

On the Induction of Temporal Structure by

Recurrent Neural Networks

MAHMUD SAAD SHERTIL

A thesis submitted in partial fulfilment of the

requirements of Nottingham Trent University for the

degree of Doctor of Philosophy

November 2014

Acknowledgment

I would like to present my full gratitude to my director of studies, Dr. Heather Powell,

for her support, guidance and invaluable advice to achieve the requirements of the

thesis. She significantly dedicated and provided necessary critique regarding the

research.

I would like also to extend my sincere thanks to my second supervisor, Dr. Jonathan

Tepper, I could not have imagined having a better advisor and mentor for my PhD,

without his common sense, knowledge, perceptiveness and assistances and his friend ly

support in many issues during the research.

I would like to dedicate this thesis to the soul of my mother, who I have never seen her

and the soul of my father. In addition, many thanks to the beloved family who have

taken care of me after I lost my mother.

Heartfelt thanks and deep respect for my wife, who stood by me in both my sad and

happy moments. Also, thanks for her understanding and endless love, throughout my

studies. Even when I felt panicked or disturbed, she encouraged me and said: Go on!

You have to continue in the doctoral task, which is similar to a marathon runner. My

kind thanks also, go to my lovely children: “Salam, Salsabeel, Samaher, Mohammed ”,

seeing them, I absorb the power to achieve the best position to make them proud as a

father.

I would also like to acknowledge my brothers, sisters and friends for their constant

encouragement for everything. I acknowledge all those who have prayed for me, guided

me with wisdom, helped me with their kindness, and tolerated me out of their love.

Last but not least, my real thanks and appreciations goes to my colleagues and friends

in my native country, Libya and the PhD students in the UK, for their help and wishes

for the successful completion of this research.

iii

Abstract

Language acquisition is one of the core problems in artificial intelligence (AI) and it is

generally accepted that any successful AI account of the mind will stand or fall

depending on its ability to model human language. Simple Recurrent Networks (SRNs)

are a class of so-called artificial neural networks that have a long history in language

modelling via learning to predict the next word in a sentence. However, SRNs have also

been shown to suffer from catastrophic forgetting, lack of syntactic systematicity and

an inability to represent more than three levels of centre-embedding, due to the so-called

'vanishing gradients' problem. This problem is caused by the decay of past input

information encoded within the error-gradients which vanish exponentially as

additional input information is encountered and passed through the recurrent

connections. That said, a number of architectural variations have been applied which

may compensate for this issue, such as the Nonlinear Autoregressive Network with

exogenous inputs (NARX) network and the multi-recurrent network (MRN). In addition

to this, Echo State Networks (ESNs) are a relatively new class of recurrent neural

network that do not suffer from the vanishing gradients problem and have been shown

to exhibit state-of-the-art performance in tasks such as motor control, dynamic time

series prediction, and more recently language processing.

This research re-explores the class of SRNs and evaluates them against the state-of-the-

art ESN to identify which model class is best able to induce the underlying finite-sta te

automaton of the target grammar implicitly through the next word prediction task. In

order to meet its aim, the research analyses the internal representations formed by each

of the different models and explores the conditions under which they are able to carry

information about long term sequential dependencies beyond what is found in the

training data.

The findings of the research are significant. It reveals that the traditional class of SRNs,

trained with backpropagation through time, are superior to ESNs for the grammar

prediction task. More specifically, the MRN, with its state-based memory of varying

rigidity, is more able to learn the underlying grammar than any other model. An analys is

of the MRN’s internal state reveals that this is due to its ability to maintain a constant

iv

variance within its state-based representation of the embedded aspects (or finite state

machines) of the target grammar. The investigations show that in order to successfully

induce complex context free grammars directly from sentence examples, then not only

are a hidden layer and output layer recurrency required, but so is self-recurrency on the

context layer to enable varying degrees of current and past state information, that are

integrated over time.

v

Contents

Acknowledgment ..ii

Abstract .. iii

Contents.. v

List of Figures .. x

List of Tables.. xiii

Acronyms .. xvii

Chapter 1 .. 1

1. Introduction .. 1

1.1 Summary .. 1

1.2 Problem Statement ... 2

1.3 Scope of Research .. 4

1.4 Thesis Outline .. 6

Chapter 2 .. 8

2. Literature Study .. 8

2.1 The Nature and Complexity of Language .. 8

2.1.1 Nativist vs. Empiricist Perspectives .. 8

2.1.2 Language Complexity and Computation... 11

2.2 Connectionist and Statistical Models of Language Acquisition 15

2.2.1 Supervised Connectionist Learning Algorithms ... 18

2.2.2 Supervised Connectionist Models of Language Acquisition 20

2.3 Limitations of Connectionism .. 22

2.3.1 Argument against Biological Plausibility ... 24

2.3.2 Argument against Connectionism for Developmental Cognitive Modelling

 .. 25

2.3.3 Learning Deterministic Representations Using a Continuous State Space. 26

2.4 Discussion and Conclusion .. 28

vi

Chapter 3 .. 30

3. Neural Network Architectures ... 30

3.1. Recurrent Neural Networks.. 30

3.1.1 Jordan Network ... 31

3.1.2 Time Delay Neural Recurrent Network (TDNN) 32

3.1.3 Nonlinear Autoregressive Network with Exogenous Input (NARX) 33

3.1.4 Simple Recurrent Networks (SRN)... 35

3.1.5 Multi Recurrent Networks (MRN) ... 37

3.1.6 Long Short Term Memory (LSTM) .. 39

3.1.7 Echo State Networks (ESNs) .. 40

3.2. Summary .. 43

Chapter 4 .. 44

4. Data and Methodology ... 44

4.1. The Reber Grammar Datasets .. 44

4.1.1 Symbol Representations ... 45

4.1.2 The Regular Grammar: Simple Reber Grammar 47

4.1.2.1 Reber Grammar Dataset ... 48

4.1.3. The Context-Free Grammar: Embedded Reber Grammar (ERG) 49

4.1.3. 1 Symmetrical Sequences .. 52

4.1.3. 2 Asymmetrical Sequences .. 53

4.2. Model Fitting .. 56

4.2.1. Overview .. 57

4.2.2. Model Selection.. 58

4.2.2.1 Backpropagation through Time (BPTT) .. 60

4.2.2.2 Fixed Learning Rate ... 62

4.2.2.3 Pattern Error- Sensitive Learning Rate .. 62

4.2.2.4 Taguchi Method and Analysis of Variance (ANOVA)........................ 63

vii

4.2.3. Model Evaluation ... 65

Chapter 5 .. 67

5. Experimental Results.. 67

5.1 Learning the Regular Grammar.. 67

5.2 Learning the Context Free Grammar ... 71

5.2.1 SRN Using Constant Learning Rate... 71

5.2.1.1 Embedded Reber Grammar (Symmetrical Sequences) 72

5.2.1.2 Embedded Reber Grammar (Asymmetrical Sequences)...................... 77

5.2.2 SRN Using Pattern Error-Sensitive.. 79

5.2.2.1 SRN Results for Asymmetrical Training Tested with Symmetrical and

Asymmetrical Sequences ... 79

5.2.2.2 SRN Results for Symmetrical Training, Tested with Symmetrical and

Asymmetrical Sequences ... 80

5.2.3 Jordan Network .. 81

5.2.2.3 Summary .. 84

5.2.4 TDNN ... 85

5.2.4.1 TDNN results for asymmetrical training tested with symmetrical and

asymmetrical sequences ... 85

5.2.4.2 TDNN results for symmetrical training, tested with symmetrical and

asymmetrical sequences ... 86

5.2.5 NARX... 88

5.2.5.1 NARX results for asymmetrical training, tested with symmetrical and

asymmetrical sequences ... 88

5.2.5.2 NARX results for symmetrical training tested with symmetrical and

asymmetrical sequences ... 89

5.2.6 MRNs ... 90

5.2.5.1 MRN with Noise Injection ... 95

5.2.7 Conclusion.. 98

viii

5.2.8 ESNs ... 99

5.2.6.1 Standard ESN (with Feedback from Output to Reservoir) 99

5.2.6.2 ESN with Jumping Connections .. 100

5.2.6.3 The performance of the ESN.. 105

5.2.6.3 The Limitation of ESN ... 105

5.3 Summary of Results and Discussion .. 106

Chapter 6 .. 114

6. Understanding the Internal Representations Formed. .. 114

6.1 Visualisation of the Internal Representations Formed 114

6.1.1 Internal Representations of the SRN .. 117

6.1.2 Internal Representations of the NARX ... 124

6.1.3 Internal Representations of the MRN.. 129

6.1.4 Internal Representations of the ESN ... 135

6.2 Comparative Analysis of the Internal Representations 140

6.3 Summary of Results and Discussion .. 145

Chapter 7 .. 147

7. Conclusion & Future Work .. 147

7.1 Introduction .. 147

7.2 Training Parameters ... 149

7.3 Main Conclusion Derived from This Study ... 149

7.4 Future Research Directions. ... 152

References .. 154

Appendixes ... 175

Appendix A: Some Results of Medium Acceptance Criterion Using SRN 175

Appendix B: Results of Different Networks and Info of Some Dataset 177

Appendix C: Plots of Different PCA Components Using SRN 180

Appendix D: Test Datasets Results of Some of RNNs .. 182

ix

Appendix E: The Evaluation of Symmetrical Training Dataset 186

x

List of Figures

Figure 2.1 Block diagram that displays the form of supervised learning 18

Figure 3.1 The Jordan Network (Jordan 1986) .. 31

Figure 3.2 Shifting Recurrent Network.. 33

Figure 3.3 NARX network with dx delayed inputs and dy delayed outputs (Diaconescu

2008)... 34

Figure 3.4 Simple Recurrent Network ... 36

Figure 3.5 Architecture of Multi-Recurrent Network .. 38

Figure 3.6 A LSTM memory block with one cell and its gate units 40

Figure 3.7 ESN Architectures: Solid arrows indicate fixed connections and dashed

arrows indicate trained connection. .. 41

Figure 4.1 The finite-state grammar (FSG) used by Reber.. 48

Figure 4.2 A complex finite-state grammar involving embedded sequences. 51

Figure 4.3 Embedded Reber grammar biased symbols (Asymmetrical). The numbers

above each arc indicate the transition probabilities in the biased form of the grammar

 .. 54

Figure 4.4 SRN with noise- injection units .. 59

Figure 4.5 MRN with noise-injection units.. 59

Figure 4.6 Schema of the basic idea of Backpropagation Through Time (Jaeger 2002)

 .. 61

Figure 6.1 shows the states of the embedded Reber Grammar 116

Figure 6.2 Plots of the two most significant principle components of the hidden layer

activations of a asymmetrically trained SRN, presented with three pairs of symbol

sequences (in a, b and c respectively) from the ERG. Each pair has the same

embedded sequence but different initial symbol so that one is in the lower half (dashed

lines) and the other is in the upper half (solid blue lines). The sequences are in the

table 6.7: (a) 1, 2; (b) 5, 6; (c) 7, 8 and with respect to principal components PC1 and

PC2. (a BPTXSP/BTTXST, b) BPPVVP/BTPVVT, c) BTTSSXST/BPTSSXSP 120

Figure 6.3 SRN: Centroid of each state using asymmetrical sequences (correctly

predicted sequences) .. 121

Figure 6.4 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained by SRN, trajectories of two non-identical

asymmetrical sequences that were incorrectly predicted by the SRN. (a) The lower

xi

embedded part BPPTVPSP. (b) The upper embedded part BTPTTVVT. With respect

to principal components PC1 and PC2... 122

Figure 6.5 SRN: located ranges of state seven for correctly predicted and incorrectly

predicted asymmetrical sequences. .. 124

Figure 6.6 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained NARX, (a, b) are the trajectories of the

sequence numbered 1,2,3,4 a) BTTXST/BPTXSP and b) BTPVVT/BPPVVP in

Table 6.7 which have a length of six symbols. .. 126

Figure 6.7 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained NARX, (a, b) trajectories of two non-

identical sequences that are incorrectly predicted a) BPPTTVPXTTVPSP and b)

BTPVPXVPXTTVVT ... 127

Figure 6.8 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained NARX. a) Trajectories of 16-length

sequences that are incorrectly predicted “BPTXXTTVPXTTVPSP and b) is the

correctly predicted sequence of the same length BPPVPXTVPXTTTVVP. 128

Figure 6.9 NARX: Range of state seven for both correctly predicted sequences and

incorrectly predicted sequences (failes on the penultimate symbol) 129

Figure 6.10 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained by MRN (a) trajectories of the six length

sequences BTTXST/BPTXSP (b) BTTXXVVT/BPTXXVVP and (c)

BTTSSXST/BPTSSXSP are trajectories of eight length sequences upper and lower

embedded. .. 132

Figure 6.11 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained MRN (a) trajectories of 15-length sequence

BPTSSSXXTVPXVVP, (b) BPTSSSXXTTTVVP 14-length sequence that is

incorrectly predicted using MRN. .. 133

Figure 6.12 Range of state seven for both correctly predicted and incorrectly predicted

penultimate symbols... 134

Figure 6.13 Range of sate four, (*) lower embedded sequence correctly predicted, (+)

lower embedded sequence unpredicted sequences. .. 135

Figure 6.14 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained ESN. (a) BTTXST/BPTXSP (b)

xii

BTPVVT/BPPVVP (c) BPPVPXTVPXTTTVVP. The trajectories are of sequences

that were correctly predicted by the network. .. 137

Figure 6.15 Plots of the two most significant principle components of the hidden layer

activations of an asymmetrically trained ESN. (a) BTTXXVVT. (b) BPTSSXSP. The

trajectories are of sequences that were incorrectly predicted by the network in the

embedded part. ... 138

Figure 6.16 ESN: Range of state seven for both correctly and incorrectly predicted

penultimate symbols... 139

Figure 6.18 The centroid of the upper and lower embedded grammar of the networks

a)SRN, b) NARX, c) MRN, d) ESN .. 143

Figure 6.19 The Euclidean distances between each corresponding centroid

representing the embedded grammar states of the upper and lower embedded

grammars (for each model evaluated). ... 144

xiii

 List of Tables

Table 2.1 Chomsky hierarchy of grammars ... 13

Table 4.1 Orthogonal binary vector representations for input patterns. 46

Table 4.2 Orthogonal vector representations for input patterns 47

Table 4.3 Characteristics of the 300000-Symmetrical-embedded-Reber 52

Table 4.4 Characteristics of the 1000 Symmetrical Testing Dataset (Embedded Reber

Grammar) ... 53

Table 4.5 Characteristics of the 300000 Asymmetrical Dataset 55

Table 4.6 Characteristics of the 1000 Asymmetrical Testing Dataset 56

Table 5.1 Elman's SRN: The percentage of the accuracy of the sequences across the

whole data set on the training performance for the Reber Grammar 70

Table 5.2 Elman’s SRN: Percentage accuracy of the entire dataset training for the

embedded Reber grammar (soft acceptance criterion)... 73

Table 5.3 SRN training results on ERG (soft acceptance criterion) 74

Table 5.4 SRN test results using soft acceptance criterion for the ERG...................... 75

Table 5.5 SRN test results for ERG using hard acceptance criterion and binary symbol

representations.. 76

Table 5.6 SRN test results for ERG using hard acceptance criteria and non-binary

symbol representations ... 77

Table 5.7 SRN results of the symmetrical test file with 10 asymmetrical training

networks and binary symbol representations using soft acceptance criterion 78

Table 5.8 SRN results of five asymmetrical training nets tested on asymmetrical

sequences (pattern error-sensitive learning rate).. 79

Table 5.9 SRN results of five asymmetrical training nets tested on symmetrical

sequences (pattern error-sensitive learning rate).. 80

Table 5.10 SRN results of five testing nets tested on asymmetrical sequences 81

Table 5.11 SRN results of five testing nets tested on symmetrical sequences............. 81

Table 5.12 Jordan test results for asymmetrical training and asymmetrical test (binary

input representations) ... 82

Table 5.13 Jordan test results for asymmetrical training and symmetrical test (binary

input representations) ... 82

xiv

Table 5.14 Jordan results of five testing nets tested in asymmetrical sequences (binary

input representations) ... 83

Table 5.15 Jordan results of five testing nets tested in symmetrical sequences (binary

input representations) ... 83

Table 5.16 Comparing results of SRN and Jordan network (best network performance

for asymmetrical training and test sets).. 84

Table 5.17 TDNN results of five nets trained with asymmetrical sequences and tested

on asymmetrical sequences .. 85

Table 5.18 TDNN results of five nets trained with asymmetrical sequences and tested

on symmetrical sequences .. 86

Table 5.19 TDNN results of five nets trained with symmetrical sequences and tested

on asymmetrical sequences .. 86

Table 5.20 TDNN results of five nets trained with symmetrical sequences and tested

on symmetrical sequences .. 87

Table 5.21 Part of a test file showing the prediction according to the sequence length

 .. 88

Table 5.22 NARX results of five nets trained with asymmetrical sequences and tested

on asymmetrical sequences .. 88

Table 5.23 NARX results of five nets trained with asymmetrical sequences and tested

on symmetrical sequences .. 89

Table 5.24 NARX results of five nets trained with symmetrical sequences and tested

on asymmetrical sequences .. 89

Table 5.25 NARX results of five nets trained with symmetrical sequences and tested

on symmetrical sequences .. 90

Table 5.26 The percentage of correct predictions for different training and test datasets

in terms of bias and non-bias sequences for TDNN and NARX networks.................. 90

Table 5.27 Results of different numbers of memory boxes trained with Asymmetrical

and tested with Asymmetrical sequences in MRN... 94

Table 5.28 Result of Testing the MRN (with 4 memory banks) for sequences longer

than in the training set (5 tested at each length) ... 95

Table 5.29 MRN: The accuracy of asymmetrical training; tested with asymmetrical

data (one noise node).. 96

Table 5.30 MRN: The accuracy of asymmetrical training; tested with asymmetrical

and symmetrical data (one noise unit – seven nodes) .. 97

xv

Table 5.31 MRN: The accuracy of symmetrical training, tested with asymmetrical and

symmetrical data (one noise unit) .. 98

Table 5.32 Testing different length of the datasets using MRN with unit noise

injection .. 99

Table 5.33 Percentage of the ESN performance using different types of feedback .. 100

Table 5.34 Percentage of prediction accuracy using ESN with jumping connection

without settling time ... 102

Table 5.35 Number of the performance of the ESN that applied on the Taguchi

method .. 102

Table 5.36 the values of the parameters tried... 103

Table 5.37 trained ESN with different size of reservoir .. 105

Table 5.38 Testing different length of the dataset tested on ESN, the minimal length

for dataset 40 is 27 then 40 for the dataset 50 etc. ... 106

Table 5.39 Percentage of correct predictions by trained networks processing training

and test datasets. W = whole sequence; E = embedded section; P = penultimate

symbol. All network architectures used pattern error- sensitive learning type, binary

input representations, learning rate 0.3 and 0.75 momentum. 108

Table 5.40 The best performance of asymmetrically trained networks tested with both

dataset types ... 109

Table 5.41 The best performance of symmetrically trained networks tested with both

dataset types ... 109

Table 5.42 The performance of the networks against the memory 111

Table 5.43 the performance of networks have same number of memory 112

Table 6.1 The models evaluated using asymmetrical sequences for training and testing

 .. 114

Table 6.2 Meaning of some terms .. 116

Table 6.3 Symmetrical and asymmetrical Sequences that have been selected 117

Table 6.4 Results of SRN using asymmetrical sequences and their prediction results

 .. 118

Table 6.5 SRN: Centroid of the states for asymmetrical sequences (correctly

predicted).. 119

Table 6.6 SRN: Range of the states for asymmetrical sequences (Incorrectly predicted

sequences) .. 123

xvi

Table 6.7 Sequences results for NARX and the position of the incorrectly predicted

symbol .. 125

Table 6.8 Asymmetrical sequences correctly predicted by MRN 130

Table 6.9 Sequences results for ESN and the position of the unpredicted symbol.... 136

Table 6.10 The prediction of the unique sequences in the test dataset 140

Table 6.11 Details of the number of each length sequence (unique) correctly predicted

by each network ... 140

Table 6.12 The centroids for each grammar state for each network 141

Table 6.13 Euclidean distance between MRN and the networks 145

xvii

Acronyms

AG: Artificial Grammar

AI: Artificial Intelligence

ANN: Artificial Neural Networks

ANOVA: Analysis of Variance

Asym: Asymmetrical Sequences

BP: Backpropagation

BPTT: Backpropagation through Time

CDA: Canonical Discriminant Analysis

CFL: Context Free Language

CSG: Context-Sensitive Grammars

EM: Expectation-Maximisation

ERG: Embedded Reber Grammar

ESNs: Echo State Networks

ESP: Echo State Property

FF-MLP: Feed-Forward Multi-Layered Perceptron

FSM: Finite State Machine

HCA: Hierarchical Cluster Analysis.

HMM: Hidden Markov Models

IL: Implicit Learning

LMS: Last Mean Squared

LSTM: Long Short Term Memory

LTM: Long Term Memory

MDS: Multi-dimensional Scaling

MRN: Multi Recurrent Network

NARX: Nonlinear Autoregressive Network with exogenous

NLP: Natural Language Processing

PAU: Periodically Attentive Units

OAS: Orthogonal Array Selector

PCA: Principle Component Analysis

PDP: Parallel-Distributed Processing

RG: Regular Grammars

xviii

RNNs: Recurrent Neural Networks

SD: Standard Deviation

SRN: Simple Recurrent Network

ST: Settling Time

Sym: Symmetrical Sequences

TDNN: Time Delay Neural Network

Chapter 1: Introduction

1

Chapter 1

1. Introduction

1.1 Summary

The general idea of this project is to explore the capability and limitations of recurrent

artificial neural network architectures for learning finite state grammar directly from

string or sentence examples. A number of common recurrent neural network

architectures will be investigated. The overarching aim is to compare the capabilities of

the various architectures and understand their capacities and limitations. As part of this,

more established architectures will be compared with a new class of networks, called

Echo State Networks (ESNs) (Jaeger, 2001) which are also subsumed in literature under

the general term: reservoir computing. It will be important to ascertain the

characteristics for good architecture design and training regimes for such systems when

attempting to model grammar or language induction.

More specifically a grammatical induction task is used to examine and evaluate; a) the

capability of Simple Recurrent Networks (SRNs) (i.e. Elman network & Jordan

network), b) Nonlinear Autoregressive model process with Exogenous Input (NARX),

c) Multi-Recurrent Networks (MRN) and, d) the state-of-the-art Echo State Network

(ESN). An investigation is carried out to explore how well these networks have learned

the grammar directly from string examples (generated from the target grammar) and

also examine the robustness of the learned representations and how they begin to fail as

the complexity of the language increases.

The aim of the present study is to review, examine, and develop a way to explore which

embedded memory configurations within recurrent neural network architectures,

trained with gradient descent learning algorithm, provide the most effective propagation

of gradient information for learning simple long-term dependency problems, such as

those found in natural language contexts. The six RNN models used in this study have

various types of recurrency, so they need to be evaluated individually and a comparison

between their performances will be carried out. Recurrency of these networks includes

output layer recurrency, as found in Jordan network (Jordan 1986); hidden layer

Chapter 1: Introduction

2

recurrency, as in Elman (Elman 1990); output recurrency with time delay connection,

as in time delay neural networks; input output delay connection, as found in non-linear

autoregressive model process with exogenous input (NARX)(Gers 2001); and input and

output recurrency, as in multi- layer neural networks. It should be pointed out here that

these five networks share the same learning algorithm. However, the sixth network

considered differs in terms of learning algorithm and recurrency connections; this is the

echo state network (ESN). The task presented to these networks is to learn a finite state

grammar and this work aims to investigate when these networks begin to fail and how

failure occurs as the complexity of the language increases.

In order to accomplish the aim of this research, a number of different feedback

connections, hidden units, and state memories were explored to optimise these models

which share the same learning algorithm, and compare them against an ESN which does

not share the gradient-descent learning limitation. The, the internal representation of

these networks are then analysed and evaluated.

1.2 Problem Statement

Recent studies demonstrate that the ability to learn nonlinear temporal dynamic

behaviour is a significant factor in the solution of many types of complex problem-

solving, such as those found in the practical problem domains of natural language

processing, speech processing, adaptive control, time series predication, financ ia l

modelling, DNA sequencing etc. (Koskela, Varsta et al. 1998). There are several

statistical learning and machine learning techniques, methods and models, which can

be applied in order to learn the underlying temporal structure and dynamics of a

particular problem. Algorithms and techniques, including recurrent neural networks

(RNNs) support vector machines, kernel regression, hidden Markov models,

reinforcement learning and Bayesian networks. RNNs are a class of connectionis t

network whose computational neurons produce activations based on the activation

history of the network (Kremer, Kolen 2001).

An RNN has a set of units, each taking a real value in each time step, and has a group

of weighted connections joining units together. The input and output units are set

Chapter 1: Introduction

3

according to the problem situation. While the input values are determined by the

problem, the output units are computed using the connection weights and the hidden

units. Activations from units within these input, hidden, and output layers, are typically

fed back as input to the same or previous layers. This forms a complex memory-based

system due to cycles in the flow of activation, with the output from one time step

informing the input to the next. RNNs have nonlinear dynamics, allowing them to

perform in a highly complex manner. In theory, the states of the hidden units can store

data over time in the form of a distributed representation and this can be used many

time-steps later to predict subsequent input vectors (Sutskever, Hinton 2010). The

characteristic of an RNN can be distinguished from its feedforward counterparts by its

ability to map sequences of input vectors distributed across time into output vector

sequences. In this respect, RNNs can be viewed as vector-sequence transducers. The

reason this makes RNNs interesting is that they can be applied to almost any problem

with sequential structure, including problems that arise in many natural contexts such

as in control, speech, and natural language processing.

RNNs are classified as a type of graphical model, which is an interaction between

probability theory and graph theory that are a group of traditional statistical models.

These RNNs have units and connections whose values are determined by statistica l

methods. Other examples of graphical models are Bayesian networks, Gaussian mixture

models and Hidden Markov models (Murphy 2001). RNNs play an important role in

applied mathematics and engineering, as they provide a set of probabilistic tools for

dealing with two problems that occur naturally within these disciplines, namely,

uncertainty and complexity.

It is stated (Bengio et al 1994, Gers et al 2003) that the RNNs which use back-

propagation through time, are unable to hold long term dependency due to the vanishing

time problem. Long term dependency is important because it provides a challenge to

natural language processing. Thus, the research will investigate, develop, analyse and

evaluate the networks mentioned previous and explore their limitations.

Chapter 1: Introduction

4

1.3 Scope of Research

Although there are numerous connectionist techniques for processing temporal

information, the most widely used is the simplest RNN known as the Simple Recurrent

Network (SRN) (Elman 1990). The SRN is a state-based model, similar in complexity

to a Hidden Markov Model and represents sequences of information by internal states

of neural activation (Cartling 2008). The SRN has proven remarkably useful for

temporal problem domains such as natural language processing and in particular,

regular languages. Much research has been conducted to illustrate temporal processing

in SRNs (Gupta, McAvoy et al. 2000, Deliang, Xiaomei et al. 1996). However, the

majority of these SRN-based studies involve processing noise-free binary temporal

sequences with orthogonal components or fixed duration feature vectors having low

dimensions (Gupta, McAvoy et al. 2000). Furthermore, SRNs have failed to adequately

model the combinatorial systematicity of human language appropriately (Farkaš,

Crocker 2008). Combinatorial systematicity refers to the ability of the human language

faculty to use a relatively small lexicon and few syntactic rules to generate a very large,

possibly infinite, number of sentences. It appears that such a faculty must have a neural

basis and therefore, any artificial neural network attempting to model human cognit ion

should be able to demonstrate systematicity, although this is still a matter of debate

(Farkaš, Crocker 2008).

SRN-based approaches with their gradient descent learning are considered ‘standard

RNNs’ and have been plagued by major practical difficulty (Gers 2001). The gradient

of the total output error with respect to previous input quickly vanishes as the time lag

between relevant inputs and errors increases (Bengio, Simard et al. 1994). Gers (2003)

stated that this is why standard SRNs are unable to learn time lagged information or

dependencies exceeding as few as 5-10 discrete time steps among relevant input events

and target signals. Other architectures have been developed to attempt to overcome

these issues. One is the Long Short Term Memory (LSTM) (Hochreiter, Schmidhuber

1997). LSTM is a gate-based RNN architecture that uses gradient descent-based

learning to remember, establish and maintain temporal information over very long time s

periods (James, 2003). Unfortunately, due to its constant error flow through interna l

Chapter 1: Introduction

5

states of memory cells, it exhibits problems similar to those of feedforward networks

(which present the entire input string at once).

Over the past five years, there has been interest in another alternative: Echo state

networks (ESNs), a type of RNN (Jaeger 2002). ESNs are relatively simple RNNs with

the hidden layer consisting of a large collection of processing units, randomly inter-

connected, as well as normal connections applied to the input, hidden and output layers.

All links have randomly assigned and fixed (untrainable) weights except for those

coming from the hidden layer, which are trainable. The appeal of the ESN is the

simplicity of its training process, which is reduced to a task of one-short simple linear

regression (Jaeger 2002). ESNs have been applied with varying success to numerous

problem domains such as behaviour classification (Noris, Nobile et al. 2008); natural

language processing (Bickett et al. 2007); speech recognition (Skowronski, Harris

2006); financial forecasting (Lin, Yang et al. 2009); and symbol grounding in robots

(Jaeger et al 2002).

Although state-of-the-art performance has been reported for the iterated prediction of

noiseless time series data, the usefulness of this is questionable and studies with ESNs

for realistic problem domains have revealed the difficulty of creating the reservoir of

interconnections in a systematic way for a given problem. It can take the exploration of

many reservoir configurations before a solution is found (Binner et al., 2010; Rodan &

Tino, 2011). Clearly, there is scope for advancing knowledge concerning the strengths

and weaknesses of ESNs for different types of problem and the need for a princip led

approach to ESN application, appropriate to the problem domain in order to increase

their utility.

The major contribution of this research is that it is the first to reveal that sluggish state

based representations formed by recurrent memory layers with self-recurrent links help

to solve the grammar induction task in a way that is superior to the other architectures

examined in this research including the state-of-the-art ESN. A well-accepted approach

of clustering hidden unit activation profiles called Principle Component Analysis (PCA)

was used to identify why the MRN performs better than the other models assessed. The

internal representation formed by the weights of an RNN after training can be revealed

by analysing the resulting hidden neuron activations and how they vary with respect to

Chapter 1: Introduction

6

each new input within a sequence (Cartling, 2007). The reason for such performance is

not attributed exclusively to the hidden and output recurrency but also to the self-

recurrency of units in the context layer and replicating the context layer itself to form

memory banks. This collectively implements a complex state space of varying rigidity

(also known as sluggish state space). These sluggish state spaces enable the network to

generate stable representations of the underlying grammar by maintaining a constant

distance between clusters of activation space (representing individual grammatica l

states) which the other models failed to perform.

1.4 Thesis Outline

This thesis has seven chapters. Since chapter one has already been introduced, this

section will provide a content summary for the remaining six chapters:

Chapter 2: Literature Study

This chapter provides a review of the relevant literature in the field of natural language

sentences and connectionist models. The main area in the natural language discussed in

this chapter is the complexity of language. In particular, this chapter focuses on a

Chomsky hierarchy of grammars. In addition, the rest part of this chapter reviews

supervised connectionist models of language acquisition and the limitations of

connectionism for such tasks.

Chapter 3: Neural Network Approaches

This chapter describes the connectionist methods used in conducting this research. The

chapter focuses on the traditional techniques used for language modelling tasks, in

particular, for the next-symbol prediction task. The Jordan network, SRNs, MRN and

ESN are considered.

Chapter 4: Data and Methodology

This chapter presents the language data sets used in the current study and discusses the

model fitting and model selection approaches applied to optimise the different neural

networks for language task. This chapter concluded with a summary of connectionis t

networks that appear to be able to discover the underlying grammar and thus finite-sta te

automata.

Chapter 1: Introduction

7

Chapter 5: Experimental Results

In this chapter, evaluation and contrast the present work by applying the same

experimental framework to run a series of experiments with the different RNNs under

review in the work done by Cleereman’s et al, 1989 with the Reber grammar. This will

be followed by optimising each of the different RNNs in more challenging Embedded

Reber grammar and running a series of experiments. It aims at establishing the preferred

class of RNN based on the generalisation performance to a wider population of strings

and the fewest memory units.

Chapter 6: Internal Representation and Discussion

This chapter discusses the “black box” of the RNN models developed by applying PCA

to unit activations of the hidden layer of each of the different networks. PCA helps to

provide a 2-d visualisation of the hidden states each model has produced in response to

the next symbol prediction task. This in turn, will enable us to trace the trajectories of

the movements within state space and ascertain whether such transitions correspond to

those found within the Embedded Reber Grammar.

Chapter 7: Conclusion and Future work

This chapter offers conclusions for the presented work. It summarises the key

contributions made by this research, stating the preferred model for the language

acquisition task and justification for this. It also highlights the limitations of the work

and proposes some suggestions for future research.

Chapter 2: Literature Study

8

Chapter 2

2. Literature Study

2.1 The Nature and Complexity of Language

2.1.1 Nativist vs. Empiricist Perspectives

The acquisition of language by children is testimony to the power of the human mind.

Many philosophers consider the ability to communicate through verbal or written

language as being a hallmark of human intelligence (MacWhinney, 2004). The

acquisition of language is still a matter of debate. It raises a question about whether the

capabilities of learning language are innate, or whether we solely use the input from the

environment to find structure in language.

Nativists believe that infants have an innate capability for acquiring language. Their

view is that an infant can acquire linguistic structure with few inputs and that it plays a

minor role in the speed and sequence with which they learn language (Aimetti, 2009) .

One of the best-known and most influential linguists supporting this theory is Chomsky.

His view is based on the idea that learning language is based on a language faculty, a

genetically inherited component of the mind which possesses prior knowledge of the

language. Some nativists even believe that it is still possible to acquire language without

any input. To support this belief, research was carried out with deaf children showing

that they automatically developed observations gained from home with limited

exposure to language (Chomsky 1959, Lust 2006). Some nativists have hypothes ised

that depending on the input, for an infant’s native language the innate linguist ic

knowledge is attributed with complex parameters that the infant must set (Gathercole

& Hoff, 2007).

On the other hand, empiricists hypothesise that the input contains much more structura l

information and is not full of errors as nativists suggested. Many researchers have

conducted studies showing that young infants use statistical mechanisms to exploit the

distribution of patterns heard in speech during the early stages of language development

(Hannon & Trehub, 2005). Infants make use of statistical learning procedures, tracking

Chapter 2: Literature Study

9

the probability that sounds appear together; thus, segmenting the continuous stream of

speech into separate words. Phonological memory is the capacity to store those speech

sound sequences; it comes into play as entries in the mental lexicon are created

(Gathercole, 2006). In the process of drawing a new word onto its intended reference,

children are guided by their ability to make use of socially based inference mechanisms,

also, by their cognitive understanding of the world and their prior linguistic knowledge

(Hoff 2009).

Linguistics is concerned with investigating human language as a universal part of

human behaviour and thinking. It also seeks to understand the common properties of

human language. It is a general term used to define the study of language, it covers

several areas of studies such as syntax, semantics and pragmatics. Other disciplines that

linguistics can draw on are neurobiology, informatics, neuroscience, and computer

science. The major objective of linguistic research is to recognise and describe the rules

governing the structure of language. Several researchers view the development of an

automated language acquisition system that is capable of learning the rules and structure

of language on a large scale as something precious, since it infers and manipula tes

knowledge immediately from the countless surviving databases and other readable

media (McQueen, 2005). The ability to model and therefore understand natural

language has influenced many applications of Artificial Intelligence (AI), from speech

recognition (Beaufays et al, 2001) to translation (Arnold et al, 1993) and natural

language understanding (Allen, 1995).

Language contains a set of sentences. These sentences could be finite or infinite

depending on the language. Natural languages have infinite sets. Any sentence is a word

(string) of one or more symbols for a specific vocabulary of a language. A grammar is

a finite and formal specification of a language. A production grammar is a commonly

adopted method used to specify formal and natural languages (Grishman, 1986).

Moreover, combining identity words in a sentence with the constraints of syntax and

semantics, allows for the expression of concepts in a potentially infinite number of

forms. Therefore, the combinatorial power of natural language sentences that have

similar meanings can be expressed in a potentially infinite number of different ways.

Chapter 2: Literature Study

10

A model that can learn a representation of the derivational rules of English language

gives rise to the possibility of a natural language processing system to parse sentences.

Several researchers consider the problem of language acquisition to be a paradox.

Nativists who believe in the poverty of stimulus theory argue that fragmentary evidence

available to language learners is too inconsistent and incomplete to allow the induction

of language without some innate tendency towards the acquisition of language. This

creates a paradox, since children who grow up in social environments are nearly always

able to learn their language. However, children who are isolated from linguistic input

do not always acquire a proper language as adults (Jackendoff, 2002). Children who are

exposed to linguistic input are able to learn language. Gold’s theorem (Gold, 1967)

assumed that an infinite grammar could not be learnt with only positive examples due

to the problem of overgeneralisation. His theorem and its implications for language

acquisition, shape the fundamental principles of modern linguistics. Gold’s theorem is

the focus of much debate among those who view the process of language acquisition as

a learning process (McQueen, 2005).

The resulting paradox of language acquisition and Gold’s theorem formed the basis of

Chomsky’s theory of universal grammar. This debate and the widely misinterpre ted

theory are concerned with the human innate pre-specification for language acquisit ion.

Johnson (2004) stated that Gold’s theory helped the psychological community to

become aware of the possibilities for mathematically modelling psychologica lly

relevant aspects of learning and showed that these models can, at least in princip le,

establish psychologically interesting limitations on possible hypotheses about cognit ive

activities like language acquisition. Nevertheless, instead of stating that the entire

aspects of language from the lexicon to the grammatical rules are innate, the theory of

universal grammar states that the brain’s language acquisition capacity is innate. The

universal grammar theory stipulates that language learners are born with a brain that is

functionally pre-disposed to grammar acquisition. Innate knowledge limits the shape of

an acquired grammar to that of possible human languages. Moreover, it contains an

approach that can select a grammar compatible with the linguistic input.

Chapter 2: Literature Study

11

2.1.2 Language Complexity and Computation

Natural language sentences are not just a linear arrangement of words. These sentences

also contain complex structural relationships between words that are usually

characterised syntactically. For example, phrase structures, subject-verb agreement and

relative clauses. The critical challenge for the mechanisms of natural language

processing is to represent and process such structure therefore we may understand of

both their theoretical capabilities and their potential to provide a psychological account

of natural language parsing.

The traditional interpretation of natural language processing is based on mechanisms of

finite automata, in which discrete states and transitions between states specify the

temporal processing of the system. Regular grammars (RG) are comparable to finite

automata, that is, a regular language can be defined as a regular grammar and by a finite

automaton. In addition, the language accepted by any finite automaton is regular.

Automata theory states that a finite state machine (FSM) can process a RG.

Nevertheless, a language with centre-embedding is at least a Context Free Language

(CFL), where at least a push-down automaton is needed (Rodriguez, Wiles, & Elman,

1999). Essentially, a pushdown automaton is a finite state machine that has the

additional resource of a memory-like device that is a stack to keep track of the

embedding. To simulate a context free language, the connectionism must have

something akin to a stack, such as in a pushdown automata; therefore, it can keep track

of a state. Then the stack would predict the relationships in temporal data by internally

counting the appearance of signals.

