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Abstract 
 

Language acquisition is one of the core problems in artificial intelligence (AI) and it is 

generally accepted that any successful AI account of the mind will stand or fall 

depending on its ability to model human language. Simple Recurrent Networks (SRNs) 

are a class of so-called artificial neural networks that have a long history in language 

modelling via learning to predict the next word in a sentence. However, SRNs have also 

been shown to suffer from catastrophic forgetting, lack of syntactic systematicity and 

an inability to represent more than three levels of centre-embedding, due to the so-called 

'vanishing gradients' problem. This problem is caused by the decay of past input 

information encoded within the error-gradients which vanish exponentially as 

additional input information is encountered and passed through the recurrent 

connections. That said, a number of architectural variations have been applied which 

may compensate for this issue, such as the Nonlinear Autoregressive Network with 

exogenous inputs (NARX) network and the multi-recurrent network (MRN). In addition 

to this, Echo State Networks (ESNs) are a relatively new class of recurrent neural 

network that do not suffer from the vanishing gradients problem and have been shown 

to exhibit state-of-the-art performance in tasks such as motor control, dynamic time 

series prediction, and more recently language processing. 

 

This research re-explores the class of SRNs and evaluates them against the state-of-the-

art ESN to identify which model class is best able to induce the underlying finite-sta te 

automaton of the target grammar implicitly through the next word prediction task. In 

order to meet its aim, the research analyses the internal representations formed by each 

of the different models and explores the conditions under which they are able to carry 

information about long term sequential dependencies beyond what is found in the 

training data.  

 

The findings of the research are significant. It reveals that the traditional class of SRNs, 

trained with backpropagation through time, are superior to ESNs for the grammar 

prediction task. More specifically, the MRN, with its state-based memory of varying 

rigidity, is more able to learn the underlying grammar than any other model. An analys is 

of the MRN’s internal state reveals that this is due to its ability to maintain a constant 
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variance within its state-based representation of the embedded aspects (or finite state 

machines) of the target grammar. The investigations show that in order to successfully 

induce complex context free grammars directly from sentence examples, then not only 

are a hidden layer and output layer recurrency required, but so is self-recurrency on the 

context layer to enable varying degrees of current and past state information, that are 

integrated over time. 
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Chapter 1 

1. Introduction 
 

1.1 Summary 

 

The general idea of this project is to explore the capability and limitations of recurrent 

artificial neural network architectures for learning finite state grammar directly from 

string or sentence examples. A number of common recurrent neural network 

architectures will be investigated. The overarching aim is to compare the capabilities of 

the various architectures and understand their capacities and limitations. As part of this, 

more established architectures will be compared with a new class of networks, called 

Echo State Networks (ESNs) (Jaeger, 2001) which are also subsumed in literature under 

the general term: reservoir computing. It will be important to ascertain the 

characteristics for good architecture design and training regimes for such systems when 

attempting to model grammar or language induction.  

 

More specifically a grammatical induction task is used to examine and evaluate; a) the 

capability of Simple Recurrent Networks (SRNs) (i.e. Elman network & Jordan 

network), b) Nonlinear Autoregressive model process with Exogenous Input (NARX), 

c) Multi-Recurrent Networks (MRN) and, d) the state-of-the-art Echo State Network 

(ESN). An investigation is carried out to explore how well these networks have learned 

the grammar directly from string examples (generated from the target grammar) and 

also examine the robustness of the learned representations and how they begin to fail as 

the complexity of the language increases.  

 

The aim of the present study is to review, examine, and develop a way to explore which 

embedded memory configurations within recurrent neural network architectures, 

trained with gradient descent learning algorithm, provide the most effective propagation 

of gradient information for learning simple long-term dependency problems, such as 

those found in natural language contexts. The six RNN models used in this study have 

various types of recurrency, so they need to be evaluated individually and a comparison 

between their performances will be carried out. Recurrency of these  networks includes 

output layer recurrency, as found in Jordan network (Jordan 1986); hidden layer 
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recurrency, as in Elman (Elman 1990); output recurrency with time delay connection, 

as in time delay neural networks; input output delay connection, as found in non-linear 

autoregressive model process with exogenous input (NARX)(Gers 2001); and input and 

output recurrency, as in multi- layer neural networks. It should be pointed out here that 

these five networks share the same learning algorithm. However, the sixth network 

considered differs in terms of learning algorithm and recurrency connections; this is the 

echo state network (ESN). The task presented to these networks is to learn a finite state 

grammar and this work aims to investigate when these networks begin to fail and how 

failure occurs as the complexity of the language increases. 

 

In order to accomplish the aim of this research, a number of different feedback 

connections, hidden units, and state memories were explored to optimise these models 

which share the same learning algorithm, and compare them against an ESN which does 

not share the gradient-descent learning limitation. The, the internal representation of 

these networks are then analysed and evaluated.  

 

1.2  Problem Statement 

 

Recent studies demonstrate that the ability to learn nonlinear temporal dynamic 

behaviour is a significant factor in the solution of many types of complex problem-

solving, such as those found in the practical problem domains of natural language 

processing, speech processing, adaptive control, time series predication, financ ia l 

modelling, DNA sequencing etc. (Koskela, Varsta et al. 1998). There are several 

statistical learning and machine learning techniques, methods and models, which can 

be applied in order to learn the underlying temporal structure and dynamics of a 

particular problem. Algorithms and techniques, including recurrent neural networks 

(RNNs) support vector machines, kernel regression, hidden Markov models, 

reinforcement learning and Bayesian networks. RNNs are a class of connectionis t 

network whose computational neurons produce activations based on the activation 

history of the network (Kremer, Kolen 2001). 

 

An RNN has a set of units, each taking a real value in each time step, and has a group 

of weighted connections joining units together. The input and output units are set 
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according to the problem situation. While the input values are determined by the 

problem, the output units are computed using the connection weights and the hidden 

units. Activations from units within these input, hidden, and output layers, are typically 

fed back as input to the same or previous layers. This forms a complex memory-based 

system due to cycles in the flow of activation, with the output from one time step 

informing the input to the next. RNNs have nonlinear dynamics, allowing them to 

perform in a highly complex manner. In theory, the states of the hidden units can store 

data over time in the form of a distributed representation and this can be used many 

time-steps later to predict subsequent input vectors (Sutskever, Hinton 2010). The 

characteristic of an RNN can be distinguished from its feedforward counterparts by its 

ability to map sequences of input vectors distributed across time into output vector 

sequences. In this respect, RNNs can be viewed as vector-sequence transducers. The 

reason this makes RNNs interesting is that they can be applied to almost any problem 

with sequential structure, including problems that arise in many natural contexts such 

as in control, speech, and natural language processing. 

  

RNNs are classified as a type of graphical model, which is an interaction between 

probability theory and graph theory that are a group of traditional statistical models. 

These RNNs have units and connections whose values are determined by statistica l 

methods. Other examples of graphical models are Bayesian networks, Gaussian mixture 

models and Hidden Markov models (Murphy 2001). RNNs play an important role in 

applied mathematics and engineering, as they provide a set of probabilistic tools for 

dealing with two problems that occur naturally within these disciplines, namely, 

uncertainty and complexity.  

 

It is stated (Bengio et al 1994, Gers et al 2003) that the RNNs which use back-

propagation through time, are unable to hold long term dependency due to the vanishing 

time problem. Long term dependency is important because it provides a challenge to 

natural language processing. Thus, the research will investigate, develop, analyse and 

evaluate the networks mentioned previous and explore their limitations.  
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1.3 Scope of Research 

 

Although there are numerous connectionist techniques for processing temporal 

information, the most widely used is the simplest RNN known as the Simple Recurrent 

Network (SRN) (Elman 1990). The SRN is a state-based model, similar in complexity 

to a Hidden Markov Model and represents sequences of information by internal states 

of neural activation (Cartling 2008). The SRN has proven remarkably useful for 

temporal problem domains such as natural language processing and in particular, 

regular languages. Much research has been conducted to illustrate temporal processing 

in SRNs (Gupta, McAvoy et al. 2000, Deliang, Xiaomei et al. 1996). However, the 

majority of these SRN-based studies involve processing noise-free binary temporal 

sequences with orthogonal components or fixed duration feature vectors having low 

dimensions (Gupta, McAvoy et al. 2000). Furthermore, SRNs have failed to adequately 

model the combinatorial systematicity of human language appropriately (Farkaš, 

Crocker 2008). Combinatorial systematicity refers to the ability of the human language 

faculty to use a relatively small lexicon and few syntactic rules to generate a very large, 

possibly infinite, number of sentences. It appears that such a faculty must have a neural 

basis and therefore, any artificial neural network attempting to model human cognit ion 

should be able to demonstrate systematicity, although this is still a matter of debate  

(Farkaš, Crocker 2008).  

 

SRN-based approaches with their gradient descent learning are considered ‘standard 

RNNs’ and have been plagued by major practical difficulty (Gers 2001). The gradient 

of the total output error with respect to previous input quickly vanishes as the time lag 

between relevant inputs and errors increases (Bengio, Simard et al. 1994). Gers (2003) 

stated that this is why standard SRNs are unable to learn time lagged information or 

dependencies exceeding as few as 5-10 discrete time steps among relevant input events 

and target signals. Other architectures have been developed to attempt to overcome 

these issues. One is the Long Short Term Memory (LSTM) (Hochreiter, Schmidhuber 

1997). LSTM is a gate-based RNN architecture that uses gradient descent-based 

learning to remember, establish and maintain temporal information over very long time s 

periods (James, 2003). Unfortunately, due to its constant error flow through interna l 
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states of memory cells, it exhibits problems similar to those of feedforward networks 

(which present the entire input string at once).  

 

Over the past five years, there has been interest in another alternative: Echo state 

networks (ESNs), a type of RNN (Jaeger 2002). ESNs are relatively simple RNNs with 

the hidden layer consisting of a large collection of processing units, randomly inter-

connected, as well as normal connections applied to the input, hidden and output layers. 

All links have randomly assigned and fixed (untrainable) weights except for those 

coming from the hidden layer, which are trainable. The appeal of the ESN is the 

simplicity of its training process, which is reduced to a task of one-short simple linear 

regression (Jaeger 2002). ESNs have been applied with varying success to numerous 

problem domains such as behaviour classification (Noris, Nobile et al. 2008); natural 

language processing ( Bickett et al. 2007); speech recognition (Skowronski, Harris 

2006); financial forecasting (Lin, Yang et al. 2009); and symbol grounding in robots 

(Jaeger et al 2002).  

 

Although state-of-the-art performance has been reported for the iterated prediction of 

noiseless time series data, the usefulness of this is questionable and studies with ESNs 

for realistic problem domains have revealed the difficulty of creating the reservoir of 

interconnections in a systematic way for a given problem. It can take the exploration of 

many reservoir configurations before a solution is found (Binner et al., 2010; Rodan & 

Tino, 2011). Clearly, there is scope for advancing knowledge concerning the strengths 

and weaknesses of ESNs for different types of problem and the need for a princip led 

approach to ESN application, appropriate to the problem domain in order to increase 

their utility.  

  

The major contribution of this research is that it is the first to reveal that sluggish state 

based representations formed by recurrent memory layers with self-recurrent links help 

to solve the grammar induction task in a way that is superior to the other architectures 

examined in this research including the state-of-the-art ESN. A well-accepted approach 

of clustering hidden unit activation profiles called Principle Component Analysis (PCA) 

was used to identify why the MRN performs better than the other models assessed. The 

internal representation formed by the weights of an RNN after training can be revealed 

by analysing the resulting hidden neuron activations and how they vary with respect to 
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each new input within a sequence (Cartling, 2007). The reason for such performance is 

not attributed exclusively to the hidden and output recurrency but also to the self-

recurrency of units in the context layer and replicating the context layer itself to form 

memory banks. This collectively implements a complex state space of varying rigidity 

(also known as sluggish state space). These sluggish state spaces enable the network to 

generate stable representations of the underlying grammar by maintaining a constant 

distance between clusters of activation space (representing individual grammatica l 

states) which the other models failed to perform.   

 

1.4 Thesis Outline 

 

This thesis has seven chapters. Since chapter one has already been introduced, this 

section will provide a content summary for the remaining six chapters: 

 

Chapter 2: Literature Study 

This chapter provides a review of the relevant literature in the field of natural language 

sentences and connectionist models. The main area in the natural language discussed in 

this chapter is the complexity of language. In particular, this chapter focuses on a 

Chomsky hierarchy of grammars. In addition, the rest part of this chapter reviews 

supervised connectionist models of language acquisition and the limitations of 

connectionism for such tasks.   

 

Chapter 3: Neural Network Approaches 

This chapter describes the connectionist methods used in conducting this research. The 

chapter focuses on the traditional techniques used for language modelling tasks, in 

particular, for the next-symbol prediction task. The Jordan network, SRNs, MRN and 

ESN are considered.   

 

Chapter 4: Data and Methodology 

This chapter presents the language data sets used in the current study and discusses the 

model fitting and model selection approaches applied to optimise the different neural 

networks for language task. This chapter concluded with a summary of connectionis t 

networks that appear to be able to discover the underlying grammar and thus finite-sta te 

automata.  
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Chapter 5: Experimental Results 

In this chapter, evaluation and contrast the present work by applying the same 

experimental framework to run a series of experiments with the different RNNs under 

review in the work done by Cleereman’s et al, 1989 with the Reber grammar. This will 

be followed by optimising each of the different RNNs in more challenging Embedded 

Reber grammar and running a series of experiments. It aims at establishing the preferred 

class of RNN based on the generalisation performance to a wider population of strings 

and the fewest memory units. 

 

Chapter 6: Internal Representation and Discussion 

This chapter discusses the “black box” of the RNN models developed by applying PCA 

to unit activations of the hidden layer of each of the different networks. PCA helps to 

provide a 2-d visualisation of the hidden states each model has produced in response to 

the next symbol prediction task. This in turn, will enable us to trace the trajectories of 

the movements within state space and ascertain whether such transitions correspond to 

those found within the Embedded Reber Grammar. 

 

Chapter 7: Conclusion and Future work 

This chapter offers conclusions for the presented work. It summarises the key 

contributions made by this research, stating the preferred model for the language 

acquisition task and justification for this. It also highlights the limitations of the work 

and proposes some suggestions for future research. 
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Chapter 2 

2. Literature Study 
 

2.1 The Nature and Complexity of Language 

 

2.1.1 Nativist vs. Empiricist Perspectives   

 

The acquisition of language by children is testimony to the power of the human mind. 

Many philosophers consider the ability to communicate through verbal or written 

language as being a hallmark of human intelligence (MacWhinney, 2004).  The 

acquisition of language is still a matter of debate. It raises a question about whether the 

capabilities of learning language are innate, or whether we solely use the input from the 

environment to find structure in language.  

 

Nativists believe that infants have an innate capability for acquiring language. Their 

view is that an infant can acquire linguistic structure with few inputs and that it plays a 

minor role in the speed and sequence with which they learn language (Aimetti, 2009) . 

One of the best-known and most influential linguists supporting this theory is Chomsky. 

His view is based on the idea that learning language is based on a language faculty, a 

genetically inherited component of the mind which possesses prior knowledge of the 

language. Some nativists even believe that it is still possible to acquire language without 

any input. To support this belief, research was carried out with deaf children showing 

that they automatically developed observations gained from home with limited 

exposure to language (Chomsky 1959, Lust 2006). Some nativists have hypothes ised 

that depending on the input, for an infant’s native language the innate linguist ic 

knowledge is attributed with complex parameters that the infant must set (Gathercole 

& Hoff, 2007). 

 

On the other hand, empiricists hypothesise that the input contains much more structura l 

information and is not full of errors as nativists suggested. Many researchers have 

conducted studies showing that young infants use statistical mechanisms to exploit the 

distribution of patterns heard in speech during the early stages of language development 

(Hannon & Trehub, 2005). Infants make use of statistical learning procedures, tracking 
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the probability that sounds appear together; thus, segmenting the continuous stream of 

speech into separate words. Phonological memory is the capacity to store those speech 

sound sequences; it comes into play as entries in the mental lexicon are created 

(Gathercole, 2006). In the process of drawing a new word onto its intended reference, 

children are guided by their ability to make use of socially based inference mechanisms, 

also, by their cognitive understanding of the world and their prior linguistic knowledge 

(Hoff 2009).  

 

Linguistics is concerned with investigating human language as a universal part of 

human behaviour and thinking. It also seeks to understand the common properties of 

human language. It is a general term used to define the study of language, it covers 

several areas of studies such as syntax, semantics and pragmatics. Other disciplines that 

linguistics can draw on are neurobiology, informatics, neuroscience, and computer 

science. The major objective of linguistic research is to recognise and describe the rules 

governing the structure of language. Several researchers view the development of an 

automated language acquisition system that is capable of learning the rules and structure 

of language on a large scale as something precious, since it infers and manipula tes 

knowledge immediately from the countless surviving databases and other readable 

media (McQueen, 2005). The ability to model and therefore understand natural 

language has influenced many applications of Artificial Intelligence (AI), from speech 

recognition (Beaufays et al, 2001) to translation (Arnold et al, 1993) and natural 

language understanding (Allen, 1995).  

 

Language contains a set of sentences. These sentences could be finite or infinite 

depending on the language. Natural languages have infinite sets. Any sentence is a word 

(string) of one or more symbols for a specific vocabulary of a language. A grammar is 

a finite and formal specification of a language.  A production grammar is a commonly 

adopted method used to specify formal and natural languages (Grishman, 1986). 

Moreover, combining identity words in a sentence with the constraints of syntax and 

semantics, allows for the expression of concepts in a potentially infinite number of 

forms. Therefore, the combinatorial power of natural language sentences that have 

similar meanings can be expressed in a potentially infinite number of different ways.  
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A model that can learn a representation of the derivational rules of English language 

gives rise to the possibility of a natural language processing system to parse sentences. 

Several researchers consider the problem of language acquisition to be a paradox. 

Nativists who believe in the poverty of stimulus theory argue that fragmentary evidence 

available to language learners is too inconsistent and incomplete to allow the induction 

of language without some innate tendency towards the acquisition of language. This 

creates a paradox, since children who grow up in social environments are nearly always 

able to learn their language. However, children who are isolated from linguistic input 

do not always acquire a proper language as adults (Jackendoff, 2002). Children who are 

exposed to linguistic input are able to learn language. Gold’s theorem (Gold, 1967) 

assumed that an infinite grammar could not be learnt with only positive examples due 

to the problem of overgeneralisation. His theorem and its implications for language 

acquisition, shape the fundamental principles of modern linguistics. Gold’s theorem is 

the focus of much debate among those who view the process of language acquisition as 

a learning process (McQueen, 2005). 

 

The resulting paradox of language acquisition and Gold’s theorem formed the basis of 

Chomsky’s theory of universal grammar. This debate and the widely misinterpre ted 

theory are concerned with the human innate pre-specification for language acquisit ion. 

Johnson (2004) stated that Gold’s theory helped the psychological community to 

become aware of the possibilities for mathematically modelling psychologica lly 

relevant aspects of learning and showed that these models can, at least in princip le, 

establish psychologically interesting limitations on possible hypotheses about cognit ive 

activities like language acquisition. Nevertheless, instead of stating that the entire 

aspects of language from the lexicon to the grammatical rules are innate, the theory of 

universal grammar states that the brain’s language acquisition capacity is innate. The 

universal grammar theory stipulates that language learners are born with a brain that is 

functionally pre-disposed to grammar acquisition. Innate knowledge limits the shape of 

an acquired grammar to that of possible human languages. Moreover, it contains an 

approach that can select a grammar compatible with the linguistic input. 
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2.1.2 Language Complexity and Computation 

 

Natural language sentences are not just a linear arrangement of words. These sentences 

also contain complex structural relationships between words that are usually 

characterised syntactically. For example, phrase structures, subject-verb agreement and 

relative clauses. The critical challenge for the mechanisms of natural language 

processing is to represent and process such structure therefore we may understand of 

both their theoretical capabilities and their potential to provide a psychological account 

of natural language parsing.  

 

The traditional interpretation of natural language processing is based on mechanisms of 

finite automata, in which discrete states and transitions between states specify the 

temporal processing of the system. Regular grammars (RG) are comparable to finite 

automata, that is, a regular language can be defined as a regular grammar and by a finite 

automaton. In addition, the language accepted by any finite automaton is regular. 

Automata theory states that a finite state machine (FSM) can process a RG. 

Nevertheless, a language with centre-embedding is at least a Context Free Language 

(CFL), where at least a push-down automaton is needed (Rodriguez, Wiles, & Elman, 

1999). Essentially, a pushdown automaton is a finite state machine that has the 

additional resource of a memory-like device that is a stack to keep track of the 

embedding. To simulate a context free language, the connectionism must have 

something akin to a stack, such as in a pushdown automata; therefore, it can keep track 

of a state. Then the stack would predict the relationships in temporal data by internally 

counting the appearance of signals. 

 

(Hochreiter, Schmidhuber 1997) proposed a type of RNN called Long Short-Term 

Memory (LSTM) that constructed from units the ability of preserving memory for long 

periods of time. That is, LSTM is an agate-based RNN architecture that uses gradient 

descent-based learning to remember, establish and maintain temporal information over 

a long time-period (Hammerton 2003). LSTMs have unlimited recursive productivity 

unlike the RNNs (Van der Velde, De Kamps 2006). They can process context-free 

languages such as 𝑎𝑛𝑏𝑚 𝐵𝑚𝐴𝑛  for arbitrary (𝑛, 𝑚); a valid string from the language 

consists of a number of as, followed by a number of bs, then Bs and finally followed by 
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a number of As which is the same as the number of as. However, when they handle this 

case, their capability to treat combinatorial productivity (this refers to the ability to deal 

with multiplicative growth of the number of possible events or object combinations) is 

excluded. Moreover, due to its constant error flow through internal states of memory 

cells, LSTM exhibits problems similar to those of feedforward networks (which 

represent the entire input string at once).  

 

There is no predefined internal counting mechanism in parallel-distributed processing 

systems. Thus, they would have to either build one during training or discover another 

approach that they can use to keep track of the state. Rodriguez et al, 1999 states that in 

their experiments, neural networks picked the first choice and developed counters in 

order to predict the state in a deterministic context free grammar (Lubell, 2010).      
 

Generative grammar is the creation of a formal modelling technique and belongs to the 

study of language within the discipline of computational linguistics (Chomsky, 1959).  

Organising a set of production rules, these grammars provide a structure that describes 

all of the legal sentences in a language.   

 

},,,{ SPNG   

Equation 2.1 Grammar definition 

Equation 2.1 illustrates a formal definition of a grammar. It is composed of four 

individual elements. First, the ∑ symbol represents a set of terminal symbols and consist 

of elements that cannot be decomposed into sub-elements (words such as “buy” or 

“drive”).  Then, N is a set of non-terminal symbols, which can be broken down and are 

used to represent phrases and parts of speech (nouns or verbs). Next, P is a set of 

production rules that specify which non-terminal symbols can be re-written into which 

terminal symbol. Finally, S is the start symbol. An example, let 𝐺1 =

({0,1}, {𝑆, 𝑇, 𝑂, 𝐼}, 𝑆, 𝑃), where P contains the following productions 

𝑆 → 𝑂𝑇 

𝑆 → 𝑂𝐼 

𝑇 → 𝑆𝐼 

𝑂 → 0 

𝐼 → 1 
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As we can see, the grammar 𝐺1 can be used to describe the set {0𝑛1𝑛|𝑛 ≥ 1}. 

 

Type Language Automata 

0 
Recursively enumerable 

grammars (General Rewrite) 

Unrestricted phrase structure 

grammars (Turing Machines) 

1 
Context sensitive grammars 

(CSG) 
Linear-Bounded 

2 Context free Grammars (CFG) Push down automata 

3 Regular Grammars 
Finite-state grammars (FSG), 

Deterministic finite automata (DFA) 

Table 2.1 Chomsky hierarchy of grammars 

 

 The Chomsky hierarchy, Table 2.1, lists the generative grammars and the 

corresponding automata required to process them, where the different grammars or 

languages are categorised into four different types according to their complexity. The 

simplest type of languages are those generated from grammars belonging to type three, 

which is the class of regular grammars. Regular grammars are defined by a single non-

terminal symbol on the left hand side of the production rule and the limit of one termina l 

symbol on the right. A production rule is a set of rules generated by a human expert or 

from numerical input-output data using some heuristic means (Mamdani, Østergaard et 

al. 1983). Therefore, a formal grammar is a set of production rules (such as 𝑆 →

𝐴𝐵 ) which convert one string to another through a series of alternatives. In princip le, 

production rules can take any form such as those used in Probabilistic Context-Free 

Grammars (PCFGs) (Manning, Schütze 1999) and compositional structures (Jin, 

Geman 2006). In this research, the production rules give rise to regular grammars. 

 

Regular grammars, such as the Reber grammar, (Reber, 1967), are recognised as 

memory-less grammars because the next valid state in a sequence can constantly be 

predicted by the current grammatical state and next input word. In other words, 

knowledge about past symbols in the input sequences is not needed, only the current 

state of grammar (or finite state automata being used to process it). Context-free 

grammars are categorised by their production rule, which allows a non-terminal to be 

replaced by a set of any number of terminals and non-terminals, as well as the same 
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non-terminal that is being replaced. An example of a context-free language rule is 

{𝑎𝑛 𝑏𝑛|𝑛 > 0}  which generates language which is not regular. Where 𝑎𝑛  and 

𝑏𝑛represent a string of n-times repetition of a and b symbols.   

 

The reason is that context-free grammars allow for the replacement of non-termina l 

symbols with multiple terminal and non-terminal symbols. Therefore, any 

computational mechanism to process context-free languages must incorporate a 

memory. Allowing non-terminal symbols to occur inside the right-hand side of other 

production rules allows embedded structures to occur. Context-free means that a 

sequence of symbols can be reduced to a single simple term irrespective of the context 

in which the sequence occurs. More generally, most natural languages can be described 

by context free grammars (Allen, 1995). 

 

Type one of the Chomsky hierarchy contains the class of context-sensitive grammars 

(CSG). A CSG is an unrestricted (recursively enumerable) type of grammar in which 

every production has the form in Equation 2.2. As the equation shows, it can be seen 

that the non-terminal A can only be replaced by the set of terminal symbols abcd when 

it is preceded by the terminal symbol, x, and followed by the terminal symbol, y. This 

enforces the notion of context-sensitivity.       

𝒙𝐴𝒚 ⇒  𝒙𝑎𝑏𝑐𝑑𝒚 

Equation 2.2 Example of a production rule from a CSG. 

 

Type zero of the Chomsky hierarchy contains the recursively enumerable set of 

grammars.   

 

Alan Turing, in 1937, invented a formalism referred to as the Turing machine. A 

language is recursive if a Turing machine accepts it and halts on any input string (a 

language is recursive if there is a membership algorithm for it). Equation 2.3 illustra tes 

the production rule for recursively enumerable.  

𝑢𝑋𝑣 → 𝑢𝑤𝑣  

Equation 2.3 A production rule for a recursively enumerable string 

Where𝑢, 𝑣 ∈ (Σ ∪ 𝑉)∗ ,𝑤 ∈ Σ∗ arbitrary, Σ  is a finite alphabet, 𝑣 is auxiliary symbols  

Unrestricted phrase structure grammars is another name for recursively-enumerab le 

grammars, because either side of their production rules can contain any sequences of 
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terminals and non-terminals. Equation 2.4 shows the production rule of the unrestric ted 

languages. 

𝑢 → 𝑣  

Equation 2.4 A production rule for unrestricted language 

Where 𝑢, 𝑣 ∈ (Σ ⋃ 𝑉)∗ are equivalent to the enumerable languages. This type of 

grammar give a close approximation to natural language (Chomsky 1959). Research 

has shown that monkeys are able to learn simple regular grammars. However, they 

appear incapable of mastering the rules found in unrestricted phrase structure grammars 

(Fitch, Hauser 2004). 

 

2.2 Connectionist and Statistical Models of Language Acquisition   

 

Connectionist models might have the potential to achieve language acquisition in such 

a way that humans do. (Marcus 2003) has discussed the importance of several 

connectionist models that can represent abstract relations between variables. Those 

were models that do not incorporate operations over variables i.e. a Simple Recurrent 

Network (SRN) and models that incorporate operations over variables (a SRN trained 

by an external supervisor). Marcus states that all models that do implement over 

variables captured the results whereas, a limited number of connectionist models that 

do not incorporate any sort of actual operation over variables cannot capture the 

outcomes.  

 

A concern regarding the ability of connectionist models to represent language 

acquisition is whether explicit rules are necessary to account for complex behaviour or 

not. This is because generative grammarians have assumed the need for rules in order 

to account for the patterns established in natural language (Chomsky, Halle 1968). 

Marcus, Vijayan et al., 1999 assumed that algebraic rules are necessary for 

connectionist models to explain language acquisition. However, Christiansen and 

Curtin pointed out that an SRN model of word segmentation can present the relevant 

data without invoking any rules. However, that research was in the domain of speech 

segmentation and further studies are needed to focus on other aspects of language 

(Christiansen, Curtin 1999).     
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Traditional symbolic linguistic approaches avoid function-based language acquisit ion 

by concentrating on describing linguistic performance, utilising sets of rules and 

exceptions. A model such as top-down cognition endeavours to function backwards 

from linguistic structure towards human processing mechanisms. Whereas, symbolic 

models are fully powerful and the inflexibility of the resultant models which in general 

are described in this way, cannot easily be applied to general purpose linguist ic 

problems (Corrigan and Iverson, 1994). The designer of the system must take into 

account the inflexibility arising from rules and exceptions of the symbolic approach, 

and the system designer ignores the possibility where preference is to be learned by the 

model itself. Therefore, such systems need a new sets of rules and exceptions. 

 

Probabilistic methods have been applied to a wide range of language tasks within 

cognitive science, such as speech processing, word recognition, probabilist ic 

phonology, acquisition etc. Probabilistic approaches have been applied across language 

processing, from modelling lexical semantics to modelling processing difficulty. 

However, it is extremely challenging to integrate these diverse approaches into a unified 

model of language. Traditionally, several theoretical issues concerned with 

psycholinguists are re-framed, rather than resolved, by a probabilistic approach. The 

processing of language acquisition is the key to cognitive science. However, from the 

viewpoint of this Special Issue (sophisticated probabilistic models), the first stages 

towards a cognitive science of language engaged in driving out, rather than building on 

probability. The improvement of sophisticated probabilistic approaches, such as Special 

Issue (Chater, Manning 2006), throws these issues into a different light. Such models 

may be classified in terms of symbolic rules and representations. Therefore, 

grammatical rules may be connected with probabilities of usage, collecting the likely 

linguistic, not only what is linguistically possible. With this view, probabilistic ideas 

give rise to symbolic approaches of language (Chater, Manning 2006). 

