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Abstract 

Recent climatic amelioration during the 20th and 21st centuries has stimulated the 
recession of glaciers world-wide. Moraines developed by valley glaciers provide a 
sedimentary record of their past response to climatic forcing. Despite the use of moraines 
for understanding the character and behaviour of former glaciers, our understanding of 
moraine development is lacking largely due to limited opportunities to study active 
moraine formation. This thesis reports on internal structure and sedimentary 
composition of lateral-frontal moraine at two Arctic (Austre Lovénbreen, Svalbard and 
Isfallsglaciären, Sweden) glaciers and one Alpine (Schwarzberggletscher, Switzerland) 
glacier and aids understanding of their palaeo-environmental significance. 

The internal structure and sedimentary architecture of Arctic lateral-frontal moraine is 
documented using ground penetrating radar (GPR) and via shallow excavation. Lateral-
frontal moraine at both Arctic sites are shown to contain buried ice within their lateral 
zones, but not within their frontal zones, although the volumetric content of the buried 
ice and potential origin varies between sites. Frontal zones are therefore likely to be better 
preserved in the geomorphological record following complete de-icing, whereas lateral 
zones, which may also be subject to de-icing and external censoring from slope processes, 
may be poorly preserved. As the internal structure is dissimilar across Arctic sites, it is 
argued that the processes involved in the development of landforms by Arctic 
polythermal glaciers vary between high-Arctic and continental Scandinavian settings. 
Arctic lateral-frontal moraine are also distinct from those found at Alpine sites which are 
organised into stacked diamicton units that dip away from the lateral margin of the 
glacier. The sedimentary signature of Arctic and Alpine lateral-frontal moraine are 
investigated and compared. All moraines investigated exhibit clast-form gradients which 
is interpreted to relate to the relative significance and spatial variation of ‘active’ and 
‘passive’ debris transport mechanisms within Arctic and Alpine valley glacier 
landsystems. However, the climatic, glaciological, and topographic regimes in which the 
moraines form influence the resulting character of the landform. The evolution of a 
degrading ice-cored moraine at Austre Lovénbreen is investigated using repeat 
photogrammetric topographic surveys. Relict glacier ice is undergoing moderate rates of 
degradation, predominately via down-wastage and could potentially be preserved as an 
archive of former high-Arctic glacier characteristics.  

This thesis also contributes to the wider body of knowledge in relation to the use of 
unmanned aerial vehicles (UAVs) and ‘Structure-from-Motion’ (SfM) photogrammetry 
for geomorphological research. The multi-technique approach employed by this research 
has allowed for the glaciological significance of subsets of lateral-frontal moraine 
(‘Controlled’, ‘Østrem’ and ‘Alpine’ type) within in glaciated valley landsystem to be 
better understood. Conceptual models accounting for landform development are 
presented and aid Quaternary studies that seek to identify and use lateral-frontal moraine 
for dating past glacier activity and determining palaeo-glacier characteristics. 
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on the moraine morphology when de-icing. See Evans (2009). 

Digital Surface Model (DSM) A model of the earth terrain including surface features 

such as vegetation and buildings.  

Englacial debris  Debris located within a glacier. Material can be entrained within a an 

englacial position where material is deposited on a glacier from extraglacial 

valley side debris sources in the accumulation area, or alternatiely subglacially 

via a range of processes such as thrusting. 

Englacial debris septa Non-genetic term used by Lukas and Sass (2011) to refer to debris 

features located within glacier ice, which potentially link to the elevation of 

material from the base of the glacier (see thrust). 

Equilibrium line altitude The altitude on a glacier where accumulation is equal to 

ablation over a one year period. 

Glaciated An area formerly subject to occupation by glaciers. 

Glacierised An area currently occupied by glaciers. 

Glaciotectonism Deformation of glacial materials by a glacier related to the transmission 

of stress to ice-marginal and sub-marginal sediments. Related to the development 

of push moraine. 

Ground penetrating radar A geophysical method for imaging sub-surface materials 

through the use of electro-magnetic energy. 

Lateral-frontal moraine Non-genetic term referring to a moraine on the basis of its 

location in relation to the parent glacier. The term frontal moraine refers to 

features occurring transverse or oblique to the direction of former or current ice-

flow. Lateral moraine to refers to features occurring parallel to the direction of 

former or current ice-flow. Lateral-frontal moraine are used to describe a 

continuous or discontinuous rampart that encircles a contemporary or former 

glacier forefield and margin. 
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Palaeosol A relict soil buried under sediment. In a glacial context, they are often 

incorporated within the structure of moraines. 

Permafrost Ground which remains frozen (at or below 0c) perinially. Ground typically 

has to be frozen for two consequentive years to be classified as permafrost. 

Photogrammetry  The science of taking measurements from photography. 

Piedmont glacier  A glacier which is non-longer constrained by topography (e.g. valley 

walls) resulting in a lobate terminal zone. 

Polythermal glacier  A glacier which contains ice both at and below the pressure melting 

point.  

Small unmanned aerial vehicle  Rotary or fixed wing craft typically 1-5 kg in weight 

used to collect small format low-level aerial imagery. 

Structure-from-Motion  An automated digital photogrammetric technique that can be 

used in conjunction with metric and non-metric cameras.  

Subglacial (basal) debris  Debris found at the bed of a glacier. Typically clasts of 

subglacial origin shown evidence of transport at the glacier bed (e.g. rounding 

and striae). 

Supraglacial debris  Debris found on the surface of a glacier. Typically sourced from 

valley side extraglacial debris sources and angular or very angular in character 

Surge-type glacier  A glacier which is subject to short lived faster than normal flow 

conditions resulting in the rapid advance of the terminus. Surge activity is 

punctuated by a quiescent phase. 

Thrust  Low angle fault resulting from compression in glacier ice. Associated with the 

elevation of basal debris to the glacier surface and the formation of moraine-

mound complexes. 

Valley glacier  A glacier constrained by topography (e.g. valley walls) 
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1.  Introduction and research context 
 

1.1 Introduction 

Valley glaciers are important geomorphic agents in moderate and high-relief mountain 

environments. A key product of glacial activity in mountain chains are large lateral-

frontal moraine complexes (Boulton and Eyles, 1979; Spedding and Evans, 2002; Benn et 

al., 2003; Fig. 1.1). Research seeking to understand the significance and formation of such 

ice-marginal landforms is longstanding and extensive (e.g. Agassiz, 1840; Collomb, 1847; 

Lamplugh, 1911; Galloway, 1956; Østrem, 1964; Röthlisberger and Schneebeli, 1978). 

Despite this long history of research, improvements in our understanding of the 

formation and significance of these features is ongoing due to the diversity of ice-

marginal processes operating globally across different glacierised basins (Hambrey and 

Glasser, 2012). Additionally, opportunities to study these features actively forming are 

rare (e.g. Whalley, 1973; Matthews et al., 1995; Winkler and Matthews; 2010), due to the 

widespread and on-going recession of mountain glaciers globally (Paul et al., 2004; Kaser 

et al., 2006; Masiokas et al., 2008; Nesje et al., 2008; WGMS, 2012).  

 

Fig. 1.1. Block diagram of a glacier and associated lateral-frontal moraine within the 
glacier foreland.  

Nomenclature to describe moraine formation objectively is inconsistent and diverse 

(Bennett and Glasser, 2009). Specifically, researchers have sought to classify features on 

the basis of their position in relation to a body of glacier-ice (e.g. non genetic terms such 
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as lateral, frontal, terminal, recessional etc.) or through genetic terminology, which 

highlights process-form relationships (e.g. dump and glaciotectonic moraine). A diverse 

taxonomy for glacial landforms can in part be seen as a consequence of regionally specific 

case studies (e.g. Napieralski et al., 2007) or complex morphological and sedimentological 

landform characteristics, which reflect the range of environmental conditions involved in 

the development of these features (e.g. Østrem, 1964; Osborn, 1978; Small, 1983; Bennett 

et al., 2000; Lyså and Lønne, 2001; Benn et al., 2003; Burki, 2009; Evans, 2009; Curry et al., 

2009; Evans, 2010; Winkler and Matthews, 2010). 

Lateral-frontal moraine can be considered to be terrestrial sinks for glacigenic debris 

(Reinardy et al., 2013), and are regularly used as a proxy for obtaining past glaciological 

and climatic information (e.g. Kirkbride and Winkler, 2012). However, moraines are not 

ubiquitous in terms of their form, structure or sedimentology, which vary greatly 

between different glacial landsystems (Benn et al., 2003). A robust understanding of 

moraine forming processes has been demonstrated to be important when considering the 

potential utility of such features for palaeoclimatic reconstruction (Kirkbride and Winkler, 

2012; Barr and Lovell, 2014). As a consequence, studies which investigate moraine 

formation in a range of contemporary environments are important if the significance of 

formerly glaciated areas during the Quaternary are to be correctly interpreted and 

understood (Hambrey and Glasser, 2012). Precise understanding is confounded by the 

fact that a large number of valley glaciers are currently receding (WGMS, 2012), meaning 

that only limited observations of active landform development have been made (Whalley, 

1973; Krüger, 1985; Matthews et al., 1995). As lateral-frontal moraines are frequently used 

in the Quaternary sciences for dating past-glacier activity and for determining past glacier 

characteristics (e.g.  Kirkbride and Winkler, 2012; Osborn et al., 2015), the origin and 

processes of moraine development require thorough investigation. This is especially 

pertinent where moraines are used to inform our interpretation of past glaciers and their 

associated dynamics (Benn and Lukas, 2006), where moraine chronologies are developed 

from dated moraine sediment (Kirkbride and Winkler, 2012), or where moraines are used 

to estimate past palaeoclimatic conditions (e.g. Kerschner et al., 2000). The need for 

research characterising the development of lateral-frontal moraine under a range of 

environmental conditions is apparent if these features are to be effectively used by 

Quaternary scientists. This thesis aims to address this research gap. 

2 



 

1.2 Overview of existing research 

1.2.1 Alpine and high-mountain moraine development 

1.2.1.1 Introduction 

Large Alpine type lateral moraines develop following repeated reoccupation of mountain 

valleys by glacier ice (Röthlisberger and Schneebeli, 1979; Lukas et al., 2012) and are 

distinct in character from moraine ridges developed at the margins of high-Arctic glaciers 

(e.g. Bennett et al., 1996; Midgley et al., 2007) and valley glaciers across Arctic Scandinavia 

(e.g. Østrem, 1964; Matthews and Shakesby, 1984). The use of the word alpine or Alpine 

(emphasis on the capitalisation) requires clarification of the definition within the context 

of this research. The use refers to those occurring within the European Alps (e.g. a 

geographical region), rather than high-mountain environments in general. Whilst such 

research may be broadly applicable to other mountain chains, it is acknowledged that 

Alpine/alpine moraines represent one type of landform generated in high-mountain 

glacial landsystems. For example, landforms produced in alpine (‘high-mountain’) 

environments of Norway (e.g. Winkler and Matthews, 2010) or Himalaya (e.g. Benn and 

Owen, 2002) do not necessarily produce landforms similar to those found within the 

European Alps geographic region.  

Alpine moraines are characterised by their large size (topographic prominence of up to 

~100 metres and lengths extending into the kilometre range), sharp crestlines, asymmetric 

form, and regularly over-steepened ice-proximal slopes which are reported to locally 

exceed 70o (Lukas et al., 2012). This morphological distinctiveness has been used as a 

criteria for distinguishing debris-dominant moraine complexes from their ice-cored 

counterparts for the purpose of assessing the probability of catastrophic proglacial lake 

drainage (McKillop and Clague, 2007). Dumping is regarded as an important mechanism 

for the formation of Alpine type lateral moraines (Rothlisberger and Schneebli, 1979; 

Small, 1983), and refers to the process of sub-aerial debris transfer of material from a 

supraglacial to an ice-marginal position. The terminology ‘dump’ moraine is an umbrella 

descriptor that includes debris transfer via falls, slumps, slides and flowage (Benn et al., 

2003).  
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1.2.1.2 Age and palaeoenvironmental significance 

The age and significance of Alpine moraines have been subject to considerable research. 

Large lateral-frontal complexes have been dated by a range of geochronological 

techniques. Notably, research was conducted in the 1970s which used buried organic 

layers to radiocarbon date past fluctuations in glacier extents (e.g. Rothlishberger and 

Schneebli, 1979). Recent developments in geochronological techniques have also led to 

the application of cosmogenic dating to determine the age and significance of Alpine 

moraines. Cosmogenic dating involves the measurement of radionuclides, which are 

concentrated in relation to the time a rock surface is exposed to cosmic radiation (Ivy-

Ochs and Kober, 2008). Commonly used cosmogenic nuclides for Quaternary studies 

include 10Be, 36Cl and 26Al. At certain sites, Alpine moraine formations have yielded dates 

suggesting their initial development, and subsequent preservation as moraines 

throughout the Holocene (11.5 kyr BP to present). A comprehensive review of known 

Alpine glacier fluctuations is presented by Ivy-Ochs et al. (2009). However, since this 

review, additional cosmogenic nuclide studies have been completed. For example, 

moraines at Steingletscher (Switzerland) appear to have developed as early as 11-10 kyr 

BP, with subsequent moraine building episodes also identified (Schimmelpfennig et al., 

2013). Similar patterns of glacier occupation are recorded at Tsidjoire Nouve, a valley 

glacier located in the Arolla valley, Valais. There, 10Be dating of moraine deposits revealed 

the occupation of ice as early as 11.4 kyr BP, and subsequent advance, similar in spatial 

extent c. 3.8 kyr BP (Schimmelpfennig et al., 2014).  

Alpine moraines have also been used as palaeoclimatic indicators (Kerschner et al., 1999; 

Kerschner et al., 2000; Kerschner and Ivy-Ochs, 2008). Key to these studies is the use of 

moraines to delimit the past geometry of Alpine glaciers. Such data can be used to infer 

the likely ELA (equilibrium line attitude) of a given glacier which typically relies on 

inferences with regard to the likely area accumulating, or ablating on a past glacier 

surface (Kerschner and Ivy-Ochs, 2008). In turn, these data can be used to estimate likely 

palaeo-precipitation and mean summer temperatures. However, such reconstructions 

can be problematic in high-mountain environments where mass balance may be sensitive 

to supraglacial debris loads or localised topo-climatic controls (e.g. Clark et al., 1994; Benn 

and Lehmkuhl, 2000) or where topographic controls are a determining factor on moraine 

formation (Barr and Lovell, 2014). Moraine assemblages may present a fragmentary 
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record of palaeoglacier change. Given the range of dates given by geochronological 

studies, a level of landform stability is evident. Several studies have sought to understand 

landform stability, and the paraglacial response of Alpine moraines to deglaciation (e.g. 

Curry et al., 2006; Curry et al., 2009). Curry et al. (2006) reported paraglacial processes 

operating on Alpine moraine, and debris mantled slopes. Gullies were found to stabilise 

80-140 years following deglaciation. 

In summary, a wide body of knowledge derived from dating moraine assemblages at the 

margins of Alpine glaciers exists. Dates derived from a range of techniques demonstrate 

the composite nature of Alpine moraine assemblages. There is robust evidence which 

demonstrates that Alpine moraines reflect varied, and temporally extensive (timescales 

extending into 11 ka range) environmental history.  

1.2.1.3 Landform development and sedimentology 

Humlum (1978) documented moraine structural characteristics from glacier forefields in 

the Austrian Alps, and noted that for moraine formation to occur the glacier surface must 

exceed the elevation of the moraine surface for material to be deposited on distal slopes. 

Whilst the moraines reported by Humlum (1978) show a linear aggraded structure, later 

research identified a wider range of structural configurations that develop within alpine 

landsystems (e.g. Rothlisberger and Schneebli, 1979; Boulton and Eyles, 1979). 

Importantly, Rothlisberger and Schneebli (1979) used the terminology ‘accretion’ and 

‘superposition’ processes to describe the range of moraine end products developed by 

Alpine glaciers. Key to these conceptual models is the role topography plays in the 

resulting morphology of a given moraine complex. The key control determining the 

development of accretion type or superposition type moraines was said to be the moraine 

barrier, and whether a given glacier advance is significant enough to surmount 

topographic obstacles. Interrupted periods of moraine construction via superimposition 

were recognised to result in the preservation of organic materials such as palaeosols to 

within moraine structure. Such material can be used to produce a minimum age for 

glacier recession and maximum ages for renewed moraine construction (thus glacier 

advance) (Kirkbride and Winkler, 2012). The use of buried organic material for dating 

alpine glacier activity is now widespread (Osborn, 1978; Reyes et al., 2006; Le Roy et al., 

2015). 
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Small (1983) introduced further taxonomy to distinguish the various elements of lateral 

moraine systems.  The term ‘abandoned dump moraine’ is used to distinguish dumped 

accumulations of material on the valley side from thin layers of material resting on active 

glacier-ice (‘supraglacial lateral moraine’) (Small, 1983). Later work by Small (1987) used 

clast-form analysis to determine the passive and active debris transport components of 

moraines at Glacier de Tsidjiore Nouve. An overview of clast form analysis is presented 

in chapter 2. Small (1987) suggested limited field evidence for subglacial debris sources 

and estimated that up to 80% of debris included within the northern lateral ridge to be of 

supraglacial origin. 

In contrast to observations of highly angular debris at high altitude sites in the European 

Alps, clast-form gradients have been recorded at a number of low altitude sites in 

Scandinavia and Iceland where roundness has been found to decrease with distance from 

the former glacier terminus (Matthews and Petch, 1982; Benn and Ballantyne, 1994; 

Spedding and Evans, 2002). Matthews and Petch (1982) postulated that the composition 

of lateral moraines is related to subglacial transport and/or the pushing of pre-existing 

valley side paraglacial debris. However the authors questioned the significance of both 

hypotheses on the basis that (i) low debris volumes have been observed within the basal 

transport zone of temperate glaciers in the Jotunheimen region; (ii) push mechanisms in 

isolation are unlikely to develop large moraine ridges and (iii) the composition of valley-

side debris and lateral moraines often exhibit different clast-form properties.  

Matthews and Petch (1982) also discussed causes for the within-valley asymmetry 

exhibited by many lateral-frontal moraines. Notably they suggested that the distribution 

of pre-existing valley-side sediment was an important control on the size of moraines 

where the reworking of material via a pushing occurs. Subsequent research appears to 

corroborate this assessment. For example, research on the drift mantled slopes of 

Faberdalen, Norway, by Ballantyne and Benn (1994) revealed that alternating periods of 

glacial and paraglacial sediment recycling occurred throughout the Holocene as a 

consequence glacier fluctuations. Furthermore, Burki (2009) reported on the clast-form 

properties of lateral moraines in the Jotunheimen area, and concluded that sediment 

reworking constituted a considerable debris source for lateral moraine construction 

during the Little Ice Age maxima (c. 1755 AD).  
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Whilst the entrainment of pre-existing sediment is undoubtedly an important control on 

lateral moraine construction, within-valley asymmetry has also been reported as a 

consequence of variable cross-valley debris supply. Differential debris supply to the 

glacier surface is suggested to relate to (1) changes in lithology; (2) the distribution of 

rockwalls at the glaciers axis; or (3) cross-valley changes in glacier dynamics (resulting 

from shading effects or the distribution of accumulation area at the glaciers head), leading 

to the concentration of deposition, although total debris volume of moraines across the 

valley may be equal (Benn, 1989; Benn et al., 2003). 

Research by Benn and Owen (2002) examined the landforms, sediments and earth-surface 

processes associated with Himalayan glaciers in the Lahul region. Himalayan glaciers 

carry a high supraglacial debris load (Benn et al., 2003), and although their thermal 

character is understudied they are likely to be polythermal (Hambrey and Glasser, 2012), 

distinguishing them from Alpine sites. The authors report that Himalayan glaciers often 

develop continuous lateral-frontal ramparts as a consequence of high debris transfer 

relative to ice-discharge. Large lateral moraine ramparts may constrict glacier expansion 

where debris deposition exceeds or matches rates of glacier thickening (Benn and Owen, 

2002). Observations of moraine structure are therefore proposed to allow an 

interpretation of palaeoenvironmental conditions where aggrading sedimentary layers 

indicate a positive mass balance hence deposition, whereas unconformities derived from 

moraine erosion can be interpreted evidence of glacier recession.  

Lateral-frontal moraines at various Himalayan sites were found to comprise of (1) 

stratified or massive matrix support diamict units, depleted of fines; (2) stacked massive 

diamict units dipping away from the glacier at 10° on distal slopes; (3) debris flow units, 

indicated by the concentration of clasts beneath a lens of fine-grained sediment and (4) 

various glacio-fluvial sedimentary units that occur more frequently with distance for the 

former ice-margin (Benn and Owen, 2002). In their findings, clasts sampled from a 

supraglacial position exhibited both an elongate and slabby form, and high angularity. 

Whilst it would be expected that lateral moraine sediment share similar clast-form 

characteristics, moraines were found to have markedly different clast angularity and 

shape. Although the dominance of high-level debris transport on Himalayan glaciers is 

documented, Benn and Owen (2002) hypothesise that actively worked debris may be 

7 



 

elevated to the glacier surface by englacial debris septa running parallel to the bed at the 

margin of the glacier, and mixed with passively transported debris, prior to deposition.  

Further research within high-mountain environments was conducted by Hambrey et al. 

(2008) who examined glacial sedimentology of the Mount Everest region. Unlike previous 

studies, sediments were assessed against a modified Montclieff (1989) classification to 

more readily distinguish between different units of poorly sorted sediment. Lateral 

moraine facies were mainly found to comprise of sandy boulder-gravels, a facies that was 

also associated with lateral moraine in earlier work at various high-Alpine catchments in 

the Mount Cook region, New Zealand (Hambrey and Erhmann, 2004). Hambrey et al. 

(2008) report that lateral moraines development corresponded to sediment inputs from 

rockfall material, and debris derived from traction at the valley-sides. More frontal 

sections of moraines were noted to develop due to the shearing, thrusting and folding of 

sediment in response to longitudinal compression where Little Ice Age moraines 

ramparts constricted ice-flow (Hambrey et al., 2008). 

In recent years the association between lateral-frontal moraines and passive supraglacial 

debris transport pathways have been challenged. Lukas et al. (2012) reported on the 

sedimentology of large lateral moraines developed at the margin of Findelgletscher. Here, 

moraine sediment has an anomalously low angular and very angular (RA) component 

(between 0% and 32%) and clasts are frequently striated. Lukas et al. (2012) attributed 

these anomalous clast form parameters to the prominence of sediment delivery via 

englacial debris septa. These serve to elevate subglacial material to a supraglacial position, 

thus making it available for the construction of lateral ‘dump’ moraines. Here, the 

glacier’s structural configuration exerts a control on the resulting sedimentary signature 

of a moraine. However, it is unclear whether processes documented here can be broadly 

applied to a range of alpine glacier basins. 

The use of Alpine moraine assemblages as proxies for glacier change, hence perturbations 

in past climate, is well established in Quaternary science. Future geomorphological 

studies can aid interpretation of the character and behaviour of former glaciations by 

examining the sedimentary signature of moraine complexes. However, recent studies 

may suggest a strong glaciological structural control on the sedimentary signature of 

some Alpine moraine complexes, with ice-proximal units potentially strongly influenced 

by glaciotectonic processes (the deformation of sediment) in the lateral-subglacial domain 
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(e.g. Lukas and Sass, 2011; Lukas et al., 2012). Given the diversity of moraines, additional 

studies investigating the geomorphology of Alpine moraines complexes can be seen as 

beneficial for our understanding and interpretation of absolute dates, which in turn are 

used to inform studies of palaeo-environmental conditions. 

1.2.2 Arctic and high-Arctic ice-cored ‘controlled’ moraines 

1.2.2.1 Introduction 

The term ‘ice-cored’ moraine is used as a descriptor to refer to a body of dead-ice (e.g. 

where glacier ice is no longer under motion) insulated by debris that is preserved in the 

glacier forefield. Ice-cored moraines have been recognised as widespread features 

common to a range of contemporary glacial environments, including Canada (e.g. 

Østrem and Arnold, 1970; Johnson, 1971; Hooke, 1973; Driscoll, 1980; Mattson and 

Gardner, 1991), Iceland (e.g. Krüger and Kjær, 2000; Kjær and Krüger, 2001; Evans, 2010; 

Bennett and Evans, 2012), the Norwegian high-Arctic (e.g. Bennett et al., 2000; Lyså and 

Lønne, 2001; Sletten et al., 2001; Lønne and Lyså, 2005; Lukas et al., 2005; Schomacker and 

Kjær, 2008; Midgley et al., 2013), and Antarctica (e.g. Pickard, 1983; Carrivick et al., 2012a). 

Ice-cored moraines have also been reported to occur in temperate glacial environments, 

albeit with minimal preservation potential (Brook and Paine, 2012).  

Use of the term ‘ice cored moraine’ has attracted some debate over the last decade. Lukas 

et al. (2007) suggest that the term should be strictly reserved for moraines where the ice is 

detached from the main glacier body. Given the extensive occurrence of dead-ice in 

glacier forelands subject to permafrost conditions, this application of the terminology 

would limit the use of the terms application to environments where significant 

geophysical and structural surveys have been completed to verify the detached nature of 

potential buried ice. Evans (2009), however, rejects Lukas’ (2007) criteria, applying a more 

general application of the terminology which does not require buried-ice to be detached 

from the main glacier body. Key to this argument, Evans (2009) highlights that the term 

‘moraine’ does not imply detachment of a landform from the glacier terminus (e.g. medial 

moraines). 

1.2.2.2 Origin of debris septa 

As the subsequent melt out of debris bands is important in terms of the morphological 

expression of a resulting landform (Evans 2009), the structural glaciology and transport 
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of debris through Arctic glaciers can be seen as an important aspect of landform 

generation. The structural glaciology of valley glaciers in Svalbard has been subject to 

considerable research (e.g. Bennett et al., 1996; Hambrey and Glasser, 2003; Hambrey et 

al., 2005; Roberson and Hubbard, 2010). Rockfall debris sourced from valley sides and 

headwalls are subject to folding and burial in composite glaciers with converging flow 

units (Glasser and Hambrey, 2003). Reorganisation and melt out of extraglacially derived 

debris within the ablation areas is reported to form linear supraglacial debris stripes 

(‘medial moraine’) (Fig. 1.1; Glasser and Hambrey, 2003). Where surge-type behaviour 

occurs, supraglacial debris may be deformed into looped structures (e.g. Pedersenbreen; 

see Bennett et al., 1996 and Glasser et al., 2004). 

Further entrainment and transport has been suggested to occur via the mechanism of 

thrusting, which describes the faulting of ice under compression (Hambrey, 1994). 

Thrusts have been documented to occur within land terminating (e.g. Hambrey et al., 1996; 

1997; Huddard et al., 1998), and calving glaciers in Svalbard (e.g. Murray and Booth, 2010). 

Thrusts may propagate onto the glacier surface within the ablation zone bringing basal 

debris to the glacier surface (Huddart and Hambrey, 1996).  Longitudinal compression 

has been cited as a causal mechanism for the development of thrusts in glacier ice (Swift 

et al., 2006). In glaciated environments, longitudinal compression may be initiated by a 

reverse bedrock slope or the transition from warm to cold based ice in polythermal 

glaciers, which may reduce ice sliding velocities (Hambrey et al., 1997). Thrusting 

represents one mechanism which is suggested to be applicable to high-Arctic glaciers. 

Reviews of additional debris entrainment mechanisms are presented in Alley et al. (1997) 

and Knight (1997) which include: regelation, freeze-on, and glaciohydralic supercooling. 

Regelation involves the re-freezing of ice and debris in the low pressure lee of subglacial 

obstacles, or freezing of pore water within the subglacial sediment layer, if the overlying 

ice is at higher pressure (Benn and Evans, 2010). Freeze-on occurs in relation to its 

association with the thermal properties of glacier ice with bulk freeze-on related to the 

advection of cold ice from winter cold (Alley et al., 1997), or in relation to the thermal 

configuration of polythermal glaciers where the transition from warm-based ice to a cold 

terminus permits the freeze-on (Weertman, 1961; Boulton, 1972).  
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Fig. 1.2 Debris transport in high-Arctic glaciers adapted from Hambrey et al. (1999). 

 

1.2.2.3 Landform development and sedimentology 

The genesis of lateral moraine at high-Arctic sites has been discussed in relation to a range 

of glacier-permafrost interactions (e.g. Etzelmüller et al., 1996; Etzelmüller et al., 2000; 

Etzelmüller and Hagen, 2005). Unlike temperate glaciers with high turnovers, high-Arctic 

glaciers are typically characterised by low rates of accumulation, polythermal or cold-

based ice and short ablation seasons (Benn and Evans, 2010). According to Etzelmüller 

and Hagen (2005) cold-based ice may be present in a glacier where the ELA sits at or 

below the regional lower limit of permafrost, thus when the regional limit sites well 

below the terminus, a glacier is likely to be entirely cold-based. Specifically, the thinning 

and recession of glaciers from their Neoglacial maximum position (c. 1900) is suggested 

to have, and continue to, promote the transition from polythermal to cold-based thermal 

regimes at some sites (e.g. Glasser and Hambrey, 2001; Hambrey et al., 2005). 

Numerous studies have investigated morphologically similar lateral-frontal moraines, 

developed by high-latitude, low-relief valley glaciers (Lyså and Lønne, 2001; Lønne and 

Lyså, 2005; Lukas et al., 2005; Ewertowski et al., 2012). Notably Lyså and Lønne (2001) 

presented a conceptual model for the formation of lateral moraines from their 

observations at the valley glacier, Reiperbreen (Svalbard). This model is similar to that 
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developed by Small (1983) for moraine development in the European Alps, and considers 

debris from sub-, en- and supraglacial sources. However, the inclusion of dead-ice 

appears to be more extensive than that envisaged by Small (1983), which is explained by 

the burial of glacier ice by debris fall/flows from valley side material following the down 

wastage of the glacier surface.  

The development of ‘controlled’ ridges involves the melt-out of material from the glacier 

surface. Evans (2009) refers to ice-cored features as ‘controlled’ moraine due to the 

influence of debris bearing structures within buried glacier-ice exert on the resulting 

morphology of the moraine. The term is useful for describing ice-cored landforms which 

specifically have morphological characteristics that form in response to the melt-out of 

debris. Debris transport within glaciers can concentrate material into ‘depocentres’ at the 

glacier terminus. This may be due to the melt-out of englacial debris-bearing structures 

within the ablation area of a glacier, or as a result of the accumulation of debris within 

supraglacial transport. Where sufficiently thick, supraglacial debris will insulate buried-

ice from further ablation. Stagnant or dead-ice that is buried below the depth of seasonal 

thaw will be preserved (Waller et al., 2012). Where affected by seasonal thaw, ablation 

derived moraines can undergo ‘secondary deglaciation’ (Everest and Bradwell, 2003).  

1.2.2.4 Preservation and stability 

The most prominent consequence of glacier-permafrost interactions is the wide-spread 

inclusion of dead-ice into moraine structure. However, the presence of dead ice is not 

restricted to moraines, and may partially underlie entire proglacial zones (e.g. Irvine-

Fynn et al., 2011). It is generally considered that ice-cored moraines develop under low 

ice-activity and moderate levels of debris input (e.g. Whalley, 2009). For example, Lukas 

et al. (2005) reported on the morphology and sedimentology of lateral-frontal moraine 

ridges developed by three small valley glaciers (Nordenskiöldtoppenbreen / Platåbreen, 

Longyearbreen and Larsbreen) located near Longyearbyen, Svalbard. Dead-ice within 

moraine structure and across the pro-glacial areas of interest are reported to be extensive 

with moraines grading into in-distinct debris-covered zones (Lukas et al., 2005). Surface 

debris thickness were found not to exceed 0.15 m, and contained very angular and 

angular clasts, indicative of rockfall from valley sides (Lukas et al., 2005). 
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Ewertowski et al. (2012) and Ewertowski (2014) reviewed moraine development at 

Ragnarbreen. Ewertowski et al. (2012) reported on the sedimentology and 

geomorphology of the moraine complex at this glacier. Here, sediment ridges within the 

lateral-frontal complex contained deformed laminated fines, which are interpreted as 

evidence of topographic inversion, resulting from the differential melting out of material 

surrounding a previous ponded surface water body. Ewertowski (2014) used repeat 

historical aerial imagery to understand rates of change within the high-Arctic 

environment. Observations of landform generation and paraglacial alteration are used to 

develop a model specific to the site. Lateral moraines at Ragnarbreen, as reported by 

Ewertowski (2014), are known to have developed from; (1) the accumulation of debris 

from extraglacial sources on the glacier surface; and (2) differential ice melting resulting 

in the deposition of ice-cored valley side ridges. Subsequent debris flowage, resulting in 

exposed ice-cores and downwasting are responsible for paraglacial modification and 

resedimentation at this site. The situation at Ragnarbreen is similar to the small land 

terminating valley glacier, Rieperbreen, as reported in Lyså and Lønne (2001). However, 

Lyså and Lønne (2001) reported on potential sub- and englacial debris sources related to 

the melt out of debris septa within buried ice. 