(Hochreiter, Schmidhuber 1997) proposed a type of RNN called Long Short-Term

Memory (LSTM) that constructed from units the ability of preserving memory for long

periods of time. That is, LSTM is an agate-based RNN architecture that uses gradient

descent-based learning to remember, establish and maintain temporal information over

a long time-period (Hammerton 2003). LSTMs have unlimited recursive productivity

unlike the RNNs (Van der Velde, De Kamps 2006). They can process context-free

languages such as 𝑎𝑛𝑏𝑚 𝐵𝑚𝐴𝑛 for arbitrary (𝑛, 𝑚); a valid string from the language

consists of a number of as, followed by a number of bs, then Bs and finally followed by

Chapter 2: Literature Study

12

a number of As which is the same as the number of as. However, when they handle this

case, their capability to treat combinatorial productivity (this refers to the ability to deal

with multiplicative growth of the number of possible events or object combinations) is

excluded. Moreover, due to its constant error flow through internal states of memory

cells, LSTM exhibits problems similar to those of feedforward networks (which

represent the entire input string at once).

There is no predefined internal counting mechanism in parallel-distributed processing

systems. Thus, they would have to either build one during training or discover another

approach that they can use to keep track of the state. Rodriguez et al, 1999 states that in

their experiments, neural networks picked the first choice and developed counters in

order to predict the state in a deterministic context free grammar (Lubell, 2010).

Generative grammar is the creation of a formal modelling technique and belongs to the

study of language within the discipline of computational linguistics (Chomsky, 1959).

Organising a set of production rules, these grammars provide a structure that describes

all of the legal sentences in a language.

},,,{ SPNG 

Equation 2.1 Grammar definition

Equation 2.1 illustrates a formal definition of a grammar. It is composed of four

individual elements. First, the ∑ symbol represents a set of terminal symbols and consist

of elements that cannot be decomposed into sub-elements (words such as “buy” or

“drive”). Then, N is a set of non-terminal symbols, which can be broken down and are

used to represent phrases and parts of speech (nouns or verbs). Next, P is a set of

production rules that specify which non-terminal symbols can be re-written into which

terminal symbol. Finally, S is the start symbol. An example, let 𝐺1 =

({0,1}, {𝑆, 𝑇, 𝑂, 𝐼}, 𝑆, 𝑃), where P contains the following productions

𝑆 → 𝑂𝑇

𝑆 → 𝑂𝐼

𝑇 → 𝑆𝐼

𝑂 → 0

𝐼 → 1

Chapter 2: Literature Study

13

As we can see, the grammar 𝐺1 can be used to describe the set {0𝑛1𝑛|𝑛 ≥ 1}.

Type Language Automata

0
Recursively enumerable

grammars (General Rewrite)

Unrestricted phrase structure

grammars (Turing Machines)

1
Context sensitive grammars

(CSG)
Linear-Bounded

2 Context free Grammars (CFG) Push down automata

3 Regular Grammars
Finite-state grammars (FSG),

Deterministic finite automata (DFA)

Table 2.1 Chomsky hierarchy of grammars

 The Chomsky hierarchy, Table 2.1, lists the generative grammars and the

corresponding automata required to process them, where the different grammars or

languages are categorised into four different types according to their complexity. The

simplest type of languages are those generated from grammars belonging to type three,

which is the class of regular grammars. Regular grammars are defined by a single non-

terminal symbol on the left hand side of the production rule and the limit of one termina l

symbol on the right. A production rule is a set of rules generated by a human expert or

from numerical input-output data using some heuristic means (Mamdani, Østergaard et

al. 1983). Therefore, a formal grammar is a set of production rules (such as 𝑆 →

𝐴𝐵) which convert one string to another through a series of alternatives. In princip le,

production rules can take any form such as those used in Probabilistic Context-Free

Grammars (PCFGs) (Manning, Schütze 1999) and compositional structures (Jin,

Geman 2006). In this research, the production rules give rise to regular grammars.

Regular grammars, such as the Reber grammar, (Reber, 1967), are recognised as

memory-less grammars because the next valid state in a sequence can constantly be

predicted by the current grammatical state and next input word. In other words,

knowledge about past symbols in the input sequences is not needed, only the current

state of grammar (or finite state automata being used to process it). Context-free

grammars are categorised by their production rule, which allows a non-terminal to be

replaced by a set of any number of terminals and non-terminals, as well as the same

Chapter 2: Literature Study

14

non-terminal that is being replaced. An example of a context-free language rule is

{𝑎𝑛 𝑏𝑛|𝑛 > 0} which generates language which is not regular. Where 𝑎𝑛 and

𝑏𝑛represent a string of n-times repetition of a and b symbols.

The reason is that context-free grammars allow for the replacement of non-termina l

symbols with multiple terminal and non-terminal symbols. Therefore, any

computational mechanism to process context-free languages must incorporate a

memory. Allowing non-terminal symbols to occur inside the right-hand side of other

production rules allows embedded structures to occur. Context-free means that a

sequence of symbols can be reduced to a single simple term irrespective of the context

in which the sequence occurs. More generally, most natural languages can be described

by context free grammars (Allen, 1995).

Type one of the Chomsky hierarchy contains the class of context-sensitive grammars

(CSG). A CSG is an unrestricted (recursively enumerable) type of grammar in which

every production has the form in Equation 2.2. As the equation shows, it can be seen

that the non-terminal A can only be replaced by the set of terminal symbols abcd when

it is preceded by the terminal symbol, x, and followed by the terminal symbol, y. This

enforces the notion of context-sensitivity.

𝒙𝐴𝒚 ⇒ 𝒙𝑎𝑏𝑐𝑑𝒚

Equation 2.2 Example of a production rule from a CSG.

Type zero of the Chomsky hierarchy contains the recursively enumerable set of

grammars.

Alan Turing, in 1937, invented a formalism referred to as the Turing machine. A

language is recursive if a Turing machine accepts it and halts on any input string (a

language is recursive if there is a membership algorithm for it). Equation 2.3 illustra tes

the production rule for recursively enumerable.

𝑢𝑋𝑣 → 𝑢𝑤𝑣

Equation 2.3 A production rule for a recursively enumerable string

Where𝑢, 𝑣 ∈ (Σ ∪ 𝑉)∗ ,𝑤 ∈ Σ∗ arbitrary, Σ is a finite alphabet, 𝑣 is auxiliary symbols

Unrestricted phrase structure grammars is another name for recursively-enumerab le

grammars, because either side of their production rules can contain any sequences of

Chapter 2: Literature Study

15

terminals and non-terminals. Equation 2.4 shows the production rule of the unrestric ted

languages.

𝑢 → 𝑣

Equation 2.4 A production rule for unrestricted language

Where 𝑢, 𝑣 ∈ (Σ ⋃ 𝑉)∗ are equivalent to the enumerable languages. This type of

grammar give a close approximation to natural language (Chomsky 1959). Research

has shown that monkeys are able to learn simple regular grammars. However, they

appear incapable of mastering the rules found in unrestricted phrase structure grammars

(Fitch, Hauser 2004).

2.2 Connectionist and Statistical Models of Language Acquisition

Connectionist models might have the potential to achieve language acquisition in such

a way that humans do. (Marcus 2003) has discussed the importance of several

connectionist models that can represent abstract relations between variables. Those

were models that do not incorporate operations over variables i.e. a Simple Recurrent

Network (SRN) and models that incorporate operations over variables (a SRN trained

by an external supervisor). Marcus states that all models that do implement over

variables captured the results whereas, a limited number of connectionist models that

do not incorporate any sort of actual operation over variables cannot capture the

outcomes.

A concern regarding the ability of connectionist models to represent language

acquisition is whether explicit rules are necessary to account for complex behaviour or

not. This is because generative grammarians have assumed the need for rules in order

to account for the patterns established in natural language (Chomsky, Halle 1968).

Marcus, Vijayan et al., 1999 assumed that algebraic rules are necessary for

connectionist models to explain language acquisition. However, Christiansen and

Curtin pointed out that an SRN model of word segmentation can present the relevant

data without invoking any rules. However, that research was in the domain of speech

segmentation and further studies are needed to focus on other aspects of language

(Christiansen, Curtin 1999).

Chapter 2: Literature Study

16

Traditional symbolic linguistic approaches avoid function-based language acquisit ion

by concentrating on describing linguistic performance, utilising sets of rules and

exceptions. A model such as top-down cognition endeavours to function backwards

from linguistic structure towards human processing mechanisms. Whereas, symbolic

models are fully powerful and the inflexibility of the resultant models which in general

are described in this way, cannot easily be applied to general purpose linguist ic

problems (Corrigan and Iverson, 1994). The designer of the system must take into

account the inflexibility arising from rules and exceptions of the symbolic approach,

and the system designer ignores the possibility where preference is to be learned by the

model itself. Therefore, such systems need a new sets of rules and exceptions.

Probabilistic methods have been applied to a wide range of language tasks within

cognitive science, such as speech processing, word recognition, probabilist ic

phonology, acquisition etc. Probabilistic approaches have been applied across language

processing, from modelling lexical semantics to modelling processing difficulty.

However, it is extremely challenging to integrate these diverse approaches into a unified

model of language. Traditionally, several theoretical issues concerned with

psycholinguists are re-framed, rather than resolved, by a probabilistic approach. The

processing of language acquisition is the key to cognitive science. However, from the

viewpoint of this Special Issue (sophisticated probabilistic models), the first stages

towards a cognitive science of language engaged in driving out, rather than building on

probability. The improvement of sophisticated probabilistic approaches, such as Special

Issue (Chater, Manning 2006), throws these issues into a different light. Such models

may be classified in terms of symbolic rules and representations. Therefore,

grammatical rules may be connected with probabilities of usage, collecting the likely

linguistic, not only what is linguistically possible. With this view, probabilistic ideas

give rise to symbolic approaches of language (Chater, Manning 2006).

Connectionist and statistical approaches are used to investigate and discover linguist ic

patterns found within language. Statistical learning entails the discovery of patterns

such as probabilities and statistical similarities in sample language input. In princip le,

this type of learning ranges from supervised learning, similar to that found in operant

conditioning (a certain behaviour of learning that leads to punishment or

reinforcement), to unsupervised pattern detection, and includes the sophistica ted

Chapter 2: Literature Study

17

probability learning exemplified in Bayesian models (Romberg, Saffran 2010). Infants

are sensitive to the statistical regularities of the world around them and can learn to

recognise patterns in the stimuli they are exposed to. This has led to a variety of

computational models of early language learning, based on statistical inference.

Statistical models, which have had a significant impact on language problem examples

are the Inside-Outside algorithm for acquiring syntactic parsing (Baker 1979) and

Expectation-Maximisation (EM) for point estimation whose goal is to find a single

optimal model and set of parameters (Ma, Ji 1998, Murphy 2001). In addition, there are

Hidden Markov Models (HMM) for acquiring context-free grammars (Jagota, Lyngsø

et al. 2001), and the Forward-backward procedure used to find the maximum probability

of a sequence 𝑆 in a given model. This is useful for training HMM (Tebelskis 1995) etc.

This research focuses on the connectionist models introduced below, rather than

statistical models.

Since the early 1990’s, an alternative approach to cognitive modelling, known, as

connectionism, has gained popularity amongst researchers. This practical field of

research uses approaches with designs that are biologically inspired and aspire to

simulate the operation of the human brain and nervous system. Unlike symbolic models

of cognition, connectionism uses a bottom up approach to cognition that models the

learning process itself. Connectionist approaches are suitable for language acquisit ion

because they can learn problem solutions directly from examples from the problem

domain.

Gold (1967, cited in Johnson, 2004) proved that an infinite grammar could not be learnt

from just positive examples alone. This was based on the assumption that successful

acquisition would result in a deterministic grammar. Consequently, acquisition could

only be called successful if the language learner possessed an exemplary representation

of the grammar resulting in no mistakes. Horning (1969) challenged Gold’s theory and

illustrated that language could be learnt from just positive examples if the language

identification criterion uses a stochastic probability of a winner. The stochastic view of

grammar induction is also supported by much of the language acquisition research,

including U-shaped learning curves (Rumelhart, Hinton et al. 1986). Connectionism has

subsequently provided a realistic means with which the theoretical limitatio ns on

language acquisition posed by Gold and Horning could be evaluated (Brown 1973).

Chapter 2: Literature Study

18

2.2.1 Supervised Connectionist Learning Algorithms

In connectionist approaches to language modelling, language acquisition is often

assumed to require supervised, semi-supervised, unsupervised, reinforcement and

active learning algorithms. Although unsupervised and reinforcement learning are more

directly related to known learning mechanisms in the brain, the most successful

applications of connectionist modelling in cognitive psychology have employed

supervised learning. That is because it is more effective at developing interna l

representations of linguistic phenomena that can support the complex transformations

involved in many forms of cognitive processing (Plaut 1999).

Training Dataset Learning System Arbitrator

Error Signal

Figure 2.1 Block diagram that displays the form of supervised learning

Figure 2.1 shows a block diagram illustrating supervised learning. In this diagram, the

dataset is supervisory training samples. During a supervised learning process, the

training input is fed to a learning system. Then, the learning system generates an output,

which is then compared with the desired output by an arbitrator that computes the

difference between them. The difference, termed error signal in this diagram, is then

sent to the learning system as the basis for adjusting the parameters of the learner. The

goal of this learning process is to obtain a set of optimal learning system parameters

that can minimise the error over the entire training dataset.

Processing is carried out by a number of elements. The elements called nodes or units

have dynamics, which are analogous to simple neurons. Every node receives input from

several other nodes, responding to that input according to its activation function, and in

transfer exciting or inhibiting other nodes to which it is connected. Details vary between

approaches, however, they generally adhere to this universal scheme (Elman 2001).

Chapter 2: Literature Study

19

Rumelhart et al. (1986) error back-propagation algorithm (BP) illustrated how

connectionist approaches could be trained to solve non-linear problems. The essential

concept behind supervised learning is that the difference between the model’s response

to an input and the target response, i.e. the “Error”, is used to modify the weights in

order to shrink the upcoming error. Therefore, the model’s individual weights are

effectively corrected and reinforced until they reach the correct values that represent the

problem. In other words, a network trained using the back-propagation algorithm has

its output for the training patterns compared with the required output. The difference

between the output and the desired patterns, the error, is used for improving the current

weights. At the beginning, the error of the network output is used for computing the

weights of the connections to the last layer, then for the weights to the next to the last

layer and so on. The error is propagated from the output of the network back to the input

layer. The name “backpropagation” (BP) comes from this process. This learning

algorithm is not biologically plausible, however it is still commonly used in

connectionist learning because it produces a reasonable model for most datasets

(Rumelhart, Hinton et al. 2002).

This algorithm has drawbacks: the possibility of converging to local minima instead of

the global minimum; temporal instability; and poor scaling properties. Nevertheless, its

main problem is the relatively slow rate of convergence, typical for simple gradient

descent methods. For these reasons, an enormous number of modifications based on

heuristic arguments have been proposed to improve the performance of standard BP.

Several of these have been developed in a somewhat specific manner, dominated by the

search for speed rather than generalisation and generally evaluated on artific ia l

problems (Alpsan, Towsey et al. 1995). However, the algorithm has some disadvantages

such as: during searching for a global minimum, a local minimum where the error

derivative of the surface is also zero can be reached and the algorithm can continue

there forever. The time to converge the neural network can be very high because the

initial weights are randomly defined relative to the final target (de Albuquerque, de

Alexandria et al. 2009).

The advantage of supervised learning is that an approach can be trained using just one

subset of inputs and desired output pairs for a specific problem. The learning algorithm

will construct, from the subset of the training data, an approximate solution to the

Chapter 2: Literature Study

20

problem that generalises to unseen samples. Moreover, most supervised connectionis t

models use distributed representations. In a brain, each stimulus is encoded by a number

of varied neurons and each neuron may respond to conjunctions of features that may be

present in many different stimuli. For example, each neuron in a visual cortex may react

highly to the sight of a specific bar rotated to a particular angle moving at a particular

speed in a specific direction. Whereas, another neuron in a sensory cortex, may respond

to a touch stimulus on a specific part of the body’s surface. However, any stimulus that

shares the relevant features of the corresponding neurons will be activated.

(Elman 1995), in his model of the inflection of the English past tense, suggested input

features corresponding to speech segments in specific positions; 14 input units

correspond to 14 possible beginnings of syllables, six input units correspond to six

possible instantiations of the middles of syllables, and 18 input units correspond to 18

possible ends of syllables. For example, the three simultaneous activation units would

represent the word “bid”, the units correspond to b in a beginning syllable position, i in

a middle of syllables position, and d in an end of syllables position. The encoding of

other inputs to each of those units would be to participate. This is called distributed

representation, an issue of central relevance in the study of cognition in general, and

language in particular, which is the nature of the underlying representation of

information (Gluck, Myers 2001). A distributed model uses multiple weights to

represent each input pattern instead of having single weights holding specific pieces of

information. Supervised connectionist models that use distributed representations are

usually referred to as parallel-distributed processing models (PDP).

2.2.2 Supervised Connectionist Models of Language Acquisition

Many learning problems in the field of Natural Language Processing (NLP) need

supervised training. For example, inducing a grammar from a mass of raw text is a

complicated task. However, this becomes much easier when the training sentences are

supplemented with their parse trees. Nevertheless, suitable supervised training data may

be difficult to obtain (Hwa 2000).

Chapter 2: Literature Study

21

Rumelhart and McClelland (1986) was probably the first study that used NLP models

and applied them to language acquisition. Their research involved the acquisition of the

markings of the English past tense. Many examples had been given to the network of

the form “walk  walked”, the network not only learned to produce the correct past

tense for those verbs to which it had been shown, but also generalised to novel irregular

verbs (e.g., “begin began”). A Multi-Layer Perceptron (MLP) was used to map a

representation of the present tense of an English verb onto the equivalent representation

of that verb’s past tense (Ševa, 2006). The model showed that the process of abstraction

and generalisation of grammatical categories does not need to be based on symbolic

rules. It also showed that non-linear change observed in the most developmenta l

processes can be explained through an associative learning mechanism, allowing the

extraction of statistical regularities of the domain to be learned. However, this model

has been severely criticised for various reasons (Fodor and Pylyshyn, 1988; Pinker and

Prince, 1988) relating to its input representation, its incorrect predictions of novel

morphological derivations and its artificial training rules. Several studies followed

which attempted to overcome the limitations of the Rumelhart et al (1986) model

(Marchman and Plunkett, 1996; Jackson et al 1996) by, for instance, including a number

of realistic training rules.

Another approach published in the field of connectionist language acquisition was

initiated by Elman (1992). He produced a recursive neural network called the Simple

Recurrent Network (SRN) that was able to learn about sequential dependencies between

words in sentences. The model attempts to find structure within each class by

hierarchically clustering words into similar grammatical types. Representations of past

input words within a sentence degrade as the length and complexity of the input

sentences increase e.g., including embedded clauses that are comparable to the

difficulty that human language users face, for instance.

“The cat that chased the mouse, which ate the cheese, is hungry”

The network weights perform as attractors in a state space, allowing the system to

respond sensibly to novel input. The SRN is a Multilayer Perceptron (MLP) with

dynamic extension, which uses recurrent connections to feed back the hidden layer

activations at the next time step. This recurrence mechanism permits the SRN to process

Chapter 2: Literature Study

22

sequences of inputs such that at any given stage after the start of the sequence it has a

representation of what has preceded to inform its processing.

An early work done by Tong et al. (2007), investigated the state of the art ESN, (Jaeger,

2001) for language acquisition in the task of learning. The work is a comparison

between the ESN and Elman’s SRN from 1992. It was a natural choice for

experimentation and it was similar to the work done by Elman (they remove the non-

recurrent layers that were between the input and hidden and output layers, therefore to

achieve distributed representations of the words). Moreover, the work was to determine

whether the ESN could perform a language task that requires a significant amount of

memory and generalisation. Tong et al showed that ESNs have the ability to learn to be

sensitive to grammatical structure. In his work, Elman applied the basic SRN, as well

as an SRN using Backpropagation through time (BPTT), to a the task of predicting the

next word in a corpus of sentences generated from a context-free grammar, given the

previous words. Elman demonstrated that the SRNs were able to learn the interna l

representations of the network that were sensitive to linguistic processes, which were

valuable for the prediction task. Tong et al. (2007) stated that training such interna l

representations in the ESN is unnecessary to attain comparable performance to the

SRNs. His results proposed that they are capable to form internal representations

without learning them. However, the results were really on the corpus that Elman

designed. This research is used both approaches to examine them.

2.3 Limitations of Connectionism

Several researchers have used connectionist models to investigate a variety of aspects

of language acquisition, from inflectional morphology (Rumelhart, Hintont et al. 1986)

to grammar induction (Elman 1990). Nevertheless, several researchers in the field of

linguistics have criticised the outcomes of this experimentation and examined the

applicability of connectionism to language acquisition (Fodor, Pylyshyn 1988,

Jackendoff 2002). These arguments have focused on problems such as adaptive

generalisation, scalability, biological plausibility and psychological similarity to human

learners.

Chapter 2: Literature Study

23

One of the issues of the connectionist model is dealing with combinatorial productivity

of language in natural language processing (NLP). The attention of combinator ia l

productivity is about the ability to handle a very large lexicon, even if there are simple

and limited syntactical structures. Strong systematicity is a form of productivity where

it is the ability to learn a word in a given sentence frame and then used it in a novel

sentence frame (Marcus 1998). In general, strong systematicity refers to the ability to

use familiar words in a novel sentence context and/or novel syntactic locations. An

example is when a noun is in the object location for training, and then they will be tested

in the subject location. It is very difficult for SRNs to achieve this, specifically because

SRNs have to learn in the same time the words and their syntactic usage, thus avoiding

the distinction between lexicon and rule. Van der Velde et al, 2004. in their work stated

that SRNs failed on the test of combinatorial productivity (when words from sentences

with the same type were combined, even though all words that were in the sentences

appeared in the same syntactic locations as in training sentences). SRNs are limited with

the response to recursive productivity, unlike LSTMs (van der Velde, van der Voort van

der Kleij, Gwendid T et al. 2004). Moreover, LSTMs cannot deal with any form of

combinatorial productivity (humans are very good at this).

In his paper, Noel Sharkey et al. (2000) has raised questions regarding whether SRNs

are sufficient for modelling language acquisition. The sensitivity of SRNs to the initia l

state is one of the questions and they found that SRNs are extremely sensitive to their

initial weight configuration. For instance, only one in every forty-five models they used

was actually able to solve the given problem at all. That means that SRNs cannot be an

empiricist model of language acquisition. In their study, it was shown that initia l

conditions interact with training sets. This was an unexpected result even from the point

of view of a nativist, because it indicates that in order to confirm consistent language

acquisition, the linguistic examples that the learner will reveal must be known in

advance. Another issue is the extending long-range sequential capabilities of SRNs,

which is where the real problem lies in their limitations with respect to embedded

sequences. SRNs display a limited ability to deal with embedded sequences, failing to

perform a correct prediction. (Noel Sharkey and Jackson 2000).

Increasing the recurrent network layer units of the SRN is increasing the capacity of the

network in two ways. The first is called Short-Term Memory (STM), the capacity of

Chapter 2: Literature Study

24

the recurrent layer for storage of the input sequences. The second is named long- term

memory (LTM), the capacity for storing the training examples, these arise because of

more connection weights to be set. In this way, over-fitting accrues because of

increasing the LTM capacity. This means that whenever raising the recurrent network

layer, the positive effects of increasing the STM will become overridden by the negative

effect of increasing the LTM (Frank 2006).

Tong et al. (2007) stated that in the comparison they did between SRN and ESN for

learning grammatical structure, the ESN could suffer from cognitively plausible errors.

This is the ability for the network to learn systematic language behaviour from exposure

to only a small proportion of possible sentences. Related with the training, Jaeger et al.

(2012) stated that in order to possess Echo State Property (ESP) (the reservoir state is

an echo of the complete input history) spectral radius could be tested more than unity.

Therefore, specific weight patterns cannot be lost. He indicated that Frank’s, 2006 and

their results are insufficient to confirm that ESN are capable of scaling to a large natural

language corpus.

2.3.1 Argument against Biological Plausibility

Since the advent of connectionism, there has been continuing arguments concerned with

understanding the relationship between ANNs and their biological counterparts. It is

stated that these arguments show the field’s loss of focus from its founding principle of

biological plausibility. MLP (Rumelhart, Hintont et al. 1986) is a connectionist model

that is not a realistic model of the structure, learning process or even the singular

neurons that are found in biological neural networks.

Recently, connectionist models have been used to model and predict certain aspects of

brain function. A criticism of such models, however, has been their dependence on BP

(back-propagation). The argument against the BP is that it is considered biologica lly

implausible, since it is based on the error back propagation where the stimulus

propagates forward and the difference between the actual and the desired output

propagates backwardly. Whereas in the cerebral cortex, a stimulus is generated when a

neuron fires across the axon towards its end to make a synapse onto another neuron

Chapter 2: Literature Study

25

input (Rosa 2005). With this, connectionist networks are deliberately analogous to

neural processes in the brain. Further biologically plausible ANN models are concerned

with the connectionist architecture; associated directly with the cerebral cortex

biological structure, or focused on the neural features and the signalling between

neurons. The focus of such research is to innovate a more proper model concerning the

biological properties, structure and functionalities, containing learning processes, of the

cerebral cortex, not ignoring its computational performance. The selection of the

approaches upon which the proposed description is based takes into account two main

criteria (Rosa 2005): the fact that they are considered biologically more realistic and the

fact that they deal with intra and inter-neuron signalling in electrical and chemica l

synapses. In addition to this, the period of action potentials is taken into account.

However, in this study ANNs are used as biologically inspired models to solve and

investigate language acquisition and are not concerned with simulating cognit ive

processing accurately.

2.3.2 Argument against Connectionism for Developmental Cognitive

Modelling

In the last three decades, connectionist modelling has formed an important approach in

the computational study of cognition. It is distinguished by its focus on the essentials of

neural computation considering the primitive components, which are the basis for the

cognitive level models. Connectionism has been applied to various cognitive abilit ies

such as attention, perception, action, language, concept formation, models of memo ry

and reasoning (Thomas, McClelland 2008). Many of these models attempt to capture

adult function, however connectionism is concerned with learning interna l

representations.

The main struggle for the connectionist theory of the last three decades has been that

many ANN models, especially the models constructed upon feed-forward

backpropagation, were confirmed to be implausible for both physiological and

theoretical reasons (Newell 1994, Lachter, Bever 1988), however these models are still

widely used in many applications because of their powerful abilities. BP networks, for

example, can approximate almost any function and are easy to train, because any set of

Chapter 2: Literature Study

26

psychological data can be presented as a function that maps input to a behaviour, and

because a BP network can approximate almost any function. It is therefore not

surprising that such networks can model a wide range of psychological and other

phenomena.

Adaptive generalisation abilities of connectionism have been explained by Noel

Sharkey et al (2000): if connectionist models are to perform functions of human

cognition, they must present similar developmental properties to those detected by

humans. His grammatical- transfer trials demonstrated that the SRN is incapable of

extracting previous grammatical knowledge. These experiments show that if a model

trained on a particular grammar is exposed to new lexical items, the training times are

poorly affected. These results are at odds with human performance, where language

acquisition gets easier as development progresses.

There is a relationship between the ability to perform grammatical-transfer and another

undesirable behaviour that happens in gradient-descent based connectionist models.

Catastrophic forgetting, described by (French 1992), is the inability of a neural network

to retain old information in the presence of new information. Training requires that the

trained knowledge must be continually refreshed by cycling through the whole dataset;

otherwise, the existing knowledge is forgotten in favour of the new knowledge.

Children, however, are capable to learn new knowledge without overwriting the existing

knowledge. This makes the connectionist behaviour psychologically implausible (Noel

Sharkey et al, 2000).

2.3.3 Learning Deterministic Representations Using a Continuous State

Space

The SRN is a connectionist model (Elman 1990) that has been applied to the language

acquisition task in the form of grammar induction. The task was to learn simple

approximations of natural language, context-free and regular grammar. These trial

results proposed that dynamic recurrent networks (DRNs) can learn to mimic finite -

state automata. However, other models of connectionism show several fundamenta l

Chapter 2: Literature Study

27

difficulties, which may derive from using a model with a continuous state-space to

approximate a discrete problem (McQueen, Hopgood et al. 2005).

Supervised connectionist models have shown the capability to learn simple formal

languages and there are ways of overcoming their instability when dealing with long

sequences that were not part of their training set (Omlin 2001). SRN (Elman 1990) has

shown its ability to partition its state-space into areas that are supposed to approximate

the states in a grammar. Nevertheless, their sensitivity to initial conditions can be

explained in that each transition between regions of state space will result in a slightly

different trajectory, which causes instability when transmitting state trajectories that

were not seen during training (McQueen, Hopgood et al. 2005).

This kind of behaviour is one of the characteristics of supervised dynamic connectionis t

models and can be determined as both a strength and weakness of this class of model.

Although this representational power makes the model exceed Deterministic Finite

Automata (DFA) and mimic non-deterministic systems, it is a significant disadvantage

when attempting to mimic the deterministic behaviour fundamental to determinist ic

finite automata.

A number of researchers have tried to produce state-space models by using a step-

function for the hidden layer units (e.g. Zeng, Goodman et al. 1993). Although the

technique eliminates the instability problem, using a non-differentiable function means

that the weight update algorithm, which uses the sigmoid function, can only

approximate the error signal. This weakens the power of the learning algorithm, in some

cases leading to the model learning an incorrect representation of the DFA and

increasing training times. (McQueen, Hopgood et al. 2005).

Simple Synchrony Network (SSN) (Henderson, Lane 1998) is a model that overcomes

instability in continuous state-space models that operate Temporal Synchrony Variable

Binding (TSVB) to encode entities using pulsing binary threshold units. This technique

can enhance the power of continuous state space models by providing static building

blocks within the ever-changing sea of internal representations.

Chapter 2: Literature Study

28

Representations done by RNNs have revealed some inherent problems with the

principle of language learning. According to Kolen, 1994 there are two major problems

with extraction of a learned automaton. First, sensitivity to initial conditions results in

non-deterministic machines where their trajectories are indicated by the initial state of

the network and the dynamic of the state transformation. Secondly, trivial changes in

observation strategies can cause one to induce behavioural descriptions from a massive

number of computational complexity classes for a single system.

2.4 Discussion and Conclusion

Many linguists define language acquisition as a complex and powerful system that

describes and possibly shapes every aspect of human perception (Gordon 2004, Sapir

1929). Nevertheless, the operation of language acquisition itself is a paradox

(Jackendoff 2002). Although children seem to be involved in processing their native

tongue learning, the linguistic input that they experience appears overly sparse for the

acquisition of a grammar. Classical theories of linguistics have therefore supposed a

particular level of innate knowledge that constrains language acquisition and provides

children with an earlier knowledge of grammatical structure. The apparent intractability

of the problem even when considering an automated language acquisition system has

engaged researchers to study this field.

Traditional linguists have aligned with modern connectionism by demonstrating that

linguistic input has not got as much structure as was previously thought. Connectionis t

and statistical models to learning are of great relevance to the investigation of language

acquisition as they provide a principled conception of the learning process. Second, they

also offer potential learning mechanisms for particular aspects of language. Lastly, these

models allow inferences concerning the nature and extent of innate knowledge, either

in relation to innate learning mechanisms or to innate knowledge per se. Statistica l

methods have the problem that they cannot be directly implemented as connectionis t

networks such as nonparametric statistical methods (rank correlation) (Redington,

Chater 1998). There is hypothesis that new-borns begin life using statistical processes

for simpler problems, for example learning the sound of their native language and

building a lexicon, while grammar is learnt by non-statistical learning, later in

Chapter 2: Literature Study

29

development. (Seidenberg, MacDonald et al. 2002) assert that statistical learning ends

when learning grammar begins. However, this is still a matter of debate and it has

proven very difficult to detect this boundary (Aimetti 2009).

In conclusion, adaptive connectionist models are usually capable of detecting statistica l

regularities in the set of input patterns presented to them, after being suitably trained.

They are able to perform in reasonable ways when presented with novel input patterns,

based on what they have learned during training. Their abilit ies, in general called

induction, interpolation or generalisation, enable them to operate much more flexib ly

than systems that depend on explicit, rigid rules.

Chapter 3: Neural Network Architectures

30

Chapter 3

3. Neural Network Architectures

In this chapter, a number of Recurrent Neural Network (RNN) models are reviewed.

The RNN models reviewed are those commonly used for language modelling tasks and

more specifically, for the next-symbol prediction task where the aim is to induce a

reliable underlying finite state automaton directly from linear input sequences (or

sentence examples).

3.1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are usually employed in cognitive science to

process symbol sequences that represent natural language information. RNNs are

normally adaptations of the classical Feed-Forward Multi-Layered Perceptron (FF-

MLP) model to add recurrent connections, which let the network activations to feed

back to itself or previous layer as input. This kind of connection, produces interna l

memory that allows the RNNs to construct dynamic internal representations of temporal

order and dependencies that may be present in the data. (Binner, Tino et al. 2010). The

units that receive feedback values are referred to as context or state units. In addition,

nonlinear activations are assumed to be used; the extension of RNNs is naturally done

by universal function approximation properties of FF-MLPs. This means they provide

the processing system dynamic properties that are responsive to temporal sequences.

Many techniques and methods have been tried using feedback connections (Picton

2000). Moreover, analysis of state space trajectories in connectionism provides new

insights into the types of processes that may be considered as learning models to acquire

and represent language without reference to traditional linguistic theories (Čerňanský,

Makula et al. 2007).

A variety of connectionist models have been studied with a view to modelling natural

language processing (language acquisition), although there is no consensus regarding

the best architecture to use (e.g. (Cleeremans, Servan-Schreiber et al. 1989, Plunkett,

Karmiloff‐Smith et al. 1997, Elman 2001, Tong, Bickett et al. 2007). The way in which

Chapter 3: Neural Network Architectures

31

the layers of an RNN are interconnected determines its structure. Therefore, various

RNN topologies have been investigated that have different structures and different

learning algorithms. SRNs (Jordan, 1986 and Elman, 1990), Time delay neural

networks, nonlinear autoregressive network with exogenous input, Multi Recurrent

Networks (MRN), ESN and long short-term memory have been studied.

3.1.1 Jordan Network

(Jordan 1986) describes a network (Figure 3.1) in which the output associated with each

state is fed back and combined with the input representing the next state. The neurons

in the state (also known as context) units and the output units are expected to be

represented as distributed patterns of activation on separate pools of processing units

(set of units of simple processing units which communicate by sending signals to each

other over a large number of weight connections). The connections from state units to

the hidden units act as input for the network architecture. This network implements the

output function through weighted connections from the state units to the output units.

State Units

Input Units

Hidden Units

Output Units

Figure 3.1 The Jordan Network (Jordan 1986)

Chapter 3: Neural Network Architectures

32

Hidden units take their input from state units and input units. Each state unit output is

derived from a combination of a recurrent connection from the state unit to itself, and

from all the output units. Therefore, the current state depends on the previous state and

on the previous output. (Jordan 1986). This property, common to all RNNs means that

they should be able to exploit information beyond the existing input. However, in

practice this cannot really be exploited (Dorffner 1996). If the weight of a connection

to a context unit is close to one, the unit (using sigmoid as activation function) saturates

very quickly to maximum activation, where additional inputs have less effect. If the

weight is very small in comparison to one, the impact of past estimates quickly becomes

negligible.

3.1.2 Time Delay Neural Recurrent Network (TDNN)

Another class of dynamic neural network, known as the time delay neural network, is

presented by (Waibel 1989). TDNNs depend essentially on a special kind of memory

known as “tap delay line”, where all recent outputs are buffered at different time steps.

These ‘delay’ connections between the output and input layers provide the network with

additional memory (Marques, Souza et al. 2005). Representation of a tap delay

connection is illustrated in Figure 3.2. The response of these neural networks in time t

is based on the output in times (𝑡 − 1), (𝑡 − 2),… , (𝑡 − 𝑛).

The output of this network is a function of the current external input together with

outputs as given by:

𝑦(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡 − 1),𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛)) (3.1)

Where x(t) is the input at time t and y(t-1) is the output at time t-1, n is the maximum

adopted time-delay. The activation of the unit f at any time step is calculated as follows:

𝑦𝑖
𝑡 = 𝑓(∑ ∑ 𝑦𝑗

𝑡−𝑘 . 𝑤𝑖𝑗𝑘
𝑑
𝑘=0

𝑖 −1
𝑗=1) (3.2)

Chapter 3: Neural Network Architectures

33

Input Units Hidden Units

Seven Neurons

N
u

m
b

e
r o

f N
e

u
ro

n
s

tx

ty

1ty

nty 

Figure 3.2 Shifting Recurrent Network

Where 𝑦𝑖
𝑡 is the output of the unit i at time t and 𝑤𝑖𝑗𝑘 is the weight to the unit i from

the output of the unit j at time t-k.

TDNN has the ability to store temporal information explicitly using time-delayed

structures (Wah, Qian 2004). Therefore, the delay mechanism supplies the network with

memory to deal with temporal structure by having the previous state stored in a

sequence.

3.1.3 Nonlinear Autoregressive Network with Exogenous Input (NARX)

The nonlinear autoregressive model process with exogenous input is a discrete time

nonlinear system, which is established to be equivalent to a Turing machine (Menezes

Jr, José Maria P, Barreto 2008). The architecture, known as the NARX network, is

depicted in Figure 3.3.

Chapter 3: Neural Network Architectures

34

Input Units Hidden Units Output Units

Seven Neurons

N
u

m
b

er o
f N

eu
ro

n
s

tx
1tx

ntx 

ty

1ty

nty 

Figure 3.3 NARX network with dx delayed inputs and dy delayed outputs (Diaconescu

2008)

NARX is a feedforward neural network with embedded memory such that copies of

both the previous inputs and outputs are presented to the hidden layer via two series of

time-delayed buffers as used with the TDNN. This makes the network dependent on dx

previous sequence elements and it is identical to using dx input units being fed with dx

adjacent sequence elements. This input is normally denoted as a time window since it

provides a limited view on parts of the sequence. It can also be viewed as a simple way

of transforming the temporal dimension into a spatial dimension (Diaconescu 2008).

NARX is an important class of discrete time nonlinear system and can be implemented

using the following function:

𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1), 𝑥(𝑡 − 2) … 𝑥(𝑡 − 𝑑𝑥), 𝑦(𝑡 − 1),𝑦(𝑡 − 2) … 𝑦(𝑡 − 𝑑𝑦) (3.3)

Where x(t) and y(t) are respectively the input and output of the model at time step t and

the input and output memory orders are denoted by dx and dy. The nonlinear mapping

function f describes the hidden layer mapping of its inputs to its outputs. y(t) is the

output of the net and returned to input as exogenous to the net. For these features, NARX

is described that has a similarity of the dynamical characteristic of a system efficient ly

Chapter 3: Neural Network Architectures

35

and a short-term memory (the dynamical features comes because there is one of the

input of NARX is the output of the network) (Jiang, Song 2010). Moreover, it has been

shown that this model is good for modelling nonlinear systems such as discrete- time

non-linear systems (Chen, Billings et al. 1990), dynamic system identification (Qin, Su

et al. 1992) and long-term dependencies (Siegelmann, Horne et al. 1997).

