
1

Work It, Wrap It, Fix It, Fold It

NEIL SCULTHORPE

University of Kansas, USA

GRAHAM HUTTON

University of Nottingham, UK

Abstract

The worker/wrapper transformation is a general-purpose technique for refactoring recursive pro-

grams to improve their performance. The two previous approaches to formalising the technique were

based upon different recursion operators and different correctness conditions. In this article we show

how these two approaches can be generalised in a uniform manner by combining their correctness

conditions, extend the theory with new conditions that are both necessary and sufficient to ensure the

correctness of the worker/wrapper technique, and explore the benefits that result. All the proofs have

been mechanically verified using the Agda system.

1 Introduction

A fundamental objective in computer science is the development of programs that are clear,

efficient and correct. However, these aims are often in conflict. In particular, programs that

are written for clarity may not be efficient, while programs that are written for efficiency

may be difficult to comprehend and contain subtle bugs. One approach to resolving these

tensions is to use program transformation techniques to systematically rewrite programs

to improve their efficiency, without compromising their correctness.

The focus of this article is the worker/wrapper transformation, a transformation tech-

nique for improving the performance of recursive programs by using more efficient inter-

mediate data structures. The basic idea is simple and general: given a recursive program

of some type A, we aim to factorise it into a more efficient worker program of some other

type B, together with a wrapper function of type B → A that allows the new worker to be

used in the same context as the original recursive program.

Special cases of the worker/wrapper transformation have been used for many years. For

example, the technique has played a key role in the Glasgow Haskell Compiler since its

inception more than twenty years ago, to replace the use of boxed data structures by more

efficient unboxed data structures (Peyton Jones & Launchbury, 1991). However, it is only

recently — in two articles that lay the foundations for the present work (Gill & Hutton,

2009; Hutton et al., 2010) — that the worker/wrapper transformation has been formalised,

and considered as a general approach to program optimisation.

The original formalisation (2009) was based upon a least-fixed-point semantics of recur-

sive programs. Within this setting the worker/wrapper transformation was explained and

formalised, proved correct, and a range of programming applications presented. Using



2 N. Sculthorpe and G. Hutton

fixed points allowed the worker/wrapper transformation to be formalised, but did not take

advantage of the additional structure that is present in many recursive programs. To this

end, a more structured approach (2010) was then developed based upon initial-algebra

semantics, a categorical approach to recursion that is widely used in program optimisation

(Bird & de Moor, 1997). More specifically, a worker/wrapper theory was developed for

programs defined using fold operators, which encapsulate a common pattern of recursive

programming. In practice, using fold operators results in simpler transformations than the

approach based upon fixed points. Moreover, it also admitted the first formal proof of

correctness of a new approach (Voigtländer, 2008) to optimising monadic programs.

While the two previous articles were nominally about the same technique, they were

quite different in their categorical foundations and correctness conditions. The first was

founded upon least fixed points in the category CPO of complete partial orders and con-

tinuous functions, and identified a hierarchy of conditions on the conversion functions

between the original and worker types that are sufficient to ensure correctness. In contrast,

the second was founded upon initial algebras in an arbitrary category C, and identified a

lattice of sufficient correctness conditions on the original and worker algebras. This raises

the question of whether it is possible to combine or unify the two different approaches. The

purpose of this new article is to show how this can be achieved, and to explore the benefits

that result. More precisely, the article makes the following contributions:

• We show how the least-fixed-point and initial-algebra approaches to the worker/

wrapper transformation can be generalised in a uniform manner by combining their

different sets of correctness conditions (sections 3 and 5).

• We identify necessary conditions for the correctness of the worker/wrapper tech-

nique, in addition to the existing sufficient conditions, thereby ensuring that the

theory is as widely applicable as possible1 (sections 3 and 5).

• We use our new theory to develop a specialised worker/wrapper theory for folds in

CPO that eliminates all unnecessary strictness conditions (section 6).

The article is aimed at readers who are familiar with the basics of least-fixed-point

semantics (Schmidt, 1986), initial-algebra semantics (Bird & de Moor, 1997), and the

worker/wrapper transformation (Gill & Hutton, 2009; Hutton et al., 2010), but all nec-

essary concepts and results are reviewed. A mechanical verification of the proofs in Agda

is available as supplementary material on the JFP website, along with an extended version

of this article that includes a series of worked examples and all the proofs.

