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Abstract

In the present paper, we introduce a new extension of the conjugate residual (CR) for
solving non-Hermitian linear systems with the aim of developing an alternative basic solver
to the established biconjugate gradient (BiCG), biconjugate residual (BiCR) and biconjugate
A-orthogonal residual (BiCOR) methods. The proposed Krylov subspace method, referred
to as the BICGCR2 method, is based on short-term vector recurrences and is mathematically
equivalent to both BiCR and BiCOR. We demonstrate by extensive numerical experiments
that the proposed iterative solver has often better convergence performance than BiCG, BiCR
and BiCOR. Hence, it may be exploited for the development of new variants of non-optimal
Krylov subspace methods.
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1 Introduction

The core of many scientific computing and engineering simulations requires to solve large and
sparse linear systems of the form

Az =b, AcCNN pecCh, (1)

where A is a non-Hermitian and possibly indefinite matrix, and b is the right-hand side vector.
Numerical methods for solving system (1) on modern computers fall mainly into two categories:
(sparse) direct and iterative solvers. Sparse direct solvers [1] are generally very accurate, robust
and predictable in terms of both storage and algorithmic cost. Nevertheless, they tend to be too
expensive to use for solving large-scale problems especially in terms of memory. Iterative solvers,
namely the well-known class of Krylov subspace methods, can be an attractive alternative to
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direct methods as they only require matrix-vector multiplications; see e.g. [2-5] and references
therein. However, they generally lack robustness. It remains a research question to determine
the classes of problems for which one algorithm is more efficient than others.

The conjugate gradient (CG) method [6] may be considered the Krylov method of choice
in the case of Hermitian positive definite A. If A is complex symmetric (but non-Hermitian),
ie. A# A" but A = AT, this property can be exploited in the design of the Krylov method;
see e.g. our recent work [7] about the SCBICG class of iterative algorithms. For indefinite A,
the minimum residual (MINRES) method [8] and the conjugate residual (CR) method [9, 10]
both enjoy attractive minimum norm residual property at each iteration step. Generalizations
of the CG, MINRES, and CR methods have been proposed for solving non-Hermitian linear
systems, such as BiCG [11,12], FOM [2, pp. 165-168], GMRES [2,13, pp. 172-180], GCR [14],
BiCR [15,16] and BiCOR [17,18].

The choice of the Krylov algorithm is much less clear for non-Hermitian linear systems than
for the Hermitian positive definite case. The GMRES and GCR methods enjoy an attrac-
tive minimum norm residual property that produce their typical smooth convergence behavior.
However, they are based on the Arnoldi procedure [2, pp. 160-165], meaning that their com-
putational and memory costs increase linearly with the number of iterations. The problem of
cost may be overcome by restarting the iterative procedure after each cycle of, say, m iterations.
However, the restarted GMRES and GCR methods, denoted as GMRES(m) [2,13, pp. 179-180]
and GCR(m) [14], respectively, lose any optimality property and they often suffer from slow
convergence on difficult problems. On the other hand, since BiCG is based on the Bi-Lanczos
procedure [2,11,12, pp. 229-233], it has constant computational work and low memory require-
ments per iteration step. Analogously, the BiCR and BiCOR methods can be derived from the
so-called biconjugate A-orthonormalizaion procedure [16,17], which is similar to the classical
Bi-Lanczos process. Hence they are based on short-term vector recurrences, and require only
O(N) extra storage in addition to the matrix and O(N) operations for solving the system.

Although non-optimal Krylov methods based on short-term vector recurrences tend to exhib-
it irregular convergence behavior, their limited cost has motivated and still motivates a growing
interest in improving their performance. In 1989, Sonneveld [19] established the first successful
variant of BiCG, referred to as the CGS method. Later, van der Vorst [20] derived one of the
most successful variants of BiCG, known as the BiCGSTAB method. Based on the ideas be-
hind the development of BICGSTAB and CGS, a lot of generalized iterative solvers have been
proposed such as BICGSTAB2 [21], BICGSTAB(Y¢) [22,23], GCGS [24] and GPBiCG [25]. The
quasi-minimal residual (QMR) [26] method, that is closely related to BiCG, is an attractive vari-
ant because it displays (quasi)-smoother convergence behavior than BiCG, it can remedy pivot
breakdown and may avoid Bi-Lanczos breakdown by a look-ahead strategy (e.g. refer to [27]).
A transpose-free variant of QMR, called the TFQMR method [28], and a hybrid of TFQMR
and BiCGSTAB, called the QMRCGSTAB method [29], have been also proposed. For further
discussion of this topic, one can refer to an excellent survey paper in this area [4]. Additionally,
the efficient short-recurrence IDR(s) method is proposed recently by Sonneveld and van Gijzen
in [30], which is closely related to the other interesting BiCG-type variant-ML(k)BiCGSTAB
method by Yeung and Chan [31]. Several reported experiments show that these two methods
can be efficient tools for solving non-Hermitian linear systems [30, 31].

Along the same lines of development of hybrid BiCG methods, various hybrid BiCR methods,
such as CRS, BiCRSTAB, BiCRSTAB(¢) and GPBiCR have been proposed for solving non-
Hermitian linear systems, refer to [16,32] for details. At almost the same time, our research group



also developed some efficient hybrid BiCOR variants, including CORS [17, 18], GCORS [33],
BiCORSTAB [17], BiICORSTAB2 [34] and GPBiCOR [35]. Many numerical experiments on
practical applications have illustrated the robustness of the hybrid BiCR and hybrid BiCOR
methods; refer, e.g., to [16-18,32,35,36] for details.