3.1.4 Simple Recurrent Networks (SRN)

Simple Recurrent Network is an artificial neural network as shown in Figure 3.4, where

the activations of the hidden units from time t are used as input to the network at time

1t . Recurrent connections provide the network with access to its prior state and

subsequently the network has the ability to detect and learn temporal relationships

within the data. The input units 𝐼 and hidden units (recurrent layer) 𝑅 and the output

units 𝑂 are fully connected through the first order weight 𝑊𝑅𝐼 and 𝑊𝑂𝑅, respectively,

as in the feedforward multilayer perceptron (MLP). Time delay connections feedback

the activities of recurrent (hidden) units 𝑅(𝑡) to the context layer, i.e. 𝐶 (𝑡) = 𝑅(𝑡−1) .

Thus, each recurrent unit is fed by activities of all recurrent units from previous time

step through recurrent weights 𝑊𝑅𝐶 . Previous time step of the recurrent units activate

itself and can be understood as an extension of input to the recurrent units. They

represent the memory of the network.

Given input symbols in time 𝑡, 𝐼𝑡 = (𝐼1
𝑡 , . . . , 𝐼𝑗

𝑡 , . . . , 𝐼|𝐼|
𝑡) and recurrent activit ies 𝑅𝑡 =

(𝑅1
𝑡 , . . . , 𝑅𝑗

𝑡 , . . . , 𝑅|𝑅|
𝑡), the recurrent unit’s net input 𝑅̂𝑖

𝑡 and output activity 𝑅𝑖
𝑡 are

computed as

𝑅̂𝑖
𝑡 = ∑ 𝑊𝑖𝑗

𝑅𝐼
𝑗 𝐼𝑗

𝑡 + ∑ 𝑊𝑖𝑗
𝑅𝐶 𝑅𝑗

𝑡−1
𝑗 (3.4)

Where

𝑅𝑖
𝑡 = 𝑓(𝑅̂𝑖

𝑡) (3.5)

The output unit k computes its net input 𝑂̂𝑖
𝑡 as following:

𝑂̂𝑖
𝑡 = ∑ 𝑊𝑖𝑗

𝑂𝑅
𝑗 𝑅𝑗

𝑡 (3.6)

Where

𝑂𝑖
𝑡 = 𝑓(𝑂̂𝑖

𝑡) (3.7)

Chapter 3: Neural Network Architectures

36

Where |𝐼|, |𝑅|𝑎𝑛𝑑 |𝑂| are the number of inputs, hidden and output units, respective ly,

and f is the activation function.

(Elman 1990) used the SRN to solve sequence prediction tasks where the network is

presented with a sequence of symbols one at a time and is required to predict the next

symbol in the sequence at each time step and over all sequences.

State Units Input Units

Hidden Units

Output Units

Figure 3.4 Simple Recurrent Network

Elman (1990) introduced the SRN. This structure has the potential to master a large

corpus of sequences (the ability to mimic closely a finite state automaton FSA in its

behaviour and its state representations) with the limited means of a learning procedure

that is local in time totally (Cleeremans, Servan-Schreiber et al. 1989). The mechanism

of the simple recurrent network operates as follows: the input sequences are presented

to the input layer one element at a time. The purpose of the input layer is to feed the

hidden layer through a weight matrix. In addition, the activations of the hidden layer

return copies to a context layer after every step, which provides another input to the

hidden layer (information about the past). Since the activation of the hidden layer

Chapter 3: Neural Network Architectures

37

depends on both its previous state (the context unit) and on the current input, SRNs have

theoretical capacity to be sensitive to the whole history of the input sequence.

Nevertheless, in practice there are limitations restricting the time span of the context

information. This has been estimated to be effectively 10 to 15 steps (Stoianov, 2001).

Ultimately, the hidden layer neurons output their values through the weight matrix

connecting the hidden layer to the output layer. Then, the activation of it is the product

of the network.

SRNs have been applied to grammar learning (Elman, 1990), word prediction (Lewis,

Elman 2001) and many other problems that require sequential information processing.

SRNs have been successful in extracting the fundamental structure of complex

embedded sentences. However, their success is dependent on the details of the problem

and training. (Elman 1993) discovered that presenting the complete range of sentence

structures to the network in the corpus results in a leak of the performance on the

complex shapes. For example, SRNs failed to achieve verb agreement across clause

boundaries. On the other hand, successful results were obtained in the application of an

incremental training technique (Plunkett, Karmiloff‐Smith et al. 1997).

3.1.5 Multi Recurrent Networks (MRN)

A further development of the RNN is to employ multiple feedback connections to

enhance performance. (Ulbricht 1995) introduced the Multi-Recurrent Network (MRN)

architecture that is illustrated in Figure 3.5. The construction provides three levels of

feedback allowing recurrent connections from the following:

1. The output layer back to the input layer as established in Jordan networks (1986).

2. The hidden layer back to the input layer, as found in (Elman 1990) SRNs.

3. The connection from the context units within the input layer back to themselves

(self-recurrent links).

Chapter 3: Neural Network Architectures

38

100% 75% 50%25% 25%50% 100%75%

25% 25%50% 50% 75%75%

Context units

hidden units

input units

Output units

Previous hidden unitsPrevious internal output

Copy

Copy

Figure 3.5 Architecture of Multi-Recurrent Network

There are no recurrent or self-recurrent connections from external input units. There are

additional banks of context units (memory banks) on the input layer. The number of

additional memory banks followed the Ulbricht (1995) report. Four memory banks used

φ=4. The context layer represents a flexible memory structure. In the example shown

in Figure 3.5, the leftmost banks are 100% copies of the previous output/context and

represent short-term memory. The next banks are 75% copies of the output/context with

25% self-recurrent feedback of the previous time step. The third banks are 50% copies

of the output/context with 50% self-recurrency. The final banks are 25% copies of the

outputs/context with 75% self-recurrent, representing a longer, more rigid memory.

Binner (2010) demonstrated that moving beyond the four banks does not lead to

enhanced performance. Rather, it is the number of units within each bank that is pivotal

to the performance of the network and this can be optimised using the validation set.

The MRN architecture can be implemented using the following function:

𝑦 (𝑡 + 1) = 𝑔(𝑓 (𝑐(𝑡), 𝑥(𝑡), 𝑊𝑓(𝑡)) , 𝑊𝑔(𝑡)) (3.8)

Where: 𝑦(𝑡 + 1) indicates the predicted values of the symbol. x(t) is the external vector

of input variables; c(t) is the concatenation of the previous hidden state vector with four

delays of varying strength and summation of elements of previous output vector with

four delays of varying strength; Wf(t) is the weight matrix connecting the input layer to

Chapter 3: Neural Network Architectures

39

the hidden layer; Wg(t) is the weight matrix connecting the hidden layer to the output

layer; vector function f returns activation vectors from the hidden layer; and function g

returns activation vectors from the output layers.

3.1.6 Long Short Term Memory (LSTM)

An RNN called Long Short-Term Memory (LSTM) is described in this section

(Hochreiter, Schmidhuber 1997) and is primarily designed for supervised time series

learning (Bakker 2001). The main difference between LSTM and the traditional RNNs

techniques is its ability to overcome the vanishing gradient problem. That is, the

influence of a given input on the hidden layer and thus on the output of the network,

either vanishes or blows up exponentially as it cycles around the recurrent connections.

LSTM networks consist of three layers: input, hidden and output layers as shown in

Figure 3.6. The main difference between LSTM and traditional RNNs is the hidden

layer. The hidden units can contain one or more memory cells which are connected to

all cells and gates. In addition, these cells are connected to the output units and the gates

are connected to other cells and gates in the hidden units. The memory cell is a linear

unit with self-connection that has a weight of value one. The cell maintains its current

activation over time when there is no input. The input to the memory cell is passed

through a squashing function and gated (multiplied) by the activation of the input gate.

Therefore, the input gate controls the flow of activation into the cell. Before the memory

cell’s output is gated, it is passed through a squashing function by the output gate

activation. Therefore, the flow of activation from cells to outputs is controlled by the

output gate. The input and output gates learn to open and close in order to allow new

information into the cells and allow the cells to influence the output during the training

process. (Hammerton 2001, Hammerton 2003).

Chapter 3: Neural Network Architectures

40

Input

1.0

Output gateInput gate

Output

Hidden layer

Cell

Cell input multiplied by
input gate activation

Cell output multiplied
by output gate

activation

Figure 3.6 A LSTM memory block with one cell and its gate units

3.1.7 Echo State Networks (ESNs)

Supplemental recurrent neural networks, also known as ESN, were proposed by (Jaeger

2001). ESNs were developed to learn nonlinear systems for prediction tasks. This type

of RNN is constructed from the concept that the recurrent dynamic part of RNNs does

not need training. Instead, it functions as a non-specific memory; that is why it is called

a dynamic reservoir, which makes it keep information about the input sequence by

allowing activations to rebound around the recurrent units (Frank 2006). The two

architectures for ESNs that are investigated in this research are shown schematically in

Figure 3.7. A typical ESN is an RNN in which all the connections (weights) from the

input to the hidden units (reservoir or recurrent) and from the output to the reservoir

units are fixed. The only trainable weights are from the reservoir nodes to the output

units. In the jumping connection architecture, they remove the connections from the

output to the reservoir are the only noise version of the current step’s inputs (Tong,

Bickett et al. 2007). Therefore, the training weights in this model are defined as:

𝑉𝑜𝑢𝑡(𝑡)=𝑊𝑜𝑢𝑡(𝑉𝑖𝑛(𝑡) ,𝑉ℎ𝑖𝑑𝑑𝑒𝑛(𝑡)).

Where 𝑉(𝑡) is a vector that indicates the activation of the hidden units at time t. the rest

of the architecture is the same as the standard ESN.

Chapter 3: Neural Network Architectures

41

 A. Standard ESN

Dynamical
Reservoir

Input Units

Output Units

B. Jumping connection ESN

Figure 3.7 ESN Architectures: Solid arrows indicate fixed connections and dashed

arrows indicate trained connection.

ESNs use a simple learning algorithm for dynamical systems. It works by training linear

readout neurons that combine the signals from a random fixed, excitable “reservoir”

network (pseudoinverse method is used). A standard ESN is a simple discrete- time

RNN that has three layers: an input layer (units), a recurrent layer also called reservoir,

internal or hidden units. It is the core of the ESN structure and the readout layer extracts

information from the reservoir. The network is fed each time step t with input vector 𝑢𝑡,

which drives the dynamic of recurrent layer, 𝑥𝑡 and output vector 𝑦𝑡 . An input vector

𝑢(𝑡 + 1) at time step (𝑡 + 1), with activations of recurrent units, 𝑥(𝑡 + 1), is generally

updated according to:

𝑥(𝑡 + 1) = 𝑓 (𝑊𝑥(𝑡) + 𝑊𝑖𝑛𝑢(𝑡 + 1)) (3.9)

In addition, output units, y(t+1) are used to extract interesting features from this rich

reservoir of dynamics, therefore, only reservoir output connections, OutW are

modified during the learning/ training process, the output is computed according to

𝑦(𝑡 + 1) = 𝑔(𝑊𝑂𝑢𝑡 ∗ 𝑥(𝑡 + 1)) (3.9)

Where 𝑓is the internal unit’s activation function (tansig, sigmoid, etc.),

Chapter 3: Neural Network Architectures

42

Out W , andWW in
 are Input-hidden, Hidden-hidden, Output-hidden connection

matrices respectively and 𝑦(𝑡) is the output of the ESN. The weight matrices are

initialised randomly and are kept fixed except for the output matrix, which is adapted

through learning. The weights in the reservoir layer are assigned randomly to sparsely

and randomly connect neurons. The magnitude of the spectral radius determines the

persistence of memory. To scale the initial weights to a desired spectral radius we

calculate hidden weights as:

𝑊𝑖𝑛 =
𝛼𝑊′𝑖𝑛

|𝜆𝑚𝑎𝑥 |
 (3.10)

Where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of 𝑊′𝑖𝑛 and 𝛼 is the spectral radius 0 < 𝛼 < 1.

This is used to ensure the echo state property (ESP) i.e. that the activation of the

reservoir layer forgets asymptotically. Because of this, the history of the input sequence

has a decreasing effect on the current activation as new symbols are input to the

network. Scaling the weights of the reservoir determines the ESP. This guarantees that

the activity of the reservoir, driven by input sequences with comparable history, will

converge to close regions of the state space (Rachez, Hagiwara 2012). Settling Time

(ST) is measured by the number of iterations allowed in the recurrent layer after its

excitation by an input and before the sampling of the output. A smaller ST means that

the iteration is short term or truncated and the output is available soon after the input is

passed to the reservoir. However, a higher ST indicates more iteration in the network

and that the output is delayed (Venayagamoorthy, Shishir 2009).

The ESN method differs from other RNN approaches in having a large number of

recurrent neurons (in the order of 50 to 1000 neurons). As previously stated, only

synaptic connections from the RNN to the output units are updated i.e. the only

connections that are updated are the connections from the recurrent layer (reservoir) to

output units. In this investigation two different training approaches were used as

mentioned before. The standard ESN by Jaeger and the jumping connection version

where there are trained connections from input to output layer as well as from reservoir

to output layer, as shown in Figure 3.7 B.

Chapter 3: Neural Network Architectures

43

3.2. Summary

This chapter provides an overview of different RNN approaches that might be used for

grammar induction. RNNs have been applied to grammar inference such as SRN, MRN,

NARX and ESN. The performances of these different architectures for grammar

induction has been investigated. Some modifications have been done on these models

(e.g. learning rate, number of hidden units, activation functions, etc.). Almost all the

networks share the same learning algorithm (back-propagation through time) except for

the ESN structure. This research considers several RNN approaches with some

modifications in their architectures and parameters to try to enhance their performance.

Moreover, SRN, Jordan, TDNN, NARX and MRN are used to evaluate the role of

different recurrencies and the role of memory rigidity (in terms of past and current

information). This will be discussed in chapter four. This research aims to investiga te

their limitations and make comparisons between the various RNNs to find the optimal

approach for grammar inference.

Chapter 4: Data and Methodology

44

Chapter 4

4. Data and Methodology

This chapter describes the data sets and methodologies used to fit, select and evaluate

the RNN used to model the data. One of the principle aims of this study is to determine

the class of RNNs that is able to robustly learn to represent the underlying finite state

automata describing the languages used. In this chapter, a number of popular RNNs will

be considered.

4.1. The Reber Grammar Datasets

Fundamentally, two different types of data sets are used in this research. The first data

set type consists of sentence strings generated from a regular grammar. The purpose

here is to ascertain whether the RNNs are able to discover the underlying finite state

automaton used to generate the data. Finally, the second type consists of sentence

strings generated from a context free grammar. The purpose here is to discover whether

the RNNs are able to discover the underlying linear bounded automaton used to

generate the data. Both data sets are based on the popular Reber Grammar (Reber,

1976), which is discussed below.

Many researchers have argued that people can learn complex tasks in distinct ways

based on implicit or explicit learning (e.g. Reber 1976, Dienes, Broadbent et al. 1991).

The methods are distinguished in two ways: the conditions that elicit them and the type

of knowledge that they result in. Implicit Learning (IL) is the learning of the

complicated information or data without fully understanding what has been learned

(Sun, 2008). IL has been illustrated using a variety of experimental paradigms that differ

in the type of indicator used and in the type of implicit knowledge acquired. In the

Artificial Grammar paradigm (AG), artificial grammar learning consists of complex

rules that determine the sequence of letters producing short strings (Rosas, Ceric et al.

2010).

Chapter 4: Data and Methodology

45

Artificial grammar learning is the paradigm that has been used largely to investigate the

acquisition of implicit knowledge (Reber 1976, Reber, Kassin et al. 1980). The practise

contains a comparison of performance on two tests. Initially, participants study

sequences of symbols generated by an artificial grammar shown in Figure 4.1. In the

first test, participants are asked to distinguish between grammatical and ungrammatica l

sequences. After that, they may be asked, whether they recognise sequences, whether

they can orally report the foundation of their choice, or may be questioned about the

nature of the grammar. Reber, 1976 found that participants classified 79% of test

sequences in accordance with the rules of grammar. However, participants were

incapable of describing those rules. A reason for selecting this grammar is due to its

previous widespread use in numerous psychological trials on implicit memory (Reber,

Kassin et al. 1980, Perruchet, Pacteau 1990, Rosas, Ceric et al. 2010). This work mirrors

those experiments by training the networks and evaluating their environments. The aim

of the task is to predict the next symbol following on from previous symbols in a

sequence of letters.

4.1.1 Symbol Representations

In language, there are techniques to represent non-numeric data to a neural network.

Take for instance representing the four characters a, b, c and d in a network. There are

three basic techniques to represent them. First, represent them using one signal and

assigning numeric values to the characters, such as 𝑎 = 0.0,𝑏 = 0.3, 𝑐 = 0.6 𝑎𝑛𝑑 𝑑 =

0.9. This method will fail, as it is difficult to interpret the data precisely; if the network

cannot provide the decision concerning which of the two outputs is correct, it naturally

produces an intermediate value. The second way is to represent them by using two

binary signals: 𝑎 = [0,0],𝑏 = [0,1],𝑐 = [1,0]𝑎𝑛𝑑 𝑑 = [1,1]. This representation

suffers from the same problem as the output of the network could be [0.5, 0.5]. The

third technique is using localist mapping. Here, every symbol will be linked to a specific

cell in the representation and only one cell in the representation can contain a one.

Therefore, to represent the four letter the representation will require𝑎 = [1,0, 0, 0],𝑏 =

[0,1, 0, 0],𝑐 = [0, 0,1, 0], 𝑑 = [0, 0,0, 1]. In this situation, four signals are needed. The

problem of the two previous cases will not occur here (Tjongkimsang 1992). This

representation does not have the problem of the two previous techniques. If the network

Chapter 4: Data and Methodology

46

produces an intermediate value the candidates that it suggests can unambiguously be

pointed at; for example, presume that the network outputs [0.5, 0.5, 0,0] then it was

difficult for the network to choose between a and b. In addition, all the representation

patterns are equally similar. Therefore, the network is unable to recognise non-intended

similarities from the representations. The disadvantage of this technique is more

training time, especially when there are many symbols to be processed (more units,

links and weights). When considering large representations and non-intended

similarities problems between patterns, a balance can be found by choosing an

intermediate representation size, and letting the network find out meaningful

representations of that size. Three methods have been demonstrated for allowing

networks to build fixed length representations for symbols (Elman 1990, Blank, Meeden

et al. 1992). The task that the network learned to perform with the symbols is then

coded in the representations built by the network. Therefore, a different network task

will lead to different representations.

The input layer consists of seven neurons for all the networks that have been examined

in this research. The activation function used for both hidden and output layers was

binary sigmoid; the learning rate was 0.15; and the momentum coefficient was 0.75.

These values were arrived at as optimal settings after extensive training on the Reber

grammar problem, where a range of values of learning rate and momentum were

systematically applied. The symbols represented to the input layer are coded to the

network using a localist mapping as shown in Table 4.1. The context unit, will have as

input, a copy of the activation function of the hidden layer.

Grammatical pattern Orthogonal vector

B 1 0 0 0 0 0 0

P 0 1 0 0 0 0 0

S 0 0 1 0 0 0 0

T 0 0 0 1 0 0 0

V 0 0 0 0 1 0 0

X 0 0 0 0 0 1 0

E 0 0 0 0 0 0 1

Table 4.1 Orthogonal binary vector representations for input patterns.

Chapter 4: Data and Methodology

47

The output layer also consists of seven neurons to represent a letter. A sequence of n

patterns is coded at each time step t as x(t) symbol and expecting the net to predict the

next symbol in the sequence x(t+1). Each pattern consists of two input vectors and one

target vector. The target vector is a seven-bit vector representing element t+1 of the

sequence. The two input vectors are:

 The hidden unit (i.e. context nodes) at time t-1.

 A seven-bit vector representing input at time t of the sequence.

Another representation was used in the trials. The purpose is to make the representation

of the letter more effective; there are no zero inputs so each input will have some

significance and thus cause a weight change resulting in learning for all weights.

Symbols that are not active are represented by 0.2 and those that are active represented

by 0.8. The coding of the symbols represented to the networks is demonstrated in

Table 4.2.

Grammatical pattern Orthogonal vector

B 0.8 0.2 0.2 0.2 0.2 0.2 0.2

P 0.2 0.8 0.2 0.2 0.2 0.2 0.2

S 0.2 0.2 0.8 0.2 0.2 0.2 0.2

T 0.2 0.2 0.2 0.8 0.2 0.2 0.2

V 0.2 0.2 0.2 0.2 0.8 0.2 0.2

X 0.2 0.2 0.2 0.2 0.2 0.8 0.2

E 0.2 0.2 0.2 0.2 0.2 0.2 0.8

Table 4.2 Orthogonal vector representations for input patterns

4.1.2 The Regular Grammar: Simple Reber Grammar

This study uses Reber’s small finite-state grammar (Reber, 1976), shown in Figure 4.1.

It is a deterministic finite automaton capable of generating some regular language L; an

element or sequence s, where𝑠 ∈ 𝐿, is generated according to Reber grammar’s rule

(grammatical). Moreover, other invalid sequences can be generated (ungrammatica l)

that do not follow the Reber rules.

Finite-state grammars consist of nodes connected by labelled arcs. A grammatica l

sequence is produced by entering the network through the B ‘Begin’ node and by

Chapter 4: Data and Methodology

48

moving from node to node until the E ‘End’ node is reached. Every transition from node

to node generates the corresponding letter to the label of the arc linking between these

two nodes. The elements of the language are illustrated as follows:

𝐿 = {𝐵, 𝑃, 𝑇, 𝑆, 𝑋, 𝑉, 𝐸}

 Examples of sequences that can be generated by the grammar are ‘BTSXSE’

‘BPTVPSE’ ‘BTSXXTTVVE’.

Two occurrences of the same letter may lead to different nodes. This makes it difficult

to predict its successor. In order to perform the task sufficiently, the network has to

encode the letter context instead of just identifying the current letter.

Figure 4.1 The finite-state grammar (FSG) used by Reber

4.1.2.1 Reber Grammar Dataset

Three datasets were randomly generated and examined, the sequences were unbiased

sequences, and that is, each transition arc from node to another or itself (self-loop ing)

has the same probability of 0.5. The size of datasets used consisted of 60,000, 100,000

and 1,000,000 randomly generated training sequences with resulting average weighted

lengths of 7.9, 7.97, and 7.95, have SD of 3.2, 3.3 and 3.26 respectively. In addition to

T

X

X

P T

S

B

V
S

E

V

P

Chapter 4: Data and Methodology

49

these, two testing datasets were randomly generated; the first is 33335 grammat ica l

sequences and 200,000 ungrammatical sequences. The grammatical sequences

generated from the grammar are shown in Figure 4.1. A sequence starts with the initia l

symbol ‘B’ and follows a pattern of two possible symbols selected at random at each

node, with a probability of 0.5 for each (symmetrical sequences). Each pattern was then

presented sequentially to the networks. The activation of the context units were reset to

zero at the beginning of each sequence. After each pattern, the error between the

network’s prediction and actual successor specified by the sequence was computed and

back propagated. All three datasets were generated randomly and the sequence lengths

in each ranged from five to 32 patterns.

The weighted mean used for calculating the average length of the strings was as follows.

The equation is:








n

i

i

n

i

ii

w

xw

x

1

1 (4.1)

Where, w is the number of times a particular sequence length is repeated and x is the

length of a sequence, n is the number of observations (number of sequence lengths).

Standard Deviation (SD) has been calculated according to equation 4.2 {the average

distance from the mean of the data set to a point}.

 












n

i

i

n

i

ii

w

xxw

s

1

1

2

 (4.2)

Where 𝑥̅= is the weighted mean, 𝑥𝑖= are the observations and 𝑤𝑖 = are the weights.

4.1.3. The Context-Free Grammar: Embedded Reber Grammar (ERG)

Embedded Reber Grammar (ERG) (Cleeremans, Servan-Schreiber et al. 1989, Fahlman

1991, Hochreiter, Schmidhuber 1997, Gers 2001) is an extension to simple Reber

Chapter 4: Data and Methodology

50

grammar. Both grammars are in the form nLm\aLb, where n, m, a and b are unique

strings included in L. Therefore, ERG is much more difficult because the neural network

must have to remember the initial sequence for several number of previous time steps;

In other words, the last symbol of a valid sequence is determined by the first one and is

independent of the sub-sequencing in between. As a result of this, the memory of the

past sequence required to predict the ultimate symbol (penultimate) is considerably

larger in this case; because the network must observe the initial symbols ‘T’ or ‘P’ and

must retain this information while processing an embedded sequence or arbitrary length.

This is what makes the prediction task much harder.

Consider the problem of number agreement demonstrated by the following two

sentences:

The dog that chased the cat is very playful.

The dogs that chased the cat are very playful.

At first glance, information about the head of the sentence does not seem to be relevant

for processing the embedded clause itself. Nonetheless, from the perspective of a system

that is continuously generating expectations about possible succeeding events,

information about the head is relevant within the embedding. For instance, the

embedded clauses require different agreement morphemes (chases vs. chase) when the

clause is in the present tense, etc. Moreover, even after the same word has been

encountered in both cases, expectations about possible successors for that word remain

different. There is sufficient empirical evidence to support the claim that human subject s

do generate expectations continuously in the course of natural language processing.

(Servan-Schreiber, Cleeremans et al. 1989) devised a finite-state grammar, based on the

Reber grammar, called the Embedded Reber Grammar, in which the identity of the last

letter depends on the identity of the first one.

The ERG used for the neural networks to learn the paths of a transition diagram are

depicted in Figure 4.3. A sequence is generated by travelling from the leftmost node to

the rightmost. The ERG is contained from two parallel Reber grammar diagrams that

raise the number of pathways to make the task more difficult. In the embedded Reber

grammar Figure 4.2, the first symbol after B serves as a pointer that uniquely determines

Chapter 4: Data and Methodology

51

the penultimate symbol in a sequence before the last symbol, E. The embedded section

between these two symbols comprises letters generated by the Reber grammar. The

relevance of the embedded Reber grammar to natural language processing is that such

complex embedded clauses occur in natural language and every natural language

processing system must have the ability to preserve information about long-distance

contingencies in order to ensure that sentences containing embedded sequences are

processed correctly (Cleeremans el at. 1989).

EB

P
P

P

P

P

PT

T

T

T
T

T

X

X

X

X

S

S

S

S

V

V

V
V

Figure 4.2 A complex finite-state grammar involving embedded sequences.

Two kinds of datasets of ERG generated, biased and unbiased sequences (Symmetr ica l

and Asymmetrical). In symmetrical sequences, the sequences generated randomly as

training proceeded with each of the two possible successor symbols at any state being

equally likely, probability of 0.5. In addition to this, asymmetrical sequences generated,

in this method of generation exaggerates the bias of the training set toward upper part

of the embedded, if transition probability is ‘T’, or toward bottom part of the embedded

if transitioned to ‘P’. Therefore, a network receives some steady, continuing

reinforcement for remembering whether it is in the upper or bottom embedded of the

grammar. One of the aims of this research is to investigate which of the training dataset s

is better to preserve information about the predecessor of the embedded sequences

across symmetrical and asymmetrical sequences.

Chapter 4: Data and Methodology

52

4.1.3. 1 Symmetrical Sequences

This section describes and explains the random datasets generated as unbiased datasets,

(Cleeremans, Servan-Schreiber et al. 1989, O'connell 1995) generated 2.4 million letters

to present to the network. In this research, 300,000 sequences that are approximate ly

2.65 million letters randomly generated that is comparable with their work, the maximal

length is 27 and the weighted mean is 9.81.and SD 3.03. Equation 4.1 and 4.2 show the

formula used to calculate both weighted mean and SD.

Table 4.5 describes the number (frequency) of sequences at each length together with

the statistical characteristics of the data set and the total number of patterns. The

generation of sequences was illustrated as in the regular grammar: for each time step,

the next symbol is generated from a choice of two with equal probability 0.5, except for

the last symbol where there is one choice. Therefore, information about the starting

symbol is not locally relevant to predicting the successor of any letter in the embedding.

Length Frequency Length Frequency Length Frequency Length Frequency

6 74815 12 14656 18 1821 24 323

7 55983 13 9665 19 1281 25 116

8 37624 14 6712 20 893 26 24

9 42094 15 4830 21 619 27 1

10 23649 16 3391 22 627

11 17871 17 2489 23 516

Number of Sequences 300000 Standard Deviation 3.03

Weighted Mean 9.81 Number of Patterns 2643125

Table 4.3 Characteristics of the 300000-Symmetrical-embedded-Reber

The 300,000 dataset is generated probabilistically, therefore it will include some natural

replication of sequences. Another 1,000 sequences test file was generated in the same

way but was followed by the removal of naturally replicated sequences in the dataset.

The entire sequences are a unique form not replicated as with Cleeremans Servan-

Schreiber et al (1989), there is a naturally occurring overlap between the training and

Chapter 4: Data and Methodology

53

test samples of 79.8%. The maximal length for unbiased testing dataset was increased

to 36. The weighted mean is 18.52 and the SD 4.4. Table 4.6 illustrates the contents of

the dataset.

Length Frequency Length Frequency Length Frequency Length Frequency

6 4 14 68 22 54 30 5

7 6 15 89 23 29 31 2

8 8 16 100 24 30 32 3

9 14 17 96 25 15 33 1

10 18 18 94 26 9 35 1

11 26 19 82 27 7 36 1

12 38 20 82 28 9

13 50 21 58 29 1

Number of Sequences 1000 Standard Deviation 4.4

Weighted Mean 18.52 Number of Patterns 17521

Table 4.4 Characteristics of the 1000 Symmetrical Testing Dataset (Embedded Reber

Grammar)

In Figure 4.3 the transition probabilities of the whole arcs were equal and set to be 0.5,

giving rise to what are called symmetrical sequences. Figure 4.3 also shows an

embedded Reber grammar but the probabilities of a route being selected are biased

toward the top arcs for the top embedding, and toward the bottom arcs for the bottom

embedding.

4.1.3. 2 Asymmetrical Sequences

The resulting training sequences would contain some indication as to which of the two

embedded grammars it belonged to which may help the RNNs to identify the

appropriate exit transition.

Chapter 4: Data and Methodology

54

EB

P
P

P

P

P

PT

T

T

T
T

T

X

X

X

X

S

S

S

S

V

V

V
V

0.5

0.5

0.7

0.3

0.7

0.3

0.3

0.3

0.3

0.3

0.7
0.7

0.7

0.7

0.7

0.7

0.7

0.7

Figure 4.3 Embedded Reber grammar biased symbols (Asymmetrical). The numbers

above each arc indicate the transition probabilities in the biased form of the grammar

Therefore, this means that when symbols within an embedded clause relate to the

subject (symbols before entry into embedding) then the network has a greater chance of

learning to exit the embedding correctly. To illustrate the argument about the

embedding more clearly: in natural language we are assuming the following words

relate to the subject. For example:

(1) The cats [when the weather was windy and wet] were hungry.

In sentence (1), little or no clue is provided within the embedded clause to indicate that

the subject is plural. Generating sequences with equiprobable transit ions as in sentence

1 are referred to as symmetrical sequence data, and how this is implemented is discussed

in detail below.

(2) The cat [who is lost and has a wet coat] is hungry.

In sentence (2), clues are provided within the embedded clause to remind the RNN that

the subject is singular. Data generated in this way results in asymmetrical sequence data

Chapter 4: Data and Methodology

55

and what will be called an asymmetrical data set. It was therefore decided to generate

both symmetrical and asymmetrical data to determine if the asymmetr ical data helps the

learning of such cross-serial dependencies and to explore this property if it does.

Another 300000 sequences were generated; the sequences are asymmetrical strings

where the top sub-grammar was slightly biased towards the top nodes. The probability

of the first T was 0.7 with 0.3 for the first P, 0.7 for the second S with 0.3 for the second

X and 0.7 for the second P with 0.3 for the second V. Equally; probabilities in the bottom

sub-grammar were biased in the opposite direction. The probability distribution used in

the dataset generation is shown in Figure 4.3. In addition in this dataset, there are 21.2%

of the sequences not in the training dataset (unique), the percentage of the matchless in

unbiased test dataset is 34.8%. The maximal length is 26 with average length 8.78 and

SD 2.31. Table 4.5 illustrates the file contents.

Length Frequency Length Frequency Length Frequency Length Frequency

6 121318 12 8351 18 539 24 58

7 58871 13 5216 19 345 25 22

8 33250 14 3089 20 262 26 10

9 33953 15 2221 21 172

 10 18986 16 1410 22 113

11 10877 17 839 23 98

Number of Sequences 300000 Standard Deviation 2.31

Weighted Mean 8.78 Number of Patterns 2334544

Table 4.5 Characteristics of the 300000 Asymmetrical Dataset

Another 1,000 sequence test file was generated in the same asymmetrical way but

followed by the removal of repeated sequences in the dataset. The maximum length for

testing datasets is 36 and the weighted mean is 18.52 with SD 4.4. Table 4.6 illustra tes

the contents of the dataset.

Chapter 4: Data and Methodology

56

Length Frequency Length Frequency Length Frequency Length Frequency

6 4 12 38 18 116 24 20

7 6 13 50 19 110 25 9

8 8 14 68 20 75 26 5

9 14 15 91 21 53

 10 18 16 107 22 39

11 26 17 117 23 26

Number of Sequences 1000 Standard Deviation 3.63

Weighted Mean 17.928 Number of Patterns 16928

Table 4.6 Characteristics of the 1000 Asymmetrical Testing Dataset

4.2. Model Fitting

In this section, techniques used to evaluate and optimise the networks are considered.

Six, varied network architectures (Jordan, TDNN, NARX, SRN, MRN and ESN) are

compared and their limitations studied. In order to improve the performance of some of

the networks, a regularisation method is used for controlling the complexity of the

model. It attempts to overcome the over fitting problem by using a flexible model with

constraints on the values that model parameters can take, normally through the addition

of a penalty term (Zur, Jiang et al. 2009). There is a wide range of techniques for

regularising neural network models that have been developed. For instance, Bayesian

methods (MacKay 1995), weight elimination (Weigend, Rumelhart et al. 1991),

Dropout (Hinton, Srivastava et al. 2012). The regularisation mechanism was used in

SRNs, NARX, MRNs and ESN. The reasons behind choosing these networks were their

performance on the task compared with the other networks (outcome of the networks),

trying to improve the performance and the effect of regularisation on different networks

architectures. Also, in this section, a summary of Backpropagation through Time (BPT)

is described, together with some learning algorithms and the Taguchi method (Roy

2010). In addition to these, the way in which internal representation of SRN, NARX,

MRN and ESN (hidden units) are analysed using principle components analysis is

described.

Chapter 4: Data and Methodology

57

4.2.1. Overview

This section, describes the methods used in the training, testing and understanding of

the networks. The size of the input and output layers for all models was seven units (due

to the number of symbols that the grammar has) for the next symbol prediction task. A

single hidden layer was used in all cases following the networks architectures adopted

by the inventors. The hidden layer sizes for the SRN models varied from 3 to 25 hidden

units. The reservoir size for the ESN models ranged from 30 to 700 hidden units. The

activation functions used here for all the networks except the ESN were binary sigmoid

for both hidden and output layers. For the ESN the functions were tanh and sigmoid for

reservoir and output layers respectively. The non-linear activation functions allow the

networks to solve problems, which are out of reach of linear networks. Therefore, this

can introduce a non-linearity system into the network. The range of the random weights

for the networks was - -0.3 to 0.3. The context units are initially set to 0.5. The learning

rate was 0.15 and the momentum coefficient was 0.75 (excluding for the ESN where

they are not applicable). The prediction was considered correct if, for each pattern in a

given sequence, the activation for the correct successor symbol was greater than 0.3 or

0.38 used when the dataset uses ‘symbol representations orthogonal binary’ and

‘fraction vectors’ respectively. If this criterion was not met, the sequence was

considered as rejected for both cases. This will be further explained later in the next

chapter.

Each training experiment was repeated 15 times (with the same architecture and training

parameters) to explore and account for sensitivity to the initial state determined by the

randomly generated starting weights.

Cross validation is a technique used to estimate the prediction error (estimate how well

a model has been trained). It is used to try to avoid over-fitting of the training to the

data. Over-fitting can arise where there is: a small training set (patterns that in small

training set may be spurious and due to noise); noise in the data (the likelihood of

spurious patterns that do not reflect actual patterns in the domain increases); and where

there are many features in the dataset (each feature provides an opportunity for spurious

patterns to show up). In contrast, the datasets used in this study, were without noise.

Chapter 4: Data and Methodology

58

Cross validation is not therefore used in this study. Since the data applied in this research

is the same as the training methodology used by Cleeremans et al 1989 and Bob Cartling

2007.

4.2.2. Model Selection

It is illustrated in much neural network research that adding additional noise to the input

data during training can, in some situations, lead to significant improvements in

generalisation performance (Bishop 1995, Zur, Jiang et al. 2009, Rifai, Glorot et al.

2011). The noise is used for the regularisation of the network. Various techniques to

achieve regularisation of a parametric model, weight decay or output smoothing are

used to avoid over-fitting during the training stage of the considered model. According

to the Bayesian theory, a number of regularisation techniques correspond to imposing

specific prior distribution on model parameters (Rifai, Glorot et al. 2011).

One of the methods of regulation, called noise injection, enhances complex models

indirectly by adding noise to the training dataset (Zur, Jiang et al. 2009). According to

(Matsuoka 1992) if there is an ambiguous mapping from the input space to the output

space it should be smooth. Then the noise injection can enhance the generalisat ion

ability of the learning algorithm. However, if this condition does not accrue, the method

might produce a weak and bad generalisation capability. In addition to this, it is used to

improve the generalisation performance when the number of input samples is relative ly

small or heavily contaminated with noise. The purpose in this research is to improve

the performance of the networks by adding random noise to the input data during

training. Since the best-performing network was, the multi-recurrent network, it was

investigated first by adding two types of noise injection: random noise vector onto each

input pattern and a random noise neuron injection. Then, these techniques were also

used with the SRN and ESN. Figure 4.4 and Figure 4.5 display SRN and MRN using

noise injection respectively.

Chapter 4: Data and Methodology

59

Output Units

Input Units

Hidden Units

Context Units
Noise Units

i

Figure 4.4 SRN with noise-injection units

Noise units

100% 75% 50%25% 25%50% 100%75%

25% 25%50% 50% 75%75%

Context units

hidden units

input units

Output units

Figure 4.5 MRN with noise-injection units

Two types of noise injection were tried: first, one noise-injection unit was inserted with

the input; and second, seven noise-injection units were inserted on the input (one per

data input unit). A range of noise levels was used with asymmetrical training sequences

since the performance of the networks on asymmetrical sequences is superior to that

with symmetrical sequences. These values were in ranges between plus and minus

0.005, 0.01, 0.3, 1, 1.25, 2.5 and 5 for one- noise unit and 0.005, 0.01, 0.03125, 0.25,

0.5, 1, and 1.25 for the seven unit architecture. Real random numbers in these ranges

Chapter 4: Data and Methodology

60

were added to the network as noise, with the input for each symbol entered. Results are

illustrated and discussed in the next chapter.

4.2.2.1 Backpropagation through Time (BPTT)

Many learning algorithms can be used with recurrent neural networks. They can be

divided into two groups: algorithms working online (Real Time Recurrent Learning,

dynamic Backpropagation) and algorithms working offline Backpropagation thro ugh

time (BPTT). The latter is the most popular method for achieving supervised learning

and this is the method used in this work.

The discrete-time RNN learning algorithm entitled BPTT (Rumelhart, McClelland

1985) is described. It is a very powerful procedure. It can be applied to many temporal

classification problems; however, it requires considerable computational power to

achieve a high level of accuracy (Principe, Kuo et al. 1993, Boné, Crucianu et al. 2002,

Smith 2002, Grüning 2007). Figure 4.6 is a schematic of BPTT. At the start, the outputs

of the BPTT algorithm are computed for all time steps. Then, the gradient is computed

by starting at the last time step and working backwards in time.