2 Least-Fixed-Point Semantics

The original formalisation of the worker/wrapper transformation was based on a least-

fixed-point semantics of recursion, in a domain-theoretic setting in which programs are

continuous functions on complete partial orders. In this section we review some of the

basic definitions and properties from this approach to program semantics, and introduce

our notation. For further details, see for example Schmidt (1986).

1 Specifically, we identify conditions that are necessary and sufficient to ensure that the
worker/wrapper factorisation and fusion properties are both valid.



Work It, Wrap It, Fix It, Fold It 3

A complete partial order (cpo) is a set with a partial-ordering ⊑, a least element ⊥,

and limits
⊔

(least upper bounds) of all non-empty chains. A function f between cpos is

continuous if it is monotonic and preserves the limit structure. If it also preserves the least

element, i.e. f ⊥ = ⊥, the function is strict. A fixed point of a function f is a value x for

which f x = x. Kleene’s well-known fixed-point theorem (Schmidt, 1986) states that any

continuous function f on a cpo has a least fixed point, denoted by fix f .

The basic proof technique for least fixed points is fixed-point induction (Winskel, 1993).

Suppose that f is a continuous function on a cpo and that P is a chain-complete predicate

on the same cpo, i.e. whenever the predicate holds for all elements in a non-empty chain

then it also holds for the limit of the chain. Then fixed-point induction states that if the

predicate holds for the least element of the cpo (the base case) and is preserved by the

function f (the inductive case), then it also holds for fix f :

Lemma 2.1 (Fixed-Point Induction)

If P is chain-complete, then:

P ⊥ ∧ (∀ x. P x ⇒ P (f x)) ⇒ P (fix f )

Fixed-point induction can be used to verify the well-known fixed-point fusion property

(Meijer et al., 1991), which states that the application of a function to a fix can be re-

expressed as a single fix, provided that the function is strict and satisfies a simple commu-

tativity condition with respect to the fix arguments:

Lemma 2.2 (Fixed-Point Fusion)

f ◦ g = h ◦ f ∧ strict f ⇒ f (fix g) = fix h

Finally, a key property of fix that we will use is the rolling rule (Backhouse, 2002),

which allows the first argument of a composition to be pulled outside a fix, resulting in the

composition swapping the order of its arguments, or ‘rolling over’:

Lemma 2.3 (Rolling Rule)

fix (f ◦ g) = f (fix (g ◦ f ))

3 Worker/Wrapper for Least Fixed Points

Within the domain-theoretic setting of the previous section, consider a recursive program

defined as the least fixed point of a function f : A → A on some type A. Now consider a

more efficient program that performs the same task, defined by first taking the least fixed

point of a function g : B → B on some other type B, and then converting the resulting value

back to the original type by applying a function abs : B → A. The equivalence between

these two programs is captured by the following equation:

fix f = abs (fix g)

We call fix f the original program, fix g the worker program, abs the wrapper function, and

the equation itself the worker/wrapper factorisation for least fixed points. We now turn our

attention to identifying conditions to ensure that it holds.



4 N. Sculthorpe and G. Hutton

3.1 Assumptions and Conditions

First, we require an additional conversion function rep : A → B from the original type to

the new type. This function is not required to be an inverse of abs, but we do require one

of the following worker/wrapper assumptions to hold:

(A) abs ◦ rep = idA

(B) abs ◦ rep ◦ f = f

(C) fix (abs ◦ rep ◦ f ) = fix f

These assumptions form a hierarchy, with (A) ⇒ (B) ⇒ (C). Assumption (A) is the

strongest and usually the easiest to verify, and states that abs is a left inverse of rep, which

in the terminology of data refinement means that the abstract type A can be faithfully

represented by the concrete type B. For some applications, however, assumption (A) may

not be true in general, but only for values produced by the body function f of the original

program, as captured by the weaker assumption (B), or we may also need to take the

recursive context into account, as captured by (C).

Additionally, we require one of the following worker/wrapper conditions2 that relate the

body functions f and g of the original and worker programs:

(1) g = rep ◦ f ◦ abs (1β ) fix g = fix (rep ◦ f ◦ abs)

(2) rep ◦ f = g ◦ rep ∧ strict rep (2β ) fix g = rep (fix f )

(3) abs ◦ g = f ◦ abs

In general, there is no relationship between the conditions in the first column, i.e. none

implies any of the others, while the β conditions in the second column arise as weaker

versions of the corresponding conditions in the first. The implications (1) ⇒ (1β ) and

(2) ⇒ (2β ) follow immediately using extensionality and fixed-point fusion respectively,

which in the latter case accounts for the strictness side condition in (2). We will return to the

issue of strictness in Section 3.2. Furthermore, given assumption (C), it is straightforward

to show that conditions (1β ) and (2β ) are in fact equivalent. Nonetheless, it is still useful

to consider both conditions, as in some situations one may be simpler to use than the other.