The earlier discussion highlights the important role that the BiCG, BiCR and BiCOR method
play in the developments of hybrid Lanczos-type variants. Furthermore, BiCG is closely related
to the QMR method [37] and, similarly, BiCR and BiCOR are closely related to QMOR [38]. In
this study, we propose a novel basic iterative scheme derived from short-term vector recurrences,
that can be seen as an extension of the CR method to non-Hermitian linear systems, for the
development of non-optimal Krylov subspace methods.

The rest of this paper is organized as follows. In Section 2, we first review the development of
extensions of the CR method for solving complex symmetric and non-Hermitian linear systems.
Then we recall the underlying relations [7,15,16,39] among the COCR [39], BiCGCR [40,41] and
BiCR [15] methods. Based on the above analysis, a new extension of the CR method, named the
BiCGCR2 method, and its preconditioned version, are derived. We also discuss some properties
of the proposed BiICGCR2 method. In Section 3 we prove that the preconditioned BiCGCR2
(PBiCGCR2) is mathematically equivalent to the preconditioned BiCR (PBiCR), and then we
derive a relation between BiCGCR2 and some related Krylov subspace methods. In Section
4, extensive numerical experiments are reported to illustrate the effectiveness of the proposed
method. Finally, the paper closes with some conclusions in Section 5.

Throughout this paper, A denotes the conjugate transpose of A, (z,y) denotes the dot
product given by &y, and we use the notation

Kn(A, 1) := span{rg, Arg, ..., A" lrg}

for the n-dimensional Krylov subspace generated by A and initial residual vector 7.

2 The derivation of the BiICGCR2 method

Sogabe, Sugihara and Zhang have extended the CR method to the COCR method and the
BiCR method; refer to [15, 16, 39] for solving complex symmetric and non-Hermitian linear
systems, respectively. The COCR method is a special case of the BiCR method. Additionally,
since the BiCR method was proposed, this method was also improved (or modified) for various
systems of linear equations involving non-Hermitian coefficient matrices, e.g., refer to [42-44] for
details. In previous work, we have proved that it is mathematically equivalent to the BICGCR
algorithm proposed by Clemens in [41], the difference lying only in the choice of the scalar factors
oy and S within the inner iteration loop; refer to [7,16] for details. The relations between the
BiCR method and the COCR method naturally leads to extend the BICGCR method to a new
variant named BiCGCR2 for solving non-Hermitian linear systems. The pseudo code of the
BiCGCR2 method is sketched in Algorithm 1.

Note that in Algorithm 1, Ap, = Ar, + Bp—1Ap,—1 is newly added to reduce the number
of matrix-vector multiplications at each iteration step. The theoretical results of the complex
BiCG method transfer directly to BICGCR2. The iterative procedure of BICGCR2 is governed
by a Petrov-Galerkin condition

r,=b—Ax, 1L L, with x, € xg+ K,. (2)



Algorithm 1 Algorithm of the BICGCR2 method
1: x( is an initial guess, rg = b — Axy.
2: Choose 1 (for example, 7§ = rg),
3 Set p* =p_1 =0, -1 =0,
4: for n =0,1,..., until convergence do

5 Pn =7Tn+ @n—lpn—h

6: p; = ’r;kz + 5n—1p;—17

T (Apn - Arn + /Bn—lApn—h)
. <A pn77'n>

z' n = TAFpy Apy)’

Ln+1 = Tp + anpn,
10:  Tpa1 = Tn — 0 Apy,
11: rh =71 — a, Alp;,

. — _<A pn7Arn+1>
12: B, = AT ps Ap)
13: end for

with respect to the search subspace K,, and constraints subspace £, = £, (AX, r(;), where one
has r§ = AHry. In [7,40,41,45], the BICGCR method is shown to coincide with the CR method
of Stiefel [9] for real symmetric problems, which has a residual minimization property ||7g||2.
This may explain the smaller oscillations that are typically observed in the residual norm for
the BiCGCR2 method compared to the BiCG method. We see from Algorithm 1 that the
approximate solution x, can be generated by coupled two-term recurrences. If the coefficient
matrix is Hermitian, then BICGCR2 reduces to CR.

Next, we can obtain some properties of BICGCR2 that suggest another derivation. For
simplicity, in the following discussion we assume that the coefficient matrix is real nonsymmetric,
i.e., A# AT. Observing Algorithm 1, we see that the four iterates r,,p,, 7, and p} can be
expressed as

Tn = Rn(A)"“o, Pn = PTL(A)T(b (3)
= R,(AD)rg,  pl = P (AT)rg, (4)
where R,, and P,, are polynomials of degree n satisfying

Roy(N) =1, Py(\) :=1,
Rn(/\) = Rn_l()\) — Oén_l/\Pn_l(/\),
P,(A\) = R,(\) + Bn—1Po—1(N), forn=1,2,....