BPTT provides a solution to the cycling connections between the nodes in RNNs by

stacking identical copies of the RNN and obtaining connections between subsequent

copies by redirecting the connections within the network. Whereas the feedforward

backpropagation algorithm cannot be directly transferred to RNNs because the error

backpropagation pass requires that the connections among the neurons induce no cycle

ordering. Unfolding the recurrent network in time is the solution used in the BPTT

algorithm; that is stacking identical copies of the recurrent neural network, and

redirecting connections among the networks to gain connections between subsequent

copies. Therefore, a feedforward network has been obtained, which is adjustable by the

backpropagation algorithm.

Chapter 4: Data and Methodology

61

X(t+1)

X(t)

X(t-1)

y(t+1)

y(t)

y(t-1)

u(t+1)

u(t)

u(t-1)

Figure 4.6 Schema of the basic idea of Backpropagation through Time (Jaeger 2002)

The network is trained according to the rule

𝜕𝐸

𝜕𝑤𝑖𝑗
= ∑ 𝛿𝑖(𝑡)𝑥𝑗(𝑡 − 1)𝑥𝑖(𝑡)(1 − 𝑥𝑖(𝑡))𝑇

𝑡=1 (4.3)

Where

𝛿𝑖(𝑡) = −𝑒𝑖(𝑡) + ∑ 𝑤𝑗𝑖𝑥𝑗(𝑡 + 1)(1 − 𝑥𝑗(𝑡 + 1))𝛿𝑗(𝑡 + 1)𝑗 (4.4)

Also, ei(t) is the output error, xi(t) represent the activations and δ i(t) are backpropagated

errors. Formulae defined in 4.3 and 4.4 constitute the BPTT algorithm (Prokhorov,

Feldkarnp et al. 2002).

 The input/ output time series are denoted by:

𝑥(𝑡) = (𝑥1(𝑡), … , 𝑥𝑛(𝑡))′ ,𝑑(𝑡) = (𝑑1(𝑡),… , 𝑑𝑚 (𝑡))′ t=1… T (4.5)

The BPTT learning algorithm consists of two passes; forward and backward. In the

forward pass, the stacked network starting from the first copy to the end of the stack is

updated in one training epoch. The input x(t) is first read in at each copy n and time t ,

then from x(t) and u(t+1) { and from y(t-1)if nonzero 𝑤𝑖𝑗
𝑏𝑎𝑐𝑘 exist} the hidden state u(n)

is computed. Then, the current copy’s output y(n) is computed. The minimized error is

calculated as follows:

𝐸 = ∑ ‖𝑑(𝑡) − 𝑦(𝑡)‖2 = ∑ 𝐸(𝑡)𝑡=1,…,𝑇𝑡=1,…,𝑇 (4.6)

Chapter 4: Data and Methodology

62

In the first pass, the outputs of the BPTT algorithm are computed for all time steps.

Then, the gradient is calculated by starting at the last time step working backwards in

time.

Two types of learning rate were used with BPTT in this research. One was a fixed

learning rate and the second a pattern error–sensitive learning rate. The aim of the

learning is to minimize the sum of the squared error.

4.2.2.2 Fixed Learning Rate

The learning rate parameter determines how large the weight changes should be. The

larger the learning rate, the quicker the adaption of the network as a whole. However,

this parameter has a positive or negative effect on network performance. If the learning

rate is very large, this damages the generalisation accuracy and slows down training.

On the other hand, a very small learning rate requires extra reductions in size and wastes

computational resources without any further improvement in generalization accuracy

(Wilson, Martinez 2001). There is no fixed rule for how to set the learning rate so as to

achieve the best balance between stability and plasticity; the optimal learning rate

depends on the particular problem being learned. The fixed learning rate used here is

according to the Widrow and Hoff rule and is called Last Mean Squared (LMS) or delta

rule, where the weights update according to the following:

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 + (𝛿 ∗ 𝐸) (4.7)

4.2.2.3 Pattern Error- Sensitive Learning Rate

A pattern error-sensitive learning rate (Tepper et al. 1995) was used as it was found to

aid learning. The principle of this learning rate type is that the learning rate for a given

pattern is sensitive to its error within a prescribed range. Therefore, the formula used is

as follows.

𝛿 =
∑ |𝑒𝑖 |𝑛

𝑖=1

𝑛
∗ 𝑎 + 𝑏 (4.8)

Where

Chapter 4: Data and Methodology

63

𝑒𝑖 = 𝑑𝑖 − 𝑜𝑖

𝑓(𝛿) = {

𝑎, 𝑖𝑓 𝛿 > 𝑎

𝑏, 𝑖𝑓 𝛿 < 𝑏

𝛿, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4.2.2.4 Taguchi Method and Analysis of Variance (ANOVA)

Taguchi's theory based on Orthogonal Array Selector (OAS) is usually applied to

eliminate a number of experiments that do not have any impact on the process, in order

to optimise the quality of the process (Al-Habaibeh, Zorriassatine et al. 2002, Roy

2010). It provides an efficient method on performance variability reduction and is

usually used for off-line parametric optimisation control and high performance design

(Deng, Fox 2007). The technique is considered here with the aim of reducing the

number of experiments needed for optimising the network training parameters by

identifying the significant variables affecting the output (Roy 2010).

The alternative is to undertake a full factorial technique to find the contribution of each

parameter of the experiment individually (i.e. the independent variables) and computing

the dependency of the factor outcomes for each experiment. In Taguchi's method, the

dependency is the proportion of contribution found for a parameter by analysing the

variance. The dependency of a variable reflects the portion of the total variation detected

in an experiment attributed to that factor. The Taguchi methods are based on the

statistical analysis of data and offer a simple description of optimisation and analysis of

complex systems (Macleod, Dror et al. 1999). The technique used to determine the

relative contributions of the factors by comparing their variance is called the analys is

of variance (ANOVA).

ANOVA is a statistical method that permits researchers to analyse or dismantle the

variations in test outcomes into components that are dependent on the various sources.

Therefore, the total experiment variance can be partitioned to different factors and to

combinations of different factors. ANOVA uses Taguchi’s method and can be described

as a two-stage procedure. Firstly, the total variance of the measured output is computed

and possible combinations of factors and the variance due to the individual factors that

Chapter 4: Data and Methodology

64

were studied are computed. Secondly, the variance due to any pair of factors or

combination is compared. Consequently, the factor (parameter) that has a more

significant effect on the design output can be concluded. To represent the concept, any

high dimensional function can be represented as a subset of terms as follows:

𝑓(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)𝑛
𝑖=1 + ∑ ∑ 𝑓𝑖,𝑗 (𝑥𝑖 ,𝑥𝑗)𝑛

𝑗=𝑖+1
𝑛
𝑖=1 + 𝑓1,2,…………………,𝑛(𝑥) (4.9)

Where n represents the number of inputs, 𝑓0 is a constant and the rest on the right hand

side represents functional combinations of input parameters. Then, ANOVA partitions

the total variation into its suitable components. The total sum of squares is defined as

𝑆𝑆𝑇 = ∑ 𝑦𝑖
2 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑛 (4.10)

Which can be given as

𝑆𝑆𝑇 = 𝑆𝑆𝑚 + 𝑆𝑆𝑒 (4.11)

Where, 𝑆𝑆𝑚 = 𝑛𝑀2 and 𝑆𝑆𝑒 = ∑(𝑦𝑖 − 𝑀)2 are the mean sum of squares and the error

sum of squares respectively, and M is the average of the observed data where M is,

𝑀 =
1

𝑛
∑ 𝑦𝑖 (𝑖 = 1,2,… , 𝑛)

The most distinct disadvantage to the ANOVA procedure is that it’s assumes that the

data in the groups are normally distributed. However, moderating the data can overcome

this limitation. Another limitation is that it only detects significant difference among

cell means, but does not indicate the functional form of the relationship among cell

means (Buckless, Frank A 1990).

In this research, the ANOVA method is applied to select the optimal parameters

(factors) for the ESN by taking the weight range, connectivity and spectral radius in

four different values for each one. There were 64 training settings with these factors ,

each repeated three times. The results will be in the next chapter. The reason for using

this technique with the ESN is that it reduces the time taken for the trainings as this

involves a huge dataset that can use an enormous reservoir size. In addition to this, the

technique establishes which of the parameters has the highest effect on the performance

of the network.

Chapter 4: Data and Methodology

65

4.2.3. Model Evaluation

The networks were trained to take one symbol at a time and to predict what the next

symbol would be. The prediction process forces the network to develop interna l

representations that encode the relevant grammatical information because the prediction

relies on the grammatical structure (Elman 1993). Every network input pattern maps

onto a particular point in the hidden unit activation space. Therefore, we learn how these

points relate to each other over time, and understand how the network is operating and

whether it is analogous to underlying finite state automaton.

Several techniques have been used to deal with the internal representations within

trained connectionist systems, to shed more light on what is happening inside the hidden

layer, e.g. Hierarchical Cluster Analysis (HCA), Multi-Dimensional Scaling (MDS),

Canonical Discriminant Analysis (CDA), Principle Component Analysis (PCA)

(Bullinaria 1997). This research will focus on the use of PCA due to its success reported

for similar research (Gallagher, Downs 2003, Cartling 2008, Verstraeten 2009).

The internal representations of the networks can play a significant role in solving a

problem. With the help of the network structure, learning algorithm etc. the interna l

representations allow the network to ignore the oppression of a form-based

interpretation of the world. The internal representations have similarity structure, which

can be a valuable indicator of the meaning, rather than the similarity structure of the

bare input (Elman 1993). In this simulation, the networks used various numbers of

hidden units to represent a number of different factors, which were related to the task.

These need to be able to represent grammar states, the embedded part and grammar

symbols. PCA can be used to classify the precise dimensions associated with each factor

and was, first introduced by Karl Pearson over a century ago (Pearson 1901). It is a very

popular technique and has been used widely in the statistical community, primarily for

descriptive but also for inferential purposes (Gallagher, Downs 2003). Moreover, it is a

method for identifying patterns in data, and visualising the data, so similarities and

differences can be easily seen. It is also used to identify and remove any correlation

among problem variables and as an aid to dimensionality reduction.

Chapter 4: Data and Methodology

66

The main advantage of PCA is its ability to find the patterns in the data and compress

it by reducing the number of dimensions, with minimal loss of information (Bullinar ia

1997, Smith 2002). 𝑃𝑖𝛼: 𝑖 = {1, … , 𝑑; 𝛼 = 1, … , 𝑛} are the vector components of a set

of n points in d dimensional hidden unit activation space and 〈𝑃𝑖〉 denotes the mean 𝑃𝑖𝛼

over all values of 𝛼 . Therefore,

𝑆𝑖𝑗 = ∑ (𝑃𝑖𝛼 − 〈𝑃𝑖〉)(𝑃𝑗𝛼 − 〈𝑃𝑗〉)𝛼 (4.12)

Where 𝑆𝑖𝑗 is the standard covariance matrix. It is symmetric and the eigenvectors are

given as:

∑ 𝑆𝑗𝑘𝑘 Λ𝑘𝑖 = 𝜆𝑖 Λ𝑗𝑖 (4.13)

Which is orthogonal. Λ𝑖𝑗 can be used to perform a change of basis, i.e. an axis rotation,

as follows:

𝑃𝑖𝛼
Λ = ∑ Λ𝑖𝑗

−1 𝑃𝑗𝛼𝑗 (4.14)

The covariance matrix is diagonal and computed as follows

𝑆𝑖𝑙
Λ = ∑ ∑ Λ𝑖𝑗

−1𝑆𝑖𝑘Λ𝑘𝑙 = 𝜆𝑖𝐼𝑖𝑙𝑘𝑗 (4.15)

This approach was used to good effect by (Elman 1993) to analyse his sentence

processing network and by (Cartling 2008) to visualise the sentence processing.

Chapter 5: Experimental Results

67

Chapter 5

5. Experimental Results

The experiments conducted in this chapter will utilise various ANN types to learn a

difficult grammar structure in a given corpus. One of the main objectives of this research

is to optimise the performance of the SRN and other recurrent networks (Jordan, NARX,

TDNN, MRN and ESN) in order to understand the complex grammar represented,

namely the Embedded Reber Grammar (ERG). The literature includes limited attempts

by Elman (1990), Sharkey et al. (2000). Cleeremans et al. (2008) and others to learn the

ERG. These attempts limited the amount of self-looping inside the embedded part of

the grammar and they made no comparison between different neural networks

architectures. This study, aims to cover these aspects to assess their comparative

abilities and limitations and to understand the different representations formed by these

different architectures.

5.1 Learning the Regular Grammar

The SRN was given the task of predicting the next symbol in a sequence from a corpus

generated using the rules of the regular grammar, the simple Reber Grammar (see 4.1.2).

The prediction is considered accurate if, for each pattern in a given sequence, the

activation of the output corresponding to one of the two correct successor symbols was

greater than 0.3.This is known as a ‘soft acceptance criterion’. If this criterion was not

met, the sequence was considered rejected. This criterion is the same as that used by

(Cleeremans et al. 1989) in which the same learning task was set. The choice of a

threshold of 0.3 for the binary representation of symbols (or 0.38 for the 0.2 and 0.8

representation of symbols) is not completely arbitrary. The activation of the output units

is related to the frequency with which a particular symbol appears as the successor of a

given sequence. The probability of any particular legal successor symbol occurring in

the training set is 0.5. Nevertheless, since a momentum term is used in the

backpropagation learning procedure, the correct activation of the output units following

training was sometimes under 0.5 occasionally as low as 0.3.

Chapter 5: Experimental Results

68

The experiments in this section also explore the question raised by (Noel Sharkey, and

Stuart Jackson 2000), about whether particular initial starting weights are required to

enable the SRN to successfully learn the important aspects of the language, or is the

learning success independent of the starting state of the model. To this end, for each

SRN configuration, training was repeated 10 times each with different starting states.

Table 5.1. Shows the results of repeating 10 experiments with different starting states

for networks with various hidden layer sizes and training data set sizes.

The columns represent the 10 trials for each configuration, while the rows list the

experiments, which increase in the size of the training set and the hidden nodes. The

variability in the results across a row indicates the sensitivity of the network

performance to the starting state (weights). The success of training (in terms of

sequences learnt) in each scenario rises as the size of the hidden layer increases.

In general, it is preferable when working with neural networks to select an architecture

that learns the problem with the minimum number of hidden nodes. This should

minimise memorisation and maximise generalisation (Lin & Meador, 1992). The

sensitivity of the starting conditions is high for the 60K dataset with fluctuating results

for the most of the hidden unit sizes used and also, in the 1M dataset. The SRN

configurations trained with 100,000 sequences and 5 hidden units, fully learnt the

training set. Therefore, the higher performance of the trained networks was selected for

testing.

In order to test whether the network would produce similarly good predictions after

each pattern, a slight change was made to the testing files so that comparisons could be

made with the test files used by (James, McClelland 1988) and ungrammatica l

sequences were added to the test files. Three different datasets were generated to test

the SRNs: i) 20K “20000”grammatical sequences, ii) 130K sequences containing 23.0%

grammatical sequences and finally iii), a third file containing 100K sequences, all of

which are ungrammatical. The maximum sequence length of these datasets is 50.

Approximately 60% of the grammatical dataset sequences were not in the training data.

Chapter 5: Experimental Results

69

Graph 5.1 shows the result of the experiments using the test datasets. The blue bars

represent the individual symbols that were correctly predicted by the network, whereas

the red bars represent the correctly predicted sequences (strings of symbols). The

network recognised all of the grammatical sequences in the grammatical test file and in

the second test file (mixed sequences). The network was able to differentiate between

the grammatical and ungrammatical sequences by predicting the entire grammatica l

ones and rejecting all of the ungrammatical structure, for the ungrammatical test dataset

the network rejected all of the sequences.

As an extra measure and to evaluate the SRN’s ability to learn the RG with any sequence

length, extremely long sequences (beyond that found in the training set) were therefore

presented to the network, and the sequences had a minimum length of 50 symbols and

a maximum of 100 symbols. An example of such a sequence is:

‘BTXXTTVPXTTTTTTTT

TTTTTTTTTVPXVPXVPXVPXTTTTTTTTTTTTTTTTTTTTTTTVPSE’

The network correctly predicted all of the sequences as 100% indicating the network

had learnt to be the perfect model for the underlying regular grammar.

Graph 5.1 Elman’s SRN: Testing prediction accuracy on Reber Grammar

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

20K 100K 130K

Grammatical Ungrammtical Mixed

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

SRN tested in three different datasets (RG)

Patterns Sequences

Chapter 5: Experimental Results

70

1
0

3
0
.9

0
%

9
0
.5

8
%

6
2
.8

8
%

1
0
0
.0

0
%

9
3
.6

2
%

3
7
.3

2
%

8
7
.3

6
%

1
0
0
.0

0
%

9
3
.7

8
%

1
0
0
.0

0
%

5
0
.0

3
%

9
8
.4

4
%

9
5
.3

1
%

9
0
.6

1
%

9
0
.7

7
%

T
ab

le
 5

.1
 E

lm
an

's
 S

R
N

:
T

h
e

p
er

ce
n
ta

g
e

o
f

th
e

ac
cu

ra
cy

 o
f

th
e

se
q
u
en

ce
s

ac
ro

ss
 t

h
e

w
h
o
le

 d
at

a
se

t

o
n

 t
h
e

tr
ai

n
in

g
 p

er
fo

rm
an

ce
 f

o
r

th
e

R
eb

er
 G

ra
m

m
ar

9

3
5
.8

8
%

7
1
.8

2
%

9
6
.8

9
%

1
0
0
.0

0
%

1
0
0
.0

0
%

4
9
.9

1
%

7
4
.7

6
%

7
3
.3

6
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

5
9
.3

7
%

9
0
.6

1
%

7
7
.6

7
%

1
0
0
.0

0
%

8

8
4
.3

5
%

5
8
.5

4
%

7
9
.5

7
%

9
3
.6

2
%

1
0
0
.0

0
%

7
5
.5

4
%

9
3
.6

1
%

1
0
0
.0

0
%

9
8
.8

9
%

1
0
0
.0

0
%

7
6
.7

9
%

7
3
.3

5
%

8
9
.4

4
%

1
0
0
.0

0
%

1
0
0
.0

0
%

7

3
7
.5

8
%

7
0
.8

6
%

9
9
.3

6
%

1
0
0
.0

0
%

9
3
.6

2
%

5
1
.0

0
%

8
0
.9

8
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

5
0
.0

3
%

9
3
.7

4
%

4
2
.8

8
%

9
2
.5

4
%

1
0
0
.0

0
%

K
-

T
h
o
u
sa

n
d
s;

 M
 –

 m
il
li
o
n
s;

 H
 –

 n
u
m

b
er

 o
f

h
id

d
en

 n
o
d
es

6

5
1
.5

4
%

7
1
.7

6
%

1
0
0
.0

0
%

1
0
0
.0

0
%

9
9
.2

0
%

3
7
.3

2
%

6
8
.5

8
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

3
7
.5

2
%

8
7
.4

8
%

8
1
.2

2
%

9
1
.5

5
%

9
9
.0

1
%

5

3
4
.5

1
%

7
6
.7

5
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

7
9
.6

9
%

3
7
.3

2
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

5
0
.0

3
%

1
0
0
.0

0
%

3
7
.5

2
%

8
7
.4

8
%

1
0
0
.0

0
%

4

5
2
.0

0
%

7
5
.9

7
%

8
1
.7

1
%

7
5
.2

8
%

9
3
.6

2
%

6
5
.7

4
%

1
0
0
.0

0
%

1
0
0
.0

0
%

8
4
.2

3
%

1
0
0
.0

0
%

5
0
.7

8
%

7
4
.9

8
%

1
0
0
.0

0
%

9
6
.1

5
%

9
9
.6

1
%

3

4
8
.6

6
%

7
9
.2

7
%

9
1
.5

6
%

9
3
.8

1
%

1
0
0
.0

0
%

3
7
.3

2
%

8
2
.5

0
%

8
7
.3

6
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

8
4
.3

4
%

9
5
.3

2
%

1
0
0
.0

0
%

9
9
.2

5
%

2

3
0
.9

0
%

3
7
.5

8
%

8
7
.5

1
%

8
3
.1

1
%

1
0
0
.0

0
%

5
7
.2

2
%

9
6
.8

1
%

1
0
0
.0

0
%

1
0
0
.0

0
%

1
0
0
.0

0
%

5
1
.8

0
%

4
5
.5

6
%

9
6
.4

7
%

9
8
.4

4
%

9
7
.9

0
%

1

2
8
.6

6
%

8
4
.3

1
%

9
9
.1

8
%

9
1
.4

5
%

1
0
0
.0

0
%

6
0
.7

1
%

1
0
0
.0

0
%

1
0
0
.0

0
%

9
9
.7

2
%

1
0
0
.0

0
%

7
5
.0

5
%

7
0
.0

9
%

1
0
0
.0

0
%

9
9
.9

2
%

9
5
.3

6
%

 E

x
p
e
ri
m

e
n
ts

3
 H

5
 H

7
 H

1
0
 H

1
5
 H

3
 H

5
 H

7
 H

1
0
 H

1
5
 H

3
 H

5
 H

7
 H

1
0
 H

1
5
 H

6
0
K

 D
a
ta

 s
e
t

1
0
0
K

 D
a
ta

 s
e
t

1
M

 D
a
ta

 s
e
t

Chapter 5: Experimental Results

71

5.2 Learning the Context Free Grammar

To further understand the limitation and learning ability of recurrent networks, the

Jordan 1986, TDNN, NARX , MRNs and ESN network architectures have, together

with the SRN architecture, been investigated and examined with a more complex

version of the Reber grammar, known as the Embedded Reber Grammar (ERG), see

4.1.3. A noise injection technique is used in the models to produce a higher accuracy of

prediction and evaluate whether this method facilitates leaning in such connectionis t

models.

5.2.1 SRN Using Constant Learning Rate

The network that has been used is depicted in Figure 3.4. The task for the network is to

predict the next symbol in ERG described in section 4.1.3. Each of the embedded parts

(upper and lower) of the grammar shown in figure 4.2 is a transition graph similar to

the RG. It is a complex task, since the network has to remember the initial starting

symbols, T or P, which precede entry into one of the embedded grammars within the

overall grammar. This initial ‘entry’ symbol has to be remembered, as the same symbol

is used to correctly exit the embedded grammar (known henceforth as the penultima te

symbol). More specifically, T represents entry to/exit from the upper embedded

grammar, whilst P represents entry to/exit from the lower embedded grammar. As each

of the embedded grammars has some form of recurrency, the number of intervening

symbols between the entry/exit symbols can be arbitrarily long and complex. For

example, the embedded grammars may include several T’s and P’s, but only the initia l

T or P is contingent to the penultimate symbol.

The pattern-error sensitive learning rate (as used by Tepper et al 2002) will be evaluated

against a constant learning rate to determine whether improvements reported by the

mentioned study also apply to this grammar- learning task. If this proves to be the case,

then the pattern-error sensitive learning rate will be used for all other RNN models being

considered (that use gradient descent learning). In addition, Hard and Soft Acceptance

criteria were evaluated with these models. The optimal results obtained using similar

criteria carried out by Cleeremans el al (1989) with the simple grammar have the

Chapter 5: Experimental Results

72

advantage of using the more stringent criterion. Note that the networks have been

trained on symmetrical and asymmetrical sequences as described in sections 4.1.3.1 and

4.1.3.2.

A number of experiments were conducted used the constant learning rate, as with the

previous work with the simple Reber grammar. Biased and unbiased datasets were

trained and tested to investigate the impact of the learning algorithm on them.

5.2.1.1 Embedded Reber Grammar (Symmetrical Sequences)

In the first experiments, 20,000, 60,000, 100,000, and 1000,000, sequences were

generated randomly to generate training sets with weighted mean sequence lengths of,

9.4, 9.5, 8.4, and 9, and standard deviations of, 2.8, 2.9, 1.1, 2 respectively. Networks

with different numbers of hidden units (5, 10, 15 and 20) were trained with the various

datasets. However, the last dataset (containing 1,000,000 sequences) was trained with

just 5 and 10 hidden units due to memory limitations of the computers used. The aim of

using these datasets was to investigate how many hidden units are needed to learn the

ERG. The input layer and output layer again consisted of seven units, one for each of

the seven symbols of the grammar. The symbols were coded to the network as shown

in Table 4.1. The activation function used for both hidden and output layers was the

binary sigmoid function. The learning rate was 0.15 and the momentum coefficient was

0.75. The learning rate type was constant. The ‘Soft Acceptance Criterion’, described

earlier and used for the RG, were used. If this criterion was not met, the sequence was

considered rejected. As before, each model configuration was trained five times, each

with different initial starting weights. Table 5.2 shows the results.

Chapter 5: Experimental Results

73

(K, M, and H represent thousand, million sequences and Hidden nodes, successively

Experiments 1 2 3 4 5 Max

20K

5 H 78.71% 0.00% 0.00% 25.11% 0.00% 78.71%

10 H 81.90% 84.34% 65.80% 44.99% 47.54% 84.34%

15 H 97.76% 98.10% 96.18% 98.31% 98.21% 98.31%

20 H 70.03% 100.00% 100.00% 99.55% 94.64% 100.00%

60K

5 H 41.78% 11.74% 20.03% 35.49% 0.00% 41.78%

10 H 98.24% 95.36% 93.23% 96.07% 99.99% 99.99%

15 H 98.24% 96.07% 70.02% 97.65% 22.61% 98.24%

20 H 99.99% 99.24% 99.09% 99.24% 99.99% 99.99%

100K

5 H 27.20% 52.78% 0.00% 67.84% 28.50% 67.84%

10 H 62.20% 92.90% 79.32% 89.10% 75.09% 92.90%

15 H 91.57% 100.00% 90.24% 91.03% 96.95% 100.00%

20 H 89.81% 100.00% 92.79% 100.00% 100.00% 100.00%

1M
5 H 20.05% 88.24% 71.18% 50.03% 16.76% 88.24%

10 H 99.99% 55.36% 25.05% 87.58% 99.99% 99.99%

Table 5.2 Elman’s SRN: Percentage accuracy of the entire dataset training for the

embedded Reber grammar (soft acceptance criterion)

Table 5.2 shows the percentage accuracy of all the training networks, each network

repeated five times. The training is conducted in one iteration. According to the table,

the size of the dataset does not affect the performance significantly, whereas the number

of hidden units does. The table also shows that a network with more hidden units is

more capable of learning the grammar than when it has fewer hidden units. However,

the datasets that had a large corpus (large dataset) required a lot of computational time.

Although similar best case results were obtained regardless of the size of the dataset,

there was significant fluctuation in some cases between the performances of individua l

networks having different starting conditions (1M, 5H and 100K, 5H). It can be

concluded that there is a certain dataset size that can be trained with 15 hidden units to

achieve better performance. Therefore, the rest of these experiments in this section have

15 hidden neurons.

Experiment 1: Using Soft Acceptance Criterion

The objective here is to investigate the performance of the SRN by seeing how well it

predicted the successor for general sequences from the grammar. As before, the soft

Chapter 5: Experimental Results

74

acceptance criterion was applied. In addition, the purpose is to ascertain whether the

same method applied in the Reber grammar can be successful in the embedded Reber

grammar structure, and if not why not. Henceforward, 300K symmetrical sequences

will be used which is described as 4.1.3.1. The same criterion that was used in the

previous experiments is used here.

The following terminologies are used in the tables:

Embed = percentage of sequences in which each embedded symbol was correctly

predicted.

Penult = percentage of sequences in which the penultimate symbol was correctly

predicted.

 Alternative Penult = percentage from the wrong predictions where it is one of the two

possible penultimate symbols (i.e. the network has determined that this is the end of the

sequence but not correctly remembered which half the grammar it is in - upper or

lower).

Wrong Penult= percentage from the wrong predictions where it is not in the two

possible penultimate symbols (i.e. the network has lost track of the grammar within the

embedded part so it is not predicting the end of the sequence).

Network

Whole

Sequence

% Correct

Embed% Penult%

Incorrect

Alternative

Penult%

Wrong

Penult%

1 88.362 92.629 97.027 2.973 0

2 70.752 70.752 100 0 0

3 67.228 67.228 100 0 0

4 96.454 96.454 100 0 0

5 73.876 87.742 85.205 13.982 0.812

Table 5.3 SRN training results on ERG (soft acceptance criterion)

Table 5.3 shows the results of training for each network. The SRN was unable to predict

the embedded part of the grammar perfectly. However, the overall result of the

Chapter 5: Experimental Results

75

sequences is acceptable, especially network four. In order to determine the networks’

abilities to generalise to new sequences, each network was tested by the presentation of

1,000 input sequences. 21.2% of the sequences in the testing set are not in training set

(they are unique from the training). The test file was generated randomly but duplicated

strings have been removed (unique sequences).

Network

Whole

Sequence

% Correct

Embed% Penult%

Incorrect

Alternative

Penult%

Wrong

Penult%

1 77.1 82.1 99.9 0.1 0

2 23.2 23.2 100 0 0

3 70.5 70.5 100 0 0

4 99.9 99.9 100 0 0

5 57.1 72.7 80.7 18 1.3

Table 5.4 SRN test results using soft acceptance criterion for the ERG

Table 5.4 illustrates the test results. It is obvious that the results gained from the test file

are sharply lower than the training results. Nonetheless, the result for the final symbol

before the end (penultimate) was predicted better compared with the whole of the

embedded part in both training and testing. This is surprising as prediction of the

penultimate symbol represents the significant challenge of capturing long- term

dependency. Network 4 has an excellent performance with the soft acceptance criterion

used for the whole sequence to accept the symbols. However, in this grammar, the first

symbol after B serves as an indicator, which uniquely determines the penultima te

symbol with the embedded section between these two symbols being Reber grammar

strings. Following on from this, there is only one correct prediction for the last symbol

in each string. Therefore, the method for accepting the penultimate symbol as the correct

successor was changed.

Investigating medium acceptance criterion, using Luce ratio (Luce 1963) to mimic to

work done by McClelland, 1988, the experiments conducted and the results are in

appendix A. The results are poor and are comparable with the models demonstrated.

Chapter 5: Experimental Results

76

Experiment 2: Using Hard Acceptance Criterion

The aim of this experiment was to further explore how to find the best acceptance

criterion for determining whether the network is correctly predicting the next symbol.

The criterion of taking the highest activation function in the output layer as indicat ing

the prediction for the next symbol was tried for evaluating the network performance.

 The importance of the penultimate symbol is to investigate how it copes with long- term

dependency. Table 5.5 and 5.6 show the testing of two representations of the symbols

and the hard acceptance criterion. The training results are in appendix B. These results

indicate that the network results are biased to one path of the arc, labelled ‘T’ in the

ERG. This means that the network does not allow the correct selection between the two

paths of the grammar. Moreover, the overall result with the second method, which used

0.2 and 0.8 representing the letters, was the best (52.2%) for the whole sequences and

100% for the penultimate where in binary representation the results are fluctuating. In

addition to this, the medium acceptance criteria also had poor results: 5.3% for the entire

sequences with 89.2% in the embedded. That makes the soft acceptance criteria superior

over both methods.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 37.7 82.5 51.2 0 51.2 48.8 0

2 13.2 23.2 51.2 0 51.2 48.8 0

3 37.1 71.7 51.2 0 51.2 48.8 0

4 51.2 99.9 51.2 0 51.2 48.8 0

5 33.2 74.3 50.9 0 50.9 48.6 0

6 45.1 87.8 51.2 0 51.2 48.8 0

Table 5.5 SRN test results for ERG using hard acceptance criterion and binary symbol

representations

Using the highest activation of the output units for choosing the successor using binary

symbol representation, provides flawless performance for the embedded part.

Chapter 5: Experimental Results

77

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 52.2 100 52.2 0 52.2 47.8 0

2 52.2 100 52.2 0 52.2 47.8 0

3 52.2 100 52.2 0 52.2 47.8 0

4 52.2 100 52.2 0 52.2 47.8 0

5 49.8 95.2 52.2 0 52.2 47.8 0

Table 5.6 SRN test results for ERG using hard acceptance criteria and non-binary

symbol representations

Nevertheless, there were errors in the predictions when the penultimate has been

analysed as illustrated in the Table 5.5 and 5.6. Both methods show that the networks

are unable to predict which penultimate symbol is correct. They consistently only

predict “T”. In addition, the training and testing files have been analysed in details as

illustrated in appendix B, and this shows that each path has approximately the same

frequency of occurrence. Biased sequences have therefore been generated to explore

their effect on the network performance.

5.2.1.2 Embedded Reber Grammar (Asymmetrical Sequences)

These experiments concern a dataset of 300,000 asymmetrical sequences randomly

generated, in which the two sub-grammars (upper and lower) were slightly biased.

Asymmetrical data encodes information about initial state transitions within the

embedded grammars. This is presented in chapter four in detail. The upper sub-grammar

is biased towards the top nodes. (Probability of the first T was 0.7 vs. 0.3 for the first P;

0.7 for the second S vs. 0.3 for the second X, 0.7 for the second P vs. 0.3 for the second

V). Conversely, the probabilities in the bottom sub-grammar were biased in the opposite

direction. The average length of a sequence was 8.7 with a standard deviation of 2.3.

All of the following experiments apply the soft acceptance criterion, as it is the most

reasonable for assessing prediction performance. Testing is done on the networks with

the 1,000 symmetrical sequence dataset as previously used.

Chapter 5: Experimental Results

78

Experiment 1: SRN results for asymmetrical training and symmetrical test

In this experiment, the network was trained on asymmetrical sequences and tested on

symmetrical ones. This will determine whether the asymmetrical sequences have an

effect on the network performance, especially in the prediction of the penultima te

symbol. The results are shown in Table 5.7.

By using asymmetrical sequences for training, the results show some improvement in

recognising the penultimate symbol but at the expense of a very poor performance in

the embedded part of the sequence. The network predicts one of the penultima te

symbols but the performance regarding this is generally no better than chance. The

networks produce poor results for the whole sequences. Similar results were obtained

when the representation of symbols with 0.2 and 0.8 are used, and were not significant

and some of them are in appendix B. With the use of asymmetrical training data, the

SRN has been proven still incapable of learning the long-term dependency as had been

shown by Cleeremans et al. (1989) and O’Connell (1995). The next step is to investiga te

whether other recurrent networks are capable of addressing the shortcoming of the SRN

and solve the complexity of the embedded Reber.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%

Alternative

Penult%

Wrong

Penult%

1 23.8 51.6 50.3 30.1 20.2 49.7 0

2 7.7 15.2 49.9 30.1 19.8 49.8 0.3

3 1.3 2.6 49.9 29.7 20.2 50.1 0

4 1.5 2.7 49.8 29.8 20 49.9 0.3

5 9.8 20.3 49.3 29.5 19.8 50.1 0.6

6 1.9 3.4 50.1 29.9 20.2 49.9 0

7 6.1 12.3 48.2 28.9 19.3 48.8 3

8 1.4 2.4 50.5 20.6 29.9 49.5 0

9 1.9 3.6 50 29.5 20.5 49.8 0.2

10 2.4 4.4 50.1 15.9 34.2 49.9 0

Table 5.7 SRN results of the symmetrical test file with 10 asymmetrical training

networks and binary symbol representations using soft acceptance criterion

Chapter 5: Experimental Results

79

5.2.2 SRN Using Pattern Error-Sensitive

The results that have been obtained from the SRNs for the embedded grammar were not

identical or even similar to the results of Cleeremans and Dienes 2008 and Sharkey

1992. Therefore, more investigation of the problem has been carried out and it was the

learning rate type that affects the performance of the networks. Hence, a number of

experiments were repeated to study the effect and the performance of the networks. The

learning rate used in the next experiment is pattern error-sensitive as described in

chapter four. Fifteen networks were trained and five were chosen to assess performance

with the testing dataset. Moreover, to limit the research, binary symbol representations

were used and the soft acceptance criterion utilised to accept the successful symbol.

5.2.2.1 SRN Results for Asymmetrical Training Tested with Symmetrical

and Asymmetrical Sequences

In the experiments, asymmetrical sequences were used in training and two types of 1000

datasets, symmetrical and asymmetrical, were used for testing. The aim was to compare

the performance of the network after changing the learning rate type; 15 hidden units

are used as with the previous work.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 53.5 89 60.6 28.6 32 39.4 0

2 60.4 99.2 60.9 36.2 24.7 39.1 0

3 60.7 100 60.7 36.1 24.6 39.3 0

4 61.1 100 61.1 36 25.1 38.9 0

5 54.3 89.8 60.6 35.8 24.8 39.4 0

Table 5.8 SRN results of five asymmetrical training nets tested on asymmetrical

sequences (pattern error-sensitive learning rate)

Table 5.8 shows the results of the highest five nets from 15 nets trained on asymmetr ica l

sequences. The maximum result is 61.1% of the whole sequences predicted correctly

Chapter 5: Experimental Results

80

and the entire embedded part of the grammar predicted correctly. In addition, Table 5.9

shows that, in network four the maximum performance is 50.3% on the symmetr ica l

test file that is superior to the asymmetrical training tested on asymmetrical test dataset.

Strong evidence of both tables illustrate that using a pattern error – sensitive learning

rate improved the network performance. However, trained unbiased sequences needed

to be examined on tested dataset for both biased and unbiased sequences.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 45 88.4 51.1 22.9 28.2 48.9 0

2 49.2 98.1 50.1 28.8 21.3 49.9 0

3 49.9 100 49.9 28.7 21.2 50.1 0

4 50.3 100 50.3 28.6 21.7 49.7 0

5 39.1 78.2 49.8 28.4 21.4 50.2 0

Table 5.9 SRN results of five asymmetrical training nets tested on symmetrical

sequences (pattern error-sensitive learning rate)

5.2.2.2 SRN Results for Symmetrical Training, Tested with Symmetrical

and Asymmetrical Sequences

Here, the objective is to see the performance of the Elman network when symmetr ica l

sequences were used as training, and testing was with asymmetrical and symmetr ica l

sequences to compare with asymmetrical training. Table 5.10 shows the five nets tested

on asymmetrical sequences and Table 5.11 shows on symmetrical sequences. The SRN

has been proven still with different methods, approximately incapable of learning the

long-term dependency that had been shown by Cleeremans et al. (1989) and O’Connell

(1995). However, the network is able to encode information about long-distance

contingencies as long as the information about critical past actions is related to each

time step for creating predictions about possible alternatives.

Other experiments have been conducted, which is training SRN with noise injection.

The network poorly predicted the results, which is not comparable with the results

Chapter 5: Experimental Results

81

obtained from the SRN without noise injection. The next step is to investigate other

recurrent networks to see if they are capable of addressing the shortcomings of the SRN

and solve the complexity of the embedded Reber grammar. The following section

examines the performance of the Jordan network (1986) applied to this grammar-

learning problem.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 54.6 100 54.6 22.5 32.1 45.4 0

2 49.7 100 49.7 14.2 35.5 50.3 0

3 52.7 100 52.7 52.3 0.4 47.3 0

4 47.8 100 47.8 1.4 46.4 52.2 0

5 56.4 100 56.4 47.3 9.1 43.6 0

Table 5.10 SRN results of five testing nets tested on asymmetrical sequences

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 50.6 100 50.6 19.6 31 49.4 0

2 50 100 50 13.4 36.6 50 0

3 49.3 100 49.3 48.9 0.4 50.7 0

4 51.2 100 51.2 1.4 49.8 48.8 0

5 54.4 100 54.4 44 10.4 45.6 0

Table 5.11 SRN results of five testing nets tested on symmetrical sequences

5.2.3 Jordan Network

The architecture used here is the same as illustrated in Figure 3.1. It is a three-layer

network that has context units connected to the hidden units and the output connected

to the context units. Moreover, different types of feedback connections are used; using

the activation function of the output, the error from the output and target as feedback.