Note that attempting to weaken condition (3) in a similar manner gives fix f = abs (fix g),

which there is no merit in considering as this is precisely the worker/wrapper factorisation

result that we wish to establish.

In terms of how the worker/wrapper conditions are used in practice, for some applica-

tions the worker program fix g will already be given, and our aim then is to verify that one

of the conditions is satisfied. In such cases, we use the condition that admits the simplest

verification, which is often one of the stronger conditions (1), (2) or (3) that do not involve

the use of fix. For other applications, our aim will be to construct the worker program. In

such cases, conditions (1), (1β ) or (2β ) provide explicit but inefficient definitions for the

worker program in terms of the body function f of the original program, which we then

attempt to make more efficient using program-fusion techniques. This was the approach

2 The assumptions and conditions are both sets of equational properties; we use the differing
terminology for consistency with Gill & Hutton (2009) and Hutton et al. (2010).



Work It, Wrap It, Fix It, Fold It 5

that was taken by Gill & Hutton (2009). However, as shown by Hutton et al. (2010),

in some cases it is preferable to use conditions (2) or (3), which provide an indirect

specification for the body function g of the worker, rather than a direct definition.

3.2 Worker/Wrapper Factorisation

We can now state the main result of this section: provided that any of the worker/wrapper

assumptions hold, and any of the worker/wrapper conditions hold, then worker/wrapper

factorisation is valid, as summarised in Figure 1. To prove this result it suffices to consider

assumption (C) and conditions (1β ) and (3) in turn, as (A), (B), (1) and (2) are already

covered by their weaker versions, and (2β ) is equivalent to (1β ) in the presence of (C). For

condition (1β ), factorisation is verified by the following simple calculation:

fix f

= { (C) }

fix (abs ◦ rep ◦ f )

= { rolling rule }

abs (fix (rep ◦ f ◦ abs))

= { (1β ) }

abs (fix g)

For condition (3), at first glance it may appear that we don’t need assumption (C)

at all, as condition (3) on its own is sufficient to verify the result by fusion. But the

use of fusion requires that abs is strict. However, using assumption (C) and fixed-point

induction, we can prove the factorisation result without this extra strictness condition

(see the extended version of this article for the details). But perhaps abs being strict is

implied by the assumptions and conditions? In fact, given assumption (A), this is indeed

the case. However, for the weaker assumption (B), abs is not necessarily strict. A simple

counterexample is shown in the following diagram, in which bullets on the left and right

sides are elements of A and B respectively, dotted lines are orderings (x ⊑ y) that are

directed upwards, and solid arrows are mappings (x 7→ y):

•

rep

##●
●●

●●
●●

●●
●●

●●

f

��

•
rep

//

f

BB

•

abs

cc●●●●●●●●●●●●●
g

zz

In particular, this example satisfies assumption (B), condition (3), and worker/wrapper

factorisation, but abs is non-strict. Because (B) implies (C), the same counterexample also

shows that the strictness of abs is not implied by (C) and (3). It is interesting to note that

in the past condition (3) was regarded as being uninteresting because it just corresponds

to the use of fusion (Hutton et al., 2010). But in the context of fix this requires that abs

is strict. However, as we have now seen, in the case of (B) and (C) this requirement can

be dropped. Hence, worker/wrapper factorisation for condition (3) is applicable in some

situations where fusion is not, i.e. when abs is non-strict.



6 N. Sculthorpe and G. Hutton

Given functions

f : A → A

g : B → B

for some types A and B, and conversion functions

rep : A → B

abs : B → A

then we have a set of worker/wrapper assumptions

(A) abs ◦ rep = idA

(B) abs ◦ rep ◦ f = f

(C) fix (abs ◦ rep ◦ f ) = fix f

and a set of worker/wrapper conditions

(1) g = rep ◦ f ◦ abs (1β ) fix g = fix (rep ◦ f ◦ abs)
(2) rep ◦ f = g ◦ rep ∧ strict rep (2β ) fix g = rep (fix f )
(3) abs ◦ g = f ◦ abs

Provided that any of the assumptions hold and any of the conditions hold, then

worker/wrapper factorisation is valid:

fix f = abs (fix g)

Furthermore, if any of the assumptions hold, and any of the conditions except (3)

hold, then worker/wrapper fusion is valid:

rep (abs (fix g)) = fix g

Figure 1: Worker/wrapper transformation for least fixed points.