As seen from (3)-(4) and from Algorithm 1, the following results are obtained if no breakdown
occurs:

Theorem 1 For i # j, the following bi-orthogonality properties hold:
(ri, Arj) =0, (5)
(Asz ) Ap]) - 0 (6)

Proof. It follows from (3) and (4) that (r}, Ar;) = (R;(AT)ry, AR;(A)r > (R;j(AT)ry, A
Ri(A)rg) = (r}, Ar;). Similarly, from (6 ) we obtain (ATp}, Ap;) = (A p],ApZ-). Hence, the
statements of (5) and (6) are equivalent with

(rr,Ar;) =0 and (ATp} Ap;) =0, forallj <i. (7)
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Now, we give a proof of (7) by induction. Since the trivial case i = 1 is obvious from Algorithm
1, we assume that property (7) holds for j < i < k. Then, we show that

<’I"Z+1, A’rj> = 07 (8)
(ATpi iy, Apj) = 0. (9)

First, let us show (8). For the case j < k it follows from the above assumption that

(TZ+1,AT]'> = (ry, Arj) — ak(ATp};,Arj)
= —a(ATp, Ar;)

= —ar(ATpy, Apj) — arBi—1(ATp}, Apj_1)
—0.

For the case j = k we obtain

(riy1, Arg) = (rji, Ary) — a (AT p, Ary,)

i, Ary) — ap(ATp, Apr) — crBe—1(A" P}, Apr_1)
i Ary) — o (AT P}, Apr)
Pi — Bi_1Pi_1, Ari) — ai (AT py, Apy)
= —Br-1(Pr_1, A(Tr—1 — a1 APk_1)
= —Br-1(ATpi_1,me1) + Beoraw—1(ATpi_y, Apj_1)
=0

=
= (r
=

from the computational formulas of ay, in line 8 (of Algorithm 1) and fy, in line 12 (of Algorithm
1). Next, we show (9). For the case j < k, it follows from the first result of the proof that

* * * 1 *
<ATpk+17Apj> = <ATT'k+17 Apj> + Bk<ATpk7 Apj> = E(ATTk+17Tj - Tj-i-l) =0.
J

For the case j = k, we obtain

<ATPZ+17 Apk> = <AT7'Z+17 Apk> + ﬂk<Asza Apk>

1 * *
= a—k<AT7°k+1a re — rii1) + B (AT p, Apy)

1 " *
— _a_k<ATrk+17 rir) + Be(AT Py, Apr)

1 % * *
_ _Oé_k<7’k — arATp}, Arppr) + Bi(ATpi, Apy)

1
- _a_k<TZ7A"°k+l> + (ATpj, Argi) + Bi(AT pf, Apy)

=0

from the formulas of oy and §j at lines 8 and 12 of Algorithm 1, respectively. O



Corollary 1 Some further properties of BiCGCR2 are

(ri,Ap;) = 0 fori>j, (10)
<T:7Ari> = <Tz>'k7Api>7 (11)
(ATrr, Api) = (ATp, Api). (12)

Proof. First, we give a proof of (10). From the recurrence in line 5 (of Algorithm 1) it
follows that (r, Ap;) = (v}, Ar;) + B;—1(r}, Apj_1), and thus from property (5) we obtain
(r¥,Ap;) = Bj_1(r}, Ap;_1). Applying this process recursively, we finally obtain (r}, Ap;) =
Bi—1Bj—2- - Bo(r;, Apo). Hence, from py = rg and (5), property (10) is naturally followed.

Second, we give a proof of (11). From the recurrence in line 5 (of Algorithm 1) it follows
that (r, Ar;) = (r, Ap;) — Bi—1(r}, Api—1). Since the second term is zero by (10), the property
(11) is immediately established.

Finally, we present a proof of (12). According to the recurrence in line 6 (of Algorithm 1)
it follows that (ATr* Ap;) = (ATp:, Ap;) — Bi_1(ATp} |, Ap;). Since the second term is zero
from (6), property (12) is established. O

Furthermore, if we employ the same lines of development of the preconditioned CR (PCR)

method, the following preconditioned version of BICGCR2 can be immediately derived. The
pseudo code of the resulting algorithm is given as follows

Algorithm 2 The preconditioned BICGCR2 method (K is the preconditioner)
1: x( is an initial guess, rg = b — Axy.
2: Choose 1§ (for example, 7§ = ry),
3: Set p*, =p_1=0, f_1 =0,
4: for n =0,1,..., until convergence do
Dn = K_lrn + /Bg—lpn—h
P, =K v+ B, ap) g,
(Apn = AK_l'rn + ﬁn—lApn—ly)
— (AHp:szilrn>
On = T HARpy Ap,)
Tptl = Tp + OnPn;,
10:  Tpa1 = T — apApy,
(K = K- ey — a, K- A py),
: _ (KA pr AK )
12: 5n - <K7HAHP;‘“APn>+ .
13: end for

Note that when the coefficient matrix A is Hermitian, Algorithm 2 reduces to PCR with the
choice 7§ = 7, since in this case r;, = 7, p;, = Pn, @, = o, and Brn = B, see [7,40]. However,
the above version of PBiCGCR is more competitive than the one described in [40,41] because
it requires only one solution of the generalized residual equations

Kz=r, (13)

involving the preconditioner K, in the initialization procedure. When the coefficient matrix
A is symmetric not Hermitian, i.e. A = AT # A we can derive a novel version of the
preconditioned BICGCR (PBiCGCR) method from Algorithm 2 with the choice r§ = 7y, which
results in r} = 7, and p; = p,; the pseudo code of PBiCGCR is given in Algorithm 3.