The surface processes associated with ablating moraine ice-cores have also been subject 

to considerable research interest (Schomacker, 2008). Two key ablation processes are 

commonly defined; (1) downwasting, and (2) backwasting and associated gravity driven 

mass movements. Downwasting refers to the thinning of dead ice from either top or 

bottom melt (Schomacker, 2008). Back wastage involves the lateral mass-wastage of 

exposed ice-walls. Sections of dead-ice can be fully or partially exposed (Krüger and Kjær, 

2000). The coupling of fluvial and slope processes have been emphasised as important 

agents of ice-cored moraine disintegration (Etzelmüller et al., 2000; Lukas et al., 2005). 

Rates of ice-melt have been quantified in a range of studies (Krüger and Kjær, 2000; Lukas 

et al., 2005; Irvine-Fynn et al., 2011; Ewertowski and Tomczyk, 2015). For example, 

Schomacker and Kjær (2008) found ice-cored moraine at the margin of Holmströmbreen 

downwasted at a rate of -0.9 ma-1 over a 20 year period spanning 1984 to 2004. Similar 

rates were observed at Midtre Lovénbreen by Irvine-Fynn et al. (2011). Here the western 

lateral (true medial) moraine was quantified to be down wasting at −0.65 ± 0.2 ma-1 

between 2003 and 2005.  
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Notably, Schomacker (2008) reviewed the controls on dead-ice ablation by correlating a 

range of climatic variables (e.g. mean annual and air temperature, total positive degree 

days, mean annual and summer precipitation) against annual backwasting 

measurements obtained from various dead-ice environments. Mean annual air 

temperature was shown to have the strongest correlation with backwasting (R2 = 0.65; 95 % 

CI). However, other climatic variables exhibited weaker correlations with annual rates of 

backwastage. This is interpreted by Schomacker (2008) to signify the importance of 

topography and surface processes on de-icing progression in glacial environments. 

However, the aspect of a given near-vertical backwasting ice-exposure is important with 

respect to its sensitivity to climatic forcing (Krüger and Kjær, 2000). Topography appears 

to be a key driver of secondary deglaciation (Schomacker, 2008). 

Recent work by Ewertowski and Tomczyk (2015) reported on ablating ice-cored moraine 

at the Svalbard glacier Ragnarbreen and Ebbabreen over the 2012-2014 period. Where a 

combination of backwasting, and downwasting occurred, higher rates of surface 

lowering were observed (>1.8 ma-1) in comparison to where ice was ablating by down-

wasting alone (0.3 ma-1). Such findings reiterate the findings of Schomacker (2008) 

regarding the importance of local topography and surface processes in regulating the de-

icing progress. 

The efficient coupling of slope and fluvial process in permafrost environments is 

documented elsewhere (e.g. Bennett et al., 2000). Lukas et al. (2005) argued that, as a result, 

the preservation of lateral-frontal moraine is perhaps limited to poorly defined ridges of 

dumped sediment following complete deglaciation, and thus provides an inappropriate 

analogue for landsystems in the Scottish Highlands. Bennett et al. (2000) observed the 

resedimentation of a large ice-cored lateral moraine developed on the southern margin 

of Kongsvegan, Svalbard. They found that the decaying ice-core promoted the 

development of sediment fans on proximal slopes. The authors suggested that, following 

complete deglaciation, only a thin veneer of matrix-supported diamicton and laminated 

silt and sand is likely to remain.   

Degraded ancient lateral moraines in the British Isles have also been reported to exhibit 

a topographically indistinct morphology resulting from extensive para- and periglacial 

activity (e.g. Bennett, 1999a). Despite morphologically similar descriptions of moraine 

end-products following complete deglaciation, the use of Svalbard as an analogue for 
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Late Quaternary glacial landsystems in the British Isles is controversial (Lukas, 2007; 

Evans, 2009).  

In summary, a key aspect to most studies of ice-cored moraines is the importance of back 

wasting, gravity-driven mass movements coupled with glacio-fluvial processes as agents 

of sediment remobilisation (e.g. Lukas et al., 2005; Ewertowski and Tomczyk, 2015). 

1.2.3 ‘Østrem’ snowbank type ridges in Scandinavia 

The moraines developed at glaciated sites across Scandinavian have a long history of 

geomorphological research (Schytt, 1959; Østrem, 1959; 1963; 1964; 1965; Karlén, 1973; 

Ackert, 1984; Hayman and Hattestrand, 2008). These features are identified as potentially 

atypical of other ice-cored ridges occurring in high-Arctic settings, containing moraine-

distal snowbank ice within their structure (Østrem, 1964). In recent years, the term 

‘Østrem’  type moraine has been introduced in the literature (e.g. Whalley, 2009; 

Whalley, 2012) to distinguish these ice-cored moraine systems from their high-Arctic 

counterparts, with the term aptly naming the moraines after the geoscientist who 

conducted initial investigations on ice-cored moraines during the 1950s and 1960s. These 

moraines often exhibit a complex morphology comprised of anastomosing ridge crests 

(Østrem, 1964). 

Specifically, studies completed in the Tarfala valley have contributed to a wider 

understanding of moraine formation in the European Arctic by documenting their 

structural character, or by developing conceptual models accounting for moraine genesis 

(e.g. Østrem 1959; 1963; 1965; Karlén, 1973; Ackert, 1984). The identification of an ice-

component in these moraines is long recognised. Schytt (1959) notes exposures of black 

‘dead-ice’ following the reworking of material on the ice-proximal slopes of lateral-frontal 

moraine in the Tarfala valley following the removal of ice support. Schytt (1959) 

hypothesised that several up-glacier dipping slabs of dead-ice maybe incorporated 

within this ridge. Later research by Gunner Østrem investigated the internal structure of 

the southern lateral complex through the excavation of three pits (Østrem, 1963; 1964). Ice 

was found to occur under 2.5-3.6 m of surface debris (Østrem, 1964). By analysing the 

crystallographic content of sampled material, Østrem (1963) concluded that the ice was of 

meteoric origin, and originated as moraine-distal snowbanks, which were subsequently 

overridden and included into the internal structure of the landform. Strict 
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morphostratigraphic interpretations under this scenario would mean that distal ridges 

would be youngest in origin (Matthews et al., 2014). Studies vary in terms of their 

interpretation of Scandinavian ice-cored moraines. For example, at other sites, ice-cored 

moraines have been conflated with rock-glaciers (e.g. Barsch, 1971). Whilst a polygenetic 

interpretation may be appropriate for some ice-cored moraines which may transition into 

rock glaciers (Whalley and Martin, 1992; Berthing, 2011), geomorphologically stable 

features deposited on near-level terrain were cited by Østrem (1971) as suitable criteria 

for classifying features as ice-cored moraine.  

Karlén (1973) argued for ‘proximal enlargement’ as an important moraine forming 

process in northern Sweden based on interpretations of lichenometric data obtained from 

the Isfallsglaciären moraines. Karlén envisaged a scenario where moraine ramparts acted 

as topographic barriers for subsequent glacier advances, leading to the incremental 

stacking imbricate ‘drift sheets’ of different ages onto ice-proximal slopes. These ‘drift 

sheets’ were proposed to correspond to successive episodes of Holocene glacier 

expansion occurring c. 8000-5000 and 2700-2300 years BP and more recently during the 

Little Ice Age (various dates from c.1500-1916). Karlén favoured this hypothesis despite 

acknowledging ground-level photographic evidence from c. 1910 (Enquist images: 43/374 

and 43/277) depicting both Isfallsglaciären and Storglaciären partially overriding their 

respective lateral-frontal moraine complexes. Later research by Ackert (1984) identified 

glacier ice within the moraines of the adjacent glaciers (Storglaciären and 

Kaskasatjakkaglaciären) leading him to suggest that ice of both origins can be 

incorporated into the internal structure of Scandinavian ice-marginal moraines.  

1.3.4 Push moraine and glaciotectonism 

Moraine genesis resulting from the deformation of submarginal and proglacial sediments 

by advancing glaciers are widely reported (e.g. Etzelmüller et al., 1996; Bennett, 2001; 

Beedle et al., 2009). Glaciotectonism occurs following the transmission of glacier stress to 

sediment at sub-marginal and ice-marginal positions (Van der Wateren, 2002). The size 

and morphology of ridges produced by glaciotectonic process vary (Bennett, 2001). 

Glaciotectonism is responsible for the production of a wide range of morainic forms. 

These include small seasonal ridges (Beedle et al., 2009), composite moraine complexes 

(e.g. Etzelmüller et al., 1996) and larger landform assemblages formed at the margins of 

former continental ice-masses (e.g. Hart, 1990; Lee et al., 2013). The various properties of 
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deforming sediment are important with regard to the development of glaciotectonic 

ridges. One example is that pore-water pressure may determine whether proglacial 

sediments will be subject to ductile or brittle deformation with the proglacial area 

(Benediktsson, 2012). Permafrost is also identified as a control on proglacial deformation, 

where strong permafrost retarding the production of push ridges, and variability in the 

strength of weaker permafrost influencing the style of deformation (Etzelmüller et al., 

1996). Proglacial push moraines related to the deformation of permafrost affected gravels 

have been documented to produce distinctive ‘thrust-block moraines’ (e.g.  Evans and 

England, 1991). Smaller ridges formed by pushing are associated with freeze-on processes. 

This is the process whereby slabs of basal sediment are entrained by the glacier terminus 

during cold winter conditions (Evans and Hiemstra, 2005). As the glacier undergoes a 

seasonally controlled re-advance, entrained stabs are transported. Where seasonal 

oscillations occur, but are superimposed on an overall trend of glacier recession, annual 

moraines may form (Kruger, 1995). If the ice margin remains stable, but seasonally 

oscillates, sediment slabs are stacked in an imbricate fashion forming composite moraine 

ridges (e.g. Kruger, 1994; Matthews et al., 1995). 

In relation to Østrem type ridges, deformation is suggested to be an important moraine 

forming mechanism. For example, recent research by Matthews et al. (2014) uses high-

precision Schmidt hammer exposure-dating to interpret the age and significance of 

‘Østrem’ type ridges in southern Norway. A series of progressively older dates moving 

in a down-glacier direction are argued to falsify earlier interpretations that the outer-

ridges are youngest in age. This site was used by Østrem (1964) to formulate ideas 

surrounding the genesis of Scandinavian ice-cored moraine complexes and, importantly, 

the mechanism of ice incorporation. On this basis, Matthews et al. (2014) consider the ice-

cored moraine complexes in question to be of glaciotectonic origin related to interaction 

of the advancing of polythermal glacier onto alpine permafrost. However, Matthews et al. 

(2014) highlight the need for structural data before ice-marginal processes relevant to 

landform development can be determined. Ice-marginal processes, such as 

glaciotectonism and dumping may occur simultaneously. For example Kruger et al. (2002) 

report on moraine formation at the advancing margin of Kötlujökull between 1982 and 

2001. Here, the thrusting of pre-existing outwash sediments and the pushing of dumped 
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material as it was transferred from the ice-margin led to the development of a polygenetic 

moraine ridge. 

1.5 Rationale 

Understanding the apparent diversity of lateral-frontal moraine is important due to the 

usage of ice-marginal moraines to determine local and regional glacier change through 

time and to obtain meaningful palaeoclimatic data where landforms are used for 

environmental reconstruction (e.g. Nesje, 1992; Benn and Lehmkuhl, 2000; Ramage et al., 

2005; Carr et al., 2010). For example, boulder-size rock fragments located on lateral 

moraines are commonly used for cosmogenic radionuclide (CRN) investigations to obtain 

absolute dates for past fluctuations in glacier extent (e.g. Banard et al., 2004; Everest and 

Kubik, 2006; Rood et al., 2011). Due to their obvious importance in Quaternary science, a 

number studies provide detailed sedimentological and structural data on these 

landforms (e.g. Small, 1983; 1987; Curry et al., 2009; Lukas and Sass, 2011). The processes 

by which they form under differing environmental conditions and their preservation 

potential could, however, be better understood by investigating further landforms within 

their respective localised contexts.  

1.6 Aim and objectives 

1.6.1 Research aim 

The aim of this project is to document the structural characteristics of lateral-frontal 

moraines developed by glaciers in Arctic and Alpine environments and to better 

understand the formation, and associated glaciological and climatic significance of these 

features.  

1.6.2 Research questions 

This thesis will attempt to answer the following research questions: 

• How does the character of lateral-frontal moraine vary within different sub-sets 

of the glaciated valley landsystem? 

• What do the geomorphological characteristics of the three sites investigated tell 

us about: (1) the nature/dynamics of the glaciers that formed them; (2) earth 

surface processes operating during the Neoglacial; (3) the preservation potential 

of these landforms in the geomorphological record? 
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• What implications do the findings have on our palaeo-glaciological interpretation 

of late Quaternary landform assemblages? 

1.6.3 Research objectives 

The following objectives are used to fulfil the aim and research questions of this thesis:  

• Objective 1: To investigate the novel integrated use of UAV and SfM technologies 

for geomorphological research and apply the technique to contemporary glacial 

environments. 

• Objective 2: To assess the internal structure of lateral-frontal moraine using 

ground-penetrating radar (GPR) or direct observations. 

• Objective 3: To use sedimentological techniques to assess the debris transport 

histories and origin of material contained within moraine, and to allow important 

moraine forming processes to be identified. 

• Objective 4: To develop models of moraine formation to account for subsets of 

lateral-frontal moraine formation in Arctic and Alpine environments  

• Objective 5: To assess how the morphology and internal composition of lateral 

moraine may change following climatic amelioration or deglaciation and to 

identify any implications this may have on interpretations of the Quaternary 

landform record. 

1.7 Overview of the thesis 

This thesis contains four data chapters. Data chapters IV-VI solely focus on the theme of 

lateral-frontal structure and morphology, whereas Chapter III is a methodological study 

which helps to inform later research within this thesis. Findings from these research 

components are integrated in a general discussion (Chapter VII). A brief summary of the 

contents of each chapter is provided below. 

Chapter II outlines the sites and research methods used within this research. Four 

research methods are described: (1) geophysical surveys; (2) sedimentological surveys; (3) 

geomorphological mapping and (4) glaciological mapping. 

Chapter III investigates the potential of small unmanned aerial vehicles (UAVs) and 

structure-from-motion (SfM) based photogrammetry for supporting geomorphological 

investigations at Cwm Idwal, north Wales, through the comparison and validation of a 
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SfM derived topographic dataset with a total station survey of the moraine-mound 

complex obtained by Graham and Midgley (2000a). Insights gained from this chapter 

inform later data collection of UAV aerial imagery in contemporary glacial forefields and 

the production and analysis of UAV derived datasets from these settings. This chapter 

was published as an original research article in Geomorphology (Tonkin et al., 2014). 

Chapter IV investigates the sedimentology and morphology of a lateral moraine complex 

developed at the temperate Alpine glacier, Schwarzberggletscher, located at the head of 

the Saas valley, Valais (Swiss Alps). In this chapter current theories of landform genesis 

relevant to Alpine sites are tested. Basin-wide debris transport is considered through the 

mapping of glacier structures and debris coverage from 2009 SwissTopo aerial imagery. 

This chapter is currently being prepared for submission within the target journals of 

Geografiska Annaler: Series A or Zeitschrift für Geomorphologie.  

Chapter V explores the development of ‘Østrem type’ ice-cored lateral-frontal moraine at 

the margin of the polythermal glacier, Isfallsglaciären, located in Tarfala Valley, Arctic 

Sweden. A multi-technique approach is used, including the analysis of sedimentological 

and geophysical (ground-penetrating radar) datasets. As a result of these new datasets, 

the likely development, glaciological significance and chronology of these landforms are 

re-evaluated. 

Chapter VI investigates the structure, sedimentology and morphological evolution of a 

large ice-cored moraine developed at the margins of polythermal high-Arctic glaciers 

through the use of geophysics, field-sedimentology and UAV-photogrammetry. The 

main feature investigated in this chapter is the true-left lateral-frontal moraine at Austre 

Lovénbreen. Geophysical data from the lateral-frontal moraine are reported in Midgley 

et al. (2013). Additional findings are reported here from surveys of surficial 

sedimentology. The geomorphological response and de-icing progression of the Austre 

Lovénbreen true-left lateral-frontal moraine over an 11 year study period is assessed. 

Aerial imagery obtained in 2014 is used to contrast NERC ARSF imagery from 2003. 

DEMs are produced and differenced to give volumetric estimates of landform evolution. 

The landform evolution section of this chapter has been accepted in Geomorphology as an 

original research article (Tonkin et al., 2016). 
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Chapter VII synthesises the findings of this thesis in relation to the research objectives 

and considers how current understanding of Quaternary sites can benefit from insights 

obtained at the three contrasting sites assessed in chapters IV, V and VI. Consideration is 

given to the sedimentological, and morphological signature of ‘Alpine’, ‘Østrem’ and 

‘controlled’ (ice-cored) type moraines and the potential significance of relict features from 

a palaeoglaciological perspective. A synthesis of the research is presented and its 

limitations are considered. Recommendations for future research are provided. 
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2. Research methods 
 

2.1 Overview  

This chapter provides an introduction to the various methods used and details the 

selection of the three sites investigated.  

2.2 Research approach 

This research adopts both an inductive and deductive approach for the purposes of 

investigating lateral-frontal moraine development. The inductive approach refers to the 

process of making observations, forming generalisations and ultimately models which 

explain a given phenomenon (Goudie and Viles, 2010). An example of this would be 

where a range of observations are combined to explain landform development at a certain 

site. The explanation may then be used to explain the wider formation of a set of 

landforms under similar environmental conditions. Whilst this is important in light of the 

site specific sites investigated here, a deductive approach is also useful. The deductive 

approach is relevant where existing models have been developed to explain the formation, 

sedimentology and morphology of a landform under a prescribed set of environmental 

conditions. Under this circumstance, it is important to ‘test’ and refine existing models 

and their relevance to the given study site (Miall, 2010). The latter approach is particularly 

important.  

Benn (2006) highlights that a purely inductive approach can be limiting due to researchers 

looking to fit their preconceived ideas to the available evidence (‘confirmation bias’). This 

can be problematic given the highly interpretative element of geomorphological research 

in glacial sedimentary environments and may not always lead to the development of 

robust understanding of geomorphological phenomena. Therefore a key element of this 

research will involve evaluating/testing existing ideas in light of new, and potentially 

enlightening datasets derived from novel or previously unused research methods (e.g. 

UAVs, SfM photogrammetry, and ground-penetrating radar). In line with good practice, 

interpretations are separated from reporting of the results throughout this research (Benn, 

2006). 
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2.3 Study site selection 

2.3.1 Overview of study site selection 

To aid generalisations of lateral-frontal moraine development, study sites are needed to 

be suitably diverse in terms of their topographic and climatic setting. As identified in the 

literature review, large lateral-frontal complexes have been differentiated in terms of the 

mode of formation, sedimentology and structure in both Alpine and Arctic glacial 

landsystems. Therefore, to gain an understanding of moraine formation under different 

conditions, an example study site from each category was selected. Initial site selection 

was aided by aerial imagery assessed in Google Earth. The location and accessibility of 

potential study sites was important from a logistical perspective. One formerly glaciated 

site is also included in this study, for the purpose of testing the UAV-SfM approach for 

conducting topographic surveys. Given the use of geophysical (GPR) and remote sensing 

(UAV-photogrammetry), access to mains electricity for charging equipment was an 

important consideration. The locations of the glacierised sites are displayed in Fig. 2.1. 

Table 2.1 compares the character of the glaciers at the three sites. Table 2.2 provides an 

overview of the application of the methods with respect to each of the study sites. 

2.3.2 Cwm Idwal 

This site was selected to validate the integrated UAV and SfM approach to topographic 

data acquisition which is used in this thesis to examine the geomorphology and evolution 

of contemporary moraine formations. The main determining factor for choosing this 

study site was an existing high resolution topographic survey completed by Graham and 

Midgley (2000a) allowing for the new technique to be compared with an existing ground 

based survey method. The co-benefit of this site is that it is formerly glaciated, with 

analogues drawn between the character of the moraines used and high-Arctic valley 

glacier landsystems investigated in chapter VII.  

2.3.3 Schwarzberggletscher, Switzerland 

This site was selected to provide an Alpine example of lateral-frontal moraine formation. 

Although studies have investigated the character of moraines in the Valais region, few 

geomorphological studies have been completed at Schwarzberggletscher. The site 

located >15 km from Gornergletscher, and Findelgletscher, whose moraines have been 

subject to recent investigations (e.g. Lukas and Sass, 2011; Lukas et al 2012). This site is 

therefore ideal for investigating the applicability of conceptual models developed at these 
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glaciers. Furthermore, the most significant research contribution to our understanding of 

the Schwarzberggletscher moraines is that of Bircher (1982). This research predates the 

development of standardised sedimentological techniques for glacial geomorphological 

research, and is heavily focused on general glacier geochronology, rather than 

geomorphological and glaciological processes within the basin. 

2.3.4 Isfallsglaciären, Sweden 

This site is selected to provide an example of moraine formation within an Arctic 

polythermal setting of moderate relief (i.e. less mountainous than Alpine terrain; 

Hambrey and Glasser, 2012). Whilst the glaciers of the Kebnekaise region have been 

subject to significant glaciological research (e.g. Schytt, 1962; 1966; Holmlund et al., 1996a; 

Holmlund and Jansson, 1999; Zemp et al., 2010; Rippin et al., 2011; Gusmeroli et al., 2012), 

research seeking to understand the geomorphological significance of their moraines is 

largely lacking (e.g. Østrem, 1964; Etienne et al., 2003; Heyman and Hättestrand, 2006; 

Pomeroy, 2014). This is at odds with the importance of these sites for contextualising 

current and future glacier change. Furthermore, the origin of ice contained within these 

moraines distinguishes them from their high-Arctic counterparts, yet little research 

attention has been directed at understanding the significance of these potentially rare 

geomorphological features. A modern investigation of the characteristics of these features 

is warranted. An additional co-benefit of this site is the logistical support offered by 

Tarfala Research Station which facilitated the completion of geophysical and UAV-

photogrammetric surveys at the site. 

2.3.5 Austre Lovénbreen, Svalbard 

This site provides an example of ice-cored ‘controlled’ moraine (e.g. Evans, 2009) which 

can be contrasted which the Arctic landsystems of Northern Sweden and the Alpine high-

mountain glacial environment of Schwarzberggletscher. Furthermore, there is ongoing 

debate regarding the applicability of our understanding of ‘hummocky’ moraine 

assemblages in high-Arctic landsystems to the British Younger Dryas. Key unresolved 

issues revolve around the perseveration potential of ice-cored landforms. Additionally, 

the location of this site (e.g. its close proximity to Ny-Ålesund) aids the completion of 

geophysical, UAV surveys and safer working conditions in the high-Arctic environment.  
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Table 2.1 Overview of glaciers investigated in this thesis. 

Glacier Location 
Length 
(Neoglacial 
max) 

Thermal 
regime 

Dynamic 
status 

Terminus 
Elevation 

Austre Lovénbreen 78°53’ N 
12°08’ E c. 5 km Polythermal 

(transitioning) Receding 100 
m.a.s.l 

Isfallsglaciären 67°54’ N 
18°34’ E c. 2.5 km Polythermal 

(transitioning) Receding 1285 
m.a.s.l 

Schwarzberggletscher 46°00’ N 
07°57’ E c. 5.5 km Temperate Receding 2710 

m.a.s.l 

 

Table 2.2 Overview of datasets reported in each chapter. 

Glacier Sedimentology Morphology Geophysics Geomorphological 
Evolution 

Austre Lovénbreen ✓ ✓ ✓ ✓ 

Isfallsglaciären ✓ ✓ ✓  

Schwarzberggletscher ✓ ✓   
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Fig. 2.1 Location map for the three glaciers and one formerly glaciated site investigated 
by this project  
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2.4 Ground-penetrating radar 

2.4.1 Introduction 

Ground-penetrating radar and its use in sedimentology is well established (Neal, 2004). 

Over the last decade the technique has been demonstrated to be effective in glacial 

sedimentary environments (Bakker and Van Der Meer, 2003; Sadura et al., 2006; Brandt et 

al., 2007; Burki et al., 2010; Lukas and Sass, 2011; Midgley et al., 2013) despite potential 

constraints on the effectiveness of the technique in coarse, or silt and clay rich substrates. 

One of the main benefits of ground-penetrating radar is that the technique is non-invasive, 

which is particularly useful for field sedimentology in environments where sedimentary 

exposures are rare or non-existent. Here the technique is applied to lateral-frontal 

moraine. Recently the use of ground-penetrating radar to assess the sedimentology of 

glacial moraines has been advocated (e.g. Lukas and Sass, 2011).  

2.4.2 Physics of ground-penetrating radar 

The technique exploits the interaction between the transmission of electromagnetic 

energy and the properties of a given substrate. The velocity that electromagnetic energy 

propagates is dependent on the properties of the sub-surface material. Important 

properties include the electrical conductivity (σ), magnetic permeability (μ) and dielectric 

permittivity (ε) of a material (Neal, 2004; Cassidy, 2009). Changes in these properties 

influence the propagation velocities of transmitted electromagnetic energy and result in 

reflections between contrasting sub-surface materials. Materials with strongly 

contrasting properties lead to the high-amplitude reflections (Conyers, 2012).  A key 

aspect of this relationship is that certain materials have known velocities, which may vary 

depending on their thermal state (frozen or unfrozen), and the degree to which the 

material is water saturated (Davies and Annan, 1989). The propagation velocity of the 

electromagnetic energy can therefore be used as an indirect proxy for the sub-surface 

composition and material properties with the properties of a range of geological media 

well defined within the literature (Reynolds, 2011).  

Where the velocity of the propagating electromagnetic energy is defined, depth can be 

estimated from two-way travel time (TWTT) (Robinson et al., 2013). The thickness of a 

bed can be determined by measuring the travel time from the top to the bottom of a 

sedimentary unit, and calculating the TWTT difference (Δt) (e.g. Annan, 2003; Núñez-

Nieto et al., 2014). Propagation depth can therefore be solved using the following equation: 
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d = v × t / 2, where v is the propagation velocity, t is the TWTT and d is the estimated 

depth. 

For glacial sedimentary environments, 50 and 100, and 200 MHz antennae configurations 

have shown to be effective when surveying diamicton and gravel substrates. The antenna 

configuration used dictates the step-size, and subsequent spatial resolution of a dataset. 

Step-size refers to the distance the equipment is moved between the acquisition of an 

individual trace. The 100 MHz configuration uses a 0.25 m step size, whereas, a 50 MHz 

configuration will use a 0.5 m step-size (Table 2.3). Despite this trade-off, lower 

frequencies are associated with greater penetration, which is a key constraint of the 

technique in some glacial environments. For example Smith and Jol (1995) identified a 

linear relationship between the frequency of the antenna used, and the maximum depth 

structure could be observed within a Quaternary sedimentary substrate. However, a 

secondary trade-off is the resolution of the resulting radar data. Higher frequencies are 

associated with higher resolution subsurface data, but rapid signal attenuation, whereas 

lower frequencies attenuate less rapidly, but producing coarser resolution subsurface 

imaging (Annan, 2003). 

Table 2.3 Summary of frequencies, configurations, and suggested maximum depth 
where sedimentary structures can be observed. 

1 Values derived from Fig. 7 in Smith and Jol (1995) for Quaternary sediments 

2 Taken from Annan (2003) with a dielectric constant of 9. 

 

2.4.3 Field data acquisition 

Radar data was collected using a Pulse EKKO Pro GPR. Reflection surveys were 

undertaken with an 100 MHz antenna configuration. A 0.25 m step size between traces 

and a 1 m transmitter/receiver separation distance was used. All surveys reported in this 

thesis were undertaken under winter conditions (frozen ground conditions) in an attempt 

Frequency Step-size Antenna 
Separation 

Suggested max 
probable depth of 
propagation1 

Spatial resolution of 
reflectors2 

200 MHz 0.1 m 0.5 m 28 m 0.25 m 
100 MHz 0.25 m 1 m 37 m 0.5 m 
50 MHz 0.5 m 2 m 47 m 1 m 
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to circumvent potential scattering issues related to the presence of liquid ground-water. 

For all surveys, the transmitter and receiver were set up in a consistent manner, with the 

transmitter leading in the direction of the reflection survey. In adverse weather conditions 

the transmitter and receiver were insulated with polyethylene foam to improve 

performance and operational duration of the lead acid gel batteries. Where snow depth 

was deep enough to permit, both the control unit and transmitter-receiver were mounted 

to plastic pulks to improve the efficiency of the survey.  

A distance of >5 m was kept between the DVL (digital video logger) control unit and 

transmitter/receiver setup to avoid unnecessary signal interference. Snow shoes were 

found to produce ringing at depth within the GPR reflection profiles, thus were not worn 

whilst surveying. A time-window of 750-800 ns was found to be sufficient for each trace. 

Traces were manually triggered using either the control unit interface or CANBUS 

electrical beeper. Surveys were conducted along a 100 m tape to ensure the correct step-

size was maintained throughout the survey. To correct radar profiles for topography, 

surveys were conducted on each transect using a Leica NA700 automatic level. The start 

and finish location of a given survey was recorded by using a Garmin GPS 62. Waypoint 

averaging was used to reduce positional error. During CMP/WARR surveys the fibre 

optic cables (each of which were 20 m in length) limited the maximum separation to 38 m. 

WARR surveys were conducted using a common receiver configuration. The various 

survey configurations are illustrated in Fig. 2.2. 
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Fig. 2.2 GPR survey configurations redrawn from Neal (2004). Common offset surveys 
are also referred to as reflection surveys. Common mid-point, common source and 
common receiver survey configurations are used in this thesis to determine the 
propagation velocity of radar-waves. The latter two require either the transmitter or 
receiver to remain in a fixed location.   
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2.4.4 Post-processing 

An overview of the post-processing steps used within this thesis is presented in Fig. 2.3 

and explained below. The amount of post-processing was kept to a minimum in 

accordance with best practice to avoid operator bias (Cassidy, 2009). The three main post-

processes (dewow, topographic correction and the application of gain) were applied. 

The topographic correction (e.g. Fig. 2.4) process involves the horizontal repositioning of 

traces to allow for geometry of subsurface reflectors to account for changes in surface 

topography (Neal, 2004). The average velocity for a section is needed prior to correction 

of the radar data (Annan, 2003). Fig. 2.4 shows a radar profile prior to, and after 

topographic correction using a velocity of 0.17 m ns-1. Methods for determining velocity 

are discussed in section 2.4.5. When corrected a fixed velocity was applied to the radar 

gram, which is a limitation of the software used for post-processing. 

The dewow process involves the removal of a low frequency decaying signal trend 

(Robinson et al., 2013; Fig. 2.5). The initial low-frequency ‘wow’ is caused by saturation of 

signals by early returns such as the ground or airwave (Neal, 2004; Cassidy, 2009).  

Without the application of dewow, the colour filling used to highlight the positive or 

negative amplitude of a given trace will be distorted as it will not be reset to a mean of 

zero (Cassidy, 2009). Dewow removal is achieved through the application of an averaging 

filter prior to any additional post-processing (Annan, 2003). 