Recall that showing (2) ⇒ (2β ) using fixed-point fusion requires that rep is strict. It is

natural to ask if we can drop strictness from (2) by proving worker/wrapper factorisation

in another way, as we did above with condition (3). The answer is no, and we verify this

by exhibiting a non-strict rep that satisfies rep ◦ f = g ◦ rep and assumption (A), but for

which worker/wrapper factorisation does not hold, as follows:

•

g



abs

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

•

f

��

rep

;;✇✇✇✇✇✇✇✇✇✇✇✇✇
•

abs

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

g

\\

•

rep

;;✇✇✇✇✇✇✇✇✇✇✇✇✇

f

BB

•
abs

oo g
zz

Because (A) ⇒ (B) ⇒ (C), the same example shows that rep ◦ f = g ◦ rep on its own is

also insufficient for assumptions (B) and (C). However, while the addition of strictness

is sufficient to ensure worker/wrapper factorisation, it is not necessary, which can be



Work It, Wrap It, Fix It, Fold It 7

verified by exhibiting a non-strict rep that satisfies rep ◦ f = g ◦ rep, assumption (A),

and worker/wrapper factorisation, shown in the example below. As before, this example

also verifies that strictness is not necessary for (B) and (C).

•

abs

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

g
zz

•f
$$

rep

;;✇✇✇✇✇✇✇✇✇✇✇✇✇
•

abs
oo g

zz

3.3 Worker/Wrapper Fusion

When applying worker/wrapper factorisation, it is often desirable to fuse together instances

of the conversion functions rep and abs to eliminate the overhead of repeatedly converting

between the new and original types (Gill & Hutton, 2009). In general, it is not the case that

rep ◦ abs can be fused to give idB. However, provided that any of the assumptions (A), (B)

or (C) hold, and any of the conditions except (3) hold, then the following worker/wrapper-

fusion property is valid, as summarised in Figure 1:

rep (abs (fix g)) = fix g

In a similar manner to Section 3.2, for the purposes of proving this result it suffices to

consider assumption (C) and condition (2β ):

rep (abs (fix g))

= { worker/wrapper factorisation, (C) and (2β ) }

rep (fix f )

= { (2β ) }

fix g

As with worker/wrapper factorisation, we confirm that strictness of rep is sufficient

but not necessary in the case of condition (2), by exhibiting a non-strict rep that satisfies

rep ◦ f = g ◦ rep, assumption (A), and worker/wrapper fusion:

•

abs

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

g



•f
$$

rep

;;✇✇✇✇✇✇✇✇✇✇✇✇✇
•

abs
oo

g

\\



8 N. Sculthorpe and G. Hutton

Finally, in the case of condition (3), the following example shows that (3) and (A) are

not sufficient to ensure worker/wrapper fusion:

•

abs

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

g
zz

•f
$$

rep

;;✇✇✇✇✇✇✇✇✇✇✇✇✇
•

abs
oo g

zz

Furthermore, even if we were also to require that rep be strict, abs be strict, or both

conversion functions be strict, it is still possible to construct corresponding examples that

demonstrate that worker/wrapper fusion does not hold in general for condition (3).

3.4 Relationship to Previous Work

The worker/wrapper results for fix presented in this section generalise those in Gill & Hut-

ton (2009). The key difference is that the original article only considered worker/wrapper

factorisation for condition (1β ), although it wasn’t identified as an explicit condition but

rather inlined in the statement of the theorem itself, whereas we have shown that the

result is also valid for (1), (2), (2β ) and (3). Moreover, worker/wrapper fusion was only

established for assumption (A) and condition (1β ), whereas we have shown that any of the

assumptions (A), (B) or (C) and any of the conditions (1), (1β ), (2) or (2β ) are sufficient.

We also exhibited a counterexample to show that (3) is not a sufficient condition for

worker/wrapper fusion under any of the assumptions.