Algorithm 3 The preconditioned BiCGCR method (K is the preconditioner)
1: xg is an initial guess, ro = b — Axg, solve zg = K~ 'rg,
2: Set p—1 =0, -1 =0, qo = Apo, so = Az
3: for n =0,1,..., until convergence do
4: Pn = Zn + Bn—lpn—h
dn = Sp + 5n—1‘1n—17
Solve t,, = K q,,
= (q7L7z7L>
n =

<tn7Qn> ’
Tn+1 = Tn + QnPnp,

Tn+1 = Tn — GpQn,
10: Zn+l = Zn — Qply,
11:  Compute sp+1 = Azpy1,

. — _ (&nSng1)
122 fn=— g

13: end for

In Table 1 we analyze the computational cost for the proposed BiICGCR2 algorithm compared
to BiCG, BiCR, BiCOR and QMR for solving linear system (1) using a preconditioner K (if
available). Here “6 or 77 means “6” for the unpreconditioned BiCR/BiCOR/BiCGCR2 and “7”
for their preconditioned versions. The BiCGCR2 method requires almost the same algorithmic
cost per step (expect one more inner product) as other solvers. However, as we will illustrate
by numerical experiments in Section 4, it often converges faster than BiCG, BiCR and BiCOR
requiring slightly less number of iterations and less CPU elapsed time.

Table 1: Summary of algorithmic cost per iteration step

Method (,y) y=Azx y=A"z y=K'a y=K "z ax+y

BiCG 2 1 1 1 1 5
BiCR 2 1 1 1 1 6 or 7
BiCOR 2 1 1 1 1 6or7
BiCGCR2 3 1 1 1 1 6or7
QMR 3 1 1 1 1 7

3 Mathematical equivalence of BiCGCR2 and BiCR

It has been shown by Sogabe and Zhang that the BICGCR method is mathematically equiv-
alent to the COCR method [39]. The difference lies in the choice of the coefficients ay and fy.
However, they did not give a detailed proof of this relationship. Then, Gu et al. capitalized
on these ideas and gave a proof of the mathematical equivalence between the PBiCGCR and
PCOCR methods (see [7,41] for details). As mentioned earlier in this article, the PBICGCR
and PCOCR methods are special cases of the PBiCGCR2 and PBiCR methods, respectively.
Motivated by these considerations, we can also investigate the underlying relations between
the PBICGCR2 method and the PBiCR method. From the analysis of the following scalar



coefficients

o PBICGCR2  _ (p})T AK vy, (14)

. (p;)TAKTAp;’
oPBICR  _ (r)T K 'AK 'y, (15)

(py)TAK~1Apy,

and
GPBICGCR2 _ (pp)"AKTAK 7y (16)
: (pp)TAKTAp,
BPBICR  _ (rj) " K TAK (17)
k (rioTK-TAK-1r),

we can obtain the following conclusions.

Theorem 2 For alln e N
PBiCGCR2 __ _PBiCR
an, =, .

PBiCGCR2
n

PBiCR

. requires to show the

Proof. The identity of the denominators in « and «
identity

(P) AK = ()T KTTAK g (18)
for all n =0,1,2,.... By rewriting

()T AK iy = (K Try 4 By ) TAK g,

19
= ()T K AK vy + Bp1(p_ ) TAK " ry, (19)

the identity (19) holds for 5,—1 # 0, iff
(p:_ )TAK 'r, =0 (20)

for all n = 1,2,.... The bi-orthogonality conditions of the preconditioned BiCR residuals hold
in the case n = 1 from

(P)TAKlr) = (K Tr)TAK "ty = (r)TK'AK 9 = 0. (21)
The identity (20) for the case n + 1 is results from

(p;)TAK_l""n-i-l = (K_TT:L + Bn—lp;—l)TAK_lrn-i-l
= () K AK  rpiq + Bac1 (0 1) T AK "ty
= Bn1(py—1)TAK g
= ﬁn—l(p;—l)TAK_l(""n — apApn)
= Bu—1(Pi)TAK vy — Buoran (KT AT )" Ap,,
=0,

by induction from the case n and the bi-orthogonality relation of the PBiCR method (K~7ATp* ,,
Ap,) = 0, which proves the theorem. O



Theorem 3 For alln e N
PBiCGCR2 __ aPBiCR

Proof. The bi-orthogonality of the search vectors p,, and the pseudo search direction vectors
p: = K~TATp? defined in the inner iteration loop of the PBiCR method yields

0= (K TATp: Ap,41) = (p})" AK ' Ap, 1
= () AK T A(K g + 877 py)

n

= (T AT )T AR Y o BEPCR (KT AT Ap,

&  BPBICR _ _ (K-TATp:  AK 'rnq)
" (K-TATp}, Apn)
_ gPBICGCR2
n
for all n =0,1,2,..., which proves the theorem. O

At this stage, we can establish a general framework for deriving new Lanczos-type iterative
solvers: given an initial guess @ of the solution of the linear system Ax = b, many methods
such as CG, CR, BiCG, BiCOR and BiCR can be unified into the following coupled two—term
recurrences by imposing certain conditions [16,17,39]:

r9 = b — Axg, po = 7o,

[\)
w
NN N

Tj+1 = Tj + a;pj,
rit1 =71 — ajApy,
Pj+1 = Tj+1 + Bipj, for j=0,1,...