 

Connectionist and statistical approaches are used to investigate and discover linguist ic 

patterns found within language. Statistical learning entails the discovery of patterns 

such as probabilities and statistical similarities in sample language input. In princip le, 

this type of learning ranges from supervised learning, similar to that found in operant 

conditioning (a certain behaviour of learning that leads to punishment or 

reinforcement), to unsupervised pattern detection, and includes the sophistica ted 
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probability learning exemplified in Bayesian models (Romberg, Saffran 2010). Infants 

are sensitive to the statistical regularities of the world around them and can learn to 

recognise patterns in the stimuli they are exposed to. This has led to a variety of 

computational models of early language learning, based on statistical inference. 

Statistical models, which have had a significant impact on language problem examples 

are the Inside-Outside algorithm for acquiring syntactic parsing (Baker 1979) and 

Expectation-Maximisation (EM) for point estimation whose goal is to find a single 

optimal model and set of parameters (Ma, Ji 1998, Murphy 2001). In addition, there are 

Hidden Markov Models (HMM) for acquiring context-free grammars (Jagota, Lyngsø 

et al. 2001), and the Forward-backward procedure used to find the maximum probability 

of a sequence 𝑆 in a given model. This is useful for training HMM (Tebelskis 1995) etc. 

This research focuses on the connectionist models introduced below, rather than 

statistical models.  

 

Since the early 1990’s, an alternative approach to cognitive modelling, known, as 

connectionism, has gained popularity amongst researchers. This practical field of 

research uses approaches with designs that are biologically inspired and aspire to 

simulate the operation of the human brain and nervous system. Unlike symbolic models 

of cognition, connectionism uses a bottom up approach to cognition that models the 

learning process itself. Connectionist approaches are suitable for language acquisit ion 

because they can learn problem solutions directly from examples from the problem 

domain.  

 

Gold (1967, cited in Johnson, 2004) proved that an infinite grammar could not be learnt 

from just positive examples alone. This was based on the assumption that successful 

acquisition would result in a deterministic grammar. Consequently, acquisition could 

only be called successful if the language learner possessed an exemplary representation 

of the grammar resulting in no mistakes. Horning (1969) challenged Gold’s theory and 

illustrated that language could be learnt from just positive examples if the language 

identification criterion uses a stochastic probability of a winner. The stochastic view of 

grammar induction is also supported by much of the language acquisition research, 

including U-shaped learning curves (Rumelhart, Hinton et al. 1986). Connectionism has 

subsequently provided a realistic means with which the theoretical limitatio ns on 

language acquisition posed by Gold and Horning could be evaluated (Brown 1973).    
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2.2.1 Supervised Connectionist Learning Algorithms 

 

In connectionist approaches to language modelling, language acquisition is often 

assumed to require supervised, semi-supervised, unsupervised, reinforcement and 

active learning algorithms. Although unsupervised and reinforcement learning are more 

directly related to known learning mechanisms in the brain, the most successful 

applications of connectionist modelling in cognitive psychology have employed 

supervised learning. That is because it is more effective at developing interna l 

representations of linguistic phenomena that can support the complex transformations 

involved in many forms of cognitive processing (Plaut 1999).  

Training Dataset Learning System Arbitrator

Error Signal

Figure 2.1 Block diagram that displays the form of supervised learning 

 
Figure 2.1 shows a block diagram illustrating supervised learning. In this diagram, the 

dataset is supervisory training samples. During a supervised learning process, the 

training input is fed to a learning system. Then, the learning system generates an output, 

which is then compared with the desired output by an arbitrator that computes the 

difference between them. The difference, termed error signal in this diagram, is then 

sent to the learning system as the basis for adjusting the parameters of the learner. The 

goal of this learning process is to obtain a set of optimal learning system parameters 

that can minimise the error over the entire training dataset.   

 

Processing is carried out by a number of elements. The elements called nodes or units 

have dynamics, which are analogous to simple neurons. Every node receives input from 

several other nodes, responding to that input according to its activation function, and in 

transfer exciting or inhibiting other nodes to which it is connected. Details vary between 

approaches, however, they generally adhere to this universal scheme (Elman 2001). 
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Rumelhart et al. (1986) error back-propagation algorithm (BP) illustrated how 

connectionist approaches could be trained to solve non-linear problems. The essential 

concept behind supervised learning is that the difference between the model’s response 

to an input and the target response, i.e. the “Error”, is used to modify the weights in 

order to shrink the upcoming error. Therefore, the model’s individual weights are 

effectively corrected and reinforced until they reach the correct values that represent the 

problem. In other words, a network trained using the back-propagation algorithm has 

its output for the training patterns compared with the required output. The difference 

between the output and the desired patterns, the error, is used for improving the current 

weights. At the beginning, the error of the network output is used for computing the 

weights of the connections to the last layer, then for the weights to the next to the last 

layer and so on. The error is propagated from the output of the network back to the input 

layer. The name “backpropagation” (BP) comes from this process. This learning 

algorithm is not biologically plausible, however it is still commonly used in 

connectionist learning because it produces a reasonable model for most datasets 

(Rumelhart, Hinton et al. 2002).  

 

This algorithm has drawbacks: the possibility of converging to local minima instead of 

the global minimum; temporal instability; and poor scaling properties. Nevertheless, its 

main problem is the relatively slow rate of convergence, typical for simple gradient 

descent methods. For these reasons, an enormous number of modifications based on 

heuristic arguments have been proposed to improve the performance of standard BP. 

Several of these have been developed in a somewhat specific manner, dominated by the 

search for speed rather than generalisation and generally evaluated on artific ia l 

problems (Alpsan, Towsey et al. 1995). However, the algorithm has some disadvantages 

such as: during searching for a global minimum, a local minimum where the error 

derivative of the surface is also zero can be reached and the algorithm can continue 

there forever. The time to converge the neural network can be very high because the 

initial weights are randomly defined relative to the final target (de Albuquerque, de 

Alexandria et al. 2009). 

 

The advantage of supervised learning is that an approach can be trained using just one 

subset of inputs and desired output pairs for a specific problem. The learning algorithm 

will construct, from the subset of the training data, an approximate solution to the 
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problem that generalises to unseen samples. Moreover, most supervised connectionis t 

models use distributed representations. In a brain, each stimulus is encoded by a number 

of varied neurons and each neuron may respond to conjunctions of features that may be 

present in many different stimuli. For example, each neuron in a visual cortex may react 

highly to the sight of a specific bar rotated to a particular angle moving at a particular 

speed in a specific direction. Whereas, another neuron in a sensory cortex, may respond 

to a touch stimulus on a specific part of the body’s surface. However, any stimulus that 

shares the relevant features of the corresponding neurons will be activated.  

 

(Elman 1995), in his model of the inflection of the English past tense, suggested input 

features corresponding to speech segments in specific positions; 14 input units 

correspond to 14 possible beginnings of syllables, six input units correspond to six 

possible instantiations of the middles of syllables, and 18 input units correspond to 18 

possible ends of syllables. For example, the three simultaneous activation units would 

represent the word “bid”, the units correspond to b in a beginning syllable position, i in 

a middle of syllables position, and d in an end of syllables position. The encoding of 

other inputs to each of those units would be to participate. This is called distributed 

representation, an issue of central relevance in the study of cognition in general, and 

language in particular, which is the nature of the underlying representation of 

information (Gluck, Myers 2001). A distributed model uses multiple weights to 

represent each input pattern instead of having single weights holding specific pieces of 

information. Supervised connectionist models that use distributed representations are 

usually referred to as parallel-distributed processing models (PDP).  

  

2.2.2 Supervised Connectionist Models of Language Acquisition  

 

Many learning problems in the field of Natural Language Processing (NLP) need 

supervised training. For example, inducing a grammar from a mass of raw text is a 

complicated task. However, this becomes much easier when the training sentences are 

supplemented with their parse trees. Nevertheless, suitable supervised training data may 

be difficult to obtain (Hwa 2000).   
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Rumelhart and McClelland (1986) was probably the first study that used NLP models 

and applied them to language acquisition. Their research involved the acquisition of the 

markings of the English past tense. Many examples had been given to the network of 

the form “walk  walked”, the network not only learned to produce the correct past 

tense for those verbs to which it had been shown, but also generalised to novel irregular 

verbs (e.g., “begin began”). A Multi-Layer Perceptron (MLP) was used to map a 

representation of the present tense of an English verb onto the equivalent representation 

of that verb’s past tense (Ševa, 2006). The model showed that the process of abstraction 

and generalisation of grammatical categories does not need to be based on symbolic 

rules. It also showed that non-linear change observed in the most developmenta l 

processes can be explained through an associative learning mechanism, allowing the 

extraction of statistical regularities of the domain to be learned. However, this model 

has been severely criticised for various reasons (Fodor and Pylyshyn, 1988; Pinker and 

Prince, 1988) relating to its input representation, its incorrect predictions of novel 

morphological derivations and its artificial training rules. Several studies followed 

which attempted to overcome the limitations of the Rumelhart et al (1986) model 

(Marchman and Plunkett, 1996; Jackson et al 1996) by, for instance, including a number 

of realistic training rules. 

 

Another approach published in the field of connectionist language acquisition was 

initiated by Elman (1992). He produced a recursive neural network called the Simple 

Recurrent Network (SRN) that was able to learn about sequential dependencies between 

words in sentences. The model attempts to find structure within each class by 

hierarchically clustering words into similar grammatical types. Representations of past 

input words within a sentence degrade as the length and complexity of the input 

sentences increase e.g., including embedded clauses that are comparable to the 

difficulty that human language users face, for instance. 

 

“The cat that chased the mouse, which ate the cheese, is hungry” 

 

The network weights perform as attractors in a state space, allowing the system to 

respond sensibly to novel input. The SRN is a Multilayer Perceptron (MLP) with 

dynamic extension, which uses recurrent connections to feed back the hidden layer 

activations at the next time step. This recurrence mechanism permits the SRN to process 
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sequences of inputs such that at any given stage after the start of the sequence it has a 

representation of what has preceded to inform its processing.  

 

An early work done by Tong et al. (2007), investigated the state of the art ESN, (Jaeger, 

2001) for language acquisition in the task of learning. The work is a comparison 

between the ESN and Elman’s SRN from 1992. It was a natural choice for 

experimentation and it was similar to the work done by Elman (they remove the non-

recurrent layers that were between the input and hidden and output layers, therefore to 

achieve distributed representations of the words). Moreover, the work was to determine 

whether the ESN could perform a language task that requires a significant amount of 

memory and generalisation. Tong et al showed that ESNs have the ability to learn to be 

sensitive to grammatical structure. In his work, Elman applied the basic SRN, as well 

as an SRN using Backpropagation through time (BPTT), to a the task of predicting the 

next word in a corpus of sentences generated from a context-free grammar, given the 

previous words. Elman demonstrated that the SRNs were able to learn the interna l 

representations of the network that were sensitive to linguistic processes, which were 

valuable for the prediction task. Tong et al. (2007) stated that training such interna l 

representations in the ESN is unnecessary to attain comparable performance to the 

SRNs. His results proposed that they are capable to form internal representations 

without learning them. However, the results were really on the corpus that Elman 

designed. This research is used both approaches to examine them.             

 

2.3 Limitations of Connectionism  

 

Several researchers have used connectionist models to investigate a variety of aspects 

of language acquisition, from inflectional morphology (Rumelhart, Hintont et al. 1986) 

to grammar induction (Elman 1990). Nevertheless, several researchers in the field of 

linguistics have criticised the outcomes of this experimentation and examined the 

applicability of connectionism to language acquisition (Fodor, Pylyshyn 1988, 

Jackendoff 2002). These arguments have focused on problems such as adaptive 

generalisation, scalability, biological plausibility and psychological similarity to human 

learners. 
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One of the issues of the connectionist model is dealing with combinatorial productivity 

of language in natural language processing (NLP). The attention of combinator ia l 

productivity is about the ability to handle a very large lexicon, even if there are simple 

and limited syntactical structures. Strong systematicity is a form of productivity where 

it is the ability to learn a word in a given sentence frame and then used it in a novel 

sentence frame (Marcus 1998). In general, strong systematicity refers to the ability to 

use familiar words in a novel sentence context and/or novel syntactic locations. An 

example is when a noun is in the object location for training, and then they will be tested 

in the subject location. It is very difficult for SRNs to achieve this, specifically because 

SRNs have to learn in the same time the words and their syntactic usage, thus avoiding 

the distinction between lexicon and rule. Van der Velde et al, 2004. in their work stated 

that SRNs failed on the test of combinatorial productivity (when words from sentences 

with the same type were combined, even though all words that were in the sentences 

appeared in the same syntactic locations as in training sentences). SRNs are limited with 

the response to recursive productivity, unlike LSTMs (van der Velde, van der Voort van 

der Kleij, Gwendid T et al. 2004). Moreover, LSTMs cannot deal with any form of 

combinatorial productivity (humans are very good at this).  

 

In his paper, Noel Sharkey et al. (2000) has raised questions regarding whether SRNs 

are sufficient for modelling language acquisition. The sensitivity of SRNs to the initia l 

state is one of the questions and they found that SRNs are extremely sensitive to their 

initial weight configuration. For instance, only one in every forty-five models they used 

was actually able to solve the given problem at all. That means that SRNs cannot be an 

empiricist model of language acquisition. In their study, it was shown that initia l 

conditions interact with training sets. This was an unexpected result even from the point 

of view of a nativist, because it indicates that in order to confirm consistent language 

acquisition, the linguistic examples that the learner will reveal must be known in 

advance. Another issue is the extending long-range sequential capabilities of SRNs, 

which is where the real problem lies in their limitations with respect to embedded 

sequences. SRNs display a limited ability to deal with embedded sequences, failing to 

perform a correct prediction. (Noel Sharkey and Jackson 2000). 

 

Increasing the recurrent network layer units of the SRN is increasing the capacity of the 

network in two ways. The first is called Short-Term Memory (STM), the capacity of 
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the recurrent layer for storage of the input sequences. The second is named long- term 

memory (LTM), the capacity for storing the training examples, these arise because of 

more connection weights to be set. In this way, over-fitting accrues because of 

increasing the LTM capacity. This means that whenever raising the recurrent network 

layer, the positive effects of increasing the STM will become overridden by the negative 

effect of increasing the LTM (Frank 2006). 

 

Tong et al. (2007) stated that in the comparison they did between SRN and ESN for 

learning grammatical structure, the ESN could suffer from cognitively plausible errors. 

This is the ability for the network to learn systematic language behaviour from exposure 

to only a small proportion of possible sentences. Related with the training, Jaeger et al. 

(2012) stated that in order to possess Echo State Property (ESP) (the reservoir state is 

an echo of the complete input history) spectral radius could be tested more than unity. 

Therefore, specific weight patterns cannot be lost. He indicated that Frank’s, 2006 and 

their results are insufficient to confirm that ESN are capable of scaling to a large natural 

language corpus. 

 

2.3.1 Argument against Biological Plausibility  

 

Since the advent of connectionism, there has been continuing arguments concerned with 

understanding the relationship between ANNs and their biological counterparts.  It is 

stated that these arguments show the field’s loss of focus from its founding principle of 

biological plausibility. MLP (Rumelhart, Hintont et al. 1986) is a connectionist model 

that is not a realistic model of the structure, learning process or even the singular 

neurons that are found in biological neural networks.  

 

Recently, connectionist models have been used to model and predict certain aspects of 

brain function. A criticism of such models, however, has been their dependence on BP 

(back-propagation). The argument against the BP is that it is considered biologica lly 

implausible, since it is based on the error back propagation where the stimulus 

propagates forward and the difference between the actual and the desired output 

propagates backwardly. Whereas in the cerebral cortex, a stimulus is generated when a 

neuron fires across the axon towards its end to make a synapse onto another neuron 
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input (Rosa 2005). With this, connectionist networks are deliberately analogous to 

neural processes in the brain. Further biologically plausible ANN models are concerned 

with the connectionist architecture; associated directly with the cerebral cortex 

biological structure, or focused on the neural features and the signalling between 

neurons. The focus of such research is to innovate a more proper model concerning the 

biological properties, structure and functionalities, containing learning processes, of the 

cerebral cortex, not ignoring its computational performance. The selection of the 

approaches upon which the proposed description is based takes into account two main 

criteria (Rosa 2005): the fact that they are considered biologically more realistic and the 

fact that they deal with intra and inter-neuron signalling in electrical and chemica l 

synapses. In addition to this, the period of action potentials is taken into account. 

However, in this study ANNs are used as biologically inspired models to solve and 

investigate language acquisition and are not concerned with simulating cognit ive 

processing accurately.       

 

2.3.2 Argument against Connectionism for Developmental Cognitive 

Modelling  

 

In the last three decades, connectionist modelling has formed an important approach in 

the computational study of cognition. It is distinguished by its focus on the essentials of 

neural computation considering the primitive components, which are the basis for the 

cognitive level models. Connectionism has been applied to various cognitive abilit ies 

such as attention, perception, action, language, concept formation, models of memo ry 

and reasoning (Thomas, McClelland 2008). Many of these models attempt to capture 

adult function, however connectionism is concerned with learning interna l 

representations.    

 

The main struggle for the connectionist theory of the last three decades has been that 

many ANN models, especially the models constructed upon feed-forward 

backpropagation, were confirmed to be implausible for both physiological and 

theoretical reasons (Newell 1994, Lachter, Bever 1988), however these models are still 

widely used in many applications because of their powerful abilities. BP networks, for 

example, can approximate almost any function and are easy to train, because any set of 
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psychological data can be presented as a function that maps input to a behaviour, and 

because a BP network can approximate almost any function. It is therefore not 

surprising that such networks can model a wide range of psychological and other 

phenomena. 

 

Adaptive generalisation abilities of connectionism have been explained by Noel 

Sharkey et al (2000): if connectionist models are to perform functions of human 

cognition, they must present similar developmental properties to those detected by 

humans. His grammatical- transfer trials demonstrated that the SRN is incapable of 

extracting previous grammatical knowledge. These experiments show that if a model 

trained on a particular grammar is exposed to new lexical items, the training times are  

poorly affected. These results are at odds with human performance, where language 

acquisition gets easier as development progresses. 

 

There is a relationship between the ability to perform grammatical-transfer and another 

undesirable behaviour that happens in gradient-descent based connectionist models.  

Catastrophic forgetting, described by (French 1992), is the inability of a neural network 

to retain old information in the presence of new information. Training requires that the 

trained knowledge must be continually refreshed by cycling through the whole dataset; 

otherwise, the existing knowledge is forgotten in favour of the new knowledge. 

Children, however, are capable to learn new knowledge without overwriting the existing 

knowledge. This makes the connectionist behaviour psychologically implausible (Noel 

Sharkey et al, 2000). 

  

2.3.3 Learning Deterministic Representations Using a Continuous State 

Space 

 

The SRN is a connectionist model (Elman 1990) that has been applied to the language 

acquisition task in the form of grammar induction. The task was to learn simple 

approximations of natural language, context-free and regular grammar. These trial 

results proposed that dynamic recurrent networks (DRNs) can learn to mimic finite -

state automata. However, other models of connectionism show several fundamenta l 
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difficulties, which may derive from using a model with a continuous state-space to 

approximate a discrete problem (McQueen, Hopgood et al. 2005). 

 

Supervised connectionist models have shown the capability to learn simple formal 

languages and there are ways of overcoming their instability when dealing with long 

sequences that were not part of their training set (Omlin 2001). SRN (Elman 1990) has 

shown its ability to partition its state-space into areas that are supposed to approximate 

the states in a grammar. Nevertheless, their sensitivity to initial conditions can be 

explained in that each transition between regions of state space will result in a slightly 

different trajectory, which causes instability when transmitting state trajectories that 

were not seen during training (McQueen, Hopgood et al. 2005).   

 

This kind of behaviour is one of the characteristics of supervised dynamic connectionis t 

models and can be determined as both a strength and weakness of this class of model. 

Although this representational power makes the model exceed Deterministic Finite 

Automata (DFA) and mimic non-deterministic systems, it is a significant disadvantage 

when attempting to mimic the deterministic behaviour fundamental to determinist ic 

finite automata.  

 

A number of researchers have tried to produce state-space models by using a step-

function for the hidden layer units (e.g. Zeng, Goodman et al. 1993). Although the 

technique eliminates the instability problem, using a non-differentiable function means 

that the weight update algorithm, which uses the sigmoid function, can only 

approximate the error signal. This weakens the power of the learning algorithm, in some 

cases leading to the model learning an incorrect representation of the DFA and 

increasing training times. (McQueen, Hopgood et al. 2005). 

 

Simple Synchrony Network (SSN) (Henderson, Lane 1998) is a model that overcomes 

instability in continuous state-space models that operate Temporal Synchrony Variable 

Binding (TSVB) to encode entities using pulsing binary threshold units. This technique 

can enhance the power of continuous state space models by providing static building 

blocks within the ever-changing sea of internal representations.  
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Representations done by RNNs have revealed some inherent problems with the 

principle of language learning. According to Kolen, 1994 there are two major problems 

with extraction of a learned automaton. First, sensitivity to initial conditions results in 

non-deterministic machines where their trajectories are indicated by the initial state of 

the network and the dynamic of the state transformation. Secondly, trivial changes in 

observation strategies can cause one to induce behavioural descriptions from a massive 

number of computational complexity classes for a single system.   

 

2.4 Discussion and Conclusion  

 

Many linguists define language acquisition as a complex and powerful system that 

describes and possibly shapes every aspect of human perception (Gordon 2004, Sapir 

1929). Nevertheless, the operation of language acquisition itself is a paradox 

(Jackendoff 2002). Although children seem to be involved in processing their native 

tongue learning, the linguistic input that they experience appears overly sparse for the 

acquisition of a grammar. Classical theories of linguistics have therefore supposed a 

particular level of innate knowledge that constrains language acquisition and provides 

children with an earlier knowledge of grammatical structure. The apparent intractability 

of the problem even when considering an automated language acquisition system has 

engaged researchers to study this field.   

    

Traditional linguists have aligned with modern connectionism by demonstrating that 

linguistic input has not got as much structure as was previously thought. Connectionis t 

and statistical models to learning are of great relevance to the investigation of language 

acquisition as they provide a principled conception of the learning process. Second, they 

also offer potential learning mechanisms for particular aspects of language. Lastly, these 

models allow inferences concerning the nature and extent of innate knowledge, either 

in relation to innate learning mechanisms or to innate knowledge per se. Statistica l 

methods have the problem that they cannot be directly implemented as connectionis t 

networks such as nonparametric statistical methods (rank correlation) (Redington, 

Chater 1998). There is hypothesis that new-borns begin life using statistical processes 

for simpler problems, for example learning the sound of their native language and 

building a lexicon, while grammar is learnt by non-statistical learning, later in 
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development. (Seidenberg, MacDonald et al. 2002) assert that statistical learning ends 

when learning grammar begins. However, this is still a matter of debate and it has 

proven very difficult to detect this boundary (Aimetti 2009). 

In conclusion, adaptive connectionist models are usually capable of detecting statistica l 

regularities in the set of input patterns presented to them, after being suitably trained. 

They are able to perform in reasonable ways when presented with novel input patterns, 

based on what they have learned during training. Their abilit ies, in general called 

induction, interpolation or generalisation, enable them to operate much more flexib ly 

than systems that depend on explicit, rigid rules. 
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Chapter 3 
 

3. Neural Network Architectures   
 

In this chapter, a number of Recurrent Neural Network (RNN) models are reviewed. 

The RNN models reviewed are those commonly used for language modelling tasks and 

more specifically, for the next-symbol prediction task where the aim is to induce a 

reliable underlying finite state automaton directly from linear input sequences (or 

sentence examples). 

 

3.1.  Recurrent Neural Networks 

 

Recurrent Neural Networks (RNNs) are usually employed in cognitive science to 

process symbol sequences that represent natural language information. RNNs are 

normally adaptations of the classical Feed-Forward Multi-Layered Perceptron (FF-

MLP) model to add recurrent connections, which let the network activations to feed 

back to itself or previous layer as input. This kind of connection, produces interna l 

memory that allows the RNNs to construct dynamic internal representations of temporal 

order and dependencies that may be present in the data. (Binner, Tino et al. 2010). The 

units that receive feedback values are referred to as context or state units. In addition, 

nonlinear activations are assumed to be used; the extension of RNNs is naturally done 

by universal function approximation properties of FF-MLPs. This means they provide 

the processing system dynamic properties that are responsive to temporal sequences. 

Many techniques and methods have been tried using feedback connections (Picton 

2000). Moreover, analysis of state space trajectories in connectionism provides new 

insights into the types of processes that may be considered as learning models to acquire 

and represent language without reference to traditional linguistic theories (Čerňanský, 

Makula et al. 2007).   

 

A variety of connectionist models have been studied with a view to modelling natural 

language processing (language acquisition), although there is no consensus regarding 

the best architecture to use (e.g. (Cleeremans, Servan-Schreiber et al. 1989, Plunkett, 

Karmiloff‐Smith et al. 1997, Elman 2001, Tong, Bickett et al. 2007). The way in which 
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the layers of an RNN are interconnected determines its structure. Therefore, various 

RNN topologies have been investigated that have different structures and different 

learning algorithms. SRNs (Jordan, 1986 and Elman, 1990), Time delay neural 

networks, nonlinear autoregressive network with exogenous input, Multi Recurrent 

Networks (MRN), ESN and long short-term memory have been studied.    

    

3.1.1 Jordan Network 

 

(Jordan 1986) describes a network (Figure 3.1) in which the output associated with each 

state is fed back and combined with the input representing the next state. The neurons 

in the state (also known as context) units and the output units are expected to be 

represented as distributed patterns of activation on separate pools of processing units 

(set of units of simple processing units which communicate by sending signals to each 

other over  a large number of weight connections). The connections from state units to 

the hidden units act as input for the network architecture. This network implements the 

output function through weighted connections from the state units to the output units.    

 

State Units

Input Units

Hidden Units

Output Units

 

Figure 3.1 The Jordan Network (Jordan 1986) 
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Hidden units take their input from state units and input units. Each state unit output is 

derived from a combination of a recurrent connection from the state unit to itself, and 

from all the output units. Therefore, the current state depends on the previous state and 

on the previous output. (Jordan 1986). This property, common to all RNNs means that 

they should be able to exploit information beyond the existing input. However, in 

practice this cannot really be exploited (Dorffner 1996). If the weight of a connection 

to a context unit is close to one, the unit (using sigmoid as activation function) saturates 

very quickly to maximum activation, where additional inputs have less effect. If the 

weight is very small in comparison to one, the impact of past estimates quickly becomes 

negligible. 

       

3.1.2 Time Delay Neural Recurrent Network (TDNN) 

 

Another class of dynamic neural network, known as the time delay neural network, is 

presented by (Waibel 1989). TDNNs depend essentially on a special kind of memory 

known as “tap delay line”, where all recent outputs are buffered at different time steps. 

These ‘delay’ connections between the output and input layers provide the network with 

additional memory (Marques, Souza et al. 2005). Representation of a tap delay 

connection is illustrated in Figure 3.2. The response of these neural networks in time t 

is based on the output in times (𝑡 − 1), (𝑡 − 2),… , (𝑡 − 𝑛).   

 

The output of this network is a function of the current external input together with 

outputs as given by: 

 

𝑦(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡 − 1),𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛))                     (3.1) 

 

Where x(t) is the input at time t and y(t-1) is the output at time t-1, n is the maximum 

adopted time-delay. The activation of the unit f at any time step is calculated as follows: 

 

𝑦𝑖
𝑡 = 𝑓(∑ ∑ 𝑦𝑗

𝑡−𝑘 . 𝑤𝑖𝑗𝑘
𝑑
𝑘=0

𝑖 −1
𝑗=1 )                                      (3.2) 
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Figure 3.2 Shifting Recurrent Network 

 

Where 𝑦𝑖
𝑡 is the output of the unit i at time t and 𝑤𝑖𝑗𝑘 is the weight to the unit i from 

the output of the unit j at time t-k. 

 

TDNN has the ability to store temporal information explicitly using time-delayed 

structures (Wah, Qian 2004). Therefore, the delay mechanism supplies the network with 

memory to deal with temporal structure by having the previous state stored in a 

sequence.   

 

3.1.3 Nonlinear Autoregressive Network with Exogenous Input (NARX) 

 

The nonlinear autoregressive model process with exogenous input is a discrete time 

nonlinear system, which is established to be equivalent to a Turing machine (Menezes 

Jr, José Maria P, Barreto 2008).  The architecture, known as the NARX network, is 

depicted in Figure 3.3.  
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Figure 3.3 NARX network with dx delayed inputs and dy delayed outputs (Diaconescu 

2008) 

 

NARX is a feedforward neural network with embedded memory such that copies of 

both the previous inputs and outputs are presented to the hidden layer via two series of 

time-delayed buffers as used with the TDNN. This makes the network dependent on dx 

previous sequence elements and it is identical to using dx input units being fed with dx 

adjacent sequence elements. This input is normally denoted as a time window since it 

provides a limited view on parts of the sequence. It can also be viewed as a simple way 

of transforming the temporal dimension into a spatial dimension (Diaconescu 2008).  

NARX is an important class of discrete time nonlinear system and can be implemented 

using the following function: 

 

𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1), 𝑥(𝑡 − 2) … 𝑥(𝑡 − 𝑑𝑥 ), 𝑦(𝑡 − 1),𝑦(𝑡 − 2) … 𝑦(𝑡 − 𝑑𝑦 ) (3.3) 

 

Where x(t) and y(t) are respectively the input and output of the model at time step t and 

the input and output memory orders are denoted by dx and dy. The nonlinear mapping 

function f describes the hidden layer mapping of its inputs to its outputs. y(t) is the 

output of the net and returned to input as exogenous to the net. For these features, NARX 

is described that has a similarity of the dynamical characteristic of a system efficient ly 
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and a short-term memory (the dynamical features comes because there is one of the 

input of NARX is the output of the network) (Jiang, Song 2010). Moreover, it has been 

shown that this model is good for modelling nonlinear systems such as discrete- time 

non-linear systems (Chen, Billings et al. 1990), dynamic system identification (Qin, Su 

et al. 1992) and long-term dependencies (Siegelmann, Horne et al. 1997). 