We conclude by noting that in the context of assumption (C), the equivalent conditions

(1β ) and (2β ) are not just sufficient to ensure that worker/wrapper factorisation and fusion

hold, but are in fact necessary too. In particular, given these two properties, we can then

verify that condition (2β ) holds by the following simple calculation:

fix g

= { worker/wrapper fusion }

rep (abs (fix g))

= { worker/wrapper factorisation }

rep (fix f )

Hence, while previous work identified conditions that are sufficient to ensure factorisation

and fusion are valid, we now have conditions that are both necessary and sufficient.

4 Initial-Algebra Semantics

We now turn our attention to the other previous formalisation of the worker/wrapper trans-

formation, which was based upon an initial-algebra semantics of recursion in a categorical

setting in which programs are defined using fold operators. In this section we review the

basic definitions and properties from this approach to program semantics, and introduce

our notation. For further details, see for example Bird & de Moor (1997).

Suppose that we fix a category C and a functor F : C → C on this category. Then

an F-algebra is a pair (A, f ) comprising an object A and an arrow f : F A → A. An F-

homomorphism from one such algebra (A, f ) to another (B,g) is an arrow h : A → B such



Work It, Wrap It, Fix It, Fold It 9

that h ◦ f = g ◦ F h. Algebras and homomorphisms themselves form a category, with

composition and identities inherited from the original category C. An initial algebra is

an initial object in this new category, and we write (µF, in) for an initial F-algebra, and

fold f for the unique homomorphism from this initial algebra to any other algebra (A, f ).

Moreover, the arrow in : F µF → µF has an inverse out : µF → F µF, which establishes

an isomorphism F µF ∼= µF. The above definition for fold f can also be expressed as the

following equivalence, known as the universal property of fold:

Lemma 4.1 (Universal Property of Fold)

h = fold f ⇔ h ◦ in = f ◦ F h

The universal property forms the basic proof technique for the fold operator. For example,

it can be used to verify the corresponding versions of fixed-point fusion (Lemma 2.2) and

the rolling rule (Lemma 2.3) for initial algebras:

Lemma 4.2 (Fold Fusion)

h ◦ f = g ◦ F h ⇒ h ◦ fold f = fold g

Lemma 4.3 (Rolling Rule)

fold (f ◦ g) = f ◦ fold (g ◦ F f )

5 Worker/Wrapper for Initial Algebras

Within the category-theoretic setting of the previous section, consider a recursive pro-

gram defined as the fold of an algebra f : F A → A for some object A. Now consider a

more efficient program that performs the same task, defined by first folding an algebra

g : F B → B on some other object B, and then converting the resulting value back to the

original object type by composing with an arrow abs : B → A. The equivalence between

these two programs is captured by the following equation:

fold f = abs ◦ fold g

In a similar manner to least fixed points, we call fold f the original program, fold g the

worker program, abs the wrapper arrow, and the equation itself the worker/wrapper fac-

torisation for initial algebras. The properties that we use to validate the factorisation equa-

tion are similar to those that we identified for least fixed points, and are summarised in

Figure 2. As previously, the assumptions form a hierarchy (A) ⇒ (B) ⇒ (C), the conditions

(1β ) and (2β ) are weaker versions of (1) and (2) and are equivalent given assumption (C),

and in general there is no relationship between conditions (1), (2) and (3). As we are

working in an arbitrary category the notion of strictness is not defined, and hence there is

no requirement that rep be strict for (2); we will return to this point in Section 6.

Worker/wrapper fusion can also be formulated for initial algebras, as shown in Figure 2.

Moreover, the example from Section 3.3 that shows that fusion is not in general valid for

condition (3) for least fixed points can readily be adapted to the case of initial algebras.

Specifically, if we define a constant functor F : SET → SET on the category of sets and



10 N. Sculthorpe and G. Hutton

Given algebras

f : F A → A

g : F B → B

for some functor F, and conversion arrows

rep : A → B

abs : B → A

then we have a set of worker/wrapper assumptions

(A) abs ◦ rep = idA

(B) abs ◦ rep ◦ f = f

(C) fold (abs ◦ rep ◦ f ) = fold f

and a set of worker/wrapper conditions

(1) g = rep ◦ f ◦ F abs (1β ) fold g = fold (rep ◦ f ◦ F abs)
(2) rep ◦ f = g ◦ F rep (2β ) fold g = rep ◦ fold f

(3) abs ◦ g = f ◦ F abs

Provided that any of the assumptions hold and any of the conditions hold, then

worker/wrapper factorisation is valid:

fold f = abs ◦ fold g

Furthermore, if any of the assumptions hold, and any of the conditions except (3)

hold, then worker/wrapper fusion is valid:

rep ◦ abs ◦ fold g = fold g

Figure 2: Worker/wrapper transformation for initial algebras.