The application of gain as a post-process facilitates the identification and clarity of sub-

surface structure. Where radar signal propagates at depth, reflectors at depth may be 

obscured, or poorly visible due to signal attenuation. Signal attenuation may be 

particularly problematic in clay and silt rich substrates due to the dielectric properties of 

the material (Overgaard and Jakobsen, 2001). Several types of gain are available for use 

including automatic gain control (AGC), constant gain, and spreading and exponential 

compensation (SEC). AGC applies gain to boost the visibility of weak reflectors. The 

amount of gain applied is inversely proportional to the signal strength (Annan, 2003). The 

potential use of amplitude as an indicator of the strength of a given reflection event is 

removed once AGC is applied. The process can therefore be seen as a method equalising 

signals within a trace. Cassidy (2009) notes that AGC offers a trade-off between 

amplifying noise and displaying weak reflectors at depth, thus has the potential to be 

problematic when applied to poorly sorted glacial sediments. Within the EKKO view 
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software used for post processing the data presented in this thesis, the maximum and 

minimum amplitude that can be assigned to a trace using gain is ± 32767. Constant gain 

is the simplest of the gain functions used. Within the EKKO view software constant gain 

is applied, multiplying signal strength by a specified value (Annan, 2003). For example if 

this parameter was set to 5, all signals would be multiplied by this amount.  As the 

multiplication is applied to all signals, excessive gain may be applied to the least 

attenuated signals within the trace, therefore leading to over-amplified shallow signals. 

SEC applies gain in an exponential fashion along a trace. As radar-wave energy may 

attenuate in exponential manner at depth, this gain function attempts to account for this, 

and therefore preserve the relative amplitude of reflectors within a section (Annan, 2003) 

. 

 

Fig. 2.3 Simplified overview of post-processing method used here. 
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Fig. 2.4 Example of uncorrected, and corrected topographic of a radar transect. Note the 
reorientation of the dipping reflectors following correction to a velocity of 0.17 m ns-1. 

 

Fig. 2.5 A schematic showing the effect of wow, and the result of its removal. 
Illustration is redrawn from Cassidy (2009).  
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2.4.5 Semblance analysis 

Multi-offset data derived from common mid-point and wide angle reflection and 

refraction surveys were analysed using semblance analysis to provide data on radar-

wave propagation velocities. Within the Sensors and Software EKKO View deluxe 

software package, semblance analysis is referred to as CMP analysis. Annan (2003) 

defines the process as a method where traces derived from CMP or WARR surveys are 

stacked at a range of radar velocities. This results in high amplitude signals where the 

correct velocities are stacked, and low amplitudes where incorrect velocities are stacked 

(Annan, 2003). The resulting data output were plotted against the variables time (in 

nanoseconds) and depth (in metres) using a colour scale showing the amplitude (thus 

occurrence of a particular velocity) of the stacked traces. 

2.4.6 Interpretation of radar datasets 

The radar datasets were interpreted qualitatively following post-processing. 

Interpretations were made by digitising features present on the processed radargrams 

(e.g. Lukas and Sass, 2011; Lindhorst and Schutter, 2014). Reflectors were described based 

on their geometry. Four main characteristics for reflectors were noted; (1) the reflector 

shape (planar, wavy, convex, concave), (2) the reflector dip (e.g. horizontal, or either up 

or down glacier dipping), (3) the relationship between different reflectors within a 

radargram (e.g. parallel, subparallel, oblique, chaotic) and the continuity of reflectors 

within a radargram (continuous, moderately continuous and discontinuous). The 

terminology used to describe radar facies and surfaces was adopted from Neal (2004) and 

Pellicer and Gibson (2011) (Fig. 2.6). 
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Fig. 2.6 Radar terminology in relation to nine distinct radar signatures from Pellicer 
and Gibson (2011). 

 

2.5 Sedimentology 

2.5.1 Introduction 

Investigations into the sedimentology of moraines at Alpine and Arctic glaciers are used 

to interpret ice-marginal geomorphological processes, including the origin and transport 

pathways of moraine sediment, modes of deposition and any subsequent disturbance of 

lithofacies. This research uses standardised techniques in glacial sedimentology allowing 

the collected data to be compared with a wider population of glacial landsystems. To this 

end, the following techniques were used: 

I. Description of texture 

II. Logging of sedimentary structures and spatial relationships between lithofacies 

III. In-the-field measurement of lithofacies clast fabric 

IV. Sampling of clasts and assessment of clast morphology 

V. Sampling and laboratory assessment of matrix grain-size to supplement in-the-

field assessment of lithofacies texture. 
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2.5.2 Description of texture 

The Hambrey and Glasser (2012) modified Moncrieff (1989) classification was used to 

characterise poorly-sorted sediments (Fig. 2.6). This entailed estimating the percentage of 

sand, mud and clasts within a sedimentary exposure. Descriptive terminology used to 

refer to lithofacies throughout the thesis is therefore derived from this classification. The 

percentage sand contained within the matrix (particles <2 mm) was later verified through 

the analysis of samples using laser granulometry. Structural features such as 

displacements, laminations and lenses were also recorded using sedimentary field logs. 

Photographs of key sedimentary features were also taken to aid later interpretation of 

sedimentary units. Compaction was assessed using the descriptive scheme presented in 

Hubbard and Glasser (2005). 

 

Table 2.4 Glacigenic sediment compaction assessment scheme adopted from Hubbard 
and Glasser (2005) 

Description Terminology 

Loose Unconsolidated 

Crumbles easily between fingers Very friable 

Rubbing with fingers free numerous grains; gentle blow with a 
geological hammer disintegrates sample Friable 

Grains can be separated from sample with a steel probe; breaks 
easily when hit with a geological hammer Hard 
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Fig. 2.7 Classification adopted by this thesis for the description of poorly sorted 
sediments. Classification adapted from Hambrey and Glasser (2012). 
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2.5.3 Clast form analysis 

2.5.3.1 Overview 

Clast morphological characteristics reflect their transport histories. Three parameters of 

clast morphology are commonly assessed. These include shape, roundness, and surface 

features (sometimes referred to as texture) (Benn, 2004a). Shape entails measurement of 

the three orthogonal axis to produce the relative dimensions of a clast. Roundness as a 

clast form parameter refers to degree of rounding (curvature) on the edges of a given clast. 

This classification assigns clasts to one of the six roundness categories through a 

subjective visual assessment. Clasts can be assigned to these categories using a visual (e.g. 

Powers, 1953) or descriptive criteria (e.g. Benn, 2004). A range of surface features (e.g. 

striae and polished surfaces) can be recorded, which reflect the erosional transport and 

depositional history of the clast. The presence or absence of striae, for example, can be 

used to determine an ‘active’ subglacial transport pathway (Hambrey, 1994).  

Lithology is known to exert an influence on clast morphology (Lukas et al., 2013). Recently, 

Lukas et al. (2013) have advocated the use of a single lithology to maximise the 

discriminatory power of the technique. However, mixed lithologies have been widely 

used by a range of studies, and are still found to provide robust discrimination between 

the various glacial transport pathways (e.g. Hambrey and Glasser, 2012). For example, in 

high-Arctic glacial environments, Bennett et al. (1997) found lithology to have limited 

influence on clast morphology. Furthermore, pragmatically, restricting sampling to 

single lithologies may not be possible if clasts are sampled from a spatially limited facies 

or a facies with a dispersed clast content. Here, mixed lithologies with higher sample sizes 

are likely to be more robust than simple lithologies of low sample sizes. 

2.5.3.2 Field methods 

Clast-form properties were assessed using the measurement of three superimposed 

parameters: shape, roundness and surface features (Benn and Ballantyne 1993; 1994; 

Bennett et al., 1997). For shape, digital callipers were used to measure the long, 

intermediate, and short (L, I, & S) orthogonal axis of each clast. Measurements were 

undertaken on predominantly the pebble component of moraine sediments using size 

classes as defined by Wentworth (1922). Therefore clasts with a long orthogonal axis 
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falling outside the 40-64 mm range were excluded from analysis. Roundness was assessed 

using the visual scale published by Powers (1953).  

Clast surface features were assessed by recording the presence or absence of striae on 

each clast within a sample. The fine component within glacial sediments can obscure clast 

angularity and preclude the identification of striae. Clasts were therefore thoroughly 

washed prior to analysis. Mixed lithology sample sizes of n = 50 were used, except in 

sedimentary facies with dispersed clast. Here, insufficient numbers of clasts were sourced 

to complete a sample of 50.  At each study location, control samples from known 

environments were obtained for comparison with moraine sedimentology. These 

included samples from extraglacial (e.g. scree), subglacial (obtained from in situ 

extraction at the terminus), and glacio-fluvial settings taken from outwash stream at 

various distances from current glacier margin (e.g. Brook and Lukas, 2012). To 

characterise coarse boulder facies, which have a limited or absent quantity of clasts falling 

within the standard sizes (as defined by Wentworth, 1922) a modified approach was used. 

Boulders were assessed by measuring the roundness and intermediate axis of 50 clasts 

located at one metre intervals along a randomly placed 50 metre tape. The percentage of 

clasts exhibiting striae along the tape were also recorded. 

2.5.3.3 Data analysis 

Shape was graphically displayed using the Graham and Midgley (2000b) Microsoft 

ExcelTM spreadsheet, which generates Sneed and Folk (1958) ternary diagrams. To aid 

discrimination between sediment transport pathways, co-variance RA-C40 graphs were 

produced by plotting the percentage of very angular (VA), and angular (A) clasts in each 

sample (RA) against the percentage of clasts where the ratio of the S/L axis was ≤0.4 (C40; 

Benn and Ballantyne, 1994). This is a standardised, and widely adopted approach to 

analysing clast form data (Benn, 2004a), and allows findings to be compared to existing 

studies. Where needed, the percentage of rounded and well-rounded clasts were also 

plotted against the C40 index to assist discrimination between glacio-fluvial and 

subglacial transport pathways (e.g. Brook and Lukas, 2012; Lukas et al., 2013). Additional 

clast form analysis is provided through the use of a two tailed Kolmogorov-Smirnov 

statistical test which compares the cumulative distribution functions (CDF) of two 

samples to aid discrimination. The statistical test was manually calculated using 

Microsoft Excel. This test has previously been used to distinguish a statistical difference 
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between the roundness of clasts from different populations (e.g. Spedding and Evans, 

2002; Swift et al., 2006). This is a non-parametric test, where equal sample sizes are not a 

pre-requisite (Borradaile, 2003). 

2.5.4 Clast macrofabric analysis 

A compass-clinometer was used to measure the dip and orientation of elongated clast 

axis. Samples of n = 50 are typically considered to produce statistically significant datasets, 

therefore were used as a minimum during data collection (Benn, 1994; 2004b). Clasts were 

selected randomly approximately over a 50 x 50 cm area to avoid sampling bias related 

to planar surfaces, whereby clasts which protrude, rather than run parallel to the 

exposure surface may be over-represented within a dataset (Millar and Nelson, 2001a; 

Chandler and Hubbard, 2008).  Particle fabric can be weakened by repeated freeze-thaw 

cycles which are known to cryoturbate subsurface sediments (Millar and Nelson, 2001b; 

Chesworth et al., 2008). To reduce this issue, samples were collected at c. 1 metre depth. 

To allow the direction of dip to be clearly distinguished an in-the-field visual assessment 

of shape was conducted where clasts with an axial L:I ratio of <1.5:1 were excluded (e.g. 

Millar and Nelson, 2003; Benn, 2004b). Following the removal of individual clasts, a pencil 

was inserted, to clearly delimit a plane for the measurement of particle dip and direction 

with the compass-clinometer. All metallic items were removed from the study area to 

avoid issues with instrument accuracy. Whilst it has been highlighted that there is 

significant overlap existing between fabric datasets of different origins (Hicock et al., 1996; 

Bennett et al., 1999b), fabric datasets are used in-combination (rather than in isolation) 

with other techniques to discern depositional/ice-marginal processes. The resulting data 

was presented using equal area lower-hemisphere Schimdt nets using the Stereonet 8 

(Allmendinger et al., 2012). Eigenvalues and vectors were calculated using as a 

quantitative method to analyse fabric data.  

2.5.5 Grain-size analysis 

2.5.5.1 Overview 

The size of sedimentary particles allows for interpretation of erosional, transport, and 

subsequent depositional history. Grain size may reveal details on the relative energy of a 

given depositional environment (Hubbard and Glasser, 2005). Laser granulometry is one 

potential technique that can be used to determine the percentage volume of particles of 
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different sizes within a sample. Unlike sieving techniques, laser granulometry is achieved 

by passing a laser beam through a fluid module containing a sediment sample, and 

measuring the degree of scattering. Samples are entrained within a fluid chamber which 

results in random particle orientation relative to the laser (Beuselinck et al., 1998). The 

degree of scattering is measured by a bank of detectors. The LS 13 320 used in this 

research has 126 detectors (Beckman Coulter Inc, 2011). One limitation of the method is 

that the shape of a grain will affect the resulting particle size distribution. This occurs as 

the area of particles will be averaged over a range of possible orientations, which results 

in possible over reporting of the coarser particle size of coarser non-spherical particles 

(Konert and Vandenberghe, 1997; Eshel et al., 2004). Conversely, the volume of clay size 

material may be underestimated where the Fraunhofer optical model is used, with 

underestimation particularly pronounced in poorly sorted sediment types (Blott et al., 

2004). The resulting data may not be directly comparable to those produced using other 

methods (Hoey, 2004). Whilst organic matter can be removed prior to analysis using 

hydrogen peroxide, Beuselinck et al. (1998) found that removing the organic material 

from soil samples had a statistically limited effect on the resulting grain size distribution 

when analysed using laser diffraction. Significant variation exists between measurements 

derived using different laser diffraction instruments and other particle size analysis 

techniques (e.g. Eztler and Deanne, 1997; Hoey, 2004). The clay component is under-

reported by this technique (Konert and Vandenberghe, 1997; Beuselinck et al., 1998). 

Therefore findings from this analysis are predominantly used to aid the correct 

identification of diamicton units against the Hambrey and Glasser (2012) modified 

Moncrieff (1989) classification. 

2.5.5.2 Field and laboratory methods 

The matrix component of moraine sediment (sand and mud) was sampled in the field 

and retained in air tight plastic sample bags for later laboratory analysis. Approximately 

15 g of sediment was taken from each facies. Where exposures were found to cross-cut 

several sedimentary facies, multiple samples were taken. Particle size was then quantified 

using a Beckman Coulter LS 13 320 laser diffraction analyser which measured particles 

size between 2000 and 0.375 μm. As the LS 13320 cannot process particles greater than 

2000 μm, for diamicton samples, a wet sieve was used to exclude the granular component 

from the analysis. To ensure the accurate measurement of particle size by the device, 
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samples were dispersed/disaggregated using a solution of calgon. Although smaller 

concentrations have been recommended (e.g. Blott et al., 2004), 5% concentrations were 

found to be acceptable for consistently dispersing the samples without introducing 

bubbles into the fluid module. The 5% calgon solution was prepared following the 

procedure outlined in Head (1992) by adding 35 g of sodium hexametaphosphate and 7 g 

sodium carbonate to 1 litre of distilled water. Samples were prepared into a homogenised 

paste to ensure good sample representation. To further aid sample disaggregation and 

dispersal, each sample was agitated in a sonic bath for 15 minutes, prior to transfer into 

the fluid module. Prepared samples were incrementally loaded into the diffraction 

analyser until an optimal obscuration of 8-12% was reached. The analysis was conducted 

using the Fraunhofer standard optical model. The instrument pump speed was 

consistently set to 60%, which produced sufficient particle entrainment without 

generating bubbles. The polarisation intensity differential scattering (PIDS) system was 

disabled. This allows for larger quantities of sediment to be added to the universal liquid 

module, which is particularly important to gain representative samples (e.g. Blott et al., 

2004). Additional statistical data was generated using the Blott and Pye (2001) Microsoft 

ExcelTM GRADISTAT spreadsheet. 

 

2.6 Geomorphological mapping 

2.6.1 Overview and approach 

Geomorphological field mapping used here serves to organise field observations into a 

GIS (geographic information system) and allow for features to be identified and 

interpreted (e.g. Knight et al., 2011). Field observations ground-truth the spatial extent of 

landforms, document active surface processes and subtle geomorphological features. 

Two approaches are used: (1) conventional field mapping supplemented by existing base-

maps or orthorectified aerial imagery (e.g. Hubbard and Glasser, 2005); and (2) novel 

UAV based image acquisition, and the subsequent programmetric processing of imagery 

into GIS datasets. Such datasets aid geomorphological mapping of moraines, and allow 

for morphometric change to be quantified. Mapped features include the ridge crests of 

moraines and the location of observable surface processes (e.g. gullying, back wasting 

faces, and debris flowage). A Garmin GPSMAP 62 was used to record the position of such 

features in the field. The following datasets were used for geomorphological mapping: 

42 



 

Schwarzberggletscher:  

• ALTI3D DEM. 2m Resolution. Obtained from the Swiss Federal Office of Topography 

• Orthophoto. 0.5 m resolution. Acquisition year: 2009. Obtained from the Swiss 

Federal Office of Topography. 

Isfallsglaciären:  

• Orthophoto. 0.5 m resolution. Acquisition year: 2008. Obtained from Lantmäteriet. 

• SfM DEM. 0.5 m resolution.  Acquisition year: 2013. Derived from UAV imagery. 

Austre Lovénbreen: 

• SfM DEM. 0.5 m resolution.  Acquisition year: 2014. Derived from UAV imagery. 

• SfM DEM. 0.5 m resolution. Acquisition year 2003. Derived from NERC aerial 

imagery. 

• SfM orthophoto. 0.5 m resolution. Acquisition year 2003. Derived from NERC aerial 

imagery. 

2.6.2 Photogrammetry and UAV-based mapping 

For UAV surveys photogrammetrically produced imagery and elevation data was used 

for geomorphologically mapping. Photogrammetry is the process of producing 

measurements from photography (Aber et al. 2010). The technique itself has a long 

history of development with early attempts to use photogrammetry documented in the 

late 19th and early 20th Centuries. Traditionally, where the position of a camera location is 

known the 3D position of two features visible on overlapping photography can be 

estimated by triangulating the rays from the two camera positions. In recent years new 

approaches to photogrammetry have been developed. Specifically what is often referred 

to as ‘Structure-from-Motion’ photogrammetry has been adopted in the geosciences 

(Westoby et al., 2012). Using this approach, the camera locations can be automatically 

resolved by detecting matching points between photography. The automated aspect of 

the workflow integrates efficiently with the use of small-format low level imagery such 

as imagery derived from UAV surveys and is capable of producing very high resolution 

topographic data sets (Fonstad et al., 2013). Due to the novelty of UAV based image 

acquisition integrated with SfM photogrammetry, Chapter III is dedicated to assessing 
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the potential of this method for geomorphological research. An overview of the digital 

photogrammetric approach used and the data acquisition process in relation to each 

study site is provided in their respective chapters sections. 

2.7 Structural glaciological mapping and interpretation 

Structural glaciological mapping and interpretation can used to understand debris 

entrainment, transport and deposition within glacier landsystems (e.g. Goodsell et al., 

2002). It is of importance due to the influence debris supply and transport has on 

controlling the rate and style of ice-marginal moraine formation (Benn and Evans, 2010). 

Information on the structural configuration of a given glacier can aid understanding of 

the subsequent distribution of lithofacies within a glacier forefield (e.g. Roberson, 2008). 

The use of this technique at high-Arctic polythermal glaciers has been particularly 

important in furthering our understanding of the significance of structural glaciological 

controls on landform development (Glasser et al., 1998; Hambrey and Glasser, 2003; 

Hambrey et al., 2005). Structural mapping is particularly effective where glacier-ice 

accounts for the constituent part of a moraine complexes (‘ice-cored moraine’) as englacial 

structures exert an influence on resulting moraine morphology in ice-cored terrain (e.g. 

Evans, 2009; 2010). Midgley et al. (2013) demonstrated that the structural information 

obtained from relict-ice contained within moraine complexes also provides information 

on the character of glaciers at the time of moraine formation. However contemporary 

observations of glacier structures are needed to aid interpretations of relict glacier-ice 

structures contained within ‘controlled’ moraines. 

 Goodsell et al. (2005a) provided a schema for identifying glacier structures from aerial 

photographs (Table 2.5) and defined seven non-genetic features and their likely 

interpretations which are readily identifiable on aerial photography. This schema is 

adopted in this research to allow for the mapping of glacier structures from aerial imagery. 

Structural mapping was undertaken in Quantum GIS version 2.2. The contrast and 

brightness of the raster datasets were manipulated to aid identification of structure from 

the raster datasets. Additional units not defined by Goodsell et al. (2005a) are also mapped. 

These relate to the nature of supraglacial debris coverage on a given glacier. These units 

are mapped within a GIS from orthorectified aerial imagery to allow for their areal extent 

to be reported. Two types of debris coverage are qualitatively assessed: sporadic and 

extensive. Sporadic debris coverage is defined as debris where ice can still be readily 
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observed through the material on the aerial imagery. Extensive debris units are used to 

highlight where thick supraglacial debris are present on the glacier surface, and no ice is 

observed on the aerial photography. 

 

Table 2.5 The Goodsell et al. (2005a) schema for identifying glacier structures from 
aerial photography 

Non-genetic Name Interpretation Identification on aerial photography 

Systematic layering Primary 
stratification 

Parallel layering usually found in the upper 
glacier basin, sometimes parallel to 
snowline. 

Discontinuities in 
layering 

Unconformit
y 

A break in the normal systematic layering of 
the primary stratification. 

Structural 
discontinuity 

Flow unit 
boundary 

A junction that separates structures rotated 
in one orientation from structures rotated in 
a different orientation. 

Crevasses Crevasses 
Either as straight white lines (snow filled) or 
straight dark lines (non-snow filled or water 
filled), with cross-cut features. 

Transverse/arcuate 
structures 

Crevasse 
traces 

First found in areas of crevassing as straight 
dark lines, can be followed down glacier as 
deforming dark lines, cross-cutting 
previously formed structures. 

Steeply dipping 
longitudinal 
structure 

Longitudinal 
Foliation 

Long linear pervasive layered structure 
parallel to ice movement, which can be 
traced discontinuously. 

Folding Folding 
Large-scale folding is identified as curves in 
linear features which do not follow surface 
topography. 
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3. The potential of unmanned aerial vehicles and 

structure-from-motion for topographic surveys: a test 

of emerging integrated approaches at Cwm Idwal, 

North Wales 
 

3.1 Introduction 

The use of small unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) 

digital photogrammetry presents a new methodological frontier for topographic data 

acquisition and is of interest to scientists researching in a range of geomorphological 

environments (Westoby et al., 2012; Carrivick et al., 2013; Hugenholtz et al., 2013; Tarolli, 

2014). Traditionally low-level aerial photography has been acquired using a variety of 

unmanned platforms including small lighter-than-air blimps, kites, and model fixed-

wing and single rotor aircraft (e.g. Wester-Ebbinghaus, 1980; Rango et al., 2009; Smith et 

al., 2009; Watts et al., 2010; Hugenholtz et al., 2013; Ryan et al. 2015). More recently 

lightweight (< 5 kg), relatively low-cost multi-rotor aerial platforms have been used to 

capture low-level imagery (Harwin and Lucieer, 2012; Niethammer et al., 2012; Rosnell 

and Honkavaara, 2012; Mancini et al., 2013; Lucieer et al., 2014). These UAVs can be 

programmed to fly semi-autonomously at fixed altitudes along flight lines, ensuring 

optimal image overlap for digital photogrammetry. A key strength of the integrated UAV 

and SfM approach is the degree of automation involved. Previously, a high degree of user 

experience was a prerequisite for both the operation of aerial platforms and the 

application of photogrammetric methods to extract meaningful topographic data from 

aerial imagery (Aber et al., 2010). The premise of SfM as a digital photogrammetric 

technique is that three-dimensional coordinates can be extracted from sufficiently 

overlapping photography without the need for camera spatial information (Snavely et al., 

2008; Westoby et al., 2012). The integration of SfM with UAV camera platforms offers a 

rapid and increasingly cost effective option for geomorphologists to produce digital 

surface models (DSMs), with resolution and data quality proposed to be on-par with, or 

better than LiDAR (Carrivick et al., 2013; Fonstad et al., 2013).  Topographic surveys 

derived from UAV imagery have recently been used for a variety of geoscientific 
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applications including quantifying rates of landslide displacement (Lucieer et al., 2013), 

mapping vegetation spectral dynamics (Dandois and Ellis, 2013), producing DEMs 

(digital elevation models) of agricultural watersheds (Ouédraogo et al., 2014), quantifying 

coastal erosion rates (James and Robson, 2012), and measuring rates of glacier motion and 

thinning (Whitehead et al., 2013). The potential of SfM to aid geomorphological mapping, 

derive measurements of landforms (morphometry) and quantify geomorphological 

change is evident. Numerous software packages for SfM are now available and include 

cloud-based processing, which has the additional benefit of not requiring a high-

specification consumer computer capable of handling the image processing. 

Whilst a range of recent studies have sought to quantify data quality and associated error 

of SfM techniques (Harwin and Lucieer, 2012; Turner et al., 2012; Westoby et al., 2012; 

Dandois and Ellis, 2013; Fonstad et al., 2013; Hugenholtz et al., 2013; Ouédraogo et al., 

2014), further research is beneficial due to the diverse nature of the aerial platforms and 

consumer-grade digital cameras available for the production of topographic data using 

this methodology. Existing reports on the effectiveness of integrated multi-rotor based 

UAV–SfM approaches describe surveys conducted from relatively low altitudes (< 50 m). 

The objectives of this chapter are to: (1) provide a systematic account of the data 

acquisition process associated with this new integrated technique; (2) compare vertical 

spot heights obtained from the UAV–SfM survey to those obtained from a total station 

ground survey; (3) highlight important considerations for researchers seeking to use UAV 

image acquisition and SfM approaches to acquire data for topographic investigations; 

and (4) provide a baseline for the potential spatial resolutions when using a consumer-

grade 18 MP compact digital camera at a target flight altitude of 100 m. This chapter 

addresses objective 1 of the thesis. 

3.2 Study area 

The test was undertaken at Cwm Idwal, North Wales in September 2013 (53°6′50.89″

N; 4°1′38.38″W; Fig. 3.1), a large cirque that was last occupied by a glacier during the 

Younger Dryas Stadial (c. 12.9-11.7 ka BP; Bendle and Glasser, 2012). The study area is 

located on the cirque floor and covers an altitudinal range of approximately 370 to 410 m 

(above Ordnance Datum). The geomorphology of the site is characterised by a moraine-

mound complex (‘hummocky moraine’) located on both the east and west of Llyn [lake] 

Idwal (Fig. 3.1c). These moraines have been the subject of numerous investigations 
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(Darwin, 1842; Escritt, 1971; Gray, 1982; Addison, 1988; Graham and Midgley, 2000a; 

Bendle and Glasser, 2012) due to their importance for understanding the significance of 

Younger Dryas glaciers in the British Uplands. The majority of the moraines are 8 to 80 

m in length, with the exception being a set of discontinuous stream-breached ridges 

totalling ~450 m in length which are stacked against the western cirque wall. In places the 

morphology of the moraines is influenced by glacially abraded bedrock. The prominence 

of some of the landforms is also disguised by a peat infill. The southern section of the 

survey area is characterised by a relatively flat lake infill and steep glacially abraded 

bedrock slopes. Vegetation on the eastern side of the cwm is typically restricted to short 

swards of grass, whereas livestock grazing exclosures erected in the 1950s and 1960s on 

the western side of Llyn Idwal have promoted the growth of vegetation including a thick 

cover of common heather (Calluna vulgaris), western gorse (Ulex gallii), and the occasional 

rowan (Sorbus aucuparia) and silver birch (Betula pendala) (Rhind and Jones, 2003). A large 

part of the moraine-mound complex and surrounding area was surveyed with a total 

station by Graham and Midgley (2000b). A similar area was surveyed by a UAV to allow 

a direct comparison between total station based data acquisition, and the UAV–SfM 

method used for this study. 
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Fig. 3.1 Maps showing the study site location in relation to (A) North-west Europe and 
(B) North Wales. ©Crown Copyright/database right 2014. An Ordnance Survey/EDINA 
supplied service. (C) A ground-level panoramic photograph of the moraine-mound 
complex which is located on both the left and right of Llyn Idwal. 

A B 

C 
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3.3 Methods and materials 

3.3.1 Image and data acquisition 

Aerial imagery was acquired using a Canon EOS-M 18 MP camera suspended from a DJI 

S800 Hexacopter (Fig. 3.2). A Photohigher AV130 servo driven gimbal maintained the 

camera angle close to the nadir (e.g. the camera was pointing down). The hexacopter was 

equipped with a Wookong-M GPS assisted flight controller which allowed for semi-

autonomous surveys. Survey flight lines were pre-programmed via the DJI Ground-

Station software package. For all surveys the UAV was set to a target altitude of 100 m 

above ground level (AGL) and horizontal ground speed of 2.5 ms-1. The target altitude is 

calculated in the DJI Ground-Station software using elevation data derived from Google 

Earth. Parallel flight lines were programmed to have an image sidelap of 80%, whilst 

taking into account the camera sensor size (22.3 × 14.9 mm) and focal length (22 mm). The 

intervalometer function of the Magic Lantern third-party camera firmware was set to 

acquire imagery every 2 s along parallel flight lines. Actual image acquisition was every 

~4 s, resulting in image capture approximately every 10 m along flight lines. Although 

image capture can be triggered using the DJI flight controller, an intervalometer was used 

for its improved reliability and potential to capture excess imagery along flight lines. This 

allowed for blurred or poor quality imagery to be removed whilst ensuring that an image 

onlap in excess of 80% was maintained. The camera was set to shutter-priority mode and 

used a 1/1000 s shutter speed. To provide the required image coverage the survey area 

had to be split between four flights. The UAV had a flight-time of ~14 min whilst carrying 

its payload (using an 11 Ah, 22.2 V, 6 cell lithium polymer battery). A generous overhead 

(~ 2 min) was left in order to safely land the UAV. In the UK unaided visual line of sight 

(VLOS) has to be maintained whilst operating UAVs (CAA, 2012). Therefore the ground 

equipment and launch position were moved between flights to allow the UAV to be easily 

observed, and manually controlled if necessary. 

The total station dataset was previously acquired over multiple survey sessions in 1997 

and 1998 using a Leica TC600 by Graham and Midgley (2000). An assessment of error for 

this data set is unavailable. However, measurement accuracies (expressed as standard 

deviation) for the TC600 are defined by Leica (1997), with distance measurements 

accurate to 2 mm ± 2 ppm and angle (horizontal and vertical) measurements to 1.5  mgon. 

As the original total station dataset was collected for the purpose of characterising the 
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overall shape of the moraine-mound complex, individual points were collected rapidly. 

Points recorded whilst the prism pole was not perfectly vertical have the potential to 

result in misregistration between the two datasets. The extent of the resulting error will 

be exacerbated by slope steepness and the height of the reflector on the detail pole. The 

SfM dataset was tied into the same arbitrary co-ordinate system and datum through the 

use of two brass pin benchmarks located on exposed bedrock on the east and west of Llyn 

Idwal. Point densities for the validation points reach as high as 20 per 100 m2 over the 

moraine-mound complex (Graham and Midgley, 2000a). For the UAV survey, 19 SfM 

ground-control points (GCPs) were distributed across the survey area (Fig. 3.3a). White 

laminated A3 size targets (297 × 420 mm) were used as GCPs and were found to be 

adequately visible on the aerial imagery. These GCPs were surveyed with a Leica TC407 

total station to a precision of <1 mm and estimated accuracy of <3 cm.  
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Fig. 3.2 A schematic drawing of the S800 hexacopter  
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3.3.2 Image processing and analysis 

From the original set of 824 images, 543 images were selected for model reconstruction 

using the Agisoft Photoscan 1.0.0 (build 1795) software package. Images were visually 

assessed for quality and blurry images were removed prior to processing. Image 

processing followed the recommended procedure outlined by Agisoft (2013). Image 

processing was conducted on a HP Z820 workstation equipped with dual Intel Xeon E5-

2690 processors, 128 GB RAM, and nVidia 680 graphics card. As GPS information for 

camera positions were not collected, images were aligned using the ‘Generic Pair 

Preselection’ parameter. This parameter detects matching features between images at a 

lower accuracy first, to reduce overall processing time (Agisoft, 2013). Photoscan 

provides nominal parameters for setting the target accuracy to which the images are 

aligned. Here the ‘high’ setting was used to obtain the best possible image alignment 

accuracy. Nineteen GCPs were then identified on imagery within the software a total of 

674 times, with the XYZ coordinates input for each point. The sparse point cloud was 

optimised using a marker accuracy of 0.001 m and focal parameters (Fy and Fx) defined 

in the image headers. Camera radial and tangential distortion coefficients (K1, K2, K3, P1 

and P2) were automatically estimated by Photoscan. A dense point cloud was then 

produced using the ‘medium’ quality setting. Again, this is a nominal setting that relates 

to the geometric accuracy of the target dense point cloud produced within Photoscan. 