~—~ o~~~
[\
NG

25

where 7; = b — Ax; is the j-th residual vector and p; is the j-th search direction vector.
Various formulae used for the parameters a;, 3; (j = 0,1,...) in the recurrences (24-25) lead
to different algorithms. Denoting by L£,, the underlying constraints subspace, these parameters
can be determined by imposing the following orthogonality conditions:

Tit1 1 ﬁn and Apj+1 1 ﬁn (26)

For example, £,, = IC,(A, r¢) and L,, = AK, (A, 1) lead respectively to the CG method [11] and
the CR method [2,9] when A is Hermitian positive definite. For non-Hermitian A, the choice
Ly = Kp(A7 r8) andL,, = K, (A", Afr}) lead to the BiCG method [12] and the BiCGCR2
method, respectively, while £, = AYKC, (A" r¥) leads to the BiCR method [16,39] and the
BiCOR method [17,18]. Moreover, we have the following condition by the definition of ),

ﬁEiCGCR2 — ICn(AH,AHTS)
= span{Afry, AH(AHrE) .. (AT)=L(AHrE)}
= AT .span{r}, Aflr; ... (AT)n=1lp}
= AR, (AH ry) = LBICR,

(27)

To sum up, the BICGCR2 and BiCR methods indeed possess the same constraints subspace
L, and mathematical properties (5)-(6), and even their iterative procedures are mostly similar.
Taking the preconditioner M = I, it is proved that the coefficients aj and Fj of the BICGCR2
method and of the BiCR method are mathematically equivalent. In general, the BiCGCR2



method often provides the slightly smoother convergence behavior than the BiCR method.
The BiCR method, however, appears to be more efficient as it requires one less dot product
evaluation at each iteration step and thus saves CPU time. The numerical examples reported
in the next section compare the convergence behaviors of both PBiCGCR2 and PBiCR. In
addition, Jing et al. [17] had indicated that the BICOR method is mathematically equivalent
to the BiCR method except for a different initial shadow residual. This statement just implies
that the BICOR method is also mathematically equivalent to the BICGCR2 method except for
a different initial shadow residual.

4 Examples and numerical experiments

In this section we demonstrate the potential of the proposed BICGCR2 method to solve
efficiently sparse linear systems, both real and complex. The performance of BICGCR2 are
assessed against the BiCG, BiCR and BiCOR methods, and also against other methods that
involve the calculations of the conjugate transpose AX, such as the popular QMR method. The
experiments have been carried out in double precision floating point arithmetic with machine
precision 1071¢ in MATLAB R2014a with a Windows 7 (64 bit) PC-Intel(R) Core(TM) i5-3740
CPU 3.20 GHz, 8 GB of RAM. We measure performance in four aspects: number of iterations
(this parameter is referred to as Iters), CPU elapsed time in seconds (referred to as CPU), logy,
of the updated and final true relative residual 2-norms defined respectively as log;q ||7x|2/]|70]/2
and logq ||b — Az, ||2/]|7o]|2 (referred to as Relres and TRR). Numerical experiments are illus-
trated by tables of results, but we also plot convergence histories of our runs. The stopping
criterion used here is that the 2-norm of the residual must be reduced by a factor (referred to
as TOL) of the 2-norm of the initial residual, i.e., ||[7,||2/[|7oll2 < tol = 1078, or when Iters
exceeded the maximal iteration number (referred to as MAXIT). In all our experiments we take
MAXIT = 6000.

Example 1 We consider a large set of publicly available linear systems arising from differ-
ent application areas, and having increasing levels of difficulty, both real nonsymmetric and
complex non-Hermitian. We summarize in Table 2 the characteristics of our test matrix prob-
lems. The problem denoted as orsirr_2 is extracted from the Harwell-Boeing collection [46].
The problem denoted as vdvorst3 arises from solving 2D-problems and is modified from our
GitHub source [47]. The problem denoted as M4D2 arises in computational chemistry is proposed
by Sherry Li from NERSC in [48]. The other linear systems are extracted from Tim Davis’s
matrix collection at the University of Florida [49]. Whenever the physical right-hand side is not
available, we use b = Ae, where e denotes a random vector with entries from —1 to 1. The
results of our experiments without preconditioning are reported in Table 3.

We see that the BICGCR2 method outperforms all of the iterative solvers in terms of number
of iterations and CPU time, except the QMR method for memplus. However, it is considerably
cheaper than the QMR method on this problem and additionally it shows a smaller residual at
convergence. On the epbl problem, the BiCGCR2 method required about 78% of the iteration
steps and computational time of the BiCR method. On the hcircuit problem, the BiICGCR2
method converges to the targeted accuracy, whereas the BiCG, BiCOR and QMR methods
cannot. It generates more accurate solutions than BiCR on the pde2961, ex36, vdvorst3,
coupled and zhao2 problems, and than all other iterative solvers on vdvorst3. The experiment
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Table 2: Set and characteristics of test matrices in Example 1 (listed in increasing matrix size).