total functions by F X = 1 and F f = id1, where 1 is any singleton set, then the following

definitions satisfy (3) and (A) but not worker/wrapper fusion:

•

abs

||③③
③③
③③
③③
③③
③③
③③

•
f

// •

rep

<<③③③③③③③③③③③③③③
•

abs
oo •

g
oo

F A A B F B

The worker/wrapper results for fold presented in this section generalise those in Hutton

et al. (2010). The key difference is that the original article only considered worker/wrapper

factorisation for assumption (A) and conditions (1), (2) and (3) (in which context (1) is

stronger than the other two conditions), whereas we have shown that the result is also valid

for the weaker assumptions (B) and (C) (in which context (1), (2) and (3) are in general

unrelated) and the weaker conditions (1β ) and (2β ). Moreover, worker/wrapper fusion was

essentially only established for assumption (A) and condition (1), whereas we have shown

that any of the assumptions (A), (B) or (C) and any of the conditions (1), (1β ), (2) or (2β )



Work It, Wrap It, Fix It, Fold It 11

are sufficient. We also showed that (3) is not sufficient for worker/wrapper fusion under

any of the assumptions. Finally, we note that as with least fixed points, in the context of

assumption (C) the equivalent conditions (1β ) and (2β ) are both necessary and sufficient

to ensure worker/wrapper factorisation and fusion for initial algebras.

6 From Least Fixed Points to Initial Algebras

In Section 5 we developed the worker/wrapper theory for initial algebras. Given that the

results were formulated for an arbitrary category C, we would expect them to hold in the

category CPO of cpos and continuous functions used in the least-fixed-point approach.

This is indeed the case, with one complicating factor: when CPO is the base category, the

universal property has a strictness side condition, which weakens our results by adding

many strictness requirements. In this section, we show that all but one of these strictness

conditions is unnecessary, by instantiating our theory for least fixed points.

6.1 Strictness

Recall that the basic proof technique for the fold operator is its universal property. In the

category CPO, this property has a strictness side condition (Meijer et al., 1991):

Lemma 6.1 (Universal Property of Fold in CPO)

If h is strict, then:

h = fold f ⇔ h ◦ in = f ◦ F h

The universal property of fold, together with derived properties such as fusion and the

rolling rule, form the basis of our proofs of worker/wrapper factorisation and fusion for

initial algebras in Section 5. Tracking the impact of the extra strictness condition above on

these results is straightforward but tedious, so we omit the details here (they are provided

in the supplementary Agda proofs) and just present the results: for conditions (1), (1β ), (2)

and (2β ), both factorisation and fusion require that f , rep and abs are strict, while for (3),

factorisation requires that g and abs are strict.

In summary, instantiating the worker/wrapper results for initial algebras to the category

CPO is straightforward, but deriving the results in this manner introduces many strict-

ness side conditions that may limit their applicability. Some of these conditions could be

avoided by using more liberal versions of derived properties such as fold fusion and the

rolling rule that are proved from first principles rather than being derived from the universal

property. However, it turns out that most of the strictness conditions can be avoided using

our worker/wrapper theory for least fixed points.

6.2 From Fix to Fold

As noted earlier, the generalised worker/wrapper results for initial algebras are very similar

to those for least fixed points. Indeed, unifying the results in this manner is one of the

primary contributions of this article. In this section we show how the initial-algebra results

in CPO can in fact be derived from those for least fixed points, by exploiting the fact that

in this context fold can be defined in terms of fix (Meijer et al., 1991):



12 N. Sculthorpe and G. Hutton

Lemma 6.2 (Definition of Fold using Fix in CPO)

fold f = fix (λ h → f ◦ F h ◦ out)

Suppose we are given algebras f : F A → A and g : F B → B, and conversion functions

rep : A → B and abs : B → A. Our aim is to use the worker/wrapper results for fix to derive

assumptions and conditions that imply the factorisation result for fold, that is:

fold f = abs ◦ fold g

First, we define functions f ′ and g′ such that fold f = fix f ′ and fold g = fix g′:

f ′ : (µF → A) → (µF → A) g′ : (µF → B) → (µF → B)

f ′ = λ h → f ◦ F h ◦ out g′ = λ h → g ◦ F h ◦ out

Then we define conversion functions between the types for fold f and fold g:

rep′ : (µF → A) → (µF → B) abs′ : (µF → B) → (µF → A)

rep′ h = rep ◦ h abs′ h = abs ◦ h

Using these definitions, the worker/wrapper equation fold f = abs ◦ fold g in terms of fold

is equivalent to the following equation in terms of fix:

fix f ′ = abs′ (fix g′)