Aggressive depth filtering was used to remove outliers from the dense point cloud 

(Agisoft, 2013). The dense point cloud and polygonal mesh was generated using a target 

point count of 3 × 105. An additional sparse point cloud and a DSM were produced for 

comparative purposes. An orthorectified aerial image was produced using the 

‘orthophoto’ and ‘mosaic’ parameters with colour correction enabled. Where image 

overlap occurs, the ‘mosaic’ parameter ensures that images with pixels closest to the 

image centre are used preferentially for orthophoto generation (Agisoft, 2013). 

Data handling and the analysis of geographic data were conducted using QuantumGIS 

2.0 and ArcGIS 10.1. SfM height (SfMz) was subtracted from ground height (GSz) for 7761 

independently surveyed data validation spot heights derived by total station survey (Fig. 

3.3a) providing a vertical difference. The vertical difference was converted into a raster 

surface with a 2.1 m cell size using an ordinary kriging function (default settings: 

spherical semivariogram, variable search radius, 12 points) in ArcGIS 10.1. This allowed 
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the vertical difference to be visualised. RMSE (root mean square error) and MD (mean 

difference) were calculated for the vertical difference (SfMz−GSz). Two zones of 

contrasting vegetation cover (Z1 and Z2; Fig. 3.3a) were mapped from orthorectified 

aerial imagery, and used to quantify vertical difference associated with contrasting 

vegetation types. Z1 is characterised by a continuous ground cover of heather, gorse, and 

occasional shrub and is located on the western side of Llyn Idwal. Z2 consists of grassland 

and exposed bedrock, and is also located on the western side of Llyn Idwal. 

3.4 Results 

The dense point cloud was composed of 31,474,859 unique points. With the exception of 

the extremities of the model, the effective overlap was > 9 images per point. ‘Noisy’ 

anomalies are present where the surface of reflective water-bodies are reconstructed. The 

orthorectified images had a 0.022 m per pixel resolution, and the DSM as seen in Fig. 3.3b 

had a 0.088 m per pixel resolution. These resolutions were achieved from an average 

flight altitude of 117.282 m AGL as reconstructed from the imagery. Discrepancy between 

the target flight attitude and actual flight attitude is likely to be caused by the use of low 

resolution Google Earth elevation data for flight planning, and error associated with the 

use of barometric pressure sensors for determining relative height (see DJI, 2013). 

Photoscan reported a total RMSE value of 0.033 m calculated from the 19 SfM GCPs 

(errors ranging from 0.011 to 0.062 m reported for individual points). The total x and y 

RMSE values reported by Photoscan were 0.019 and 0.020 m respectively. The total 

vertical RMSE value was 0.018 m.  

Spot heights (n = 7761) from the ground survey (GSz) and DSM (SfMz) are in broad 

agreement, although the vertical difference is a higher than that reported by the 19 SfM 

GCPs used during the image processing stage. The vertical difference is visualised in Fig. 

3.3c. The dense point cloud provides a vertical RMSE value of 0.517 m (Table 3.1). The 

differences for the DSM are offset from zero, with a mean difference of 0.454 m. The 

majority of the height values on the DSM were within the ± 1 m range (99.8%). However, 

only 55.4% of the SfM DSM values were within ± 0.5 m of the ground survey data. Isolated 

spot heights were found to be as much as 0.705 m under the actual ground survey (GSz) 

and as much as 4.347 m over. When vertical RMSE is calculated separately, RMSE for the 

east (less densely vegetated) is significantly lower (RMSE = 0.200; n = 1988), than the west 
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(RMSE = 0.588; n = 5773) with 98.8% of height values for the east falling within the ± 0.5 

m range (Fig. 3.4). 

Two contrasting vegetation zones (Z1 and Z2 in Fig. 3.3a) were investigated. Z1 had an 

RMSE value of 0.789 m (n = 244). In contrast, Z2 produced a lower RMSE value of 0.362 

m (n = 205). The calculated RMSE values for slopes gentler than 20° and those steeper 

than or equal to 20° were examined for both patches. The values are 0.031 and 0.030 m 

higher for slopes steeper than 20° regardless of the vegetation type. Where RMSE was 

calculated for separate 10° bins for the entire dataset (7761 observations), excluding the 

60–70° bin, the reported RMSE value increases on progressively steeper slopes (0.444 to 

0.838; Table 3.2). The 80–90° bin comprised one observation, which shows a high vertical 

difference (2.222 m). An additional analysis of the DSM derived from the sparse point 

cloud (2,058,037 points) was conducted. The sparse point cloud produced a coarser 

resolution DSM at 0.258 m per pixel. Unlike the dense point cloud, the sparse point cloud 

did not produce ‘noisy’ anomalies related to reflective water-bodies. Points from the SfM 

DSM and the ground survey data were also in broad agreement with 98.9% of the data 

within the ± 1 m range, and 58.5% of the data in the ± 0.5 m range. The total vertical RMSE 

value was 0.505 m. The sparse point cloud derived DSM produced a wider range of 

outlying values, with minimum and maximum anomalies of − 3.416 and 3.782 m. 
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Fig. 3.3 Maps displaying the topographic data and analysis of vertical disagreement. (a) 
The distribution of 7761 ground-survey points and 19 SfM ground-control points 
across the survey area. Two zones (Z1 and Z2) of distinct ground cover are delimited. 
(b) A hillshaded DSM at 0.088 m per pixel resolution derived from the UAV–SfM 
survey. (c) A raster surface of vertical difference produced using an ordinary kriging 
function at a resolution of 2.1 m per pixel. The spatial extent of the spot heights is 
delimited by the dashed line.

A 

C

   

B
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3.5 Discussion 

3.5.1 Causes of vertical disagreement 

Causes of poor surface representation and vertical disagreement between the two data 

sets have been investigated and include: (1) vegetation; (2) slope angle; and (3) 

unintentional random error related to the acquisition of the original total station dataset. 

Vegetation is a known cause of poor surface representation in DEMs derived from both 

photogrammetry (Lane, 2000; Marzolff and Poesen, 2009), and airborne LiDAR (Lui, 2008; 

Spaete et al., 2011; Hladik and Alber, 2012). A visual assessment of high vertical difference 

against the orthorectified imagery shows that error is particularly pronounced around 

trees, and in areas vegetated with heather (Fig. 3.5a). Dense vegetation types obstruct 

line-of-sight of actual ground level, thus generate a vertical difference between the two 

datasets (Table 3.1). This difference generated by vegetation is also apparent when the 

east (sparsely vegetated) and west (densely vegetated) are visualised together (Fig. 3.3c) 

or where RMSE is calculated for the two zones of contrasting vegetation (Z1 and Z2). For 

the examples of Z1 (heather and other shrubs) and Z2 (grasses and exposed bedrock), the 

presence of a thick covering of vegetation produces an additional 0.434 m RMSE value 

(Table 3.1). Whilst the total station data provides information that can be used to produce 

a bare earth DEM of the moraines, the data presented from SfM photogrammetry 

accounts for the surface plus vegetation, and therefore represents a DSM. Fig. 3.5a 

exemplifies this error, showing how a ground survey point located under a silver birch 

generates a vertical difference between the two datasets. Similarly, in other areas of the 

Cwm Idwal DSM, this problem arises due to tilted bedrock rafts with near vertical and in 

places overhanging sides (Fig. 3.5b), generating the outlying vertical difference of 4.347 

m. As DSMs are essentially 2.5 dimensional representations of the Earth's surface and 

associated surface features, true 3 dimensional representation of overhanging surfaces is 

not possible (Bernhardsen, 2002). If the same SfM approach was applied to un-vegetated 

terrain (e.g. braided channels in Javernick et al., 2014), a significantly lower degree of 

vertical difference would be expected. 

Further vertical differences between the two topographic datasets is also likely to be the 

result of unintentional random errors in the ground survey dataset caused by the reflector 

detail pole not being held perfectly level during point acquisition. The vertical difference 

caused by this operational error appears to be exacerbated on steep slopes (Table 3.2). For 
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example, on a perfectly horizontal surface, if the reflector (with the detail pole set to the 

minimum high of 1.3 m) was inclined at 10° from vertical opposed to being perfectly 

vertical, the calculated positional and vertical errors would be 0.226 and 0.020 m 

respectively. However, if the detail pole was inclined at 10° from vertical on a slope of 

30°, the expected vertical error would reach the decimetre range. As 16.3% of the 7761 

observations were made on slopes >30°, additional errors should be expected. An 

example where positional misregistration between the two datasets has occurred is 

presented in Fig. 3.5c. Here points taken in the vicinity of a steep-sided tilted bedrock raft 

with near vertical slopes have resulted in vertical disagreement exceeding 1 m. In this 

circumstance, sub-decimetre positional errors on the ground survey data or poorly 

resolved features on the SfM DSM promote a high degree of localised vertical 

disagreement between the two datasets. 

 

 

Fig. 3.4 Histograms of vertical difference for the east and west sections of Cwm Idwal . 
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Table 3.1 Statistics for the vertical difference (m) between the Cwm Idwal topographic 
datasets 

Area Total 
Observations (n) RMSE Mean RMSE (<20o) RMSE (≥20o) 

All 7761 0.517 0.454 0.468 
 (n = 4527) 

0.578  
(n = 3234) 

East 1988 0.200 0.155 0.169  
(n = 1306) 

0.247  
(n = 682) 

West 5773 0.588 0.557 0.544  
(n = 3222) 

0.639  
(n = 2551) 

Z1 244 0.796 0.820 0.789 
 (n = 102) 

0.821  
(n = 142) 

Z2 205 0.362 0.341 0.354 
 (n = 152) 

0.384  
(n = 53) 

 

Table 3.2 Calculated RMSE for vertical difference (m) binned by slope angle. 

 

 

Bin RMSE Observations (n) 
0 – 9 0.444 1864 
10 – 19 0.482 2662 
20 – 29 0.543 1967 
30 – 39 0.603 952 
40 – 49 0.678 263 
50 – 59 0.739 36 
60 – 69 0.729 10 
70 – 79 0.838 6 
80 – 90 2.222 1 
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Fig. 3.5 The occurrence of vertical difference in association with: (a) vegetation, (b) near 
vertical and in places partially overhanging bedrock rafts, and (c) positional 
misregistration close to near vertical slopes  

A 

B 
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3.5.2 Benefits and practical considerations 

The UAV-SfM technique is in many ways superior to a conventional total station ground 

survey and performed comparably to a range of recent SfM data validation studies (Table 

3.3). Whilst the total station topographic survey reported by Graham and Midgley (2000) 

took approximately 15 field-days, this aerial survey was completed in 3 days and also 

provided high-resolution aerial imagery. The standalone UAV survey could have feasibly 

been completed in one day, however this survey needed to be tied into the arbitrary 

coordinate system and datum used by Graham and Midgley (2000a). Operation of the 

UAV is unfortunately restricted to dry conditions, with relatively low wind speeds (< 8 

ms−1). Despite specific weather requirements, multi-rotor based systems appear to be 

well-suited to mountain settings. They can be deployed where there is limited space for 

take-off and landing, and offer a high-degree of control, which is beneficial when 

surveying in close proximity to steep slopes. Regardless of the UAV platform used for 

image acquisition, the technique lends itself to surveying unstable or inaccessible terrain 

where traditional survey methods would be unfeasible or unsafe. 

UAV based image acquisition has clear benefits over existing full-scale airborne image 

acquisition as the low survey altitude circumvents much of the weather dependency 

(particularly cloud coverage) that affect full-scale airborne surveys (Baltsavias, 1999). 

UAVs also have the additional co-benefits of being less costly to deploy in comparison to 

full scale airborne surveys and have the ability to produce data products that are more 

scale appropriate for micro topographic investigations than those provided by airborne 

LiDAR (Laliberte and Rango, 2009; Anderson and Gaston, 2013). However, application 

of the SfM technique may be limited in some geomorphological environments due to the 

presence of texturally ‘smooth’ or reflective surfaces (e.g. snow cover or sand) which 

prohibit the extraction of meaningful topographic data (Fonstad et al., 2013). Further work 

to investigate the performance of automated image alignment over more texturally 

homogenous surfaces may be beneficial where GPS information for camera positions are 

not available. Care must be taken when acquiring coordinates for the GCPs used during 

the image processing stage, due to the potential for erroneous readings to propagate 

through the various derivative data products. Providing that the GCPs are accurately 

surveyed, the automated nature of the approach is beneficial as it reduces the potential 

for unintentional random error (e.g. as found to occur in the total station dataset). 
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Although the production of a DSM from a dense point cloud produced a sub-decimetre 

DSM, a coarser DSM (0.258 m per pixel) can be reconstructed from a sparse point cloud 

of 2 million points with comparable error to that derived from a dense point cloud of 30 

million points. Where computational resources for both image processing and data 

handling are limited or where data are not required at sub decimetre resolution, 

producing DSMs from lower point densities maybe desirable. The DSM presented here 

required ~ 7 h to point match and align the 543 images. An additional 43 min of processing 

time was needed to derive the dense point cloud. Research to investigate the influence of 

point cloud density and the resulting DSM error merits further investigation, although 

all DSMs should be regarded as an abstraction, with some associated uncertainty (Fisher 

and Tate, 2006; Wechsler, 2007). 

3.5.3 UAVs and SfM as a tool for geomorphological mapping and monitoring morphometric 

change 

The UAV–SfM based approach appears to be a useful research tool that aids the 

production of accurate geomorphological maps. A variety of data sources can be used to 

compile geomorphological maps (Oguchi et al., 2011), with remotely sensed data often 

requiring ground-truthing to ensure that landforms are accurately recognised within a 

study area (Hubbard and Glasser, 2005; Knight et al., 2011). From this perspective the 

recent availability of high-resolution airborne LiDAR datasets are seen to be beneficial 

for the production of more accurate geomorphological maps (Jones et al., 2007; Bishop et 

al., 2012), yet the limited coverage of LiDAR surveys mean researchers do not always 

have access to high-resolution data. In such cases the UAV–SfM approach could be 

utilised by researchers who wish to produce their own ultra-high-resolution DSMs and 

orthophotos to aid field-mapping campaigns. Researchers should determine whether the 

spatial coverage offered by UAVs is useful for their investigation. Here, a localised area 

of 0.211 km2 was surveyed over four separate flights. This is unlikely to be sufficient for 

all geoscientific applications, however as UAV technology improves, greater survey 

coverage per flight may be permitted. 

A further application of UAV–SfM based surveys is morphometric change detection due 

to how readily the technique can be deployed for use. Quantification of geomorphological 

change through the comparison of multi-temporal DEMs is a well-established practice 

applied to a range of geomorphological settings (coastal, glacial, hillslope, fluvial, etc.; e.g. 
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Pyle et al., 1997; Schiefer and Gilbert, 2007; Dewitte et al., 2008; Marzolff and Poesen, 2009; 

Mitasova et al., 2009; Hugenholtz, 2010; Irvine-Fynn et al., 2011; Carrivick et al., 2012b). In 

some cases quantifying morphometric change can be problematic where the rate of 

change is below or close to the achievable accuracy of a given topographic survey 

technique (Williams, 2012). SfM integrated with UAV based image acquisition has 

recently been used for change detection. For example, Whitehead et al. (2013) successfully 

completed repeat SfM surveys to report on the thinning and motion of Fountain Glacier 

(Alaska) over a one year period, with the first survey utilising a fixed wing UAV for image 

acquisition. Lucieer et al. (2013) also used UAV-photogrammetry, comparing multi-

temporal, multi-rotor derived aerial images to monitor landslide displacements at sub-

decimetre accuracies. The now widespread availability of aerial platforms and SfM 

packages adds the range of mapping and survey techniques available to 

geomorphologists. The technique is a logical choice due to the achievable survey 

accuracies (errors in the decimetre range) and potential to monitor geomorphological 

change at smaller spatial scales remotely. 

3.6 Conclusions and summary 

The integrated use of UAVs and SfM technologies for the acquisition of sub-decimetre 

resolution DSMs has been investigated. The technique is shown to be superior to a 

conventional total station survey in terms of resolution, time required for data acquisition, 

and has the additional benefit of providing ultra-high-resolution orthorectified aerial 

imagery. DSM spatial resolutions of 0.088 m were achieved from an approximate flight 

altitude of 117 m AGL whilst using a consumer-grade 18 MP digital camera. 

Unintentional random error on the total station dataset, vegetation and steep terrain are 

shown to promote vertical disagreement between the two datasets. Where vegetation is 

sparse, a vertical difference of 0.200 m RMSE was achieved. Overall, the technique is 

shown to provide exceptionally high-resolution topographic datasets and aerial imagery. 

The repeatability of the technique where surveys can be benchmarked or georeferenced 

using dGPS could offer not only unprecedented spatial resolutions, but also high 

temporal resolution for monitoring on-going geomorphological processes in a range of 

environments. 

This chapter has elucidated some of the logistical and practical challenges associated with 

the use of this technique, and facilitated understanding of potential error margins. As a 
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result the methods described in this chapter are appropriate for investigating 

contemporary glacial environments. Given the scarcity of vegetation in proximity to 

receding glaciers, lower error may be permitted at other sites than observed at Cwm 

Idwal. This technique has subsequently been adopted for use at other field sites 

investigated by this thesis (Chapters 5 and 6). 

Table 3.3 Comparative table of known vertical differences between small-format aerial 
image based topographic surveys and various validation datasets in a range of 
geomorphological environments 

 

  

Study Setting Camera Platfor
m 

Survey 
Altitude 
(m AGL) 

Validatio
n Data 

Vertical 
Difference 

Westoby et 
al. (2012) Coastal SLR: Model not 

specified None Ground-
level 

Terrestrial 
Laser 
Scanner 

94% 
points 
values 
within +/- 
1 m 

Hugenholtz 
et al. (2013) Aeolian Olympus PEN 

Mini E-PM1 

Fixed-
wing 
UAV 

200 RTK GPS RMSE = 
0.29 m 

Fonstad et 
al. (2013) 

Fluvial and 
bedrock Canon A480 Helikit

e 10-70 LiDAR 
RMSE = 
1.05 m 

Javernick et 
al. (2014) 

Fluvial 
(Braided 
Channel) 

Canon (10.1 MP): 
Model not 
specified. 

Full-
scale 
helicop
ter 

600-800 RTK GPS 
RMSE = 
0.13 – 
0.37 m 

This study 

Glacial 
landforms 
(Vegetated
) 

Canon EOS-M 
(18 MP) 

Multi-
rotor 
UAV 

117 
(average) 

Total 
Station 

RMSE = 
0.517 m 
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4. Debris supply, transport and moraine development in 

high-mountain environments: an example from 

Schwarzberggletscher, Switzerland 
 

4.1 Introduction and site specific methods 

4.1.1. Chapter overview 

Large ‘Alpine type’ lateral moraines develop following repeated reoccupation of 

mountain valleys by glacier ice (Röthlisberger and Schneebeli, 1979; Lukas et al., 2012). In 

the context of past and future change, alpine lateral moraines represent important 

geomorphological features that contribute to our understanding of the dynamics and 

response of glaciers to past climatic perturbations. Alpine lateral moraines may document 

glacier change over hundreds of years, and in many cases millennial timescales 

(Kirkbride and Winkler, 2012). A range of studies have utilised these features for dating 

glacier advances (e.g. Röthlisberger and Schneebeli, 1979; Joerin et al., 2006; Ivy-Ochs et 

al., 2009; Schimmelpfenni et al., 2013). Despite this, there are relatively few studies 

investigating the geomorphological and sedimentological diversity of these features 

(Humlum, 1978; Osborn, 1978; Boulton and Eyles, 1979; Small, 1983; Small, 1987; Lukas 

and Sass, 2011; Lukas et al., 2013). Thus an apparent discrepancy has been argued for in 

relation to the widespread use of alpine moraines as geomorphological proxies for past 

climates, despite a deficit of studies offering specific models explaining landform 

development (e.g. Lukas et al., 2012). 

As a result, relatively few process-form models are available in the literature (e.g. 

Röthlisberger and Schneebeli, 1979; Lukas et al., 2012).  Typically, ‘Alpine type’ lateral 

moraines have been associated with passive supraglacial transport pathways and the 

direct deposition (dumping) of paraglacial material from a subaerial position (Humlum, 

1978; Osborn, 1978; Boulton and Eyles, 1979; Small, 1983). The composite nature of these 

features may be demonstrated by successively overtopped crestlines and buried organic 

layers within moraine structure (Osborn, 1986; Reyes et al., 2006). However, limited 

description of these features from a sedimentology perspective is at odds with their 

obvious utility for understanding environmental change over the Quaternary. In line 
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with the recommendations of recent studies (Lukas and Sass, 2011; Lukas et al., 2012), 

here the origin and significance of moraines within a single Alpine catchment are 

considered.  

This component of the research contributes to the research questions in section 1.6 and 

assesses the sedimentology and morphology of the Schwarzberggletscher lateral moraine 

complex in order to understand important ice-marginal processes, debris transport 

pathways and establish patterns of local glacier change over the Holocene within the 

Schwarzberg basin. In the absence of direct observation of moraine forming processes, 

historical maps and photographs are used to inform interpretations of moraine 

sedimentology. This chapter will therefore: (1) assess historical ground-level imagery and 

maps for recent glacier change and its role in the development of the 

Schwarzberggletscher lateral-frontal moraine; (2) map and glacial landforms within the 

Schwarzberg; (3) characterise the morphology of the lateral-frontal moraine; (4) 

characterise the sedimentology of the lateral-frontal moraines and provide sediment-

landform associations that link moraine sedimentology to prevalent ice-marginal 

processes; and (5) investigate debris transport pathways through the use of clast from 

analysis and structural glaciological mapping. The findings will allow current conceptual 

models of landform development at Alpine sites to be critiqued and aid the development 

of an appropriate model for the Schwarzberg glacier. 

4.1.2. Site specific methods 

Geomorphological and sedimentological surveys were undertaken at this site using the 

methods detailed in Section 2.4 and Section 2.5. Survey work was undertaken in August 

2013. Measurements of landform morphology and orientation were conducted in ArcGIS 

using the ALTI3D 2 m resolution DEM obtained from the Swiss Federal Office of 

Topography. The DEM was used to extract topographic profiles to determine slope angle 

and curvature. Raster cell values for the profiles were sampled in ArcGIS 10.2.1 and 

analysed in Microsoft ExcelTM, where basic descriptive statistics were produced (mean, 

maximum and minimum values) to characterise landform slope angle and profile 

curvature. The results are compared against the Alpine sites from Curry et al. (2006). 

Structural glaciological mapping (see Section 2.6) was conducted using a 0.5 m resolution 

orthophoto acquired in 2009 by the Swiss Federal Office of Topography. 
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4.2 Study site and historical records of glacier change 

4.2.1 Overview 

Schwarzberggletscher (46° 01’ N; 7°56’ E) is a ~3 km long alpine valley glacier located in 

Saastal, Switzerland (Fig. 4.1). The head of the accumulation basin represents the border 

with neighbouring Italy. This glacier is situated in a high-mountain setting. The 

prominent peak Schwarzberghorn (3609 m.a.s.l) is located at the head of the accumulation 

basin.  The glacier flows in a NNE direction. Fluchhorn (3795 m.a.s.l) is located on the 

true left of Schwarzberggletscher. The south-west flank of this mountain hosts three 

smaller discrete bodies of glacier ice: Hangendegletscher, and two unnamed masses of 

ice. The glacier is currently undergoing recession. Evidence of glacier change is reviewed 

in this section. 
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Fig. 4.1 Schwarzberggletsher. (A) The glaciers location in relation to Switzerland. (B) 
Ground-level image of the terminus from the left-lateral moraine in 2013. (C) An 
orthorectifed aerial image of the glacier in 2009 from Swisstopo. (D) Location of the 
study site with moraine indicated by the thick red line.   
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4.2.2 Archive ground-level imagery 

All images are taken from the ETH-Bibliothek’s Image Archive (2013) and are licensed 

under Creative Commons. Early evidence of glacier change is presented in an illustration 

by M. de Meuron which depicts both a heavily crevassed Schwarzberggletscher and 

Allalingletscher extending into the Mattmark basin during the summer of 1822 (Fig. 4.2a). 

The extent of Schwarzberg appears to be somewhat unchanged in a later field sketch by 

Escher von der Linth dated to 18 August 1842. A further illustration by E. Lafon in 1859 

(Fig. 4.2b) looking south-west from the surface of Allalingletscher shows the terminus of 

Schwarzberggletscher still extending into the Mattmark basin but not as extensively as 

documented by E.Lafon or Escher von Linth. In Otto Lütschg’s 1915 photograph of the 

upper basin the extent of recession of the true right of the glacier is delimited, with the 

terminus located behind a small inset ridge of the right lateral complex (moraine R3/4; 

Fig. 4.2c). In this photograph the glacier-profile is irregular, with the lower snout showing 

a smooth but partially crevassed morphology, contrasting the heavily crevassed and 

topographically prominent upper profile of the glacier. This photo corresponds with a 

period of positive cumulative length change as recorded in the length change dataset 

obtained from SCNAT (2015) (section 4.2.4). It is unclear whether this is related to 

underlying subglacial topography or a surface bulge indicative of surge type movements. 

Surge type movements are rarely reported in the European Alps, however, they have 

been documented near-by at Ghiacciaio del Belvedere (Haeberli et al., 2002) where glacier 

flow rapidly accelerated in 2001/2, leading to crevasse development and moraine 

overriding.  

A ground-level image taken by an unknown photographer dated c. 1919 shows the lower 

terminus since the 1859 E. Lafon illustration (Fig. 4.2d).  Again, the rate of recession of the 

true-right of the glacier appears to be more extensive, in comparison to the left. The true 

left of the glacier abuts the inner-proximal ridge of the lower-lateral complex, and an 

extensive supraglacial debris cover is readily observable in the photography. An 

additional image dated to October 4, 1921 by an unknown photographer displays 

Hangendgletscher as a detached ice-mass within the Schwarzberg catchment (Figure 

4.3e). Figure 4.1f is dated to 1922. This photograph documents the position of 

Schwarzberggletscher as it abuts its left-lateral moraine. Unfortunately snow-cover 

disguises the glaciers supraglacial debris coverage at this date. 
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Fig. 4.2 Historical Illustrations and photographs of Schwarzberggletcher. (A) An 
illustration by M. de Meuron dated to 1822 looking north along Saastal with 
Schwarzberggletscher in the middle distance, and Allalingletscher in the far distance. 
(B) An illustration by E.Lafon dated to 1859, looking south-west towards the margin of 
Schwarzberg from the surface of Allalingletscher. (C) An image of the upper terminus 
by Otto Lütschg dated to 1915. (D) A 1919 image of the glacier terminus. (E) An image 
of Schwarzberggletscher and Hangendgletscher dated to October 4, 1921. (F) An image 
of Schwarzberggletscher abutting the left-lateral moraine in 1922. All images are taken 
from the ETH-Bibliothek’s Image Archive (2013) and are licensed under Creative 
Commons.  
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4.2.3 Historical maps 

Three historical maps were reviewed to provide context to the recent development and 

evolution of moraines within the Schwarzberg catchment (Fig. 4.3). The oldest reviewed 

here is the Dufour series published in 1863 (sheet 23) at a scale of 1:100 000. Here, the 

terminus displays a bifurcating morphology, with the true-left of the glacier extending 

into the Mattmarksee basin (c. 2200 m; Fig. 4.3a). The second reviewed is the Siegfried 

map (sheet 534) published in 1924 at a scale of 1:50 000. Topography is represented by 

30 m contours, with the elevation of the glacier terminus identified at c. 2350 m (Fig. 4.3b). 

Considerable recession is recognisable between the two maps (c. 600 m), however in the 

Siegfried map, the glacier terminus is depicted to form a single tongue, opposed to the 

bifurcated morphology displayed in the Dufour map. In both maps, Hangendgletscher is 

delimited as a detached body of ice located on the true left of the Schwarzberg basin. The 

third map reviewed is the 1968 National Map of Switzerland (sheet 268) which was 

original published at a scale of 1:50 000 (Fig. 4.3c). In this map, a detached linear body of 

debris covered ice is seen abutting the proximal slope of the lower lateral moraine 

complex. This ice is located in an altitudinal range c. 2400 to 2500 m elevation, and 

appears to be dead glacier-ice, which became detached as the glacier receded up a steep 

bedrock step. Significant anthropogenic alteration of the moraine is also identified, and 

appears to be related to the development of the Mattmark and Schwarzbergalp access 

roads. Specifically the true-left lower lateral-complex is extensively excavated (red circle 

in Fig. 4.3C).  
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Fig. 4.3 Historical maps of Schwarzberggletscher. (A) The Dufour map (1863). (B) The 
Siegfried map (1924). (C) National map of Switzerland (1968). The red circle shows the 
excavated area of moraine following the construction of the Mattmark dam.  
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4.2.4 Glacier length measurements 

As Schwarzberggletscher is part of the Swiss Glacier Monitoring Network. A record of 

length change for the glacier is available from SCNAT (2015) (Fig. 4.4). Since monitoring 

began the glacier has predominantly receded with a total cumulative length change of -

649 m (1880-2013; Fig. 4.4). The overall trend of recession is punctuated by a series of 

advances. The oldest records have the lowest temporal resolution, with changes of +150 m 

between 1880-1909 (Fig. 4.4), followed by a period of recession between 1909 and 1915 (-

140 m). Over a 6 year period, between 1918 and 1924, the glacier advanced by a total of 

132 m. The onset of this advance is potentially delimited in ground-level photography 

(Fig. 4.2c), although no data for the terminus position is available for the years 1916-17. 

An 8 year period, between 1976 and 1984, saw the glacier terminus advance by 79 m. The 

advance of Schwarzberggletscher in the late 1970s and early 1980s appears to have 

occurred analogously with a range of monitored glaciers across the Swiss Alps (Zemp et 

al., 2006). The last recorded minor advance of Schwarzberggletscher occurred between 

1989 and 1991, where the recorded glacier length change was +14 m. In recent decades 

the glacier has continued receding, with the average annual rate of recession of 13 m per 

year for the period between 1991 and 2013. 

 

 

Fig. 4.4 Length change measurements of Schwarzberggletscher from 1880 to 2014 from 
SCNAT (2015).  
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4.3 Results 

4.3.1 Moraine descriptions and reference codes 

Here, the morphology of the moraines are described. The moraine codes presented in this 

section relate to Fig. 4.5. Ground level photography from 2013 is presented in Fig. 4.6.  

Two major sections of the left-lateral frontal moraine are recognised: (1) the upper left-

lateral complex; and (2) the lower left-lateral complex. The lateral sections are dissected 

by a bedrock step which runs approximately transverse glacier flow (c. 160/340o). The 

upper lateral complex exhibits an angular profile typical of ‘Alpine’ type lateral moraines. 

The upper lateral-ridge crestline (M1) is oriented at 032-037/212-217o. The main upper 

lateral ridge (M1) can be traced ~1.2 km up on the true left of the glacier margin where it 

eventually becomes indistinguishable from supraglacial and valley side debris units. 

Outside the main upper lateral ridge a ~180 m long ridge located between coordinates 

638548/97522 and 638478/97366 runs contiguous to valley-side debris with a crest 

orientation of 25/205o (M2). An additional four moraine ridges are located NNW of M1 

(Fig. 4.6.; M3–M6). In places, some of the ridges are less topographically defined and form 

a series of benches on the moraine distal slope. Unlike the main upper lateral ridge, the 

crestline of features M3-M6 are oriented between 011/191o and 171/351o and appear to 

delimit the extent of a series of glacier advances prior to the deposition of the larger main 

lateral-ridge, which would have served as an obstruction to more recent advance(s) of 

Schwarzberggletscher. Several inset moraine ridges on the ice-proximal slope of the main 

upper lateral ridge and current proglacial area are identified. Two of these features (M7 

and M8) can be traced to the current glacier margin. The upper ridge (M7) runs a total 

length of ~200 m approximately parallel to the direction of ice-flow and the ridge crest of 

the main upper moraine ridge (31/211o). 

A lower ridge (M8) is curvilinear and extends as a bench of sediment which is located on 

the ice-proximal slope of the main upper lateral ridge. This ridge extends into a more 

topographically distinct ridge where it attains ~2-3 metres prominence above the 

surrounding proglacial area. Unique to the lower ridge is a ‘notch’ (located at 

6387545/97547). This ‘notch’ also corresponds to changes in surface sedimentology with 

up-valley sections characterised by a surface drape of angular gravel devoid of fine 

material (Fig. 4.6c), and lower sections by gravelly sand (further details given in section 
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4.3.3). A further curvilinear inset ridge (M9; Grid coordinate: 638798/97723) is located on 

the ice-proximal slope of the lateral complex. This feature is identified down-valley of M8.  