Chapter 5: Experimental Results

82

Jordan results for asymmetrical training, tested with symmetrical and

asymmetrical sequences

The same datasets as in the previous section for training and testing were used here.

As in the previous work, the network was trained with the asymmetrical sequences; 15

hidden units were used and the feedback was the activation of the output, i.e. standard

Jordan. As with the last section, the aim is to compare Jordan and Elman architectures.

In this section, the learning rate is always pattern error-sensitive.

Table 5.12 and Table 5.13 illustrate the results tested with asymmetrical and

symmetrical sequences respectfully. The results here show enhancement compared with

the results obtained from the previous work when a constant learning rate was used; the

results are still lower than the results gained from the Elman network.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 28.5 59.6 43.2 18.6 24.6 21.6 35.2

2 9.6 22.2 33 8.7 24.3 22.8 44.2

3 11.5 24.2 50.3 25.4 24.9 33.1 16.6

4 17.6 44.7 41.5 17.1 24.4 24.7 33.8

5 35.1 66.6 46.9 22.3 24.6 31.5 21.6

Table 5.12 Jordan test results for asymmetrical training and asymmetrical test (binary

input representations)

Table 5.13 Jordan test results for asymmetrical training and symmetrical test (binary

input representations)

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 19.2 54.3 33 11.8 21.2 27.5 39.5

2 8.2 21.9 28.1 7.2 20.9 25.3 46.6

3 9.8 22.2 42 20.4 21.6 40 18

4 14 47.4 31 10 21 27.6 41.4

5 25.7 61.5 37 16.6 40.4 37.2 25.8

Chapter 5: Experimental Results

83

Jordan results for symmetrical training tested with symmetrical and asymmetrical

sequences

The results gained from Table 5.14 and Table 5.15 are the results of testing

asymmetrical and symmetrical sequences datasets after obtaining the results from

training symmetrical data. The average performance of the network when trained on

asymmetrical test sequences is 31.18% while on symmetrical is 28.3% thus showing

asymmetrical test as superior. In addition to this, contrary to expectations, these results

shows that the Jordan network using symmetrical training has better performance than

with asymmetrical training.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 24.9 55.5 41.4 29.7 11.7 47.7 10.9

2 27.1 49.6 54.8 29.9 24.9 45.2 0

3 28.5 54.2 51.1 34 17.1 48.5 0.4

4 43.6 77.3 55.1 26.6 28.5 42.7 2.2

5 31.8 88.6 41.6 20.4 21.2 42.5 15.9

Table 5.14 Jordan results of five testing nets tested in asymmetrical sequences (binary

input representations)

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 27.1 56.1 45.4 31.3 14.1 48.9 5.7

2 23.7 47.2 51.1 25.2 25.9 48.9 0

3 23.4 47.5 50.3 34.9 15.4 49.5 0.2

4 34.1 69.6 47.9 25.6 22.3 50 2.1

5 33.2 91.5 45.2 22.5 22.7 41.8 13

Table 5.15 Jordan results of five testing nets tested in symmetrical sequences (binary

input representations)

Chapter 5: Experimental Results

84

5.2.2.3 Summary

These experiments have investigated the performance of the both SRN and Jordan

networks with two learning methods: constant learning rate and pattern error-sensit ive

learning rate. One of the more significant finding to emerge from these experiments is

that the pattern error-sensitive learning rate results in better performance compared with

the constant learning rate. To limit this study, binary input representation of the input

will be used, since there were not significant differences in the results between it and

the fractions representation. It also maintains consistency with the same work

performed by (James, McClelland 1988, O'connell 1995, McQueen et al. 2005). These

findings do not support strong recommendations to take symmetrical or asymmetr ica l

training to set input representation for the networks.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

SRN 61.1 100 61.1 36 25.1 38.9 0

Jordan 35.1 66.6 46.9 22.3 24.6 31.5 21.6

Table 5.16 Comparing results of SRN and Jordan network (best network performance
for asymmetrical training and test sets)

The Jordan network performance (with standard feedback of the output activation to the

input) after training with symmetrical data using the pattern error-sensitive learning rate

and using binary input representations, was the best achieved for Jordan-based

architectures. Table 5.16 shows that the performance of the Jordan architecture is

inferior to the Elman architecture for learning this long-term dependency problem. One

of the questions that need to be asked about the Jordan network, however, is whether

the feedback from the output needs to be graduated by shifting the output instead of

feeding the output directly to the input. This means training the time delay neural

network to explore its performance.

Chapter 5: Experimental Results

85

5.2.4 TDNN

5.2.4.1 TDNN results for asymmetrical training tested with symmetrical

and asymmetrical sequences

Time-Delayed Neural Networks (TDNN) were introduced in chapter 3. They represent

another alternative architecture to compare and contrast with the previous recurrent

architectures. In particular, they allow for the assessment of the importance and format

of historical information; the network has direct access to the recent outputs as the

network has eight delay boxes from the output i.e. prior output symbols. Training with

different numbers of delay boxes was carried out to arrive at this figure, which gave the

best results.

Table 5.17 TDNN results of five nets trained with asymmetrical sequences and tested

on asymmetrical sequences

Both

Table 5.17 and Table 5.18 show the results using the asymmetrical training file and

asymmetrical and symmetrical testing files. The results show a slight difference for the

asymmetrical compared with the symmetrical test data.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 57.6 90 65.5 29.1 36.5 34.5 0

2 56.1 89.2 61.8 24 37.8 38.2 0

3 62.3 93.5 66.3 29.3 37 33.7 0

4 66.6 100 66.6 40.9 25.7 33.4 0

5 57 81.6 69.3 34.7 34.6 30.5 0.2

Chapter 5: Experimental Results

86

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 48.6 86.7 57.2 23.9 33.3 42.8 0

2 47 81.3 55.8 20.6 35.2 44.2 0

3 53.3 90.5 58.4 24.7 33.7 41.6 0

4 56.6 100 56.6 32.9 23.7 43.4 0

5 46.4 74.6 60.5 27.7 32.8 39.4 0.1

Table 5.18 TDNN results of five nets trained with asymmetrical sequences and tested

on symmetrical sequences

5.2.4.2 TDNN results for symmetrical training, tested with symmetrical

and asymmetrical sequences

The results below are for the same network trained with symmetrical data. The results

in Table 5.19 and Table 5.20 show the outcomes when the network is trained on

symmetrical results and then tested on asymmetrical and symmetrical datasets. Here it

is notable that the network recognises the embedded part of the sequences. Yet the

network was less successful at identifying the long dependency part (penultima te

symbol).

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 53.5 100 53.5 29.7 23.8 46.5 0

2 53.3 100 53.3 16.7 36.6 46.7 0

3 48.3 100 48.3 7.1 41.2 51.7 0

4 53 100 53 30.7 22.3 47 0

5 50.8 100 50.8 17 33.8 49.8 0

Table 5.19 TDNN results of five nets trained with symmetrical sequences and tested

on asymmetrical sequences

Chapter 5: Experimental Results

87

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 48.9 100 48.9 26.7 22.2 51.1 0

2 50.4 100 50.4 11.9 38.5 49.6 0

3 51.5 100 51.5 8.5 43 48.5 0

4 50.3 100 50.3 28.2 22.1 49.7 0

5 51.5 100 51.5 15.5 36 48.5 0

Table 5.20 TDNN results of five nets trained with symmetrical sequences and tested

on symmetrical sequences

However, the network architecture struggled to learn the penultimate symbol with both

training approaches; the network still failed to recognise all the sequences perfectly.

Table 5.21 illustrates the drops in the network prediction when the length of sequences

increases. Moreover, it shows that the embedded predictions are right and about half the

penultimate predictions are wrong and this percentage is fairly constant and independent

of the sequence length.

 In Table 5.21:

Correct: number of correctly predict sequences. Wrong: number of unpredicted

sequences. Embed: number of the embedded part of the grammar predicted.

Penult: number of sequences that their penultimate predicted correctly.

Length

Network 1 symmetrical test file

Correct Wrong
Correct

Embed

Correct

Penult

6 2 2 4 2

7 3 3 6 3

8 4 4 8 4

9 7 7 14 7

10 9 9 18 9

11 13 13 26 13

12 20 18 38 20

13 25 25 50 25

Chapter 5: Experimental Results

88

Table 5.21 Part of a test file showing the prediction according to the sequence length

5.2.5 NARX

The network used here is illustrated in Figure 3.3. The difference between TDNN and

NARX networks is that there are delay boxes representing historical input information

on the input to the NARX network (as well as the delay boxes with historical output

information as for the TDNN). A number of possibilities were again tried to gain the

perfect architecture for this problem. Four boxes were used for the input part and eight

boxes used for the feedback from the output. The aim was to investigate the

enhancement of the network when there is a history about the input as well as the output.

5.2.5.1 NARX results for asymmetrical training, tested with symmetrical

and asymmetrical sequences

The objective is to investigate the network when asymmetrical sequences are

presented to the network for training.

The results show in Table 5.22 and Table 5.23 that there is a slight difference between

testing on asymmetrical and symmetrical sequences when asymmetrical training has

been used, and that the memory boxes from the input did not drastically improve the

network performance. However, these results are improved when compared with the

results obtained by TDNN.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 70.9 95.7 74 39 35 26 0

2 65.2 91.2 70.5 40.4 30.1 29.5 0

3 69.7 100 69.7 40.1 29.6 30.3 0

4 69.9 95.2 73.8 40.5 33.3 26.2 0

5 65.4 96 67.9 34.3 33.6 32.1 0

Table 5.22 NARX results of five nets trained with asymmetrical sequences and tested

on asymmetrical sequences

Chapter 5: Experimental Results

89

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 60.7 92.5 65.1 32.5 32.6 34.9 0

2 57 93 60.6 33 27.6 39.4 0

3 60.8 100 60.8 30.5 30.3 39.2 0

4 58.9 91 64.8 30.9 33.9 35.2 0

5 56.5 90.3 61.5 30.6 30.9 38.5 0

Table 5.23 NARX results of five nets trained with asymmetrical sequences and tested

on symmetrical sequences

5.2.5.2 NARX results for symmetrical training tested with symmetrical

and asymmetrical sequences

This experiment was conducted to illustrate when the training is based on symmetr ica l

sequences. The results mirror those from the TDNN with the symmetrical training

giving better performance on the embedded part of the sequences but worse

performance overall compared with the asymmetrical training. This is because the

asymmetrical training seems to aid the learning of the long-term dependency required

to predict the penultimate symbol.

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 53.3 100 53.3 8.8 44.5 46.7 0

2 53.9 100 53.9 9.6 44.3 46.1 0

3 52.8 100 52.8 5.8 47 47.2 0

4 53.9 100 53.9 10.6 43.3 46.1 0

5 51.7 100 51.7 4 47.7 48.3 0

Table 5.24 NARX results of five nets trained with symmetrical sequences and tested

on asymmetrical sequences

Chapter 5: Experimental Results

90

Network

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 54.8 100 54.8 7.6 47.2 45.2 0

2 54.1 100 54.1 7.2 46.9 45.9 0

3 55.5 100 55.5 6.1 49.4 44.5 0

4 54.4 100 54.4 7.1 47.3 45.6 0

5 55.1 100 55.1 4 51.1 44.9 0

Table 5.25 NARX results of five nets trained with symmetrical sequences and tested

on symmetrical sequences

Training

dataset
Test dataset TDNN NARX

Asym
Asym 66.6% 70.9%

Sym 56.6% 60.8%

Sym
Asym 53.5% 53.9%

Sym 51.5% 55.5%

Table 5.26 The percentage of correct predictions for different training and test datasets

in terms of bias and non-bias sequences for TDNN and NARX networks

The results shown in Table 5.26 is a comparison between the results obtained from

TDNN and NARX show the superiority of NARX over TDNN and furthermore over

SRN and Jordan networks. This means that the input delay helped the network slightly

to converge to the stable distribution of the grammar. In addition to this work, the

NARX was trained with noise injection and the results were poor when compared to the

NARX trained without using noise injection.

5.2.6 MRNs

The network used here is shown in Figure 3.5. The critical difference between this

network and the previous networks is that there is feedback from both output and hidden

Chapter 5: Experimental Results

91

units to the input and this is feedback is graduated and includes self-recurrency as

described in chapter three. Since the network is different in architecture from the prior

networks, networks with different numbers of hidden units were trained to choose the

optimal number. All the experiments here use asymmetrical sequences for training the

networks. According to the previous results these give superior performance over the

symmetrical sequences. Fifteen networks were trained and these are the best five ones

with 5, 7, 10 and 13 hidden units and four memory boxes (“banks”). The momentum is

0.75, the initial learning rate is 0.3 and the activation function for both hidden and output

units is sigmoid.

Graph 5.2 illustrates the performance of the network when it is trained with different

numbers of hidden units. The graph clarifies that 10 hidden units has the highest success

compared with the others; the results are in appendix B. However, the results for the

embedded sequences are on average still as low as the previous networks (Elman 1990

and Jordan 1986), whereas, NARX has 100% for the embedded part. This shows that

there is a trade-off between learning the embedded section and the penultimate symbol.

Nevertheless, the MRN needs to be trained with different graduated boxes to optimise

this aspect, which may enhance the performance of the network. Also, the performance

of the networks were worse this may since the learning rate was a bit high; therefore,

the next experiments learning rate is 0.15.

To explore more about the memory boxes of the MRN, the number of the hidden units

is set to 10 since the performance with 10 hidden units in the previous experiments has

the highest correct prediction for the whole sequence predicted and for the embedded

part.

Chapter 5: Experimental Results

92

Graph 5.2 Different initial start with different hidden units using MRN network with

four memory banks (H: hidden units)

Training with various numbers of memory boxes (banks) was carried out to optimise

this parameter: i.e. with 2, 3, 4, 6 and 8. The number of memory banks (ⱷ) relates

directly to the degree of granularity at which past and current information is integrated

and stored (Binner, et al. 2010). The connection strength of the recurrent link (𝑉𝑗) from

either an output value or a hidden unit activation value to the context unit is 𝑉𝑗 =
1

ⱷ
𝑗

where j=1, 2,…, ⱷ. Lastly, the connection strength of the self-recurrent link 𝑍𝑖 for the

context unit 𝐶𝑖 is 𝐶𝑖 =
1

ⱷ
𝑖 where i=1, 2,…, ⱷ. Hence, the effect of the memory on the

performance of the network can be detected. The training file was of asymmetr ica l

sequences.

Experiment 1: MRN with 2, 3, 4, 6 and 8 banks

Fifteen nets were trained and the best five selected. Table 5.27 shows these results.

Graph 5.3 shows that using four memory boxes in the MRN network is the optimal

choice. Since the average of the whole sequences predicted correctly for the five

networks trained is 85.88% and also the consistency of the result. In addition, (Binner,

Tino et al. 2010) state that going beyond this number of boxes does not lead to enhanced

performance.

0

10

20

30

40

50

60

70

80

Net1 Net2 Net3 Net4 Net5

P
e

rf
o

rm
an

ce 5 H

7 H

10 H

13 H

Chapter 5: Experimental Results

93

Graph 5.3 Different numbers of memory boxes trained in the MRN

However, the six memory boxes architecture also gives respectable results, as illustra ted

in the graph. In the next experiments, four boxes were selected for the MRN

architecture. Overall comparison between the MRN and the other architectures is

considered in section 5.3.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

A
cc

ur
ac

y

Nets

2 Boxes

3 Boxes

4 Boxes

6 Boxes

8 Boxes

Chapter 5: Experimental Results

94

Number

of

Boxes

Whole

Sequence

% Correct

Embed

%

Penult

%

Penultimat

e
Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

2

54 95.7 58.3 50.6 7.7 41.7 0

64.4 86 73.6 49.7 23.9 26.4 0

81.6 98.1 83.5 50.9 32.6 16.5 0

67.9 90.5 77.4 40.5 36.9 22.6 0

66.9 100 66.9 43 23.9 33.1 0

3

52.4 97.8 55.6 44.7 10.9 44.4 0

55.5 93.3 60.8 36.1 24.7 39.2 0

60.7 100 60.7 36 24.7 39.3 0

59.2 98.2 60.5 35.8 24.7 39.5 0

60.5 100 60.5 35.8 24.7 39.5 0

4

86.1 100 86.1 49.1 37 13.9 0

80.2 85.1 94.2 46.5 47.7 5.7 0.1

95.1 97.9 95.1 51.8 43.3 4.9 0

76.1 100 76.1 48.6 27.5 23.9 0

91.9 100 91.9 44.2 47.7 8.1 0

6

74.5 100 74.5 41.3 33.2 25.5 0

68.1 96.4 69.2 29.3 39.9 30.8 0

59.6 100 59.6 52.2 7.4 40.4 0

96.2 100 96.2 50.4 45.8 3.8 0

55.6 97.2 57.7 52.3 5.4 42.3 0

8

90.6 98.5 91.8 50.5 41.3 8.2 0

92.6 100 92.6 52.3 40.3 7.4 0

83.2 93.4 89.4 51.9 37.5 10.3 0

80.3 98.6 80.6 51.9 28.7 19.4 0

92.7 100 92.7 46.4 46.3 7.3 0

Table 5.27 Results of different numbers of memory boxes trained with Asymmetrical

and tested with Asymmetrical sequences in MRN

Chapter 5: Experimental Results

95

Experiment 2: Limitations of the MRN

In these experiments, six sets of sequences of increasing length were used to test the

trained MRN to explore the limits of its ability to generalise beyond the training

examples and ascertain when its predictions start to fail. The maximum length of

training sequence was 26. The tests here extend to sequences of length 120; each file

has five sequences. Table 5.28 shows the results. Since the number of sequences of each

datasets is five, this demonstrates that the network failed to recognise the sequences

when the sequences’ lengths reached 120 and the network starts to decline when the

sequence length is 50. Whereas, the results when the sequences length is 40, it is

approximately the same performance as on the standard test set.

Sequence

Length

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

40 80 100 80 40 40 20 0

50 60 100 60 40 20 40 0

60 40 100 40 20 20 60 0

70 40 60 40 20 20 60 0

90 20 20 40 40 0 60 0

120 0 0 60 0 60 40 0

Table 5.28 Result of Testing the MRN (with 4 memory banks) for sequences longer

than in the training set (5 tested at each length)

5.2.5.1 MRN with Noise Injection

Two types of injection were conducted: one node and a unit of seven nodes.

Each noise node was fed with a random real number between minus and plus the value

chosen. Then, the network was trained 10 times and then the five best performances

were selected and tested with asymmetrical sequences. From Table 5.29 it is noticeable

that adding noise injection improves the performance of the network. The average

results obtained when the noise range was one is a remarkable 90.96%, comparing with

most of the ranges, and when the network was tested without noise it was 80.62%.

Chapter 5: Experimental Results

96

Using noise node injection

Noise

range ±
5 2.5 1.25 1 0.3 0.01 0.005

without

noise

Asym
Testing

92.5% 64% 92.1% 95.7% 78.7% 72.6% 91.7% 79.5%

71.8% 98.7% 90.2% 83.7% 78.1% 86.1% 88% 86.7%

90.9% 72.8% 87.8% 91.1% 91.5% 89.3% 99.2% 65.1%

79.8% 88.8% 85.4% 96.5% 84.5% 84.3% 69.2% 88.5%

73.7% 81.3% 93.4% 87.8% 69.1% 87% 78.9% 83.3%

Average 81.74 81.12 89.78 90.96 80.38 83.86 85.4 80.62

SD 8.57 12.09 2.89 4.81 7.43 5.86 10.41 8.35

Table 5.29 MRN: The accuracy of asymmetrical training; tested with asymmetrical

data (one noise node)

The average of the correct sequences is 90.96%, nearly 10% above the average

performance with the network tested without noise. Although, 99.2% have been

obtained in the random noise 0.005 the average of the whole networks tested with the

test dataset was 85.4%. Moreover, the standard deviation was 10.41. Therefore,

instability of the results is shown in the column of the results that led us to focus on the

stability of the results. Increasing the number of noise nodes may provide strength to

the network.

Using noise unit injection

In these experiments, seven nodes were injected with the inputs to form a noise unit.

After the network was trained 10 times, the best five trained networks were selected.

The networks were tested with asymmetrical and symmetrical test datasets. Table 5.30

shows an MRN with a noise unit injected with the input. Many different random noise

units were used. On the asymmetrical test dataset, the unit with 0.01 as a random noise

range achieved the higher performance comparing with the other values. 93.7% average

correct sequences and 2.58 standard division and more than 13% of using the network

without noise. On the other hand, the results that have been gained from testing

symmetrical sequences shows a drop in the performance of the network. 86.78% is the

average success of the network and nearly 3% drop when testing the network without

noise.

Chapter 5: Experimental Results

97

Range ± 1.25 1 0.5 0.25 0.03125 0.01 0.005
without

noise

Asym
Testing

98.9% 57.9% 80.1% 76.6% 75.3% 95.4% 93% 79.5%

84.9% 80.7% 89.4% 70.7% 85.7% 97.7% 19.7% 86.9%

74.4% 60.4% 90.4% 64.1% 78.4% 90.6% 35.6% 65.1%

90.3% 74.5% 96.4% 57.7% 79.8% 91.6% 67.8% 88.5%

94.9% 99.7% 73.9% 95% 87.7% 93.2% 89% 83.3%

Average 88.68 74.64 86.04 72.82 81.38 93.7 61.02 80.66

STD 8.53 15.15 8.00 12.77 4.62 2.58 29.00 8.38

Symm
Testing

96.7% 41.3% 72.7% 63.9% 73.3% 89.7% 87.1% 86.1%

74.4% 71.3% 77.1% 65% 77.4% 93.8% 18.1% 95.1%

59.2% 53% 84.9% 58% 72.9% 79.7% 25.5% 76.1%

83.5% 69.9% 91.5% 49% 68.8% 84.7% 59.6% 93%

88.4% 99.8% 72.6% 84.4% 82.6% 86% 84.1% 91.9%

Average 80.44 67.06 79.76 64.06 75.00 86.78 54.88 88.44

STD 12.84 19.80 7.38 11.65 4.67 4.75 28.74 6.85

Table 5.30 MRN: The accuracy of asymmetrical training; tested with asymmetrical
and symmetrical data (one noise unit – seven nodes)

These results have enhanced the network performance which led to further investigat ion

with the network trained with symmetrical sequences and with noise injection for

completeness. The range plus or minus 0.01 was chosen as the best noise setting from

the previous experiments.

Table 5.31 shows the result of tests on asymmetrical and symmetrical sequence of

networks trained on the symmetrical sequences. The results show no improvement in

both asymmetrical and symmetrical sequences. The network acts slightly better when

tested without noise.

Chapter 5: Experimental Results

98

Range ± 0.01
without

noise

Asym
Testing

48.1% 65.9%

53% 51.7%

53.3% 54.2%

51.3% 49.2%

52.4% 50%

Average 51.62 54.2

STD 1.89 6.10

Symm
Testing

51.6% 69.8%

49% 51.7%

49.9% 54.2%

50.9% 49.2%

49% 50%

Average 50.08 54.98

STD 1.03 7.61

Table 5.31 MRN: The accuracy of symmetrical training, tested with asymmetrical and
symmetrical data (one noise unit)

5.2.7 Conclusion

To conclude, asymmetrical training is superior to symmetrical training, and it also

gives the best results if the test data is also asymmetrical. It can be concluded that

asymmetrical sequences provide clues within the embedded clauses to help the long-

term dependency to be learned.

The limitation of MRN using unit noise injection

The same test datasets used previously are used in this test to explore when the

network begins to fail to predict the correct sequences using the best MRN network so

far, trained with noise injection. Table 5.32 shows the result of these test datasets with

different lengths and have five sequences in each sequence length.

Chapter 5: Experimental Results

99

Sequence
Length

Whole
Sequence%

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative
Penult%

Wrong
Penult%

28-40 80 80 100 40 60 0 0

50 80 80 100 40 60 0 0

60 80 80 100 40 60 0 0

70 60 80 80 20 60 20 0

90 60 80 60 0 60 40 0

120 60 80 60 0 60 40 0

150 60 80 60 0 60 40 0

180 60 80 60 0 60 40 0

210 80 100 80 0 80 20 0

240 40 40 80 60 20 20 0

270 20 20 80 60 20 20 0

300 0 0 40 40 0 60 0

Table 5.32 Testing different length of the datasets using MRN with unit noise

injection

It shows that the network failed to predict the sequences when their length is above 140

and starts to decline when 70 sequences in length are tested. When the network was

trained without noise, results show that the network failed to recognise the sequences

of more than 120 and the performance of the network starts to drop when the sequence

length reaches 50. This shows that the ability of the network to generalise to unfamilia r

sequences beyond the length of the training sequences was enhanced by the addition of

noise to the training data.

5.2.8 ESNs

The networks that have been trained in this investigation are shown in Figure 3.7. (a)

and (b). They are the standard ESNs by (Jaeger 2002) that have feedback connections

from output to the reservoir and also the ESN with jumping connections used by (Tong,

Bickett et al. 2007).

5.2.6.1 Standard ESN (with Feedback from Output to Reservoir)

The results from experiments so far clearly show that training with asymmetr ica l

sequences gives better results than training with symmetrical sequences. Therefore,

Chapter 5: Experimental Results

100

asymmetrical sequences were used to train the ESNs to investigate their performance.

Two training variations were used in this architecture: the first was ST with different

degrees of settling time; and the second one was without settling time. Altogether,

binary symbols were used to represent the input to the network. Various reservoir sizes

and different types of feedback were used. However, binary representation showed

worse results since the ESP (Echo-state property) is violated for zero input; with a larger

input amplitude, and above unity spectral radius may lead to obtaining the ESP (Jaeger

2001, Buehner, Young 2006). Table 5.33 shows some of the results using 30 nodes in

the reservoir units and three possible parameters used for feeding back to the reservoir:

the output activation itself; the target minus the output (i.e. the error); and the target, i.e.

the ‘perfect’ output. The results demonstrate fluctuations in the performance of the ESN

for each experiment. (Tong, Bickett et al. 2007) stated that these are possibly due to the

feedback connections, as at any point in time the previous time step’s output units are

just noise to the current step’s input. Therefore, the connections from output to the

reservoir have been omitted and trained connections from input to output have been

added to the network as illustrated in the next section.

 Network

Number

Overall Training Performance with Three Different Parameters

Fed Back to the Reservoir

Output activation (Target – Output) Target

1 77.5 35.44 77.89

2 49.29 77.15 78.02

3 77.28 28.68 76.79

4 19.52 78.1 43.21

5 68.57 29.38 78

Table 5.33 Percentage of the ESN performance using different types of feedback

5.2.6.2 ESN with Jumping Connections

The second ESN architecture evaluated has jumping connections. With this

architecture, two kinds of datasets were used for training: ordered sequences, these

sequences are put in the ascending length order in the file. The second dataset is the

biased randomised sequences that were used in the previous experiments. The purpose

Chapter 5: Experimental Results

101

of adding extra datasets was to explore the effect of training with ordered sequences on

the performance of the network. Jaeger 2010 studied the effect of sequence length on

the performance of the network and he found that there is a maximal sequence length,

which the ESN could stably reproduce, and is a case for investigation.

The results Table 5.34 show improvement in the performance when ordered sequences

were used. In these experiments, various datasets have been generated to examine

training with random and ordered sequences. The datasets had sequences of lengths: 6

to 12; 13 to 20; and 19 to 25 respectively. They were each then presented either in

random order or in ascending order of length. The network parameters were as follows:

connectivity 0.85 and spectral radius 0.95. Table 5.34 shows also the average of the 10

networks and it can be indicated from the results that the ESN performance with ordered

training sequences is better than with random sequences. On the basis of these findings,

ordered sequences are used for training in the next trials.

In addition to these trials, experiments to ascertain optimal values for other training

parameters have been conducted. The parameters in question are: the connectivity; the

weight range; and the spectral radius. The Taguchi method (Roy 2010) was used to

select the optimal parameters as described in chapter four. Each training configurat ion

has been repeated three times. Thus, each configuration has 64 trials repeated three

times leading to 192 networks being tested with a reservoir size of 150 nodes (training

with a number of reservoir sizes indicated that this produced the best performance; the

dataset used has 150,000 ordered sequences). Table 5.35 shows an excerpt of the

performance results. The parameters tried are in Table 5.36.

Chapter 5: Experimental Results

102

Network

Number

Minimal and maximal sequences length and type of the dataset

6_12

Random

6_12

Order

13_20

Random

13_20

Order

19_25

Random

19_25

Order

1 56 56 76 60 68 80

2 76 52 72 68 72 80

3 56 80 68 72 80 80

4 88 80 60 72 72 80

5 80 60 68 72 76 72

6 68 88 56 64 76 80

7 68 68 56 68 64 80

8 80 80 64 68 80 80

9 44 84 76 72 80 80

10 68 72 72 68 80 68

Average 68.4 72 66.8 68.4 74.8 78

Table 5.34 Percentage of prediction accuracy using ESN with jumping connection

without settling time

Whole Sequence

% Correct

Spectral

Radius
Connectivity

Weight

Range

1 82.39 0.5 0.5 0.3

2 79.96 0.5 0.5 0.3

3 81.14 0.5 0.5 0.3

4 82.39 0.5 0.5 1.5

5 82.39 0.5 0.5 1.5

6 82.94 0.5 0.5 1.5

7 82.39 0.5 0.5 2.5

8 82.39 0.5 0.5 2.5

9 82.94 0.5 0.5 2.5

10 81.13 0.5 0.5 4

11 82.39 0.5 0.5 4

12 81.13 0.5 0.5 4

Table 5.35 Number of the performance of the ESN that applied on the Taguchi

method

Chapter 5: Experimental Results

103

No spectral radius connectivity weight range

1 0.5 0.5 0.3

2 0.75 0.85 1.5

3 1.5 0.95 2.5

4 2 1 4

Table 5.36 the values of the parameters tried

According to the Taguchi method, an analysis of variance (ANOVA) has been applied

to these results (this method was described in chapter four). Graph 5.4, It can be seen

from the graph that a weight range with 0.3 has more response to the network’s

performance than the other weight range values chosen. Values over unity were tried

here however the value 4 can be ignored since the result is varies and it is over the range

of the network output. Graph 5.5 demonstrates the response of performance to the

connectivity values. It shows that connectivity with 0.85 is around a peak of

responsiveness. Connectivity of 1 is discounted as this implies full connectivity and so

would potentially undermine the aspects of the network performance that are predicated

on random characteristics. Graph 5.6 determines the effect of spectral radius on the

performance of the networks. It can be seen from the graph that the spectral radius value

of 0.75 gives rise to the best performance. This is comparable to the results that

(Venayagamoorthy, Shishir 2009) gained from their work, which gave a spectral radius

value of 0.8. The most striking result to emerge from applying ANOVA is that the

average percentage of contribution of spectral radius, connectivity and weight range

were 9.71%, 6.48% and 6.05% respectfully. That is, the spectral radius has more effect

on the network performance than the connectivity and weight range. In addition, the

influence of connectivity on the performance of the network is slightly higher than the

weight range.

Chapter 5: Experimental Results

104

Graph 5.4 The effect of the chosen weight range on the performane of the network

Graph 5.5 The effect of the connectivity on the performane of the network

Graph 5.6 the effect of the spectral radius on the performane of the network

10.25

10.3

10.35

10.4

10.45

10.5

10.55

10.6

10.65

10.7

10.75

0.3 1.5 2.5 4

R
e

sp
o

n
se

Weight Range

10.52

10.54

10.56

10.58

10.6

10.62

10.64

0.5 0.85 0.95 1

R
e

sp
o

n
se

Connectivity

10.3

10.4

10.5

10.6

10.7

10.8

0.5 0.75 1.5 2

R
e

sp
o

n
se

Spectral Radius

Chapter 5: Experimental Results

105

5.2.6.3 The performance of the ESN

Number of experiments conducted Table 5.37 shows some results from training the

ESN with different size of reservoir have been trained. The best performance of the

network when network has been tested was 49.9% for unbiased sequences and 60.7%

for biased sequences.

Exp reservoir
correctly
predicted connectivity

Spectral
Radius

weight
Range

1 343 80.63 0.85 0.75 0.3

2 350 82.51 0.85 0.5 2.5

3 150 84.84 0.85 0.75 2.5

4 150 91.08 0.85 0.75 2.5

Table 5.37 trained ESN with different size of reservoir

5.2.6.3 The Limitation of ESN

Further experiments were carried out; the same long datasets used in MRN are used

with ESN to test the network’s limitations regarding generalising to long sequences.

Table 5.38 depicts the results from the test files. There was fluctuation in the

performance of the network over these tested datasets. This will be discussed when

investigating the internal representation of the network in the next chapter.

Chapter 5: Experimental Results

106

Test set

Number

Maximal

Length

% Correctly

Predicted

1 40 40

2 50 40

3 60 40

4 70 40

5 90 40

6 120 40

7 150 40

8 180 40

9 210 60

10 241 60

11 271 60

12 300 40

Table 5.38 Testing different length of the dataset tested on ESN, the minimal length

for dataset 40 is 27 then 40 for the dataset 50 etc.

5.3 Summary of Results and Discussion

In this study, the aim is to attempt to understand better, the abilities of different recurrent

architectures to learn to represent and use contextual information when presented with

structured sequences of input. Most of the value of the parameters selected here are

according to the research that has been done in this field such as in Elman 1990,

Cleeremans 1989, Jaeger 2002, Tong 2007 and Cartling 2008. Moreover, these values

have been examined in this research.

The results illustrated in Table 5.39 brings together the results from all of the networks

investigated when trained with symmetrical and asymmetrical sequences and also tested

with symmetrical and asymmetrical datasets. The ESN is not included in the table since

it was only trained with asymmetrical data following on from the conclusion that this

gave better results.

Chapter 5: Experimental Results

107

The table shows the best five trained networks trained for each architecture (Tables such

as Table 5.10 and Table 5.11 also give the single best networks). W shows the

percentage of whole sequences correct in the dataset. From Table 5.39it can be seen that

the MRN was superior to all the other networks in performing long-term prediction. For

instance, in testing asymmetrical sequences after symmetrical sequence training, the

MRN performance reaching 65.9% correctly predicted, whereas, the next best result is

the outcome from the SRN at 56.4%, which is nearly 10%, lower than the MRN.

Moreover, the MRN acquired 88.5% on the asymmetrical sequences test dataset after

training with asymmetrical sequences. This compares with 70.9% acquired from the

NARX.

The MRN trained with asymmetrical data was clearly able to detect the long term

dependency, achieving a success rate of over 95.1% in five of the symmetrical test trials

and over 88.5% in five of the asymmetrical test trials. The other networks on the other

hand, generally failed to learn the long-term dependency, largely having only a slightly

higher than random chance of predicting the penultimate symbol. Of these, the

asymmetrically trained NARX got the highest performance. Another obvious

observation is that the results acquired from asymmetrical training are better than that

obtained from symmetrical training in all five networks. This indicates that the forced

biased sequences do help the networks to learn long-term prediction provided a pattern

error- sensitive learning rate is used.

To evaluate the results further, the best performing asymmetrically trained networks

tested in both biased and unbiased sequences are shown in Table 5.40. The results for

the ESN with asymmetrical training are 91.7% training and 49.9% and 60.7%

respectively for unbiased and biased sequences Similarly, Table 5.41 The best

performance of symmetrically trained networks tested with both dataset types shows

the symmetrical training tested with both datasets.. The information from the tables is

also shown graphically in Graph 5.7 and Graph 5.7.

Chapter 5: Experimental Results

108

SRN Jordan

Jordan Shifting

Output (TDNN) NARX MRN

W E P W E P W E P W E P W E P

S
y

m
m

e
tr

ic
a
l

T
ra

in
in

g

T
ra

in
in

g

62.87 100 62.87 48.58 97.35 49.69 50.23 100 50.23 92.85 100 92.85 61.81 100 61.81

63.9 100 63.9 47.88 95.7 50.05 50.19 100 50.19 92.34 100 92.34 68.83 100 68.83

62.38 100 62.38 56.17 88.8 61.39 50.71 100 50.71 92.23 100 92.23 62.48 100 62.48

61.71 100 61.71 48.98 97.53 50.16 50.16 100 50.16 92.31 100 92.31 65.59 100 65.59

73.89 100 73.89 51.28 99.61 52.48 50.49 100 50.49 92.33 100 92.33 63.11 100 63.11

S
y

m
 T

e
st

50.6 100 50.6 27.1 56.1 45.4 48.9 100 48.9 54.8 100 54.8 69.8 100 69.8

50 100 50 23.7 47.2 51.1 50.4 100 50.4 54.1 100 54.1 51.7 100 51.7

49.3 100 49.3 23.4 47.5 50.3 51.5 100 51.5 55.5 100 55.5 54.2 100 54.2

51.2 100 51.2 34.1 69.6 47.9 50.3 100 50.3 54.4 100 54.4 49.2 100 49.2

54.4 100 54.4 33.2 91.5 45.2 51.5 100 51.5 55.1 100 55.1 50 100 50

A
sy

m
 T

e
st

54.6 100 54.6 24.9 55.5 41.4 53.5 100 53.5 53.3 100 53.3 65.9 100 65.9

49.7 100 49.7 27.1 49.6 54.8 53.3 100 53.3 53.9 100 53.9 48.3 100 48.3

52.7 100 52.7 28.5 54.2 51.1 48.3 100 48.3 52.8 100 52.8 57.7 100 57.7

47.8 100 47.8 43.6 77.3 55.1 53 100 53 53.9 100 53.9 52.6 100 52.6

56.4 100 56.4 31.8 88.6 41.6 50.8 100 50.8 51.7 100 51.7 56.9 100 56.9

A
sy

m
m

e
tr

ic
a
l

T
ra

in
in

g

T
ra

in
in

g

90.43 99.53 90.84 76.81 94.91 79.67 94.33 98.94 95.23 99.33 99.85 99.45 99.75 100 99.75

90.38 99.97 90.4 74.7 92.86 78.39 94.49 99.44 94.82 99.14 99.84 99.26 99.91 99.95 99.91

90.6 100 90.6 76.88 96.33 79.02 95.25 99.51 95.6 99.16 100 99.16 98.7 100 98.7

92.91 100 92.91 75.42 89.97 81.86 96.05 100 96.05 99.08 99.66 99.41 99.84 100 99.84

89.82 98.52 90.76 78.23 91.86 83.64 94.5 97.31 96.85 98.91 99.66 99.22 99.84 100 99.84

S
y

m
 T

e
st

45 88.4 51.1 19.2 54.3 33 48.6 86.7 57.2 60.7 92.5 65.1 86.1 100 86.1

49.2 98.1 50.1 8.2 21.9 28.1 47 81.3 55.8 57 93 60.6 95.1 97.9 95.1

49.9 100 49.9 9.8 22.2 42 53.3 90.5 58.4 60.8 100 60.8 76.1 100 76.1

50.3 100 50.3 14 47.4 31 56.6 100 56.6 58.9 91 64.8 93 100 93

39.1 78.2 49.8 25.7 61.5 37 46.4 74.6 60.5 56.5 90.3 61.5 91.9 100 91.9

A
sy

m
 T

e
st

53.5 89 60.6 28.5 59.6 43.2 57.6 90 65.5 70.9 95.7 74 79.5 100 79.5

60.4 99.2 60.9 9.6 22.2 33 56.1 89.2 61.8 65.2 91.2 70.5 86.7 93 86.9

60.7 100 60.7 11.5 24.2 50.3 62.3 93.5 66.3 69.7 100 69.7 65.1 100 65.1

61.1 100 61.1 17.6 44.7 41.5 66.6 100 66.6 69.9 95.2 73.8 88.5 100 88.5

54.3 89.8 60.6 35.1 66.6 46.9 57 81.6 69.3 65.4 96 67.9 83.3 100 83.3

Table 5.39 Percentage of correct predictions by trained networks processing training

and test datasets. W = whole sequence; E = embedded section; P = penultimate

symbol. All network architectures used pattern error- sensitive learning type, binary

input representations, learning rate 0.3 and 0.75 momentum.

