.22 p/ha (Brecon and Radnorshire, Wales) to 550.3 p/ha (Cities of London and
Westminster, England). This range of population densities includes regions that exceed the
density of many of the world’s largest cities when considered as a whole. It is notable that con-
stituency populations for England and Wales fall within a factor of 3; however, total reported
crime and anti-social behavior varied by a factor of 17 and total property transactions by a fac-
tor of 65.

Results and Discussion

Urban power-law scaling has been observed in many parts of the world [1-23]. Aspects remain
controversial in part due to uncertainty about how best to define cities and concern about the
use of population as a definitive metric [24]. Bettencourt et al. [2] defined the urban scaling of
a particular metric at a particular time as

Y = Y,N” or its linearized version log Y =log Y, + f8 log N. (1)

In this, Yis a metric (e.g. energy, patents, serious crime), Yy is a constant, N is the population,
and ff the power-law (or allometric) exponent. When 8 < 1 the metric decreases proportionally
with scale (such as road surface or petrol stations) and when 8 > 1 the metric accelerates
(examples include GDP and new AIDS cases).

The form of Eq 1 can be adapted to consider other metrics. For our data, the scaling behav-
ior of property transaction values and police reported crime were tested by comparing 8 mod-
els considering population, daytime population, population density, and daytime population
density as predictors of crime and property metrics expressed directly (e.g. number of crimes)
or as a density (crimes per hectare). For instance, when considering both population and indi-
cator density, Eq 1 can be rewritten as

log y =log y, + 8 log d, (2)

where y = Y/A is the indicator density (e.g. a particular crime per hectare) and d = N/A is the
population density. Fig 1 illustrates some of these models by showing scatter plots of log Y x
log N, log Y x log d, log y x log N and logy x logd for the metrics total crime and total property
value. By including all categories of crime and property together in a single analysis, we found
that the density metrics were superior with daytime population density slightly better for pre-
diction of crime and resident population density better for predicting property transaction val-
ues. For this set of metrics, both R* and predicted residual sum of squares (PRESS) statistics
from general prediction models confirmed the density metrics were superior (Table 2).

To appreciate the superiority of the density metrics, it is helpful to view the correlations in
isolation (Fig 2 and S1 Fig). A large improvement in correlation is seen when moving to density
metrics and in some cases this changed the sign of the correlation. This was also apparent in
the general models where a qualitative change from models dominated by categorical variables
to ones dominated by continuous variables was observed when density was used. The
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Fig 1. Comparison of predictor and indicator metrics for the indicators total crime and total property transaction values. The density metrics gave
better correspondence to the scaling laws as indicated by Pearson correlation (p).

doi:10.1371/journal.pone.0149546.g001

improvement obtained from population density metrics was not surprising given the data set
used. Parliamentary Constituencies were chosen due to having relatively small variations in
total population while varying greatly in area.

The shift from population density to daytime population density gave a comparatively mar-
ginal change in outcome (Fig 2). Across all property and crime categories, 13/24 were more
highly correlated with daytime property density than resident population density, roughly the
expectation if the two predictors were equal. However, property and crime had distinct profiles.
For property, resident population density was always more highly correlated than daytime
population density giving p = 0.0078 for a binomial test; however, it is not significantly better
when considered in isolation (Fig 2). For crime, 12 out of 15 categories (p = 0.0352 for a bino-
mial test) were more highly correlated with daytime population density with only 2 cases
(Other Theft and Shoplifting) significant when considered in isolation. Other theft includes a
range of non-violent theft offenses where large daytime crowds may facilitate commission of
the crime. Also, we find no significant difference between population density and daytime pop-
ulation density for all property and crime categories when considering the maximal informa-
tion coefficient (MIC, S1 Fig) [38]. As the improvement overall going to daytime population

Table 2. Comparison of metrics for prediction of crime and property transaction values. All models included categorical variables describing the type
of ctime or property as: Predictor, Type, Predictor* Type. The model with the best R? and PRESS statistics have been highlighted in bold.

Dependent Predictor R? (%) PRESS
Log(Crime) Log(Population) 84.97 541
Log(Crime) Log(Daytime Population) 85.70 519
Log(Crime Density) Log(Population Density) 95.36 380
Log(Crime Density) Log(Daytime Population Density) 95.92 333
Log(Transaction Value) Log(Population) 59.63 703
Log(Transaction Value) Log(Daytime Population) 55.44 774
Log(Transaction Value Density) Log(Population Density) 80.31 689
Log(Transaction Value Density) Log(Daytime Population Density) 79.90 703
doi:10.1371/journal.pone.0149546.1002
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data was marginal and the availability of similar data across the world is limited, we focused on
resident population density metrics in our subsequent presentation.