The lower lateral complex (M10-M18) is characterised by a large curvilinear moraine 

rampart which reaches ~1.3 km in length and ~300 m in width. The up valley sections of 

the ridge are characterised by an angular morphology, with a single ‘sharp’ crestline 

(M10). At 450 m along the crestline the moraine anastomoses into four main ridges. The 

distal-most ridge (M17) becomes topographically indistinct down-moraine. Smaller 

benches of sediment superimposed onto the proximal slope are also identified (M15 and 

M16). These ridges appear to be oriented parallel to the direction of former ice-flow and 

range from 045/225 to 68/248o. Outside the distal slope of the lower lateral-rampart, two 

additional <5 m high moraine ridges are identified (M17 and M18). Further down-valley, 

several additional moraine features can be identified, however they appear to be 

extensively modified as a result of the construction of the Mattmarksee dam and the 

Schwarzbergalp access roads during the 1960s (See Grech and Semenenok, 1969). Due to 

the extent of the disturbance to the sedimentology and morphology of these features, they 

are not investigated in this study. 

On the right side of the glacier several features can also be identified. A linear lateral ridge 

runs parallel to ice-flow. In places, the lateral contiguity of the landform is interrupted by 

protruding bedrock, which separates the upper and lower sections of the ice-proximal 

moraine slope (R2). The proximal slopes of R2 are ice-cored. Remobilisation of ice-

proximal sediments was observed in the field.  
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Fig. 4.5 Moraine locations and reference codes used within the text.  Red dashed line 
is the bedrock step.  

 

Notch 
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Fig. 4.6 Ground-level imagery of the lateral moraines of Schwarzberggletsher. (A) A 
single (older) linear ridge (M2) outside the upper-lateral complex and partially 
coalescing valley-side debris fans. (B) A series of 4 ridges located on the distal slope of 
the upper-lateral complex (M3-6). (C) Inset lateral-frontal ridges developed close to the 
current terminus (M7 and M8). (D) The distal slope of the lower left-lateral moraine 
complex which anastomoses into multiple distinct ridges (M10-M14). (E) An overview 
of the glacial terminus in August 2013. Note the extensive supraglacial debris cover to 
the right of the image. In contrast, a thin valley-side drape of sediment which 
constituents the right lateral moraine of Schwarzberggletscher is visible to left of the 
photo. Volumetrically, these moraines show a marked asymmetry to the left-lateral 
moraines complex (to the right of the image).   
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4.3.2 Proximal-slope morphometry 

Five exemplar profiles were assessed for their morphology (Fig. 4.7; Table 4.1). Fluvial 

incision of the proximal slopes in the vicinity of T1 and T2 appears to be limited. Slopes in 

the vicinity of T3 show the greatest degree of gully incision, but have an overall low gully 

density index (1 is equal to <10 gullies per kilometre; e.g. Curry et al., 2006). Unlike 

transects T1, T2 and T3, patches of grassy vegetation can be found on the proximal slopes 

of T4 and T5. Mean profile curvature values for the ice-proximal sections were calculated 

from raster cells located along each of the transects (T1 to T5). T1 and T2 are 0.6 (n = 26) and 

1.0 (n = 76) respectively highlighting an overall concave slope morphology with 

superimposed convex elements.  Profiles T3 (c = -0.6; n = 89) and T4 (c = -1.3; n = 93) exhibit 

somewhat ‘straight‘ morphologies with an absence of both convex and concave elements. 

T5 has the lowest mean curvature (c = -1.5; n = 68) related to convex curvature as a result 

of several undulations along the slope profile.  

Maximum slope angle values for the ice-proximal sections were calculated from raster 

cells located along each of the transects (T1 to T5). The maximum DEM slope angle along 

each transects vary from 41.7° to 53.6°. The maximum DEM slope angle is attained by T3. 

There is no tendency for the maximum DEM slope angle to vary with respect to distance 

down-valley. The mean slope angles for T1, T3, T4 and T5 vary between 28.2° and 31.7°. T2 

has the lowest mean slope angle at 18.6°. T2 is located immediately adjacent to the glacier 

terminus. Unlike T3, T4 and T5, whose proximal slopes are truncated at their base by a 

proglacial stream (Schwarzbergbach), the proximal slope of T2 extends as a contiguous 

gently sloping unit onto a relatively level outwash plain. The proximal slope height varies 

between 26 and 105 m. A summary of the Schwarzberggletscher ice-proximal moraine 

slopes are presented in Table 4.1 alongside examples from other Alpine moraines from 

Curry et al. (2006).  
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Fig. 4.7 Five characteristic topographic profiles from the lateral moraine complex. T1 is 
adjacent to the current glacier terminus, and T5 is the furthest down moraine. 
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Table 4.1 Summary of proximal slope characteristics in relation to other alpine sites. 

Profile Average 
gradient 

Max 
gradient 

Crest 
Elevation 

(m) 

Slope 
height 

(m) 
Vegetated Gully 

Indexa 
Topographic 

Setting 

Schwarzberggletscher 
T1 31° 50° 2761 26 No 

1 combination 
T2 19° 45° 2710 58  No 
T3 32° 54° 2480 91  No 
T4 27° 42° 2532 105 Partially 
T5 28° 51° 2439 67 Partially 
Tsidjoure Nouveb 
-- 30° -- 2300c 50d -- 2 valley floor 
Findelgletscherb 
-- 34° -- 2550c 120d -- 3 combination 
Bas Glacier d’Arollab 
-- 31° -- 2150c 150d -- 3 valley side 
Feegletscher North (s)b 
-- 22° -- 2125c 80d -- 1 combination 
Glacier du Mont Mineb 
-- 32° -- 2050c 180d -- 3 valley floor 

a Gully index from Curry et al. (2006). 1 = <10 gullies per km; 2 = 10-40 gullies per km; 
3 = >40 gullies per km;  

b Data from Curry et al. (2006);  

c Average crest elevation;  

d Maximum slope height 
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4.3.3 Sedimentology 

4.3.3.1 Lithofacies descriptions 

Three major sedimentary facies were documented within the Schwarzberggletscher left-

lateral moraine. These include diamicton (three types), angular gravel, and gravelly sand. 

Descriptions of the three major facies are provided below. Section logs for exemplar 

moraine lithofacies are provided in Fig. 4.8. Summaries for each facies are provided in 

Tables 4.2-4.4. Each sample site is assigned a sample ID. 

Angular Gravel: This facies forms a uniformly distributed drape across the left-hand side 

of the Schwarzberggletscher proglacial area and extends onto the lower proximal slope 

of the lateral moraine. Concentrated deposits of angular gravel also form a small inset 

ridge superimposed on the left lateral moraine (M8). The angular gravel drape has an RA 

index of 100 %, with 33% clasts falling within the very angular roundness category. The 

C40 value of the sample is 92 %, with the most frequent clast shape classes (after Sneed 

and Folk, 1958) are defined as ‘platy’ and ‘bladed’ (comprising 26 and 28 % of the sample, 

respectively). Angular gravel is also abundantly found on the surface of 

Schwarzberggletscher, with debris concentrated on the left of the glacier to form an 

extensive supraglacial lateral moraine (Fig. 4.11). The character of supraglacial angular 

gravel is much the same as that found in front of the glacier terminus. With the exception 

of sample SCH-26 (RA = 90 %), clasts are exclusively angular and very angular (RA = 

100 %; n = 150). Sampled clasts have high C40 indices typically ranging between 90 and 

96% and exhibit a modal ‘very bladed’ shape category. The clast form of SCH-26 is 

distinguishable from other supraglacial samples and exhibits a lower C40 index of 72 % 

with a ‘bladed’ modal shape category.  

Gravelly Sand: A summary sedimentary log for exposures at SCH-02 and SCH-05 can be 

found in Fig. 4.9. This lithofacies was found to occur within inset ridges on the proximal 

slope of the upper lateral moraine complex (as displayed within Fig. 4.8). At SCH-02, 

gravelly sand is crudely stratified and has an apparent dip of 30o. The sandy matrix is 

predominately composed of very coarse sand (51%), and classified as poorly sorted. 

Facies of gravelly sand are interspersed with lenses of fine material. The matrix visibly 

fines at the base of the assessed exposure. Clasts at SCH-02 are mostly sub-angular (74%) 

and contain low quantities of angular material (% RA=24). Clasts exhibit bladed (42%) 

81 



 

and platy (20%) morphologies and an overall C40 index of 58. 18% of sampled clasts were 

found to be striated. Gravelly sand at SCH-05 is capped by a ~10 cm thick drape of 

angular gravel. Similar to SCH-02, the matrix is predominantly composed of very coarse 

sand (40%; Fig. 4.10). At SCH-05, the characteristics of sampled clasts show a strong 

similarity to SCH-02, 20% of which fall within the RA category and 62 % with S/L axial 

ratios of ≤0.4 (C40). Here, clasts are 30 % striated and also have a modal ‘bladed’ (38%) 

shape category. 

Diamicton: Fifteen exposures in proximity to the crestline of the left-lateral moraine 

complex were assessed (Table 4.3). Exposures were accessed from the crestline of the 

proximal slope of the lateral complex. At this position, exposures are uniformly 

composed of a clast rich intermediate diamicton. The majority of clasts fall within the sub-

angular and angular categories, with the percentage RA ranging between 50 and 82%. 

The percentage of striated clasts within samples are not consistent between sites. Samples 

in the upper section of the moraine complex, in closer proximity to the current glacier 

terminus are devoid of striated material. In contrast, striated material is found on the 

lower lateral moraine complex approximately below 2524 m elevation. Below this 

altitude, between 4 and 30% of sampled clasts were found to be striated. The C40 indices 

from clast samples range from 46 % to 80 %.  

The diamicton is matrix supported and predominantly composed of a mix of sand and 

silt. The proportions (as % volume) are relatively consistent across samples. These range 

from 44-57 % for the sand component (<2000 to 63 μm) and 40-52 % for the silt component 

(<63 to 2 µm) (Fig. 4.11). The percentage volume clay within the matrix of proximal-

crestline samples was found to vary between 3 to 4 %. The mean descriptive class for the 

samples are very coarse silt (n = 9) and very fine sand (n = 7). All matrix samples are 

classified as very poorly sorted and have geometric sorting coefficients ranging from 4.7 

to 7.1 σ. Samples are polymodal (n = 16) with geometric means ranging from 43 to 96 μm 

and modal peaks ranging from 169 to 186 µm. With the exemption of SCH-35 and SCH-

44 (upper/lower) all lithofacies appear to be massive. The structure of SCH-35 and SCH-

44 are shown in Fig. 4.9. The upper and lower diamicton facies of SCH-44 are dissected 

by a palaeosol. Similar to other sample locations, a ~1m excavation at SCH-35 is 

characterised by a clast rich intermediate diamicton, however the matrix was found to be 
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interspersed with two bands of medium silt. The silt is tri-modal and symmetrically 

distributed with a modal particle size of 14 μm. 

A further eight diamicton exposures were investigated on the distal ridges of the lower-

left lateral moraine (Table 4.4). Shallow exposures (<1 m) exposed a single lithofacies of 

massive clast rich diamicton. At SCH-37 and SCH-39 the quantity of sand within the 

matrix is marginally higher (66% and 68%), and therefore distinguishes the diamicton 

within the investigated facies as ‘sandy’ (Fig. 4.11). All assessed exposures on the outer 

ridges are massively structured. The modal roundness category for all samples is angular. 

The proportion of clasts falling within the RA category varies between 56 and 58 %. Six 

of the samples contain low proportions of striated clasts (0-8%). In contrast, samples SCH-

36 and SCH-34 have anomalously high proportions of striated material (16 and 18% 

respectively). 
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Fig. 4.8 Sediment sampling locations 
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Fig. 4.9 Exemplar sedimentary logs. (a)  Gravelly sand lithofacies SCH-02 and SCH-05 
(b) diamicton sedimentary exposures. SCH-35 and SCH-44.  
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Fig. 4.10 Ground-level photography displaying the location of angular gravel surface 
lithofacies. (a) Angular gravel forming the supraglacial lateral moraine on the true left 
of Schwarzberggletscher and a drape of sediment in front of the receding glacier 
terminus. (b) Close up of the angular gravel lithofacies on the glacier surface with the 
author for scale. Note the abundance of angular slabby and elongate clasts. 

  

(a)

(b)B 
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Table 4.2 Summary table of gravel lithofacies. 

ID Location Height  
(m)* Character %  RA % C40 % S 

Matrix:% 
Sand Silt Clay 

SCH-25 638710 97471 2677 Coarse** 100 92 0 -- -- -- 
SCH-26 638466 97037 2767 Coarse** 90 72 0 -- -- -- 
SCH-27 638424 96950 2777 Coarse** 100 90 0 -- -- -- 
SCH-28 638747 96891 2745 Coarse** 100 92 0 -- -- -- 
SCH-29 638657 97221 2715 Coarse** 100 96 0 -- -- -- 
SCH-02 638779 97570 2664.5 Gravelly sand 24 58 18 96 4 0 
SCH-05 638744 97551 2671.5 Gravelly sand 10 62 30 96 4 0 

* Heights derived from the Swisstopo Alti3D DEM. 

 ** Supraglacial samples 

Table 4.3 Summary table of ice-proximal diamicton exposures 

ID Location Height  
(m)* 

Notes %  
RA 

% 
C40 

% 
S 

Matrix:   % 
Sand Silt Clay 

SCH-30 638560 97416 2747 Massive 70 52 0 55 42 3 
SCH-31 638598 97479 2735 Massive 70 70 0 49 48 3 
SCH-32 638671 97604 2721 Massive 70 74 0 50 47 3 
SCH-44-U 638689 97631 2718 Palaeosol 68 66 0 51 46 3 
SCH-44-L 638689 97631 2717 Palaeosol 72 58 0 44 52 4 
SCH-33 638766 97748 2700 Massive 72 62 0 52 45 3 
SCH-20 638899 98041 2571 Massive 64 52 0 50 47 3 
SCH-19 638968 98200 2533 Massive 56 60 0 55 43 3 
SCH-18 638990 98247 2524 Massive 70 46 4 57 40 3 
SCH-17 639022 98332 2509 Massive 82 52 4 50 47 3 
SCH-16 639103 98412 2489 Massive 64 68 12 57 41 3 
SCH-15 639179 98490 2477 Massive 50 56 16 45 52 3 
SCH-35 639284 98546 2452 Silt bands 60 60 30 45 51 4 
SCH-11 639343 98591 2450 Massive 64 54 16 44 51 4 
SCH-10 639375 98605 2444 Massive 72 80 14 49 48 3 
SCH-01 639476 98616 2432 Massive 56 58 16 44 52 4 

* Heights derived from the Swisstopo Alti3D DEM. 
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Table 4.4 Summary table of diamicton samples obtained from the various outer ridges 
of the lower-lateral complex. 

Sample ID Location Height  
(m)* 

%  RA % 
C40 

% S Matrix:% 
Sand Silt Clay 

SCH-39 639027 98389 2499 68 72 0 66 31 2 
SCH-38 639109 98511 2480 66 64 8 51 47 3 
SCH-37 639188 98577 2467 68 58 6 68 30 2 
SCH-42 639287 98656 2451 62 66 0 44 53 2 
SCH-36 639436 98690 2428 66 62 16 46 50 4 
SCH-34 639526 98695 2413 56 66 18 67 30 2 
SCH-40 639707 98707 2372 62 44 6 47 50 3 
SCH-41 639486 98806 2383 58 60 0 63 35 2 

* Heights derived from the Swisstopo Alti3D DEM.  
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Fig. 4.11 Further visualisation of <2mm fraction of glacigenic sediment sampled at 
Schwarzberggletscher. (a) A ternary diagram showing the grain-size distribution of 
moraine samples. (b) Mean grain size plotted against the sorting coefficient for each 
sample.  

A 

B 
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4.3.3.2 Clast macrofabrics  

The clast fabric characteristics for the inner proximal exposures are presented in Table 4.5 

and Fig. 4.12.  Clast fabrics show a moderate to strong preferred clast orientation (S1 = 

0.861-0.535). Samples taken in proximity to the current glacier terminus exhibit the 

strongest clast fabrics (e.g. SCH-44U/L, SCH-20, SCH-18) with S1 values ranging between 

0.795 and 0.861. Macrofabrics at these sites show a narrow range in terms of the 

orientation (297.9-313.7o) and dip (16.9-18.9o) of the principle eigenvector (V1).  The V1 

orientation (308.7o) and dip (11.1o) of SCH-16 is comparable to these samples, however 

the fabric lacks strength (S1 = 0.582). The secondary eigenvector at SCH-16 appears to be 

broadly oriented down-valley and approximately parallel to the moraine crestline (41.8o). 

Macrofabric data obtained from the inset ridge (SCH-02; M8 in Fig. 4.4) is distinct from 

samples taken on the main lateral complex. Here, the preferred orientation and dip of 

clastic material is moderately consistent (S1 = 0.670), however the principle eigenvector is 

oriented approximately transverse to former ice-flow (V1 = 109.5o) and dips towards the 

left-lateral complex at 34.5o. When fabric eigenvalues (S1 and S3) are displayed on a 

bivariate plot (Fig. 4.13), samples fall within a range of known environmental envelopes, 

as defined in Dowdeswell and Sharp (1986). SCH-44U, SCH-44L, and SCH-18 fall within 

the ‘melt-out till’ process field. SCH-10 and SCH-20 fall within the ‘undeformed logdment 

till’ process field. Other samples overlap with a range of predefined depositional settings 

(Fig. 4.13).  
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Table 4.5 Eigenvalues and vectors for 9 samples taken from the inner ice-proximal 
slopes of Schwarzberggletscher left-lateral moraine. Samples ordered by distance from 
the current glacier margin. 

Sample Eigenvalues Eigenvectors Dip Moraine 
Orientationa I b E c 

SCH-44-
Upper 

S1: 0.861 V1: 310.5 16.9 
032/212 0.040 0.669 S2: 0.104 V2: 219.5 3 

S3: 0.035 V3: 119.8 72.8 

SCH-44-
Lower 

S1: 0.844 V1: 313.7 18.9 
032/212 0.046 0.673 S2: 0.118 V2: 223.1 1.8 

S3: 0.039 V3: 127.7 71.1 

SCH-20 
S1: 0.689 V1: 310.2 18.6 

020/200 0.059 0.850 S2: 0.271 V2: 043.4 9.5 
S3: 0.041 V3:159.1 69 

SCH-18 
S1: 0.795 V1: 297.9 18.5 

021/201 0.029 0.874 S2: 0.183 V2: 028.6 2 
S3: 0.023 V3: 124.6 71.3 

SCH-16 
S1: 0.582 V1: 308.7 11.1 

044/224 0.141 0.756 S2: 0.336 V2: 041.8 15.4 
S3: 0.082 V3: 184.3 70.8 

SCH-35 
S1: 0.535 V1: 076.1 10.1 

060/240 0.139 0.810 S2: 0.391 V2: 170.3 22.3 
S3: 0.074 V3: 323.3 65.3 

SCH-11 
S1: 0.529 V1: 315.5 27.9 

070/250 0.323 0.431 S2: 0.300 V2: 060.0 25.2 
S3: 0.171 V3: 185.2 50.7 

SCH-10 
S1: 0.728 V1: 330.7 29.4 

070/250 0.131 0.461 S2: 0.177 V2: 071.5 18.4 
S3: 0.095 V3: 189.1 54.3 

SCH-01 
S1: 0.541 V1: 028.5 11.8 

093/273 0.221 0.647 S2: 0.339 V2: 121.1 12.6 
S3: 0.120 V3: 256.6 72.7 

a Observations derived from Swisstopo aerial imagery and elevation datasets.  

b Isotropy index (I = S3/S1) 

c Elongation index (E = 1 - (S2/S1))  
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Fig. 4.12 Clast fabric data. Nine clast fabrics taken from the inner ice-proximal slopes 
of the lateral-frontal complex. Principle eigenvalues (S1, S2 & S3) are presented by each 
sample. All data is projected using lower hemisphere equal area Schmidt nets.  
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Fig. 4.13 Bivariate plot of clast fabric data (including SCH-02) with envelopes from 
Dowdeswell and Sharp (1986). Samples 18, 44L and 44U show clustering whereas other 
samples overlap with a range of depositional environments with clasts lacking 
preferred orientation and dip. 

 

4.3.3.3 Clast-form analysis 

A total of 42 clast samples were analysed. The % RA and % C40 indices are presented 

using a covariant plot in Fig. 4.14. Lateral moraine diamicton (clast-rich sandy and 

intermediate) have distinct clast-form indices, distinguishing it from control samples. All 

inner lateral moraine samples exhibit RA indices of 50-82% and C40 indices of 46-80%. 

Outer moraine samples show similar variability (% RA = 56-58; % C40 = 44-74). Diamicton 

samples are distinguishable from supraglacial (% RA = 90-100; % C40 = 72-96) and 

extraglacial control samples (% RA = 90-100; % C40 = 74-86). Samples from a small inset 

ridge contain a lower angular component (% RA = 20-24), yet exhibit similar shape indices 

to sediment from the main lateral complex (% C40 = 58-62). The inset ridges share some 

overlap with subglacial control samples obtained from a recently deglaciated fluted 

terrain (% RA = 12-32; % C40 = 36-56). Fluvial control samples have the highest degree of 
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edge rounding (% RA = 2-18), and a wide variability in terms of their shape characteristics 

(% C40 = 26-64). 

Clast form parameters were subject to regression analysis in Minitab 17 (e.g. Evans, 2010) 

to understand the statistical relationship between distance down-moraine and clast-form 

(Table 4.6; Fig. 4.15). The most statistically significant clast-form parameter to change 

with distance down-moraine was the percentage of striated clasts within a sample. The 

fitted polynomial regression model for this variable showed the best fit and statistical 

significance (R2 = 73.6 %; p = 0.065) out of the analysed variables. 47.3% of the variability 

in terms of the percentage of very-angular clasts within a sample is explained by distance 

down-moraine, although the fitted polynomial regression is not statistically significant 

and falls outside the 95 % confidence interval (p = 0.828).  Overall, none of the investigated 

parameters were statistically significant to within the 95% confidence interval (Table 4.6). 

 

Fig. 4.14 RA/C40 plot of 42 clast samples of n = 50 sorted by depositional environment  
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Table 4.6: Regression statistics of clast-form parameters and their relationship with 
distance-down from inner-proximal samples  

Parameter Analysis R2 P-value 

% VA Polynomial (2nd Order) 0.473 0.828 

% A Polynomial (2nd Order) 0.005 0.899 

% SA Polynomial (2nd Order) 0.145 0.982 

% RA Polynomial (2nd Order) 0.192 0.814 

% C40 Linear 0.007 0.764 

% Striated Polynomial (2nd Order) 0.736 0.065 

 

 

Fig. 4.15 Linear and polynomial regression plots investigating the modification of 
various clast-form parameters with Euclidean distance down-valley from ice-proximal 
exposures.  
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The roundness cumulative distribution functions of clast samples from the five 

depositional environments (supraglacial, extraglacial, lateral moraine and inset moraine 

ridges) are compared for similarity using the Kolmogorov-Smirnov two-sample test 

(Table 4.7). Moraine samples represent ice-proximal exposures only. The extraglacial 

sample populations are shown to have no statistical difference (α = 0.01) to supraglacial 

samples in terms of their roundness characteristics (D = 0.14). Subglacial control samples 

show a statistical similarly to clasts sampled from an inset ridge in terms of the maximum 

discrepancy between their cumulative distribution functions (D = 0.03). Statistical 

differences are observed between all other sample populations. Although, not statistically 

significant, the CDF of moraines samples show some association with extraglacial debris 

(D = 0.39). 

Table 4.7: Two-sample Kolmogorov-Smirnov matrix showing the maximum difference 
between sample populations. Clast samples are from the following depositional 
environments: (i) Moraine proximal exposures (n = 1600); (ii) Supraglacial (n = 200); (iii) 
Subglacial (n = 150); (iv) Extraglacial (n = 400); (v) Inset moraine ridge (n = 100). Bold 
text indicates no statistical difference between clast populations at 99% Confidence 
significance (α = 0.01). 

 

4.3.4 Structural glaciology 

4.3.4.1 Overview 

The structural glaciology is interpreted from an orthorectified aerial image acquired in 

2009 to aid understanding of the origin and transport history of moraine sediments. A 

total of four main structural categories were described and interpreted; (S0) arcuate planar 

structures, (S1) longitudinal planar structures, (S2) fractures and traces. The areal extent 

of the supraglacial debris cover were mapped. A map displaying the main structural units 

is presented in Fig. 4.16.  

 i ii iii iv v 
i - 0.52 0.46 0.39 0.44 
ii - - 0.78 0.14 0.76 
iii - - - 0.78 0.03 
iv - - - - 0.76 
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Fig. 4.16 Structural interpretation of Schwarzberggletscher (B) derived from 2009 
orthorectified aerial imagery (A). 
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4.3.4.2 Arcuate planar structures (S0) 

Description: Continuous arcuate bands are observed within the upper section of 

Schwarzberggletscher, underneath the snowline at the point of aerial image acquisition. 

The full distribution of S0 in the accumulation area is unclear, due to snow-cover 

obscuring structure on the aerial photography.  In places, folded arcuate structures 

display a chevron planar form. These stronger folds appear to coincide with a flow unit 

boundary separating the two main accumulation areas of Schwarzberggletscher. These 

features are readily identified by their colouration on the aerial photography, which 

alternates between darker and lighter bands. The spacing of the lighter bands of clear ice 

located at the centre of the glacier is inconsistent, varying with distance down-glacier. 

The bands located up glacier reach a maximum width of 20 m. Banding on the true right 

of the glacier is typically more tightly spaced (>5m) down-glacier. The exact spacing 

between darker bands cannot be delimited given the coarse 0.5 metre resolution of the 

orthorectified aerial imagery. Close to the glacier centreline, the intensely folded arcuate 

structure becomes indistinguishable from longitudinal planar structures (S1). 

Interpretation: Arcuate planar structures are interpreted as primary stratification. Their 

visibility on the aerial photography is likely to relate to differences in properties of the 

ice, although, as mapping was undertaken remotely from aerial imagery, field 

observations of difference ice facies were not made. Principle differences controlling the 

visibility of primary stratification include the ice crystal size, bubble content, and debris 

content (Goodsell et al., 2002; Roberson, 2008). Compacted snow during winter months is 

typically bubble-rich, whereas the melt and subsequent refreezing of snow during 

summer months facilitates the formation of debris-rich layering and allows water to infill 

poor space forming superimposed ice (e.g. Benn and Evans, 2010). Ductile structures 

exhibited by primary strata are interpreted to signify (1) moderate lateral compression 

down-glacier as the east and west accumulation basins coalesce and are topographically 

constrained and (2) differential flow within individual flow units (e.g. Hambrey and 

Lawson, 2000).   

4.3.4.3 Longitudinal planar structure (S1) 

Description: The most extensive area of S1 occurs down-glacier of intensely folded arcuate 

planar structures (S0). Evidence of cross-cutting of longitudinal planar structure is by 
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arcuate planar structures (S1) could not be identified on the aerial photography. 

Longitudinal planar structures can be traced down-glacier to the terminus, and are almost 

exclusively concentrated within a c. 100 m wide unit close to the glacier centre-line.  

Interpretation: Longitudinal planar structures are interpreted as bands of longitudinal 

foliation. The spatial distribution of S1 forms the basis of this interpretation. As S1 occurs 

down-glacier of intensely folded arcuate planar structures it most likely signifies the 

transposition of primarily layering into longitudinal foliation parallel to ice-flow (e.g. 

Hambrey and Lawson, 2000). Longitudinal foliation is known to develop at the 

confluence between flow units, and in areas of lateral compression (related to the 

topographic controls on glacier geometry) (Hambrey and Lawson, 2000; Roberson, 2008; 

Jennings et al. 2014). The continuity between the two structures, and occurrence of S1 at a 

flow unit boundaries appears to satisfactorily confirm this mechanism of formation, 

although additional investigations to comparing the crystallography properties of ice 

within each structure would be beneficial (e.g. Roberson, 2008). 

4.3.4.4 Fractures (S2) and traces (S3) 

Description: These features occur discontinuously across the glacier surface. The largest 

occur in the accumulation areas of Schwarzberggletscher, where they are aligned 

transverse to the direction of ice flow, exceed 200 m in length, and are often concave in 

plan form. The full extent of fractures in the accumulation area are unclear as snow-cover 

obscures structure on the aerial imagery. Occasional crevasses below the snowline are in 

filled by snow. The lower glacier tongue is largely fracture-free, although a series of 

fractures can be identified between 2750 and 2850 m elevation. Indistinct features are 

identified at the glacier terminus down-glacier of fractured areas (S3). Some fractures are 

visible through the extensive supraglacial debris cover on the true-left of the glacier. 

These features are oblique to glacier flow, oriented between 340-350/160-170°, and linear 

in plan form. A series of indistinct longitudinal features (S3) are readily distinguishable 

from foliation (S1) and occur in proximity to the terminus.  

Interpretation: S2 and S3 are interpreted as crevasse and crevasse traces forming in 

response to tensile and shear stresses. They therefore represent patterns of deformation 

within the glacier (e.g. Benn and Evans, 2010). Four types are distinguished here: (1) large 

‘bergschrunds’ occurring in the upper accumulation area, (2) smaller (<100 m) linear or 
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concave open crevasses (S2) (and subsequent traces; S3) occurring in both the 

accumulation and ablation areas of the glacier, (3) linear (chevron) type crevasses 

occurring contiguously with the glacier margin (S2), and (4) longitudinal 

crevasses/crevasse traces occurring close to the glacier terminus (S2/S3).  

Large ‘bergschrund’ type crevasses, and smaller linear and concave open crevasses, are 

interpreted as evidence of an extensional flow regime related to the acceleration of ice 

over steep terrain (Hambrey and Lawson, 2000; Benn and Evans, 2010). Although mostly 

occurring in the upper reaches of the glacier, localised areas of transverse crevasses occur 

as the glacier profile steepens once more, allowing for further crevasses to open. 

Crevasses appear to be less defined in proximity to the terminus. These transverse 

features cross-cut existing structure and are typically found down-glacier of active 

crevasse fields, and therefore represent the closure of existing crevassing (‘crevasse 

traces’) (e.g. Goodsell  et al. 2002).  

Hambrey et al. (2005) present two mechanisms for the formation of crevasses traces. The 

first mechanism involves the refreezing of meltwater within the crevasses and can be 

distinguished by the presence of blue ice (Goodsell et al., 2002). The second mechanism 

forms tensional veins and originates from the recrystallization of ice at adjacent fracture 

walls (Hambrey et al. 2005; Benn and Evans, 2010). Debris and snow can also be 

incorporated within closing crevasses (Gulley and Benn, 2007; Hambrey, 2011), however 

such features were not observed at Schwarzberggletscher. 

Oblique linear (chevron) crevasses appear to indicate lateral sheer stresses occurring at 

the glacier margin (e.g. Appleby et al., 2010; Jennings et al., 2012). However, the isolated 

occurrence of open chevron crevasses (e.g. to an area of extensive debris coverage and an 

absence on the true-right of the glacier) suggests limited lateral shear stress at the glacier 

margin. Evidence of longitudinal fractures and traces at the glacier margin represent the 

transverse extension of ice in respect to the direction of flow (e.g. Jennings et al., 2014). 

The occurrence of longitudinal crevasses are interpreted to signify the diminishing lateral 

confinement of ice at in proximity to the glacier terminus. 

4.3.4.5 Supraglacial debris 

Supraglacial debris represent a significant component of the Schwarzberg glacier system. 

The areal coverage of extensive and sporadic debris on the main the glacier are mapped. 
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Extensive debris covers 0.4 km2 of the glacier surface (8%) and is restricted to the true left 

of the glacier. Sporadic debris are observed along the glacier terminus. The right of the 

glacier is characterised by relatively 'clean' glacier ice. A summary of the sedimentology 

characteristics supraglacial debris is provided in section 4.3.3. 