  

3.1.4 Simple Recurrent Networks (SRN) 

 

Simple Recurrent Network is an artificial neural network as shown in Figure 3.4, where 

the activations of the hidden units from time t are used as input to the network at time

1t . Recurrent connections provide the network with access to its prior state and 

subsequently the network has the ability to detect and learn temporal relationships 

within the data. The input units 𝐼 and hidden units (recurrent layer) 𝑅 and the output 

units  𝑂 are fully connected through the first order weight  𝑊𝑅𝐼  and 𝑊𝑂𝑅, respectively, 

as in the feedforward multilayer perceptron (MLP). Time delay connections feedback 

the activities of recurrent (hidden) units 𝑅(𝑡) to the context layer, i.e. 𝐶 (𝑡) = 𝑅(𝑡−1) . 

Thus, each recurrent unit is fed by activities of all recurrent units from previous time 

step through recurrent weights  𝑊𝑅𝐶  .  Previous time step of the recurrent units activate 

itself and can be understood as an extension of input to the recurrent units. They 

represent the memory of the network.  

 

Given input symbols in time 𝑡, 𝐼𝑡 = ( 𝐼1
𝑡 , . . . , 𝐼𝑗

𝑡 , . . . , 𝐼|𝐼|
𝑡 )  and recurrent activit ies  𝑅𝑡 =

( 𝑅1
𝑡 , . . . , 𝑅𝑗

𝑡 , . . . , 𝑅|𝑅|
𝑡 ), the recurrent unit’s net input 𝑅̂𝑖

𝑡 and output activity 𝑅𝑖
𝑡 are 

computed as  

 

𝑅̂𝑖
𝑡 =  ∑ 𝑊𝑖𝑗

𝑅𝐼
𝑗 𝐼𝑗

𝑡 + ∑ 𝑊𝑖𝑗
𝑅𝐶  𝑅𝑗

𝑡−1
𝑗                         (3.4) 

Where 

𝑅𝑖
𝑡 = 𝑓(𝑅̂𝑖

𝑡)                                                          (3.5)     

The output unit k computes its net input 𝑂̂𝑖
𝑡  as following: 

𝑂̂𝑖
𝑡 =  ∑ 𝑊𝑖𝑗

𝑂𝑅
𝑗 𝑅𝑗

𝑡                                                  (3.6) 

Where 

𝑂𝑖
𝑡 = 𝑓(𝑂̂𝑖

𝑡)                                                          (3.7)     
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Where |𝐼|, |𝑅|𝑎𝑛𝑑 |𝑂| are the number of inputs, hidden and output units, respective ly, 

and f is the activation function.  

 

(Elman 1990) used the SRN to solve sequence prediction tasks where the network is 

presented with a sequence of symbols one at a time and is required to predict the next 

symbol in the sequence at each time step and over all sequences. 

 

State Units Input Units

Hidden Units

Output Units

 

Figure 3.4 Simple Recurrent Network 

 

Elman (1990) introduced the SRN. This structure has the potential to master a large 

corpus of sequences (the ability to mimic closely a finite state automaton FSA in its 

behaviour and its state representations) with the limited means of a learning procedure 

that is local in time totally (Cleeremans, Servan-Schreiber et al. 1989). The mechanism 

of the simple recurrent network operates as follows: the input sequences are presented 

to the input layer one element at a time. The purpose of the input layer is to feed the 

hidden layer through a weight matrix. In addition, the activations of the hidden layer 

return copies to a context layer after every step, which provides another input to the 

hidden layer (information about the past).  Since the activation of the hidden layer 
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depends on both its previous state (the context unit) and on the current input, SRNs have 

theoretical capacity to be sensitive to the whole history of the input sequence. 

Nevertheless, in practice there are limitations restricting the time span of the context 

information. This has been estimated to be effectively 10 to 15 steps (Stoianov, 2001). 

Ultimately, the hidden layer neurons output their values through the weight matrix 

connecting the hidden layer to the output layer. Then, the activation of it is the product 

of the network. 

 

SRNs have been applied to grammar learning (Elman, 1990), word prediction (Lewis, 

Elman 2001) and many other problems that require sequential information processing. 

SRNs have been successful in extracting the fundamental structure of complex 

embedded sentences. However, their success is dependent on the details of the problem 

and training. (Elman 1993) discovered that presenting the complete range of sentence 

structures to the network in the corpus results in a leak of the performance on the 

complex shapes. For example, SRNs failed to achieve verb agreement across clause 

boundaries. On the other hand, successful results were obtained in the application of an 

incremental training technique (Plunkett, Karmiloff‐Smith et al. 1997). 

 

3.1.5 Multi Recurrent Networks (MRN) 

 

A further development of the RNN is to employ multiple feedback connections to 

enhance performance. (Ulbricht 1995)  introduced the Multi-Recurrent Network (MRN) 

architecture that is illustrated in Figure 3.5. The construction provides three levels of 

feedback allowing recurrent connections from the following: 

 

1. The output layer back to the input layer as established in Jordan networks (1986). 

2. The hidden layer back to the input layer, as found in (Elman 1990) SRNs. 

3.  The connection from the context units within the input layer back to themselves 

(self-recurrent links). 
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Figure 3.5 Architecture of Multi-Recurrent Network  

There are no recurrent or self-recurrent connections from external input units. There are 

additional banks of context units (memory banks) on the input layer. The number of 

additional memory banks followed the Ulbricht (1995) report. Four memory banks used 

φ=4. The context layer represents a flexible memory structure. In the example shown 

in Figure 3.5, the leftmost banks are 100% copies of the previous output/context and 

represent short-term memory. The next banks are 75% copies of the output/context with 

25% self-recurrent feedback of the previous time step. The third banks are 50% copies 

of the output/context with 50% self-recurrency. The final banks are 25% copies of the 

outputs/context with 75% self-recurrent, representing a longer, more rigid memory. 

Binner (2010) demonstrated that moving beyond the four banks does not lead to 

enhanced performance. Rather, it is the number of units within each bank that is pivotal 

to the performance of the network and this can be optimised using the validation set. 

The MRN architecture can be implemented using the following function: 

 

𝑦 (𝑡 + 1) = 𝑔(𝑓 (𝑐(𝑡), 𝑥(𝑡), 𝑊𝑓(𝑡)) , 𝑊𝑔(𝑡))   (3.8) 

 

Where: 𝑦(𝑡 + 1) indicates the predicted values of the symbol. x(t) is the external vector 

of input variables; c(t) is the concatenation of the previous hidden state vector with four 

delays of varying strength and summation of elements of previous output vector with 

four delays of varying strength; Wf(t) is the weight matrix connecting the input layer to 
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the hidden layer; Wg(t) is the weight matrix connecting the hidden layer to the output 

layer; vector function f returns activation vectors from the hidden layer; and function g 

returns activation vectors from the output layers.  

 

3.1.6 Long Short Term Memory (LSTM) 

 

An RNN called Long Short-Term Memory (LSTM) is described in this section 

(Hochreiter, Schmidhuber 1997) and is primarily designed for supervised time series 

learning (Bakker 2001).  The main difference between LSTM and the traditional RNNs 

techniques is its ability to overcome the vanishing gradient problem. That is, the 

influence of a given input on the hidden layer and thus on the output of the network, 

either vanishes or blows up exponentially as it cycles around the recurrent connections.  

 

LSTM networks consist of three layers: input, hidden and output layers as shown in 

Figure 3.6. The main difference between LSTM and traditional RNNs is the hidden 

layer. The hidden units can contain one or more memory cells which are connected to 

all cells and gates. In addition, these cells are connected to the output units and the gates 

are connected to other cells and gates in the hidden units. The memory cell is a linear 

unit with self-connection that has a weight of value one. The cell maintains its current 

activation over time when there is no input. The input to the memory cell is passed 

through a squashing function and gated (multiplied) by the activation of the input gate. 

Therefore, the input gate controls the flow of activation into the cell. Before the memory 

cell’s output is gated, it is passed through a squashing function by the output gate 

activation. Therefore, the flow of activation from cells to outputs is controlled by the 

output gate. The input and output gates learn to open and close in order to allow new 

information into the cells and allow the cells to influence the output during the training 

process. (Hammerton 2001, Hammerton 2003).              
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Figure 3.6 A LSTM memory block with one cell and its gate units 

 

3.1.7 Echo State Networks (ESNs) 

 

Supplemental recurrent neural networks, also known as ESN, were proposed by (Jaeger 

2001). ESNs were developed to learn nonlinear systems for prediction tasks. This type 

of RNN is constructed from the concept that the recurrent dynamic part of RNNs does 

not need training. Instead, it functions as a non-specific memory; that is why it is called 

a dynamic reservoir, which makes it keep information about the input sequence by 

allowing activations to rebound around the recurrent units (Frank 2006). The two 

architectures for ESNs that are investigated in this research are shown schematically in 

Figure 3.7. A typical ESN is an RNN in which all the connections (weights) from the 

input to the hidden units (reservoir or recurrent) and from the output to the reservoir 

units are fixed. The only trainable weights are from the reservoir nodes to the output 

units. In the jumping connection architecture, they remove the connections from the 

output to the reservoir are the only noise version of the current step’s inputs (Tong, 

Bickett et al. 2007).  Therefore, the training weights in this model are defined as: 

 

𝑉𝑜𝑢𝑡(𝑡)=𝑊𝑜𝑢𝑡(𝑉𝑖𝑛(𝑡) ,𝑉ℎ𝑖𝑑𝑑𝑒𝑛(𝑡)).  

Where 𝑉(𝑡)  is a vector that indicates the activation of the hidden units at time t. the rest 

of the architecture is the same as the standard ESN.  
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 A. Standard ESN

Dynamical 
Reservoir 

Input Units

Output Units

B. Jumping connection ESN
 

 

Figure 3.7 ESN Architectures: Solid arrows indicate fixed connections and dashed 

arrows indicate trained connection. 

 

ESNs use a simple learning algorithm for dynamical systems. It works by training linear 

readout neurons that combine the signals from a random fixed, excitable “reservoir” 

network (pseudoinverse method is used). A standard ESN is a simple discrete- time 

RNN that has three layers: an input layer (units), a recurrent layer also called reservoir, 

internal or hidden units. It is the core of the ESN structure and the readout layer extracts 

information from the reservoir. The network is fed each time step t with input vector 𝑢𝑡, 

which drives the dynamic of recurrent layer, 𝑥𝑡 and output vector 𝑦𝑡 . An input vector 

𝑢(𝑡 + 1) at time step (𝑡 + 1), with activations of recurrent units, 𝑥(𝑡 + 1), is generally 

updated according to: 

 

𝑥(𝑡 + 1) = 𝑓 (𝑊𝑥(𝑡) + 𝑊𝑖𝑛𝑢(𝑡 + 1))                                    (3.9)             

 

In addition, output units, y(t+1) are used to extract interesting features from this rich 

reservoir of dynamics, therefore, only reservoir output connections, OutW  are 

modified during the learning/ training process, the output is computed according to 

𝑦(𝑡 + 1) = 𝑔(𝑊𝑂𝑢𝑡 ∗ 𝑥(𝑡 + 1))                                                (3.9) 

Where 𝑓is the internal unit’s activation function (tansig, sigmoid, etc.), 
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Out   W  , andWW in
 are Input-hidden, Hidden-hidden, Output-hidden connection 

matrices respectively and 𝑦(𝑡) is the output of the ESN. The weight matrices are 

initialised randomly and are kept fixed except for the output matrix, which is adapted 

through learning. The weights in the reservoir layer are assigned randomly to sparsely 

and randomly connect neurons. The magnitude of the spectral radius determines the 

persistence of memory. To scale the initial weights to a desired spectral radius we 

calculate hidden weights as: 

𝑊𝑖𝑛 =
𝛼𝑊′𝑖𝑛

|𝜆𝑚𝑎𝑥 |
                                                                                (3.10) 

Where 𝜆𝑚𝑎𝑥  is the maximum eigenvalue of 𝑊′𝑖𝑛 and 𝛼 is the spectral radius 0 < 𝛼 < 1. 

This is used to ensure the echo state property (ESP) i.e. that the activation of the 

reservoir layer forgets asymptotically. Because of this, the history of the input sequence 

has a decreasing effect on the current activation as new symbols are input to the 

network. Scaling the weights of the reservoir determines the ESP. This guarantees that 

the activity of the reservoir, driven by input sequences with comparable history, will 

converge to close regions of the state space (Rachez, Hagiwara 2012). Settling Time 

(ST) is measured by the number of iterations allowed in the recurrent layer after its 

excitation by an input and before the sampling of the output. A smaller ST means that 

the iteration is short term or truncated and the output is available soon after the input is 

passed to the reservoir. However, a higher ST indicates more iteration in the network 

and that the output is delayed (Venayagamoorthy, Shishir 2009).   

 

The ESN method differs from other RNN approaches in having a large number of 

recurrent neurons (in the order of 50 to 1000 neurons). As previously stated, only 

synaptic connections from the RNN to the output units are updated i.e. the only 

connections that are updated are the connections from the recurrent layer (reservoir) to 

output units. In this investigation two different training approaches were used as 

mentioned before. The standard ESN by Jaeger and the jumping connection version 

where there are trained connections from input to output layer as well as from reservoir 

to output layer, as shown in Figure 3.7 B.  
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3.2. Summary  

 

This chapter provides an overview of different RNN approaches that might be used for 

grammar induction. RNNs have been applied to grammar inference such as SRN, MRN, 

NARX and ESN. The performances of these different architectures for grammar 

induction has been investigated. Some modifications have been done on these models 

(e.g. learning rate, number of hidden units, activation functions, etc.). Almost all the 

networks share the same learning algorithm (back-propagation through time) except for 

the ESN structure. This research considers several RNN approaches with some 

modifications in their architectures and parameters to try to enhance their performance.  

Moreover, SRN, Jordan, TDNN, NARX and MRN are used to evaluate the role of 

different recurrencies and the role of memory rigidity (in terms of past and current 

information). This will be discussed in chapter four. This research aims to investiga te 

their limitations and make comparisons between the various RNNs to find the optimal 

approach for grammar inference. 
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Chapter 4 
 

4. Data and Methodology 
 

This chapter describes the data sets and methodologies used to fit, select and evaluate 

the RNN used to model the data.  One of the principle aims of this study is to determine 

the class of RNNs that is able to robustly learn to represent the underlying finite state 

automata describing the languages used. In this chapter, a number of popular RNNs will 

be considered.  

 

4.1. The Reber Grammar Datasets 

 

Fundamentally, two different types of data sets are used in this research. The first data 

set type consists of sentence strings generated from a regular grammar. The purpose 

here is to ascertain whether the RNNs are able to discover the underlying finite state 

automaton used to generate the data.  Finally, the second type consists of sentence 

strings generated from a context free grammar. The purpose here is to discover whether 

the RNNs are able to discover the underlying linear bounded automaton used to 

generate the data. Both data sets are based on the popular Reber Grammar (Reber, 

1976), which is discussed below. 

 

Many researchers have argued that people can learn complex tasks in distinct ways 

based on implicit or explicit learning (e.g. Reber 1976, Dienes, Broadbent et al. 1991).  

The methods are distinguished in two ways: the conditions that elicit them and the type 

of knowledge that they result in. Implicit Learning (IL) is the learning of the 

complicated information or data without fully understanding what has been learned 

(Sun, 2008). IL has been illustrated using a variety of experimental paradigms that differ 

in the type of indicator used and in the type of implicit knowledge acquired. In the 

Artificial Grammar paradigm (AG), artificial grammar learning consists of complex 

rules that determine the sequence of letters producing short strings (Rosas, Ceric et al. 

2010). 
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Artificial grammar learning is the paradigm that has been used largely to investigate the 

acquisition of implicit knowledge (Reber 1976, Reber, Kassin et al. 1980). The practise 

contains a comparison of performance on two tests. Initially, participants study 

sequences of symbols generated by an artificial grammar shown in Figure 4.1. In the 

first test, participants are asked to distinguish between grammatical and ungrammatica l 

sequences. After that, they may be asked, whether they recognise sequences, whether 

they can orally report the foundation of their choice, or may be questioned about the 

nature of the grammar. Reber, 1976 found that participants classified 79% of test 

sequences in accordance with the rules of grammar. However, participants were 

incapable of describing those rules. A reason for selecting this grammar is due to its 

previous widespread use in numerous psychological trials on implicit memory (Reber, 

Kassin et al. 1980, Perruchet, Pacteau 1990, Rosas, Ceric et al. 2010). This work mirrors 

those experiments by training the networks and evaluating their environments. The aim 

of the task is to predict the next symbol following on from previous symbols in a 

sequence of letters.  

                 

4.1.1 Symbol Representations 

 

In language, there are techniques to represent non-numeric data to a neural network. 

Take for instance representing the four characters a, b, c and d in a network. There are 

three basic techniques to represent them. First, represent them using one signal and 

assigning numeric values to the characters, such as 𝑎 = 0.0,𝑏 = 0.3, 𝑐 = 0.6 𝑎𝑛𝑑 𝑑 =

0.9.  This method will fail, as it is difficult to interpret the data precisely; if the network 

cannot provide the decision concerning which of the two outputs is correct, it naturally 

produces an intermediate value. The second way is to represent them by using two 

binary signals: 𝑎 = [0,0],𝑏 = [0,1],𝑐 = [1,0]𝑎𝑛𝑑 𝑑 = [1,1]. This representation 

suffers from the same problem as the output of the network could be [0.5, 0.5]. The 

third technique is using localist mapping. Here, every symbol will be linked to a specific 

cell in the representation and only one cell in the representation can contain a one. 

Therefore, to represent the four letter the representation will require𝑎 = [1,0, 0, 0],𝑏 =

[0,1, 0, 0],𝑐 = [0, 0,1, 0], 𝑑 = [0, 0,0, 1]. In this situation, four signals are needed. The 

problem of the two previous cases will not occur here (Tjongkimsang 1992). This 

representation does not have the problem of the two previous techniques. If the network 
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produces  an intermediate value the candidates  that it suggests can unambiguously be 

pointed at; for example, presume that the network outputs [0.5, 0.5, 0,0] then it was 

difficult for the network to choose between a and b. In addition, all the representation 

patterns are equally similar. Therefore, the network is unable to recognise non-intended 

similarities from the representations. The disadvantage of this technique is more 

training time, especially when there are many symbols to be processed (more units, 

links and weights). When considering large representations and non-intended 

similarities problems between patterns, a balance can be found by choosing an 

intermediate representation size, and letting the network find out meaningful 

representations of that size. Three methods have been demonstrated for allowing 

networks to build fixed length representations for symbols (Elman 1990, Blank, Meeden 

et al. 1992).  The task that the network learned to perform with the symbols is then 

coded in the representations built by the network. Therefore, a different network task 

will lead to different representations. 

 

The input layer consists of seven neurons for all the networks that have been examined 

in this research. The activation function used for both hidden and output layers was 

binary sigmoid; the learning rate was 0.15; and the momentum coefficient was 0.75. 

These values were arrived at as optimal settings after extensive training on the Reber 

grammar problem, where a range of values of learning rate and momentum were 

systematically applied. The symbols represented to the input layer are coded to the 

network using a localist mapping as shown in Table 4.1. The context unit, will have as 

input, a copy of the activation function of the hidden layer. 

 

Grammatical pattern Orthogonal vector 

B 1 0 0 0 0 0 0 

P 0 1 0 0 0 0 0 

S 0 0 1 0 0 0 0 

T 0 0 0 1 0 0 0 

V 0 0 0 0 1 0 0 

X 0 0 0 0 0 1 0 

E 0 0 0 0 0 0 1 

Table 4.1 Orthogonal binary vector representations for input patterns. 
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The output layer also consists of seven neurons to represent a letter. A sequence of n 

patterns is coded at each time step t as x(t) symbol and expecting the net to predict the 

next symbol in the sequence x(t+1). Each pattern consists of two input vectors and one 

target vector. The target vector is a seven-bit vector representing element t+1 of the 

sequence. The two input vectors are: 

 The hidden unit (i.e. context nodes) at time t-1.  

 A seven-bit vector representing input at time t of the sequence. 

 

Another representation was used in the trials. The purpose is to make the representation 

of the letter more effective; there are no zero inputs so each input will have some 

significance and thus cause a weight change resulting in learning for all weights. 

Symbols that are not active are represented by 0.2 and those that are active represented 

by 0.8. The coding of the symbols represented to the networks is demonstrated in 

Table 4.2. 

 

Grammatical pattern Orthogonal vector 

B 0.8 0.2 0.2 0.2 0.2 0.2 0.2 

P 0.2 0.8 0.2 0.2 0.2 0.2 0.2 

S 0.2 0.2 0.8 0.2 0.2 0.2 0.2 

T 0.2 0.2 0.2 0.8 0.2 0.2 0.2 

V 0.2 0.2 0.2 0.2 0.8 0.2 0.2 

X 0.2 0.2 0.2 0.2 0.2 0.8 0.2 

E 0.2 0.2 0.2 0.2 0.2 0.2 0.8 

Table 4.2 Orthogonal vector representations for input patterns 

 

4.1.2 The Regular Grammar: Simple Reber Grammar  

 

This study uses Reber’s small finite-state grammar (Reber, 1976), shown in Figure 4.1. 

It is a deterministic finite automaton capable of generating some regular language L; an 

element or sequence s, where𝑠 ∈ 𝐿, is generated according to Reber grammar’s rule 

(grammatical). Moreover, other invalid sequences can be generated (ungrammatica l) 

that do not follow the Reber rules. 

  

Finite-state grammars consist of nodes connected by labelled arcs. A grammatica l 

sequence is produced by entering the network through the B ‘Begin’ node and by 
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moving from node to node until the E ‘End’ node is reached. Every transition from node 

to node generates the corresponding letter to the label of the arc linking between these 

two nodes. The elements of the language are illustrated as follows: 

𝐿 = {𝐵, 𝑃, 𝑇, 𝑆, 𝑋, 𝑉, 𝐸} 

 Examples of sequences that can be generated by the grammar are ‘BTSXSE’ 

‘BPTVPSE’ ‘BTSXXTTVVE’. 

 

Two occurrences of the same letter may lead to different nodes. This makes it difficult 

to predict its successor. In order to perform the task sufficiently, the network has to 

encode the letter context instead of just identifying the current letter.   

 

 

Figure 4.1 The finite-state grammar (FSG) used by Reber 

 

4.1.2.1 Reber Grammar Dataset   

 

Three datasets were randomly generated and examined, the sequences were unbiased 

sequences, and that is, each transition arc from node to another or itself (self-loop ing) 

has the same probability of 0.5. The size of datasets used consisted of 60,000, 100,000 

and 1,000,000 randomly generated training sequences with resulting average weighted 

lengths of 7.9, 7.97, and 7.95, have SD of 3.2, 3.3 and 3.26 respectively. In addition to 
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these, two testing datasets were randomly generated; the first is 33335 grammat ica l 

sequences and 200,000 ungrammatical sequences. The grammatical sequences 

generated from the grammar are shown in Figure 4.1. A sequence starts with the initia l 

symbol ‘B’ and follows a pattern of two possible symbols selected at random at each 

node, with a probability of 0.5 for each (symmetrical sequences). Each pattern was then 

presented sequentially to the networks. The activation of the context units were reset to 

zero at the beginning of each sequence. After each pattern, the error between the 

network’s prediction and actual successor specified by the sequence was computed and 

back propagated. All three datasets were generated randomly and the sequence lengths 

in each ranged from five to 32 patterns.  

 

The weighted mean used for calculating the average length of the strings was as follows.  

The equation is: 
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Where, w is the number of times a particular sequence length is repeated and x is the 

length of a sequence, n is the number of observations (number of sequence lengths).  

Standard Deviation (SD) has been calculated according to equation 4.2 {the average 

distance from the mean of the data set to a point}. 
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                                                  (4.2)           

Where   𝑥̅= is the weighted mean, 𝑥𝑖= are the observations and 𝑤𝑖 = are the weights. 

 

4.1.3. The Context-Free Grammar: Embedded Reber Grammar (ERG) 

 

Embedded Reber Grammar (ERG) (Cleeremans, Servan-Schreiber et al. 1989, Fahlman 

1991, Hochreiter, Schmidhuber 1997, Gers 2001) is an extension to simple Reber 
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grammar. Both grammars are in the form nLm\aLb, where n, m, a and b are unique 

strings included in L. Therefore, ERG is much more difficult because the neural network 

must have to remember the initial sequence for several number of previous time steps; 

In other words, the last symbol of a valid sequence is determined by the first one and is 

independent of the sub-sequencing in between. As a result of this, the memory of the 

past sequence required to predict the ultimate symbol (penultimate) is considerably 

larger in this case; because the network must observe the initial symbols ‘T’ or ‘P’ and 

must retain this information while processing an embedded sequence or arbitrary length. 

This is what makes the prediction task much harder.       

 

Consider the problem of number agreement demonstrated by the following two 

sentences: 

 

The dog that chased the cat is very playful. 

The dogs that chased the cat are very playful. 

 

At first glance, information about the head of the sentence does not seem to be relevant 

for processing the embedded clause itself. Nonetheless, from the perspective of a system 

that is continuously generating expectations about possible succeeding events, 

information about the head is relevant within the embedding. For instance, the 

embedded clauses require different agreement morphemes (chases vs. chase) when the 

clause is in the present tense, etc. Moreover, even after the same word has been 

encountered in both cases, expectations about possible successors for that word remain 

different. There is sufficient empirical evidence to support the claim that human subject s 

do generate expectations continuously in the course of natural language processing. 

(Servan-Schreiber, Cleeremans et al. 1989) devised a finite-state grammar, based on the 

Reber grammar, called the Embedded Reber Grammar, in which the identity of the last 

letter depends on the identity of the first one.  

 

The ERG used for the neural networks to learn the paths of a transition diagram are 

depicted in Figure 4.3. A sequence is generated by travelling from the leftmost node to 

the rightmost. The ERG is contained from two parallel Reber grammar diagrams that 

raise the number of pathways to make the task more difficult. In the embedded Reber 

grammar Figure 4.2, the first symbol after B serves as a pointer that uniquely determines 
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the penultimate symbol in a sequence before the last symbol, E. The embedded section 

between these two symbols comprises letters generated by the Reber grammar. The 

relevance of the embedded Reber grammar to natural language processing is that such 

complex embedded clauses occur in natural language and every natural language 

processing system must have the ability to preserve information about long-distance 

contingencies in order to ensure that sentences containing embedded sequences are 

processed correctly (Cleeremans el at. 1989). 
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Figure 4.2 A complex finite-state grammar involving embedded sequences. 

 

Two kinds of datasets of ERG generated, biased and unbiased sequences (Symmetr ica l 

and Asymmetrical). In symmetrical sequences, the sequences generated randomly as 

training proceeded with each of the two possible successor symbols at any state being 

equally likely, probability of 0.5. In addition to this, asymmetrical sequences generated, 

in this method of generation exaggerates the bias of the training set toward upper part 

of the embedded, if transition probability is ‘T’, or toward bottom part of the embedded 

if transitioned to ‘P’. Therefore, a network receives some steady, continuing 

reinforcement for remembering whether it is in the upper or bottom embedded of the 

grammar. One of the aims of this research is to investigate which of the training dataset s 

is better to preserve information about the predecessor of the embedded sequences 

across symmetrical and asymmetrical sequences.    
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4.1.3. 1 Symmetrical Sequences 

 

This section describes and explains the random datasets generated as unbiased datasets, 

(Cleeremans, Servan-Schreiber et al. 1989, O'connell 1995) generated 2.4 million letters 

to present to the network. In this research, 300,000 sequences that are approximate ly 

2.65 million letters randomly generated that is comparable with their work, the maximal 

length is 27 and the weighted mean is 9.81.and SD 3.03. Equation 4.1 and 4.2 show the 

formula used to calculate both weighted mean and SD.  

 

Table 4.5 describes the number (frequency) of sequences at each length together with 

the statistical characteristics of the data set and the total number of patterns. The 

generation of sequences was illustrated as in the regular grammar: for each time step, 

the next symbol is generated from a choice of two with equal probability 0.5, except for 

the last symbol where there is one choice. Therefore, information about the starting 

symbol is not locally relevant to predicting the successor of any letter in the embedding.  

 

Length Frequency Length Frequency Length Frequency Length Frequency 

6 74815 12 14656 18 1821 24 323 

7 55983 13 9665 19 1281 25 116 

8 37624 14 6712 20 893 26 24 

9 42094 15 4830 21 619 27 1 

10 23649 16 3391 22 627 
 

11 17871 17 2489 23 516 

Number of Sequences 300000 Standard Deviation 3.03 

Weighted Mean 9.81 Number of Patterns 2643125 

Table 4.3 Characteristics of the 300000-Symmetrical-embedded-Reber 

 

The 300,000 dataset is generated probabilistically, therefore it will include some natural 

replication of sequences. Another 1,000 sequences test file was generated in the same 

way but was followed by the removal of naturally replicated sequences in the dataset. 

The entire sequences are a unique form not replicated as with Cleeremans Servan-

Schreiber et al (1989), there is a naturally occurring overlap between the training and 
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test samples of 79.8%. The maximal length for unbiased testing dataset was increased 

to 36. The weighted mean is 18.52 and the SD 4.4. Table 4.6 illustrates the contents of 

the dataset. 

Length Frequency Length Frequency Length Frequency Length Frequency 

6 4 14 68 22 54 30 5 

7 6 15 89 23 29 31 2 

8 8 16 100 24 30 32 3 

9 14 17 96 25 15 33 1 

10 18 18 94 26 9 35 1 

11 26 19 82 27 7 36 1 

12 38 20 82 28 9 
 

13 50 21 58 29 1 

Number of Sequences 1000 Standard Deviation 4.4 

Weighted Mean 18.52 Number of Patterns 17521 

Table 4.4 Characteristics of the 1000 Symmetrical Testing Dataset (Embedded Reber 

Grammar) 

 

In Figure 4.3 the transition probabilities of the whole arcs were equal and set to be 0.5, 

giving rise to what are called symmetrical sequences. Figure 4.3 also shows an 

embedded Reber grammar but the probabilities of a route being selected are biased 

toward the top arcs for the top embedding, and toward the bottom arcs for the bottom 

embedding.  

 

4.1.3. 2 Asymmetrical Sequences 

 

The resulting training sequences would contain some indication as to which of the two 

embedded grammars it belonged to which may help the RNNs to identify the 

appropriate exit transition.  
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Figure 4.3 Embedded Reber grammar biased symbols (Asymmetrical). The numbers 

above each arc indicate the transition probabilities in the biased form of the grammar 

 

Therefore, this means that when symbols within an embedded clause relate to the 

subject (symbols before entry into embedding) then the network has a greater chance of 

learning to exit the embedding correctly. To illustrate the argument about the 

embedding more clearly: in natural language we are assuming the following words 

relate to the subject. For example: 

 

(1) The cats [when the weather was windy and wet] were hungry.  

 

In sentence (1), little or no clue is provided within the embedded clause to indicate that 

the subject is plural. Generating sequences with equiprobable transit ions as in sentence 

1 are referred to as symmetrical sequence data, and how this is implemented is discussed 

in detail below. 