Matrix problem  Reference  Size Field nnz(A)
orsirr_2 Ref. [46] 886 Oil reservoir simulation 5,970
pde2961 Ref. [49] 2,961 2D/3D problem 14,585
ex36 Ref. [49] 3,079 Computational fluid dynamics 53,099
vdvorst3 Ref. [47] 4,096 2D /3D problem 20,224
rajati13 Ref. [49] 7,598 Circuit simulation problem 48,762
M4D2 Ref. [48] 10,000 Quantum mechanics 127,400
coupled Ref. [49] 11,341 Circuit simulation problem 97,193
epbl Ref. [49] 14,734 Thermal problem 95,053
memplus Ref. [49] 17,758 Circuit simulation problem 99,147
waveguide3D Ref. [49] 21,036 Electromagnetics problem 303,468
zhao?2 Ref. [49] 33,861 Electromagnetics problem 166,453
hcircuit Ref. [49] 105,676  Circuit simulation problem 513,072

Table 3: The numerical results of different iterative solvers for Example 2.
Method orsirr_2 pde2961 ex36
Iters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 539 -8.0801 0.0515 230 -8.1259  0.0788 3048  -8.0209 0.6078

BiCR 551 -8.2042  0.0546 248 -8.0477  0.0852 3118  -8.0025  0.6248

BiCG 607 -8.2116  0.0757 246 -8.0956  0.0941 3217  -8.0118  0.8365
BiCOR 626 -8.1493  0.0985 238 -8.2093  0.0792 3416  -8.0370 1.0649

QMR 607 -8.0185  0.0813 251 -8.1104  0.1074 3145 -8.0038  0.9714
Method vdvorst3 rajati3 M4D2

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 4033  -8.0647  0.7613 358 -8.0231  0.1512 2483  -8.0252 2.7336

BiCR 4289  -8.0400  0.8425 378 -8.1465  0.1569 2512  -8.0506 2.7498

BiCG 5227  -8.0026 1.2965 401 -8.0376  0.1942 2639  -8.1094  3.2753

BiCOR 4207 -8.0262 1.2543 431 -8.0631  0.2306 2525  -8.0596 5.1843

QMR 4805  -8.0010 1.5538 382 -8.2845  0.2478 2583  -8.0167  4.9897
Method coupled epbl memplus

Iters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 923 -8.0807 0.5091 722 -8.2079  0.3713 764 -8.0141 0.4635
BiCR 938 -8.0637 0.5396 923 -8.3901  0.4622 766 -8.0465 0.4806

BiCG 1032 -8.0263  0.6924 - -7.7974  3.6515 784 -8.0622  0.5879
BiCOR 1102 -8.0886  1.0084 921 -8.3643  0.8089 817 -8.0246  0.8737

QMR 994 -8.0029  0.8957 1066 ~ -8.0120  1.0103 751 -8.0095  0.8478
Method waveguide3D zhao2 hcircuit

ITters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 3391 -8.0043 12.5702 1460 -8.0036 1.7671 5875 -8.0015 32.2893

BiCR 3499  -8.0096  13.1258 1495  -8.0004 1.7734 5932  -8.0135  32.4263
BiCG 3651  -8.0280  13.3894 1579 -8.1427  2.2825 - -7.4282  36.5150
BiCOR 3543 -8.0250  21.1472 1485  -8.0533  3.1877 - -7.9912  52.1741
QMR 3459  -8.0015  18.2411 1582  -8.0127  3.6996 - -7.2986  50.0961
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also indicate that, as expected, application specific preconditioners may be required to achieve
convergence in practice.

, Problem: orsirr_2 N Problem: rajat13
10 T T T : 10 T T T T ;
——&— BICGCR2 ——&— BiICGCR2
—+— BICR o —+— BIiCR
—+#— BICG 10 1 —— BIiCG E
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Fig. 1: Convergence histories of different iterative methods for solving different test problems in
Example 1.

In Fig. 1, we plot convergence histories of different iterative solvers for the test problems
(orsirr_2, rajat13, epbl and zhao2)'. We observe the typical irregular (oscillating) conver-
gence behaviour of the BiCG method, whereas BiICGCR2, BiCR, BiCOR and QMR exhibit
much smoother residual decrease. The convergence curve of the QMR method is the smoothest
one, due to the quasi-minimal residual property. The BiCGCR2 method shows smoother con-
vergence curves than both BiCR and BiCOR methods for the test problems (rajat13, epbl
and zhao2). In conclusion, our method can be regarded as another efficient iterative solver for
dealing with non-Hermitian linear systems.

Example 2 We consider the electromagnetic scattering problem from a large rectangular cavity

'For the sake of clarity, we only plot the convergence curve of BiCG method when the iteration step reaches
1400. Because the BiCG method did not meet the required tol before M AXIT, so the convergence behavior in
the last phase is not interesting for us.
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represented on the (x,y)-plane. We assume that the medium is y-directional inhomogeneous,
and we consider the transverse magnetic polarization case. The model Helmholtz equation
with positive wave number is discretized by the five-point finite difference scheme with uniform
stepsize h, leading to a nonsymmetric system of linear equations of the following form

B FE
Au = b, AZ(F C')’

where the sub-matrices are defined as follows,

B=VI+IVeR? C=I-hGeR™ E=I®e, c R

and F = —ET, where h = q%,p =¢%,0 > 0 is a real constant, e, is the g-th unit vector in RY,
I is the ¢-by-q identity matrix, V' = tridiag(—1 + %, 2,—1— %) € R9%? is a tridiagonal matrix,
Q = h? - diag(w?, w3, ... ,wg) € R9*? is a nonnegative diagonal matrix, G = (g;;) € R?*?, and ®

denotes the Kronecker product; we refer the reader to [50] for details. In our computations we
take 0 = 1 and g;; = ﬁg For simplicity, the linear system is defined via choosing a discrete
solution w consisting of uniformly distributed random numbers in the interval [—1, 1], and the
right-hand side is then computed as b = Au. Numerical results with different iterative solvers
are reported in the following Table 4.