4.4 Discussion 

4.4.1 Synthesis of structural glaciological interpretation and debris transport 

Structural glaciological mapping from aerial imagery indicates no evidence of englacial 

septa propagation on the glacier surface. Debris accumulations of sub-angular gravelly 

material were found on the glacier surface at three locations during field surveys in 2013. 

Two of these accumulations are not visible on the 2009 aerial photography which is used 

for geomorphological and structural mapping. Therefore they appear to have only 

recently propagated onto the glacier surface. At present the potential for subglacial 

material to propagate onto the glacier surface appears to be limited at 

Schwarzberggletscher, thus limiting the availability of basally derived material for 

moraine building by debris flowage and dumping (Fig. 4.17). The areal coverage of 

supraglacial debris and the potential contributing area of extraglacial debris up-glacier 

are clearly linked to the prominence of the moraines down-valley and a clear control on 

the cross-valley moraine asymmetry at this site. 
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Fig. 4.17. (A) Ground level photograph of the glacier terminus in 2004. (B) An 
interpretation of key features including the identification of debris-bearing structures 
melting out close to the terminus which are no longer present at the glacier terminus.   
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4.4.2 Dumping 

The formation of ice-marginal moraines by debris flowage and slumping of material from 

supraglacial positions is well documented in a range of glacial settings (Benn et al., 2003) 

and appears to be a significant ice-margin process responsible for the construction of the 

Schwarzberggletscher moraine. The flowage and slumping of debris as moraine 

constructional processes have also been directly observed first hand in the Swiss Alps 

where localised glacier advances during the 1970s were significant enough to allow 

glacier-ice to overtop lateral moraines at Tsidjoire Nouve (Whalley, 1973; Small, 1983). 

Debris transfer via flows, slumps and slides from supraglacial to ice-marginal positions 

result in the production of crudely stratified diamictons, often resulting in strong-

moderate macrofabrics dipping away from the former glacier surface (Humlum, 1978; 

Osborn, 1978; Benn and Owen, 2002; Curry et al., 2009). Assessed facies (e.g. SCH-44U/L, 

SCH-20, and SCH-18) were found to exhibit these strong macrofabrics, typical of 

dumping and flowage.  

Evidence of a buried palaeosol within exposure SCH-44 highlights multiple periods of 

moraine construction, whereby moraine-formation (thus the overtopping of an existing 

moraine rampart) was interrupted, allowing for ecological succession, and the onset of 

soil development (e.g. Rothlisberger and Schneebli, 1979). Whilst material from this 

palaeosol is currently undated, it is interpreted to signify a period of climatic amelioration 

and associated reduction in glacier. Bircher (1982) radiocarbon dated two fossil soils 

within the Schwarzberggletscher lower-left lateral moraine to 630 ± 60 and 950 ± 115 14C 

yr BP. These dates appear to correlate to lesser glacier coverage during onset of the 

Medieval warm Period (MWP) (e.g. Rothlisberger et al., 1980), punctuated by  minor 

glacier advances dated to between 1000-1100 yr AD (Grove and Switsur, 1994), and the 

later onset of the Little Ice Age during the 14th century AD (Ivy-Ochs et al., 2009).  Should 

this newly discovered palaeosol be dated, it would provide a minimum age for the 

recession of Schwarzberggletscher, and maximum age for later glacier overriding and 

subsequent moraine-construction (e.g. Kirkbride and Winkler, 2012). Models accounting 

for landform development and glacier change are presented in Fig. 4.18. It is currently 

unclear which glacier advance (Little Ice Age or earlier) these sedimentary units should 

be assigned to, however it is reasonable to assume that the Little Ice Age advance was 

extensive enough to permit the overtopping of the left-lateral moraine complex. 
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A further diagnostic characteristic of debris flowage is the incorporation of sorted lenses 

of sediment within diamicton units that typically signify reworking and subsequent 

sorting of the fine sediment fraction via glacio-fluvial surface processes which are 

incorporated into the moraine structure as units of diamicton are incrementally 

superimposed onto existing moraine structure (Benn and Owen, 2002). Here, diamicton 

deposits are typically massive, and lack crude stratification. Fine lenses of silt were only 

located at one exposure (SCH-35), which exhibits a macrofabric that is weakly parallel to 

former ice-flow and dipping down-slope. This facies may represent subsequent 

paraglacial disturbance, related to the loss of ice-support following glacier recession.  

4.4.3 Subglacial lodgement and traction 

Till lodgement and lateral-subglacial traction are identified as additional processes 

responsible for the modification of ice-proximal sedimentary units (Boulton and Eyles, 

1979; Small, 1983; Lukas et al., 2012). Characteristics of sedimentary units subject to such 

processes include over consolidation and the production of fissile structures related to 

the unloading of over consolidated till units. Exceptionally strong clustered fabrics 

parallel to ice flow have been interpreted as evidence of the incremental plastering 

(‘lodgement’) of primarily subglacial traction till on ice-proximal slopes (Lukas et al., 

2012). A tendency for clast orientations to align parallel to ice-flow is somewhat evident 

in select samples within the lower-lateral moraine complex (e.g. SCH-35; SCH-16; SCH-

01), yet generally these fabrics lack the strength typically associated with lodgement at 

the ice-till interface (Benn and Evans, 2010). Despite this, sites with weakly developed 

fabrics also contain a striated clastic component, with striated material accounting for up 

to 30% of assessed clasts. All diamicton sedimentary units at Schwarzberggletscher are 

set within a highly friable, poorly consolidated silt-rich matrix, which disintegrates when 

extracted. This is at odds with over consolidated/compacted material or partially 

cemented material reported to occur in other alpine glacial landsystems (e.g. Whalley, 

1975; Eyles et al., 1983; Lukas et al., 2012). The absence of clear diagnostic sedimentary 

characteristics provide somewhat equivocal evidence of subglacial till deformation in 

assessed facies at this site (e.g. Bennett et al., 1999).  

4.4.4 Debris transport and clast-form 

The lower sections of the moraine contain the highest concentration of striated material 

(4-30%). Although these striated clasts may represent the comminution of clasts at the 
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interface between the glacier and ice-proximal moraine, several factors confound the 

interpretation of debris transport from clast-form parameters. For example, it is unclear 

whether this striated, sub-angular material is indicative of a complex debris transport 

related to the transfer of material from the bed, to the glacier surface. A range of 

conditions are known to initiate the transfer of material from the glacier-bed in alpine 

settings, including ice-flow over steep bedrock controlled topography (e.g. Goodsell et al., 

2002; Lukas and Sass, 2011) or folding and subsequent elevation of subglacial or glacio-

fluvial debris following extensive longitudinal compression of individual flow units 

which may form dirt cones close to the glacier terminus (Goodsell et al., 2005b). Ice-flow 

over a bedrock step which runs transverse to former glacier flow may have initiated the 

transfer of material from the base of the glacier, onto the glacier surface. A structurally 

controlled transport origin for worn and striated clasts (e.g. 

Gornergletscher/Findelgletscher; Lukas and Sass, 2011; Lukas et al., 2012) is unclear based 

on structural mapping of Schwarzberggletscher. It is acknowledged that an absence of 

aerial photography from before 1967, and limited ground-level photography from the 

early 20th century impede mapping of glacier structures from a period where the lower 

lateral moraine would have been actively forming. Whilst a clear high-supraglacial debris 

component is identified on the true-left of the glacier on historical images, emerging 

debris-bearing structures are not identified.  

Additionally, clast form parameters may have been modified by either; (1) minor 

reworking of material occurring over time-scales in excess of the Little Ice Age advance 

(e.g. Matthews and Petch, 1982; Evans, 1999; Burki, 2009) which produces homogenous 

units of diamicton which display subtle but distinguishable down-moraine clast-form 

parameters from ice-contact dumps; and (2) the active transport of clasts which cause 

progressive clast wear-down moraine related to the overriding of ice-proximal deposits 

within the ‘active’ lateral-subglacial domain with the traction of debris resulting in clast 

wear (e.g. Boulton and Eyles, 1979; Hambrey and Ehrmann, 2004; Hambrey et al., 2008; 

Lukas et al., 2012).  The recycling of glacigenic material between glacier-retreat advance 

stages is documented to result in moraines which exhibit anonymous clast-form in 

relation to their genesis. Recycling is facilitated by bedrock steps and the presence of 

overdeepenings, which act to trap glacio-fluvial and subglacial material during periods 

of less glacier extent times (e.g. Burki et al., 2010) and allow for material to be 
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subsequently remobilised and mixed with passively transported material prior to 

deposition. The potential for modification of clast form via reworking or in situ wear of 

clasts in the subglacial lateral domain are likely due to the clear geomorphological, 

sedimentological, and geochronological evidence (e.g. existing radiocarbon dating by 

Bircher, 1982) that indicate the repeated reoccupation of the moraine rampart over the 

Holocene.  

An additional interesting characteristic of assessed lateral moraine facies is the overlap in 

terms of clast-form parameters between proximal samples (interpreted as youngest in age) 

with samples from the outer ridges on the lower lateral complex. This overlap appears to 

suggest that debris transport pathways responsible for moraine construction have 

remained much the same over multiple Holocene glacier-readvance stages, despite the 

potential for changing ice geometry within the accumulation basin of 

Schwarzberggletscher. 

4.4.5 Moraine morphology and topographic controls 

Geomorphological maps and sedimentology data appear to demonstrate the importance 

of topographic controls regulating not only initial moraine inception (e.g. Barr and Lovell, 

2014), but also the resulting sedimentary signature of ice-marginal moraines in high-

mountain environments. Schwarzberggletscher offers an excellent example where a 

mixture of lateral-accretion and superposition construct structurally complex ice-

marginal ramparts. However, in more laterally constrained Alpine valleys, large moraine 

ramparts are responsible for restricting successive glacial advances, which appear to be a 

prerequisite for lateral-subglacial traction (e.g. Findelgletscher; Lukas et al., 2012). 

Existing models of moraine genesis focusing on lateral accretion and superposition are 

applicable to a broad range of high-mountain catchments, however, consideration of 

topographic controls deserves attention to fully understand the nature of moraine 

formation and the resulting sedimentary signature of ice-marginal moraines. 

4.4.6 Landform stability and preservation potential 

Moraine-forming processes appear to be key controls on the susceptibility of ice-proximal 

slopes to paraglacial reworking following the removal of ice-support. The absence of 

consolidated/compact or ‘plastered on’ diamicton is a plausible control on landform 

stability, explaining the gentle slope characteristics in comparison to other sites within 

the Valais region (Curry et al. 2006; Table 4.1). It is worth noting that gently dipping 
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macrofabrics have been linked to inherent landform stability, with Alpine lateral 

moraines known to remain in a quasi-stable state, typified by over-steepened upper 

proximal gullied slope sections (Curry et al., 2009). Curry et al. (2009) suggest that the 

macrofabric of glacigenic material contained within Alpine moraines is instrumental in 

enhancing the stability of moraine proximal slopes. This is a response to the resistance of 

material to translational shear which often acts at near-perpendicular angles to the 

preferred fabric of in situ diamicton within Alpine moraines. However, at 

Schwarzberggletscher, strong developed dipping fabrics appear in proximity to the 

current glacier terminus and appear to result in no discernible difference in terms of the 

maximum slope angle attained by ice-proximal slopes. Additional features which have a 

low preservation potential include benches of diamicton deposited on ice-proximal 

slopes during the back, and downwastage of the glacier from its Neoglacial maximum 

position. Proximal diamicton units are sensitive to the collapse following the loss of ice 

support (e.g. Curry and Ballantyne, 1999; Curry et al., 2006); and may be poorly 

distinguishable in the geomorphological record over centurial and millennial time scales.  
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Fig. 4.18. Conceptual model for the development of lateral moraine at the margin of 
Schwarzberggletscher. Glacier flow is perpendicular to the cross-section.  
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4.5 Summary 

Lateral moraines formed at Schwarzberggletscher provide a sedimentary record of 

glacier fluctuations, probably extending over millennia. Debris transport and lateral 

moraine development was investigated. Clasts within the moraine display high RA 

indices yet do not overlap with control samples of a known transport history. Extraglacial 

debris (e.g. scree, rockfalls from valley sides) are responsible for the primary provision 

material which is subsequently transferred into the moraine via ‘passive’ supraglacial 

transport. Differences in terms of extraglacial sediment input at the site have resulted in 

clear within-basin asymmetry. Up-moraine lithofacies show clear structural evidence of 

moraine overtopping and debris-dumping as the mode of formation, although the 

topographic influence of a pre-existing moraines are important within regard to the mode 

of formation. Down-moraine sites exhibit weak clast fabrics and readily contain striated 

clasts, indicating the contribution of actively transported material for moraine 

construction. Mechanisms responsible for the delivery of ‘actively’ transported, striated 

clasts were therefore considered.  

The provision of actively transported debris at Alpine glaciers has been suggested to 

relate to englacial debris septa. At present, structural interpretation of the glacier 

highlights a lack of propagating debris-bearing features as the glacier continues to down 

and back-waste. It remains unclear how actively transported material was incorporated 

into the moraine, but is likely to reflect the propagation of englacial debris septa onto the 

glacier surface during the LIA maxima when the structural glaciology was likely 

considerably different to the present.  The clast-form parameters (RA/C40) of debris within 

the outer ridges are indistinguishable from the inner ridges, implying that transport 

pathways have remained fixed through multiple periods of glacier expansion. This study 

serves to provide additional information on the sedimentology signature of lateral 

moraine with respect to the former characteristics of Alpine valley glaciers.  
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5. The character and significance of ice-cored moraine 

complexes at the margins of polythermal Arctic 

glaciers: insights from a multi-technique approach at 

Isfallsglaciären, Sweden 
 

5.1 Introduction 

Moraines assumed to demarcate late Holocene glacier advances across Scandinavia are 

subject to on-going debate and ambiguity regarding their development, age and 

significance (Østrem, 1963; 1964; Karlén, 1973; Ackert, 1984; Matthews et al., 2014). 

Moraines developed at the margins of some Scandinavian glaciers are identified to be 

potentially atypical of other ice-cored ridges occurring in high-Arctic settings, containing 

moraine-distal snowbank ice within their structure (Østrem, 1964). In recent years, the 

term ‘Østrem’ type moraine has been introduced in the literature (e.g. Whalley, 2009; 

Whalley, 2012) to distinguish these ice-cored moraine systems from their high-Arctic 

counterparts, with the term aptly naming the moraines after the geoscientist who 

conducted initial investigations on ice-cored moraines during the late 1950s and early 

1960s.  

Glaciers within the Tarfala valley, Northern Sweden are some of the most extensively 

studied globally (Holmlund et al., 1996; Holmlund and Jansson, 1999). This is at odds with 

our understanding of moraine forming processes operating at the margins of these 

glaciers. Precise understanding of moraine stratigraphy, genesis, and age may result in a 

better understanding of Holocene glacier change within Scandinavia and moraine 

formation at the polythermal glacier margins. In comparison to Alpine type moraines 

whose structural characteristics are well documented (Rothlishberger and Schneebli, 1979; 

Small, 1983; Lukas et al., 2012) current understanding of ‘Østrem’ type moraine is limited. 

Ground-penetrating radar (GPR) offers a non-invasive method to characterise subsurface 

structure and composition (Neal, 2004). This technique has been demonstrated to have 

potential value in glacial sedimentary environments (Sadura et al., 2006; Brandt et al., 2007; 

Burki et al., 2010; Midgley et al., 2013). To bridge the gap in the current understanding of 
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these features, a multi-technique approach has been used to investigate the structure, 

morphology and sedimentology of a large ‘Østrem’ type moraine complex located at 

Isfallsglaciären, Tarfala Valley, Northern Sweden. The objectives of this study are 

therefore to: (1) use geophysical survey methods to determine the sub-surface 

structure/stratigraphy and composition of the Isfallsglaciären lateral-frontal moraine 

complex; (2) characterise the sedimentology of debris within the moraines to ground-

truth radar facies, (3) interpret ice-marginal processes involved in the construction of the 

moraine and (4) characterise moraine morphology using high-resolution topographic 

data. The investigation of the moraine structure, sedimentology and geomorphology will 

aid understanding of former glacier characteristics. 

5.2 Study site description 

Isfallglaciären is a c. 1.5 km long valley glacier located in the Kebnekaise Mountains in 

Arctic Sweden (Fig. 5.1; Fig. 5.2). The glacier has an easterly aspect, and has receded 

approximately 500 m from its 1920s position, where the glacier partially overrode its 

inner moraine ridge (e.g. Karlén, 1973). Similar to the neighbouring Storglaciären, 

Isfallsglaciären contains both temperate and cold ice (Eklund and Hart, 1996). Schytt 

(1962) recorded subfreezing temperatures from an artificially created tunnel at the glacier 

terminus. The neighbouring Storglaciären is currently under-going changes to its thermal 

configuration (Pettersson et al., 2003), with one third of its cold surface layer lost over the 

1989-2009 period (Gusmeroli et al., 2012). These changes have been linked to recent 

climatic amelioration, such as increased winter air temperature since the 1980s 

(Pettersson et al., 2003; Gusmeroli et al., 2012). It is unclear whether the thermal regime of 

Isfallglaciären is undergoing a similar evolution. 

The moraines of Isfallglaciären are subject to some morphological description in research 

presented by Schytt (1959) and Karlén (1973). Two frontal moraines are distinguished 

within the glacier forefield; an outer more subdued ridge with a relief of up to c. 10 m and 

a more topographically prominent inner-frontal ridge, which is partially overprinted 

with subglacial flutes. The inner ridge has a topographic prominence of up to 20 m, and 

together with the north and south lateral-complex, impound the current glacier forefield. 

Glaciofluvial run-off is restricted to one outlet stream which dissects this inner moraine 

ridge, separating the northern- and southern lateral-frontal complexes. The outer lateral-

ridge on the northern-lateral-frontal exhibits a series of discontinuous mounds on its 
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distal slope of the outer ridge (Fig. 5.3). The southern lateral complex displays a furrowed 

morphology, and includes a prominent nested arcuate ridge. The northern-lateral ridge 

is dissimilar to the southern. Up-glacier the moraine forms a single embankment, which 

anastomoses into four nested ridges that adjoin the less topographically prominent outer-

frontal ridge. Both the proximal and distal slopes of this feature reach up to 45o.  
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Fig. 5.1 Study site location. (A) The location of the Kebnekaise Mountains in relation 
to Scandinavia. (B) Glaciers located on the Eastern flank of Kebnekaise. (C) Ground-
level photograph of Isfallsglaciären and the moraine complex from Tarfala Research 
Station in 2013. 
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Fig. 5.2 (A) Lantmäteriet orthorectified image of the study area dated to 2009. (B) 
Geomorphological interpretation of the Lantmäteriet orthorectified image 

5.3 Site specific methodology 

Ground penetrating radar surveys were completed in spring 2013 using the methods 

outlined in section 2.4. Surveys were undertaken transverse to the orientation of the 

moraine, surveying from the ice-proximal to ice-distal slope (Profiles 1-6) and also 

approximately parallel to the moraine crestline surveying from an up-glacier to down-

glacial position (Profile 7). Surveys were undertaken uniformly across the moraine to 

optimise the coverage. 

The morphology of the moraines was assessed using high-resolution topographic data 

derived from 12 UAV surveys. The target flight altitude for the UAV was 100 m. Two 

DEMs are produced; one for the north-lateral-frontal moraine and one for the southern-

lateral-frontal moraine (Fig. 5.3). GCPs were surveyed using a Leica Builder 300 total 

station. Following chapter 3 A3 paper targets were used as GCPs. The southern-lateral-

frontal DEM was derived from 586 images. The total RMSE on this dataset following the 

application of 10 GCPs was reported at 0.08 m. The northern-lateral-frontal DEM was 

derived from 765 images. The total RMSE on this dataset following the application of 25 

GCPs was reported at 0.06 m. Both DEMs were exported at a spatial resolution of 0.5 m 

per pixel. As the total station SfM ground control points used an arbitrary coordinate 

system, the resulting elevation data was georeferenced to SWE99TM using affine 

transformation (rotation, skew, scaling) in ArcGIS version 10.2.1. In practice, 

transformation introduced additional positional errors into this dataset, thus was 

A B 
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undertaken for illustrative purposes only (see Fig. 5.3) to enable the positions of 

sedimentological and geophysical surveys to be plotted over the resulting SfM datasets. 

Georeferencing was conducted using boulders visible on the high resolution topography 

and a 0.5 m spatial resolution Lantmateriet aerial image dated to 2009. All height data 

remains on an arbitrary datum. The datasets from Isfallsglaciären are produced solely to 

characterise the morphology of the lateral-frontal moraine, however future re-analysis of 

the dataset to quantify morphometric change is possible where independent data 

validation is conducted.  

Sedimentological surveys follow the methods outlined in section 2.5. Clast macrofabric 

analysis was, however, not conducted at this site. Where coarse boulder facies were 

identified, surface sampling was undertaken as detailed in Section 2.5.3.2. 

5.4 Results 

5.4.1 Radar-wave velocities 

Semblance analysis was conducted on 9 WARR, and 2 CMP datasets to obtain radar-wave 

velocities (Table 5.1; Fig. 5.3). Surveys were completed at various positions across the 

Isfallsglaciären moraines (Fig. 5.3; Table 5.1). Inner-frontal surveys A and D appear to be 

in agreement, providing values of 0.11 and 0.12 m ns-1 at each site.  Excluding survey B 

which shows high velocities of 0.22-0.23 at <50 ns, the inner-frontal ridge provided radar-

velocity values of 0.10 and 0.11. The southern-lateral-frontal complex was broadly found 

to exhibit higher propagation velocities at depth, typically ranging from 0.13-0.19 m ns-1 

(Table 5.1). Site I was the exception, where radar-wave velocities as low as 0.10-0.11 m ns-

1 were found to occur at c. 70 ns. Sites F, G, H, J, and K have clear returns between 0.20 

and 0.30 m ns-1. These returns are restricted a time window of <70 ns. Example plots 

demonstrating the variable radar-wave velocities are presented in Fig. 5.4. 
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Fig. 5.3 High-resolution topographic data and the locations of radar surveys 
undertaken in spring 2013. 
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Table 5.1 Summary table of radar-wave velocities on the Isfallsglaciären moraines 
derived from semblance analysis. 

 

DEM zone Survey Velocity 
(m ns-1) 

Survey 
Configuration 

Northern lateral-
frontal A 0.11-0.12 WARR 

Northern Inner-
frontal B 0.22-0.23 WARR 

Northern Inner-
frontal C 0.11 WARR 

Northern lateral-
frontal D 0.11-0.12 WARR 

Southern lateral-
frontal E 0.10 WARR 

Southern lateral-
frontal F 0.14-0.15 WARR 

Southern lateral-
frontal G 0.13-0.19 WARR 

Southern lateral-
frontal H 0.13-0.19 WARR 

Southern lateral-
frontal I 0.10-0.11; 0.13-0.15 CMP 

Southern lateral-
frontal J 0.15-0.16 WARR 

Southern lateral-
frontal K 0.14-0.17 CMP 
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Fig. 5.4 Exemplar WARR and CMP surveys demonstrating contrasting sub-surface 
conditions on the southern-lateral complex and frontal moraines. Patches of purple 
indicate clustering of stacked GPR velocities (e.g. the average propagation velocity 
which reflect the sub-surface sedimentology and characteristics). The frontal ridges 
show slower velocities (~0.11 m ns-1) than lateral ridges (0.15 to 0.17 m ns-1) indicating 
different subsurface conditions.  
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5.4.3 Internal structure 

5.4.3.1 Overview 

Seven 100 MHz reflection profiles were surveyed to investigate the internal structure of 

the Isfallsglaciären moraines (Fig. 5.3; Fig. 5.5). Below, key structural features are 

discussed. A summary of the seven profiles is presented in Table 5.3. 

5.4.3.2 Northern lateral-frontal complex 

The northern outer-frontal ridge is presented in profiles 1 and 3 which both run 

transverse to the ridge crestline (Fig. 5.3; Fig. 5.5). Profile 1 appears to be more structurally 

diverse. The proximal slope of the landform is intersected by a clear up-glacier dipping 

reflector. Below this reflector a series of discontinuous, wavy up-glacier dipping 

reflectors are also visible. Additional reflectors are present between 23-30 m, and are 

contiguous with both ground and air wave. Reflectors within the crest of the landform 

are irregular and hyperbolic. On the distal slope of this landform, coherent, continuous 

reflectors are visible within a topographically prominent hummock. A double of this 

feature is also present c. 200 ns. Despite the application of AGC, structure is poorly 

defined at depth within the main ridge. Profile 3 displays multiple overlapping 

hyperbolic point diffractions and irregular medium and high amplitude reflectors. Unlike 

profile 1, a partially coherent down glacier dipping reflector appears to dissect the feature 

between c. 27 and 35 m and also corresponds with a change in surface morphology. Up-

glacier dipping reflectors are present at depth within the landform and can be seen c. 20-

30 m and 40-50 m along the profile. 

The inner-frontal ridge was surveyed in profiles 2 and 4 (Fig. 5.3; Fig. 5.5). The crestline 

of profile 2 is overprinted with subglacial flutes. The main features of structural interest 

within this profile are coherent, high amplitude reflectors which are visible between c. 67 

and 96 m. The reflectors run sub-parallel with the moraine surface, before dipping down-

glacier.  A second less coherent reflector is present at 88-96 m.   

5.4.3.3 Southern-lateral-frontal complex 

Profile 4 presents the sub-surface structure of the southern-lateral-frontal complex prior 

to where the ridge adjoins the lateral section of the landform (Fig. 5.3; Fig. 5.5). Atypical 

of other reflection surveys, continuous reflectors can be seen running sub-parallel to the 
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moraine surface. At 28 m along this transect two coherent reflectors can be seen to cross-

cut each other. A radar facies characterised by irregular reflectors and overlapping 

hyperbolic point diffractions can be seen both above and below these coherent reflectors. 

Profiles 5, 6 and 7 display the sub-surface structure of the southern-lateral complex (Fig. 

5.3; Fig. 5.5). Profile 5 runs oblique to the landform (but approximately parallel to the 

inferred direction of former ice-flow). Similar to other profiles, profile 5 displays 

hyperbolic (presumably related to subsurface point diffractions) and irregular reflectors. 

Reminiscent of profile 2, two coherent subsurface reflectors which initially run parallel 

sub-parallel to the moraine surface, and subsequently dip down glacier and are visible 

between c. 0-14 m and 25-47 m respectively. The resolution afforded by the use of 100 

MHz antenna does not permit detailed imaging of structure within an arcuate nested 

ridge located on the moraines surface, however at the available resolution, reflectors can 

be described as irregular and discontinuous, with no clear preference in terms of 

alignment. Profile 6 runs transverse to the southern lateral moraine complex. Here, the 

main structural feature is a moderately continuous reflector at depth within the moraine. 

This reflector appears to run sub-parallel to the moraine surface and is both over- and 

underlain by hyperbolic, chaotic and irregular radar facies. A snowbank can be 

distinguished on the ice-distal slope of the landform. The base of the ice-distal slope is 

characterised by multiple strong point diffractions. Profile 7 runs approximately parallel 

to the ridge crest of the southern-lateral complex (Fig. 5.3; Fig. 5.5). The main structural 

feature of interest within this profile can be seen between c. 50 and 130 m along the profile 

and is located in the c. 50 to 70 ns time window. This feature runs sub-parallel to the 

moraine surface and appears to dissect an upper radar-facies consisting of hyperbolic and 

irregular point diffractions. A less coherent (partially due to the hyperbolic nature of the 

overlaying radar-facies) continuation of this radar surface is present between 0 to c. 20 m 

at c. 45 ns.  
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Fig. 5.5 100 MHz common offset radargrams. Data is topographically migrated using a 
propagation velocity of 0.15 m ns-1 for transects 1-3 and a velocity of 0.10 m ns-1 for 
profiles 4-7. Profile 7 has not been topographically migrated to more readily 
distinguish the sub-parallel reflectors. The actually topography is gentle sloping from 
left to right. Locations are highlighted in Fig 5.3.  
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Fig. 5.6 Interpreted radargrams with surface sedimentology and velocity surveys 
highlighted. The radargrams were qualitatively assessed and coherent reflectors were 
digitised.  
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5.4.4 Sedimentology 

Lithofacies found within the Isfallsglaciären moraines are summarised in Table 5.3 and 

Fig. 5.7 and are described below. The position of lithofacies in relation to the 100 MHz 

reflection transects are also highlighted in Fig. 5.6.  

5.4.4.1 Southern lateral-frontal complex 

The most abundant lithofacies on the southern-lateral complex is boulder-gravel. The 

sedimentology of this facies was assessed via five surface surveys at various positions 

along the moraine complex in proximity to profile 7. In this unit the clast intermediate 

axis were found to range in size from 0.03 m to 1.67 m. Sampled boulder gravels fall 

within the VA, A and SA roundness categories. The modal category is not consistent 

between boulder-gravel sample sites, with an increase in the SA component and 

corresponding decrease in the RA component down-moraine (% RA = 48-96; % SA = 4-52; 

n = 5). Isolated ice-proximal boulders were found to exhibit a polished finish, with well-

defined striae. Whilst these facies have little or no interstitial component, occasional 

patches of fine and granular material were observed in proximity to disintegrating clasts 

of amphibolite. Isolated draped units of angular clast-rich intermediate or sandy 

diamicton are found to intersperse this boulder-gravel facies. A water-saturated clast-rich 

intermediate diamicton facies were identified above a melting moraine-distal snow-patch. 

The sedimentology of the prominent nested arcuate ridge visible in profile 5 was 

investigated (Fig. 5.3; Fig. 5.6). Here, a clast-rich sandy diamicton with granular lenses is 

overlain by deposits of gravel and sand with dispersed clasts. All clasts within this ridge 

are unstriated and predominantly angular (% RA = 62-86).  

5.4.4.2 Northern lateral-frontal complex 

The north lateral ridge contains a range of lithofacies including gravel (with muddy 

component), sandy gravel, and clast-rich sandy diamicton. Poor field conditions 

prohibited the collection of GPR data from this area. Clasts sampled from these facies 

exhibit highly angular morphology (% RA = 86-94), but surprisingly low C40 values (18-

26). All facies appear to be massively structured. Evidence of ice-proximal slope failure is 

identified on this ridge, revealing an exposure of sandy gravel. An additional facies of 

boulder-gravel was found in the upper reaches of the moraine before it anastomoses. This 
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facies exhibits an almost exclusively very angular and angular clasts (% RA = 98) with 

intermediate axis that range between 0.07 and 1.25 m in length. 

Investigations revealed six lithofacies in proximity to the northern-lateral-frontal zone 

which are detailed in profile 1 and WARR A (Fig. 5.3; Fig. 5.5). On the distal hummocks, 

lithofacies include crudely stratified sandy gravel and sand interspersed with alternating 

muddy or gravelly lenses that gently dip down-glacier. Clasts contained within the sandy 

gravel and down-glacier dipping gravelly lenses exhibit angular morphologies (% RA = 

72-80) and are unstriated. The crest of the landform is composed of a clast-rich 

intermediate diamicton, containing clasts with moderate angularity (% RA = 52) and 

striae (12%). Three sedimentary units are superimposed onto the ice-proximal slope. 

These include a mud with dispersed clasts. Clasts within this unit show moderate 

angularity (% RA = 62) and are 12% striated. Two ice-proximal diamicton (clast-rich 

sandy, and clast-rich muddy) units were also found adjacent to the mud with dispersed 

clasts. Clastic material in both facies is unstriated, and exhibit moderate angularity (% RA 

= 60).  

Four exposures were assessed on the outer-frontal ridge. The internal structure of this 

feature is investigated in profile 3 and by WARR D (Fig. 5.3; Fig. 5.6). These moraines 

appear to be uniformly composed of a clast-rich intermediate diamicton. Samples here 

show some edge rounding (% RA = 60-76) in comparison to supraglacial controls (Fig. 

5.6a), they are however are unstriated. The distal slope of the outer-frontal ridge contains 

a boulder-drape.  

Excavations on the inner-frontal ridge revealed lithofacies of clast-rich sandy and 

intermediate diamictons interspersed with granular lenses (profiles 2 and 4). These 

appear to show slightly reduced angularity (% RA = 46-60) in comparison to the outer-

frontal ridge and are up to 8 % striated. Flutes are superimposed (i.e. in proximity to radar 

profile 2) onto this landform. 
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Table 5.2 Summary table of sedimentary facies within the Isfallsglaciären moraine 
complex. 