This equation has the form of worker/wrapper factorisation for fix, and is hence valid

provided one of the assumptions and one of the conditions from Figure 1 are satisfied for

f ′, g′, rep′ and abs′. By expanding definitions, it is now straightforward to simplify each

of these assumptions and conditions in terms of the original functions f , g, rep and abs

(see the extended version of this article for the details). A similar procedure can be applied

to worker/wrapper fusion. The end result is a worker/wrapper theory for initial algebras

in CPO that has the same form as Figure 2, except that condition (2) requires that rep is

strict. Compared to the derivation in Section 6.1, this new approach eliminates all but one

strictness requirement, and hence the resulting theory is more generally applicable.

One might ask if we can also drop strictness from condition (2), but the answer is no.

In order to verify this, let us take Id : CPO → CPO as the identity functor, for which it

can be shown by fixed-point induction that fold f ⊥ = fix f . Now consider the example

from Section 3.2 that shows that strictness cannot be dropped from (2) in the theory for fix.

This example satisfies (A) and rep ◦ f = g ◦ Id rep, but not worker/wrapper factorisation

fold f = abs ◦ fold g. In particular, if we assume factorisation is valid we could apply both

sides to ⊥ to obtain fold f ⊥ = abs (fold g ⊥), which by the above result is equivalent to

fix f = abs (fix g), which does not hold for this example as shown in Section 3.2. Hence,

by contradiction, fold f = abs ◦ fold g is invalid.

7 Related Work

A historical review of the worker/wrapper transformation and related work was given in

Gill & Hutton (2009), so we direct the reader to that article rather than repeating the details

here. The transformation can also be viewed as a form of data refinement (Hoare, 1972;

Morgan & Gardiner, 1990), a general-purpose approach to replacing a data structure by a



Work It, Wrap It, Fix It, Fold It 13

more efficient version. Specifically, the worker/wrapper transformation is a data refinement

technique for functional programs defined using the recursion operators fix or fold.

Recently, Gammie (2011) observed that the manner in which the worker/wrapper-fusion

rule was used in Gill & Hutton (2009) may lead to the introduction of non-termination.

However, this is a well-known consequence of the fold/unfold approach to program trans-

formation (Burstall & Darlington, 1977; Tullsen, 2002), which in general only preserves

partial correctness, rather than being a problem with the fusion rule itself, which is correct

as it stands. Alternative, but less expressive, transformation frameworks that guarantee total

correctness have been proposed, such as the use of expression procedures (Scherlis, 1980).

Gammie’s solution was to add the requirement that rep be strict to the worker/wrapper-

fusion rule, which holds for the relevant examples in the original article. However, we

have not added this requirement in the present article, as this would unnecessarily weaken

the fusion rule without overcoming the underlying issue with fold/unfold transformation.

Gammie also pointed out that the stream memoisation example in Gill & Hutton (2009)

incorrectly claims that assumption (A) holds, but we note that the example as a whole is

still correct as the weaker assumption (B) does hold.

In this article we have focused on developing the theory of the worker/wrapper transfor-

mation, with the aim of making it as widely applicable as possible. Meanwhile, a team in

Kansas is putting the technique into mechanised practice as part of the HERMIT project

(Farmer et al., 2012). In particular, they are developing a general purpose system for

optimising Haskell programs that allows programmers to write sufficient annotations to

permit the Glasgow Haskell Compiler to apply custom transformations automatically. The

worker/wrapper transformation was the first high-level technique encoded in the system,

and it then proved relatively straightforward to mechanise a selection of new and existing

worker/wrapper examples (Sculthorpe et al., 2013). Working with the automated system

has also revealed that other, more specialised, transformation techniques can be cast as in-

stances of worker/wrapper, and consequently that using the worker/wrapper infrastructure

can simplify mechanising those transformations (Sculthorpe et al., 2013).

8 Conclusions and Future Work

The original worker/wrapper article (Gill & Hutton, 2009) formalised the basic technique

using least fixed points, while the follow-up article (Hutton et al., 2010) developed a

worker/wrapper theory for initial algebras. In this article we showed how the two ap-

proaches can be generalised in a uniform manner by combining their different sets of

correctness conditions. Moreover, we showed how the new theories can be further gen-

eralised with conditions that are both necessary and sufficient to ensure the correctness of

the transformations. All the proofs have been mechanically checked using the Agda proof

assistant, and are available as supplementary material on the JFP website.