As in the case shown for total property (Fig 1), we found that several density metrics dis-
played a more complex scaling behavior and a single power law (Eq 1) was insufficient to
describe the observed data. Complex scaling has been observed in other types of scaling. For
example, it has been noted in fluctuation scaling of crime [39], disease [40], and a variety of
physical processes [41] and scientists have been encouraged to test alternative models to power
laws when appropriate [42]. Here, visually inspired by the behavior of our data, we tested
whether a double power-law provided a significantly better fit between a density metric (y) and
the population density (d) than a single power law, that is,

{ logy, + f.logd (for logd < logd")
logy = ; (3)
logy, + (B, — Py)logd (for logd > logd*)

where d* is a population density threshold, B, (By) is the power-law exponent for low (high)
population density, y, and y; are constants. In particular, we have chosen log y; =log yo + (6 +
By) log d*, holding the continuity of y(d). Thus, the model of Eq 3 has two additional parame-
ters when compared with the single power-law model of Eq 2. This approach provides a picture
of the data based on the prevailing view of population scaling (a single power law) against a sim-
ple alternative of a double power law. In all cases, the parameters reported were highly signifi-
cant, which does not rule out that another function or set of functions may fit the data better.

We compared the models provided by Eqs 2 and 3 and tested whether the double power-
law model gave statistically significant improvement. For the single power-law (Eq 2), we
employed ordinary least squares regression in the log transformed data for obtaining the
parameters y, and B as well as the adjusted R>. We then used bootstrapping to determine the
confidence intervals for the adjusted R>. Simulated annealing [43] was used for fitting the dou-
ble power-law model (Eq 3) to the log transformed data by considering the residual sum of
squares as the cost function, yielding the parameters yo, y1, A, and By, and also the adjusted R*.
Again, the confidence intervals for the adjusted R* were calculated via bootstrapping. We fur-
ther considered two-sample bootstrap tests for testing the null hypothesis that the adjusted R*
from Eqs 2 and 3 are equal [44]. Fig 3 compares the values of the adjusted R” for both models,
where we noticed that double power-law model is superior in 19 out 24 metrics. Similar con-
clusions regarding the model selection were obtained by considering the Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC) [45] (S2 and S3 Figs).

The improvement in the scaling laws using the density metrics thus revealed segmented
scaling in several but not all metrics (Fig 4) indicating the onset of complex scaling (Eq 3). The
scaling parameters are shown in Table 3, where we observe that 5 crime metrics followed a sin-
gle scaling law over all densities with no evidence for a specifically “urban” scaling law, only a
continuation of low density behavior. The remaining metrics all exhibited complex scaling and
all thresholds fell between 10 and 70 p/ha.

Comparison of exponents (Figs 4 and 5) revealed four types of density scaling including
three specifically related to “urban effects”. The “non-urban scaling” was found for burglary,
other crime, total crime and antisocial behavior, vehicle crime, and weapons. This designation
was applied to metrics where no threshold value could be discerned in the data. Of the three
types of urban scaling, the first is “accelerated urban scaling” where f;, < By. This was observed
in the majority of metrics and applied to: bike theft, drugs, order, other theft, robbery, theft
from the person, violence, flats, freehold, leasehold, new, old, terraced, and total property. Met-
rics following accelerated urban scaling are specifically enhanced in an urban environment.
The second urban category is “inhibited urban scaling” (8. > By > 0). Inhibited urban scaling
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Fig 4. Population density scaling behavior of all metrics. The colorful dots are the empirical values and the black dots are the window average values
(errors bars are 95% bootstrap confidence intervals). For metrics in which the double power-law is a better fit according to adjusted R? (see also S4 Fig for
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doi:10.1371/journal.pone.0149546.g004
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Table 3. Scaling parameters for police crime report density and property transaction value density with population density.