Table 4: The numerical results of different iterative solvers for Example 2.
Method (g =40, w; =8m) (¢ =50, w; = 107) (g =60, w; = 127)
Iters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 749 -8.0600  0.0762 1218  -8.1417  0.1957 2858  -8.0348  0.5303

BiCR 776 -8.2382  0.0837 1276 -8.1101  0.2039 3202 -8.1316  0.5918
BiCG 781 -8.1404  0.1142 1450 -8.0277  0.3008 3846 -8.1754  0.9256
BiCOR 828 -8.1821  0.1518 1308  -8.1896  0.2840 2927  -8.0927  0.8183
QMR 781 -5.0213  0.1323 1358 -8.0085  0.3461 3379 -8.0179  1.0225
Method (g =170, w; = 14m) (¢ = 80, w; = 16m) (g =90, w; = 18m)

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 2418 -8.1644 0.5476 3420 -8.0039 0.8557 3809 -8.0266 1.1268
BiCR 2651 -8.0354 0.5857 3565 -8.0247 0.9105 3974 -8.2344 1.1743
BiCG 2738  -8.0746  0.8096 3916  -8.0013  1.3083 3941  -8.0009  1.5529
BiCOR 2569 -8.0192 0.9024 4603 -8.0398 1.8225 3980 -8.0292 1.9378
QMR 2455 -8.0218 0.9441 3603 -8.0138 1.6294 4065 -8.0044 2.3321

The BiCGCR2 method has the best performance among all of the iterative solvers in terms
of number of iterations and CPU time. The QMR method exhibits smoother convergence due
to its quasi-minimal residual property. However, this method and the BiCOR method are
considerably more expensive than BICGCR2, BiCR and BiCG methods in terms of CPU time.
The BiICGCR2 method generated better approximate solutions than all other iterative solvers
in the case ¢ = 70,w; = 14w. By the way, as shown by our experiments, specific preconditioners
may be required for accelerating the convergence on the Helmholtz equation [51].

Convergence histories of different iterative solvers for the case ¢ = 40,w; = 87 and ¢ =
50,w; = 107 are plotted in Fig. 2. We see that the BiCG method displays its typically oscillat-
ing convergence behaviour, whereas BICGCR2, BiCR, BiCOR and QMR have much smoother
convergence. The QMR method is the smoothest one among these five iterative solvers. The
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Fig. 2: Convergence histories of different iterative methods for solving different test problems in
Example 2.

BiCGCR2 method has smoother convergence than both BiCR and BiCOR methods for the case
q = 50,w; = 10w. We conclude that the BICGCR2 method can be considered an efficient alter-
native to other iterative solvers for this test problem.

Example 3 Finally, we test the new proposed Krylov method in combination with precon-
ditioning on a set of publicly available linear systems arising from different application areas;
these systems are extracted from Tim Davis’s matrix collection available at the University of
Florida. We consider both real nonsymmetric and complex non-Hermitian linear systems. We
summarize in Table 5 the characteristics of the linear systems that were solved. When a physical
right-hand side (referred to as RHS) is not available, we use b = Ae, where e is a random vector
with entries from —1 to 1?> Here we assess the performance of BICGCR2 and other iterative
solvers in combination with the ILU(0) preconditioning [2, pp. 307-310]. For stability reasons,
we compute an ILU(0) factorization of A 4+ oI, where o = 10712 if all diagonal elements of A
are zero, or o = 10712 max{|a;]|} if some but not all diagonal elements a;; of A zero, or o = 0
otherwise. This procedure follows recommendations in [52]. The numerical results obtained
from different iterative solvers with ILU(0) preconditioning are shown in Table 6.

The results indicate that the PBiCGCR2 method performs better than the other precon-
ditioned iterative solvers in terms of number of iterations and CPU time. Once again, the
preconditioned QMR method (denoted as PQMR) exhibits smoother convergence because of its
quasi-minimal residual property but is more expensive than BiCGCR2, BiCR and BiCG meth-
ods with ILU(0) preconditioners in terms of CPU time. In addition, the PBiICGCR2 method
achieves the best final accuracy than all of the other preconditioned iterative solvers on the
epb3 problem. We see from the results on the rajat12, epbl, memplus and epb3 problems that
the preconditioned BiCOR (denoted as PBiCOR) method is sometimes expensive to use. The
convergence performance of PBiCR method is greatly similar with the PBICGCR2 and PBiCOR
methods in aspects of the number of iterations, CPU time and TRR, which is in agreement with

2In order to investigate the different problems, here the RHS used in Example 3 is different from that defined
in Example 1.
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Table 5: Set and characteristics of test matrices in Example 3 (listed in increasing matrix size).