Chapter 5: Experimental Results

109

Graph 5.7 and 5.8 clearly show again that the accuracy of the networks is greatest when

asymmetrical sequences are presented in training, regardless of whether the testing is

with symmetrical or asymmetrical sequences. The average accuracy of all the networks

trained asymmetrically is: 63.81% when tested on asymmetrical sequences; and 56.03%

when tested on symmetrical sequences. The average accuracy of all the networks trained

symmetrically is: 54.66% when tested on asymmetrical sequences and 52.26% when

tested on symmetrical sequences.

 Jordan SRN TDNN NARX MRN ESN

A
sy

m
m

et
ri

ca
l Training 78.23 92.91 96.05 99.33 99.84 91.7

Sym Test 25.7 50.3 56.6 60.7 93 49.9

Asym Test 35.1 61.1 66.6 70.9 88.5 60.7

Table 5.40 The best performance of asymmetrically trained networks tested with both

dataset types

 Jordan SRN TDNN NARX MRN

S
y
m

m
et

ri
ca

l Training 48.98 73.89 50.23 92.34 61.81

Sym Test 34.1 54.4 48.9 54.1 69.8

Asym Test 43.6 56.4 53.5 53.9 65.9

Table 5.41 The best performance of symmetrically trained networks tested with both

dataset types

Chapter 5: Experimental Results

110

Graph 5.7 Performance of best symmetrically trained network for each network type

The bar chart shown in Graph 5.8 illustrates the results of the six networks trained on

asymmetrical sequences and tested on biased and unbiased sequences. Overall, most of

the networks were more capable of recognising asymmetrical sequences than

symmetrical ones. The second observation from the graph is that the MRN is the

superior network for the prediction task.

Graph 5.8 The selected symmetrical test network for the five networks using

asymmetrical training

0

10

20

30

40

50

60

70

80

90

100

Jordan SRN TDNN NARX MRN

A
cc

ur
ac

y

Network Type

Symmetrical Training

Sym Testing

Asym Testing

0

10

20

30

40

50

60

70

80

90

100

Jordan SRN TDNN NARX MRN ESN

A
cc

u
ra

cy

Results of Different Networks

Asymmetrical Training

Sym Testing

Asym Testing

Chapter 5: Experimental Results

111

Analysing the results further; the performance of the networks tends to rise when the

architecture of the network has more memory and also the associated increase in

connections between the layers. Table 5.42 and Graph 5.9 show the performance

alongside the networks memory. However, this is not a simple correlation as

performance of the networks is also strongly influenced by the architecture. Table 5.43

and Graph 5.10 demonstrate this by showing that with the same memory, two different

architectures (Jordan and SRN) perform very differently.

 Networks Jordan SRN TDNN NARX MRN ESN

Hidden & context 22 22 71 99 66 150

performance 78.23 92.91 96.05 99.33 99.84 91.7

Table 5.42 The performance of the networks against the memory

Graph 5.9 the performance of the networks against networks memories

0

10

20

30

40

50

60

70

80

90

100

Jordan SRN TDNN NARX MRN ESN

0

20

40

60

80

100

120

140

160
N

e
tw

o
rk

s
Pe

rf
or

m
an

ce

Axis Ti tle

M
e

m
o

ry
 S

iz
e

Networks Memories aginst thier performance

Hidden & context

performance

Chapter 5: Experimental Results

112

Graph 5.10 the effect of networks structures on the networks have same size of

memory

Networks Jordan SRN

Hidden & context 22 22

performance 78.23 92.91

Table 5.43 the performance of networks have same number of memory

To conclude, these investigations studied various networks given the task of learning a

context-free grammar, the Embedded Reber Grammar. The study shows the superiority

of the MRN over the other networks studied. Noise injection has enhanced MRN

performance by nearly 10%; however, with SRN, NARX and ESN it produced poor

results. However, more investigation is required since just unit noise has been

conducted with these networks with one range value 0,01. The present study provides

additional evidence with respect to the memory size, architecture, parameters and

learning algorithm on the performance of the networks. The next chapter investiga tes

the question of why the MRN is superior over the other networks.

The approach taken in Chapter 6 is to consider the internal representations of the

networks. Principle Component Analysis (PCA) is used to show that the MRN is able

to maintain a higher level of discrimination between the upper and lower embedded

sections of the grammar in terms of its internal representations. The difference drops

0

10

20

30

40

50

60

70

80

90

100

Jordan SRN

0

5

10

15

20

25

N
e

tw
o

rk
s

Pe
rf

or
m

an
ce

Axis Ti tle

M
e

m
o

ry
 S

iz
e

Networks Memories aginst thier performance

Hidden & context

performance

Chapter 5: Experimental Results

113

down very low for the poorer performing architectures (SRN and ESN), whereas the

NARX and MRN maintain a higher difference between the two sets of states.

Chapter 6: Understanding the Internal Representations Formed

114

Chapter 6

6. Understanding the Internal Representations Formed.

The aim of this chapter is to describe a variety of concrete examples that show the

internal representations of SRN, NARX and ESN that have learnt to predict symbols in

sequences from the embedded Reber grammar and evaluate them against the MRN. The

networks were trained and tested with both biased and unbiased sequences. The results

give higher-ranking of MRN performance over the other networks. The outcomes of the

networks were presented in chapter five. In order to analyse the internal representations,

Principle Component Analysis (PCA) was applied to the weights within the networks.

For the SRN, NARX, ESN and MRN architectures this included networks trained on

both asymmetrical and symmetrical sequences. However, for the ESN architecture the

networks had only been trained using asymmetrical sequences as described previous ly.

Understanding how each network distributes the states of the grammar and a

comparison between those networks where conducted to demonstrate which one

distributes the data in systematic way and which one is superior. Networks trained with

the asymmetrical dataset and tested with the asymmetrical test dataset were considered

due to superior performance by MRN and NARX with this these data sets, Table 6.1

illustrates these models and their performance. The evaluation of the symmetr ica l

training dataset is in Appendix E.

Network Hidden units Training accuracy Testing accuracy

SRN 15 92.91% 61.1%

NARX 15 99.33% 70.9%

MRN 10 99.91% 97.7%

ESN 150 91.7% 60.7%

Table 6.1 The models evaluated using asymmetrical sequences for training and testing

6.1 Visualisation of the Internal Representations Formed

So far the underlying representation or ‘hypothesis’ formed by recurrent networks has

been treated as a ‘black box’. The hidden units inside these networks express the

Chapter 6: Understanding the Internal Representations Formed

115

grammatical knowledge encoded by the weights. Understanding how these units

respond to each input symbol over time, may provide the ability to determine whether

the networks have formed an adequate representation of the underlying embedded

Reber grammar or not. One approach or method to extract the rules mentioned in

chapter four, is to try to extract the rules (rules that are informed of "𝑥1 = 𝑢(𝑥1),𝑥2 =

𝑢(𝑥1),… 𝑥𝑛 = 𝑢(𝑥𝑛) 𝑡ℎ𝑒𝑛 𝑃𝑗" Where 𝑥𝑖 is the input to the network, 𝑢(𝑥𝑖) is one of the

value of 𝑥𝑖 and 𝑃𝑗 is the network’s prediction) from the weights, to evaluate the network

(Elman 1990, Craven, Shavlik 1994, Setiono, Liu 1995, Bullinaria 1997). By this

approach, the trained neural networks can be studied by extracting symbolic rules that

describe their classification behaviour (Jacobsson, 2005). Principle component analys is

(PCA) has been used to visualise the internal representations of SRN, MRN and ESN

to analyse and evaluate the networks. (Cartling 2008) used PCA to investigate the

internal representation of SRN on the implicit acquisition of a context free grammar and

his results show that a systematic selection of parameters leads to a well organised

internal representation of grammatical elements and consequently leads to a better

performance. The internal representation refers to the activations of the hidden layer of

the network. All the sequences in the training dataset have been studied in a two-

dimensional subspace of the internal-representation space that is spanned by all possible

combinations of two eigenvectors of the covariance matrix equation (4.3) from those

corresponding to largest absolute eigenvalues of the hidden unit used. The steps used to

calculate the PCA are:

1. Compute the mean of each internal hidden unit activation.

2. Calculate the variance between each node and its mean.

3. Compute the covariance matrix.

4. Calculate eigenvalue and eigenvectors of the covariance matrix.

5. Choose components and derive a new data set.

The principle components are ordered in descending magnitude, according to the

eigenvalues. When the network has been trained, it has acquired a capacity to represent

relations between symbols. The primary concern in the network applied context-free

language to handle the grammatical elements in the sequences and rules.

Chapter 6: Understanding the Internal Representations Formed

116

The properties of the two datasets are illustrated in Table 4.3 and Table 4.5. All the

sequences used in this set have been studied in all the two-dimensional subspaces of the

internal representation space that are spanned by all possible combinations of the

covariance matrix, Equation (3.4) in chapter four. A number of terms have been used to

analyse the sequences that have been selected. Table 6.2 explains the following terms.

Term Meaning

𝐺𝑆𝑛 Refers to a particular state, symbol and grammar

i.e. G=upper (u) or lower (l), s=input symbol,

n=state of the grammar (1 to 7)

F False (incorrectly predicted)

T True (correctly predicted)

Penult & P Penultimate symbol of an input sequences

E Embedded grammar (either upper or lower)

Table 6.2 Meaning of some terms

The terms from Table 6.2 are used to identify symbols in the embedded Reber grammar

as depicted in Table 6.2. For example, UV4 refers to the V symbol generated on the

transition from state four to state six in the upper half of the grammar schema.

8
EB

P
P

P

P

P

PT

T

T

T
T

T

X

X

X

X

S

S

S

S

V

V

V
V

1

2

5

3

4

3

6

6

5
4

7

4

2 7
L

U

Figure 6.1 shows the states of the embedded Reber Grammar

Chapter 6: Understanding the Internal Representations Formed

117

Four different sequence lengths have been chosen (6, 8, 16 and 26) from the trained

dataset, to analyse the internal representations of the networks these sequence were

passed each path of the grammar. Table 6.3 shows the sequences that have been selected

according to the length of the sequences (from both symmetrical and asymmetr ica l

training sets).

Symmetrical/Asymmetrical Sequences

Length No Embed Sequences

6

1 U BTPVVT

2 L BPPVVP

3 U BTTXST

4 L BPTXSP

8

5 U BPPTTVVP

6 L BTPTTVVT

7 U BTPTVPST

8 L BPPTVPSP

9 U BTTSSXST

10 L BPTSSXSP

11 U BTTXXVVT

12 L BPTXXVVP

16 13 BPTXXTTTVPXTTVVP

26 14 BPPVPXTVPXVPXVPXTVPXVPXVVP

Table 6.3 Symmetrical and asymmetrical Sequences that have been selected

6.1.1 Internal Representations of the SRN

For this study, the SRN results described in chapter five from training with

asymmetrical sequences is investigated; results are shown Table 6.1, which was used to

explore the internal representation of the SRN’s hidden units. Table 6.4 provides the

experimental data results obtained from the SRN. These sequences have been analysed

using the PCA method to understand the internal representation formed by the network.

Sequences numbered 1, 2, 5, 6, 7 and 8 in the table have been selected to consider the

Chapter 6: Understanding the Internal Representations Formed

118

internal representations of the network for correctly predicted sequences. The

corresponding trajectories are shown in Figure 6.2 a-c, respectively in the subspace of

the internal representation space defined by principle component 1 (PC1) and princip le

component 2 (PC2). The start point is located in the fourth quarter of bi-dimensiona l

space, for nearly all of the grammar states of 1, 2 and 3; upper and lower located in the

second and third quarter of the plane. State four and five are located in the first quarter

of the plane while six and seven are in the fourth quarter. The common characteristic of

the trajectories of most of the asymmetrical sequences is that they spread on the surface

as shown in the Figure 6.2 (a, b). However, when there is a self-looping state three, they

are located on the third and fourth quarter of the surface.

SRN using Asymmetrical sequences

No Length Embed Sequences Prediction
Reason for

Failure

1

6

U BTTXST T

2 L BPTXSP T

3 U BTPVVT T

4 L BPPVVP T

5

8

U BTTXXVVT T

6 L BPTXXVVP T

7 U BTTSSXST T

8 L BPTSSXSP T

9 U BTPTVPST T

10 L BPPTVPSP F
Penult

incorrect

11 U BTPTTVVT F
Penult

incorrect

12 L BPPTTVVP T

13 16 BPTXXTTTVPXTTVVP T

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP T

Table 6.4 Results of SRN using asymmetrical sequences and their prediction results

To analyse the results more, a number of correctly predicted sequences have been

selected and the centroid of each state calculated. Table 6.5 illustrates the centroid of

each sate for both upper and lower embedded part of the sequences.

Chapter 6: Understanding the Internal Representations Formed

119

Embedded States
Centroid

Embedded States
Centroid

PC1 PC2 PC1 PC2

Upper

1 -0.25646 -0.17579

Lower

1 0.10371 -0.11526

2 -0.77840 -0.04289 2 -0.36975 -0.12227

3 -0.59789 -0.23712 3 -0.70120 -0.20574

4 0.27376 1.00098 4 0.19702 0.73998

5 -0.14873 0.40160 5 -0.11504 0.23093

6 0.42873 -0.50940 6 0.37518 -0.34150

7 -0.11478 -0.41299 7 0.36923 -0.72087

Table 6.5 SRN: Centroid of the states for asymmetrical sequences (correctly

predicted)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
T
2

U
X
3

U
S
5

U
T
7

 B L
P
1 L

T
2

 L
X
3

 L
S
5

 L
P
7

PC1 29%

P
C

2

1

9
%

a

Chapter 6: Understanding the Internal Representations Formed

120

Figure 6.2 Plots of the two most significant principle components of the hidden layer activations of a

asymmetrically trained SRN, presented with three pairs of symbol sequences (in a, b and c respectively)

from the ERG. Each pair has the same embedded sequence but different initial symbol so that one is in

the lower half (dashed lines) and the other is in the upper half (solid blue lines). The sequences are in

the table 6.7: (a) 1, 2; (b) 5, 6; (c) 7, 8 and with respect to principal components PC1 and PC2. (a

BPTXSP/BTTXST, b) BPPVVP/BTPVVT, c) BTTSSXST/BPTSSXSP

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
T
2

U
X
3

U
X
5

U
V

4

U
V

6

U
T
7

 B L
P
1 L

T
2

 L
X
3

 L
X
5

 L
V

4

 L
V

6

 L
P
7

PC1 29%

P
C

2
 1

9
%

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
T
2

U
S
3

U
S
3

U
X
3

U
S
5

U
T
7

 B L
P
1 L

T
2

 L
S
3

 L
S
3

 L
X
3

 L
S
5

 L
P
7

PC1 29%

P
C

2
 1

9
%

c

Chapter 6: Understanding the Internal Representations Formed

121

A drawing of the centroid of the states of correctly predicted sequences is shown in

Figure 6.3. The figure shows the difference in the distribution of the grammar states

over the plane in the coordinates PC1 and PC2. The plots of the different princip le

component pairs (PC1 and PC2; PC1 and PC3) in all the examples of the SRN, shows

that the penultimate symbol is always in the fourth quarter (bottom right) of the plane

and the start point is always in the first quarter (top right). Plots of PC2 and PC3

however, establish different trajectories, start and penultimate positions; Appendix C

depicts some examples of them. The domain of the upper states on PC1 is distributed

from approximately -0.7 to 0.5 and the lower states are approximately between -0.3 to

0.3. In addition to this, there is also, a divergence in the range of the PC2 axis between

upper and lower states. Moreover, there is a kind of clustering in each state that can be

seen in the figure, since each state is located in a different position in plane. These may

explain why the network could differentiate between both embedded parts and

memorise long term dependency.

Figure 6.3 SRN: Centroid of each state using asymmetrical sequences (correctly

predicted sequences)

1

2

3

4

5

6

7

1

2

3 4
5

6

7

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

P
C

2

PC1

Upper

Lower

Chapter 6: Understanding the Internal Representations Formed

122

Figure 6.4 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained by SRN, trajectories of two non-identical asymmetrical sequences that were

incorrectly predicted by the SRN. (a) The lower embedded part BPPTVPSP. (b) The upper embedded

part BTPTTVVT. With respect to principal components PC1 and PC2.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B L
P
1

L
P
2

L
T
4

L
V

4

L
P
6

L
S
5

L
P
7

PCA1 29%

P
C

A
2

 1
9

%

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2

U
T
4U

T
4

U
V

4

U
V

6

U
T
7

PCA1 29%

P
C

A
2

1

9
%

b

Chapter 6: Understanding the Internal Representations Formed

123

To investigate the internal representation when sequences are incorrectly predicted, a

number of sequences that have all the grammar states were considered. This was to

examine the trajectories through all seven states of both the upper and lower embedded

grammars (in the length of 12 to 24 sequences). Figure 6.4 illustrates the lower and

upper part of the sequences that have length eight which were predicted incorrectly by

the SRN. Both of the sequences have incorrectly predicted symbols. These symbols

were the penultimate symbols of the sequences. By drawing the states of the unpredicted

sequences, it seems there is a similarity in the distribution of the states on the surface.

This may be due to the failure of the sequences being in the penultimate symbol, which

makes it difficult to observe the difference between the trajectories of both cases. Thus,

twelve correct sequences and incorrect sequences with different lengths have been

chosen and their range computed to investigate the range of the state 7 for both cases.

Figure 6.5, clearly indicates that there is a distinct distance between final states for

correctly and incorrectly predicted sequences (i.e. where PC1 <0.8 appears reserved for

incorrect predictions and >=0.8 for correct predictions)

Embedded States
Range

Embedded States
Range

PC1 PC2 PC1 PC2

Upper

1 0.00009 0.00010

Lower

1 0.00008 0.00017

2 0.74197 0.34151 2 0.77149 0.09085

3 0.44686 0.46860 3 0.37745 0.41429

4 0.30652 1.07506 4 0.34939 1.01875

5 0.81921 0.92739 5 0.97138 0.61542

6 0.44090 0.85219 6 0.06009 0.10806

7 0.54955 0.38318 7 0.08450 0.11046

Table 6.6 SRN: Range of the states for asymmetrical sequences (Incorrectly predicted

sequences)

Chapter 6: Understanding the Internal Representations Formed

124

Figure 6.5 SRN: located ranges of state seven for correctly predicted and incorrectly

predicted asymmetrical sequences.

The investigation of the internal representation of the SRN has shown that the network

distributes the states of the grammar in a systematic way (in a consistent manner). In

addition to this, there are ranges where, if state seven is located inside them, the network

prediction will fail to recognise the symbols. However, the poor performance of the

network needs to be explored.

6.1.2 Internal Representations of the NARX

In chapter three a graph of NARX with 15 hidden units, eight feedback boxes from the

output unit and four shifted boxes from the input, is depicted. The best performance of

the NARX was selected to investigate its internal representation. The network has 15

hidden units and the PCs have been computed for the whole corpora of the training

dataset. The same sequences that were used in the previous network to investigate the

trajectories of the components are used here as illustrated in Table 6.7. The table shows

that the network recognises all the sequences that have been selected except for the

sequence with length 26. The trajectories of the sequences are depicted in Figure 6.6.

These show how the network represents the sequences in the space. It shows the

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
SRN Asymmetrical Sequences State 7

PC1

P
C

2

Upper True

Lower True

Upper False

Lower False

Chapter 6: Understanding the Internal Representations Formed

125

systematic state of the grammar represented by the hidden units of the network. The

trajectories of the grammar states for both upper and lower embedded parts of the

grammar are located in approximately the same position in the space for each sequence.

NARX using Asymmetrical sequences

No Length Embed Sequences Prediction
Reason for

failure

1

6

U BTTXST T

2 L BPTXSP T

3 U BTPVVT T

4 L BPPVVP T

5

8

U BTTXXVVT T

6 L BPTXXVVP T

7 U BTTSSXST T

8 L BPTSSXSP T

9 U BTPTVPST T

10 L BPPTVPSP T

11 U BTPTTVVT T

12 L BPPTTVVP T

13 16 BPTXXTTTVPXTTVVP T

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP
F Penult

incorrect

Table 6.7 Sequences results for NARX and the position of the incorrectly predicted

symbol

A number of incorrectly predicted sequences have been selected for experiment to

explore the trajectories of the states of these sequences. Prediction by the NARX for all

the sequences, failed at the penultimate symbol. Figure 6.7 illustrates the trajectories of

sequences that have a length of 14 symbols. The trajectories show systematic

distribution of the states within the space. Figure 6.8 (a) depicts trajectories of an

incorrectly predicted sequence with sequence length 16 and (b) the trajectories of

correctly predicted sequence having the same length. It shows that the trajectories of

state seven in the grammar are dissimilar for each sequence. Consequently, several

correctly and incorrectly predicted sequences were selected, considering in particular

state seven, to visualise the state in two-dimensional space. Figure 6.9 shows the ranges

of PC1 and PC2 of state seven for these sequences. The figure illustrates the difference

in each case.

Chapter 6: Understanding the Internal Representations Formed

126

Figure 6.6 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained NARX, (a, b) are the trajectories of the sequence numbered 1,2,3,4 a)

BTTXST/BPTXSP and b) BTPVVT/BPPVVP in Table 6.7 which have a length of six symbols.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
T
2U
X
3

U
S
5

U
T
7

 B LP
1

 L
T
2 L

X
3

 L
S
5

 L
P
7

PC1 32%

P
C

2

2

3
%

B
U

T
1

U
T
2U
X
3

U
S
5

U
T
7

 B LP
1

 L
T
2 L

X
3

 L
S
5

 L
P
7

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2

U
V

4

U
V

6

U
T
7

 B LP
1

 L
P
2

 L
V

4

 L
V

6

 L
P
7

PC1 32%

P
C

2

2

3
%

b

Chapter 6: Understanding the Internal Representations Formed

127

Figure 6.7 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained NARX, (a, b) trajectories of two non-identical sequences that are incorrectly

predicted a) BPPTTVPXTTVPSP and b) BTPVPXVPXTTVVT

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BLP
1

L
P
2

L
T
4

L
T
4

L
V

4

L
P
6

L
X
5

L
T
4

L
T
4

L
V

4

L
P
6

L
S
5

L
P
7

PC1 32%

P
C

2
 2

3
%

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2

U
V

4

U
P
6

U
X
5

U
V

4

U
P
6 U

X
5U

T
4

U
T
4

U
V

4
U

V
6

U
T
7

PC1 32%

P
C

2

2

3
%

b

Chapter 6: Understanding the Internal Representations Formed

128

Figure 6.8 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained NARX. a) Trajectories of 16-length sequences that are incorrectly predicted

“BPTXXTTVPXTTVPSP and b) is the correctly predicted sequence of the same length

BPPVPXTVPXTTTVVP.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BLP
1

L
T
2L

X
3

L
X
5

L
T
4

L
T
4

L
V

4

L
P
6

L
X
5L

T
4

L
T
4

L
V

4

L
P
6

L
S
5

L
P
7

PC1 32%

P
C

2

2

3
%

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BLP
1

L
P
2

L
V

4

L
P
6

L
X
5

L
T
4

L
V

4

L
P
6

L
X
5

L
T
4

L
T
4

L
T
4

L
V

4

L
V

6

L
P
7

PC1 32%

P
C

2

2

3
%

b

Chapter 6: Understanding the Internal Representations Formed

129

Figure 6.9 NARX: Range of state seven for both correctly predicted sequences and

incorrectly predicted sequences (failes on the penultimate symbol)

To conclude, the investigation provides an analysis and evaluation of interna l

representation of the NARX. The trajectories of the states are distributed by the interna l

representation on the plane in a systematic way, e.g. state one is located in the third

quarter for both parts of the grammar and state seven is located in the first and second

quarter. There is a kind of clustering that hidden units produce when the predicted

symbols of state seven are plotted in a range, which differs from the range where

symbols are incorrectly predicted, as illustrated in Figure 6.9. The difference between

the trajectories of SRN and NARX are in the locations within PC1-PC2 space. However,

there is a small variance between the upper and lower representations in PC1-PC2 space

for the embedded sections in the NARX.

6.1.3 Internal Representations of the MRN

The results analysed in this investigation are taken from the MRN that was shown in

chapter three and that produced the results presented in chapter five. The results were

acquired from the MRN having ten hidden units and four memory boxes. Table 6.8

shows asymmetrical sequences that were correctly predicted by the MRN. The

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
NARX Asymmetrical Sequences State 7

PC1

P
C

2

Upper True

Lower True

Upper False

Lower False

Chapter 6: Understanding the Internal Representations Formed

130

trajectories of these sequences have been studied to investigate how the interna l

representation of the MRN represented the nominal states. Figure 6.10 (a, b, c) shows

the sequences in the Table 6.8 numbered 1, 2, 5, 6, 7 and 8 respectively. The positions

of state seven for sequences generated by traversing the upper embedded section of the

grammar are located in the third quarter (bottom left), whereas the same state is in the

fourth quarter (bottom right) for sequences generated using the lower embedded section.

Additionally, the positions of state one for both upper and lower embedded sections are

located in the fourth and first (top right) quarters respectively. The other state

trajectories are located in different subspaces of the surface with consistent locations.

No Length Embed Sequences

1

6

U BTTXST

2 L BPTXSP

3 U BTPVVT

4 L BPPVVP

5

8

U BTTXXVVT

6 L BPTXXVVP

7 U BTTSSXST

8 L BPTSSXSP

9 U BTPTVPST

10 L BPPTVPSP

11 U BTPTTVVT

12 L BPPTTVVP

13 16 BPTXXTTTVPXTTVVP

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP

Table 6.8 Asymmetrical sequences correctly predicted by MRN

Chapter 6: Understanding the Internal Representations Formed

131

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2

U
X
3 U

S
5

U
T
7

 B

 L
P
1

 L
T
2

 L
X
3

 L
S
5

 L
P
7

PC1 31%

P
C

2

2

2
%

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2

U
X
3

U
X
5

U
V

4

U
V

6

U
T
7

 B

 L
P
1

 L
T
2

 L
X
3

 L
X
5

 L
V

4

 L
V

6

 L
P
7

PC1 31%

P
C

2

2

2
%

b

Chapter 6: Understanding the Internal Representations Formed

132

Figure 6.10 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained by MRN (a) trajectories of the six length sequences BTTXST/BPTXSP (b)

BTTXXVVT/BPTXXVVP and (c) BTTSSXST/BPTSSXSP are trajectories of eight length sequences

upper and lower embedded.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2U
S
3U

S
3

U
X
3

U
S
5

U
T
7

 B

 L
P
1

 L
T
2

 L
S
3 L

S
3

 L
X
3

 L
S
5

 L
P
7

PC1 31%

P
C

2

2

2
%

c

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

L
P
1

L
T
2L

S
3L

S
3

L
S
3

L
X
3

L
X
5LT

4

L
V

4

L
P
6

L
X
5

L
V

4

L
V

6

L
P
7

PC1 31%

P
C

2
 2

2
%

a

Chapter 6: Understanding the Internal Representations Formed

133

Figure 6.11 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained MRN (a) trajectories of 15-length sequence BPTSSSXXTVPXVVP, (b)

BPTSSSXXTTTVVP 14-length sequence that is incorrectly predicted using MRN.

Figure 6.11 depicted the trajectories of two different asymmetrical sequence lengths,

(a) is 15-length sequence and (b) is the 14-length sequence. The prediction of the MRN

was incorrect for both of them, in the embedded part; it was incorrect in the self-looping

(state four) for (a) and the penultimate for (b). The other trajectories of the states were

located as the correct ones. To investigate the ranges of state seven, four correct and

incorrect sequences have been chosen and the ranges displayed for both of them.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

L
P
1

L
T
2L

S
3

L
S
3

L
S
3

L
X
3

L
X
5LT

4L
T
4L

T
4

L
V

4

L
V

6

L
P
7

PC1 31%

P
C

2

2

2
%

b

Chapter 6: Understanding the Internal Representations Formed

134

Figure 6.12 Range of state seven for both correctly predicted and incorrectly predicted

penultimate symbols

It can be observed from Figure 6.12 that the MRN has ranges of the state seven for

correctly predicted and incorrectly predicted symbols, which means that the hidden

units organise the states of the grammar. Another example of this is shown in

Figure 6.13 where a number of correctly and incorrectly predicted sequences have been

selected from the lower embedded part of the grammar. It shows that for state four in

the grammar, each range is located in approximately the same place but there is a small

distance between them. That shows the difficulties of the hidden units to recognise this

state.

This research has shown that, similar to the previous results, the MRN is capable of

distributing the states in systematic way. State one of the lower part of the grammar is

located in the first quarter and the upper part is in the fourth quarter of the plane.

Moreover, state seven lower part is located in the fourth quarter and the upper part is in

the third quarter of the plane. The internal representation shows small difference range

between upper and lower parts of the grammar in respect of state four, where the

network failed in some sequences to predict the state.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MRN Asymmetrical Sequences State 7

PC1

P
C

2

Upper True

Lower True

Lower False

Chapter 6: Understanding the Internal Representations Formed

135

Figure 6.13 Range of sate four, (*) lower embedded sequence correctly predicted, (+)

lower embedded sequence unpredicted sequences.

6.1.4 Internal Representations of the ESN

A variety of methods are used to assess the ESN. The data used in this investigation is

from the ESN that has jumping connections and was used by Cartling, (2007). It is one

of the standard methods described by Jaeger, 2002. The reservoir size of the network is

such that it has 150 nodes. The following parameters were applied: 0.75 spectral radius;

0.85 connectivity; and 0.3 weight range. The representation of the embedded Reber

grammar rule is investigated here using the 150 hidden units that were used in the

training. The same sets of sequences that have been used in the previous network were

used here. Table 5.9illustrates these sequences and the results of the ESN when tested

with them. The trajectories of sequences numbered in the Table 6.9 1 to 4 and 13 in the

(PC1, PC2) subspace are shown in the Figure 6.14. The principle divergence of several

trajectories at each state in the sequences with a different route: upper leads to the first

quarter and lower leads to the third quarter. The trajectories of the sequences from the

SRN and ESN are dissimilar. However, this can explain why the ESN got 100% of the

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

MRN Asymmetrical Sequences State 4

PC1

P
C

2

Lower True

Lower False

Chapter 6: Understanding the Internal Representations Formed

136

embedded parts of the sequences comparing with SRN and MRN, which were less than

this percentage.

 ESN using Asymmetrical sequences

No Length Embed Sequences Predication
Reason

for failure

1

6

U BTTXST T

2 L BPTXSP T

3 U BTPVVT T

4 L BPPVVP T

5

8

U BTTXXVVT F P

6 L BPTXXVVP T

7 U BTTSSXST T

8 L BPTSSXSP F P

9 U BTPTVPST T

10 L BPPTVPSP F P

11 U BTPTTVVT F P

12 L BPPTTVVP T

13 16 BPTXXTTTVPXTTVVP T

14 26 BPPVPXTVPXVPXVPXTVPXVPXVVP T

Table 6.9 Sequences results for ESN and the position of the unpredicted symbol

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1U

T
2

U
X
3

U
S
5

U
T
7

 B

 L
P
1

 L
T
2

 L
X
3

 L
S
5

 L
P
7

PC1 34%

P
C

2

2

2
%

a

Chapter 6: Understanding the Internal Representations Formed

137

Figure 6.14 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained ESN. (a) BTTXST/BPTXSP (b) BTPVVT/BPPVVP (c)

BPPVPXTVPXTTTVVP. The trajectories are of sequences that were correctly predicted by the

network.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
P
2

U
V

4U
V

6

U
T
7

 B

 L
P
1 L

P
2

 L
V

4 L
V

6

 L
P
7

PC1 34%

P
C

2

2

2
%

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

L
P
1L

P
2

L
V

4

L
P
6

L
X
5

L
T
4

L
V

4

L
P
6

L
X
5

L
T
4L

T
4L

T
4

L
V

4L
V

6

L
P
7

PC1 34%

P
C

2
 2

2
%

c

Chapter 6: Understanding the Internal Representations Formed

138

Figure 6.15 Plots of the two most significant principle components of the hidden layer activations of

an asymmetrically trained ESN. (a) BTTXXVVT. (b) BPTSSXSP. The trajectories are of sequences

that were incorrectly predicted by the network in the embedded part.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1U

T
2

U
X
3U

X
5

U
V

4U
V

6

U
T
7

PC1 34%

P
C

2

2

2
%

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

L
P
1

L
T
2

L
S
3L

S
3

L
X
3

L
S
5

L
P
7

PC1 34%

P
C

2

2

2
%

b

Chapter 6: Understanding the Internal Representations Formed

139

To investigate the sequences that were predicted incorrectly, a number of incorrectly

predicted sequences have been selected to study how the network organized the

penultimate symbols in the state of both the embedded upper and lower parts (since the

results of the ESN show the incorrectly predicted symbol is generally the penultimate).

Figure 6.15 shows the trajectories of the states of the sequences that have eight symbols.

The trajectories of the penultimate symbol for sequences with both upper and lower

embedded parts appear to be similar to the trajectories for the correctly predicted

symbols. To investigate the dispersion of state seven, the range of this state has been

computed for a number of sequences for both correctly and incorrectly predicted

sequences. Therefore, comparing between the networks can explain why the MRN is

superior over the other networks. Figure 6.16 draws the ranges of state 7 for a numbers

of sequences. Asterisk and plus sign symbols represent the correctly predicted

sequences and the circle and times signs are the incorrectly predicted ones.

Figure 6.16 ESN: Range of state seven for both correctly and incorrectly predicted

penultimate symbols

Figure 6.16shows the ranges when the surface is scaled where the predicted state is in

a range differ from the state in the incorrectly predicted sequence. Nevertheless, the

distance between them is still small where the previous networks provide a larger

distance between them.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
ESN Asymmetrical Sequences State 7

PC1

P
C

2

Upper True

Upper False

Lower False

Chapter 6: Understanding the Internal Representations Formed

140

6.2 Comparative Analysis of the Internal Representations

Further investigation is required to determine exactly how the networks distribute the

states of the grammar; test dataset results after applying PCA have been studied.

Appendix D illustrates the results of the networks. The test sequences that have been

applied to the PCA are unique sequences (not in the training dataset). 20.2% of the

sequences were unique from the trained dataset of 212 sequences.

The prediction

of the whole

dataset

SRN MRN NARX ESN

50.94% 95.28% 51.88 48.58%

Table 6.10 The prediction of the unique sequences in the test dataset

Table 6.10 shows the total unique sequences correctly predicted for each network. The

MRN is superior over the other networks in the unique sequences. Table 6.11

demonstrates the results of each network in detail according to the sequence length, for

the correctly predicted unique sequences. The MRN also has the most successfully

predicted sequences when comparing using sequences of increasing length. To

investigate why MRN is superior over the networks, internal representation has been

studied using PCA.

Length Frequency SRN MRN NARX ESN

15 1 0 1 0 0

17 7 4 7 5 3

18 21 9 21 14 8

19 35 11 32 11 13

20 35 19 34 20 18

21 32 17 32 19 17

22 27 17 24 14 17

23 22 14 20 9 9

24 18 9 17 9 10

25 9 5 9 6 0

26 5 3 5 3 3

Table 6.11 Details of the number of each length sequence (unique) correctly predicted

by each network

Chapter 6: Understanding the Internal Representations Formed

141

The unique sequences are studied in this investigation, since the rest of the sequences

of the dataset are in the training dataset which was investigated in the previous section.

To assess the distribution of the states, the centroid of the states was used for the upper

and lower embedded grammar, thereby, observing the centre of the mass for each state

of the grammar. Table 6.12, shows the centroid of each network for both upper and

lower embedded routes through the grammar.

G
ra

m
m

a
r

States
NARX SRN MRN ESN

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

U
p

p
e
r

1 -0.5970 -0.4645 -0.2754 0.0409 0.2321 -0.1679 -0.7176 -0.6375

2 0.3789 0.5316 -0.0530 0.0621 -0.2708 -0.1281 -0.3976 -0.0541

3 -0.2707 0.3995 -0.0124 0.1284 -0.3044 -0.3645 0.1507 -0.2720

4 0.6792 -0.3690 -0.0759 -0.1227 -0.4832 0.5057 0.1835 -0.4095

5 0.6912 0.2375 -0.0859 -0.0356 -0.4459 0.0523 0.1562 -0.3524

6 -0.5177 0.2152 0.2595 -0.3311 0.2268 -0.6141 0.2221 0.6675

7 -0.3321 1.1134 -0.4650 -0.0165 -0.2010 -0.5837 -0.7155 -0.6318

L
o

w
e
r

1' -0.5776 -0.5398 -0.1220 0.0979 0.6745 0.2480 0.0965 0.8254

2' 0.3845 0.5352 -0.1128 0.0536 -0.1596 -0.2747 -0.4235 -0.1244

3' -0.0346 0.4466 0.0176 0.1659 -0.1451 -0.3670 0.1507 -0.2714

4' 0.7597 -0.3350 -0.0747 -0.1234 -0.5614 0.4093 0.1542 -0.4168

5' 0.6473 0.1508 -0.0945 -0.0216 -0.4308 0.0900 0.1561 -0.3508

6' -0.4355 0.1098 0.2616 -0.3335 0.1776 -0.3180 0.2145 0.6773

7' -0.2703 0.8390 -0.1933 0.0395 0.1468 -0.8502 0.0988 0.8328

Table 6.12 The centroids for each grammar state for each network

The PC1 and PC2 values for all the unique sequences were calculated and the results

are plotted in the Figure 6.17. The figure shows the range of the centroid of all the states

for each network. The centroid of the SRN states are located approximately in the PC1

range of -0.5 to 0.3, NARX in -0.6 to 0.8, MRN in -0.6 to 0.7 and ESN in -0.8 to 0.3.

This gives range of 0.8, 1.4, 1.3 and 1.1 for SRN, NARX, MRN and ESN respectively.

This suggests a link may exist between the data distribution and the performance of the

networks.

Chapter 6: Understanding the Internal Representations Formed

142

1 2

3

4

5

6

7

1
2

3

4

5

6

7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

PC
2

PC1

a. Centroid of the stats of SRN

Upp
er

1

2

3

4

56

7

1

2
3

4

56

7

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

P
C

2

PC1

b. Centroid of the stats of NARX

Upper

Lower

Chapter 6: Understanding the Internal Representations Formed

143

Figure 6.17 The centroid of the upper and lower embedded grammar of the networks

a)SRN, b) NARX, c) MRN, d) ESN

Further statistical analysis of the centroid revealed strong links between the distribution

of the dataset and the performance of the networks. Figure 6.17 depicted the centroid of

each state of the networks represented by the PC1 and PC2. The graphs show the

distance variance between sequences generated via the upper and lower routes through

12

3

4

5

67

1

2
3

4

5

6

7

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

PC
2

PC1

c. Centroid of the stats of MRN

Up
per

1

2

3

4

5

6

7

1

2

3

4

5

6

7

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

PC
2

PC1

d. Centroid of the stats of ESN

Up
p…

Chapter 6: Understanding the Internal Representations Formed

144

the grammar. In addition, it illustrates the range of each network where it shows the

difference range represented by the hidden unit. The absolute difference between the

centroids taking sequences containing the upper and lower sections of the embedded

grammar respectively is given in Figure 6.18. It is apparent from this figure that the

Euclidean distance between the states for the upper and lower embedded trajectories

varies in these networks; the distance for the MRN is the highest of the networks

followed by NARX. This explains why the MRN is superior over the other networks.