Crime Type log(yo) BLorB log(y+) log(d*) Bn
ASB -1.62 £ 0.02 1.13+£0.02 -1.30+£0.13 1.47 £0.13 0.91 £ 0.08
Bike Theft -3.26 £ 0.02 1.27 £ 0.02 -4.62 +£0.77 1.80+£0.12 2.03+0.43
Burglary -2.35+0.01 1.18 £ 0.01 - = o
CDand A -2.21 £ 0.01 1.14 £ 0.01 -1.55+0.11 1.52 £ 0.05 0.71 £0.07
Drugs -2.77 £ 0.02 1.08 £ 0.03 -3.13+0.08 1.13+0.10 1.40 £ 0.05
Order -2.91 £ 0.02 1.16 £ 0.03 -3.20 £ 0.07 1.06 £0.12 1.43 £ 0.05
Other Crime -3.29 £ 0.01 1.15 £ 0.01 - - -
Other Theft -2.26 + 0.01 1.11 £ 0.01 -2.57 +0.08 1.40 £ 0.09 1.33 £ 0.05
Robbery -3.98 + 0.02 1.55 £ 0.03 -4.73+0.14 1.32 £ 0.08 2.12+0.10
Shoplifting -2.56 £ 0.02 1.26 £ 0.02 -1.61+0.16 1.50 £ 0.06 0.63+0.10
Theft from the Person -3.68 £ 0.03 1.36 £ 0.03 -4.84+0.18 1.39 £ 0.06 2.20+0.12
Total Crime and ASB -1.22 + 0.01 1.16 £ 0.01 - - -
Vehicle Crime -2.54 + 0.01 1.27 £ 0.01 - - -
Violence -2.06 + 0.01 1.12+£0.02 -2.28 £ 0.06 1.17£0.13 1.30 £ 0.04
Weapons -3.78 £ 0.02 1.23 £ 0.02 - - -
Property Type

Detached 3.30 £ 0.03 0.77 £ 0.04 4.47 £0.14 1.21 £ 0.06 -0.20+£0.10
Flats 2.13+0.05 1.13 £0.05 -1.65+0.48 1.55 £ 0.04 3.57+£0.30
Freehold 3.55+0.02 0.83+0.02 2.48 +0.42 1.70 £ 0.10 1.46 £ 0.25
Leasehold 2.24+0.04 1.26 + 0.04 -1.83+0.69 1.68 £ 0.04 3.68 £ 0.40
New 2.30+0.03 0.86 + 0.03 -1.88+1.06 1.80 £ 0.05 3.19+0.58
Old 3.55+0.02 0.89 +£0.02 0.92 +0.42 1.71 £ 0.04 2.43+0.24
Semi Detached 2.90+0.02 1.05 £ 0.03 3.84+0.14 1.41 £ 0.06 0.38 £ 0.09
Terraced 2.83+0.02 1.00 £ 0.02 1.23+£0.22 1.55 £ 0.04 2.04+£0.14
Total Property 3.57 £ 0.02 0.90 + 0.02 0.69 + 0.46 1.73 £ 0.04 2.56 + 0.26

doi:10.1371/journal.pone.0149546.t003

was observed for anti-social behavior, criminal damage and arson (CD and A), shoplifting, and
semi-detached properties. Metrics following inhibited urban scaling undergo specifically urban
economies of scale. The last urban category is “collapsed urban scaling” (81, > By, with i <
0). Only a single category (detached housing) followed this type of scaling and to our knowl-
edge this is the first time a negative exponent has been reported in the context of urban scaling.

Scaling studies of many of the crime metrics used here have not been reported nor have
their transitions in urban environments. The variable effects of high population density are
noteworthy. For example, criminal damage which undergoes inhibited urban scaling has been
associated with binge drinking in the UK [46] while property crimes including criminal dam-
age have been linked to foreclosures in the US [47]. Finding general scaling laws for such
behaviour suggests many of these have a wider context. In the case of criminal damage and
arson, opportunities appear to be reduced at high population density and high amounts of
property crime associated with foreclosures may be a symptom of loss of an inhibitory popula-
tion density rather than foreclosures directly. A detailed review aligning the scaling laws
reported here with the extensive criminological literature should provide considerable insight.

Specifically urban scaling phenomena were associated with transitions between 10 and 70 p/
ha. The high end of the density thresholds (63 p/ha) exceeds the highest density threshold con-
sidered by Arcuate et al. (40 p/ha) [24]. It also exceeds the average population density of Lon-
don (59 p/ha) and all the large cities in Europe and North America outside of Mexico (e.g.
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Fig 5. Allometric exponents for crime metrics (upper panel) property transactions (bottom panel) using density metrics. The error bars refer to the

standard errors in the exponents.
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Moscow (35 p/ha), Paris (38 p/ha), and Zurich (32 p/ha)) [32]. It is noteworthy that the highest
population density found in a US or Canadian city (Los Angeles) is 24 p/ha when considered
as a whole [32]. This suggests that most of the transitions seen here may be unobservable in
much of Europe and North America unless cities are subdivided into high density regions as
was done here.