It is interesting to recount how the conditions (1β ) and (2β ) were developed. Initially we

focused on combining assumptions (A), (B) and (C) from the first article with conditions

(1), (2) and (3) from the second. However, the resulting theory was still not powerful

enough to handle some examples that we intuitively felt should fit within the framework.

It was only when we looked again at the proofs for worker/wrapper factorisation and



14 N. Sculthorpe and G. Hutton

fusion that we realised that conditions (1) and (2) could be further weakened, resulting

in conditions (1β ) and (2β ), and proofs that they are equivalent and maximally general.

In terms of further work, practical applications of the worker/wrapper technique are

being driven forward by the HERMIT project in Kansas, as described in Section 7. On

the foundational side, it would be interesting to exploit additional forms of structure to

further extend the generality and applicability of the technique, for example by using other

recursion operators such as unfolds and hylomorphisms, framing the technique using more

general categorical constructions such as limits and colimits, and considering more sophis-

ticated notions of computation such as monadic, comonadic and applicative programs.

Acknowledgements

The first author was supported by NSF award number 1117569. We would like to thank

Jennifer Hackett for the counterexample in Section 6, and the anonymous referees for their

detailed and helpful reviews.

References

Backhouse, Roland. (2002). Galois Connections and Fixed Point Calculus. Pages 89–150

of: Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.

Springer.

Bird, Richard, & de Moor, Oege. (1997). Algebra of Programming. Prentice Hall.

Burstall, Rod. M., & Darlington, John. (1977). A Transformation System for Developing

Recursive Programs. Journal of the ACM, 24(1), 44–67.

Farmer, Andrew, Gill, Andy, Komp, Ed, & Sculthorpe, Neil. (2012). The HERMIT in the

Machine: A Plugin for the Interactive Transformation of GHC Core Language Programs.

Pages 1–12 of: Haskell Symposium. ACM.

Gammie, Peter. (2011). Strict Unwraps Make Worker/Wrapper Fusion Totally Correct.

Journal of Functional Programming, 21(2), 209–213.

Gill, Andy, & Hutton, Graham. (2009). The Worker/Wrapper Transformation. Journal of

Functional Programming, 19(2), 227–251.

Hoare, Tony. (1972). Proof of Correctness of Data Representations. Acta Informatica,

1(4), 271–281.

Hutton, Graham, Jaskelioff, Mauro, & Gill, Andy. (2010). Factorising Folds for Faster

Functions. Journal of Functional Programming, 20(3&4), 353–373.

Meijer, Erik, Fokkinga, Maarten M., & Paterson, Ross. (1991). Functional Programming

with Bananas, Lenses, Envelopes and Barbed Wire. Pages 124–144 of: Functional

Programming Languages and Computer Architecture. Springer.

Morgan, Carroll, & Gardiner, P. H. B. (1990). Data Refinement by Calculation. Acta

Informatica, 27(6), 481–503.

Peyton Jones, Simon, & Launchbury, John. (1991). Unboxed Values as First Class Citizens

in a Non-Strict Functional Language. Pages 636–666 of: Functional Programming

Languages and Computer Architecture. Springer.

Scherlis, William Louis. (1980). Expression Procedures and Program Derivation. Ph.D.

thesis, Stanford University.



Work It, Wrap It, Fix It, Fold It 15

Schmidt, David A. (1986). Denotational Semantics: A Methodology for Language

Development. Allyn and Bacon.

Sculthorpe, Neil, Farmer, Andrew, & Gill, Andy. (2013). The HERMIT in the Tree:

Mechanizing Program Transformations in the GHC Core Language. Pages 86–103

of: Implementation and Application of Functional Languages 2012. Lecture Notes in

Computer Science, vol. 8241. Springer.

Tullsen, Mark. (2002). PATH, A Program Transformation System for Haskell. Ph.D. thesis,

Yale University.

Voigtländer, Janis. (2008). Asymptotic Improvement of Computations over Free Monads.

Pages 388–403 of: Mathematics of Program Construction. Lecture Notes in Computer

Science, vol. 5133. Springer.

Winskel, Glynn. (1993). The Formal Semantics of Programming Languages — An

Introduction. Foundation of Computing. MIT.