 

(2)  The cat [who is lost and has a wet coat] is hungry.  

 

In sentence (2), clues are provided within the embedded clause to remind the RNN that 

the subject is singular. Data generated in this way results in asymmetrical sequence data 
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and what will be called an asymmetrical data set. It was therefore decided to generate 

both symmetrical and asymmetrical data to determine if the asymmetr ical data helps the 

learning of such cross-serial dependencies and to explore this property if it does. 

 

Another 300000 sequences were generated; the sequences are asymmetrical strings 

where the top sub-grammar was slightly biased towards the top nodes. The probability 

of the first T was 0.7 with 0.3 for the first P, 0.7 for the second S with 0.3 for the second 

X and 0.7 for the second P with 0.3 for the second V. Equally; probabilities in the bottom 

sub-grammar were biased in the opposite direction. The probability distribution used in 

the dataset generation is shown in Figure 4.3. In addition in this dataset, there are 21.2% 

of the sequences not in the training dataset (unique), the percentage of the matchless in 

unbiased test dataset is 34.8%. The maximal length is 26 with average length 8.78 and 

SD 2.31. Table 4.5 illustrates the file contents.     

 

Length Frequency Length Frequency Length Frequency Length Frequency 

6 121318 12 8351 18 539 24 58 

7 58871 13 5216 19 345 25 22 

8 33250 14 3089 20 262 26 10 

9 33953 15 2221 21 172 

 10 18986 16 1410 22 113 

11 10877 17 839 23 98 

Number of Sequences 300000 Standard Deviation 2.31 

Weighted Mean 8.78 Number of Patterns 2334544 

Table 4.5 Characteristics of the 300000 Asymmetrical Dataset 

 

Another 1,000 sequence test file was generated in the same asymmetrical way but 

followed by the removal of repeated sequences in the dataset. The maximum length for 

testing datasets is 36 and the weighted mean is 18.52 with SD 4.4. Table 4.6 illustra tes 

the contents of the dataset. 
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Length Frequency Length Frequency Length Frequency Length Frequency 

6 4 12 38 18 116 24 20 

7 6 13 50 19 110 25 9 

8 8 14 68 20 75 26 5 

9 14 15 91 21 53 

 10 18 16 107 22 39 

11 26 17 117 23 26 

Number of Sequences 1000 Standard Deviation 3.63 

Weighted Mean 17.928 Number of Patterns 16928 

Table 4.6 Characteristics of the 1000 Asymmetrical Testing Dataset 

 

4.2. Model Fitting 

 

In this section, techniques used to evaluate and optimise the networks are considered. 

Six, varied network architectures (Jordan, TDNN, NARX, SRN, MRN and ESN) are 

compared and their limitations studied. In order to improve the performance of some of 

the networks, a regularisation method is used for controlling the complexity of the 

model. It attempts to overcome the over fitting problem by using a flexible model with 

constraints on the values that model parameters can take, normally through the addition 

of a penalty term (Zur, Jiang et al. 2009). There is a wide range of techniques for 

regularising neural network models that have been developed. For instance, Bayesian 

methods (MacKay 1995), weight elimination (Weigend, Rumelhart et al. 1991), 

Dropout (Hinton, Srivastava et al. 2012). The regularisation mechanism was used in 

SRNs, NARX, MRNs and ESN. The reasons behind choosing these networks were their 

performance on the task compared with the other networks (outcome of the networks), 

trying to improve the performance and the effect of regularisation on different networks 

architectures. Also, in this section, a summary of Backpropagation through Time (BPT) 

is described, together with some learning algorithms and the Taguchi method (Roy 

2010). In addition to these, the way in which internal representation of SRN, NARX, 

MRN and ESN (hidden units) are analysed using principle components analysis is 

described. 
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4.2.1. Overview 

 

This section, describes the methods used in the training, testing and understanding of 

the networks. The size of the input and output layers for all models was seven units (due 

to the number of symbols that the grammar has) for the next symbol prediction task. A 

single hidden layer was used in all cases following the networks architectures adopted 

by the inventors. The hidden layer sizes for the SRN models varied from 3 to 25 hidden 

units. The reservoir size for the ESN models ranged from 30 to 700 hidden units. The 

activation functions used here for all the networks except the ESN were binary sigmoid 

for both hidden and output layers. For the ESN the functions were tanh and sigmoid for 

reservoir and output layers respectively. The non-linear activation functions allow the 

networks to solve problems, which are out of reach of linear networks. Therefore, this 

can introduce a non-linearity system into the network. The range of the random weights 

for the networks was - -0.3 to 0.3. The context units are initially set to 0.5. The learning 

rate was 0.15 and the momentum coefficient was 0.75 (excluding for the ESN where 

they are not applicable). The prediction was considered correct if, for each pattern in a 

given sequence, the activation for the correct successor symbol was greater than 0.3 or 

0.38 used when the dataset uses ‘symbol representations orthogonal binary’ and 

‘fraction vectors’ respectively. If this criterion was not met, the sequence was 

considered as rejected for both cases. This will be further explained later in the next 

chapter.  

 

Each training experiment was repeated 15 times (with the same architecture and training 

parameters) to explore and account for sensitivity to the initial state determined by the 

randomly generated starting weights. 

 

Cross validation is a technique used to estimate the prediction error (estimate how well 

a model has been trained). It is used to try to avoid over-fitting of the training to the 

data. Over-fitting can arise where there is: a small training set (patterns that in small 

training set may be spurious and due to noise); noise in the data (the likelihood of 

spurious patterns that do not reflect actual patterns in the domain increases); and where 

there are many features in the dataset (each feature provides an opportunity for spurious 

patterns to show up). In contrast, the datasets used in this study, were without noise. 
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Cross validation is not therefore used in this study. Since the data applied in this research 

is the same as the training methodology used by Cleeremans et al 1989 and Bob Cartling 

2007.  

 

4.2.2. Model Selection 

 

It is illustrated in much neural network research that adding additional noise to the input 

data during training can, in some situations, lead to significant improvements in 

generalisation performance (Bishop 1995, Zur, Jiang et al. 2009, Rifai, Glorot et al. 

2011). The noise is used for the regularisation of the network. Various techniques to 

achieve regularisation of a parametric model, weight decay or output smoothing are 

used to avoid over-fitting during the training stage of the considered model. According 

to the Bayesian theory, a number of regularisation techniques correspond to imposing 

specific prior distribution on model parameters (Rifai, Glorot et al. 2011).  

One of the methods of regulation, called noise injection, enhances complex models 

indirectly by adding noise to the training dataset (Zur, Jiang et al. 2009). According to 

(Matsuoka 1992) if there is an ambiguous mapping from the input space to the output 

space it should be smooth. Then the noise injection can enhance the generalisat ion 

ability of the learning algorithm. However, if this condition does not accrue, the method 

might produce a weak and bad generalisation capability. In addition to this, it is used to 

improve the generalisation performance when the number of input samples is relative ly 

small or heavily contaminated with noise. The purpose in this research is to improve 

the performance of the networks by adding random noise to the input data during 

training. Since the best-performing network was, the multi-recurrent network, it was 

investigated first by adding two types of noise injection: random noise vector onto each 

input pattern and a random noise neuron injection. Then, these techniques were also 

used with the SRN and ESN. Figure 4.4 and Figure 4.5 display SRN and MRN using 

noise injection respectively.  

 



Chapter 4: Data and Methodology  

 

59 
 

Output Units

Input Units

Hidden Units

Context Units
Noise Units

i

 

Figure 4.4  SRN with noise-injection units 
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Figure 4.5 MRN with noise-injection units 

 

Two types of noise injection were tried: first, one noise-injection unit was inserted with 

the input; and second, seven noise-injection units were inserted on the input (one per 

data input unit). A range of noise levels was used with asymmetrical training sequences 

since the performance of the networks on asymmetrical sequences is superior to that 

with symmetrical sequences. These values were in ranges between plus and minus 

0.005, 0.01, 0.3, 1, 1.25, 2.5 and 5 for one- noise unit and 0.005, 0.01, 0.03125, 0.25, 

0.5, 1, and 1.25 for the seven unit architecture. Real random numbers in these ranges 
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were added to the network as noise, with the input for each symbol entered. Results are 

illustrated and discussed in the next chapter. 

 

4.2.2.1 Backpropagation through Time (BPTT) 

 

Many learning algorithms can be used with recurrent neural networks. They can be 

divided into two groups: algorithms working online (Real Time Recurrent Learning, 

dynamic Backpropagation) and algorithms working offline Backpropagation thro ugh 

time (BPTT). The latter is the most popular method for achieving supervised learning 

and this is the method used in this work. 

 

The discrete-time RNN learning algorithm entitled BPTT (Rumelhart, McClelland 

1985) is described. It is a very powerful procedure. It can be applied to many temporal 

classification problems; however, it requires considerable computational power to 

achieve a high level of accuracy (Principe, Kuo et al. 1993, Boné, Crucianu et al. 2002, 

Smith 2002, Grüning 2007). Figure 4.6 is a schematic of BPTT. At the start, the outputs 

of the BPTT algorithm are computed for all time steps. Then, the gradient is computed 

by starting at the last time step and working backwards in time.      

 

BPTT provides a solution to the cycling connections between the nodes in RNNs by 

stacking identical copies of the RNN and obtaining connections between subsequent 

copies by redirecting the connections within the network. Whereas the feedforward 

backpropagation algorithm cannot be directly transferred to RNNs because the error 

backpropagation pass requires that the connections among the neurons induce no cycle 

ordering. Unfolding the recurrent network in time is the solution used in the BPTT 

algorithm; that is stacking identical copies of the recurrent neural network, and 

redirecting connections among the networks to gain connections between subsequent 

copies. Therefore, a feedforward network has been obtained, which is adjustable by the 

backpropagation algorithm.   
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Figure 4.6 Schema of the basic idea of Backpropagation through Time (Jaeger 2002)  

 

The network is trained according to the rule 

𝜕𝐸

𝜕𝑤𝑖𝑗
= ∑ 𝛿𝑖(𝑡)𝑥𝑗(𝑡 − 1)𝑥𝑖(𝑡)(1 − 𝑥𝑖(𝑡))𝑇

𝑡=1                             (4.3) 

Where  

𝛿𝑖(𝑡) = −𝑒𝑖(𝑡) + ∑ 𝑤𝑗𝑖𝑥𝑗(𝑡 + 1)(1 − 𝑥𝑗(𝑡 + 1))𝛿𝑗(𝑡 + 1)𝑗     (4.4) 

 

Also, ei(t) is the output error, xi(t) represent the activations and δ i(t) are backpropagated 

errors. Formulae defined in 4.3 and 4.4 constitute the BPTT algorithm (Prokhorov, 

Feldkarnp et al. 2002). 

 The input/ output time series are denoted by: 

𝑥(𝑡) = (𝑥1(𝑡), … , 𝑥𝑛(𝑡))′ ,𝑑(𝑡) = (𝑑1(𝑡),… , 𝑑𝑚 (𝑡))′    t=1… T (4.5) 

 

The BPTT learning algorithm consists of two passes; forward and backward. In the 

forward pass, the stacked network starting from the first copy to the end of the stack is 

updated in one training epoch. The input x(t) is first read in at each copy n and time t , 

then from x(t) and u(t+1) { and from y(t-1)if nonzero 𝑤𝑖𝑗
𝑏𝑎𝑐𝑘 exist} the hidden state u(n) 

is computed. Then, the current copy’s output y(n) is computed. The minimized error is 

calculated as follows:  

 

𝐸 = ∑ ‖𝑑(𝑡) − 𝑦(𝑡)‖2 = ∑ 𝐸(𝑡)𝑡=1,…,𝑇𝑡=1,…,𝑇               (4.6) 
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In the first pass, the outputs of the BPTT algorithm are computed for all time steps. 

Then, the gradient is calculated by starting at the last time step working backwards in 

time.  

 

Two types of learning rate were used with BPTT in this research. One was a fixed 

learning rate and the second a pattern error–sensitive learning rate. The aim of the 

learning is to minimize the sum of the squared error.   

 

4.2.2.2 Fixed Learning Rate  

 

The learning rate parameter determines how large the weight changes should be. The 

larger the learning rate, the quicker the adaption of the network as a whole. However, 

this parameter has a positive or negative effect on network performance. If the learning 

rate is very large, this damages the generalisation accuracy and slows down training. 

On the other hand, a very small learning rate requires extra reductions in size and wastes 

computational resources without any further improvement in generalization accuracy 

(Wilson, Martinez 2001). There is no fixed rule for how to set the learning rate so as to 

achieve the best balance between stability and plasticity; the optimal learning rate 

depends on the particular problem being learned. The fixed learning rate used here is 

according to the Widrow and Hoff rule and is called Last Mean Squared (LMS) or delta 

rule, where the weights update according to the following: 

    

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 + (𝛿 ∗ 𝐸)                                                     (4.7) 

 

4.2.2.3 Pattern Error- Sensitive Learning Rate   

 

A pattern error-sensitive learning rate (Tepper et al. 1995) was used as it was found to 

aid learning. The principle of this learning rate type is that the learning rate for a given 

pattern is sensitive to its error within a prescribed range. Therefore, the formula used is 

as follows. 

  

𝛿 =
∑ |𝑒𝑖 |𝑛

𝑖=1

𝑛
∗ 𝑎 + 𝑏                                                               (4.8) 

Where 
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𝑒𝑖 = 𝑑𝑖 − 𝑜𝑖  

 

𝑓(𝛿) = {

𝑎,         𝑖𝑓 𝛿 > 𝑎

𝑏,          𝑖𝑓  𝛿 < 𝑏

𝛿,     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

4.2.2.4 Taguchi Method and Analysis of Variance (ANOVA) 

 

Taguchi's theory based on Orthogonal Array Selector (OAS) is usually applied to 

eliminate a number of experiments that do not have any impact on the process, in order 

to optimise the quality of the process (Al-Habaibeh, Zorriassatine et al. 2002, Roy 

2010). It provides an efficient method on performance variability reduction and is 

usually used for off-line parametric optimisation control and high performance design 

(Deng, Fox 2007). The technique is considered here with the aim of reducing the 

number of experiments needed for optimising the network training parameters by 

identifying the significant variables affecting the output (Roy 2010).  

 

The alternative is to undertake a full factorial technique to find the contribution of each 

parameter of the experiment individually (i.e. the independent variables) and computing 

the dependency of the factor outcomes for each experiment. In Taguchi's method, the 

dependency is the proportion of contribution found for a parameter by analysing the 

variance. The dependency of a variable reflects the portion of the total variation detected 

in an experiment attributed to that factor. The Taguchi methods are based on the 

statistical analysis of data and offer a simple description of optimisation and analysis of 

complex systems (Macleod, Dror et al. 1999). The technique used to determine the 

relative contributions of the factors by comparing their variance is called the analys is 

of variance (ANOVA).  

 

ANOVA is a statistical method that permits researchers to analyse or dismantle the 

variations in test outcomes into components that are dependent on the various sources. 

Therefore, the total experiment variance can be partitioned to different factors and to 

combinations of different factors. ANOVA uses Taguchi’s method and can be described 

as a two-stage procedure. Firstly, the total variance of the measured output is computed 

and possible combinations of factors and the variance due to the individual factors that 
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were studied are computed. Secondly, the variance due to any pair of factors or 

combination is compared. Consequently, the factor (parameter) that has a more 

significant effect on the design output can be concluded. To represent the concept, any 

high dimensional function can be represented as a subset of terms as follows: 

𝑓(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)𝑛
𝑖=1 + ∑ ∑ 𝑓𝑖,𝑗 (𝑥𝑖 ,𝑥𝑗)𝑛

𝑗=𝑖+1
𝑛
𝑖=1 + 𝑓1,2,…………………,𝑛(𝑥)           (4.9) 

 

Where n represents the number of inputs, 𝑓0  is a constant and the rest on the right hand 

side represents functional combinations of input parameters. Then, ANOVA partitions 

the total variation into its suitable components. The total sum of squares is defined as  

 

𝑆𝑆𝑇 = ∑ 𝑦𝑖
2   𝑓𝑜𝑟 𝑖 = 1,2, … 𝑛                                                                     (4.10) 

Which can be given as  

𝑆𝑆𝑇 =  𝑆𝑆𝑚 + 𝑆𝑆𝑒                                                                                        (4.11) 

 

Where, 𝑆𝑆𝑚 = 𝑛𝑀2  and 𝑆𝑆𝑒 = ∑(𝑦𝑖 − 𝑀)2 are the mean sum of squares and the error 

sum of squares respectively, and M is the average of the observed data where M is, 

𝑀 =
1

𝑛
∑ 𝑦𝑖   (𝑖 = 1,2,… , 𝑛) 

 

The most distinct disadvantage to the ANOVA procedure is that it’s assumes that the 

data in the groups are normally distributed. However, moderating the data can overcome 

this limitation. Another limitation is that it only detects significant difference among 

cell means, but does not indicate the functional form of the relationship among cell 

means (Buckless, Frank A 1990). 

 

In this research, the ANOVA method is applied to select the optimal parameters 

(factors) for the ESN by taking the weight range, connectivity and spectral radius in 

four different values for each one. There were 64 training settings with these factors , 

each repeated three times. The results will be in the next chapter. The reason for using 

this technique with the ESN is that it reduces the time taken for the trainings as this 

involves a huge dataset that can use an enormous reservoir size. In addition to this, the 

technique establishes which of the parameters has the highest effect on the performance 

of the network.          
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4.2.3. Model Evaluation 

 

The networks were trained to take one symbol at a time and to predict what the next 

symbol would be. The prediction process forces the network to develop interna l 

representations that encode the relevant grammatical information because the prediction 

relies on the grammatical structure (Elman 1993). Every network input pattern maps 

onto a particular point in the hidden unit activation space. Therefore, we learn how these 

points relate to each other over time, and understand how the network is operating and 

whether it is analogous to underlying finite state automaton.  

 

Several techniques have been used to deal with the internal representations within 

trained connectionist systems, to shed more light on what is happening inside the hidden 

layer, e.g. Hierarchical Cluster Analysis (HCA), Multi-Dimensional Scaling (MDS), 

Canonical Discriminant Analysis (CDA), Principle Component Analysis (PCA) 

(Bullinaria 1997). This research will focus on the use of PCA due to its success reported 

for similar research (Gallagher, Downs 2003, Cartling 2008, Verstraeten 2009). 

 

The internal representations of the networks can play a significant role in solving a 

problem. With the help of the network structure, learning algorithm etc. the interna l 

representations allow the network to ignore the oppression of a form-based 

interpretation of the world. The internal representations have similarity structure, which 

can be a valuable indicator of the meaning, rather than the similarity structure of the 

bare input (Elman 1993).  In this simulation, the networks used various numbers of 

hidden units to represent a number of different factors, which were related to the task.  

These need to be able to represent grammar states, the embedded part and grammar 

symbols. PCA can be used to classify the precise dimensions associated with each factor 

and was, first introduced by Karl Pearson over a century ago (Pearson 1901). It is a very 

popular technique and has been used widely in the statistical community, primarily for 

descriptive but also for inferential purposes (Gallagher, Downs 2003). Moreover, it is a 

method for identifying patterns in data, and visualising the data, so similarities and 

differences can be easily seen. It is also used to identify and remove any correlation 

among problem variables and as an aid to dimensionality reduction. 
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The main advantage of PCA is its ability to find the patterns in the data and compress 

it by reducing the number of dimensions, with minimal loss of information (Bullinar ia 

1997, Smith 2002). 𝑃𝑖𝛼: 𝑖 = {1, … , 𝑑;  𝛼 = 1, … , 𝑛} are the vector components of a set 

of n points in d dimensional hidden unit activation space and 〈𝑃𝑖〉 denotes the mean 𝑃𝑖𝛼 

over all values of 𝛼 . Therefore,  

𝑆𝑖𝑗 = ∑ (𝑃𝑖𝛼 − 〈𝑃𝑖〉)(𝑃𝑗𝛼 − 〈𝑃𝑗〉)𝛼                     (4.12) 

 

Where 𝑆𝑖𝑗 is the standard covariance matrix. It is symmetric and the eigenvectors are 

given as: 

∑ 𝑆𝑗𝑘𝑘 Λ𝑘𝑖 = 𝜆𝑖 Λ𝑗𝑖                                            (4.13) 

Which is orthogonal. Λ𝑖𝑗 can be used to perform a change of basis, i.e. an axis rotation, 

as follows: 

𝑃𝑖𝛼
Λ = ∑ Λ𝑖𝑗

−1 𝑃𝑗𝛼𝑗                                                (4.14) 

 

The covariance matrix is diagonal and computed as follows 

𝑆𝑖𝑙
Λ = ∑ ∑ Λ𝑖𝑗

−1𝑆𝑖𝑘Λ𝑘𝑙 =  𝜆𝑖𝐼𝑖𝑙𝑘𝑗                          (4.15) 

 

This approach was used to good effect by (Elman 1993) to analyse his sentence 

processing network and by (Cartling 2008) to visualise the sentence processing.  
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Chapter 5 
 

5. Experimental Results 
 

The experiments conducted in this chapter will utilise various ANN types to learn a 

difficult grammar structure in a given corpus. One of the main objectives of this research 

is to optimise the performance of the SRN and other recurrent networks (Jordan, NARX, 

TDNN, MRN and ESN) in order to understand the complex grammar represented, 

namely the Embedded Reber Grammar (ERG). The literature includes limited attempts 

by Elman (1990), Sharkey et al. (2000). Cleeremans et al. (2008) and others to learn the 

ERG. These attempts limited the amount of self-looping inside the embedded part of 

the grammar and they made no comparison between different neural networks 

architectures. This study, aims to cover these aspects to assess their comparative 

abilities and limitations and to understand the different representations formed by these 

different architectures.  

 

5.1  Learning the Regular Grammar 

 
The SRN was given the task of predicting the next symbol in a sequence from a corpus 

generated using the rules of the regular grammar, the simple Reber Grammar (see 4.1.2). 

The prediction is considered accurate if, for each pattern in a given sequence, the 

activation of the output corresponding to one of the two correct successor symbols was 

greater than 0.3.This is known as a ‘soft acceptance criterion’. If this criterion was not 

met, the sequence was considered rejected. This criterion is the same as that used by 

(Cleeremans et al. 1989) in which the same learning task was set. The choice of a 

threshold of 0.3 for the binary representation of symbols (or 0.38 for the 0.2 and 0.8 

representation of symbols) is not completely arbitrary. The activation of the output units 

is related to the frequency with which a particular symbol appears as the successor of a 

given sequence. The probability of any particular legal successor symbol occurring in 

the training set is 0.5. Nevertheless, since a momentum term is used in the 

backpropagation learning procedure, the correct activation of the output units following 

training was sometimes under 0.5 occasionally as low as 0.3.  
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The experiments in this section also explore the question raised by (Noel Sharkey, and 

Stuart Jackson 2000), about whether particular initial starting weights are required to 

enable the SRN to successfully learn the important aspects of the language, or is the 

learning success independent of the starting state of the model. To this end, for each 

SRN configuration, training was repeated 10 times each with different starting states. 

Table 5.1. Shows the results of repeating 10 experiments with different starting states 

for networks with various hidden layer sizes and training data set sizes. 

 

The columns represent the 10 trials for each configuration, while the rows list the 

experiments, which increase in the size of the training set and the hidden nodes. The 

variability in the results across a row indicates the sensitivity of the network 

performance to the starting state (weights). The success of training (in terms of 

sequences learnt) in each scenario rises as the size of the hidden layer increases.  

 

In general, it is preferable when working with neural networks to select an architecture 

that learns the problem with the minimum number of hidden nodes. This should 

minimise memorisation and maximise generalisation (Lin & Meador, 1992). The 

sensitivity of the starting conditions is high for the 60K dataset with fluctuating results 

for the most of the hidden unit sizes used and also, in the 1M dataset.  The SRN 

configurations trained with 100,000 sequences and 5 hidden units, fully learnt the 

training set. Therefore, the higher performance of the trained networks was selected for 

testing.  

 

In order to test whether the network would produce similarly good predictions after 

each pattern, a slight change was made to the testing files so that comparisons could be 

made with the test files used by (James, McClelland 1988) and ungrammatica l 

sequences were added to the test files. Three different datasets were generated to test 

the SRNs: i) 20K “20000”grammatical sequences, ii) 130K sequences containing 23.0% 

grammatical sequences and finally iii), a third file containing 100K sequences, all of 

which are ungrammatical. The maximum sequence length of these datasets is 50. 

Approximately 60% of the grammatical dataset sequences were not in the training data.  
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Graph 5.1 shows the result of the experiments using the test datasets. The blue bars 

represent the individual symbols that were correctly predicted by the network, whereas 

the red bars represent the correctly predicted sequences (strings of symbols). The 

network recognised all of the grammatical sequences in the grammatical test file and in 

the second test file (mixed sequences). The network was able to differentiate between 

the grammatical and ungrammatical sequences by predicting the entire grammatica l 

ones and rejecting all of the ungrammatical structure, for the ungrammatical test dataset 

the network rejected all of the sequences.  

As an extra measure and to evaluate the SRN’s ability to learn the RG with any sequence 

length, extremely long sequences (beyond that found in the training set) were therefore 

presented to the network, and the sequences had a minimum length of 50 symbols and 

a maximum of 100 symbols. An example of such a sequence is: 

‘BTXXTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVPXTTTTTTTT

TTTTTTTTTVPXVPXVPXVPXTTTTTTTTTTTTTTTTTTTTTTTVPSE’    

 

The network correctly predicted all of the sequences as 100% indicating the network 

had learnt to be the perfect model for the underlying regular grammar. 

 

 

Graph 5.1 Elman’s SRN: Testing prediction accuracy on Reber Grammar 
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5.2    Learning the Context Free Grammar 

 

To further understand the limitation and learning ability of recurrent networks, the 

Jordan 1986, TDNN, NARX , MRNs and ESN network architectures have, together 

with the SRN architecture, been investigated and examined with a more complex 

version of the Reber grammar, known as the Embedded Reber Grammar (ERG), see 

4.1.3. A noise injection technique is used in the models to produce a higher accuracy of 

prediction and evaluate whether this method facilitates leaning in such connectionis t 

models.   

 

5.2.1 SRN Using Constant Learning Rate  

 

The network that has been used is depicted in Figure 3.4. The task for the network is to 

predict the next symbol in ERG described in section 4.1.3. Each of the embedded parts 

(upper and lower) of the grammar shown in figure 4.2 is a transition graph similar to 

the RG. It is a complex task, since the network has to remember the initial starting 

symbols, T or P, which precede entry into one of the embedded grammars within the 

overall grammar. This initial ‘entry’ symbol has to be remembered, as the same symbol 

is used to correctly exit the embedded grammar (known henceforth as the penultima te 

symbol). More specifically, T represents entry to/exit from the upper embedded 

grammar, whilst P represents entry to/exit from the lower embedded grammar. As each 

of the embedded grammars has some form of recurrency, the number of intervening 

symbols between the entry/exit symbols can be arbitrarily long and complex. For 

example, the embedded grammars may include several T’s and P’s, but only the initia l 

T or P is contingent to the penultimate symbol.   

 

The pattern-error sensitive learning rate (as used by Tepper et al 2002) will be evaluated 

against a constant learning rate to determine whether improvements reported by the 

mentioned study also apply to this grammar- learning task. If this proves to be the case, 

then the pattern-error sensitive learning rate will be used for all other RNN models being 

considered (that use gradient descent learning). In addition, Hard and Soft Acceptance 

criteria were evaluated with these models. The optimal results obtained using similar 

criteria carried out by Cleeremans el al (1989) with the simple grammar have the 
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advantage of using the more stringent criterion. Note that the networks have been 

trained on symmetrical and asymmetrical sequences as described in sections 4.1.3.1 and 

4.1.3.2.  

  

A number of experiments were conducted used the constant learning rate, as with the 

previous work with the simple Reber grammar. Biased and unbiased datasets were 

trained and tested to investigate the impact of the learning algorithm on them. 

 

5.2.1.1 Embedded Reber Grammar (Symmetrical Sequences) 

 

In the first experiments, 20,000, 60,000, 100,000, and 1000,000, sequences were 

generated randomly to generate training sets with weighted mean sequence lengths of, 

9.4, 9.5, 8.4, and 9, and standard deviations of, 2.8, 2.9, 1.1, 2 respectively. Networks 

with different numbers of hidden units (5, 10, 15 and 20) were trained with the various 

datasets. However, the last dataset (containing 1,000,000 sequences) was trained with 

just 5 and 10 hidden units due to memory limitations of the computers used. The aim of 

using these datasets was to investigate how many hidden units are needed to learn the 

ERG. The input layer and output layer again consisted of seven units, one for each of 

the seven symbols of the grammar. The symbols were coded to the network as shown 

in Table 4.1. The activation function used for both hidden and output layers was the 

binary sigmoid function. The learning rate was 0.15 and the momentum coefficient was 

0.75. The learning rate type was constant. The ‘Soft Acceptance Criterion’, described 

earlier and used for the RG, were used. If this criterion was not met, the sequence was 

considered rejected. As before, each model configuration was trained five times, each 

with different initial starting weights. Table 5.2 shows the results. 
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(K, M, and H represent thousand, million sequences and Hidden nodes, successively 

Experiments 1 2 3 4 5 Max 

20K 

5 H 78.71% 0.00% 0.00% 25.11% 0.00% 78.71% 

10 H 81.90% 84.34% 65.80% 44.99% 47.54% 84.34% 

15 H 97.76% 98.10% 96.18% 98.31% 98.21% 98.31% 

20 H 70.03% 100.00% 100.00% 99.55% 94.64% 100.00% 

60K 

5 H 41.78% 11.74% 20.03% 35.49% 0.00% 41.78% 

10 H 98.24% 95.36% 93.23% 96.07% 99.99% 99.99% 

15 H 98.24% 96.07% 70.02% 97.65% 22.61% 98.24% 

20 H 99.99% 99.24% 99.09% 99.24% 99.99% 99.99% 

100K 

5 H 27.20% 52.78% 0.00% 67.84% 28.50% 67.84% 

10 H 62.20% 92.90% 79.32% 89.10% 75.09% 92.90% 

15 H 91.57% 100.00% 90.24% 91.03% 96.95% 100.00% 

20 H 89.81% 100.00% 92.79% 100.00% 100.00% 100.00% 

1M 
5 H 20.05% 88.24% 71.18% 50.03% 16.76% 88.24% 

10 H 99.99% 55.36% 25.05% 87.58% 99.99% 99.99% 

Table 5.2 Elman’s SRN: Percentage accuracy of the entire dataset training for the 

embedded Reber grammar (soft acceptance criterion) 

 

Table 5.2 shows the percentage accuracy of all the training networks, each network 

repeated five times. The training is conducted in one iteration. According to the table, 

the size of the dataset does not affect the performance significantly, whereas the number 

of hidden units does. The table also shows that a network with more hidden units is 

more capable of learning the grammar than when it has fewer hidden units. However, 

the datasets that had a large corpus (large dataset) required a lot of computational time. 