Matrix problem  Reference  Size Field nnz(A)
watt_2 Ref. [49] 1,856 Computational fluid dynamics 11,550
rajatl2 Ref. [49] 1,879 Circuit simulation problem 12,818
ex31 Ref. [49] 3,909 Computational fluid dynamics 91,223
ex40 Ref. [49] 7,740 Computational fluid dynamics 456,188
Grondle4 Ref. [47] 10,000  Computational fluid dynamics 49,600
epbil Ref. [49] 14,734  Thermal problem 95,053
memplus Ref. [49] 17,758  Circuit simulation problem 99,147
Grond4de4d Ref. [47] 40,000  Computational fluid dynamics 199,200
epb3 Ref. [49] 84,617  Thermal problem 463,625

Table 6: Numerical results of different iterative solvers with ILU(0) preconditioning for Example
3.

Method watt_2 rajati2 ex31

Iters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 55 -8.0954 0.0281 78 -8.0021 0.0384 127 -8.0245 0.1941

BiCR 57 -8.2757  0.0299 81 -8.2387  0.0412 133 -8.0648  0.2186

BiCG 57 -8.0014  0.0413 80 -8.0168  0.0495 134 -8.1005  0.2439
BiCOR 57 -8.2898  0.0441 82 -8.1529  0.0571 131 -8.1504  0.2167

QMR 57 -8.6045  0.0521 81 -8.2381  0.0543 135 -8.0074  0.2468
Method ex40 Grondle4 epbl

Iters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 133 -8.0750 1.4552 193 -8.0096 0.2541 128 -9.1420 0.3261

BiCR 136 -8.3157  1.4868 196 -8.3503  0.2872 130 -8.1316  0.3601

BiCG 152 -8.0137  1.6475 195 -8.0013  0.3229 129 -8.0424  0.3901
BiCOR 137 -8.1947  1.6330 196 -8.1693  0.3700 131 -8.6027  0.4728

QMR 140 -8.1176  1.6241 195 -8.0547  0.3924 129 -8.1306  0.4617
Method memplus Grond4e4 epb3

Iters TRR CPU Iters TRR CPU Iters TRR CPU
BiCGCR2 185 -8.0408 0.5678 411 -8.2541 2.9472 146 -8.6211 3.0328

BiCR 186 -8.0362  0.5765 441 -8.3665  3.1191 187 -8.1432  3.8747
BiCG 202 -8.0906  0.7065 441 -8.3168  3.2796 178 -8.0306  3.8680
BiCOR 193 -8.0437  0.8210 413 -8.0931  3.7033 174 -8.2180  4.2685
QMR 186 -8.0295  0.7832 441 -8.2795  3.8781 180 -8.1139  4.2240
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the theoretical results.
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Fig. 3: Convergence histories of different iterative methods with ILU(0) preconditioning for
solving different test problems in Example 3.

In Fig. 3 we plot convergence histories of different iterative solvers with the ILU(0) pre-
conditioner for the test problems denoted as (watt_2, ex31, Grond4e4 and epb3). We see that
the convergence behavior with the preconditioned BiCG (PBiCG) was still jagged, whereas
those with the PBICGCR2, PBiCR, PBiCOR and PQMR methods were smoother. Moreover,
due to the quasi-minimal residual property, the convergence curve of PQMR method is the s-
moothest one among these five preconditioned iterative solvers. The PBiCGCR2, PBiCR and
PBiCOR methods displayed indeed similar convergence behaviors in the start phase, whereas
the PBiCGCR2 method shown considerably attractive convergence behavior in the latter con-
vergence phase, especially for epb3 problem. The PBiCGCR2 method even provided smoother
convergence curves than both PBiCR and PBiCOR methods for the test problems (i.e., watt_2
and epb3). In summary, the PBiICGCR2 method can be considered as efficient as the other
preconditioned iterative solvers for handling the targeted linear systems.
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5 Conclusions

Starting from the pioneering work on two families of iterative solvers, i.e., the COCR/BiCGCR
and the BICR/BiCOR methods, in this paper we propose a new extension of CR for solving non-
Hermitian linear systems, which is still based on short-term vector recurrences. The resulting
algorithm, named BiCGCR2, reduces to CR if the coefficient matrix A is Hermitian. We have
described the complete derivation of the BiCGCR2 algorithm (also including PBiCGCR2) for
non-Hermitian linear systems and have investigated the relation among CR, BiCGCR, COCR,
BiCR and BiCOR. Moreover, we also proved that the proposed method (BiCGCR2) is mathe-
matically equivalent to BiCR and BiCOR. Extensive numerical examples are reported to assess
the performance of our proposed method also against other established iterative solvers. The
theoretical findings and the numerical results indicates that the proposed method can be viewed
as an efficient tool for solving non-Hermitian linear systems arising in numerical applications.

The numerical experiments have revealed that BiICGCR2 tends to show smoother conver-
gence behavior and often faster convergence than BiCG, BiCR and BiCOR for some practical
applications. Therefore it can be used as a basic iterative procedure for the development of other
non-optimal Krylov subspace methods, similarly to the BiCG, BiCR and BiCOR algorithm that
have motivated the development of BiICGSTAB(¢) (GPBiCG) [23,25], BiCRSTAB(¢) (GPBi-
CR) [16,32] and BICORSTAB2 (GPBiCOR) [34,35,53]. In future work, we plan to construct
hybrid variants of BICGCR2, for which r,, := H, (A)rPCCCR2 where H, is a suitable matrix
polynomial of degree n, along the same lines of the derivations of hybrid BiCG, hybrid BiCR or
hybrid BiCOR.
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