The MRN is more able to consistently maintain a sufficient distance between

corresponding grammar states within the upper and lower sub-grammars. This work

contends that this is due to the ability of its sluggish state-based memory to latch onto

and maintain information about the entry points (T and P) of the respective sub-

grammars throughout the respective sequences.

Figure 6.18 The Euclidean distances between each corresponding centroid
representing the embedded grammar states of the upper and lower embedded

grammars (for each model evaluated).

To explore the order of the networks for their performance, Euclidean distance has been

calculated between the MRN and SRN, NARX and ESN. Table 6.1 illustrates the results

obtained. The most interesting finding was that the NARX has the closest distance to

the MRN at 0.33 followed by the SRN then ESN, which correlates with the performance

of the networks.

0

5

10

15

20

25

SRN MRN ESN

D
is

ta
n

ce

Euclidean Distance between Upper and Lower of
The ERG

1 2 3 4 5 6 7Grammar States

Chapter 6: Understanding the Internal Representations Formed

145

Euclidean Distance

Cross state MRN vs SRN MRN vs NARX MRN vs ESN

1 0.049 0.050 0.142

2 0.028 0.202 0.065

3 0.178 0.107 0.162

4 0.038 0.091 0.005

5 0.253 0.115 0.159

6 0.282 0.164 1.212

7 0.167 0.094 0.318

all states 0.456 0.335 1.284

Table 6.13 Euclidean distance between MRN and the networks

6.3 Summary of Results and Discussion

The strong relationship between SRN, NARX, MRN and ESN has been reported in the

literature. However, they differ from their architecture and training process. This study

provides information about the internal representation of these networks. The high

performance of the MRN in this research is traced to a well-organized interna l

representation of the grammatical elements. A number of architectures of networks

facilitate an improved resolution of the internal representation, this is discussed above

in terms of the intervening layers in each network architecture. The interna l

representation of the SRN in both biased and unbiased datasets, shows that the

trajectories of the grammatical states are distributed in a systematic way which

illustrates the important role of the hidden units in the network. Similar trajectories were

acquired from the MRN with respect to their quarter positions in the PC1-PC2 plane. It

seems significant that the trajectories mirror each other for the same embedded sections

but from the upper and lower paths for the MRN and SRN, but for the ESN they look

rather different. This is because the ESN had different learning algorithms compared

with the rest of the networks where they use BPTT and all the connections were

trainable. Another important finding was the constant variance between the upper and

lower parts of the sequences represented by the internal representation of the MRN,

which explain its superiority over the networks. The present study, however, makes

several noteworthy contributions to connectionism. For the networks studied, their

performance relies on how the internal representations of the networks maintains a

constant variance between upper and lower part of the grammar. Investigation of the

Chapter 6: Understanding the Internal Representations Formed

146

hidden units found that there is a kind of clustering represented by the hidden layer that

helps the networks to recognise.

The internal representation, as explored by a principal component analysis of the hidden

unit activities for entire networks, is shown to organize the states of the embedded Reber

grammar. However, they differ when they organise state seven (the penultimate state)

of the grammar; the ESN has difficulties in distinguishing between penultimate symbols

of the grammar this may due to learning algorithm of the network.

Chapter 7: Conclusion and Future Work

147

Chapter 7

7. Conclusion & Future Work

7.1 Introduction

This thesis has focused on one of the principle problems in artificial intelligence, a

problem that is still subject to ongoing research, despite approximately half a century

of investigation by numerous researchers. Language acquisition is a complex problem

to many linguists such that they consider it a paradox and a NP-complete problem. It is

a perspective that consequently denies the possibility of an automated solution

(Jackendoff 2002).

Nevertheless, nowadays, NLP systems are a key area of interest in the field of

connectionism and much work has been conducted on how linguistic representations

and descriptions can be used for processing. That is the focus of computationa l

linguistics and NLP. This is formed by such models. The creation of an automated

language acquisition system for natural language would be a revolutionary discovery

because the complexity of its syntax and morphology is difficult to parse etc. One of

the most significant debates within this field is that of empiricists, who argue that the

brain has the neurological basis to discover an automated language acquisition model

directly from exposure to naturally occurring sentences. The research shows that a

particular class of connectionist networks, the multi-recurrent network, provides

evidence in support of the empiricist’s hypothesis, where other classes of connectionis t

network do not.

A principle objective of this research is to determine the class of RNNs that is able to

robustly learn to represent the underlying pushdown automata that adequately describes

the important characteristics considered essential for natural language acquisition, such

as being able to establish and maintain cross-serial dependencies. This research has

investigated several RNNs that are diverse in their network architectures and with

variation in some cases in the learning algorithm. The study investigated the most

common types of RNN models applied to language modelling tasks and variants

Chapter 7: Conclusion and Future Work

148

thereof. In particular, the study applied the ‘next symbol prediction’ task for the

Embedded Reber Grammar to a set of SRNs trained with back-propagation through time

(BPTT), namely Elman’s SRN, the Jordan net, NARX and the MRN. Although each of

these networks shared the vanishing gradients problem associated with BPTT, they

differed in their architecture and therefore how they may be able compensate, if at all,

for the limitations of the learning algorithm. The performance of each of these networks

was then contrasted against each other and to that of the current ‘state-of-the-art’ RNN,

the ESN, which is not known to suffer from the vanishing gradient issue and has an

echo-state property which allows for effective learning of temporal problems. A process

of noise injection was also applied and evaluated to ascertain whether or not this

optimised performance. Also, to support the networks in their task, asymmetrical data

sets have been generated that gave statistical indications as to which embedded

grammar was being entered into and therefore a bias towards the correct transition with

which to exit the embedded aspect to reach the final state of the grammar.

The investigations found that not all RNNs examined were able to correctly model the

grammar and process the associated long term dependencies. This Chapter therefore

summarises the key findings and contribution of the research with respect to the type of

RNN most able to correctly learn the grammar and generalise to the wider population

of sequences. In addition, it provides insight into why a particular class of RNN was

consistently better and then highlights important areas for future research.

Simulations with a class of MRNs using 4 memory banks and 10 hidden nodes per bank,

showed that they were able to successfully learn 100% of the training sequences (with

a maximum sequence length of 26 symbols). The MRN tested with the asymmetr ica l

dataset was clearly able to detect the dependency, achieving a success rate of over

95.1% in five of the symmetrical test trials and over 88.5% in five of the asymmetr ica l

test trails. However, the MRN’s performance begins to significantly degrade as the

sequence length increases above 60 symbols and fails entirely when the sequence length

exceeds 100 symbols.

The performance of the MRN was achieved by using noise injection to the network

training, however the SRN, NARX and ESN failed to improve their outcomes when the

Chapter 7: Conclusion and Future Work

149

same method was used. A number of modifications were carried out to enhance the

results of the networks (varying architectures, parameters, learning algorithm etc.).

7.2 Training Parameters

This section illustrates the parameters that are used to obtain the results with respect to

the different networks. The hidden units used for SRN, Jordan, TDNN, and NARX were

15 and for MRN it was 10, the learning rate for those networks were 0.15. This was

after testing a number of values; the momentum was 0.75 and the weight range was 0.3.

The leaning type that enhanced the performance of the networks is “pattern error–

sensitive” learning rate. The ESN has 150-reservoir size, 0.75 spectral radius,

connectivity of 0.85 and weight range of 0.3. All networks were trained in one epoch.

7.3 Main Conclusion Derived from This Study

The investigations presented in this thesis are a novel attempt to answer research

questions, both from a practical and a theoretical point of view. In particular, to evaluate

the efficacy of an embedded memory architecture consisting of recurrent and self-

recurrent units used in variants of the SRNs against the vanishing gradient problem

associated with the gradient-descent learning algorithm. This research assesses the

efficacy of this memory mechanism for the SRNs and ESN using a popular complex

grammar induction task. Based on the results obtained from this research, it can be

concluded that:

The investigations have studied the effect of the size of the hidden units on the

performance of the networks. There is a limit of memory size above which the network

outcomes start to decay. In addition, the investigation for the MRN found that going

above four memory banks does not lead to enhanced performance. Rather, it is the

number of neurons in the boxes that is important for the performance of the network

and this is determined using the validation set. This is as stated by (Ulbricht 1994,

Binner, Tino et al. 2010) and so it is confirmation of their work.

Chapter 7: Conclusion and Future Work

150

This research evaluated the stability of different network architectures to attain the

ability to process long term dependency between different clauses within a sentence .

This has been a key challenge for artificial neural networks such as the SRN and ESN.

An artificial grammar, which replicates this problem was used to investigate a range of

recurrent network architectures with gradient descent based learning such as SRN,

NARX and MRN. Although, they have the same learning algorithm, they have

differences in their architectures in terms of their natural feedback. These were

compared with the new type of recurrent network called ESN with a one shot learning

scheme and it is shown to be incapable to store this type of information to a high degree

of accuracy. It is apparent that what neural networks need to represent in terms of a state

machine is the linear boundary automata which is a finite state machine with a push-

down stack. Therefore, it needs to be able to learn to represent the computational model,

whenever the computational model needs to learn to represent a linear bounded

automata to automate in order to process a grammar that has long-term dependency.

One aspect of the current study was to determine whether training with asymmetr ica l

rather than symmetrical sequences could help the network learning. Asymmetr ica l

sequences enhanced the learning of the networks, compared with symmetr ica l

sequences.

In order to understand the quality of the state-based representations formed, the interna l

representation of each of the networks using PCA has been analysed to provide some

visualisation of the trajectories through state space as a sequence is processed and

therefore to ascertain whether this followed the underlying grammar, and if so, how

robustly. PCA was performed on SRN, NARX, MRN and ESN because of their higher

performance among the other networks.

It was noted that all models analysed had formed meaningful representations of the

underlying grammar, where centroids within PCA space represented different states of

the grammar. For SRN, MRN and ESN there was a clear mirroring effect within PCA

space between the state space trajectories for the upper and lower embedded grammars.

However, only the MRN was able to maintain sufficient distance between the

representations of the two embedded grammars in order to consistently exit the

embedded part to the correct exit point (grammar state 7). What do we mean by

Chapter 7: Conclusion and Future Work

151

sufficient distance? Well, the research analysis showed that only the MRN mainta ined

a constant variance between the distances of the centroids (grammar states) across all

states of the embedded grammars. The NARX, SRN and ESN were all unable to form

a constant variance between states. This strongly suggests that although the additiona l

graded-state memory mechanism of the MRN requires additional weights, this is

countered by the resulting quality and stability of the state-based representations formed

i.e. it was able to more fully learn the training sequences and form hypotheses that

provided robust generalisation to statistically biased and unbiased data.

The challenge of the long-term dependency meant that the embedded parts are correctly

predicted while the long term dependency part is incorrectly memorised. The best

architecture and learning algorithm to capture the long term dependency was the MRN

in terms of the degree to which it learnt the problem and the degree to which it

generalised to unique sequences beyond those found in the training set. In contrast, other

networks such as ESN memorised or learned the embedded grammar but failed to

adequately capture the long term dependency and therefore, to actually incorporate the

embedded part correctly.

Throughout this research, the training method and training parameters were investiga ted

to optimise these networks. Some key findings are:

Noise injection has enhanced the MRN performance by approximately 10% compared

with when used without it. The range of the value of noise that provides the MRN with

stability is ±0.01. Implementing this technique to the other networks did not enhance

the networks; however, more investigations need to be conducted since more noise

values need to be studied. The best values of the spectral radius and connectivity and

the range weight were as mentioned previously. These values were arrived out using

the ANOVA method and a range of training results with the ESN.

The results of this investigation show that the performance of the SRN and MRN are

quite sensitive to the initial starting conditions comparing with the ESN. In addition to

this, however, SRN, NARX and MRN have a similar learning algorithm; they have

different feedback connections whereas the ESN is completely different in terms of

learning algorithm and connections feedback.

Chapter 7: Conclusion and Future Work

152

Although in some instances in some paths of the grammar, some SRN and ESN have

learned particular paths very well, in terms of the problem as a whole and across all

paths of the grammar, the MRN is more constant in being able to correctly recognise

sequences that are longer than and/or different from those in the training dataset, which

shows a strong level of generation.

Analysing the internal representation of the networks using PCA demonstrated the

systematic learning of different networks, particularly where sequences were the same

in the embedded. This provided a mirroring between sequences in terms of those with

upper and lower embedded sections which then diverged at state seven and these were

compared using. The MRN captured the knowledge of the embedded grammar since it

distributed the variance of the centroid for both upper and lower parts of the grammar

in a constant way. This attribute was seen to a lesser extent in the NARX, followed by

the SRN and then the ESN.

7.4 Future Research Directions.

Further investigations, in which future works could proceed, are listed below:

Although the MRN was superior over the other networks, further investigation is

required to better understand the representations formed. For example, do MRNs allow

for systematicity of language and structure? Can so-called ‘deep neural networks’ offer

further representational power to the MRN? Since the grammar induction task involves

learning grammar whose structure is potentially unknown, the model must be able to

correctly predict the grammar to a reliable degree.

This work provides support for further exploration of the MRN for modelling human

sentence processing and the associated computational machinery neutrally implemented

within the brain (e.g. registers, counter functions, variable binding through temporal

synchrony of neuronal firing). In particular, it would be interesting to investiga te

whether the generalization performance of the MRN when processing centre-embedded

clauses is akin to that of human working memory when processing similar grammatica l

structures, building on the work of Cowan, 2001 and contrasting the MRN

Chapter 7: Conclusion and Future Work

153

representations with those of the LSTM. Also, as the number of memory banks within

the MRN, and thus the degree of granularity to which it integrates and stores past and

current information, has to be pre-determined, how the number of memory banks can

be automatically determined or learnt for a given prediction task could be explored.

Additional work also needs to be conducted to compare the MRN with long short term

memory (LSTM) both from a theoretical and also an experimental point of view, to

assess the LSTM against the MRN and ESN. Although LSTM has well counting

facilities, to what extent language acquisition requires more complex machinery than

counters and stacks could be assessed.

Appendixes

154

References

Aimetti, G., 2009. Modelling early language acquisition skills: Towards a general

statistical learning mechanism. In: Proceedings of the 12th Conference of the European

Chapter of the Association for Computational Linguistics: Student Research Workshop,

Association for Computational Linguistics, pp. 1-9.

Al-Habaibeh, A., Zorriassatine, F. and Gindy, N., 2002. Comprehensive experimenta l

evaluation of a systematic approach for cost effective and rapid design of condition

monitoring systems using Taguchi’s method. Journal of Materials Processing

Technology, 124 (3), 372-383.

Allen, J. (1995) NATURAL LANGUAGE UNDERSTANDING, 2nd edition, CA, The

Benjamin/Cummings Publishing Company Inc.

Alpsan, D., Towsey, M., Ozdamar, O., Tsoi, A.C. and Ghista, D.N., 1995. Efficacy of

modified backpropagation and optimisation methods on a real-world medical problem.

Neural Networks, 8 (6), 945-962.

Arnold, D., Balkan, L., Meijer, S., Humphreys, R. and Sadler, L. (1993) Machine

Translation: An Introductory Guide. Manchester, Blackwell publishers.

Baker, J.K., 1979. Trainable grammars for speech recognition. The Journal of the

Acoustical Society of America, 65, S132.

Bakker, B., 2001. Reinforcement Learning with Long Short-Term Memory. In: NIPS,

pp. 1475-1482.

Batchelder, E.O., 2002. Bootstrapping the lexicon: A computational model of infant

speech segmentation. Cognition, 83 (2), 167-206.

Beaufays, F., Bourlard, H., Franco, H. and Morgan, N. (2001) NEURAL NETWORKS

IN AUTOMATIC SPEECH RECOGNITION. In: M. Arbib (ed) The Handbook of

Brain Theory and Neural Networks, 2nd Edition. Bradford Books.

Appendixes

155

Becerikli, Y., Konar, A.F. and Samad, T., 2003. Intelligent optimal control with

dynamic neural networks. Neural Networks, 16 (2), 251-259.

Bengio, Y., Simard, P. And Frasconi, P., 1994. Learning long-term dependencies with

gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2), pp. 157-

166.

Bengio, Y., Simard, P. and Frasconi, P., 1994. Learning long-term dependencies with

gradient descent is difficult. Neural Networks, IEEE Transactions on, 5 (2), 157-166.

Binner, J.M., Tino, P., Tepper, J., Anderson, R., Jones, B. and Kendall, G., 2010. Does

money matter in inflation forecasting? Physica A: Statistical Mechanics and its

Applications, 389 (21), 4793-4808.

Bishop, C.M., 1995. Training with noise is equivalent to Tikhonov regularizat ion.

Neural Computation, 7 (1), 108-116.

Blank, D.S., Meeden, L.A. and Marshall, J.B., 1992. Exploring the

symbolic/subsymbolic continuum: A case study of RAAM. The Symbolic and

Connectionist Paradigms: Closing the Gap, 113, 148.

Boné, R., Crucianu, M. and Asselin de Beauville, J., 2002. Learning long- term

dependencies by the selective addition of time-delayed connections to recurrent neural

networks. Neurocomputing, 48 (1), 251-266.

Brown, R., 1973. A first language: The early stages. Harvard U. Press.

Buehner, M., and Young, P., 2006. A tighter bound for the echo state property. IEEE

Transactions on Neural Networks, 17 (3), 820-824.

Bullinaria, J., 1997. Analyzing the internal representations of trained neural networks.

Neural Network Analysis, Architectures and Algorithms, , 3-26.

Cammarota, M., Bevilaqua, L.R.M., Rossato, J.I., Ramirez, M., Medina, J.H. and

Izquierdo, I., 2005. Relationship between short- and long-term memory and short- and

long-term extinction. Neurobiology of Learning and Memory, 84 (1), 25-32.

Appendixes

156

Cartling, B., 2008. On the implicit acquisition of a context-free grammar by a simple

recurrent neural network. Neurocomputing, 71 (7-9), 1527-1537.

Čerňanský, M., Makula, M. and Beňušková, Ľ., 2007. Organization of the state space

of a simple recurrent network before and after training on recursive linguistic structures.

Neural Networks, 20 (2), 236-244.

Chalup, S.K., and Blair, A.D., 2003. Incremental training of first order recurrent neural

networks to predict a context-sensitive language. Neural Networks, 16 (7), 955-972.

Chater, N., and Manning, C.D., 2006. Probabilistic models of language processing and

acquisition. Trends in Cognitive Sciences, 10 (7), 335-344.

Chen, S., Billings, S. and Grant, P., 1990. Non-linear system identification using neural

networks. International Journal of Control, 51 (6), 1191-1214.

Chen, T., Lin, K.H.C. and Soo, V., 1997. Training recurrent neural networks to learn

lexical encoding and thematic role assignment in parsing Mandarin Chinese sentences.

Neurocomputing, 15 (3-4), 383-409.

Chomsky, N., 1959. On certain formal properties of grammars. Information and

Control, 2 (2), 137-167.

Chomsky, N., and Halle, M., 1968. The sound pattern of English. New York, NY:

Harper and Row.

Christiansen, M.H., and Curtin, S.L., 1999. The power of statistical learning: No need

for algebraic rules. In: Proceedings of the 21st annual conference of the Cognitive

Science Society, Citeseer, pp. 119.

Cleeremans, A., and Dienes, Z., 2008. Computational models of implicit learning.

Cambridge Handbook of Computational Psychology, , 396-421.

Cleeremans, A., Destrebecqz, A. and Boyer, M., 1998. Implicit learning: news from the

front. Trends in Cognitive Sciences, 2 (10), 406-416.

Appendixes

157

Cleeremans, A., Servan-Schreiber, D. and McClelland, J.L., 1989. Finite state automata

and simple recurrent networks. Neural Computation, 1 (3), 372-381.

Conway, C.M., Bauernschmidt, A., Huang, S.S. and Pisoni, D.B., 2010. Implic it

statistical learning in language processing: Word predictability is the key. Cognition,

114 (3), 356-371.

Corrigan, R. and Iverson, G. (eds) (1994) The reality of linguistic rules. Amsterdam,

Benjamins.

Cowan, N., 2001. The magical number 4 in short-term memory: A reconsideration of

mental storage capacity. Behavioral and Brain Sciences, 24:87–185.

Cramer, B., 2007. Limitations of current grammar induction algorithms. In:

Proceedings of the 45th annual meeting of the ACL: student research workshop,

Association for Computational Linguistics, pp. 43-48.

Craven, M., and Shavlik, J.W., 1994. Using Sampling and Queries to Extract Rules

from Trained Neural Networks. In: ICML, Citeseer, pp. 37-45.

D’Ulizia, A., Ferri, F. and Grifoni, P., 2011. A survey of grammatical inference methods

for natural language learning. Artificial Intelligence Review, 36 (1), 1-27.

De Albuquerque, Victor Hugo C, de Alexandria, A.R., Cortez, P.C. and Tavares,

J.M.R., 2009. Evaluation of multilayer perceptron and self-organizing map neural

network topologies applied on microstructure segmentation from metallographic

images. NDT & E International, 42 (7), 644-651.

Deliang, W., Xiaomei, L. And Ahalt, S.C., 1996. On temporal generalization of simple

recurrent networks. Neural Networks, 9(7), pp. 1099-1118.

Deliang, W., Xiaomei, L. and Ahalt, S.C., 1996. On temporal generalization of simple

recurrent networks. Neural Networks, 9 (7), 1099-1118.

Deng, R., and Fox, M.D., 2007. Parametric optimization for EPGVF snake using

ANOVA and Taguchi method. In: Bioengineering Conference, 2007. NEBC'07. IEEE

33rd Annual Northeast, IEEE, pp. 108-109.

Appendixes

158

Diaconescu, E., 2008. The use of NARX neural networks to predict chaotic time series.

WSEAS Transactions on Computer Research, 3 (3), 182-191.

Dienes, Z., 1992. Connectionist and memory-array models of artificial grammar

learning. Cognitive Science, 16 (1), 41-79.

Dienes, Z., Altmann, G.T.M. and Gao, S., 1999. Mapping across domains without

feedback: A neural network model of transfer of implicit knowledge. Cognitive Science,

23 (1), 53-82.

Dienes, Z., Broadbent, D. and Berry, D.C., 1991. Implicit and explicit knowledge bases

in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 17 (5), 875.

Doey, T., 2008. Child Language Acquisition and Growth. Journal of the Canadian

Academy of Child and Adolescent Psychiatry, 17 (3), 163.

Dorffner, G., 1996. Neural networks for time series processing. In: Neural Network

World, Citeseer.

Dror, G., MacLeod, C. and Maxwell, G., Training artificial neural networks using

Taguchi methods.

Du, K.-., 2010. Clustering: A neural network approach. Neural Networks, 23 (1), 89-

107.

Elman, J.L., 1990. Finding structure in time. Cognitive Science, 14 (2), 179-211.

Elman, J.L., 1993. Learning and development in neural networks: The importance of

starting small. Cognition, 48 (1), 71-99.

Elman, J.L., 1995. Language as a dynamical system. Mind as Motion: Explorations in

the Dynamics of Cognition, , 195-223.

Elman, J.L., 2001. Connectionism and language acquisition. Language Development:

The Essential Readings, , 295-306.

Appendixes

159

Frank. A. Buckless and S. P. Ravenscroft, "Contrast coding: A refinement of ANOVA

in behavioral analysis," Accounting Review, pp. 933-945, 1990.

Fred, Karlsson, “Working Memory Constraints on Multiple Center-Embedding

Definition of Center-Embedding,” Traffic, pp. 2045–2050, 2007.

Fahlman, S.E., 1991. The recurrent cascade-correlation architecture.

Farkaš, I. And Crocker, M.W., 2008. Syntactic systematicity in sentence processing

with a recurrent self-organizing network. Neurocomputing, 71(7-9), pp. 1172-1179.

Farkaš, I., and Crocker, M.W., 2008. Syntactic systematicity in sentence processing

with a recurrent self-organizing network. Neurocomputing, 71 (7-9), 1172-1179.

Feldman, J., and Howell, S.R., PDP and Structured Connectionism: An Integrated View

on Language Acquisition.

Fitch, W.T., and Hauser, M.D., 2004. Computational constraints on syntactic

processing in a nonhuman primate. Science, 303 (5656), 377-380.

Fodor, J.A., and Pylyshyn, Z.W., 1988. Connectionism and cognitive architecture: A

critical analysis. Cognition, 28 (1), 3-71.

Frank, S.L., 2006. Learn more by training less: systematicity in sentence processing by

recurrent networks. Connection Science, 18 (3), 287-302.

French, R.M., 1992. Semi-distributed representations and catastrophic forgetting in

connectionist networks. Connection Science, 4(3-4), pp. 365-377.

French, R.M., 1999. Catastrophic forgetting in connectionist networks. Trends in

Cognitive Sciences, 3 (4), 128-135.

Gabrijel, I., and Dobnikar, A., 2003. On-line identification and reconstruction of finite

automata with generalized recurrent neural networks. Neural Networks, 16 (1), 101-

120.

Appendixes

160

Gallagher, M., and Downs, T., 2003. Visualization of learning in multilayer perceptron

networks using principal component analysis. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 33 (1), 28-34.

Gathercole SE. Nonword repetition and word learning: The nature of the relationship.

Applied Psycholinguistics 2006;27(4):513-543. Gers, F.A., and Schmidhuber, E., 2001.

LSTM recurrent networks learn simple context-free and context-sensit ive

languages. Neural Networks, IEEE Transactions on, 12 (6), 1333-1340.

Gers, F., 2001. Long Short-Term Memory in Recurrent Neural Networks. Lausanne,

EPFL.

Gers, F.A., and Schmidhuber, E., 2001. LSTM recurrent networks learn simple context-

free and context-sensitive languages. Neural Networks, IEEE Transactions on, 12 (6),

1333-1340.

Girosi, F., Jones, M. and Poggio, T., 1995. Regularization theory and neural networks

architectures. Neural Computation, 7 (2), 219-269.

Gluck, M.A., and Myers, C.E., 2001. Gateway to memory: An introduction to neural

network modeling of the hippocampus and learning. The MIT Press.

Gold, E. (1967) Language Identification in the Limit. Information and Control, 16, 447-

474.

Gopalsamy, B.M., Mondal, B. and Ghosh, S., 2009. Taguchi method and ANOVA: An

approach for process parameters optimization of hard machining while machining

hardened steel. Journal of Scientific & Industrial Research, 68 (8), 686-695.

Gordon, P., 2004. Numerical cognition without words: Evidence from Amazonia.

Science, 306 (5695), 496-499.

Goschke, T., and Bolte, A., 2007. Implicit Learning of Semantic Category Sequences:

Response-Independent Acquisition of Abstract Sequential Regularities. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 33 (2), 394-406.

Appendixes

161

Grishman, R. (1986). Computational Linguistics: an introduction. Cambridge

University Press.

Grüning, A., 2007. Elman backpropagation as reinforcement for simple recurrent

networks. Neural Computation, 19 (11), 3108-3131.

Gupta, L., and McAvoy, M., 2000. Investigating the prediction capabilities of the simple

recurrent neural network on real temporal sequences. Pattern Recognition, 33 (12),

2075-2081.

Gupta, L., Mcavoy, M. And Phegley, J., 2000. Classification of temporal sequences via

prediction using the simple recurrent neural network. Pattern Recognition, 33(10), pp.

1759-1770.

Hammerton, J., 2001. Clause identification with long short-term memory. In:

Proceedings of the 2001 workshop on Computational Natural Language Learning-

Volume 7, Association for Computational Linguistics, pp. 22.

Hammerton, J., 2003. Named entity recognition with long short-term memory. In:

Proceedings of the seventh conference on Natural language learning at HLT-NAACL

2003-Volume 4, Association for Computational Linguistics, pp. 172-175.

Hannon, E. E. & Trehub, S. E. (2005), 'Tuning in to musical rhythms: Infants learn more

readily than adults', PNAS 102(35), 12639-12643.Henderson, J., and Lane, P., 1998. A

connectionist architecture for learning to parse. In: Proceedings of the 17th

international conference on Computational linguistics-Volume 1, Association for

Computational Linguistics, pp. 531-537.

Henrik Jacobsson, Rule extraction from recurrent neural networks: a taxonomy and

review, Neural Comput. 17 (2005) 1223–1263.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R.,

2012. Improving neural networks by preventing co-adaptation of feature detectors.

ArXiv Preprint arXiv:1207.0580.

Appendixes

162

Hochreiter, S., and Schmidhuber, J., 1997. Long short-term memory. Neural

Computation, 9 (8), 1735-1780.

Hoff, E., 2009. Language development at an early age: learning mechanisms and

outcomes from birth to five years. Encyclopedia on Early Childhood Development, , 1-

5.

Horning, J. (1969) A study of grammatical inference. PhD thesis, Stanford Univers ity,

California.Hwa, R., 2000. Sample selection for statistical grammar induction. In:

Proceedings of the 2000 Joint SIGDAT conference on Empirical methods in natural

language processing and very large corpora: held in conjunction with the 38th Annual

Meeting of the Association for Computational Linguistics-Volume 13, Association for

Computational Linguistics, pp. 45-52.

J. A. P�rez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber, “Kalman filters improve

LSTM network performance in problems unsolvable by traditional recurrent nets, ”

Neural Networks, vol. 16, no. 2, pp. 241–250, 2003.

Jackendoff, R., 2002. Foundations of language: Brain, meaning, grammar, evolution.

Oxford University Press, USA.

Jackson, D., Constandse, R. and Cottrell, G. (1996) Selective attention in the acquisit ion

of the past tense. In: Proceedings of the 18th Annual Conference of the Cognitive Science

Society. Hillsdale, NJ. p. 183-188.

Jaeger, H., 2001. The" echo state" approach to analysing and training recurrent neural

networks-with an erratum note'. Bonn, Germany: German National Research Center

for Information Technology GMD Technical Report, 148.

Jaeger, H., 2002. Tutorial on training recurrent neural networks, covering BPPT,

RTRL, EKF and the" echo state network" approach. GMD-Forschungszentrum

Informationstechnik.

Jaeger, H., 2003. Adaptive nonlinear system identification with echo state networks.

Networks, 8, 9.

Appendixes

163

Jaeger, H., 2007. Discovering multiscale dynamical features with hierarchical echo state

networks. Jacobs University Bremen, Tech.Rep.

Jaeger, H., Lukoševičius, M., Popovici, D. and Siewert, U., 2007. Optimization and

applications of echo state networks with leaky- integrator neurons. Neural Networks,

20 (3), 335-352.

Jagota, A., Lyngsø, R.B. and Pedersen, C.N., 2001. Comparing a hidden Markov model

and a stochastic context-free grammar. In: Comparing a hidden Markov model and a

stochastic context-free grammar. Algorithms in Bioinformatics. Springer, 2001, pp. 69-

84.

James, D.S.S.A.C., and McClelland, L., 1988. Encoding Sequential Structure In Simple

Recurrent Networks. CMU-CS-88- 183. Carnegie Mellon University, Computer

Science Department, Pittsburgh.

James. Hammerton, "Named entity recognition with long short-term memory, "

in Proceedings of the Seventh Conference on Natural Language Learning at HLT-

NAACL 2003-Volume 4, 2003, pp. 172-175.

Jiang, C., and Song, F., 2010. Forecasting chaotic time series of exchange rate based on

nonlinear autoregressive model. In: Advanced Computer Control (ICACC), 2010 2nd

International Conference on, IEEE, pp. 238-241.

Jin, Y., and Geman, S., 2006. Context and hierarchy in a probabilistic image model. In:

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference

on, IEEE, pp. 2145-2152.

Johnson, K., 2004. Gold’s Theorem and Cognitive Science*. Philosophy of Science, 71

(4), 571-592.

Jonker, J., 2007. Grammar induction and PP attachment disambiguation.

Jordan, M., 1986. Attractor dynamics and parallelism in a sequential connectionis t

machine. In: Proceedings of 9th Annual Conference of Cognitive Science Society, pp.

531-546.

Appendixes

164

Kalman, B.L., and Kwasny, S.C., 1997. High performance training of feedforward and

simple recurrent networks. Neurocomputing, 14 (1), 63-83.

Khaw, J.F., Lim, B. and Lim, L.E., 1995. Optimal design of neural networks using the

Taguchi method. Neurocomputing, 7 (3), 225-245.

Kolen, J.F., 1994. Fool's gold: Extracting finite state machines from recurrent network

dynamics. Advances in Neural Information Processing Systems, , 501-501.

Kolen, J.F., and Kremer, S.C., 2001. A field guide to dynamical recurrent

networks. John Wiley & Sons.

Kolen, J.F., and Pollack, J.B., 1990. Back Propagation is Sensitive to Initial Conditions.

In: NIPS, pp. 860-867.

Koskela, T., Varsta, M., Heikkonen, J. and Kaski, K., 1998. Temporal sequence

processing using recurrent SOM. In: Knowledge-Based Intelligent Electronic Systems,

1998. Proceedings KES'98. 1998 Second International Conference on, IEEE, pp. 290-

297.

Lachter, J., and Bever, T.G., 1988. The relation between linguistic structure and

associative theories of language learning—A constructive critique of some

connectionist learning models. Cognition, 28 (1), 195-247.

Lari, K., and Young, S.J., 1990. The estimation of stochastic context-free grammars

using the inside-outside algorithm. Computer Speech & Language, 4 (1), 35-56.

Lawrence, S., Giles, C.L. and Fong, S., 2000. Natural language grammatical inference

with recurrent neural networks. Knowledge and Data Engineering, IEEE Transactions

on, 12 (1), 126-140.

Lewis, J.D., and Elman, J., 2001. Learnability and the statistical structure of language :

Poverty of stimulus arguments revisited. In: Proceedings of the 26th annual Boston

University conference on language development, Citeseer, pp. 359-370.

Lin, T. & Meador,J.,1992. Classification-accuracy monitored backpropagation, Pp.

1553-1556.

Appendixes

165

Lin, T., Horne, B.G., Tino, P. and Giles, C.L., 1996. Learning long-term dependencies

in NARX recurrent neural networks. Neural Networks, IEEE Transactions on, 7 (6),

1329-1338.

Lin, X., Yang, Z. and Song, Y., 2009. Short-term stock price prediction based on echo

state networks. Expert System with Applications, 36 (3, Part 2), 7313-7317.

Lo, Y., and Tsao, C., 2002. Integrated Taguchi method and neural network analysis of

physical profiling in the wirebonding process. Components and Packaging

Technologies, IEEE Transactions on, 25 (2), 270-277.

Lubell-Doughtie, P., 2010. Using Echo State Networks to Count without a Counter.

Luce, R.D., 1963. Detection and recognition. Handbook of Mathematical Psychology,

1, 103-189.

LukošEvičIus, M., and Jaeger, H., 2009. Survey: Reservoir computing approaches to

recurrent neural network training. Computer Science Review, 3 (3), 127-149.

Lust, B., 2006. Child language. Cambridge University Press.

M. H. Tong, A. D. Bickett, E. M. Christiansen, and G. W. Cottrell, “Learning

grammatical structure with Echo State Networks.,” Neural Netw., vol. 20, no. 3, pp.

424–32, Apr. 2007.

Ma, S., and Ji, C., 1998. Fast training of recurrent networks based on the EM algorithm.

Neural Networks, IEEE Transactions on, 9 (1), 11-26.

Mabbutt, S., Picton, P., Shaw, P. and Black, S., 2012. Review of Artificial Neural

Networks (ANN) applied to corrosion monitoring. In: Journal of Physics: Conference

Series, IOP Publishing, pp. 012114.

MacKay, D.J., 1995. Probable networks and plausible predictions-a review of practical

Bayesian methods for supervised neural networks. Network: Computation in Neural

Systems, 6 (3), 469-505.

Appendixes

166

Macleod, C., Dror, G. and Maxwell, G., 1999. Training artificial neural networks using

Taguchi methods. Artificial Intelligence Review, 13 (3), 177-184.

MacWhinney, B (2004) A multiple process solution to the logical problem of language

acquisition. Journal of Child Language, 31, 883-914.

Mamdani, E., Østergaard, J. and Lembessis, E., 1983. Use of fuzzy logic for

implementing rule-based control of industrial processes. In: Use of fuzzy logic for

implementing rule-based control of industrial processes. Advances in Fuzzy Sets,

Possibility Theory, and Applications. Springer, 1983, pp. 307-323.

Manning, C.D., and Schütze, H., 1999. Foundations of statistical natural language

processing. MIT press.

Marcus, G.F., 1998. Can connectionism save constructivism? Cognition, 66 (2), 153-

182.

Marcus, G.F., 1999. Language acquisition in the absence of explicit negative evidence:

can simple recurrent networks obviate the need for domain-specific learning devices?

Cognition, 73 (3), 293-296.

Marcus, G.F., 2003. The algebraic mind: Integrating connectionism and cognitive

science. The MIT Press.

Marcus, G.F., Vijayan, S., Rao, S.B. and Vishton, P.M., 1999. Rule learning by seven-

month-old infants. Science, 283 (5398), 77-80.

Mareschal, D., and Shultz, T.R., 1996. Generative connectionist networks and

constructivist cognitive development. Cognitive Development, 11 (4), 571-603.

Marques, F., Souza, L.F., Rebolho, D., Caporali, A., Belo, E. and Ortolan, R., 2005.

Application of time-delay neural and recurrent neural networks for the identification of

a hingeless helicopter blade flapping and torsion motions. Journal of the Brazilian

Society of Mechanical Sciences and Engineering, 27, 97.

Matsuoka, K., 1992. Noise injection into inputs in back-propagation learning. Systems,

Man and Cybernetics, IEEE Transactions on, 22 (3), 436-440.

Appendixes

167

McQueen, T., Hopgood, A.A., Allen, T.J. and Tepper, J.A., 2005. Extracting finite

structure from infinite language. Knowledge-Based Systems, 18 (4-5), 135-141.

Medsker, L.R., and Jain, L.C., 2000. Recurrent neural networks design and

applications. USA: CRC Press LLC.

Menezes Jr, José Maria P, and Barreto, G.A., 2008. Long-term time series prediction

with the NARX network: An empirical evaluation. Neurocomputing, 71 (16), 3335-

3343.

Murphy, K., 2001. An introduction to graphical models. Rap.Tech.

Naseem, T., Chen, H., Barzilay, R. and Johnson, M., 2010. Using universal linguist ic

knowledge to guide grammar induction. In: Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, Association for Computationa l

Linguistics, pp. 1234-1244.

Newell, A., 1994. Unified theories of cognition. Harvard University Press.

Noel Sharkey, Amanda Sharkey and Stuart Jackson, 2000. Are SRNs Sufficient for

Modeling Language Acquisition? In: Are SRNs Sufficient for Modeling Language

Acquisition? Oxford University Press, 2000, pp. 33-54.

Noris, B., Nobile, M., Piccini, L., Berti, M., Mani, E., Molteni, M., Keller, F., Campolo,

D. and Billard, A.G., 2008. P2.104 Gait analysis of autistic children with Echo State

Networks. Parkinsonism & Related Disorders, 14 (Supplement 1), S70-S70.