Although similar best case results were obtained regardless of the size of the dataset, 

there was significant fluctuation in some cases between the performances of individua l 

networks having different starting conditions (1M, 5H and 100K, 5H). It can be 

concluded that there is a certain dataset size that can be trained with 15 hidden units to 

achieve better performance. Therefore, the rest of these experiments in this section have 

15 hidden neurons.  

 

Experiment 1: Using Soft Acceptance Criterion  

The objective here is to investigate the performance of the SRN by seeing how well it 

predicted the successor for general sequences from the grammar. As before, the soft 
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acceptance criterion was applied.  In addition, the purpose is to ascertain whether the 

same method applied in the Reber grammar can be successful in the embedded Reber 

grammar structure, and if not why not. Henceforward, 300K symmetrical sequences 

will be used which is described as 4.1.3.1. The same criterion that was used in the 

previous experiments is used here.  

 

The following terminologies are used in the tables:        

 

Embed = percentage of sequences in which each embedded symbol was correctly 

predicted. 

Penult = percentage of sequences in which the penultimate symbol was correctly 

predicted. 

 Alternative Penult = percentage from the wrong predictions where it is one of the two 

possible penultimate symbols (i.e. the network has determined that this is the end of the 

sequence but not correctly remembered which half the grammar it is in  - upper or 

lower). 

Wrong Penult= percentage from the wrong predictions where it is not in the two 

possible penultimate symbols (i.e. the network has lost track of the grammar within the 

embedded part so it is not predicting the end of the sequence). 

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Incorrect 

Alternative  

Penult% 

Wrong  

Penult% 

1 88.362 92.629 97.027 2.973 0 

2 70.752 70.752 100 0 0 

3 67.228 67.228 100 0 0 

4 96.454 96.454 100 0 0 

5 73.876 87.742 85.205 13.982 0.812 

Table 5.3  SRN training results on ERG (soft acceptance criterion) 

 

Table 5.3 shows the results of training for each network. The SRN was unable to predict 

the embedded part of the grammar perfectly. However, the overall result of the 
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sequences is acceptable, especially network four. In order to determine the networks’ 

abilities to generalise to new sequences, each network was tested by the presentation of 

1,000 input sequences. 21.2% of the sequences in the testing set are not in training set 

(they are unique from the training). The test file was generated randomly but duplicated 

strings have been removed (unique sequences).  

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Incorrect 

Alternative  

Penult% 

Wrong  

Penult% 

1 77.1 82.1 99.9 0.1 0 

2 23.2 23.2 100 0 0 

3 70.5 70.5 100 0 0 

4 99.9 99.9 100 0 0 

5 57.1 72.7 80.7 18 1.3 

Table 5.4 SRN test results using soft acceptance criterion for the ERG  

 

Table 5.4 illustrates the test results. It is obvious that the results gained from the test file 

are sharply lower than the training results. Nonetheless, the result for the final symbol 

before the end (penultimate) was predicted better compared with the whole of the 

embedded part in both training and testing. This is surprising as prediction of the 

penultimate symbol represents the significant challenge of capturing long- term 

dependency. Network 4 has an excellent performance with the soft acceptance criterion 

used for the whole sequence to accept the symbols. However, in this grammar, the first 

symbol after B serves as an indicator, which uniquely determines the penultima te 

symbol with the embedded section between these two symbols being Reber grammar 

strings. Following on from this, there is only one correct prediction for the last symbol 

in each string. Therefore, the method for accepting the penultimate symbol as the correct 

successor was changed.  

 

Investigating medium acceptance criterion, using Luce ratio (Luce 1963) to mimic to 

work done by McClelland, 1988, the experiments conducted and the results are in 

appendix A. The results are poor and are comparable with the models demonstrated.  
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Experiment 2: Using Hard Acceptance Criterion 

 

The aim of this experiment was to further explore how to find the best acceptance 

criterion for determining whether the network is correctly predicting the next symbol.  

The criterion of taking the highest activation function in the output layer as indicat ing 

the prediction for the next symbol was tried for evaluating the network performance. 

 

 The importance of the penultimate symbol is to investigate how it copes with long- term 

dependency. Table 5.5 and 5.6 show the testing of two representations of the symbols 

and the hard acceptance criterion. The training results are in appendix B. These results 

indicate that the network results are biased to one path of the arc, labelled ‘T’ in the 

ERG. This means that the network does not allow the correct selection between the two 

paths of the grammar. Moreover, the overall result with the second method, which used 

0.2 and 0.8 representing the letters, was the best (52.2%) for the whole sequences and 

100% for the penultimate where in binary representation the results are fluctuating. In 

addition to this, the medium acceptance criteria also had poor results: 5.3% for the entire 

sequences with 89.2% in the embedded. That makes the soft acceptance criteria superior 

over both methods.    

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 37.7 82.5 51.2 0 51.2 48.8 0 

2 13.2 23.2 51.2 0 51.2 48.8 0 

3 37.1 71.7 51.2 0 51.2 48.8 0 

4 51.2 99.9 51.2 0 51.2 48.8 0 

5 33.2 74.3 50.9 0 50.9 48.6 0 

6 45.1 87.8 51.2 0 51.2 48.8 0 

Table 5.5 SRN test results for ERG using hard acceptance criterion and binary symbol 

representations   

Using the highest activation of the output units for choosing the successor using binary 

symbol representation, provides flawless performance for the embedded part.  
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Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 52.2 100 52.2 0 52.2 47.8 0 

2 52.2 100 52.2 0 52.2 47.8 0 

3 52.2 100 52.2 0 52.2 47.8 0 

4 52.2 100 52.2 0 52.2 47.8 0 

5 49.8 95.2 52.2 0 52.2 47.8 0 

Table 5.6 SRN test results for ERG using hard acceptance criteria and non-binary 

symbol representations 

 

Nevertheless, there were errors in the predictions when the penultimate has been 

analysed as illustrated in the Table 5.5 and 5.6. Both methods show that the networks 

are unable to predict which penultimate symbol is correct. They consistently only 

predict “T”. In addition, the training and testing files have been analysed  in details as 

illustrated in appendix B, and this shows that each path has approximately the same 

frequency of occurrence. Biased sequences have therefore been generated to explore 

their effect on the network performance.   

 

5.2.1.2 Embedded Reber Grammar (Asymmetrical Sequences) 

 

These experiments concern a dataset of 300,000 asymmetrical sequences randomly 

generated, in which the two sub-grammars (upper and lower) were slightly biased. 

Asymmetrical data encodes information about initial state transitions within the 

embedded grammars. This is presented in chapter four in detail. The upper sub-grammar 

is biased towards the top nodes. (Probability of the first T was 0.7 vs. 0.3 for the first P; 

0.7 for the second S vs. 0.3 for the second X, 0.7 for the second P vs. 0.3 for the second 

V). Conversely, the probabilities in the bottom sub-grammar were biased in the opposite 

direction. The average length of a sequence was 8.7 with a standard deviation of 2.3. 

All of the following experiments apply the soft acceptance criterion, as it is the most 

reasonable for assessing prediction performance. Testing is done on the networks with 

the 1,000 symmetrical sequence dataset as previously used.  

 



Chapter 5: Experimental Results  

 

78 
 

Experiment 1: SRN results for asymmetrical training and symmetrical test 

 

In this experiment, the network was trained on asymmetrical sequences and tested on 

symmetrical ones. This will determine whether the asymmetrical sequences have an 

effect on the network performance, especially in the prediction of the penultima te 

symbol. The results are shown in Table 5.7. 
 

By using asymmetrical sequences for training, the results show some improvement in 

recognising the penultimate symbol but at the expense of a very poor performance in 

the embedded part of the sequence. The network predicts one of the penultima te 

symbols but the performance regarding this is generally no better than chance. The 

networks produce poor results for the whole sequences. Similar results were obtained 

when the representation of symbols with 0.2 and 0.8 are used, and were not significant 

and some of them are in appendix B. With the use of asymmetrical training data, the 

SRN has been proven still incapable of learning the long-term dependency as had been 

shown by Cleeremans et al. (1989) and O’Connell (1995). The next step is to investiga te 

whether other recurrent networks are capable of addressing the shortcoming of the SRN 

and solve the complexity of the embedded Reber. 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 

Alternative  

Penult% 

Wrong  

Penult% 

1 23.8 51.6 50.3 30.1 20.2 49.7 0 

2 7.7 15.2 49.9 30.1 19.8 49.8 0.3 

3 1.3 2.6 49.9 29.7 20.2 50.1 0 

4 1.5 2.7 49.8 29.8 20 49.9 0.3 

5 9.8 20.3 49.3 29.5 19.8 50.1 0.6 

6 1.9 3.4 50.1 29.9 20.2 49.9 0 

7 6.1 12.3 48.2 28.9 19.3 48.8 3 

8 1.4 2.4 50.5 20.6 29.9 49.5 0 

9 1.9 3.6 50 29.5 20.5 49.8 0.2 

10 2.4 4.4 50.1 15.9 34.2 49.9 0 

Table 5.7 SRN results of the symmetrical test file with 10 asymmetrical training 

networks and binary symbol representations using soft acceptance criterion  
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5.2.2 SRN Using Pattern Error-Sensitive  

 

The results that have been obtained from the SRNs for the embedded grammar were not 

identical or even similar to the results of Cleeremans and Dienes 2008 and Sharkey 

1992. Therefore, more investigation of the problem has been carried out and it was the 

learning rate type that affects the performance of the networks. Hence, a number of 

experiments were repeated to study the effect and the performance of the networks. The 

learning rate used in the next experiment is pattern error-sensitive as described in 

chapter four. Fifteen networks were trained and five were chosen to assess performance 

with the testing dataset. Moreover, to limit the research, binary symbol representations 

were used and the soft acceptance criterion utilised to accept the successful symbol.  

 

 

5.2.2.1 SRN Results for Asymmetrical Training Tested with Symmetrical 

and Asymmetrical Sequences 

 

In the experiments, asymmetrical sequences were used in training and two types of 1000 

datasets, symmetrical and asymmetrical, were used for testing. The aim was to compare 

the performance of the network after changing the learning rate type; 15 hidden units 

are used as with the previous work.   

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 53.5 89 60.6 28.6 32 39.4 0 

2 60.4 99.2 60.9 36.2 24.7 39.1 0 

3 60.7 100 60.7 36.1 24.6 39.3 0 

4 61.1 100 61.1 36 25.1 38.9 0 

5 54.3 89.8 60.6 35.8 24.8 39.4 0 

Table 5.8 SRN results of five asymmetrical training nets tested on asymmetrical 

sequences (pattern error-sensitive learning rate) 

Table 5.8 shows the results of the highest five nets from 15 nets trained on asymmetr ica l 

sequences. The maximum result is 61.1% of the whole sequences predicted correctly 
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and the entire embedded part of the grammar predicted correctly. In addition, Table 5.9 

shows that, in network four the maximum performance is 50.3% on the symmetr ica l 

test file that is superior to the asymmetrical training tested on asymmetrical test dataset. 

Strong evidence of both tables illustrate that using a pattern error – sensitive learning 

rate improved the network performance. However, trained unbiased sequences needed 

to be examined on tested dataset for both biased and unbiased sequences.  

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 45 88.4 51.1 22.9 28.2 48.9 0 

2 49.2 98.1 50.1 28.8 21.3 49.9 0 

3 49.9 100 49.9 28.7 21.2 50.1 0 

4 50.3 100 50.3 28.6 21.7 49.7 0 

5 39.1 78.2 49.8 28.4 21.4 50.2 0 

Table 5.9 SRN results of five asymmetrical training nets tested on symmetrical 

sequences (pattern error-sensitive learning rate) 

 

5.2.2.2 SRN Results for Symmetrical Training, Tested with Symmetrical 

and Asymmetrical Sequences 

 

Here, the objective is to see the performance of the Elman network when symmetr ica l 

sequences were used as training, and testing was with asymmetrical and symmetr ica l 

sequences to compare with asymmetrical training. Table 5.10 shows the five nets tested 

on asymmetrical sequences and Table 5.11 shows on symmetrical sequences. The SRN 

has been proven still with different methods, approximately incapable of learning the 

long-term dependency that had been shown by Cleeremans et al. (1989) and O’Connell 

(1995). However, the network is able to encode information about long-distance 

contingencies as long as the information about critical past actions is related to each 

time step for creating predictions about possible alternatives.  

 

Other experiments have been conducted, which is training SRN with noise injection. 

The network poorly predicted the results, which is not comparable with the results 
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obtained from the SRN without noise injection. The next step is to investigate other 

recurrent networks to see if they are capable of addressing the shortcomings of the SRN 

and solve the complexity of the embedded Reber grammar. The following section 

examines the performance of the Jordan network (1986) applied to this grammar-

learning problem.  

 
 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 54.6 100 54.6 22.5 32.1 45.4 0 

2 49.7 100 49.7 14.2 35.5 50.3 0 

3 52.7 100 52.7 52.3 0.4 47.3 0 

4 47.8 100 47.8 1.4 46.4 52.2 0 

5 56.4 100 56.4 47.3 9.1 43.6 0 

Table 5.10 SRN results of five testing nets tested on asymmetrical sequences 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 50.6 100 50.6 19.6 31 49.4 0 

2 50 100 50 13.4 36.6 50 0 

3 49.3 100 49.3 48.9 0.4 50.7 0 

4 51.2 100 51.2 1.4 49.8 48.8 0 

5 54.4 100 54.4 44 10.4 45.6 0 

Table 5.11 SRN results of five testing nets tested on symmetrical sequences 

 

5.2.3 Jordan Network 

 

The architecture used here is the same as illustrated in Figure 3.1. It is a three-layer 

network that has context units connected to the hidden units and the output connected 

to the context units. Moreover, different types of feedback connections are used; using 

the activation function of the output, the error from the output and target as feedback.   
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Jordan results for asymmetrical training, tested with symmetrical and 

asymmetrical sequences 

 

The same datasets as in the previous section for training and testing were used here. 

As in the previous work, the network was trained with the asymmetrical sequences; 15 

hidden units were used and the feedback was the activation of the output, i.e. standard 

Jordan. As with the last section, the aim is to compare Jordan and Elman architectures. 

In this section, the learning rate is always pattern error-sensitive.       

Table 5.12 and Table 5.13 illustrate the results tested with asymmetrical and 

symmetrical sequences respectfully. The results here show enhancement compared with 

the results obtained from the previous work when a constant learning rate was used; the 

results are still lower than the results gained from the Elman network.  

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 28.5 59.6 43.2 18.6 24.6 21.6 35.2 

2 9.6 22.2 33 8.7 24.3 22.8 44.2 

3 11.5 24.2 50.3 25.4 24.9 33.1 16.6 

4 17.6 44.7 41.5 17.1 24.4 24.7 33.8 

5 35.1 66.6 46.9 22.3 24.6 31.5 21.6 

Table 5.12 Jordan test results for asymmetrical training and asymmetrical test (binary 

input representations) 

Table 5.13 Jordan test results for asymmetrical training and symmetrical test (binary 

input representations) 

  

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 19.2 54.3 33 11.8 21.2 27.5 39.5 

2 8.2 21.9 28.1 7.2 20.9 25.3 46.6 

3 9.8 22.2 42 20.4 21.6 40 18 

4 14 47.4 31 10 21 27.6 41.4 

5 25.7 61.5 37 16.6 40.4 37.2 25.8 
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Jordan results for symmetrical training tested with symmetrical and asymmetrical 

sequences 

 

The results gained from Table 5.14 and Table 5.15 are the results of testing 

asymmetrical and symmetrical sequences datasets after obtaining the results from 

training symmetrical data. The average performance of the network when trained on 

asymmetrical test sequences is 31.18% while on symmetrical is 28.3% thus showing 

asymmetrical test as superior. In addition to this, contrary to expectations, these results 

shows that the Jordan network using symmetrical training has better performance than 

with asymmetrical training.    

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 24.9 55.5 41.4 29.7 11.7 47.7 10.9 

2 27.1 49.6 54.8 29.9 24.9 45.2 0 

3 28.5 54.2 51.1 34 17.1 48.5 0.4 

4 43.6 77.3 55.1 26.6 28.5 42.7 2.2 

5 31.8 88.6 41.6 20.4 21.2 42.5 15.9 

Table 5.14 Jordan results of five testing nets tested in asymmetrical sequences (binary 

input representations) 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 27.1 56.1 45.4 31.3 14.1 48.9 5.7 

2 23.7 47.2 51.1 25.2 25.9 48.9 0 

3 23.4 47.5 50.3 34.9 15.4 49.5 0.2 

4 34.1 69.6 47.9 25.6 22.3 50 2.1 

5 33.2 91.5 45.2 22.5 22.7 41.8 13 

Table 5.15 Jordan results of five testing nets tested in symmetrical sequences (binary 

input representations) 
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5.2.2.3 Summary  

 

These experiments have investigated the performance of the both SRN and Jordan 

networks with two learning methods: constant learning rate and pattern error-sensit ive 

learning rate. One of the more significant finding to emerge from these experiments is 

that the pattern error-sensitive learning rate results in better performance compared with 

the constant learning rate. To limit this study, binary input representation of the input 

will be used, since there were not significant differences in the results between it and 

the fractions representation. It also maintains consistency with the same work 

performed by (James, McClelland 1988, O'connell 1995, McQueen et al. 2005). These 

findings do not support strong recommendations to take symmetrical or asymmetr ica l 

training to set input representation for the networks.  

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

SRN 61.1 100 61.1 36 25.1 38.9 0 

Jordan 35.1 66.6 46.9 22.3 24.6 31.5 21.6 

Table 5.16 Comparing results of SRN and Jordan network (best network performance 
for asymmetrical training and test sets) 

 

The Jordan network performance (with standard feedback of the output activation to the 

input) after training with symmetrical data using the pattern error-sensitive learning rate 

and using binary input representations, was the best achieved for Jordan-based 

architectures. Table 5.16 shows that the performance of the Jordan architecture is 

inferior to the Elman architecture for learning this long-term dependency problem. One 

of the questions that need to be asked about the Jordan network, however, is whether 

the feedback from the output needs to be graduated by shifting the output instead of 

feeding the output directly to the input. This means training the time delay neural 

network to explore its performance.   
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5.2.4 TDNN 

  

5.2.4.1 TDNN results for asymmetrical training tested with symmetrical 

and asymmetrical sequences 

 

Time-Delayed Neural Networks (TDNN) were introduced in chapter 3. They represent 

another alternative architecture to compare and contrast with the previous recurrent 

architectures. In particular, they allow for the assessment of the importance and format 

of historical information; the network has direct access to the recent outputs as the 

network has eight delay boxes from the output i.e. prior output symbols. Training with 

different numbers of delay boxes was carried out to arrive at this figure, which gave the 

best results.    

 

 

Table 5.17 TDNN results of five nets trained with asymmetrical sequences and tested 

on asymmetrical sequences 

 

 

Both  

Table 5.17 and Table 5.18 show the results using the asymmetrical training file and 

asymmetrical and symmetrical testing files. The results show a slight difference for the 

asymmetrical compared with the symmetrical test data.  

 

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 57.6 90 65.5 29.1 36.5 34.5 0 

2 56.1 89.2 61.8 24 37.8 38.2 0 

3 62.3 93.5 66.3 29.3 37 33.7 0 

4 66.6 100 66.6 40.9 25.7 33.4 0 

5 57 81.6 69.3 34.7 34.6 30.5 0.2 
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Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 48.6 86.7 57.2 23.9 33.3 42.8 0 

2 47 81.3 55.8 20.6 35.2 44.2 0 

3 53.3 90.5 58.4 24.7 33.7 41.6 0 

4 56.6 100 56.6 32.9 23.7 43.4 0 

5 46.4 74.6 60.5 27.7 32.8 39.4 0.1 

Table 5.18 TDNN results of five nets trained with asymmetrical sequences and tested 

on symmetrical sequences 

 

5.2.4.2 TDNN results for symmetrical training, tested with symmetrical 

and asymmetrical sequences 

 

The results below are for the same network trained with symmetrical data. The results 

in Table 5.19 and Table 5.20 show the outcomes when the network is trained on 

symmetrical results and then tested on asymmetrical and symmetrical datasets. Here it 

is notable that the network recognises the embedded part of the sequences. Yet the 

network was less successful at identifying the long dependency part (penultima te 

symbol).    

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 53.5 100 53.5 29.7 23.8 46.5 0 

2 53.3 100 53.3 16.7 36.6 46.7 0 

3 48.3 100 48.3 7.1 41.2 51.7 0 

4 53 100 53 30.7 22.3 47 0 

5 50.8 100 50.8 17 33.8 49.8 0 

Table 5.19 TDNN results of five nets trained with symmetrical sequences and tested 

on asymmetrical sequences 
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Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 48.9 100 48.9 26.7 22.2 51.1 0 

2 50.4 100 50.4 11.9 38.5 49.6 0 

3 51.5 100 51.5 8.5 43 48.5 0 

4 50.3 100 50.3 28.2 22.1 49.7 0 

5 51.5 100 51.5 15.5 36 48.5 0 

Table 5.20 TDNN results of five nets trained with symmetrical sequences and tested 

on symmetrical sequences  

However, the network architecture struggled to learn the penultimate symbol with both 

training approaches; the network still failed to recognise all the sequences perfectly. 

Table 5.21 illustrates the drops in the network prediction when the length of sequences 

increases. Moreover, it shows that the embedded predictions are right and about half the 

penultimate predictions are wrong and this percentage is fairly constant and independent 

of the sequence length. 

 In Table 5.21:   

Correct: number of correctly predict sequences. Wrong: number of unpredicted 

sequences. Embed: number of the embedded part of the grammar predicted.  

Penult: number of sequences that their penultimate predicted correctly. 

Length 

Network 1 symmetrical test file  

Correct  Wrong  
Correct 

Embed 

Correct 

Penult 

6 2 2 4 2 

7 3 3 6 3 

8 4 4 8 4 

9 7 7 14 7 

10 9 9 18 9 

11 13 13 26 13 

12 20 18 38 20 

13 25 25 50 25 
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Table 5.21 Part of a test file showing the prediction according to the sequence length 

5.2.5 NARX 

 

The network used here is illustrated in Figure 3.3. The difference between TDNN and 

NARX networks is that there are delay boxes representing historical input information 

on the input to the NARX network (as well as the delay boxes with historical output 

information as for the TDNN). A number of possibilities were again tried to gain the 

perfect architecture for this problem. Four boxes were used for the input part and eight 

boxes used for the feedback from the output. The aim was to investigate the 

enhancement of the network when there is a history about the input as well as the output.     

 

5.2.5.1 NARX results for asymmetrical training, tested with symmetrical 

and asymmetrical sequences 

 

The objective is to investigate the network when asymmetrical sequences are 

presented to the network for training. 

 
The results show in Table 5.22 and Table 5.23 that there is a slight difference between 

testing on asymmetrical and symmetrical sequences when asymmetrical training has 

been used, and that the memory boxes from the input did not drastically improve the 

network performance. However, these results are improved when compared with the 

results obtained by TDNN.    

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 70.9 95.7 74 39 35 26 0 

2 65.2 91.2 70.5 40.4 30.1 29.5 0 

3 69.7 100 69.7 40.1 29.6 30.3 0 

4 69.9 95.2 73.8 40.5 33.3 26.2 0 

5 65.4 96 67.9 34.3 33.6 32.1 0 

Table 5.22 NARX results of five nets trained with asymmetrical sequences and tested 

on asymmetrical sequences 
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Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 60.7 92.5 65.1 32.5 32.6 34.9 0 

2 57 93 60.6 33 27.6 39.4 0 

3 60.8 100 60.8 30.5 30.3 39.2 0 

4 58.9 91 64.8 30.9 33.9 35.2 0 

5 56.5 90.3 61.5 30.6 30.9 38.5 0 

Table 5.23 NARX results of five nets trained with asymmetrical sequences and tested 

on symmetrical sequences 

 

5.2.5.2 NARX results for symmetrical training tested with symmetrical 

and asymmetrical sequences 

 

This experiment was conducted to illustrate when the training is based on symmetr ica l 

sequences. The results mirror those from the TDNN with the symmetrical training 

giving better performance on the embedded part of the sequences but worse 

performance overall compared with the asymmetrical training. This is because the 

asymmetrical training seems to aid the learning of the long-term dependency required 

to predict the penultimate symbol.  

 

Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 53.3 100 53.3 8.8 44.5 46.7 0 

2 53.9 100 53.9 9.6 44.3 46.1 0 

3 52.8 100 52.8 5.8 47 47.2 0 

4 53.9 100 53.9 10.6 43.3 46.1 0 

5 51.7 100 51.7 4 47.7 48.3 0 

Table 5.24 NARX results of five nets trained with symmetrical sequences and tested 

on asymmetrical sequences 
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Network 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

1 54.8 100 54.8 7.6 47.2 45.2 0 

2 54.1 100 54.1 7.2 46.9 45.9 0 

3 55.5 100 55.5 6.1 49.4 44.5 0 

4 54.4 100 54.4 7.1 47.3 45.6 0 

5 55.1 100 55.1 4 51.1 44.9 0 

Table 5.25 NARX results of five nets trained with symmetrical sequences and tested 

on symmetrical sequences 

 

Training 

dataset 
Test dataset TDNN NARX 

Asym 
Asym 66.6% 70.9% 

Sym 56.6% 60.8% 

Sym 
Asym 53.5% 53.9% 

Sym 51.5% 55.5% 

Table 5.26 The percentage of correct predictions for different training and test datasets 

in terms of bias and non-bias sequences for TDNN and NARX networks 

 

The results shown in Table 5.26 is a comparison between the results obtained from 

TDNN and NARX show the superiority of NARX over TDNN and furthermore over 

SRN and Jordan networks. This means that the input delay helped the network slightly 

to converge to the stable distribution of the grammar. In addition to this work, the 

NARX was trained with noise injection and the results were poor when compared to the 

NARX trained without using noise injection.   

 

5.2.6 MRNs 

 

The network used here is shown in Figure 3.5. The critical difference between this 

network and the previous networks is that there is feedback from both output and hidden 
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units to the input and this is feedback is graduated and includes self-recurrency as 

described in chapter three. Since the network is different in architecture from the prior 

networks, networks with different numbers of hidden units were trained to choose the 

optimal number. All the experiments here use asymmetrical sequences for training the 

networks. According to the previous results these give superior performance over the 

symmetrical sequences. Fifteen networks were trained and these are the best five ones 

with 5, 7, 10 and 13 hidden units and four memory boxes (“banks”). The momentum is 

0.75, the initial learning rate is 0.3 and the activation function for both hidden and output 

units is sigmoid.   

 

Graph 5.2 illustrates the performance of the network when it is trained with different 

numbers of hidden units. The graph clarifies that 10 hidden units has the highest success 

compared with the others; the results are in appendix B.  However, the results for the 

embedded sequences are on average still as low as the previous networks (Elman 1990 

and Jordan 1986), whereas, NARX has 100% for the embedded part. This shows that 

there is a trade-off between learning the embedded section and the penultimate symbol. 

Nevertheless, the MRN needs to be trained with different graduated boxes to optimise 

this aspect, which may enhance the performance of the network. Also, the performance 

of the networks were worse this may since the learning rate was a bit high; therefore, 

the next experiments learning rate is 0.15.      

 

To explore more about the memory boxes of the MRN, the number of the hidden units 

is set to 10 since the performance with 10 hidden units in the previous experiments has 

the highest correct prediction for the whole sequence predicted and for the embedded 

part. 
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Graph 5.2 Different initial start with different hidden units using MRN network with 

four memory banks (H: hidden units) 

 

Training with various numbers of memory boxes (banks) was carried out to optimise 

this parameter: i.e. with 2, 3, 4, 6 and 8. The number of memory banks (ⱷ) relates 

directly to the degree of granularity at which past and current information is integrated 

and stored (Binner, et al. 2010). The connection strength of the recurrent link (𝑉𝑗) from 

either an output value or a hidden unit activation value to the context unit is 𝑉𝑗 =
1

ⱷ
𝑗 

where j=1, 2,…, ⱷ. Lastly, the connection strength of the self-recurrent link 𝑍𝑖 for the 

context unit 𝐶𝑖 is  𝐶𝑖 =
1

ⱷ
𝑖 where i=1, 2,…, ⱷ. Hence, the effect of the memory on the 

performance of the network can be detected. The training file was of asymmetr ica l 

sequences. 

 

Experiment 1: MRN with 2, 3, 4, 6 and 8 banks 

 

Fifteen nets were trained and the best five selected. Table 5.27 shows these results. 

Graph 5.3 shows that using four memory boxes in the MRN network is the optimal 

choice. Since the average of the whole sequences predicted correctly for the five 

networks trained is 85.88% and also the consistency of the result. In addition, (Binner, 

Tino et al. 2010) state that going beyond this number of boxes does not lead to enhanced 

performance. 
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Graph 5.3 Different numbers of memory boxes trained in the MRN 

 

However, the six memory boxes architecture also gives respectable results, as illustra ted 

in the graph. In the next experiments, four boxes were selected for the MRN 

architecture. Overall comparison between the MRN and the other architectures is 

considered in section 5.3. 
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Number 

of  

Boxes 

Whole 

Sequence 

% Correct 

Embed

% 

Penult

% 

Penultimat

e 
Incorrect 

P% T% 
Alternative 

Penult% 

Wrong 

Penult% 

2 

54 95.7 58.3 50.6 7.7 41.7 0 

64.4 86 73.6 49.7 23.9 26.4 0 

81.6 98.1 83.5 50.9 32.6 16.5 0 

67.9 90.5 77.4 40.5 36.9 22.6 0 

66.9 100 66.9 43 23.9 33.1 0 

3 

52.4 97.8 55.6 44.7 10.9 44.4 0 

55.5 93.3 60.8 36.1 24.7 39.2 0 

60.7 100 60.7 36 24.7 39.3 0 

59.2 98.2 60.5 35.8 24.7 39.5 0 

60.5 100 60.5 35.8 24.7 39.5 0 

4 

86.1 100 86.1 49.1 37 13.9 0 

80.2 85.1 94.2 46.5 47.7 5.7 0.1 

95.1 97.9 95.1 51.8 43.3 4.9 0 

76.1 100 76.1 48.6 27.5 23.9 0 

91.9 100 91.9 44.2 47.7 8.1 0 

6 

74.5 100 74.5 41.3 33.2 25.5 0 

68.1 96.4 69.2 29.3 39.9 30.8 0 

59.6 100 59.6 52.2 7.4 40.4 0 

96.2 100 96.2 50.4 45.8 3.8 0 

55.6 97.2 57.7 52.3 5.4 42.3 0 

8 

90.6 98.5 91.8 50.5 41.3 8.2 0 

92.6 100 92.6 52.3 40.3 7.4 0 

83.2 93.4 89.4 51.9 37.5 10.3 0 

80.3 98.6 80.6 51.9 28.7 19.4 0 

92.7 100 92.7 46.4 46.3 7.3 0 

Table 5.27 Results of different numbers of memory boxes trained with Asymmetrical 

and tested with Asymmetrical sequences in MRN 
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Experiment 2: Limitations of the MRN 

 

In these experiments, six sets of sequences of increasing length were used to test the 

trained MRN to explore the limits of its ability to generalise beyond the training 

examples and ascertain when its predictions start to fail. The maximum length of 

training sequence was 26. The tests here extend to sequences of length 120; each file 

has five sequences. Table 5.28 shows the results. Since the number of sequences of each 

datasets is five, this demonstrates that the network failed to recognise the sequences 

when the sequences’ lengths reached 120 and the network starts to decline when the 

sequence length is 50. Whereas, the results when the sequences length is 40, it is 

approximately the same performance as on the standard test set. 