Conclusion

This study significantly refines the urban scaling hypothesis. It set out to investigate regions
that are reasonably well matched in population to accentuate scaling behaviours that might
arise from inhomogeneity within cities and other density related features. Despite relatively
small population variation, there is support for the existing view of population scaling, however
in this data set density metrics were universally better. For some metrics, a single power law is
sufficient to explain scaling at all population densities over a continuum from rural to urban.
These metrics are subject to a single rural-urban scaling law and, in such cases, the scaling
behavior of human environments is simpler than previously thought. As there is no clear dis-
tinction to be made between urban and rural environments for these metrics, there is less need
to define city boundaries precisely. For other metrics, there is indisputable evidence for specifi-
cally rural and specifically urban scaling.

The results indicate that many metrics are not scale invariant in what are currently under-
stood as urban settings. Observed transitions from rural to urban behaviour were in the range
of 10-60 p/ha which is roughly in the midrange of the top 1000 cities with >500,000 of popula-
tion when sorted by population density [32]. These scaling transitions are associated with
acceleration, inhibition, or collapse of the scaling law within the high population density envi-
ronments of cities. Such behavior is intuitive for some metrics. For example, detached housing
is clearly an unsustainable property type at high population density and a collapse in transac-
tions of this type is unsurprising in a high density urban environment. Finding a transition at
urban population densities clearly supports the notion of uniquely urban behavior underlying
the urban scaling hypothesis. However, most currently published studies have not examined
the low side of these density thresholds in detail and will miss the transition from rural to
urban scaling. It is also of interest to do more extensive studies on the great cities of Asia,
Africa, and the Americas south of the Mexico-USA border. Cities in these parts of the world
have particularly high population densities not found in Europe and other parts of North
America and may yield more interesting behavior.

Implicit in the design of this study is the notion that both rural and urban environments are
non-uniform. A city the size of London is heterogeneous in its distribution of population,
property and crime. Greater London includes 73 constituencies allowing the non-uniformity of
this region to be considered in the scaling models rather than as a single monolithic conurba-
tion or metropolitan region.

Finally, this study adds evidence to the long-standing challenge to crime rates and per capita
comparisons [6, 11, 15, 26]. It is clear that high or low per capita crime rates are uninterpret-
able outside of the context of the scaling law to which they belong and, based on the current
study, similar considerations are appropriate for the study of property transactions.

Supporting Information

S1 Dataset. Data employed in this study. Snapshot of police reported crime captured 10/6/
2015 and property transaction values captured 17/7/2015 for the 12 months of 2014.
(XLSX)
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S1 Fig. Comparison of maximal information coefficient (MIC) for different property and
crime types. Similarly to adjusted R?, markedly improved correlations are observed using den-
sity metrics which were superior in all cases. Here the error bars stand for 99% confidence
interval obtained via bootstrap. Unlike adjusted R*, MIC indicates no significant difference
between population density and day population density (via bootstrap two-sample mean test
with 99% confidence) for other theft and shoplifting.

(PDF)

S2 Fig. Comparison of the single power-law model (Eq 2) and the double power-law model
(Eq 3) using the Akaike Information Criterion (AIC). Error bars stand for 99% bootstrap
confidence intervals and the asterisk marks indicate a significant difference (via bootstrap two-
sample mean test with 99% confidence). Notice that the AIC criteria differs from the adjusted
R? only for bike theft.

(PDF)

$3 Fig. Comparison of the single power-law model (Eq 2) and the double power-law model
(Eq 3) using the Bayesian Information Criterion (BIC). Error bars stand for 99% bootstrap
confidence intervals and the asterisk marks indicate a significant difference (via bootstrap two-
sample mean test with 99% confidence). Notice that the BIC criteria differs from the adjusted
R? only for ASB, bike theft and freehold.

(PDF)

$4 Fig. Comparison of the double power-law model statistics for adjusted R?, AIC and BIC
for ASB, Bike Theft and Freehold Property (Eq 3). These three metrics were the only cases
where the criteria diverged. These can be considered marginal cases of urban scaling transi-
tions.

(PDF)
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