 

 

 
Lithofacies 

Relative 
Abundance 

% 
RA 

% 
C40 

% 
Striat
ed 

Matrix (<2mm fraction) 

% 
Sand 

% 
Silt 

% 
Clay 

Clast-rich sandy 
diamicton ****** 62-

100 
12-
38 0-2 71-89 9-26 2-3 

Clast-rich intermediate 
diamicton *********** 46-

84 
12-
32 0-12 47-64 31-44 3-10 

Clast-rich muddy 
diamicton * 60 18 0 24 68 8 

Gravel **** 
66-
94 

10-
26 0 55-80 18-35 2-10 

Sandy gravel * 92 18 0 92 6 2 

Boulder gravel ****** 48-
100 -- 0-2 -- -- -- 

Mud (with dispersed 
clasts) * 64 14 12 8-28 66-80 5-12 

Sand (with dispersed 
clasts) * 86 14 0 66 28 6 
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Fig. 5.7 (a) Clast form and (b) matrix particle size of lithofacies within the 
Isfallsglaciären moraines. Sampled material has a limited clay content.  

A 

B 
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5.5. Interpretation 

5.5.1 Radar wave velocities and likely composition 

Moraine composition appears to vary spatially across the lateral-frontal complex. 

Velocities from the outer-frontal ridge (surveys A and D; 0.11-0.12 m ns-1; Fig. 5.7) were 

found to correspond with deposits of clast-rich intermediate diamicton. Radar-wave 

propagation velocities vary depending on their saturation and thermal state (e.g. frozen 

or unfrozen) (Neal, 2004; Lukas and Sass, 2011).  Schwamborn et al. (2007) found frozen 

diamicton (with 10% pore water) to have a radar-wave velocity of 0.125 m ns-1 

(determined from a CMP survey). This contrasts with unfrozen diamictons and till which 

can exhibit variable propagation velocities ranging between 0.06-0.09 (e.g. Burki et al., 

2010; Lukas and Sass, 2011). Given that the moraines were frozen at the time of the survey, 

slightly higher velocities are to be expected, especially if sediment is partially saturated 

prior to winter freezing. The frontal moraine is, therefore, suggested to be debris 

dominant in composition (Table 5.3), although lower frequency surveys (e.g. 50 MHz or 

less) may achieve greater propagation depths, and allow for additional sub-surface 

conditions to be determined. High concentrations of silt are associated with poor signal 

penetration (e.g. Overgaard and Jakobsen, 2001). This is evident in profiles composed of 

clast-rich intermediate diamicton which become highly attenuated at depth. Sub-surface 

conditions at site B relate to known velocities for polar snow (0.194–0.252 m ns-1; Reynolds, 

2011), and appear to mask the radar signature of the clast-rich intermediate diamicton 

found in proximity to this survey.  

The structural composition for the southern-lateral complex is unclear. Here, the wide 

range of radar propagation velocities are likely to relate to variability in terms of the 

porosity, amount of interstitial ice and fine material within the landform. Given the coarse 

nature of the surficial sediments (boulder-gravel facies) and known inclusion of ice 

within the landform (e.g. Østrem, 1964), radar-wave velocities derived from rock-glaciers 

are likely to serve as a useful proxy for sub-surface composition. For example, Monnier 

and Kinnard (2013) explain velocities of 0.15-0.17 m ns-1 within surficial deposits of rock 

glaciers as evidence of significant quantities of air (high porosity), and calculate that a 

velocity of 0.16 m ns-1 are equivalent to 22% air content. Whilst this may explain high-

velocities within up-glacier sections of the Isfallsglaciären southern lateral moraine, 

similar velocities are also identified at depth (<100 ns) within the landform. Values 
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ranging between 0.13 and 0.19 m ns-1 are therefore interpreted to indicate a variable 

composition at depth. Buried glacier-ice at the margins of high-Arctic glaciers may 

produce velocities of 0.15-0.17 m ns-1 (Brandt et al., 2007; Midgley et al., 2013). However, 

the ice within the southern-lateral complex is suggested to originate as a moraine distal-

snowbank (Østrem, 1964). As the snow is likely to be of considerable age (potential age 

ranging from centuries to millennia; e.g. Karlén, 1973), recrystallisation, compression and 

mixing with debris may have occurred, resulting in lower than expected radar-wave 

propagation velocities for snow. 

Table 5.3 Summary table of radar profiles and their characteristics. 

P1 Zone2 Radar-
surface 
geometries3 

Radar facies Signal 
attenuation 

Likely 
composition 

1 OF DuG; Sh Chaotic High Debris 

2 IF DdG; Sh Chaotic High Debris 

3 OF DuG; DdG Chaotic High Debris 

4 IF DuG; Sh Chaotic Moderate Debris-ice mix 

5 SLF DdG Chaotic; 
Hyperbolic 

Low Debris-ice mix 

6 SLF DdG; Sh Chaotic; 
Hyperbolic 

Low Debris-ice mix 

7 SLF DdG; Sh Chaotic; 
Hyperbolic 

Low Debris-ice mix 

1 Profile number 

2 OF = Outer-frontal, IF = Inner-frontal and SLF = Southern lateral-frontal complex 

3 DuG = dipping up-glacier; DdG = dipping down-glacier; Sh = subparallel to the 
moraine surface  
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5.5.2 Internal structure and sedimentology 

Sub-horizontal reflectors such as those seen in profile 7 are likely to indicate the interface 

between the surficial deposits of diamicton and boulder-gravel, and frozen sediment and 

ice at depth. This interpretation is also partially based on the field-observations of Østrem 

(1964), who excavated the southern-lateral complex, and found ice at 2.2, 2.5 and 2.8 m 

depth. Results of the radar surveys are in broad agreement with these findings. The 

estimated depth to the reflector, thus thickness of the upper surface layer (USL) in 

question ranges from between 2.25 (dmin) and 4.5 (dmax) metres in profile 7, and on the 

distal slope of profile 6 is located up to 6 m below the moraine surface (Fig. 5.5; Table 5.4). 

Karlén (1973) suggested that structurally, the moraines consist of imbricately stacked 

units of poorly sorted glacial sediment (‘drift sheets’). Given this scenario, it is reasonable 

to assume that up-glacier dipping reflectors to highlight bounding layers between 

stacked sediment units within the radar transects. Such bounding layers would represent 

a change in sedimentology related to wash/aeolian lag or cryoturbation surfaces (e.g. 

Etienne et al., 2003) where stacked sedimentary units are subject to surface processes prior 

to subsequent burial during a later glacier advance. However, such structures are not 

ubiquitous across the moraine complex, with some profiles conversely exhibiting down-

glacier dipping structures (profiles 2, 3 and 5).  

Table 5.4 Estimated thickness for the USL. The locations for dmin and dmax are presented 
for each profile in Fig. 5.3. 

 

Profile 1 provides a clear example of where sedimentary units have been deposited on 

the ice-proximal slope of an existing moraine ridge. Here, the main moraine ridge is 

massively structured and consists of a clast-rich intermediate diamicton sourced from a 

presumed combination of sub- and supraglacial transport pathways. Subsequent 

recession of the glacier margin forms terraces of massive mud with dispersed clasts on 

the ice-proximal slope of the outer ridge with clasts showing moderate angularity and 

Profile USL Thickness (ns) Velocity Estimated USL 
Thickness (m) 

7 
Tmin = 30 

0.15 m ns-1 
dmin = 2.25 

Tmax = 60 dmax = 4.50 

6 
Tmin = 30 

0.15 m ns-1 
dmin = 2.25 

Tmax = 80 dmax = 6.00 
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striae, indicating a mixed transport history. The distal-slope moraine hummocks are 

interpreted as ice-contact fans resulting from both gravitational flows and glacio-fluvial 

deposition (e.g. Lukas, 2005), with the position of individual coalescing hummocks 

controlled by former supraglacial debris concentrations and the distribution of 

supraglacial drainage systems (e.g. Krzyszkowski and Zieliński, 2002). The alternating 

gravelly and muddy lenses indicate changing energy-level related to a variable supply of 

water to the ice-contact feature. The largely angular, unstriated character of clasts within 

gravelly lenses highlight a potential supraglacial transport origin (% RA = 72) for debris 

within this ridge. The geochronology of the distal hummocks are unclear. 

However, ice-proximal deposition appears to be spatially limited across the ridge. The 

morpho- and lithostratigraphic relationships between sedimentary units suggest that at 

profile 3 the glacier partially overrode an existing ridge, resulting in two stacked units of 

clast-rich intermediate diamicton of difference ages, and a coarse bouldery drape on the 

distal slope of the landform. For the southern-lateral complex, the limited reflectors 

revealed by the 100 MHz radar survey are interpreted as evidence of a predominantly 

coarse and massive structural configuration. Nested ridges and similar dipping 

structures (e.g. profile 5) to those documented on the frontal-ridge are interpreted as 

evidence of overriding and distal deposition on the southern-lateral complex. Small 

moraine ridges such as the arcuate ridge visible in profile 5 can develop in response to 

the dumping, pushing or squeezing of material at the ice-margin (e.g. Price, 1970; Birne, 

1977; Boulton and Eyles, 1979; Bennett, 2001; Krüger et al., 2010), or the freeze on of 

sediment related to annual oscillations of the ice-front (Krüger, 1995). Unstriated and 

angular clast-rich sandy diamicton with linear granular lenses and sand-rich gravels 

within the moraine may indicate a supraglacial and glacio-fluvial origin related to the 

dumping of material from the ice-margin, with sorted linear lenses representing wash 

horizons. Pushing as a moraine forming mechanism is unlikely here as (1) dominate ice-

proximal sediments are dissimilar to those contained within the ridge; (2) coarse angular 

boulder facies have high shear strengths, thus are not particularly conducive to push 

moraine formation (Cook et al., 2013), and (3) granular lenses are linear in form and lack 

displacement structures associated with ice-marginal stress. 
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5.6. Discussion 

5.6.1 Development and chronology of moraines at Isfallsglaciären 

Conceptually, Isfallsglaciären is clearly distinguishable from alpine temperate glacial 

landsystems which produce distinct asymmetric ice-contact ramps resulting from the 

flowage of debris from supraglacial positions (Humlum, 1978; Boulton and Eyles, 1979; 

Röthlisberger and Schneebeli, 1979; Small, 1983; Lukas and Sass, 2011; Lukas et al., 2012). 

The morphological characteristics of the moraines share some similarity with multi-

crested ‘controlled’ ice-cored moraine complexes documented to occur in some high-

Arctic and Icelandic glacial landsystems (Evans, 2009; 2010; Ewertowski et al., 2012; 

Midgley et al., 2013). However, at Isfallsglaciären, debris supply and transport is likely to 

represent a constricting factor controlling moraine-formation. A key observation related 

to debris transport can be made from ground-level photography provided by Enqvist 

(1910; Fig. 5.8): the glacier surface appears to be relatively free of supraglacial debris 

leading to well-exposed subglacial sediments within the forefield (e.g. Pomeroy, 2014), 

however, debris can be seen emerging from subglacial and englacial debris pathways at 

the ice-front. Whilst Karlén (1973) disregarded the ground-level photography taken by 

Enquist, the structural characteristics (down-glacier dipping structures) lend support to 

the hypothesis of overtopping and distal deposition of debris. Assuming the ice-margin 

remains stable over multiple years, mixtures of debris and potentially distal snow may 

be distally incorporated into the structure of the moraine or a drape of debris maybe 

deposited over a pre-existing snowbank (e.g. Østrem, 1964; Fig. 5.9). However, given the 

limited supraglacial debris visible in the 1910 ground-level photography, the ice-margin 

would need to remain stationary over a considerable period of time for efficient moraine 

construction (Boulton and Eyles, 1979; Benn et al., 2003; Benn and Evans, 2010).  

Topographic influences on glacier geometry by pre-existing moraine ramparts is an 

important factor controlling styles of moraine development (e.g. Spedding and Evans, 

2002; Barr and Lovell, 2014). For the neighbouring Storglaciären, initial moraine 

formation c. 2500 yrs BP is suggested (Karlén 1973; Ackert 1984; Etienne et al., 2003). On 

the assumption that the Isfallsglaciären moraines formed analogously, the landforms are 

highly likely to have exerted a topographic influence on later glacier advance stages. 

Glacier advances between 2700 and 2000, 1900 and 1600, 1200 and 1000, and 700 and 200 

cal. years BP are suggested for Northern Sweden by Karlén and Kuylenstierna (1996) with 
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the valley glaciers attaining their largest Little Ice Age extent during the 17th and 18th 

centuries (e.g.  Karlén, 1988; Nesje, 2009). Further known ice-marginal positions 

demarcated by the previously discussed historical ground-level photography (e.g. 

Enqvist, 1910) and by measurements from 1915 provided by Hamberg et al. (1930) which 

highlight sustained overriding of the inner moraine ridge, over a five year period between 

1910 and 1915 (see Schytt, 1959 for a full review of historical glacier records). Whilst 

overriding is clearly important for the development of the inner-ridge (Fig. 5.9), 

differences in terms of the size and morphology of the north-lateral ridge are indicative 

of additional ice-marginal processes. The topographic prominence of this ridge is likely 

to have restricted the lateral extent of Isfallsglaciären during its various Neoglacial 

advances leading to proximal stacking of glacigenic debris (e.g. as argued for by Karlén, 

1973), with potential push-deformation mechanisms that have been applied to the high-

alpine moraine complexes of southern-Norway likely to be relevant here (e.g. Matthews 

and Shakesby, 1984; Shakesby et al., 1987; 2004; Matthews et al., 2014). Unfortunately, no 

geophysical data was obtained from this ridge to confirm this assertion.  

 

Fig. 5.8 (A) Ground-level photography taken by Enquist in 1910. (B) Interpretation of 
the ground-level photography showing debris run-out over the moraine distal slope of 
the inner-frontal ridge. 

It is clear that the Isfallsglaciären moraines relate to a range of topographically controlled 

ice-marginal processes that operated in a spatially variable manner along the former ice-

front. The moraines are, therefore, polygenetic as a result of the repeated reoccupation of 

ice and may be described as ‘palimpsest’ features. Unlike active temperate glacier 

margins where the sedimentary signature of proglacial deformation is well preserved, 

A B 
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the coarse nature of the deposits can be seen as a prohibitive factor, limiting registration 

of certain ice-marginal processes within the terrestrial geomorphological record.  

 

 

Fig. 5.9 Conceptual model for the development and chronology of moraines at 
Isfallsglaciären.  
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5.6.2 Reconciling existing geochronologies and structural data 

It is worth noting that the lichenometric trends identified by Karlén (1973) may be 

misleading in terms of their environmental and geomorphological significance. It is 

probable that the extensive coverage of ice-marginal snowbanks visible within historical 

photography would have either served to limit the growth of lichens on the lateral-frontal 

complex or alternatively kill off and remove any pre-existing lichens (Benedict, 1993). 

Recently the use of lichens to produce robust absolute dates has been criticised, with 

ages >160 years suggested to be spurious (Osborn et al., 2015).  However, to date, the only 

dating evidence relating to moraine chronologies for Isfallsglaciären are developed from 

lichenometric data provided by Karlén (1973).  

Hormes et al. (2004) presented radiocarbon dates from a small valley glacier c. 6 km north 

of Isfallsglaciären. Unlike many moraine systems in the Kebnekaise region, palaeosol 

were identified within the stratigraphy of these landforms. From the analysis of organic 

material, Hormes et al. (2004) advocated four periods of soil formation at Nipalsglaciären: 

7800–7580, 6300–4080, 2450–2000 and 1170–740 cal. yr BP. Similar responses of 

Isfallsglaciären during these periods are likely. However, it is acknowledged that the two 

glaciers will respond differently to environmental change due to differences in the aspect, 

hypsometry and topography. However, in the absence of robust dating controls at 

Isfallsglaciären, and issues related to censoring (e.g. Gibbons et al., 1984), moraine 

chronologies will remain uncertain. Further work could apply additional dating controls 

(e.g. Schmidt hammer dating, exposure dating), however, issues related to the recycling 

of glacigenic debris, and overriding of pre-existing materials may also result in 

problematic or inconclusive datasets. Future work to document structural characteristics 

of a wider range of Scandinavian moraines is a worthwhile endeavour, which may 

further assist understanding of their glaciological significance. In summary, it is 

suggested that current evidence used to construct Neoglacial moraine chronologies at the 

margins of glaciers in the Kebnekaise region are currently insufficient. A combination of 

moraine overriding, by the most recent glacier advance stages serve to further conflate 

the issue. Without new geochronological work, models of landform development should 

be considered sceptically at best. 
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5.6.3 The potential of high-resolution topographic data for future research 

The de-icing of ice-cored moraines have been documented in a range of glacial 

environments (Schomacker and Kjær, 2007; Irvine-Fynn et al., 2011; Tonkin et al., 2016; 

chapter 6). However, to the author’s knowledge no recent quantitative observations of 

de-icing have been made on the ‘Østrem’ type moraines studied here. The high-resolution 

dataset can, therefore, be used as a benchmark for future geomorphological studies on 

these moraines. Whilst the current debris cover may permit limited melting of 

incorporated ice, future climatic amelioration may promote further melting. 

5.7 Summary 

Similar to high-Arctic ice-cored moraines, buried ice is restricted to lateral zones of the 

moraine complex. The frontal moraines appear to be debris dominated and are 

predominantly composed of a clast-rich intermediate diamicton. The landforms are 

multicrested in form. It is unclear whether the ridges represent former ice-marginal 

positions resulting from late Holocene glacier readvances or the transmission of stress 

onto pre-existing moraine ridges (‘push deformation moraine’). 

GPR data appear to demarcate the spatial extent and depth at which ice within the 

southern-lateral complex is buried. Radar-depth conversions are in broad agreement with 

the reported findings of Østrem (1964). Given that previously destructive methods were 

used to investigate moraine structure, the GPR is shown to be a valuable tool for 

documenting the structure of glacial landforms. Nine main lithofacies are identified 

within the lateral-frontal moraine complex. Lateral facies are notably coarse and angular, 

whereas, frontal deposits are predominantly composed of massive clast-rich intermediate 

diamicton which exhibit evidence (e.g. striae, sub angularity) of active glacial transport. 

The topography appears to have exerted a strong control on the resulting landform 

structure with morpho- and stratigraphic relationships between sedimentary units 

indicative of synchronous proximal enlargement and overriding and stacking of 

sedimentary units at various position along the former ice-front. 

Further research to apply additional dating controls on the moraines (e.g. Schmidt 

Hammer exposure dating), and assessment of the internal structure of further ice-cored 

moraine complexes is recommended and would facilitate future interpretations of the 

geomorphological record in this region.  
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6.  Structural character, sedimentology and evolution of 

a high-Arctic lateral-frontal moraine: Austre 

Lovénbreen, Svalbard 
 

6.1 Introduction  

The morphology and character of ice-marginal landsystems developed at the margins of 

high-Arctic polythermal glaciers have been subject to considerable research (Boulton et 

al., 1999; Bennett et al., 2000; Sletten et al., 2001; Lyså and Lønne, 2001; Lukas et al., 2005; 

Lønne and Lyså, 2005; Ewertowski et al., 2012; Ewertowski, 2014). One motivation for 

such research is that contemporary glacial landsystems can be used as analogues for 

former Quaternary glaciation occurring at lower altitudes (Hambrey et al., 1997; Hambrey 

and Glasser, 2012). Specifically, some ice-marginal landforms and landsystems in high-

Arctic settings have been suggested to bear some similarity to relict Younger Dryas glacial 

landforms found in the British Isles (Hambrey et al., 1997; Graham and Midgley, 2000a; 

Graham and Hambrey, 2007). Specifically hummocky areas, which are considered by 

Evans (2009) to represent a type of ‘controlled’ moraine. However, the use of the high-

Arctic glaciers as an analogue for the British Younger Dryas has been debated (Lukas, 

2005a; Lukas, 2007; Graham et al., 2007). A key area of uncertainty remains in regards to 

the preservation potential of ice-cored landforms following the completion of de-icing 

(Evans, 2009). Despite this, it is clear that glacier structure exerts a significant influence in 

resulting geomorphological signature. This is especially true for high-Arctic valley 

glaciers.  

Evans (2009) promotes the term ‘controlled moraine’ as a descriptor for such ice-cored 

geomorphological systems. This term implies that englacial debris contained within the 

relict glacier ice will exert some influence on the resulting landform morphology, with 

landforms often exhibiting linearity related to incorporated debris structures within ice 

(Evans, 2009).  Furthermore, Midgley et al. (2013) suggested that buried relict glacier-ice 

may serve as a useful proxy for past glaciological conditions. Determining former 

glaciological conditions is especially pertinent for aiding understanding of the potential 
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response of high-Arctic glaciers (including polythermal surge type glaciers) to future 

climatic amelioration.  

This chapter examines the structure, sedimentology and geomorphology of lateral-frontal 

moraine developed at the high-Arctic glacier Austre Lovénbreen. The lateral-frontal 

moraine is investigated using a multi-proxy approach. The structure is investigated 

through the deployment of a 100 MHz ground-penetrating radar system (section 6.3.1). 

Glacier change is reported based off interpretation of historical aerial and ground-level 

photography (section 6.3.3). The results of a field sedimentological campaign are reported, 

providing data on debris transport at Austre Lovénbreen and for characterising the 

surficial debris drape of ice-cored landforms (sections 6.3.4 and 6.3.5). High-resolution 

topographic datasets documenting the evolution of the landform are reported (section 

6.3.6). It is worth noting that this chapter is partially based on the following published 

papers: 

Midgley, N.G., Cook, S.J, Graham, D.J. and Tonkin, T.N. 2013. Origin, evolution and 

dynamic context of a Neoglacial lateral–frontal moraine at Austre Lovénbreen, Svalbard. 

Geomorphology, 198: 96-106. 

Tonkin, T.N., Midgley, N.G., Cook, S.J. and Graham, D.J. 2016. Ice-cored moraine 

degradation mapped and quantified using an unmanned aerial vehicle: a case study from 

a polythermal glacier in Svalbard, Geomorphology, 158, 1-10. 

6.2 Study Site and site specific methods 

6.2.1 Site overview 

Austre Lovénbreen is a 5 km long valley glacier located in the Kongsfjorden on 

Spitsbergen, Svalbard (78°53′12″N 12°08′50″E; Fig. 6.1). The glaciers thermal regime 

was polythermal in 2010 based on interpretation of GPR profiles presented by Saintanoy 

et al. (2013). The extent of temperate ice appears to be exceptionally spatially limited with 

the glacier being close to entirely cold-based. Austre Lovénbreen has a strong negative 

mass balance, with Friedt et al. (2012) reporting that between 1962 and 1995 the glacier 

experienced a mean ablation rate of 0.43 ma-1, which increased to 0.70 ma-1 for the 1995-

2009 period. 

The glacier is composite, being fed by four main accumulation basins. The glacier is 

surrounded by mountainous terrain with peaks ranging from 583 m.a.sl (Slattofjellet) to 
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879 m.a.s.l (Nobilefjellet) at the head of the basin. The forefield is characterised by a large 

arcuate lateral-frontal moraine that is stream-breached at two locations, which currently 

act as the main outlets for glaciofluvial run-off. The moraines are inferred to demarcate 

the Neoglacial limit. The glacier has receded c. 1 km from this position. Within the 

Neoglacial limit several areas of mound-moraine complex (“hummocky moraine”) are 

identified. Fluted diamicton plains and linear accumulations of supraglacial debris (e.g. 

Hambrey et al., 1997) have developed as Austre Lovénbreen has receded from its 

Neoglacial position. The character of the glacier forefield is mapped at low resolution and 

briefly described in Hambrey et al. (1997) and additional field observations are 

documented in Graham (2002). The landform studied is present on the true-left of Austre 

Lovénbreen and is part of a semi-continuous lateral-frontal loop which encircles the 

glacier forefield, but is stream-breached at several locations.  

The lateral-frontal moraine is morphologically diverse. Up-glacier (lateral) sections of the 

landform are distinct in comparison to down-glacier (frontal) sections. Principally the up-

glacier sections appear as a series of linear and curvilinear ridges which are aligned 

transverse or oblique to the inferred direction of former ice-flow (Fig. 6.2; Fig. 6.3; Fig. 

6.4). The ridges are somewhat discontinuous in terms of their surface expression and 

range from c. 80-200 m in length. There is a clear cross-sectional landform asymmetry. 

Ice-distal slopes are steep, with material likely to be at the angle of repose, whereas ice-

proximal slopes are more gently sloping in form. Frontal sections of the landform contain 

a series of hummocks (Fig. 6.4a) which appear to be ‘perched’ on the moraine complex. 

However, as significant excavation was not undertaken, this structural observation 

cannot be confirmed. Areas of less well developed moraine hummocks are also observed 

on the lower ice-proximal slopes of lateral-sections of the landform. 

6.2.2 Site specific methods 

In this chapter a range of methods outlined in Chapter 2 are adopted for use. GPR surveys 

were conducted in Spring 2012 using the methods outlined in section 2.4 . Surveys were 

undertaken transverse to the orientation of the moraine, surveying from the ice-proximal 

to ice-distal slope. Surveys were undertaken uniformly across the moraine to optimise 

the coverage. Structural glaciological features were identified on historical aerial and 

ground level imagery using the methods outlined in Section 2.6. Sedimentological 

surveys were conducted in July 2014 using methods outline in section 2.5. Clast 
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macrofabric analysis was, however, not conducted at this site. Samples were taken semi-

randomly from excavations undertaken across the moraine system. UAV surveys were 

also conducted in July 2014. Details on these surveys are provided in Section 6.3.6. 

 

 

Fig. 6.1 Location of the landforms studied in this research. (A) The location of 
Kongsfjorden in relation to Svalbard. (B) The position of Austre Lovénbreen in 
relation to Ny-Ålesund and adjacent glaciers.   

(Fig. 6.2) 
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Fig. 6.2 Geomorphological interpretation of the Austre Lovénbreen lateral-frontal 
complex from 2014 topographic data with the approximate locations of hillshaded 
DEMs as shown Fig. 6.3 A and B.  
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Fig. 6.3 Hill-shaded DEM illustrating morphological characteristics of the lateral-
frontal complex. (a) Surface linearity. (b) Surface irregularity (‘hummocks’).  

A 

B 
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Fig. 6.4 Ground-level photograph illustrating morphological characteristics of the 
lateral-frontal complex. (A) Increasing topographic irregularity in frontal sections of 
the moraine complex. (B) Surface linearity in lateral sections of the landform.  

A 
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6.3 Results 

6.3.1 Internal structure 

100 MHz reflection surveys were completed on the true-left lateral-frontal moraine 

complex. All reflection surveys dissect the moraine transversely. The locations of the 

survey transects are shown in Fig. 6.5. The nine transects are shown in their 

topographically corrected format in Fig. 6.6. Interpretations of the internal structure are 

available in Fig. 6.7. 

Transects 1 to 6 all have clearly identifiable dipping reflectors. The predominant apparent 

angle of dip of reflectors at the moraine surface within these transects ranges between 41 

and 50°. Whilst still exhibiting dipping reflectors, transect 1 exhibits lower apparent dip 

angles typically within the 11 to 20° range. Signal attenuation progressively increases 

from a lateral to frontal position on the moraine complex. Profiles 8 and 9 show the 

highest signal attenuation which have restricted penetration, and therefore limits 

structural interpretation of near-surface features at depth within the landform. This 

increase in signal attenuation also coincides with increased abundance of hyperbola 

within the substrate. Transect 6 displays a moderate quantity of overlapping hyperbolae. 

Transects 7 to 9 appear to be more structurally homogenous with overlapping hyperbolae 

dominant throughout. Surface parallel reflectors are visible in transects 7, 8 and 9, but are 

absent on all other profiles. A synclinal arrangement of reflectors is also identified within 

the moraine. This is most clearly seen in transect 6 between approximately 60 and 150 m. 

Similar structure can been observed with less clarity on transects 1, 3, 4 and 5. 

6.3.2 Radar wave propagation velocities 

Radar propagation velocity was investigated using CMP analysis on each 100 MHz 

reflection transect. Example CMP plots are shown in Fig. 6.8. Here, the difference in radar 

wave propagation wave velocity is clearly delimited. On plot (a) between the c. 100 and 

330 ns two-way travel time velocities of 0.16-0.17 m ns-1 are detected. This is in contrast 

to plot (b) which exhibits velocities of 0.13-0.14 m ns-1 at depth. Within both plots, 

velocities in excess of 0.19 m ns-1 are detected in the first 50 ns time-window. Results from 

all surveys are displayed in Table 6.1. Radar wave propagation velocity decreases with 

distance down-moraine. Transects 1-5 all exhibit propagation velocities within the 0.16-

0.17 m ns-1 range. In contrast, transects 6 and 7 have a propagation velocity of 0.15 m ns-

1. The lowest propagation velocity was found in transect 9. This is located at the most 
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‘frontal’ position surveyed with the GPR. Here, the propagation velocity was recorded at 

0.13 to 0.14 m ns-1. 

 

Fig. 6.5 The locations of nine GPR reflection surveys on the eastern lateral-frontal 
moraine in relation to the glacier terminus.  

B 

A 
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Fig. 6.6 100 MHz Reflection surveys transversely dissecting the western lateral-frontal 
ridge. (A) Transects 1-3. (B) Transects 4-6. (C) Transects 7-9 (Fig. 4 in Midgley et al., 
2013).
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Fig. continued. 
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Fig. continued.  
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Fig. 6.7 Interpreted radar grams of the 9 100 MHz Reflection surveys (Fig. 4 in Midgley 
et al., 2013). The radargrams were qualitatively assessed. 
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Fig. continued. 

Table 6.1 Semblance analysis of CMP data obtained along 100 MHz radar transects 1-
9. Note the decline in CMP velocity with increasing distance along the moraine 
rampart (Table 1 in Midgley et al., 2013). 

Transect CMP velocity (m ns− 1) 
1 0.17 
2 0.16 & 0.17 
3 0.16 
4 0.17 
5 0.17, 0.16, 0.16, 0.17 & 0.17 
6 0.15 & 0.15 
7 0.15 
8 0.14 
9 0.14, 0.14 & 0.13 
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Fig. 6.8 Examples of CMP semblance analysis from (a) transect 2 and (b) transect 9 (Fig. 
3 in Midgley et al., 2013). Radar-wave velocity is not consistent across the study area, 
indicating variable subsurface characteristics.  
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6.3.3 Glacier change and moraine development: 1892-2003 AD 

6.3.3.1 Overview 

Historical evidence of glacier change in relation to the development of the Austre 

Lovénbreen lateral-frontal moraine is reported here. Evidence is supplemented with data 

from neighbouring Midtre Lovénbreen due to the glaciers similar glaciological contexts. 

6.3.3.2 1892 AD 

Description: Photographs and a photogrammetrically produced map of the termini of 

Austre, Midtre and Vestre Lovénbreen in 1892 are reported in Hamberg (1894). The map 

depicts debris-covered termini (‘moraine’) at these glaciers (Fig. 6.9A). Near vertical ice-

margins are documented in the area which is inferred to be the outer moraine-mound 

complex of Midtre Lovénbreen (Fig. 6.9B). Hambrey et al. (2005) estimate that the ice-cliff 

extends 20-35 m above the moraine. Debris bands are visible at the terminus of Midtre 

Lovénbreen. Material is streaked below these linear debris bands, with material clearly 

delimited at the base of the ice-cliff. 

Interpretation: These features are likely to represent debris-bearing thrusts located in 

frontal locations of Midtre Lovénbreen (Hambrey et al., 2005). The mapping of debris-

coverage (‘moraine’) at the terminus of Austre Lovénbreen is likely to imply that debris-

bearing thrusts were emerging from the terminus of Austre Lovénbreen at the Neoglacial 

maximum. The elevation of basal material and flowage from the steepened ice-margin is 

interpreted to contribute to outer moraine development at Austre Lovénbreen. The 

sedimentary signature of frontal deposits are likely to represent this structural control on 

debris transport. 
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Fig. 6.9 (A) Vestre, Midtre and Austre Lovénbreen in 1892 as mapped by Hamberg 
(1894). (B) Debris-bearing features emerging from the terminus and subsequently 
contributing to moraine construction at Midtre Lovénbreen (Fig 9. in Hambrey et al., 
2005). 
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6.3.3.3 1907 AD 

Description: Two images from August 29th 1907 are reported on (Fig. 6.10). These images 

are taken from Isachsen (1912) who reports on the expedition of the Prince Albert I of 

Monaco in 1907. The first image can be seen in Fig. 6.10a. This image was taken from the 

west. The terminus of Austre Lovénbreen can be seen in the middle distance. The glacier 

appears to be abutting the lateral-frontal complex. In places, the glacier may be 

topographically prominent over the ridge. Clear moraine distal snowbanks are also noted. 