 

Sequence 

Length 

Whole 

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative 

Penult% 

Wrong 

Penult% 

40 80 100 80 40 40 20 0 

50 60 100 60 40 20 40 0 

60 40 100 40 20 20 60 0 

70 40 60 40 20 20 60 0 

90 20 20 40 40 0 60 0 

120 0 0 60 0 60 40 0 

Table 5.28 Result of Testing the MRN (with 4 memory banks) for sequences longer 

than in the training set (5 tested at each length)      

     

5.2.5.1 MRN with Noise Injection  

 

Two types of injection were conducted: one node and a unit of seven nodes. 

Each noise node was fed with a random real number between minus and plus the value 

chosen. Then, the network was trained 10 times and then the five best performances 

were selected and tested with asymmetrical sequences. From Table 5.29 it is noticeable 

that adding noise injection improves the performance of the network. The average 

results obtained when the noise range was one is a remarkable 90.96%, comparing with 

most of the ranges, and when the network was tested without noise it was 80.62%. 
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Using noise node injection 

Noise  

range ±  
5 2.5 1.25 1 0.3 0.01 0.005 

without  

noise 

Asym 
Testing 

92.5% 64% 92.1% 95.7% 78.7% 72.6% 91.7% 79.5% 

71.8% 98.7% 90.2% 83.7% 78.1% 86.1% 88% 86.7% 

90.9% 72.8% 87.8% 91.1% 91.5% 89.3% 99.2% 65.1% 

79.8% 88.8% 85.4% 96.5% 84.5% 84.3% 69.2% 88.5% 

73.7% 81.3% 93.4% 87.8% 69.1% 87% 78.9% 83.3% 

Average 81.74 81.12 89.78 90.96 80.38 83.86 85.4 80.62 

SD 8.57 12.09 2.89 4.81 7.43 5.86 10.41 8.35 

Table 5.29 MRN: The accuracy of asymmetrical training; tested with asymmetrical 

data (one noise node) 

 
The average of the correct sequences is 90.96%, nearly 10% above the average 

performance with the network tested without noise. Although, 99.2% have been 

obtained in the random noise 0.005 the average of the whole networks tested with the 

test dataset was 85.4%. Moreover, the standard deviation was 10.41. Therefore, 

instability of the results is shown in the column of the results that led us to focus on the 

stability of the results. Increasing the number of noise nodes may provide strength to 

the network.  

 

Using noise unit injection 

 

In these experiments, seven nodes were injected with the inputs to form a noise unit. 

After the network was trained 10 times, the best five trained networks were selected. 

The networks were tested with asymmetrical and symmetrical test datasets. Table 5.30 

shows an MRN with a noise unit injected with the input. Many different random noise 

units were used. On the asymmetrical test dataset, the unit with 0.01 as a random noise 

range achieved the higher performance comparing with the other values. 93.7% average 

correct sequences and 2.58 standard division and more than 13% of using the network 

without noise. On the other hand, the results that have been gained from testing 

symmetrical sequences shows a drop in the performance of the network. 86.78% is the 

average success of the network and nearly 3% drop when testing the network without 

noise. 
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Range ±  1.25 1 0.5 0.25 0.03125 0.01 0.005 
without  

noise 

Asym 
Testing 

98.9% 57.9% 80.1% 76.6% 75.3% 95.4% 93% 79.5% 

84.9% 80.7% 89.4% 70.7% 85.7% 97.7% 19.7% 86.9% 

74.4% 60.4% 90.4% 64.1% 78.4% 90.6% 35.6% 65.1% 

90.3% 74.5% 96.4% 57.7% 79.8% 91.6% 67.8% 88.5% 

94.9% 99.7% 73.9% 95% 87.7% 93.2% 89% 83.3% 

Average 88.68 74.64 86.04 72.82 81.38 93.7 61.02 80.66 

STD 8.53 15.15 8.00 12.77 4.62 2.58 29.00 8.38 

Symm  
Testing 

96.7% 41.3% 72.7% 63.9% 73.3% 89.7% 87.1% 86.1% 

74.4% 71.3% 77.1% 65% 77.4% 93.8% 18.1% 95.1% 

59.2% 53% 84.9% 58% 72.9% 79.7% 25.5% 76.1% 

83.5% 69.9% 91.5% 49% 68.8% 84.7% 59.6% 93% 

88.4% 99.8% 72.6% 84.4% 82.6% 86% 84.1% 91.9% 

Average 80.44 67.06 79.76 64.06 75.00 86.78 54.88 88.44 

STD 12.84 19.80 7.38 11.65 4.67 4.75 28.74 6.85 

Table 5.30 MRN: The accuracy of asymmetrical training; tested with asymmetrical 
and symmetrical data (one noise unit – seven nodes) 

 

These results have enhanced the network performance which led to further investigat ion 

with the network trained with symmetrical sequences and with noise injection for 

completeness. The range plus or minus 0.01 was chosen as the best noise setting from 

the previous experiments. 

 

Table 5.31 shows the result of tests on asymmetrical and symmetrical sequence of 

networks trained on the symmetrical sequences. The results show no improvement in 

both asymmetrical and symmetrical sequences. The network acts slightly better when 

tested without noise.    
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Range ±  0.01 
without 

noise 

Asym 
Testing 

48.1% 65.9% 

53% 51.7% 

53.3% 54.2% 

51.3% 49.2% 

52.4% 50% 

Average 51.62 54.2 

STD 1.89 6.10 

Symm  
Testing 

51.6% 69.8% 

49% 51.7% 

49.9% 54.2% 

50.9% 49.2% 

49% 50% 

Average 50.08 54.98 

STD 1.03 7.61 

Table 5.31 MRN: The accuracy of symmetrical training, tested with asymmetrical and 
symmetrical data (one noise unit) 

 

5.2.7 Conclusion 

 

To conclude, asymmetrical training is superior to symmetrical training, and it also 

gives the best results if the test data is also asymmetrical. It can be concluded that 

asymmetrical sequences provide clues within the embedded clauses to help the long-

term dependency to be learned.   

 

The limitation of MRN using unit noise injection 

The same test datasets used previously are used in this test to explore when the 

network begins to fail to predict the correct sequences using the best MRN network so 

far, trained with noise injection. Table 5.32 shows the result of these test datasets with 

different lengths and have five sequences in each sequence length. 
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Sequence  
Length 

Whole  
Sequence% 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  
Penult% 

Wrong  
Penult% 

28-40 80 80 100 40 60 0 0 

50 80 80 100 40 60 0 0 

60 80 80 100 40 60 0 0 

70 60 80 80 20 60 20 0 

90 60 80 60 0 60 40 0 

120 60 80 60 0 60 40 0 

150 60 80 60 0 60 40 0 

180 60 80 60 0 60 40 0 

210 80 100 80 0 80 20 0 

240 40 40 80 60 20 20 0 

270 20 20 80 60 20 20 0 

300 0 0 40 40 0 60 0 

Table 5.32  Testing different length of the datasets using MRN with unit noise 

injection 

 

It shows that the network failed to predict the sequences when their length is above 140 

and starts to decline when 70 sequences in length are tested. When the network was 

trained without noise, results show that the network failed to recognise the sequences 

of more than 120 and the performance of the network starts to drop when the sequence 

length reaches 50. This shows that the ability of the network to generalise to unfamilia r 

sequences beyond the length of the training sequences was enhanced by the addition of 

noise to the training data.     

 

5.2.8 ESNs 

 

The networks that have been trained in this investigation are shown in Figure 3.7. (a) 

and (b). They are the standard ESNs by (Jaeger 2002) that have feedback connections 

from output to the reservoir and also the ESN with jumping connections used by (Tong, 

Bickett et al. 2007). 

5.2.6.1 Standard ESN (with Feedback from Output to Reservoir)  

 

The results from experiments so far clearly show that training with asymmetr ica l 

sequences gives better results than training with symmetrical sequences. Therefore, 
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asymmetrical sequences were used to train the ESNs to investigate their performance.  

Two training variations were used in this architecture: the first was ST with different 

degrees of settling time; and the second one was without settling time. Altogether, 

binary symbols were used to represent the input to the network. Various reservoir sizes 

and different types of feedback were used. However, binary representation showed 

worse results since the ESP (Echo-state property) is violated for zero input; with a larger 

input amplitude, and above unity spectral radius may lead to obtaining the ESP (Jaeger 

2001, Buehner, Young 2006). Table 5.33 shows some of the results using 30 nodes in 

the reservoir units and three possible parameters used for feeding back to the reservoir: 

the output activation itself; the target minus the output (i.e. the error); and the target, i.e. 

the ‘perfect’ output. The results demonstrate fluctuations in the performance of the ESN 

for each experiment. (Tong, Bickett et al. 2007) stated that these are possibly due to the 

feedback connections, as at any point in time the previous time step’s output units are 

just noise to the current step’s input. Therefore, the connections from output to the 

reservoir have been omitted and trained connections from input to output have been 

added to the network as illustrated in the next section.    

 

 Network 

Number 

Overall Training Performance with Three Different Parameters 

Fed Back to the Reservoir 

Output activation ( Target – Output ) Target 

1 77.5 35.44 77.89 

2 49.29 77.15 78.02 

3 77.28 28.68 76.79 

4 19.52 78.1 43.21 

5 68.57 29.38 78 

Table 5.33  Percentage of the ESN performance using different types of feedback 

 

5.2.6.2 ESN with Jumping Connections  

  

The second ESN architecture evaluated has jumping connections. With this 

architecture, two kinds of datasets were used for training: ordered sequences, these 

sequences are put in the ascending length order in the file. The second dataset is the 

biased randomised sequences that were used in the previous experiments. The purpose 
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of adding extra datasets was to explore the effect of training with ordered sequences on 

the performance of the network. Jaeger 2010 studied the effect of sequence length on 

the performance of the network and he found that there is a maximal sequence length, 

which the ESN could stably reproduce, and is a case for investigation.  

 

The results Table 5.34 show improvement in the performance when ordered sequences 

were used. In these experiments, various datasets have been generated to examine 

training with random and ordered sequences. The datasets had sequences of lengths: 6 

to 12; 13 to 20; and 19 to 25 respectively. They were each then presented either in 

random order or in ascending order of length.  The network parameters were as follows: 

connectivity 0.85 and spectral radius 0.95. Table 5.34 shows also the average of the 10 

networks and it can be indicated from the results that the ESN performance with ordered 

training sequences is better than with random sequences. On the basis of these findings, 

ordered sequences are used for training in the next trials.  

 

In addition to these trials, experiments to ascertain optimal values for other training 

parameters have been conducted. The parameters in question are: the connectivity; the 

weight range; and the spectral radius. The Taguchi method (Roy 2010) was used to 

select the optimal parameters as described in chapter four. Each training configurat ion 

has been repeated three times. Thus, each configuration has 64 trials repeated three 

times leading to 192 networks being tested with a reservoir size of 150 nodes (training 

with a number of reservoir sizes indicated that this produced the best performance; the 

dataset used has 150,000 ordered sequences). Table 5.35 shows an excerpt of the 

performance results. The parameters tried are in Table 5.36.  

  



Chapter 5: Experimental Results  

 

102 
 

Network 

Number 

Minimal and maximal sequences length and type of the dataset 

6_12 

Random 

6_12  

Order 

13_20  

Random 

13_20  

Order 

19_25  

Random 

19_25  

Order 

1 56 56 76 60 68 80 

2 76 52 72 68 72 80 

3 56 80 68 72 80 80 

4 88 80 60 72 72 80 

5 80 60 68 72 76 72 

6 68 88 56 64 76 80 

7 68 68 56 68 64 80 

8 80 80 64 68 80 80 

9 44 84 76 72 80 80 

10 68 72 72 68 80 68 

Average 68.4 72 66.8 68.4 74.8 78 

Table 5.34 Percentage of prediction accuracy using ESN with jumping connection 

without settling time 

Whole Sequence 

% Correct 

Spectral 

Radius 
Connectivity 

Weight 

Range 

1 82.39 0.5 0.5 0.3 

2 79.96 0.5 0.5 0.3 

3 81.14 0.5 0.5 0.3 

4 82.39 0.5 0.5 1.5 

5 82.39 0.5 0.5 1.5 

6 82.94 0.5 0.5 1.5 

7 82.39 0.5 0.5 2.5 

8 82.39 0.5 0.5 2.5 

9 82.94 0.5 0.5 2.5 

10 81.13 0.5 0.5 4 

11 82.39 0.5 0.5 4 

12 81.13 0.5 0.5 4 

Table 5.35 Number of the performance of the ESN that applied on the Taguchi 

method 
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No   spectral radius connectivity weight range 

1 0.5 0.5 0.3 

2 0.75 0.85 1.5 

3 1.5 0.95 2.5 

4 2 1 4 

Table 5.36 the values of the parameters tried 

According to the Taguchi method, an analysis of variance (ANOVA) has been applied 

to these results (this method was described in chapter four). Graph 5.4, It can be seen 

from the graph that a weight range with 0.3 has more response to the network’s 

performance than the other weight range values chosen. Values over unity were tried 

here however the value 4 can be ignored since the result is varies and it is over the range 

of the network output.  Graph 5.5 demonstrates the response of performance to the 

connectivity values. It shows that connectivity with 0.85 is around a peak of 

responsiveness. Connectivity of 1 is discounted as this implies full connectivity and so 

would potentially undermine the aspects of the network performance that are predicated 

on random characteristics. Graph 5.6 determines the effect of spectral radius on the 

performance of the networks. It can be seen from the graph that the spectral radius value 

of 0.75 gives rise to the best performance. This is comparable to the results that 

(Venayagamoorthy, Shishir 2009) gained from their work, which gave a spectral radius 

value of 0.8. The most striking result to emerge from applying ANOVA is that the 

average percentage of contribution of spectral radius, connectivity and weight range 

were 9.71%, 6.48% and 6.05% respectfully. That is, the spectral radius has more effect 

on the network performance than the connectivity and weight range. In addition, the 

influence of connectivity on the performance of the network is slightly higher than the 

weight range. 
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Graph 5.4 The effect of the chosen weight range on the performane of the network 

 

Graph 5.5 The effect of the connectivity on the performane of the network 

 

Graph 5.6 the effect of the spectral radius on the performane of the network 
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5.2.6.3 The performance of the ESN 

 

Number of experiments conducted Table 5.37 shows some results from training the 

ESN with different size of reservoir have been trained. The best performance of the 

network when network has been tested was 49.9% for unbiased sequences and 60.7% 

for biased sequences. 

 

Exp reservoir 
correctly 
predicted connectivity 

Spectral 
Radius  

weight 
Range 

1 343 80.63 0.85 0.75 0.3 

2 350 82.51 0.85 0.5 2.5 

3 150 84.84 0.85 0.75 2.5 

4 150 91.08 0.85 0.75 2.5 

Table 5.37 trained ESN with different size of reservoir 

 

5.2.6.3 The Limitation of ESN 

 

Further experiments were carried out; the same long datasets used in MRN are used 

with ESN to test the network’s limitations regarding generalising to long sequences. 

Table 5.38 depicts the results from the test files. There was fluctuation in the 

performance of the network over these tested datasets. This will be discussed when 

investigating the internal representation of the network in the next chapter.   
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Test set 

Number 

Maximal 

Length 

% Correctly 

Predicted 

1 40 40 

2 50 40 

3 60 40 

4 70 40 

5 90 40 

6 120 40 

7 150 40 

8 180 40 

9 210 60 

10 241 60 

11 271 60 

12 300 40 

Table 5.38 Testing different length of the dataset tested on ESN, the minimal length 

for dataset 40 is 27 then 40 for the dataset 50 etc. 

 

5.3   Summary of Results and Discussion  

 

In this study, the aim is to attempt to understand better, the abilities of different recurrent 

architectures to learn to represent and use contextual information when presented with 

structured sequences of input. Most of the value of the parameters selected here are 

according to the research that has been done in this field such as in Elman 1990, 

Cleeremans 1989, Jaeger 2002, Tong 2007 and Cartling 2008. Moreover, these values 

have been examined in this research.   

 

The results illustrated in Table 5.39 brings together the results from all of the networks 

investigated when trained with symmetrical and asymmetrical sequences and also tested 

with symmetrical and asymmetrical datasets. The ESN is not included in the table since 

it was only trained with asymmetrical data following on from the conclusion that this 

gave better results. 
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The table shows the best five trained networks trained for each architecture (Tables such 

as Table 5.10 and Table 5.11 also give the single best networks).  W shows the 

percentage of whole sequences correct in the dataset. From Table 5.39it can be seen that 

the MRN was superior to all the other networks in performing long-term prediction. For 

instance, in testing asymmetrical sequences after symmetrical sequence training, the 

MRN performance reaching 65.9% correctly predicted, whereas, the next best result is 

the outcome from the SRN at 56.4%, which is nearly 10%, lower than the MRN. 

Moreover, the MRN acquired 88.5% on the asymmetrical sequences test dataset after 

training with asymmetrical sequences.  This compares with 70.9% acquired from the 

NARX.  

 

The MRN trained with asymmetrical data was clearly able to detect the long term 

dependency, achieving a success rate of over 95.1% in five of the symmetrical test trials 

and over 88.5% in five of the asymmetrical test trials. The other networks on the other 

hand, generally failed to learn the long-term dependency, largely having only a slightly 

higher than random chance of predicting the penultimate symbol. Of these, the 

asymmetrically trained NARX got the highest performance. Another obvious 

observation is that the results acquired from asymmetrical training are better than that 

obtained from symmetrical training in all five networks. This indicates that the forced 

biased sequences do help the networks to learn long-term prediction provided a pattern 

error- sensitive learning rate is used.  

 

To evaluate the results further, the best performing asymmetrically trained networks 

tested in both biased and unbiased sequences are shown in Table 5.40.  The results for 

the ESN with asymmetrical training are 91.7% training and 49.9% and 60.7% 

respectively for unbiased and biased sequences Similarly, Table 5.41 The best 

performance of symmetrically trained networks tested with both dataset types shows 

the symmetrical training tested with both datasets.. The information from the tables is 

also shown graphically in Graph 5.7 and Graph 5.7.  
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90.38 99.97 90.4 74.7 92.86 78.39 94.49 99.44 94.82 99.14 99.84 99.26 99.91 99.95 99.91 

90.6 100 90.6 76.88 96.33 79.02 95.25 99.51 95.6 99.16 100 99.16 98.7 100 98.7 

92.91 100 92.91 75.42 89.97 81.86 96.05 100 96.05 99.08 99.66 99.41 99.84 100 99.84 

89.82 98.52 90.76 78.23 91.86 83.64 94.5 97.31 96.85 98.91 99.66 99.22 99.84 100 99.84 

S
y

m
 T

e
st

 

45 88.4 51.1 19.2 54.3 33 48.6 86.7 57.2 60.7 92.5 65.1 86.1 100 86.1 

49.2 98.1 50.1 8.2 21.9 28.1 47 81.3 55.8 57 93 60.6 95.1 97.9 95.1 

49.9 100 49.9 9.8 22.2 42 53.3 90.5 58.4 60.8 100 60.8 76.1 100 76.1 

50.3 100 50.3 14 47.4 31 56.6 100 56.6 58.9 91 64.8 93 100 93 

39.1 78.2 49.8 25.7 61.5 37 46.4 74.6 60.5 56.5 90.3 61.5 91.9 100 91.9 

A
sy

m
 T

e
st

 

53.5 89 60.6 28.5 59.6 43.2 57.6 90 65.5 70.9 95.7 74 79.5 100 79.5 

60.4 99.2 60.9 9.6 22.2 33 56.1 89.2 61.8 65.2 91.2 70.5 86.7 93 86.9 

60.7 100 60.7 11.5 24.2 50.3 62.3 93.5 66.3 69.7 100 69.7 65.1 100 65.1 

61.1 100 61.1 17.6 44.7 41.5 66.6 100 66.6 69.9 95.2 73.8 88.5 100 88.5 

54.3 89.8 60.6 35.1 66.6 46.9 57 81.6 69.3 65.4 96 67.9 83.3 100 83.3 

Table 5.39 Percentage of correct predictions by trained networks processing training 

and test datasets.  W = whole sequence; E = embedded section; P = penultimate 

symbol. All network architectures used pattern error- sensitive learning type, binary 

input representations, learning rate 0.3 and 0.75 momentum. 
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Graph 5.7 and 5.8 clearly show again that the accuracy of the networks is greatest when 

asymmetrical sequences are presented in training, regardless of whether the testing is 

with symmetrical or asymmetrical sequences. The average accuracy of all the networks 

trained asymmetrically is: 63.81% when tested on asymmetrical sequences; and 56.03% 

when tested on symmetrical sequences. The average accuracy of all the networks trained 

symmetrically is: 54.66% when tested on asymmetrical sequences and 52.26% when 

tested on symmetrical sequences. 

 

  Jordan SRN TDNN NARX MRN ESN 

A
sy

m
m

et
ri

ca
l Training 78.23 92.91 96.05 99.33 99.84 91.7 

Sym Test 25.7 50.3 56.6 60.7 93 49.9 

Asym Test 35.1 61.1 66.6 70.9 88.5 60.7 

Table 5.40 The best performance of asymmetrically trained networks tested with both 

dataset types 

  Jordan SRN TDNN NARX MRN 

S
y
m

m
et

ri
ca

l Training 48.98 73.89 50.23 92.34 61.81 

Sym Test 34.1 54.4 48.9 54.1 69.8 

Asym Test 43.6 56.4 53.5 53.9 65.9 

Table 5.41 The best performance of symmetrically trained networks tested with both 

dataset types 
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Graph 5.7 Performance of best symmetrically trained network for each network type 

The bar chart shown in Graph 5.8 illustrates the results of the six networks trained on 

asymmetrical sequences and tested on biased and unbiased sequences. Overall, most of 

the networks were more capable of recognising asymmetrical sequences than 

symmetrical ones. The second observation from the graph is that the MRN is the 

superior network for the prediction task.  

 

 

Graph 5.8 The selected symmetrical test network for the five networks using 

asymmetrical training 
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Analysing the results further; the performance of the networks tends to rise when the 

architecture of the network has more memory and also the associated increase in 

connections between the layers. Table 5.42  and Graph 5.9 show the performance 

alongside the networks memory. However, this is not a simple correlation as 

performance of the networks is also strongly influenced by the architecture. Table 5.43 

and Graph 5.10 demonstrate this by showing that with the same memory, two different 

architectures (Jordan and SRN) perform very differently.    

 

 Networks Jordan SRN TDNN NARX MRN ESN 

Hidden & context 22 22 71 99 66 150 

performance 78.23 92.91 96.05 99.33 99.84 91.7 

Table 5.42 The performance of the networks against the memory 

 

 

 

Graph 5.9 the performance of the networks against networks memories 
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Graph 5.10 the effect of networks structures on the networks have same size of 

memory 

 

 

Networks Jordan SRN 

Hidden & context 22 22 

performance 78.23 92.91 

Table 5.43 the performance of networks have same number of memory 

 

To conclude, these investigations studied various networks given the task of learning a 

context-free grammar, the Embedded Reber Grammar. The study shows the superiority 

of the MRN over the other networks studied. Noise injection has enhanced MRN 

performance by nearly 10%; however, with SRN, NARX and ESN it produced poor 

results. However, more investigation is required since just unit noise has been 

conducted with these networks with one range value 0,01. The present study provides 

additional evidence with respect to the memory size, architecture, parameters and 

learning algorithm on the performance of the networks. The next chapter investiga tes 

the question of why the MRN is superior over the other networks.    

 
The approach taken in Chapter 6 is to consider the internal representations of the 

networks. Principle Component Analysis (PCA) is used to show that the MRN is able 

to maintain a higher level of discrimination between the upper and lower embedded 

sections of the grammar in terms of its internal representations. The difference drops 
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down very low for the poorer performing architectures (SRN and ESN), whereas the 

NARX and MRN maintain a higher difference between the two sets of states.  
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Chapter 6 
 

6. Understanding the Internal Representations Formed. 
 

The aim of this chapter is to describe a variety of concrete examples that show the 

internal representations of SRN, NARX and ESN that have learnt to predict symbols in 

sequences from the embedded Reber grammar and evaluate them against the MRN. The 

networks were trained and tested with both biased and unbiased sequences. The results 

give higher-ranking of MRN performance over the other networks. The outcomes of the 

networks were presented in chapter five.  In order to analyse the internal representations, 

Principle Component Analysis (PCA) was applied to the weights within the networks. 

For the SRN, NARX, ESN and MRN architectures this included networks trained on 

both asymmetrical and symmetrical sequences. However, for the ESN architecture the 

networks had only been trained using asymmetrical sequences as described previous ly. 

Understanding how each network distributes the states of the grammar and a 

comparison between those networks where conducted to demonstrate which one 

distributes the data in systematic way and which one is superior. Networks trained with 

the asymmetrical dataset and tested with the asymmetrical test dataset were considered 

due to superior performance by MRN and NARX with this these data sets, Table 6.1 

illustrates these models and their performance. The evaluation of the symmetr ica l 

training dataset is in Appendix E.  

 

Network Hidden units Training accuracy Testing accuracy 

SRN 15 92.91% 61.1% 

NARX 15 99.33% 70.9% 

MRN 10 99.91% 97.7% 

ESN 150 91.7% 60.7% 

Table 6.1 The models evaluated using asymmetrical sequences for training and testing 

 

6.1 Visualisation of the Internal Representations Formed 

 

So far the underlying representation or ‘hypothesis’ formed by recurrent networks has 

been treated as a ‘black box’. The hidden units inside these networks express the 
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grammatical knowledge encoded by the weights. Understanding how these units 

respond to each input symbol over time, may provide the ability to determine whether 

the networks have formed an adequate representation of the underlying embedded 

Reber grammar or not. One approach or method to extract the rules mentioned in 

chapter four, is to try to extract the rules (rules that are informed of "𝑥1 = 𝑢(𝑥1),𝑥2 =

𝑢(𝑥1),… 𝑥𝑛 = 𝑢(𝑥𝑛) 𝑡ℎ𝑒𝑛 𝑃𝑗" Where 𝑥𝑖  is the input to the network, 𝑢(𝑥𝑖) is one of the 

value of 𝑥𝑖 and 𝑃𝑗 is the network’s prediction) from the weights, to evaluate the network 

(Elman 1990, Craven, Shavlik 1994, Setiono, Liu 1995, Bullinaria 1997). By this 

approach, the trained neural networks can be studied  by extracting symbolic rules that 

describe their classification behaviour (Jacobsson, 2005). Principle component analys is 

(PCA) has been used to visualise the internal representations of SRN, MRN and ESN 

to analyse and evaluate the networks. (Cartling 2008) used PCA to investigate the 

internal representation of SRN on the implicit acquisition of a context free grammar and 

his results show that a systematic selection of parameters leads to a well organised 

internal representation of grammatical elements and consequently leads to a better 

performance.  The internal representation refers to the activations of the hidden layer of 

the network. All the sequences in the training dataset have been studied in a two-

dimensional subspace of the internal-representation space that is spanned by all possible 

combinations of two eigenvectors of the covariance matrix equation (4.3) from those 

corresponding to largest absolute eigenvalues of the hidden unit used. The steps used to 

calculate the PCA are: 

1. Compute the mean of each internal hidden unit activation. 

2. Calculate the variance between each node and its mean. 

3. Compute the covariance matrix. 

4. Calculate eigenvalue and eigenvectors of the covariance matrix.  

5. Choose components and derive a new data set. 

 

The principle components are ordered in descending magnitude, according to the 

eigenvalues. When the network has been trained, it has acquired a capacity to represent 

relations between symbols. The primary concern in the network applied context-free 

language to handle the grammatical elements in the sequences and rules.  
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The properties of the two datasets are illustrated in Table 4.3 and Table 4.5. All the 

sequences used in this set have been studied in all the two-dimensional subspaces of the 

internal representation space that are spanned by all possible combinations of the 

covariance matrix, Equation (3.4) in chapter four. A number of terms have been used to 

analyse the sequences that have been selected. Table 6.2 explains the following terms.  

 

Term Meaning 

𝐺𝑆𝑛  Refers to a particular state, symbol and grammar 

i.e. G=upper (u) or lower (l), s=input symbol, 

n=state of the grammar (1 to 7) 

F False (incorrectly predicted) 

T True (correctly predicted) 

Penult & P Penultimate symbol of an input sequences 

E Embedded grammar (either upper or lower) 

Table 6.2 Meaning of some terms 

 
The terms from Table 6.2 are used to identify symbols in the embedded Reber grammar 

as depicted in Table 6.2. For example, UV4 refers to the V symbol generated on the 

transition from state four to state six in the upper half of the grammar schema. 
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Figure 6.1 shows the states of the embedded Reber Grammar 
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Four different sequence lengths have been chosen (6, 8, 16 and 26) from the trained 

dataset, to analyse the internal representations of the networks these sequence were 

passed each path of the grammar. Table 6.3 shows the sequences that have been selected 

according to the length of the sequences (from both symmetrical and asymmetr ica l 

training sets).  