O'connell, T.C., 1995. Using Periodically Attentive Units to Extend the Temporal

Capacity of Simple Recurrent Networks.

Oja, E., 1982. Simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology, 15 (3), 267-273.

Omlin, C., 2001. Understanding and explaining DRN behaviour. A Field Guide to

Dynamical Recurrent Networks.

Appendixes

168

Palmer-Brown, D., Tepper, J.A. and Powell, H.M., 2002. Connectionist natural

language parsing. Trends in Cognitive Sciences, 6 (10), 437-442.

Papadatou-pastou, M., 2011. Are connectionist models neurally plausible? A critica l

appraisal. Encephalos, 48 (1), 5-12.

Pearson, K., 1901. LIII. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

2 (11), 559-572.

Pérez-Ortiz, J.A., Gers, F.A., Eck, D. and Schmidhuber, J., 2003. Kalman filters

improve LSTM network performance in problems unsolvable by traditional recurrent

nets. Neural Networks, 16 (2), 241-250.

Perruchet, P., 2008. Implicit Learning. In: John H. Byrne, ed., Learning and Memory:

A Comprehensive Reference. Oxford: Academic Press, 2008, pp. 597-621.

Perruchet, P., and Pacteau, C., 1990. Synthetic grammar learning: Implicit rule

abstraction or explicit fragmentary knowledge? Journal of Experimental Psychology:

General, 119 (3), 264.

Perruchet, P., and Pacton, S., 2006. Implicit learning and statistical learning: one

phenomenon, two approaches. Trends in Cognitive Sciences, 10 (5), 233-238.

Peterson, G.E., St Clair, D., Aylward, S.R. and Bond, W.E., 1995. Using Taguchi's

method of experimental design to control errors in layered perceptrons. Neural

Networks, IEEE Transactions on, 6 (4), 949-961.

Picton, P., 2000. Neural networks. New York: Palgrave.

Pinker, S. and Prince, A. (1988). On language and connectionism: Analysis of a parallel

distributed processing model of language acquisition. Cognition, 28, 73-193.

Plaut, D.C., 1999. Connectionist modeling. In A. E. Kazdin (Ed.), Encyclopedia of

psychology.

Plunkett, K. and Marchman, V. (1996) Learning from a connectionist model of the

English past tense. Cognition, 61, 299-308.

Appendixes

169

Pothos, E.M., 2007. Theories of Artificial Grammar Learning. Psychological Bulletin,

133 (2), 227-244.

Principe, J.C., Kuo, J.M. and de Vries, B., 1993. Backpropagation through time with

fixed memory size requirements. In: Neural Networks for Signal Processing [1993] III.

Proceedings of the 1993 IEEE-SP Workshop, IEEE, pp. 207-215.

Prokhorov, D.V., Feldkarnp, L. and Tyukin, I.Y., 2002. Adaptive behavior with fixed

weights in RNN: an overview. In: Neural Networks, 2002. IJCNN'02. Proceedings of

the 2002 International Joint Conference on, IEEE, pp. 2018-2022.

Qin, S., Su, H. and McAvoy, T.J., 1992. Comparison of four neural net learning

methods for dynamic system identification. Neural Networks, IEEE Transactions on, 3

(1), 122-130.

Rachez, A., and Hagiwara, M., 2012. Augmented Echo State Networks with a feature

layer and a nonlinear readout. In: Neural Networks (IJCNN), The 2012 International

Joint Conference on, IEEE, pp. 1-8.

Rajasekaran, S., and Pai, G.V., 2003. Neural Networks, Fuzzy Logic and Genetic

Algorithm: Synthesis and Applications (WITH CD). PHI Learning Pvt. Ltd.

Reber, A.S., 1976. Implicit learning of synthetic languages: The role of instructiona l

set. Journal of Experimental Psychology: Human Learning and Memory, 2 (1), 88-94.

Reber, A.S., Kassin, S.M., Lewis, S. and Cantor, G., 1980. On the relationship between

implicit and explicit modes in the learning of a complex rule structure. Journal of

Experimental Psychology: Human Learning and Memory, 6 (5), 492.

Reber, P.J., 2002. Attempting to model dissociations of memory. Trends in Cognitive

Sciences, 6 (5), 192-194.

Redington, M., and Chater, N., 1998. Connectionist and statistical approaches to

language acquisition: A distributional perspective. Language and Cognitive Processes,

13 (2-3), 129-191.

Appendixes

170

Rifai, S., Glorot, X., Bengio, Y. and Vincent, P., 2011. Adding noise to the input of a

model trained with a regularized objective. ArXiv Preprint arXiv:1104.3250.

Rodan, A., and Tino, P., 2011. Minimum complexity echo state network. Neural

Networks, IEEE Transactions on, 22 (1), 131-144.

Rodriguez, P., Wiles, J., & Elman, J. (1999). A Recurrent Neural Network that Learns

to Count. Connection Science, 11(1), 5–40. doi:10.1080/095400999116340.

Rohde, D.L.T., and Plaut, D.C., 1999. Simple recurrent networks can distinguish non-

occurring from ungrammatical sentences given appropriate task structure: reply to

Marcus. Cognition, 73 (3), 297-300.

Romberg, A.R., and Saffran, J.R., 2010. Statistical learning and language acquisit ion.

Wiley Interdisciplinary Reviews: Cognitive Science, 1 (6), 906-914.

Rosa, J.L.G., 2005. Biologically Plausible Artificial Neural Networks. Two-hour

tutorial at IEEE IJCNN 2005 - International Joint Conference on Neural Networks,

Montréal, Canada, July 31, 2005. Available at

http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/contributors.htm.

Rosas, R., Ceric, F., Tenorio, M., Mourgues, C., Thibaut, C., Hurtado, E. and Aravena,

M.T., 2010. ADHD children outperform normal children in an artificial grammar

implicit learning task: ERP and RT evidence. Consciousness and Cognition, 19 (1),

341-351.

Roy, R., 2010. A primer on the Taguchi method. Society of Manufacturing Engineers.

Rumelhart, D.E., and McClelland, J.L., 1985. On learning the past tenses of English

verbs. Institute for Cognitive Science, University of California, San Diego.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1985. Learning Internal

Representations by Error Propagation.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 2002. Learning representations by

back-propagating errors. Cognitive Modeling, 1, 213.

http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/contributors.htm

Appendixes

171

Rumelhart, D.E., Hintont, G.E. and Williams, R.J., 1986. Learning representations by

back-propagating errors. Nature, 323 (6088), 533-536.

Sapir, E., 1929. The status of linguistics as a science. Language, , 207-214.

Seidenberg, M.S., MacDonald, M.C. and Saffran, J.R., 2002. Does grammar start where

statistics stop? Science, 298 (5593), 553-554.

Servan-Schreiber, D., Cleeremans, A. and McClelland, J.L., 1989. Encoding Sequential

Structure in Simple Recurrent Networks.

Servan-Schreiber, D., Cleeremans, A. and McClelland, J.L., 1991. Graded state

machines: The representation of temporal contingencies in simple recurrent networks.

Machine Learning, 7 (2-3), 161-193.

Setiono, R., and Liu, H., 1995. Understanding neural networks via rule extraction. In:

IJCAI, Citeseer, pp. 480-485.

Ševa, N. (2006). Exploring the facilitating effect of diminutives on the acquisition of

Serbian noun morphology, (August).

Shaw, A.M., Doyle, F.J. and Schwaber, J.S., 1997. A dynamic neural network approach

to nonlinear process modeling. Computers & Chemical Engineering, 21 (4), 371-385.

Siegelmann, H.T., Horne, B.G. and Giles, C.L., 1997. Computational capabilities of

recurrent NARX neural networks. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 27 (2), 208-215.

Skowronski, M.D., and Harris, J.G., 2006. Minimum mean squared error time series

classification using an echo state network prediction model. In: Circuits and Systems,

2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, IEEE, pp. 4

pp.-3156.

Smith, L.I., 2002. A tutorial on principal components analysis. Cornell University, USA,

51, 52.

Stoianov, I.P., 2001. Connectionist Lexical Processing.

Appendixes

172

Sun, R., 2008. Introduction to computational cognitive modeling. Cambridge

Handbook of Computational Psychology, , 3-19.

Sutskever, I., and Hinton, G., 2010. Temporal-kernel recurrent neural networks. Neural

Networks, 23 (2), 239-243.

Tebelskis, J., 1995. Speech Recognition using Neural Networks.

Tepper, J.A., Powell, H. and Palmer-Brown, D., 1995. Integrating symbolic and

subsymbolic architectures for parsing arithmetic expressions and natural language

sentences. In: Integrating symbolic and subsymbolic architectures for parsing

arithmetic expressions and natural language sentences. Neural Networks: Artificial

Intelligence and Industrial Applications. Springer, 1995, pp. 81-84.

Tepper, J.A., Powell, H.M. and Palmer-Brown, D., 2002. A corpus-based connectionis t

architecture for large-scale natural language parsing. Connection Science, 14 (2), 93-

114.

Thomas, M.S., and McClelland, J.L., 2008. Connectionist models of cognition. The

Cambridge Handbook of Computational Psychology, , 23-58.

Tjongkimsang, E., 1992. A connectionist representation for phrase structures.

Univ.Twente, Connectionism and Natural Language Processing p 53-55(SEE N 94-

20242 05-63).

Tomasello, M., and Tomasello, M., 2009. Constructing a language: A usage-based

theory of language acquisition. Harvard University Press.

Tong, M.H., Bickett, A.D., Christiansen, E.M. and Cottrell, G.W., 2007. Learning

grammatical structure with echo state networks. Neural Networks, 20 (3), 424-432.

Trevor. Hastie, Robert. Tibshirani and Friedman, J.J.H., 2001. The elements of

statistical learning. Springer New York.

Tsai, J., Chou, J. and Liu, T., 2006. Tuning the structure and parameters of a neural

network by using hybrid Taguchi-genetic algorithm. Neural Networks, IEEE

Transactions on, 17 (1), 69-80.

Appendixes

173

Ulbricht, C., 1995. Multi-recurrent networks for traffic forecasting. In: Proceedings Of

The National Conference On Artificial Intelligence, John Wiley & Sons LTD, pp. 883-

883.

Van der Velde, F., and De Kamps, M., 2006. Neural blackboard architectures of

combinatorial structures in cognition. Behavioral and Brain Sciences, 29 (1), 37-69.

van der Velde, F., van der Voort van der Kleij, Gwendid T and de Kamps, M., 2004.

Lack of combinatorial productivity in language processing with simple recurrent

networks. Connection Science, 16 (1), 21-46.

Venayagamoorthy, G.K., and Shishir, B., 2009. Effects of spectral radius and settling

time in the performance of echo state networks. Neural Networks, 22 (7), 861-863.

Verstraeten, D., 2009. Reservoir Computing: computation with dynamical systems.

Victor Chow, K., Denning, K.C., Ferris, S. and Noronha, G., 1995. Long-term and

short-term price memory in the stock market. Economics Letters, 49 (3), 287-293.

Wah, B.W., and Qian, M., 2004. Constraint-Based Neural Network Learning for Time

Series Predictions. In: Constraint-Based Neural Network Learning for Time Series

Predictions. Intelligent Technologies for Information Analysis. Springer, 2004, pp. 409-

431.

Waibel, A., 1989. Modular construction of time-delay neural networks for speech

recognition. Neural Computation, 1 (1), 39-46.

Wan, L., Zeiler, M., Zhang, S., Cun, Y.L. and Fergus, R., 2013. Regularization of neural

networks using dropconnect. In: Proceedings of the 30th International Conference on

Machine Learning (ICML-13), pp. 1058-1066.

Wang, Y., Picton, P., Turner, S. and Attenburrow, G., 2011. Predicting leather handle

like an expert by artificial neural networks. Applied Artificial Intelligence, 25 (2), 180-

192.

Appendixes

174

Washington, DC: American Psychological Association. Plunkett, K., Karmiloff‐Smith,

A., Bates, E., Elman, J.L. and Johnson, M.H., 1997. Connectionism and developmenta l

psychology. Journal of Child Psychology and Psychiatry, 38 (1), 53-80.

Weckerly, J and Elman, J. (1992) A PDP approach to processing center-embedded

sentences. In: Proceedings of the Fourteenth Annual Conference of the Cognitive

Science Society. Hillsdale, NJ. Lawrence Erlbaum Associates. p. 414-419.

Weigend, A.S., Rumelhart, D.E. and Huberman, B.A., 1991. Generalization by weight-

elimination with application to forecasting.

Werbos, P.J., 1990. Backpropagation through time: What it does and how to do it.

Proceedings of the IEEE, 78 (10), 1550-1560.

Wilson, D.R., and Martinez, T.R., 2001. The need for small learning rates on large

problems. In: Neural Networks, 2001. Proceedings. IJCNN'01. International Joint

Conference on, IEEE, pp. 115-119 vol. 1.

Yang, W., and Tarng, Y., 1998. Design optimization of cutting parameters for turning

operations based on the Taguchi method. Journal of Materials Processing Technology,

84 (1), 122-129.

Yildiz, I.B., Jaeger, H. and Kiebel, S.J., 2012. Re-visiting the echo state

property. Neural Networks.

Yildiz, I.B., Jaeger, H. and Kiebel, S.J., 2012. Re-visiting the echo state property.

Neural Networks.

Zeng, Z., Goodman, R.M. and Smyth, P., 1993. Learning finite state machines with self-

clustering recurrent networks. Neural Computation, 5 (6), 976-990.

Zur, R.M., Jiang, Y., Pesce, L.L. and Drukker, K., 2009. Noise injection for training

artificial neural networks: A comparison with weight decay and early stopping. Medical

Physics, 36, 4810.

Appendixes

175

Appendixes

Appendix A: Some Results of Medium Acceptance Criterion

Using SRN

Medium Acceptance Criterion

In order to deal with the situation where there is only one right answer for the

penultimate symbol in the embedded Reber grammar (as opposed to two at each stage

of the Reber grammar) a medium acceptance criterion was applied. The aim was to

investigate the performance of the SRN on the embedded Reber grammar using the

Luce ratio (Luce 1963) approach to assessing correctness. It is calculated by dividing a

given output unit’s activation value of all output units. This kind of measurement is a

common method used in psychology to model the strength of response tendency among

a finite set of alternatives (James, McClelland 1988). It has also quantified the

prediction accuracy of the network and it is produced comparable predication accuracy

endorsement rates. In these experiments, the same training file was used for ten

networks. Table 1 illustrates the best five training results. The effect of the medium

acceptance criterion needs to be investigated with this representation before

experiments using the second representation (0 & 1) described in chapter four. 10

networks trained and the table shows the five most successful. The network has not

learned enough of the embedded structure, contrary with the results obtained from the

previous method. In addition, the results of the penultimate dropped compared with the

previous result.

Even after training the network with the second representations of the symbols (0.2 &

0.8). The network has not learned as the first representation it was poor results.

Appendixes

176

Net

Whole

Sequence

% Correct

Embed% Penult%

Incorrect

Alternative

Penult%

Wrong

Penult%

1 68.05 98.45 68.56 31.43 0

2 68.14 98.33 68.98 31.01 0

3 63.02 93.81 67.56 32.34 0

4 49.65 99.25 50.24 49.75 0

5 49.46 97.7 50.08 49.91 0

Table 1 SRN training results in learning the embedded Reber grammar with medium

acceptance criterion applied

Net

Whole

Sequence

% Correct

Embed% Penult%

Incorrect

Alternative

Penult%

Wrong

Penult%

1 1.1 94.7 1.1 0.4 98.5

2 5.3 89.2 5.6 4.4 90

3 3.8 78.3 4.1 3.3 92.6

4 0.1 93 0.1 0 99.9

5 0.6 85.2 0.7 0.5 98.8

Table 2 SRN test results using five test networks trained on the embedded Reber

grammar with medium acceptance criterion applied

Appendixes

177

Appendix B: Results of Different Networks and Info of Some

Dataset

Net

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 46.89 95.58 50.08 0 50.08 49.9 0

2 37.65 80.65 50.08 0 50.08 49.91 0

3 38.59 63.7 50.08 0 50.08 49.91 0

4 50.08 97.75 50.08 0 50.08 49.9 0

5 39.5 89.14 50.08 0 50.08 49.91 0

6 44.94 93.05 49.99 0 49.99 50 0

Table 1 SRN training results for embedded Reber grammar using hard acceptance

criteria and binary symbol representations

Net

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

1 50.08 100 50.08 0 50.08 49.91 0

2 50.08 100 50.08 0 50.08 49.91 0

3 50.08 100 50.08 0 50.08 49.91 0

4 50.08 100 50.08 0 50.08 49.91 0

5 50.08 100 50.08 0 50.08 49.91 0

Table 2 SRN training results for embedded Reber grammar using hard acceptance

criteria and non-binary symbol representations

Appendixes

178

Training file 300000 sequences

Sequences Start with
Number Of

Sequences
Percentage

T 149994 49.99%

TT 75893 25.29%

TP 74101 24.70%

P 150006 50.00%

PP 76048 25.34%

PT 73958 24.65%

Testing file 1000 sequences

Sequences Start
with

Number Of
Sequences

Percentage

T 512 51.20%

TT 293 29.30%

TP 219 21.90%

P 488 48.80%

PP 202 20.20%

PT 286 28.60%

Net

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%

Alternative

Penult%

Wrong

Penult%

1 7.1 14.5 51 29.2 21.8 49 0

2 2.3 4.1 52 29.2 22.8 48 0

3 5.8 12.3 51 29.2 21.8 49 0

4 0.7 1.7 50 29.1 20.9 49 0

5 5.4 10.2 51 29.2 21.8 49 0

Table 3 SRN results of the symmetrical test file with ten asymmetrical training

networks and non-binary symbol representations using soft acceptance criteria

Appendixes

179

Hidden

Unit

Whole

Sequence

% Correct

Embed% Penult%

Penultimate Incorrect

P% T%
Alternative

Penult%

Wrong

Penult%

5

26.12 61.3 97.08 47.65 49.42 2.92 0

56.36 57.86 91.45 49.49 41.96 8.54 0

19.55 39.93 85.27 45.35 39.92 10.63 4.08

46.27 50.42 90.14 45.27 44.87 9.85 0

59.69 65.23 91.02 43.16 47.85 8.97 0

7

56.22 56.23 98.8 49.3 49.49 1.19 0

41.54 41.54 96.89 49.16 47.73 3.1 0

16.99 34.11 98.6 49.47 49.13 1.39 0

40.86 40.86 88.16 47.83 40.33 11.83 0

41.03 41.03 99.17 49.53 49.64 0.54 0.28

10

68.23 69.5 95.95 48.5 47.45 3.76 0.28

65.96 66.17 98.72 48.64 50.08 0.99 0.28

60.77 60.77 99.48 49.91 49.56 0.51 0

62.6 62.6 99.89 49.81 50.08 0.106 0

57.93 58.02 94.6 45.09 49.5 5.39 0

13

59.5 61.74 99.41 49.33 50.08 0.58 0

41.56 41.56 99.98 49.91 50.06 0.014 0

58.25 58.25 99.05 48.97 50.08 0.94 0

49.7 49.7 87.08 46.88 40.19 12.91 0

56.92 56.92 98.67 49.91 48.75 1.32 0

Table 4 MRN Training Performance on the Embedded Reber Grammar using various

numbers of hidden units

Appendixes

180

Appendix C: Plots of Different PCA Components Using SRN

These graphs show the different trajectories when using PC2 and PC3; PCA1and PC3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T 1

U
T 2 U

X 3

U
S 5

U
T 7

 B
 L

P 1

 L
T 2

 L
X 3

 L
S 5

 L
P 7

PC2

P
C

3

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T 1

U
T 2

U
X 3

U
X 5

U
V 4

U
V 6

U
T 7

 B
 L

P 1 L
T 2

 L
X 3

 L
X 5

 L
V 4

 L
V 6

 L
P 7

PC1

P
C

3

b

Appendixes

181

Figure: Plots of the different principle components of the hidden layer activations of a asymmetrically

trained by SRN, presented with three pairs of symbol sequences (in a, b and c respectively) from the

ERG. Each pair has the same embedded sequence but different initial symbol so that one is in the lower

half (dashed lines) and the other is in the upper half (solid blue lines). a BPTXSP/BTTXST, b)

BTTXXVVT/BPTXXVVP, c) BTTSSXST/BPTSSXSP

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U T 1

U T 2

U S 3
U S 3

U X 3
U S 5 U T 7

 B
 L P 1

 L T 2

 L S 3 L S 3

 L X 3
 L S 5

 L P 7

PC2

P
C

3

c

Appendixes

182

Appendix D: Test Datasets Results of Some of RNNs

MRN has been tested with 1000 sequences, which were asymmetrical sequences.

The result of the file was
Number of Patterns: 16928

Ratio of convergent Patterns: 99.8641%
Number of Sequences: 1000
Ratio of convergent Sequences: 97.7%

The ratio of convergent embedded: 98.2%
Ratio of convergent final: 99.5%

Ratio of Incorrect final but within the alternative: 0.5%
Ratio of Incorrect final: 0%
Number of the correct path T: 477. The percentage of it: 47.7%

Number of the correct path P: 518. The percentage of it: 51.8%

Sequence
Length

Total
Sequences

Correct Wrong Embedded Final

6 4 4 0 4 4

7 6 6 0 6 6

8 8 8 0 8 8

9 14 14 0 14 14

10 18 18 0 18 18

11 26 26 0 26 26

12 38 37 1 37 38

13 50 48 2 48 50

14 68 66 2 66 68

15 91 90 1 90 91

16 107 105 2 105 107

17 117 114 3 114 117

18 116 114 2 115 115

19 110 107 3 107 110

20 75 74 1 74 75

21 53 53 0 53 53

22 39 36 3 38 37

23 26 24 2 25 25

24 20 19 1 20 19

25 9 9 0 9 9

26 5 5 0 5 5

SRN has been tested with 1000 sequences, which were asymmetrical sequences.

Number of Patterns: 16928
Ratio of convergent Patterns: 97.324%

Number of Sequences: 1000
Ratio of convergent Sequences: 56%

Appendixes

183

The ratio of convergent embedded: 98.2%
Ratio of convergent final: 56.5%

Ratio of Incorrect final but within the alternative: 43.5%
Ratio of Incorrect final: 0%

Number of the correct path T: 127. The percentage of it: 12.7%
Number of the correct path P: 438. The percentage of it: 43.8%

Sequence
Length

Total
Sequences

Correct Wrong Embedded Final

6 4 3 1 4 3

7 6 4 2 6 4

8 8 6 2 8 6

9 14 6 8 14 6

10 18 11 7 18 11

11 26 13 13 25 13

12 38 19 19 37 20

13 50 24 26 50 24

14 68 35 33 67 35

15 91 42 49 89 43

16 107 61 46 105 61

17 117 64 53 115 64

18 116 71 45 114 71

19 110 61 49 106 62

20 75 44 31 75 44

21 53 32 21 52 33

22 39 28 11 37 29

23 26 17 9 26 17

24 20 11 9 20 11

25 9 5 4 9 5

26 5 3 2 5 3

ESN has been tested with 1000 sequences, which were asymmetrical sequences.
Number of Sequences: 1000

Ratio of convergent Sequences: 60.7%
The ratio of convergent embedded: 100%
Ratio of convergent final: 60.7%

Ratio of Incorrect final but within the alternative: 39.3%
Ratio of Incorrect final: 0%

Number of the correct path T: 248 the percentage of it: 24.8%
Number of the correct path P: 359 the percentage of it: 35.9%

Appendixes

184

Sequence
Length

Total
Sequences

Correct Wrong Embedded Final

6 4 4 0 4 4

7 6 6 0 6 6

8 8 4 4 8 4

9 14 7 7 14 7

10 18 9 9 18 9

11 26 13 13 26 13

12 38 19 19 38 19

13 50 25 25 50 25

14 68 34 34 68 34

15 91 48 43 91 48

16 107 65 42 107 65

17 117 75 42 117 75

18 116 79 37 116 79

19 110 74 36 110 74

20 75 48 27 75 48

21 53 36 17 53 36

22 39 29 10 39 29

23 26 12 14 26 12

24 20 12 8 20 12

25 9 5 4 9 5

26 5 3 2 5 3

NARX has been tested with 1000 sequences, which were asymmetrical sequences.

Number of Patterns: 16928

Ratio of convergent Patterns % : 98.1864
Number of Sequences: 1000

Ratio of convergent Sequences % : 70.9
Ratio of convergent embedded % : 95.7
Ratio of convergent final % : 74

Ratio of Incorrect final but within the alternative % :26
Ratio of Incorrect final % :0

Number of the correct path T :350 the percentage of it : %35
Number of the correct path P: 390 the percentage of it: %39
Sequence Length: Total Sequence Correct Wrong Embedded Final

Appendixes

185

Sequence
Length

Total
Sequences

Correct Wrong Embedded Final

6 4 4 0 4 4

7 6 6 0 6 6

8 8 8 0 8 8

9 14 14 0 14 14

10 18 18 0 18 18

11 26 26 0 26 26

12 38 36 2 38 36

13 50 41 9 47 43

14 68 54 14 68 54

15 91 66 25 86 70

16 107 76 31 102 81

17 117 80 37 112 83

18 116 79 37 109 84

19 110 67 43 103 71

20 75 44 31 70 48

21 53 36 17 51 36

22 39 23 16 35 27

23 26 12 14 26 12

24 20 10 10 20 10

25 9 6 3 9 6

26 5 3 2 5 3

Comparison between SRN, MRN and ESN

The prediction
of the whole

dataset

SRN MRN NARX ESN

56% 97.7% 70.9% 60.7%

The networks predicted the whole sequence length correctly from the test file.

Length SRN MRN NARX ESN

6 and 7 X √ √ √

8 to 11 X √ √ X

12 to 20 X X X X

21 X √ X X

22 to 24 X X X X

25 and 26 X √ X X

Appendixes

186

Appendix E: The Evaluation of Symmetrical Training Dataset

Internal Representation using Symmetrical Training Dataset.

SRN Trained with Symmetrical Sequences

Fourteen symmetrical sequences are selected; Table 1 shows the sequences and their

results after the SRN has been trained. Three of the sequences were not correctly

predicted with the error being at the penultimate symbol. Although different

grammatical aspects may be distinguished in different subspaces, the subspace spanned

by the eigenvectors corresponding to the first and the second largest absolute eigenva lue

of the covariance matrix, that defines the two principal components labelled PC1 and

PC2, respectively, which considered as being the most likely to hold significant

information. Sequence length and correctly predicted symmetrical sequences are

studied first. Some of these sequences are numbered in the Table 1: 9, 10; 11 and 12

and have lengths of eight symbols, and the others are mentioned in the title in the figure

specified.

SRN using Symmetrical sequences

No Length Embed Sequences Prediction
Reason for

Failure

1

6

U BTTXST T Penult

2 L BPTXSP F

3 U BTPVVT T

4 L BPPVVP T

5

8

U BTTXXVVT T

6 L BPTXXVVP F Penult

7 U BTTSSXST F Penult

8 L BPTSSXSP T

9 U BTPTVPST T

10 L BPPTVPSP T

11 U BTPTTVVT T

12 L BPPTTVVP T

13 16 BPTXXTTTVPXTTVVP T

14 26 BPTXXTVPXVPXTVPXVPXVPXTVVP T

Table 1 Sequences results for SRN and the position of the unpredicted symbol

Appendixes

187

The trajectories of some of these sequences in the PC1/PC2 subspace are shown in

Figure 1. The labels on the graph represent the states of the grammar for the symbol

transition indicated using the labelling scheme described above. The trajectories

divergence slightly for each pair of sequences, however the similarity between the

trajectories in each pair where the embedded section is the same, and the difference

between the pairs from each other is striking. These sequences were all predicted

correctly by the SRN. The figure shows a very slight divergence from the same starting

point in both embedded states with the upper and lower trajectories. However, where

the sequences are different (the first symbol after the start marker (T/P) and the

penultimate symbol) have noticeable distances between the upper and embedded

symbols. It is worth noting that in the internal representations of the SRN, for all the

three pairs of the sequences. In the Figure 1 b and c the positions of state four are

positioned in the second and third quarters for each pathway (V or T) and in a, the state

four located V in the second quarter. N.B. Quartiles are defined here as first (top-right);

second (top-left); third (bottom-left) and fourth (bottom-right).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2

U
V

4

U
V

6

U
T
7

 B

 L
P
1

 L
P
2

 L
V

4

 L
V

6

 L
P
7

PCA1

P
C

A
2

a

Appendixes

188

Figure 1 Plots of the two most significant principle components of the hidden layer activations of a

symmetrically trained SRN, presented with three pairs of symbol sequences (in a, b, and c respectively)

from the embedded Reber Grammar. Each pair has the same embedded sequence but has different

initial symbols so that one is in the lower half (dashed red lines) and the other is in the upper half (solid

blue lines). The sequences are: a) BTPVVT/BPPVVP (b) BTPTVPST/BPPTVPSP (C)

BTPTTVVT/BPPTTVVP.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2U

T
4

U
V

4

U
P
6

U
S
5

U
T
7

 B

 L
P
1

 L
P
2 L

T
4

 L
V

4

 L
P
6

 L
S
5

 L
P
7

PCA1

P
C

A
2

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
P
2U

T
4U

T
4

U
V

4

U
V

6

U
T
7

 B

 L
P
1

 L
P
2 L

T
4 L

T
4

 L
V

4

 L
V

6

 L
P
7

PCA1

P
C

A
2

c

Appendixes

189

To investigate more about the states, a number of different sequences, correctly

predicted by the SRN, were selected. The minimum and maximum for both PC1 and

PC2 were computed for their states values (same numbers of each state where

computes). The distribution of each state can be measured by ascertaining its mean and

range (calculated by finding the difference between the highest value of the PC of each

state and its lowest value). Table 2 and Table 3 provide the results obtained from

calculating the range and the mean of the sequences states respectively. Figure 2

presents the results of the state’s ranges. It shows that the variability (range) of both

principle components of the activation vectors is consistent whether the symbol is in the

upper section or the lower, i.e. for state 5, PCA 1 is very variable for both upper and

lower grammar sequences whereas PCA 2 is much less so; this position is reversed for

state 6.

Embedded States
Range

Embedded States
Range

PC1 PC2 PC1 PC2

Upper

1 0.00003 0.00006

Lower

1 0.25414 0.81043

2 0.14819 0.48126 2 0.00003 0.00012

3 0.53903 0.14291 3 0.17509 0.48815

4 0.11884 0.26484 4 0.82923 0.29743

5 1.00753 0.28692 5 0.10413 0.27049

6 0.09155 0.70294 6 0.94316 0.12750

7 0.25414 0.81043 7 0.08950 0.67967

Table 2 SRN: The range of number of sequences with respect to their states for each

PC1 and PC2

Embedded States
Mean

Embedded States

Mean

PC1 PC2 PC1 PC2

Upper

1 0.197 -0.051

Lower

1 0.290 -0.166

2 0.399 0.187 2 0.418 0.178

3 -0.096 0.391 3 0.212 0.520

4 -0.729 0.064 4 -0.752 0.111

5 -0.376 -0.051 5 -0.347 0.037

6 0.165 -0.299 6 0.148 -0.288

7 0.292 -0.408 7 0.343 -0.511

Table 3 SRN: The mean of number of sequences with respect to their states for each

PC1 and PC2

Appendixes

190

Some incorrect sequences were selected to compare with the above, which were

correctly predicted sequences. In addition, the error for the SRN was in the penultima te

symbol (the embedded part was correctly predicted) therefore, the emphasis will be to

consider the penultimate part of the sequence, to understand the reason for the error.

Figure 2 SRN: The range of number of sequences with respect to their states (correctly

predicted sequences)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7 8

D
o

m
a

in

The states

The range of each state

U_PCA1

U_PCA2

L_PCA1

L_PCA2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
U

T
1

U
T
2

U
S
3

U
S
3

U
S
3

U
X
3

U
S
5

U
T
7

PCA1

P
C

A
2

a

Appendixes

191

Figure 3 Plots of the two most significant principle components of the hidden layer activations of a

symmetrically trained SRN, (a) BTTSSSXST, (b) BPTXXVPSP. Are incorrectly predicted sequences

have 9-length symbols.

Figure 4 presents the results obtained from incorrectly predicted sequences: a and b are

the upper and lower sequences respectively of nine symbols in length. The remarkable

feature from this visualisation of the two principle components for these sequences

with incorrect penultimate predictions, is that for most of the trace they are different

from each other and indeed traverse different quadrants.

As shown in Figure 5 the range of the state seven are diverged from the results that

shown in the Figure 4, in respect of the range between PC1 and PC2 in lower embedded

for unpredicted sequences, increases to 0.24 comparing with the correctly predicted

sequences and the upper decreased to 0.1. To study state seven more, the ranges of state

seven of both correctly and incorrectly predicted sequences have been plotted to grasp

where the internal representation of the network located each type of sequence.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

L
P
1

L
T
2L

X
3

L
X
5

L
V

4

L
P
6

L
S
5

L
P
7

PCA1

P
C

A
2

b

Appendixes

192

Figure 4 SRN: The range of number of sequences with respect to their states

(incorrectly predicted sequences)

Figure 5 SRN: the range of state seven taken from number of sequences, predicted and

unpredicted sequences.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8

D
o

m
ai

n

The states

The range of each states

U_PCA1

U_PCA2

L_PCA1

L_PCA2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

SRN Symmetrical Sequences State 7

PCA1

P
C

A
2

Upper True

Lower True

Upper False

Lower False

Appendixes

193

Figure 5 shows the range of states seven for both upper and lower embedded sequences

of the correctly predicted sequences that coloured in green are located in the first

quarter. Incorrectly predicted sequences, were also located in the first quarter but in

different position from the correct ones. This may because of PC1 was not sufficient ly

developed since the network performs poorly

MRN Trained with Symmetrical Sequences

The sequences selected when investigating the SRN are also used here. Table 4

illustrates the results have been obtained from MRN when noise injection was used in

the training; fourteen sequences of various lengths were selected. PCA has been applied

on the training dataset to visualise the internal representation of the MRN and study

how the network organized the grammar. A number of correctly predicted sequences

have been studied to grasp the trajectories of their states.

MRN using Symmetrical sequences

No Length Embed Sequences Predication
Reason for

Failure

1

6

U BTTXST T

2 L BPTXSP T

3 U BTPVVT F Penult

4 L BPPVVP T

5

8

U BTTXXVVT T

6 L BPTXXVVP T

7 U BTTSSXST T

8 L BPTSSXSP T

9 U BTPTVPST T

10 L BPPTVPSP T

11 U BTPTTVVT F Penult

12 L BPPTTVVP T

13 16 BPTXXTTTVPXTTVVP T

14 26 BPTXXTVPXVPXTVPXVPXVPXTVVP T

Table 4 Sequences results for MRN and the position of the unpredicted symbol

Figure 6 depicts the trajectories of symmetrical sequences in the PC1/ PC2 component

subspace. The principle divergence of the two trajectories is at the penultimate symbol

Appendixes

194

comparing the upper or lower parts of the grammar. (a) Shows the sequences 1 and 2 of

length six in Table 4 i.e. upper and lower sequences; solid and dashed lines respectively.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2

U
X
3

U
S
5

U
T
7

 B

 L
P
1

 L
T
2 L

X
3

 L
S
5

 L
P
7

PCA1

P
C

A
2

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2

U
X
3

U
X
5

U
V

4

U
V

6

U
T
7

 B

 L
P
1

 L
T
2 L

X
3

 L
X
5

 L
V

4

 L
V

6

 L
P
7

PCA1

P
C

A
2

b

Appendixes

195

Figure 6 Plots of the two most significant principle components of the hidden layer activations of a

symmetrically trained MRN, trajectories of the three identical symmetrical sequences that were

correctly predicted, the sequences are: a) BTTXST/BPTXSP, b) BTTXXVVT/BPTXXVVP and c)

BTTSSXST/BPTSSXSP.

Figure 6 (b, c) shows sequences of length eight. The location of all the states for both

upper and lower part except for state seven are located in the same quarters for each

pair. However, location of state seven for the upper half of the grammar is located in

the second quarter and for the lower half is located in the third quarter. This seems to

show a clear representation by these two principal components of the difference at the

point where the sequence symbols differ (the penultimate symbol) but a limited amount

of memory of the difference held by them prior to this (memory of the divergence at the

start of the sequence). To investigate more about the states, the range of each state has

been computed for several sequences (five different values for each state).

Table 5 shows the range of each state for the upper and lower parts of the sequences.

Figure 7 depicts this information graphically. Figure 7 shows that the variability (range)

of both principle components of the activation vectors is consistent whether the symbol

is in the upper section or the lower. A striking observation to emerge from the figure is

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2

U
S
3U

S
3

U
X
3

U
S
5

U
T
7

 B

 L
P
1

 L
T
2

 L
S
3 L

S
3

 L
X
3

 L
S
5

 L
P
7

PCA1

P
C

A
2

c

Appendixes

196

that each state range is located differently in subspace showing systematic nature of the

internal representation of the MRN.

Embedded States
Range

Embedded States
Range

PC1 PC2 PC1 PC2

Upper

1 0.00004 0.00007

Lower

1 0.00007 0.00009

2 0.01660 0.78226 2 0.01630 0.78415

3 0.28531 0.23711 3 0.33777 0.23399

4 0.99502 0.59741 4 1.06641 0.63145

5 0.32853 0.22116 5 0.42364 0.30967

6 0.54501 0.30817 6 0.50981 0.29276

7 0.08226 0.26876 7 0.05489 0.03401

Table 5 Range of the each state with MRN for symmetrical sequences (predicted
sequences)

Figure 7 The range of each sate by MRN using symmetrical sequences

Now turn to the incorrectly predicted sequences to observe where the network locates

the states and the difference with the correctly predicted ones. Figure 8 shows the

trajectories of the upper and lower sequences that have been incorrectly predicted by

the MRN and also for the penultimate symbol for both parts. The graph depicts the

similarity of the states compared with the correctly predicted sequences. To investiga te

the difference between the trajectories of state seven for both the predicted and

unpredicted sequences, the ranges of state seven have been calculated for both of them.

Figure 9 illustrates the range of state seven in four sequences: upper and lower paths

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8

U_PCA1

U_PCA2

L_PCA1

L_PCA2

Appendixes

197

through the grammar with correctly and incorrectly predicted penultimate symbols. The

figure shows that the states for the correctly predicted upper and lower sequences are

located in the same part of the subspace while the incorrectly predicted ones have a

larger distance between them although they are in the same quarter.

Figure 8 Plots of the two most significant principle components of the hidden layer activations of a

symmetrically trained MRN, incorrectly predicted sequences by MRN (a) BTTSSSXXTVPXTVVT has

16-length symbols and upper sequence, (b) BPTXXVPSP has 9-length of symbols and in the lower part

sequence.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

U
T
1

U
T
2

U
S
3U

S
3

U
S
3

U
X
3

U
X
5

U
T
4

U
V

4

U
P
6

U
X
5

U
T
4

U
V

4

U
V

6

U
T
7

PCA1

P
C

A
2

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B

L
P
1

L
T
2 L

X
3

L
X
5

L
V

4

L
P
6

L
S
5

L
P
7

PCA1

P
C

A
2

b

Appendixes

198

Figure 9 MRN: located ranges of the state seven for predicted and unpredicted

symmetrical sequences.

A possible explanation is that the difference in the state seven between the predicted

and unpredicted penultimate is a results from the poorly performance of the network.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

MRN Symmetrical Sequences State 7

PCA1

P
C

A
2

Upper True

Lower True

Upper False

Lower False