 

Symmetrical/Asymmetrical Sequences  

Length No Embed Sequences  

6 

1 U BTPVVT  

2 L BPPVVP  

3 U BTTXST  

4 L BPTXSP  

8 

5 U BPPTTVVP  

6 L BTPTTVVT  

7 U BTPTVPST  

8 L BPPTVPSP  

9 U BTTSSXST  

10 L BPTSSXSP  

11 U BTTXXVVT  

12 L BPTXXVVP  

16 13 BPTXXTTTVPXTTVVP  

26 14 BPPVPXTVPXVPXVPXTVPXVPXVVP  

Table 6.3 Symmetrical and asymmetrical Sequences that have been selected 

 

6.1.1 Internal Representations of the SRN 

 
For this study, the SRN results described in chapter five from training with 

asymmetrical sequences is investigated; results are shown Table 6.1, which was used to 

explore the internal representation of the SRN’s hidden units. Table 6.4 provides the 

experimental data results obtained from the SRN. These sequences have been analysed 

using the PCA method to understand the internal representation formed by the network. 

Sequences numbered 1, 2, 5, 6, 7 and 8 in the table have been selected to consider the 
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internal representations of the network for correctly predicted sequences. The 

corresponding trajectories are shown in Figure 6.2 a-c, respectively in the subspace of 

the internal representation space defined by principle component 1 (PC1) and princip le 

component 2 (PC2). The start point is located in the fourth quarter of bi-dimensiona l 

space, for nearly all of the grammar states of 1, 2 and 3; upper and lower located in the 

second and third quarter of the plane. State four and five are located in the first quarter 

of the plane while six and seven are in the fourth quarter. The common characteristic of 

the trajectories of most of the asymmetrical sequences is that they spread on the surface  

as shown in the Figure 6.2 (a, b). However, when there is a self-looping state three, they 

are located on the third and fourth quarter of the surface.  

      

SRN using Asymmetrical sequences  

No Length Embed Sequences Prediction 
Reason for 

Failure 

1 

6 

U BTTXST T  

2 L BPTXSP T  

3 U BTPVVT T  

4 L BPPVVP T  

5 

8 

U BTTXXVVT T  

6 L BPTXXVVP T  

7 U BTTSSXST T  

8 L BPTSSXSP T  

9 U BTPTVPST T  

10 L BPPTVPSP F 
Penult 

incorrect 

11 U BTPTTVVT F 
Penult 

incorrect 

12 L BPPTTVVP T  

13 16 BPTXXTTTVPXTTVVP T  

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP T  

Table 6.4 Results of SRN using asymmetrical sequences and their prediction results 

 

To analyse the results more, a number of correctly predicted sequences have been 

selected and the centroid of each state calculated. Table 6.5 illustrates the centroid of 

each sate for both upper and lower embedded part of the sequences.   
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Embedded States 
Centroid  

Embedded States 
Centroid 

PC1 PC2 PC1 PC2 

Upper 

1 -0.25646 -0.17579 

Lower 

1 0.10371 -0.11526 

2 -0.77840 -0.04289 2 -0.36975 -0.12227 

3 -0.59789 -0.23712 3 -0.70120 -0.20574 

4 0.27376 1.00098 4 0.19702 0.73998 

5 -0.14873 0.40160 5 -0.11504 0.23093 

6 0.42873 -0.50940 6 0.37518 -0.34150 

7 -0.11478 -0.41299 7 0.36923 -0.72087 

Table 6.5 SRN: Centroid of the states for asymmetrical sequences (correctly 

predicted) 
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Figure 6.2 Plots of the two most significant principle components of the hidden layer activations of a 

asymmetrically trained SRN, presented with three pairs of symbol sequences (in a, b and c respectively) 

from the ERG. Each pair has the same embedded sequence but different initial symbol so that one is in 

the lower half (dashed lines) and the other is in the upper half (solid blue lines). The sequences are in 

the table 6.7: (a) 1, 2; (b) 5, 6; (c) 7, 8 and with respect to principal components PC1 and PC2. (a 

BPTXSP/BTTXST, b) BPPVVP/BTPVVT, c) BTTSSXST/BPTSSXSP 
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A drawing of the centroid of the states of correctly predicted sequences is shown in 

Figure 6.3. The figure shows the difference in the distribution of the grammar states 

over the plane in the coordinates PC1 and PC2. The plots of the different princip le 

component pairs (PC1 and PC2; PC1 and PC3) in all the examples of the SRN, shows 

that the penultimate symbol is always in the fourth quarter (bottom right) of the plane 

and the start point is always in the first quarter (top right). Plots of PC2 and PC3 

however, establish different trajectories, start and penultimate positions; Appendix C 

depicts some examples of them. The domain of the upper states on PC1 is distributed 

from approximately -0.7 to 0.5 and the lower states are approximately between -0.3 to 

0.3. In addition to this, there is also, a divergence in the range of the PC2 axis between 

upper and lower states. Moreover, there is a kind of clustering in each state that can be 

seen in the figure, since each state is located in a different position in plane. These may 

explain why the network could differentiate between both embedded parts and 

memorise long term dependency.  

 

 

Figure 6.3 SRN: Centroid of each state using asymmetrical sequences (correctly 

predicted sequences) 
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Figure 6.4 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained by SRN, trajectories of two non-identical asymmetrical sequences that were 

incorrectly predicted by the SRN. (a) The lower embedded part BPPTVPSP. (b) The upper embedded 

part BTPTTVVT. With respect to principal components PC1 and PC2. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B L
P
1

L
P
2

L
T
4

L
V

4

L
P
6

L
S
5

L
P
7

PCA1  29%

P
C

A
2

  1
9

%

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2

U
T
4U

T
4

U
V

4

U
V

6

U
T
7

PCA1  29%

P
C

A
2

  
1

9
%

b



Chapter 6: Understanding the Internal Representations Formed   

 

123 
 

To investigate the internal representation when sequences are incorrectly predicted, a 

number of sequences that have all the grammar states were considered. This was to 

examine the trajectories through all seven states of both the upper and lower embedded 

grammars (in the length of 12 to 24 sequences). Figure 6.4 illustrates the lower and 

upper part of the sequences that have length eight which were predicted incorrectly by 

the SRN. Both of the sequences have incorrectly predicted symbols. These symbols 

were the penultimate symbols of the sequences. By drawing the states of the unpredicted 

sequences, it seems there is a similarity in the distribution of the states on the surface. 

This may be due to the failure of the sequences being in the penultimate symbol, which 

makes it difficult to observe the difference between the trajectories of both cases. Thus, 

twelve correct sequences and incorrect sequences with different lengths have been 

chosen and their range computed to investigate the range of the state 7 for both cases. 

Figure 6.5, clearly indicates that there is a distinct distance between final states for 

correctly and incorrectly predicted sequences (i.e. where PC1 <0.8 appears reserved for 

incorrect predictions and >=0.8 for correct predictions)  

 

Embedded States 
Range 

Embedded States 
Range 

PC1 PC2 PC1 PC2 

Upper 

1 0.00009 0.00010 

Lower 

1 0.00008 0.00017 

2 0.74197 0.34151 2 0.77149 0.09085 

3 0.44686 0.46860 3 0.37745 0.41429 

4 0.30652 1.07506 4 0.34939 1.01875 

5 0.81921 0.92739 5 0.97138 0.61542 

6 0.44090 0.85219 6 0.06009 0.10806 

7 0.54955 0.38318 7 0.08450 0.11046 

Table 6.6 SRN: Range of the states for asymmetrical sequences (Incorrectly predicted 

sequences) 
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Figure 6.5 SRN: located ranges of state seven for correctly predicted and incorrectly 

predicted asymmetrical sequences. 

The investigation of the internal representation of the SRN has shown that the network 

distributes the states of the grammar in a systematic way (in a consistent manner). In 

addition to this, there are ranges where, if state seven is located inside them, the network 

prediction will fail to recognise the symbols. However, the poor performance of the 

network needs to be explored.   

 
 

6.1.2 Internal Representations of the NARX 

 

In chapter three a graph of NARX with 15 hidden units, eight feedback boxes from the 

output unit and four shifted boxes from the input, is depicted. The best performance of 

the NARX was selected to investigate its internal representation. The network has 15 

hidden units and the PCs have been computed for the whole corpora of the training 

dataset. The same sequences that were used in the previous network to investigate the 

trajectories of the components are used here as illustrated in Table 6.7. The table shows 

that the network recognises all the sequences that have been selected except for the 

sequence with length 26. The trajectories of the sequences are depicted in Figure 6.6.  

These show how the network represents the sequences in the space. It shows the 
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systematic state of the grammar represented by the hidden units of the network. The 

trajectories of the grammar states for both upper and lower embedded parts of the 

grammar are located in approximately the same position in the space for each sequence.       

 

NARX using Asymmetrical sequences  

No Length Embed Sequences Prediction 
Reason for 

failure 

1 

6 

U BTTXST T  

2 L BPTXSP T  

3 U BTPVVT  T  

4 L BPPVVP T  

5 

8 

U BTTXXVVT T  

6 L BPTXXVVP T  

7 U BTTSSXST T  

8 L BPTSSXSP T  

9 U BTPTVPST T  

10 L BPPTVPSP T  

11 U BTPTTVVT  T  

12 L BPPTTVVP T  

13 16 BPTXXTTTVPXTTVVP T  

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP 
F Penult 

incorrect 

Table 6.7 Sequences results for NARX and the position of the incorrectly predicted 

symbol   

 

A number of incorrectly predicted sequences have been selected for experiment to 

explore the trajectories of the states of these sequences. Prediction by the NARX for all 

the sequences, failed at the penultimate symbol. Figure 6.7 illustrates the trajectories of 

sequences that have a length of 14 symbols. The trajectories show systematic 

distribution of the states within the space. Figure 6.8 (a) depicts trajectories of an 

incorrectly predicted sequence with sequence length 16 and (b) the trajectories of 

correctly predicted sequence having the same length. It shows that the trajectories of 

state seven in the grammar are dissimilar for each sequence. Consequently, several 

correctly and incorrectly predicted sequences were selected, considering in particular 

state seven, to visualise the state in two-dimensional space. Figure 6.9 shows the ranges 

of PC1 and PC2 of state seven for these sequences. The figure illustrates the difference 

in each case.      
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Figure 6.6 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained NARX, (a, b) are the trajectories of the sequence numbered 1,2,3,4 a) 

BTTXST/BPTXSP and b) BTPVVT/BPPVVP in Table 6.7 which have a length of six symbols. 
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Figure 6.7 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained NARX, (a, b) trajectories of two non-identical sequences that are incorrectly 

predicted a) BPPTTVPXTTVPSP and b) BTPVPXVPXTTVVT 
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Figure 6.8 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained NARX. a) Trajectories of 16-length sequences that are incorrectly predicted 

“BPTXXTTVPXTTVPSP and b) is the correctly predicted sequence of the same length 

BPPVPXTVPXTTTVVP. 
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Figure 6.9 NARX: Range of state seven for both correctly predicted sequences and 

incorrectly predicted  sequences (failes on the penultimate symbol) 

 

To conclude, the investigation provides an analysis and evaluation of interna l 

representation of the NARX. The trajectories of the states are distributed by the interna l 

representation on the plane in a systematic way, e.g. state one is located in the third 

quarter for both parts of the grammar and state seven is located in the first and second 

quarter. There is a kind of clustering that hidden units produce when the predicted 

symbols of state seven are plotted in a range, which differs from the range where 

symbols are incorrectly predicted, as illustrated in Figure 6.9. The difference between 

the trajectories of SRN and NARX are in the locations within PC1-PC2 space. However, 

there is a small variance between the upper and lower representations in PC1-PC2 space 

for the embedded sections in the NARX.    

 

6.1.3 Internal Representations of the MRN 

 

The results analysed in this investigation are taken from the MRN that was shown in 

chapter three and that produced the results presented in chapter five. The results were 

acquired from the MRN having ten hidden units and four memory boxes. Table 6.8 

shows asymmetrical sequences that were correctly predicted by the MRN. The 
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trajectories of these sequences have been studied to investigate how the interna l 

representation of the MRN represented the nominal states. Figure 6.10 (a, b, c) shows 

the sequences in the Table 6.8 numbered 1, 2, 5, 6, 7 and 8 respectively. The positions 

of state seven for sequences generated by traversing the upper embedded section of the 

grammar are located in the third quarter (bottom left), whereas the same state is in the 

fourth quarter (bottom right) for sequences generated using the lower embedded section. 

Additionally, the positions of state one for both upper and lower embedded sections are 

located in the fourth and first (top right) quarters respectively. The other state 

trajectories are located in different subspaces of the surface with consistent locations.     

  

No Length Embed Sequences 

1 

6 

U BTTXST 

2 L BPTXSP 

3 U BTPVVT  

4 L BPPVVP 

5 

8 

U BTTXXVVT 

6 L BPTXXVVP 

7 U BTTSSXST 

8 L BPTSSXSP 

9 U BTPTVPST 

10 L BPPTVPSP 

11 U BTPTTVVT  

12 L BPPTTVVP 

13 16 BPTXXTTTVPXTTVVP 

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP 

Table 6.8  Asymmetrical sequences correctly predicted by MRN 
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Figure 6.10 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained by MRN (a) trajectories of the six length sequences BTTXST/BPTXSP (b) 

BTTXXVVT/BPTXXVVP and (c) BTTSSXST/BPTSSXSP are trajectories of eight length sequences 

upper and lower embedded.  
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Figure 6.11 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained MRN (a) trajectories of 15-length sequence BPTSSSXXTVPXVVP, (b) 

BPTSSSXXTTTVVP 14-length sequence that is incorrectly predicted using MRN. 
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(a) is 15-length sequence and (b) is the 14-length sequence. The prediction of the MRN 

was incorrect for both of them, in the embedded part; it was incorrect in the self-looping 

(state four) for (a) and the penultimate for (b). The other trajectories of the states were 

located as the correct ones. To investigate the ranges of state seven, four correct and 

incorrect sequences have been chosen and the ranges displayed for both of them.       
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Figure 6.12 Range of state seven for both correctly predicted and incorrectly predicted 

penultimate symbols 

It can be observed from Figure 6.12 that the MRN has ranges of the state seven for 

correctly predicted and incorrectly predicted symbols, which means that the hidden 

units organise the states of the grammar. Another example of this is shown in 

Figure 6.13 where a number of correctly and incorrectly predicted sequences have been 

selected from the lower embedded part of the grammar. It shows that for state four in 

the grammar, each range is located in approximately the same place but there is a small 

distance between them. That shows the difficulties of the hidden units to recognise this 

state.    

 

This research has shown that, similar to the previous results, the MRN is capable of 

distributing the states in systematic way. State one of the lower part of the grammar is 

located in the first quarter and the upper part is in the fourth quarter of the plane. 

Moreover, state seven lower part is located in the fourth quarter and the upper part is in 

the third quarter of the plane. The internal representation shows small difference range 

between upper and lower parts of the grammar in respect of state four, where the 

network failed in some sequences to predict the state.    
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Figure 6.13 Range of sate four, (*) lower embedded sequence correctly predicted, (+) 

lower embedded sequence unpredicted sequences. 

 

6.1.4 Internal Representations of the ESN 

 
A variety of methods are used to assess the ESN. The data used in this investigation is 

from the ESN that has jumping connections and was used by Cartling, (2007). It is one 

of the standard methods described by Jaeger, 2002. The reservoir size of the network is 

such that it has 150 nodes. The following parameters were applied: 0.75 spectral radius; 

0.85 connectivity; and 0.3 weight range. The representation of the embedded Reber 

grammar rule is investigated here using the 150 hidden units that were used in the 

training. The same sets of sequences that have been used in the previous network were 

used here. Table 5.9illustrates these sequences and the results of the ESN when tested 

with them. The trajectories of sequences numbered in the Table 6.9 1 to 4 and 13 in the 

(PC1, PC2) subspace are shown in the Figure 6.14.  The principle divergence of several 

trajectories at each state in the sequences with a different route: upper leads to the first 

quarter and lower leads to the third quarter. The trajectories of the sequences from the 

SRN and ESN are dissimilar. However, this can explain why the ESN got 100% of the 
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embedded parts of the sequences comparing with SRN and MRN, which were less than 

this percentage.   

        ESN using Asymmetrical sequences  

No Length Embed Sequences Predication 
Reason  

for failure 

1 

6 

U BTTXST T  

2 L BPTXSP T  

3 U BTPVVT  T  

4 L BPPVVP T  

5 

8 

U BTTXXVVT F P 

6 L BPTXXVVP T  

7 U BTTSSXST T  

8 L BPTSSXSP F P 

9 U BTPTVPST T  

10 L BPPTVPSP F P 

11 U BTPTTVVT  F P 

12 L BPPTTVVP T  

13 16 BPTXXTTTVPXTTVVP T  

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP T  

Table 6.9 Sequences results for ESN and the position of the unpredicted symbol 
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Figure 6.14 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained ESN. (a) BTTXST/BPTXSP (b) BTPVVT/BPPVVP (c) 

BPPVPXTVPXTTTVVP. The trajectories are of sequences that were correctly predicted by the 

network.  
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Figure 6.15 Plots of the two most significant principle components of the hidden layer activations of 

an asymmetrically trained ESN. (a) BTTXXVVT. (b) BPTSSXSP. The trajectories are of sequences 

that were incorrectly predicted by the network in the embedded part. 
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To investigate the sequences that were predicted incorrectly, a number of  incorrectly 

predicted sequences have been selected to study how the network organized the 

penultimate symbols in the state of both the embedded upper and lower parts (since the 

results of the ESN show the incorrectly predicted symbol is generally the penultimate). 

Figure 6.15 shows the trajectories of the states of the sequences that have eight symbols. 

The trajectories of the penultimate symbol for sequences with both upper and lower 

embedded parts appear to be similar to the trajectories for the correctly predicted 

symbols. To investigate the dispersion of state seven, the range of this state has been 

computed for a number of sequences for both correctly and incorrectly predicted 

sequences. Therefore, comparing between the networks can explain why the MRN is 

superior over the other networks. Figure 6.16 draws the ranges of state 7 for a numbers 

of sequences. Asterisk and plus sign symbols represent the correctly predicted 

sequences and the circle and times signs are the incorrectly predicted ones.  

 

Figure 6.16 ESN: Range of state seven for both correctly and incorrectly predicted 

penultimate symbols  

 

Figure 6.16shows the ranges when the surface is scaled where the predicted state is in 

a range differ from the state in the incorrectly predicted sequence. Nevertheless, the 

distance between them is still small where the previous networks provide a larger 

distance between them.   
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6.2 Comparative Analysis of the Internal Representations  

 

Further investigation is required to determine exactly how the networks distribute the 

states of the grammar; test dataset results after applying PCA have been studied. 

Appendix D illustrates the results of the networks. The test sequences that have been 

applied to the PCA are unique sequences (not in the training dataset). 20.2% of the 

sequences were unique from the trained dataset of 212 sequences.  

The prediction 

of the whole 

dataset 

SRN MRN NARX ESN 

50.94% 95.28% 51.88 48.58% 

Table 6.10 The prediction of the unique sequences in the test dataset 

Table 6.10 shows the total unique sequences correctly predicted for each network. The 

MRN is superior over the other networks in the unique sequences. Table 6.11 

demonstrates the results of each network in detail according to the sequence length, for 

the correctly predicted unique sequences. The MRN also has the most successfully 

predicted sequences when comparing using sequences of increasing length. To 

investigate why MRN is superior over the networks, internal representation has been 

studied using PCA.         

Length Frequency SRN MRN NARX ESN 

15 1 0 1 0 0 

17 7 4 7 5 3 

18 21 9 21 14 8 

19 35 11 32 11 13 

20 35 19 34 20 18 

21 32 17 32 19 17 

22 27 17 24 14 17 

23 22 14 20 9 9 

24 18 9 17 9 10 

25 9 5 9 6 0 

26 5 3 5 3 3 

Table 6.11 Details of the number of each length sequence (unique) correctly predicted 

by each network 
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The unique sequences are studied in this investigation, since the rest of the sequences 

of the dataset are in the training dataset which was investigated in the previous section. 

To assess the distribution of the states, the centroid of the states was used for the upper 

and lower embedded grammar, thereby, observing the centre of the mass for each state 

of the grammar. Table 6.12, shows the centroid of each network for both upper and 

lower embedded routes through the grammar. 

 

G
ra

m
m

a
r 

States 
NARX SRN MRN ESN 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

U
p

p
e
r 

1 -0.5970 -0.4645 -0.2754 0.0409 0.2321 -0.1679 -0.7176 -0.6375 

2 0.3789 0.5316 -0.0530 0.0621 -0.2708 -0.1281 -0.3976 -0.0541 

3 -0.2707 0.3995 -0.0124 0.1284 -0.3044 -0.3645 0.1507 -0.2720 

4 0.6792 -0.3690 -0.0759 -0.1227 -0.4832 0.5057 0.1835 -0.4095 

5 0.6912 0.2375 -0.0859 -0.0356 -0.4459 0.0523 0.1562 -0.3524 

6 -0.5177 0.2152 0.2595 -0.3311 0.2268 -0.6141 0.2221 0.6675 

7 -0.3321 1.1134 -0.4650 -0.0165 -0.2010 -0.5837 -0.7155 -0.6318 

L
o

w
e
r 

1' -0.5776 -0.5398 -0.1220 0.0979 0.6745 0.2480 0.0965 0.8254 

2' 0.3845 0.5352 -0.1128 0.0536 -0.1596 -0.2747 -0.4235 -0.1244 

3' -0.0346 0.4466 0.0176 0.1659 -0.1451 -0.3670 0.1507 -0.2714 

4' 0.7597 -0.3350 -0.0747 -0.1234 -0.5614 0.4093 0.1542 -0.4168 

5' 0.6473 0.1508 -0.0945 -0.0216 -0.4308 0.0900 0.1561 -0.3508 

6' -0.4355 0.1098 0.2616 -0.3335 0.1776 -0.3180 0.2145 0.6773 

7' -0.2703 0.8390 -0.1933 0.0395 0.1468 -0.8502 0.0988 0.8328 

Table 6.12 The centroids for each grammar state for each network 

 

The PC1 and PC2 values for all the unique sequences were calculated and the results 

are plotted in the Figure 6.17. The figure shows the range of the centroid of all the states 

for each network. The centroid of the SRN states are located approximately in the PC1 

range of -0.5 to 0.3,  NARX in  -0.6 to 0.8, MRN in -0.6 to 0.7 and ESN in -0.8 to 0.3. 

This gives range of 0.8, 1.4, 1.3 and 1.1 for SRN, NARX, MRN and ESN respectively. 

This suggests a link may exist between the data distribution and the performance of the 

networks.   
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Figure 6.17 The centroid of the upper and lower embedded grammar of the networks  

a)SRN, b) NARX, c) MRN, d) ESN 

 

Further statistical analysis of the centroid revealed strong links between the distribution 

of the dataset and the performance of the networks. Figure 6.17 depicted the centroid of 

each state of the networks represented by the PC1 and PC2. The graphs show the 

distance variance between sequences generated via the upper and lower routes through 
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the grammar. In addition, it illustrates the range of each network where it shows the 

difference range represented by the hidden unit. The absolute difference between the 

centroids taking sequences containing the upper and lower sections of the embedded 

grammar respectively is given in Figure 6.18. It is apparent from this figure that the 

Euclidean distance between the states for the upper and lower embedded trajectories 

varies in these networks; the distance for the MRN is the highest of the networks 

followed by NARX. This explains why the MRN is superior over the other networks. 

The MRN is more able to consistently maintain a sufficient distance between 

corresponding grammar states within the upper and lower sub-grammars. This work 

contends that this is due to the ability of its sluggish state-based memory to latch onto 

and maintain information about the entry points (T and P) of the respective sub-

grammars throughout the respective sequences.  

 

 

Figure 6.18 The Euclidean distances between each corresponding centroid 
representing the embedded grammar states of the upper and lower embedded 

grammars (for each model evaluated). 

 

To explore the order of the networks for their performance, Euclidean distance has been 

calculated between the MRN and SRN, NARX and ESN. Table 6.1 illustrates the results 

obtained. The most interesting finding was that the NARX has the closest distance to 

the MRN at 0.33 followed by the SRN then ESN, which correlates with the performance 

of the networks.     
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Euclidean Distance 

Cross state MRN vs SRN MRN vs NARX MRN vs ESN 

1 0.049 0.050 0.142 

2 0.028 0.202 0.065 

3 0.178 0.107 0.162 

4 0.038 0.091 0.005 

5 0.253 0.115 0.159 

6 0.282 0.164 1.212 

7 0.167 0.094 0.318 

all states 0.456 0.335 1.284 

Table 6.13 Euclidean distance between MRN and the networks 

 

6.3 Summary of Results and Discussion  

 

The strong relationship between SRN, NARX, MRN and ESN has been reported in the 

literature. However, they differ from their architecture and training process. This study 

provides information about the internal representation of these networks. The high 

performance of the MRN in this research is traced to a well-organized interna l 

representation of the grammatical elements. A number of architectures of networks 

facilitate an improved resolution of the internal representation, this is discussed above 

in terms of the intervening layers in each network architecture. The interna l 

representation of the SRN in both biased and unbiased datasets, shows that the 

trajectories of the grammatical states are distributed in a systematic way which 

illustrates the important role of the hidden units in the network. Similar trajectories were 

acquired from the MRN with respect to their quarter positions in the PC1-PC2 plane. It 

seems significant that the trajectories mirror each other for the same embedded sections 

but from the upper and lower paths for the MRN and SRN, but for the ESN they look 

rather different. This is because the ESN had different learning algorithms compared 

with the rest of the networks where they use BPTT and all the connections were  

trainable. Another important finding was the constant variance between the upper and 

lower parts of the sequences represented by the internal representation of the MRN, 

which explain its superiority over the networks. The present study, however, makes 

several noteworthy contributions to connectionism. For the networks studied, their 

performance relies on how the internal representations of the networks maintains a 

constant variance between upper and lower part of the grammar. Investigation of the 
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hidden units found that there is a kind of clustering represented by the hidden layer that 

helps the networks to recognise.     

 

The internal representation, as explored by a principal component analysis of the hidden 

unit activities for entire networks, is shown to organize the states of the embedded Reber 

grammar. However, they differ when they organise state seven (the penultimate state) 

of the grammar; the ESN has difficulties in distinguishing between penultimate symbols 

of the grammar this may due to learning algorithm of the network.          
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Chapter 7 
 

7. Conclusion & Future Work 
 

7.1 Introduction 

 

This thesis has focused on one of the principle problems in artificial intelligence, a 

problem that is still subject to ongoing research, despite approximately half a century 

of investigation by numerous researchers. Language acquisition is a complex problem 

to many linguists such that they consider it a paradox and a NP-complete problem. It is 

a perspective that consequently denies the possibility of an automated solution 

(Jackendoff 2002). 

 

Nevertheless, nowadays, NLP systems are a key area of interest in the field of 

connectionism and much work has been conducted on how linguistic representations 

and descriptions can be used for processing. That is the focus of computationa l 

linguistics and NLP. This is formed by such models. The creation of an automated 

language acquisition system for natural language would be a revolutionary discovery 

because the complexity of its syntax and morphology is difficult to parse etc. One of 

the most significant debates within this field is that of empiricists, who argue that the 

brain has the neurological basis to discover an automated language acquisition model 

directly from exposure to naturally occurring sentences. The research shows that a 

particular class of connectionist networks, the multi-recurrent network, provides 

evidence in support of the empiricist’s hypothesis, where other classes of connectionis t 

network do not.  

 

A principle objective of this research is to determine the class of RNNs that is able to 

robustly learn to represent the underlying pushdown automata that adequately describes 

the important characteristics considered essential for natural language acquisition, such 

as being able to establish and maintain cross-serial dependencies. This research has 

investigated several RNNs that are diverse in their network architectures and with 

variation in some cases in the learning algorithm. The study investigated the most 

common types of RNN models applied to language modelling tasks and variants 
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thereof.  In particular, the study applied the ‘next symbol prediction’ task for the 

Embedded Reber Grammar to a set of SRNs trained with back-propagation through time 

(BPTT), namely Elman’s SRN, the Jordan net, NARX and the MRN. Although each of 

these networks shared the vanishing gradients problem associated with BPTT, they 

differed in their architecture and therefore how they may be able compensate, if at all, 

for the limitations of the learning algorithm. The performance of each of these networks 

was then contrasted against each other and to that of the current ‘state-of-the-art’ RNN, 

the ESN, which is not known to suffer from the vanishing gradient issue and has an 

echo-state property which allows for effective learning of temporal problems. A process 

of noise injection was also applied and evaluated to ascertain whether or not this 

optimised performance.  Also, to support the networks in their task, asymmetrical data 

sets have been generated that gave statistical indications as to which embedded 

grammar was being entered into and therefore a bias towards the correct transition with 

which to exit the embedded aspect to reach the final state of the grammar. 

 

The investigations found that not all RNNs examined were able to correctly model the 

grammar and process the associated long term dependencies. This Chapter therefore 

summarises the key findings and contribution of the research with respect to the type of 

RNN most able to correctly learn the grammar and generalise to the wider population 

of sequences. In addition, it provides insight into why a particular class of RNN was 

consistently better and then highlights important areas for future research. 

 

Simulations with a class of MRNs using 4 memory banks and 10 hidden nodes per bank, 

showed that they were able to successfully learn 100% of the training sequences (with 

a maximum sequence length of 26 symbols). The MRN tested with the asymmetr ica l 

dataset was clearly able to detect the dependency, achieving a success rate of over 

95.1% in five of the symmetrical test trials and over 88.5% in five of the asymmetr ica l 

test trails. However, the MRN’s performance begins to significantly degrade as the 

sequence length increases above 60 symbols and fails entirely when the sequence length 

exceeds 100 symbols. 

 

The performance of the MRN was achieved by using noise injection to the network 

training, however the SRN, NARX and ESN failed to improve their outcomes when the 
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same method was used. A number of modifications were carried out to enhance the 

results of the networks (varying architectures, parameters, learning algorithm etc.). 

 

7.2 Training Parameters 

 

This section illustrates the parameters that are used to obtain the results with respect to 

the different networks. The hidden units used for SRN, Jordan, TDNN, and NARX were 

15 and for MRN it was 10, the learning rate for those networks were 0.15. This was 

after testing a number of values; the momentum was 0.75 and the weight range was 0.3. 

The leaning type that enhanced the performance of the networks is “pattern error–

sensitive” learning rate. The ESN has 150-reservoir size, 0.75 spectral radius, 

connectivity of 0.85 and weight range of 0.3. All networks were trained in one epoch.    

 

7.3 Main Conclusion Derived from This Study 

 

The investigations presented in this thesis are a novel attempt to answer research 

questions, both from a practical and a theoretical point of view. In particular, to evaluate 

the efficacy of an embedded memory architecture consisting of recurrent and self-

recurrent units used in variants of the SRNs against the vanishing gradient problem 

associated with the gradient-descent learning algorithm. This research assesses the 

efficacy of this memory mechanism for the SRNs and ESN using a popular complex 

grammar induction task. Based on the results obtained from this research, it can be 

concluded that: 

 

The investigations have studied the effect of the size of the hidden units on the 

performance of the networks. There is a limit of memory size above which the network 

outcomes start to decay. In addition, the investigation for the MRN found that going 

above four memory banks does not lead to enhanced performance. Rather, it is the 

number of neurons in the boxes that is important for the performance of the network 

and this is determined using the validation set. This is as stated by (Ulbricht 1994, 

Binner, Tino et al. 2010) and so it is confirmation of their work. 
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This research evaluated the stability of different network architectures to attain the 

ability to process long term dependency between different clauses within a sentence . 

This has been a key challenge for artificial neural networks such as the SRN and ESN. 

An artificial grammar, which replicates this problem was used to investigate a range of 

recurrent network architectures with gradient descent based learning such as SRN, 

NARX and MRN. Although, they have the same learning algorithm, they have 

differences in their architectures in terms of their natural feedback. These were 

compared with the new type of recurrent network called ESN with a one shot learning 

scheme and it is shown to be incapable to store this type of information to a high degree 

of accuracy. It is apparent that what neural networks need to represent in terms of a state 

machine is the linear boundary automata which is a finite state machine with a push-

down stack. Therefore, it needs to be able to learn to represent the computational model, 

whenever the computational model needs to learn to represent a linear bounded 

automata to automate in order to process a grammar that has long-term dependency.    

 

One aspect of the current study was to determine whether training with asymmetr ica l 

rather than symmetrical sequences could help the network learning. Asymmetr ica l 

sequences enhanced the learning of the networks, compared with symmetr ica l 

sequences. 

 

In order to understand the quality of the state-based representations formed, the interna l 

representation of each of the networks using PCA has been analysed to provide some 

visualisation of the trajectories through state space as a sequence is processed and 

therefore to ascertain whether this followed the underlying grammar, and if so, how 

robustly. PCA was performed on SRN, NARX, MRN and ESN because of their higher 

performance among the other networks.  

 

It was noted that all models analysed had formed meaningful representations of the 

underlying grammar, where centroids within PCA space represented different states of 

the grammar. For SRN, MRN and ESN there was a clear mirroring effect within PCA 

space between the state space trajectories for the upper and lower embedded grammars. 

However, only the MRN was able to maintain sufficient distance between the 

representations of the two embedded grammars in order to consistently exit the 

embedded part to the correct exit point (grammar state 7).  What do we mean by 
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sufficient distance? Well, the research analysis showed that only the MRN mainta ined 

a constant variance between the distances of the centroids (grammar states) across all 

states of the embedded grammars. The NARX, SRN and ESN were all unable to form 

a constant variance between states. This strongly suggests that although the additiona l 

graded-state memory mechanism of the MRN requires additional weights, this is 

countered by the resulting quality and stability of the state-based representations formed 

i.e. it was able to more fully learn the training sequences and form hypotheses that 

provided robust generalisation to statistically biased and unbiased data.  

 

The challenge of the long-term dependency meant that the embedded parts are correctly 

predicted while the long term dependency part is incorrectly memorised. The best 

architecture and learning algorithm to capture the long term dependency was the MRN 

in terms of the degree to which it learnt the problem and the degree to which it 

generalised to unique sequences beyond those found in the training set. In contrast, other 

networks such as ESN memorised or learned the embedded grammar but failed to 

adequately capture the long term dependency and therefore, to actually incorporate the 

embedded part correctly.  

 

Throughout this research, the training method and training parameters were investiga ted 

to optimise these networks. Some key findings are:  

 

Noise injection has enhanced the MRN performance by approximately 10% compared 

with when used without it. The range of the value of noise that provides the MRN with 

stability is ±0.01. Implementing this technique to the other networks did not enhance 

the networks; however, more investigations need to be conducted since more noise 

values need to be studied. The best values of the spectral radius and connectivity and 

the range weight were as mentioned previously. These values were arrived out using 

the ANOVA method and a range of training results with the ESN.   

 

The results of this investigation show that the performance of the SRN and MRN are 

quite sensitive to the initial starting conditions comparing with the ESN. In addition to 

this, however, SRN, NARX and MRN have a similar learning algorithm; they have 

different feedback connections whereas the ESN is completely different in terms of 

learning algorithm and connections feedback.  
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Although in some instances in some paths of the grammar, some SRN and ESN have 

learned particular paths very well, in terms of the problem as a whole and across all 

paths of the grammar, the MRN is more constant in being able to correctly recognise 

sequences that are longer than and/or different from those in the training dataset, which 

shows a strong level of generation.  

 

Analysing the internal representation of the networks using PCA demonstrated the 

systematic learning of different networks, particularly where sequences were the same 

in the embedded. This provided a mirroring between sequences in terms of those with 

upper and lower embedded sections which then diverged at state seven and these were 

compared using. The MRN captured the knowledge of the embedded grammar since it 

distributed the variance of the centroid for both upper and lower parts of the grammar 

in a constant way. This attribute was seen to a lesser extent in the NARX, followed by 

the SRN and then the ESN. 

 

7.4 Future Research Directions. 

 

Further investigations, in which future works could proceed, are listed below: 

 

Although the MRN was superior over the other networks, further investigation is 

required to better understand the representations formed. For example, do MRNs allow 

for systematicity of language and structure? Can so-called ‘deep neural networks’ offer 

further representational power to the MRN? Since the grammar induction task involves 

learning grammar whose structure is potentially unknown, the model must be able to 

correctly predict the grammar to a reliable degree.    

 

This work provides support for further exploration of the MRN for modelling human 

sentence processing and the associated computational machinery neutrally implemented 

within the brain (e.g. registers, counter functions, variable binding through temporal 

synchrony of neuronal firing). In particular, it would be interesting to investiga te 

whether the generalization performance of the MRN when processing centre-embedded 

clauses is akin to that of human working memory when processing similar grammatica l 

structures, building on the work of Cowan, 2001 and contrasting the MRN 
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representations with those of the LSTM. Also, as the number of memory banks within 

the MRN, and thus the degree of granularity to which it integrates and stores past and 

current information, has to be pre-determined, how the  number of memory banks can 

be automatically determined or learnt for a given prediction task could be explored.  

 

Additional work also needs to be conducted to compare the MRN with long short term 

memory (LSTM) both from a theoretical and also an experimental point of view, to 

assess the LSTM against the MRN and ESN. Although LSTM has well counting 

facilities, to what extent language acquisition requires more complex machinery than 

counters and stacks could be assessed. 
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Appendix A: Some Results of Medium Acceptance Criterion 

Using SRN 
 

Medium Acceptance Criterion 

 

In order to deal with the situation where there is only one right answer for the 

penultimate symbol in the embedded Reber grammar (as opposed to two at each stage 

of the Reber grammar) a medium acceptance criterion was applied. The aim was to 

investigate the performance of the SRN on the embedded Reber grammar using the 

Luce ratio (Luce 1963) approach to assessing correctness. It is calculated by dividing a 

given output unit’s activation value of all output units. This kind of measurement is a 

common method used in psychology to model the strength of response tendency among 

a finite set of alternatives (James, McClelland 1988). It has also quantified the 

prediction accuracy of the network and it is produced comparable predication accuracy 

endorsement rates. In these experiments, the same training file was used for ten 

networks. Table 1 illustrates the best five training results. The effect of the medium 

acceptance criterion needs to be investigated with this representation before 

experiments using the second representation (0 & 1) described in chapter four. 10 

networks trained and the table shows the five most successful. The network has not 

learned enough of the embedded structure, contrary with the results obtained from the 

previous method. In addition, the results of the penultimate dropped compared with the 

previous result.     

 

Even after training the network with the second representations of the symbols (0.2 & 

0.8). The network has not learned as the first representation it was poor results. 
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Net 

Whole 

Sequence 

% Correct 

Embed% Penult% 

Incorrect 

Alternative 

Penult% 

Wrong 

Penult% 

1 68.05 98.45 68.56 31.43 0 

2 68.14 98.33 68.98 31.01 0 

3 63.02 93.81 67.56 32.34 0 

4 49.65 99.25 50.24 49.75 0 

5 49.46 97.7 50.08 49.91 0 

Table 1 SRN training results in learning the embedded Reber grammar with medium 

acceptance criterion applied 

 

Net 

Whole 

Sequence 

% Correct 

Embed% Penult% 

Incorrect 

Alternative 

Penult% 

Wrong 

Penult% 

1 1.1 94.7 1.1 0.4 98.5 

2 5.3 89.2 5.6 4.4 90 

3 3.8 78.3 4.1 3.3 92.6 

4 0.1 93 0.1 0 99.9 

5 0.6 85.2 0.7 0.5 98.8 

Table 2 SRN test results using five test networks trained on the embedded Reber 

grammar with medium acceptance criterion applied 
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Appendix B: Results of Different Networks and Info of Some 

Dataset 
 

Net 

Whole 

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative 

Penult% 

Wrong 

Penult% 

1 46.89 95.58 50.08 0 50.08 49.9 0 

2 37.65 80.65 50.08 0 50.08 49.91 0 

3 38.59 63.7 50.08 0 50.08 49.91 0 

4 50.08 97.75 50.08 0 50.08 49.9 0 

5 39.5 89.14 50.08 0 50.08 49.91 0 

6 44.94 93.05 49.99 0 49.99 50 0 

Table 1 SRN training results for embedded Reber grammar using hard acceptance 

criteria and binary symbol representations   

 
 
 

Net 

Whole 

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative 

Penult% 

Wrong 

Penult% 

1 50.08 100 50.08 0 50.08 49.91 0 

2 50.08 100 50.08 0 50.08 49.91 0 

3 50.08 100 50.08 0 50.08 49.91 0 

4 50.08 100 50.08 0 50.08 49.91 0 

5 50.08 100 50.08 0 50.08 49.91 0 

Table 2 SRN training results for embedded Reber grammar using hard acceptance 

criteria and non-binary symbol representations 
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Training file 300000 sequences 

Sequences Start with 
Number Of 

Sequences 
Percentage 

T 149994 49.99% 

TT 75893 25.29% 

TP 74101 24.70% 

 

P 150006 50.00% 

PP 76048 25.34% 

PT 73958 24.65% 

 

Testing file 1000 sequences 

Sequences Start 
with 

Number Of 
Sequences 

Percentage 

T 512 51.20% 

TT 293 29.30% 

TP 219 21.90% 

 

P 488 48.80% 

PP 202 20.20% 

PT 286 28.60% 

 
 

Net 

Whole 

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 

Alternative 

Penult% 

Wrong 

Penult% 

1 7.1 14.5 51 29.2 21.8 49 0 

2 2.3 4.1 52 29.2 22.8 48 0 

3 5.8 12.3 51 29.2 21.8 49 0 

4 0.7 1.7 50 29.1 20.9 49 0 

5 5.4 10.2 51 29.2 21.8 49 0 

Table 3 SRN results of the symmetrical test file with ten asymmetrical training 

networks and non-binary symbol representations using soft acceptance criteria  
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Hidden  

Unit 

Whole  

Sequence 

% Correct 

Embed% Penult% 

Penultimate Incorrect 

P% T% 
Alternative  

Penult% 

Wrong  

Penult% 

5 

26.12 61.3 97.08 47.65 49.42 2.92 0 

56.36 57.86 91.45 49.49 41.96 8.54 0 

19.55 39.93 85.27 45.35 39.92 10.63 4.08 

46.27 50.42 90.14 45.27 44.87 9.85 0 

59.69 65.23 91.02 43.16 47.85 8.97 0 

7 

56.22 56.23 98.8 49.3 49.49 1.19 0 

41.54 41.54 96.89 49.16 47.73 3.1 0 

16.99 34.11 98.6 49.47 49.13 1.39 0 

40.86 40.86 88.16 47.83 40.33 11.83 0 

41.03 41.03 99.17 49.53 49.64 0.54 0.28 

10 

68.23 69.5 95.95 48.5 47.45 3.76 0.28 

65.96 66.17 98.72 48.64 50.08 0.99 0.28 

60.77 60.77 99.48 49.91 49.56 0.51 0 

62.6 62.6 99.89 49.81 50.08 0.106 0 

57.93 58.02 94.6 45.09 49.5 5.39 0 

13 

59.5 61.74 99.41 49.33 50.08 0.58 0 

41.56 41.56 99.98 49.91 50.06 0.014 0 

58.25 58.25 99.05 48.97 50.08 0.94 0 

49.7 49.7 87.08 46.88 40.19 12.91 0 

56.92 56.92 98.67 49.91 48.75 1.32 0 

Table 4 MRN Training Performance on the Embedded Reber Grammar using various 

numbers of hidden units 
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Appendix C: Plots of Different PCA Components Using SRN 
 
 
These graphs show the different trajectories when using PC2 and PC3; PCA1and PC3  
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Figure: Plots of the different principle components of the hidden layer activations of a asymmetrically 

trained by SRN, presented with three pairs of symbol sequences (in a, b and c respectively) from the 

ERG. Each pair has the same embedded sequence but different initial symbol so that one is in the lower 

half (dashed lines) and the other is in the upper half (solid blue lines). a BPTXSP/BTTXST, b) 

BTTXXVVT/BPTXXVVP, c) BTTSSXST/BPTSSXSP 
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Appendix D: Test Datasets Results of Some of RNNs 
 
 
MRN has been tested with 1000 sequences, which were asymmetrical sequences. 

The result of the file was  
Number of Patterns: 16928 

Ratio of convergent Patterns: 99.8641% 
Number of Sequences: 1000 
Ratio of convergent Sequences: 97.7% 

The ratio of convergent embedded: 98.2% 
Ratio of convergent final: 99.5% 

Ratio of Incorrect final but within the alternative: 0.5% 
Ratio of Incorrect final: 0% 
Number of the correct path T: 477. The percentage of it: 47.7% 

Number of the correct path P: 518. The percentage of it: 51.8% 
 

Sequence 
Length 

Total 
Sequences 

Correct Wrong Embedded Final 

6 4 4 0 4 4 

7 6 6 0  6 6 

8 8 8 0 8 8 

9 14 14 0 14 14 

10 18 18 0 18 18 

11 26 26 0 26 26 

12 38 37 1 37 38 

13 50 48 2 48 50 

14 68 66 2 66 68 

15 91 90 1 90 91 

16 107 105 2 105 107 

17 117 114 3 114 117 

18 116 114 2 115 115 

19 110 107 3 107 110 

20 75 74 1 74 75 

21 53 53 0 53 53 

22 39 36 3 38 37 

23 26 24 2 25 25 

24 20 19 1 20 19 

25 9 9 0 9 9 

26 5 5 0 5 5 

 

 
SRN has been tested with 1000 sequences, which were asymmetrical sequences. 

 
Number of Patterns: 16928 
Ratio of convergent Patterns: 97.324% 

Number of Sequences: 1000 
Ratio of convergent Sequences: 56% 



Appendixes  

 

183 
 

The ratio of convergent embedded: 98.2% 
Ratio of convergent final: 56.5% 

Ratio of Incorrect final but within the alternative: 43.5% 
Ratio of Incorrect final: 0% 

Number of the correct path T: 127. The percentage of it: 12.7% 
Number of the correct path P: 438. The percentage of it: 43.8% 
 

Sequence 
Length 

Total 
Sequences 

Correct Wrong Embedded Final 

6 4 3 1 4 3 

7 6 4 2 6 4 

8 8 6 2 8 6 

9 14 6 8 14 6 

10 18 11 7 18 11 

11 26 13 13 25 13 

12 38 19 19 37 20 

13 50 24 26 50 24 

14 68 35 33 67 35 

15 91 42 49 89 43 

16 107 61 46 105 61 

17 117 64 53 115 64 

18 116 71 45 114 71 

19 110 61 49 106 62 

20 75 44 31 75 44 

21 53 32 21 52 33 

22 39 28 11 37 29 

23 26 17 9 26 17 

24 20 11 9 20 11 

25 9 5 4 9 5 

26 5 3 2 5 3 

 
 

ESN has been tested with 1000 sequences, which were asymmetrical sequences. 
Number of Sequences: 1000 

Ratio of convergent Sequences: 60.7% 
The ratio of convergent embedded: 100% 
Ratio of convergent final: 60.7% 

Ratio of Incorrect final but within the alternative: 39.3% 
Ratio of Incorrect final: 0% 

Number of the correct path T: 248 the percentage of it: 24.8% 
Number of the correct path P: 359 the percentage of it: 35.9% 
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Sequence 
Length 

Total 
Sequences 

Correct Wrong Embedded Final 

6 4 4 0 4 4 

7 6 6 0 6 6 

8 8 4 4 8 4 

9 14 7 7 14 7 

10 18 9 9 18 9 

11 26 13 13 26 13 

12 38 19 19 38 19 

13 50 25 25 50 25 

14 68 34 34 68 34 

15 91 48 43 91 48 

16 107 65 42 107 65 

17 117 75 42 117 75 

18 116 79 37 116 79 

19 110 74 36 110 74 

20 75 48 27 75 48 

21 53 36 17 53 36 

22 39 29 10 39 29 

23 26 12 14 26 12 

24 20 12 8 20 12 

25 9 5 4 9 5 

26 5 3 2 5 3 

 

NARX has been tested with 1000 sequences, which were asymmetrical sequences. 
 
Number of Patterns: 16928 

Ratio of convergent Patterns % : 98.1864 
Number of Sequences: 1000 

Ratio of convergent Sequences % : 70.9 
Ratio of convergent embedded % : 95.7 
Ratio of convergent final     % : 74 

Ratio of Incorrect final but within the alternative % :26 
Ratio of Incorrect final % :0 

Number of the correct path T :350  the percentage of it : %35 
Number of the correct path P: 390 the percentage of it: %39 
Sequence Length:   Total Sequence Correct Wrong Embedded Final 
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Sequence 
Length 

Total 
Sequences 

Correct Wrong Embedded Final 

6 4 4 0 4 4 

7 6 6 0 6 6 

8 8 8 0 8 8 

9 14 14 0 14 14 

10 18 18 0 18 18 

11 26 26 0 26 26 

12 38 36 2 38 36 

13 50 41 9 47 43 

14 68 54 14 68 54 

15 91 66 25 86 70 

16 107 76 31 102 81 

17 117 80 37 112 83 

18 116 79 37 109 84 

19 110 67 43 103 71 

20 75 44 31 70 48 

21 53 36 17 51 36 

22 39 23 16 35 27 

23 26 12 14 26 12 

24 20 10 10 20 10 

25 9 6 3 9 6 

26 5 3 2 5 3 

 

Comparison between SRN, MRN and ESN 
 
 

The prediction 
of the whole 

dataset 

SRN MRN NARX ESN 

56% 97.7% 70.9% 60.7% 

 
 

 
The networks predicted the whole sequence length correctly from the test file. 

Length SRN MRN NARX ESN 

6 and 7 X √ √ √ 

8 to 11 X √ √ X 

12 to 20 X X X X 

21 X √ X X 

22 to 24 X X X X 

25 and 26 X √ X X 
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Appendix E: The Evaluation of Symmetrical Training Dataset 
 
Internal Representation using Symmetrical Training Dataset. 
 

SRN Trained with Symmetrical Sequences 
 

Fourteen symmetrical sequences are selected; Table 1 shows the sequences and their 

results after the SRN has been trained. Three of the sequences were not correctly 

predicted with the error being at the penultimate symbol. Although different 

grammatical aspects may be distinguished in different subspaces, the subspace spanned 

by the eigenvectors corresponding to the first and the second largest absolute eigenva lue 

of the covariance matrix, that defines the two principal components labelled PC1 and 

PC2, respectively, which considered as being the most likely to hold significant 

information. Sequence length and correctly predicted symmetrical sequences are 

studied first. Some of these sequences are numbered in the Table 1: 9, 10; 11 and 12 

and have lengths of eight symbols, and the others are mentioned in the title in the figure 

specified.  

 

SRN using Symmetrical sequences  

No Length Embed Sequences Prediction 
Reason for 

Failure 

1 

6 

U BTTXST T Penult 

2 L BPTXSP F  

3 U BTPVVT  T  

4 L BPPVVP T  

5 

8 

U BTTXXVVT T  

6 L BPTXXVVP F Penult 

7 U BTTSSXST F Penult 

8 L BPTSSXSP T  

9 U BTPTVPST T  

10 L BPPTVPSP T  

11 U BTPTTVVT  T  

12 L BPPTTVVP T  

13 16 BPTXXTTTVPXTTVVP T  

14 26 BPTXXTVPXVPXTVPXVPXVPXTVVP T  

Table 1 Sequences results for SRN and the position of the unpredicted symbol 
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The trajectories of some of these sequences in the PC1/PC2 subspace are shown in 

Figure 1. The labels on the graph represent the states of the grammar for the symbol 

transition indicated using the labelling scheme described above.  The trajectories 

divergence slightly for each pair of sequences, however the similarity between the 

trajectories in each pair where the embedded section is the same, and the difference 

between the pairs from each other is striking. These sequences were all predicted 

correctly by the SRN. The figure shows a very slight divergence from the same starting 

point in both embedded states with the upper and lower trajectories. However, where 

the sequences are different (the first symbol after the start marker (T/P) and the 

penultimate symbol) have noticeable distances between the upper and embedded 

symbols. It is worth noting that in the internal representations of the SRN, for all the 

three pairs of the sequences. In the Figure 1 b and c the positions of state four are 

positioned in the second and third quarters for each pathway (V or T) and in a, the state 

four located V in the second quarter. N.B. Quartiles are defined here as first (top-right); 

second (top-left); third (bottom-left) and fourth (bottom-right). 
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Figure 1 Plots of the two most significant principle components of the hidden layer activations of a 

symmetrically trained SRN, presented with three pairs of symbol sequences (in a, b, and c respectively) 

from the embedded Reber Grammar. Each pair has the same embedded sequence but has different 

initial symbols so that one is in the lower half (dashed red lines) and the other is in the upper half (solid 

blue lines). The sequences are: a) BTPVVT/BPPVVP (b) BTPTVPST/BPPTVPSP (C) 

BTPTTVVT/BPPTTVVP. 
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To investigate more about the states, a number of different sequences, correctly 

predicted by the SRN, were selected. The minimum and maximum for both PC1 and 

PC2 were computed for their states values (same numbers of each state where 

computes). The distribution of each state can be measured by ascertaining its mean and 

range (calculated by finding the difference between the highest value of the PC of each 

state and its lowest value). Table 2 and Table 3 provide the results obtained from 

calculating the range and the mean of the sequences states respectively. Figure 2 

presents the results of the state’s ranges. It shows that the variability (range) of both 

principle components of the activation vectors is consistent whether the symbol is in the 

upper section or the lower, i.e. for state 5, PCA 1 is very variable for both upper and 

lower grammar sequences whereas PCA 2  is much less so; this position is reversed for 

state 6.  

 

Embedded States 
Range 

Embedded States 
Range 

PC1 PC2 PC1 PC2 

Upper 

1 0.00003 0.00006 

Lower 

1 0.25414 0.81043 

2 0.14819 0.48126 2 0.00003 0.00012 

3 0.53903 0.14291 3 0.17509 0.48815 

4 0.11884 0.26484 4 0.82923 0.29743 

5 1.00753 0.28692 5 0.10413 0.27049 

6 0.09155 0.70294 6 0.94316 0.12750 

7 0.25414 0.81043 7 0.08950 0.67967 

Table 2 SRN: The range of number of sequences with respect to their states for each 

PC1 and PC2 

Embedded States 
Mean 

Embedded States 

Mean 

PC1 PC2 PC1 PC2 

Upper 

1 0.197 -0.051 

Lower 

1 0.290 -0.166 

2 0.399 0.187 2 0.418 0.178 

3 -0.096 0.391 3 0.212 0.520 

4 -0.729 0.064 4 -0.752 0.111 

5 -0.376 -0.051 5 -0.347 0.037 

6 0.165 -0.299 6 0.148 -0.288 

7 0.292 -0.408 7 0.343 -0.511 

Table 3 SRN: The mean of number of sequences with respect to their states for each 

PC1 and PC2 
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Some incorrect sequences were selected to compare with the above, which were 

correctly predicted sequences. In addition, the error for the SRN was in the penultima te 

symbol (the embedded part was correctly predicted) therefore, the emphasis will be to 

consider the penultimate part of the sequence, to understand the reason for the error.   

 

 

Figure 2 SRN: The range of number of sequences with respect to their states (correctly 

predicted sequences) 
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Figure 3 Plots of the two most significant principle components of the hidden layer activations of a 

symmetrically trained SRN, (a) BTTSSSXST, (b) BPTXXVPSP. Are incorrectly predicted sequences 

have 9-length symbols. 

Figure 4 presents the results obtained from incorrectly predicted sequences: a and b are 

the upper and lower sequences respectively of nine symbols in length. The remarkable 

feature from this visualisation of the two principle components for these  sequences 

with incorrect penultimate predictions, is that for most of the trace they are different 

from each other and indeed traverse different quadrants.   

 

As shown in Figure 5 the range of the state seven are diverged from the results that 

shown in the Figure 4, in respect of the range between PC1 and PC2 in lower embedded 

for unpredicted sequences, increases to 0.24 comparing with the correctly predicted 

sequences and the upper decreased to 0.1. To study state seven more, the ranges of state 

seven of both correctly and incorrectly predicted sequences have been plotted to grasp 

where the internal representation of the network located each type of sequence.  
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Figure 4 SRN: The range of number of sequences with respect to their states 

(incorrectly predicted sequences) 

 

Figure 5 SRN: the range of state seven taken from number of sequences, predicted and 

unpredicted sequences. 
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Figure 5 shows the range of states seven for both upper and lower embedded sequences 

of the correctly predicted sequences that coloured in green are located in the first 

quarter. Incorrectly predicted sequences, were also located in the first quarter but in 

different position from the correct ones. This may because of PC1 was not sufficient ly 

developed since the network performs poorly  

 
MRN Trained with Symmetrical Sequences 

 
 

The sequences selected when investigating the SRN are also used here. Table 4 

illustrates the results have been obtained from MRN when noise injection was used in 

the training; fourteen sequences of various lengths were selected. PCA has been applied 

on the training dataset to visualise the internal representation of the MRN and study 

how the network organized the grammar. A number of correctly predicted sequences 

have been studied to grasp the trajectories of their states.     

 

 
MRN using Symmetrical sequences  

No Length Embed Sequences Predication 
Reason for 

Failure 

1 

6 

U BTTXST T  

2 L BPTXSP T  

3 U BTPVVT  F Penult 

4 L BPPVVP T  

5 

8 

U BTTXXVVT T  

6 L BPTXXVVP T  

7 U BTTSSXST T  

8 L BPTSSXSP T  

9 U BTPTVPST T  

10 L BPPTVPSP T  

11 U BTPTTVVT  F Penult 

12 L BPPTTVVP T  

13 16 BPTXXTTTVPXTTVVP T  

14 26 BPTXXTVPXVPXTVPXVPXVPXTVVP T  

Table 4 Sequences results for MRN and the position of the unpredicted symbol 

 

Figure 6 depicts the trajectories of symmetrical sequences in the PC1/ PC2 component 

subspace. The principle divergence of the two trajectories is at the penultimate symbol 
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comparing the upper or lower parts of the grammar. (a) Shows the sequences 1 and 2 of 

length six in Table 4 i.e. upper and lower sequences; solid and dashed lines respectively.  
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Figure 6 Plots of the two most significant principle components of the hidden layer activations of a 

symmetrically trained MRN, trajectories of the three identical symmetrical sequences that were 

correctly predicted, the sequences are: a) BTTXST/BPTXSP, b) BTTXXVVT/BPTXXVVP and c) 

BTTSSXST/BPTSSXSP. 

 
Figure 6 (b, c) shows sequences of length eight. The location of all the states for both 

upper and lower part except for state seven are located in the same quarters for each 

pair. However, location of state seven for the upper half of the grammar is located in 

the second quarter and for the lower half is located in the third quarter. This seems to 

show a clear representation by these two principal components of the difference at the 

point where the sequence symbols differ (the penultimate symbol) but a limited amount 

of memory of the difference held by them prior to this (memory of the divergence at the 

start of the sequence). To investigate more about the states, the range of each state has 

been computed for several sequences (five different values for each state).    

 
Table 5 shows the range of each state for the upper and lower parts of the sequences. 

Figure 7 depicts this information graphically. Figure 7 shows that the variability (range) 

of both principle components of the activation vectors is consistent whether the symbol 

is in the upper section or the lower. A striking observation to emerge from the figure is 
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that each state range is located differently in subspace showing systematic nature of the 

internal representation of the MRN.   

 

Embedded States 
Range 

Embedded States 
Range 

PC1 PC2 PC1 PC2 

Upper 

1 0.00004 0.00007 

Lower 

1 0.00007 0.00009 

2 0.01660 0.78226 2 0.01630 0.78415 

3 0.28531 0.23711 3 0.33777 0.23399 

4 0.99502 0.59741 4 1.06641 0.63145 

5 0.32853 0.22116 5 0.42364 0.30967 

6 0.54501 0.30817 6 0.50981 0.29276 

7 0.08226 0.26876 7 0.05489 0.03401 

Table 5  Range of the each state with MRN for symmetrical sequences (predicted 
sequences) 

 

 
Figure 7 The range of each sate by MRN using symmetrical sequences 

 
Now turn to the incorrectly predicted sequences to observe where the network locates 

the states and the difference with the correctly predicted ones. Figure 8 shows the 

trajectories of the upper and lower sequences that have been incorrectly predicted by 

the MRN and also for the penultimate symbol for both parts. The graph depicts the 

similarity of the states compared with the correctly predicted sequences. To investiga te 

the difference between the trajectories of state seven for both the predicted and 

unpredicted sequences, the ranges of state seven have been calculated for both of them. 

Figure 9 illustrates the range of state seven in four sequences: upper and lower paths 
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through the grammar with correctly and incorrectly predicted penultimate symbols. The  

figure shows that the states for the correctly predicted upper and lower sequences are 

located in the same part of the subspace while the incorrectly predicted ones have a 

larger distance between them although they are in the same quarter.  

 

 
Figure 8 Plots of the two most significant principle components of the hidden layer activations of a 

symmetrically trained MRN, incorrectly predicted sequences by MRN (a) BTTSSSXXTVPXTVVT has 

16-length symbols and upper sequence, (b) BPTXXVPSP has 9-length of symbols and in the lower part 

sequence. 
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Figure 9 MRN: located ranges of the state seven for predicted and unpredicted 

symmetrical sequences. 

 

A possible explanation is that the difference in the state seven between the predicted 

and unpredicted penultimate is a results from the poorly performance of the network.  
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