Due to the low resolution and quality of this scanned image, no glacier structures are 

visible. The second image can be seen in Fig. 6.10b. This image was taken from the 

Bloomstrand, which is located to the north, on the adjacent shore of Kongsfjorden. Austre 

Lovénbreen is seen exhibiting a ‘domed’ piedmont glacier fronts. Similarly, due to the 

distance at which the glacier was photographed, and quality and resolution of the 

scanned image, no additional features are delimited. 

Interpretation: Moraines appear to be visible in these images, potentially implying initial 

moraine genesis by 1907. However it is unclear whether the moraines represent a 

supraglacial debris cover, ice-contact dump ridges (e.g. Graham, 2002) or an embryonic 

ice-cored ‘controlled’ ridge. These images are also interpreted as evidence that by 1907, 

Austre Lovénbreen remained close to its Neoglacial maximum.  
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Fig. 6.10 Early historical imagery and interpretation of Austre Lovénbreen in 1907 
taken from Isachsen (1912). (A) Austre Lovénbreen viewed from Bloomstrand.  (B) 
Austre Lovénbreen viewed from the west.   
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6.3.3.4 1918 AD 

Description: Although this is an image of Midtre Lovénbreen and not Austre Lovénbreen, 

there are similarities between the two glaciers and thus this image has been included for 

comparative purposes. The image is taken from ground-level, looking at Midtre 

Lovénbreen from Ny-Ålesund to the west (Fig. 6.11). In this photograph, Midtre 

Lovénbreen is seen abutting its true-left lateral-frontal moraine. The moraine, like much 

of the landscape visible in this photograph, is snow-covered. A steepened ice-cliff is 

visible at the terminus. Here, debris can be seen emerging, especially at more frontal 

positions along the terminus. In places, emerging debris appears to be organised into 

linear debris bands. 

Interpretation: The linear debris structures are interpreted to represent either primary 

stratification emerging at terminus or emerging thrust related features. Thrust related 

features emerging at the steepened terminus of Midtre Lovénbreen have been interpreted 

from earlier ground-level historical imagery (see Hambrey et al., 2005). Specifically, Fig. 

9 in Hambrey et al. (2005) contains a structural interpretation of a photograph dated to 

1892 (included in Hamberg, 1894) at the glacier terminus. In the 1918 photo, it is likely 

that emerging debris is subject to slumping at the terminus, and thus is contributing to 

moraine development. Here however, the scanned resolution of the image, and lack of 

scale impedes further analysis in relation to the structural glaciology of Midtre 

Lovénbreen and moraine development. One key interpretation is that Midtre Lovénbreen 

abutted the moraine rampart in 1918. A similar situation at Austre Lovénbreen is 

therefore highly likely given its similar size, geometry and thermal properties.  
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Fig. 6.11 Neighbouring Midtre Lovénbreen in 1918 as viewed from Ny-Ålesund. Note 
the steep glacier terminus, with emerging debris structures visible above the 
Neoglacial moraine rampart.  
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6.3.3.5 1936 AD 

Description: An oblique aerial image was acquired in 1936 by the Norwegian Polar 

Institute (aerial photograph S36 1553). The cropped image and interpretation can be seen 

in Fig. 6.12. In this image, Austre Lovénbreen appears to have visibly down wasted since 

1907. The terminus has been subject to limited recession when compared to the 1907 

images. Limited structural characteristics can be observed on the lower 1 km of the 

terminus. Arcuate and linear planar structures are visible across the terminus. These 

features are highly visible on the true-left of the glacier. In addition to the mapped arcuate 

planar structures are more discrete linear to arcuate debris concentrations, which are 

noted on the true-left of the glacier. Longitudinal planar structures are visible across the 

terminus and appear to terminate into areas of continuous debris coverage down-glacier. 

The true-right of the glacier appears to show an irregularity, which can be described as a 

surface ‘bulge’. This irregularity is also evident when tracing longitudinal planar 

structures to the glacier terminus. In some locations, the linearity of these features is 

distorted by the surface ‘bulge’. Shadowing on the lateral-frontal complex delimits the 

location of an ice-proximal slope on this landform. This landform appears to contain 

several well defined ridges. Up-glacier, the distinction between supraglacial debris and 

the landform is less readily made.  

Interpretation: Arcuate planar structures are interpreted as primary stratification resulting 

from layering of snow, and debris layers in the accumulation areas. The arcuate character 

of these features is likely to represent compression within individual flow units. 

Longitudinal planar structures are interpreted as longitudinal foliation occurring where 

primary stratification has been folded into ice-parallel linear bands. The positions of these 

structures is interpreted to signify three major flow units on this glacier. The termination 

of longitudinal foliation implies that the emergence of these structures is important with 

regard to the delivery of sediment to the glacier surface. The surface irregularity is highly 

indicative of surge-type behaviour within a flow unit on the true-left of the glacier. Surge-

type behaviour is widely reported to occur on glaciers in Svalbard (e.g. Hagen et al., 1993; 

Jiskoot et al., 2000; Murray et al., 2000). The potential for surge-type behaviour at adjacent 

glaciers on Brøggerhalvøya has been discussed (e.g. Hagen et al., 1993; Hansen, 2003; 

Glasser et al., 2004; Hambrey et al., 2005).  However, the classification of Midtre 
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Lovénbreen as a surge-type glacier has been disputed (e.g. Jiskoot et al., 2000; King et al., 

2008).  

Debris-bearing fractures are interpreted as englacial thrust features. Such features are 

reported to occur in high-Arctic valley glaciers. The abundance and appearance of the 

debris-bearing fractures in this imagery may represent recent propagation onto the 

glacier surface following significant down-wastage of the terminus. Down-wastage of the 

terminus is also visible, as shadowing allows for a developing ice-proximal slope on the 

lateral-frontal complex to be delimited. This is interpreted to signify differential ablation 

of buried ice, with regard to debris-coverage. 
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Fig. 6.12 Interpretation of Austre Lovénbreen in 1936 from an oblique aerial image 
obtained from the Norwegian Polar Institute (image S36 1553). This diagram appears 
in Midgley et al. (2013) as Fig. 6. (A) Original image. (B) Interpretation.  
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6.3.3.6 1948 AD 

Description: This image was obtained by the Norwegian Polar Institute on September 9th 

1948 (Fig. 6.13). This is a single aerial image, therefore is effected by camera distortion. 

The scale will vary across the image. Similar structural characteristics to the 1936 imagery 

are noted. Specifically, four main structures are observed: (1) arcuate planar structures; 

(2) longitudinal planar structures; (3) debris-bearing fractures; and (4) supraglacial debris 

coverage. Shading from adjacent mountains (e.g. Slattofjellet) limits structural and 

geomorphological description in the area of interest. A key observation is the recession 

of the glacier terminus from the lateral-frontal complex. A series of proglacial drainage 

channels appear to have developed between the moraines ice-proximal slope and the 

glacier margin. In more lateral positions, Austre Lovénbreen still appears to abut its true-

left moraine rampart. 

Interpretation: Similar to the 1936 imagery, the four main glaciological structures are 

interpreted as: (1) primary stratification; (2) longitudinal foliation; (3) englacial thrusts; 

(4) and supraglacial debris. In relation to the 1936 image, the ‘thrust’ features appear to 

have migrated down-glacier. Due to the oblique nature of the 1936 image, and lack of 

orthorectification on the 1948 image the displacement of these features over the 12 years 

is unknown, however, a combination of transport via glacier flow and exhumation 

related to down-wastage of the glacier terminus is likely to have contributed to the 

modification of these features. This image also highlights that by 1948, recession of Austre 

Lovénbreen was significant enough for the lateral-frontal complex and glacier margin to 

appear as separate entities. However, it is likely that buried glacier-ice appeared 

discontinuously through the deglaciating forefield at this time period. Differential 

ablation resulting from debris coverage is inferred to be important here with regard to 

the stabilisation of ice-cored ‘controlled’ ridge in the glacier forefield.  
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Fig. 6.13 Interpretation of Austre Lovénbreen in 1948 from aerial imagery obtained 
from the Norwegian Polar Institute (image S48 752). (A) Original image. (B) 
Interpretation.  
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6.3.3.7 2003 AD 

Description: This image is derived from a series of orthorectified NERC ARSF aerial 

images from August 2003 (Fig. 6.14). The glacier terminus is clearly visible c. 1km up 

valley from its Neoglacial Maximum position. The lateral-frontal moraine complex is 

clearly developed in the glacier forefield and appears to be a detached unit from the 

glacier margin. The quality of this imagery has permitted detailed structural 

interpretation. The non-genetic structures identified in previous image sets are visible 

here. These include arcuate and longitudinal planar structures. The quality of this 

imagery allows for two types of fracture to be observed: debris-bearing fractures which 

are only visible on the true-right of the glacier and fractures free from debris which are 

distributed across the entire glacier margin. Fractures are highly abundant on the true-

left of the glacier. 

Interpretation: Similar to previous interpretations, longitudinal planar structures are likely 

to represent longitudinal foliation, resulting from folding and lateral compression of 

primary stratification between flow units. On this basis, the two bands of well-defined 

longitudinal foliation are interpreted to indicate the boundaries between three major flow 

units. The concentration of supraglacial debris into these flow unit boundaries is likely to 

be a key control on proglacial linear debris stripes (e.g. Hambrey and Glasser, 2003), 

which appear to have developed on deglaciated terrain. Folded arcuate planar structure 

between areas of longitudinal foliation are interpreted as primary stratification which 

have been subject to lateral compression within their various flow units. Fractures are 

interpreted to represent crevasses occurring at the terminus. These could represent both 

open and closed crevasses, which represent stress within the glacier. A key aspect in 

relation to the development of the lateral-frontal moraine is that the moraine is now 

visible as a discrete unit, which from plan view appears to be detached from the glacier 

terminus.   
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Fig. 6.14 Interpretation of Austre Lovénbreen in 2003 from orthorectified aerial 
imagery obtained by the NERC ARSF. (a) Original image. (b) Interpretation.  
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6.3.4 Lithofacies descriptions 

6.3.4.1 Overview  

Summaries of the key lithofacies on the lateral-frontal moraine are presented. Four facies 

were assessed: clast-rich sandy diamicton (n = 12), surface angular gravel (n = 9), clast-

rich muddy diamicton (n = 2) and buried ice (n = 1). Table 6.2 contains a summary of 

sample locations and the facies logged at each site. The sample locations are displayed in 

Fig. 6.15 and sedimentary logs are presented in Fig. 6.16, highlighting key sedimentary 

exposures. Summaries of the results are displayed in tabular format (Tables 6.3-6.5). 

6.3.4.2 Surface angular gravel (n = 9)  

Surface facies of angular gravel were found at nine sample sites. The gravels were 

typically devoid of granular material; however three sub-types of gravel are 

distinguished. The most abundant is a coarse clast-supported gravel devoid of granular 

(or finer) material. An additional facies of clast-supported gravel with high (86 %) sand, 

and low mud (14 %) content was assessed at WP007 (Fig. 6.15). WP020 was 

distinguishable from other coarse surface gravels by its lack of material within the >2 mm 

fraction, but abundance of granular sized clasts. Surficial deposits of gravel were typically 

10-20 cm in depth with excavations at five sites with angular gravel extensive enough to 

reveal underlying diamicton facies (Fig. 6.15). However, the thickness of this surficial 

deposit appears to be spatially variable. For example, an 80 cm excavation at WP020 

revealed a single facies of clast-supported gravel. The roundness characteristics of this 

facies are variable. RA indices for sampled clasts typically fall within the 92-100 range. 

The gravel sampled at WP007 has an anonymously low % RA (56) in comparison to it 

other surficial gravels.  At WP028 (Fig. 6.15), a lobate surface feature was assessed for its 

sedimentology. The feature contained muddy gravel. Clasts were almost exclusively 

angular or very angular (% RA = 90) and exhibited a moderate C40 index of 48. The <2mm 

fraction varied with surface facies containing 96 % mud, whereas subsurface material 

contained 98% mud. The mean class for both matrix samples was medium silt. 

6.3.4.3 Clast-rich sandy diamicton (n = 12) 

Clast-rich sandy diamicton was the most abundant lithofacies sampled on the lateral-

frontal moraine ridge and was assessed at 11 locations (Table 6.2; Fig. 6.15) across the 

lateral-frontal complex. Excavations at WP002 and WP027 contain multiple inclined units 
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of matrix supported clast-rich sandy diamicton (Fig. 6.15). At WP002, upper and lower 

facies were distinguished by their respective colourations. At WP027, an up glacier 

dipping facies of angular gravel divides the upper and lower diamicton facies (Fig. 6.15). 

The clast form properties show high variability between facies. Clasts extracted from 

frontal excavations (e.g. WP027; upper diamicton) exhibit low angularity (% RA = 34), are 

frequently striated (26 %), and are typically more blocky in terms of their morphology (% 

C40 = 30). This is of stark contrast to more lateral sites (e.g. WP002; upper diamicton) which 

are predominantly angular (% RA = 100), less blocky (C40 = 88) and contain low 

proportion of striated clasts (2 %). 

6.3.4.4 Clast-rich muddy diamicton (n = 2) 

Clast-rich muddy diamicton was assessed at WP003 and WP015. The exposure at WP003 

was dug on a small hummock located on a more frontal position on the moraine complex 

(Fig. 6.15). The diamicton was found to be matrix supported and structurally massive. 

Clasts sampled from this facies were dominantly angular (% RA = 62) and found to exhibit 

a moderate C40 index (C40 = 52). A small proportion of clasts were also found to exhibit 

striae (4%). Analysis of the >2mm fraction found the matrix to contain 33% sand, and 67% 

mud by volume. At WP015 a matrix supported clast rich muddy diamicton is found 

under a surface deposit of sandy gravel. Clasts within this diamicton were found to 

exhibit high angularity (% RA = 92) and a moderate C40 index of 60. One clast (2% of the 

sample) was found to exhibit striae.  
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Table 6.2 Summary table of assessed lithofacies on the Austre Lovénbreen true-left 
lateral-frontal moraine complex and their structural configuration 

Waypoint Coordinates* Lithofacies** 

WP001 437797; 
8759320 Clast-rich sandy diamicton overlain by gravel unit  

WP002 437803; 
8759432 

Gravel overlying two facies of clast-rich sandy diamicton 
and sampled ice 

WP003 438525; 
8760181 Clast-rich muddy diamicton 

WP004 438479; 
8760104 Clast-rich sandy diamicton 

WP005 438460; 
8760070 Gravel overlying clast-rich sandy diamicton 

WP006 438295; 
8760043 Clast-rich sandy diamicton 

WP007 438268; 
8759920 Sandy Gravel 

WP008 438071; 
8759819 Clast-rich sandy diamicton 

WP009 438076; 
8759746 Clast-rich sandy diamicton 

WP010 437965; 
8759731 Gravel overlying Clast-rich sandy diamicton 

WP011 438048; 
8759658 Clast-rich sandy diamicton 

WP012 438072; 
8759523 Clast-rich sandy diamicton 

WP013 437878; 
8759567 Gravel 

WP014 437793; 
8759519 Gravel 

WP015 437878; 
8759453 Sandy Gravel overlying clast-rich muddy diamicton 

WP016 437822; 
8759178 Gravel 

WP020 437824; 
8759462 Gravel 

WP027 438673; 
8760084 

Inclined units of clast-rich sandy diamicton (x2) and 
gravel 

WP028 N/A Muddy Gravel 

* Presented using WGS 84 UTM Grid 33x 
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Fig. 6.15 Locations of excavations (numbered) across the lateral-frontal moraine with 
the position of the glacier terminus is noted (AL). Hillshaded DEM extracted from 
aerial imagery acquired in 2003 by the UK Natural Environment Research Council 
(NERC) Airborne Research and Survey Facility (ARSF) are provided courtesy of NERC 
via the NERC Earth Observation Data Centre (NEODC).  
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Fig. 6.16 Summary of the structural relationships between lithofacies on the Austre 
Lovénbreen lateral-frontal moraine complex. Scale increments in metres. 
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Table 6.3 Summary of clast-rich sandy diamicton facies 

ID %  RA % C40 % S Matrix (<2mm Fraction) 
% Sand % Mud 

WP001 98 70 0 74 26 
WP002-U 100 88 2 81 19 
WP002-L 94 76 2 -- -- 
WP004 50 40 2 67 33 
WP005 80 42 0 83 17 
WP006 70 38 4 79 21 
WP008 84 60 0 72 28 
WP009 46 52 4 72 27 
WP010 72 34 0 78 22 
WP011 66 46 2 71 29 
WP012 96 46 0 77 32 
WP027-U 34 30 26 87 13 
WP027-L 44 16 20 67 33 

 

Table 6.4 Summary of surface gravel facies 

ID Character %  RA % C40 % S Matrix (<2mm Fraction) 
% Sand % Mud 

WP001 Coarse 100 76 0 -- -- 
WP002 Coarse 100 68 0 -- -- 
WP005 Coarse 78 60 0 -- -- 
WP010 Coarse 100 56 0 -- -- 
WP013 Coarse 98 76 0 -- -- 
WP014 Coarse 96 64 0 -- -- 
WP016 Coarse 92 68 0 -- -- 
WP020 Granular matrix 96 74 0 -- -- 
WP007 With sand  56 44 6 86 14 
WP015 Sandy Gravel * * * 90 10 
WP028 Muddy gravel 90 48 0 2-4 96-98 

* Clast form data missing  

Table 6.5 Summary of clast-rich muddy diamicton facies 

ID %  RA % C40 % S Matrix (<2mm Fraction) 
% Sand % Mud 

WP015 92 60 2 14 86 
WP003 62 52 4 33 67 
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6.3.4.5 Buried-ice (n = 1) 

Buried ice was assessed at WP002, where an excavation revealed it to be present at a 

depth of 160 cm (Fig. 6.16). The bottom 0.3 m of diamicton covering the buried ice was 

found to be frozen, thus required significant effort to excavate through. Clast form data 

and a visual interpretation of the sampled ice is available in Fig. 6.17. The ice was found 

to contain 5% debris by volume. The debris consisted of dispersed silt aggregates within 

the >2 mm fraction. Coarser granular and pebble size debris were also present within the 

sampled ice. A total of 43 clasts were extracted and assessed for roundness. The material 

was predominantly angular in character (% RA = 95.3) with the modal roundness 

category identified as angular (% A = 58; Fig. 6.17). Of the 43 sampled clasts, 17 were large 

enough (pebble sized or greater) to be measured for shape. The C40 index for this sample 

was 100. Of the sampled clasts measured for shape, the most common shape classes were 

very-bladed and very-platy which account for 35 % and 29 % of the sample respectively. 

Debris appears to be crudely concentrated in layers (Fig. 6.17). The ice sample also 

contained some bubbles. These bubbles were >1 mm in diameter.  

 

Fig. 6.17 Physical properties of the ice sample extracted from the Austre Lovénbreen 
true-left lateral-frontal moraine. (A) Shape and roundness of clasts removed from the 
ice. (B) Photograph and interpretation of sampled ice.  
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6.3.5 Clast-form analysis 

Control samples: The control samples were taken from extraglacial, glacio-fluvial, and 

subglacial locations. Three glacio-fluvial samples were gathered. One from the west 

stream channel located within the glacier-forefield, c. 200 m from the current glacier 

terminus (FLU1). The additional two were taken outside the Neoglacial moraine complex, 

from an abandoned braided stream channel on the sandur (FLU2 and FLU3). The glacio-

fluvial samples exhibit low-moderate RA (14-36) and C40 values (22-44). Sandur derived 

glacio-fluvial controls (FLU1 and FLU2) have both higher angularity and shape indices 

(% RA = 20-36; % C40 = 34-44). All glacio-fluvial samples were not striated. Subglacial 

control samples (SUB1 and SUB2) were taken from a stream dissected, and recently 

deglaciated diamicton plain located <50 m from the current glacier terminus. The samples 

have both low RA (20-22) and C40 (18-24) indices. The samples form a cluster, which 

partially overlaps with glaciofluvial control samples. However, a distinguishable 

characteristic of these subglacial controls is the frequency of clasts within the sample 

populations that carry striae. A total of 22 % of clasts within SUB1 exhibited striae. 

Similarly, 32 % of clasts within the sample SUB2 carried striae. Extraglacial debris was 

sourced from scree deposits located adjacent to the left-lateral-frontal complex (EXG1, 

EXG2 and EXG3). Extraglacial debris show contrasting clast-form characteristics to other 

reference samples. Samples were highly angular (% RA = 92-98) and had moderate-high 

shape indices (% C40 = 68-92).  

Moraine samples:  These samples relate to the lithofacies assessed in section 6.3.4. Within 

Fig. 6.18 moraine samples are split in to three main categories: ice (n = 1), diamicton (n = 

15) and gravel (n = 11). Moraine samples form a cluster between extraglacial control 

populutions (high RA and C40 indices), and subglacial and glaciofluvial control 

populutions (low-moderate RA and C40 indices). Further visualisation of clast form 

parameters was investigated by plotting the % RA against the % striae within each clast 

sample (Fig. 6.19). Here, further discrimination is provided. Notably, samples WP027U 

and WP027L show similar, albeit slightly higher % RA (34-44), and comparable levels of 

striae to subglacial control samples (20-26). With the exception of WP007 (% RA = 56), 

gravels are generally more angular in character (% RA = 78-100) than diamicton samples. 

Gravel samples also show a tendency to exhibit less ‘blocky’ shape characteristics (48-90; 

excluding WP007). However, diamicton samples show wide variability in terms of both 
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roundness (% RA = 34-100), and shape (% C40 = 16-88) indices. Diamicton samples appear 

to exhibit a roundness gradient down-moraine (Fig. 6.19). 

Kolmogorov Smirnov two-tailed test: In four locations clasts were sampled from diamicton 

facies, which were overlain by a coarse angular gravel facies devoid of fine material (see 

section 6.3.4). To aid interpretation of the surficial gravel facies, and elucidate its likely 

origin, a two-tailed Kolmogorov Smirnov test was employed to compare the roundness 

cumulative distribution functions of samples in relation to their underlying diamicton 

facies. The four sample sites tested were: WP001, WP002, WP005, WP010; each of which 

comprise two samples of n = 50 from an upper coarse angular gravel facies and 

underlying diamicton facies. When tested, the two tailed Kolmogorov Smirnov failed to 

distinguish between the CDF of samples WP001, WP002 and WP005 at the 99 % 

confidence interval (Table 6.6). The dmax for these samples is 0.22, 0.12, and 0.2, 

respectively. WP001, and WP002 have identical % RA indices (100). At WP005 the RA 

index differs by 2% (% RA = 78 and 80) (Table 6.6). However, for the two clast samples at 

WP010, the two-tailed Kolmogorov Smirnov only failed to distinguish between the 

roundness CDF at the 95% confidence level. Unlike at other sample sites, the overlying 

gravel at WP010 (% RA = 100) is more angular than the underlying diamicton facies (% 

RA = 72). 
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Fig. 6.18 Clast form plots from Austre Lovénbreen. (a) RA/C40 plot. (b) The % RA 
plotted against the % striated discriminating samples obtained from two locations: 
subglacial controls and two samples from the frontal zone of the moraine.  
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Table 6.6 Statistical differences between the CDF of four sets of two clast samples 
taken from a coarse surficial angular drape and an underlying diamicton facies. 

Exposure CDF dmax Significance % RA 
Gravel Diamicton 

WP001 0.22 P > 0.01 100 100 
WP002 0.12 P > 0.01 100 100 
WP005 0.02 P > 0.01 78 80 
WP010 0.32 P > 0.05 100 72 

 

 

Fig. 6.19 Clast roundness on the lateral-frontal complex. Note the increase in SA-R 
clasts towards frontal sections of the landform. Geomorphology as mapped in section 
6.2. 
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6.3.6 Moraine evolution: 2003-2014 

6.3.6.1 Data acquisition 

Five images from 2003 were obtained for DEM production. These images were collected 

by the UK Natural Environment Research Council (NERC) Airborne Research and 

Survey Facility (ARSF) on August 9th 2003 from a Dornier 228 aircraft. In 2014, 10 UAV 

sorties were flown over a two day survey period (15th and 16th July 2014). The total area 

covered by this survey was c. 676,000 m2. The moraine was partially snow-covered when 

the surveys were undertaken. A DJI S800 multi-rotor UAV equipped with an 18 MP 

Canon EOS-M consumer-grade digital camera was used for image acquisition during the 

2014 survey. Further details on the survey setup and validation against a total station 

derived survey are documented in Tonkin et al. (2014). A total of 1,856 images from this 

survey were used for DEM production. 

Ground control was applied to both datasets using a Leica 1200 dGPS. For the 2003 

imagery, three ground control points were used to georeference the point cloud and to 

assign it to the ‘real-world’ UTM 33x coordinate system. Ground-control was applied 

using surveyed boulders which were visible on the original scanned image prints and 

also readily identified in the field. As the glacier forefield could potentially be 

geomorphologically unstable (e.g. Irvine-Fynn et al., 2011), control points were located 

outside the Neoglacial limit. Control points were corrected against RiNEX data obtained 

from Ny-Ålesund (see http://www.epncb.oma.be/_networkdata/). The 2014 imagery was 

georeferenced using 27 ground control-points. Ground control-points were placed on 

snow-free areas of the moraine.  Illuminous A3 size paper targets are used to ensure 

adequate visibility on the resulting low-altitude aerial imagery. 

6.3.6.2 Image processing 

Image processing was conducted in Agisoft Photoscan (v. 1.1.5). A total of 2,035 tie-points 

were automatically identified on the five images from 2003. For the 2014 imagery, 

processing was split between two chunks that were merged to form a single DEM of the 

lateral-frontal moraine. Photoscan identified a total of 5,660,015 tie points from the 1,856 

images with the resulting DEM produced from a dense point cloud of 106,484,427 points.  

Both SfM DEMs were produced at 0.5 m per pixel resolution. The periphery of the 2014 

DEM was constructed from low (two or less) image overlap, so was considered less 
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reliable and was therefore removed. On the 2003 DEM, moraine distal slopes were subject 

to shading, resulting in excessively interpolated elevation data. Zones identified with 

these errors were removed prior to analysis. 

6.3.6.3 Error assessment 

Measurement of error on the DEMs was analysed using a minimal level of detection 

(minLOD) as a threshold for observable change whereby changes below this threshold 

were considered potentially erroneous and discarded. Error (dz) was calculated using 

RMSE (root mean squared error) as a measure of vertical difference between the datasets. 

Validation of the 2003 DEM was achieved through the use of spot heights from the 2003 

LiDAR survey conducted by NERC, simultaneously with the aerial image collection (e.g. 

Arnold et al., 2006). The NERC LiDAR survey produced a vertical RMSE of 0.888 m (n = 

768,296; σ = 0.812 m). As the two datasets were obtained simultaneously, it was assumed 

that the vertical difference is limited. It is acknowledged that the LiDAR dataset will also 

contain errors, but for this purpose, serves as an independent dataset for validating the 

2003 DEM. For the 2014 DEM, the error analysis was calculated from 12 dGPS surveyed 

check points. Sub-decimetre vertical error was reported for the 2014 DEM (RMSE = 0.048 

m; n = 12). 

6.3.6.4 DEM differencing and minimum levels of detection 

DEM differencing was conducted using the GCD (Geomorphologic Change Detection, 

ver. 6) plugin of Wheaton et al., (2010) in ArcGIS 10.2.1. DEM differencing is conducted 

by subtracting concurrent raster grid cells from each other. The GCD plugin facilitates 

this process by allowing for more robust error assessment through the use of minLOD, 

which were calculated using a propagated error value on error assessments undertaken 

on both topographic surfaces (e.g. Braslington et al., 2003). The minLOD technique 

assumes error within datasets are spatially uniform, and discards changes below this 

threshold. For the 2003-2014 time period vertical differences under 0.89 m were regarded 

as potentially erroneous. Three zones (Z1, Z2 and Z3) were clipped from the differenced 

DEM and used to report on spatial variations in geomorphological change across the 

landform (Fig. 6.20). 
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6.3.6.5 Results 

A total area of 461,429 m2 was assessed for surface elevation change. Surface change is 

displayed in Fig. 6.20A. The lateral-frontal moraine shows a level of geomorphological 

stability, with change detected in just over half of the study area (52%; 238,476 m2).  

Ninety-six percent of detected change was related to surface lowering. The total volume 

difference for the study area is reported as -377,490 ± 201,292 m3. The maximum rate of 

surface lowering is recorded at -5.14 m over the study period (Fig. 6.20B). The maximum 

average rate of surface lowering, therefore, did not exceed 0.47 ma-1 on the lateral-frontal 

complex between 2003 and 2014. This is based on a 131 month (August 2003 – July 2014) 

gap between surveys.  

A clear spatial trend dominates the landform. The lateral up-glacier sections are subject 

to higher rates of surface lowering. Average net surface change in Z1 is reported at -2.56 

± 0.89 m for the study period. Nearly all grid cells in this area were observed outside the 

minimum level of detection. Z2 and Z3, which are located in more frontal positions show 

diminishing rates of detectable change (92.2 and 19.9 % of each study area respectively) 

and lower rates of surface change (-1.49 ± 0.89 m and -0.52 ± 0.89 m respectively). Profiles 

1, 2, and 3 in Fig. 6.21 also demonstrate reduced surface lowering in frontal positions. On 

profile 1, surface lowering is clearly evident on the moraine ridge crest, but less extensive 

on the ice-proximal and distal slopes. Variability on the ice distal slope (340-380 m along 

profile 1) relate to poorly resolved topography on the 2003 SfM DEM. Profiles 2 and 3 

show limited geomorphological change with a significant proportion of change falling 

close to or below the minLOD (Fig. 6.21). Detectable change on the outwash-plain is 

limited. Areas of deposition principally occur on moraine distal slopes and in proximity 

to glaciofluvial drainage systems. The average depth of deposition across the study area 

is 1.42 ± 0.89 m. However, the deposition is extremely spatially and volumetrically limited, 

only accounting for the movement of 17,952 ± 11,267 m3 of material (4% of the area of 

detectable change) opposed to 413,394 ± 212,243 m3 of change associated with surface 

lowering across the study area. It should be noted that c. 11 % of the study area was 

covered by exceptionally late-lying snow, which was typically located in sheltered areas 

between pronounced ridges, but was snow free in 2003. Values presented here therefore 

represent a minimum estimate for moraine surface lowering over the study period. 
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Fig. 6.20 (A) DEM of differences for 2003-2014. Contour data are derived from the 2014 
DEM and are displayed in metres. The locations of three additional zones of analysis 
(Z1, Z2 and Z3) are shown. (B) Surface change from 2003 to 2014 in relation to area and 
volume. Red represents surface lowering, gray represents thresholded change (error) 
and blue represents surface gain. (C) Average net surface change from 2003 to 2014 for 
areas Z1, Z2 and Z3. This appears as Fig. 3 in Tonkin et al. (2016). 
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Fig. 6.21 Surface evolution over the 11-year study period demonstrated by three 
topographic profiles. (A) The locations of the three profiles. (B) Surface change along 
profiles 1-3 between 2003 and 2014. This appears as Fig. 4 in Tonkin et al. (2016).  
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6.4 Discussion 

6.4.1 Structural character and origin of buried-ice 

The origin of buried-ice structures within the Austre Lovénbreen true-left lateral moraine 

was considered in Midgley et al. (2013). Three potential origins were discussed with 

dipping structures representing: (1) primary stratification; (2) relict debris laden englacial 

thrusts planes; or (3) basal-ice structures (Midgley et al., 2013). Midgley et al. (2013) 

favoured the basal ice origin for dipping ice structures identified within the lateral-frontal 

moraine. Despite the presence of debris-bearing thrusts within the 1936 aerial imagery, 

the features presented within the radar profiles are clearly dissimilar to structures 

reported from radar survey on other Svalbard glaciers. For example, Murray and Booth 

(2010) used ground-penetrating radar to image englacial-structures within the surge-type 

glacier Kongsvegen. When imaged at 100 MHz, these structures appeared as clearly 

spaced (~20 m or more) radar reflectors. Similar to the geometry of the buried ice-

structures, thrusts imaged by Murray and Booth (2010) display asymptotic, dipping 

profiles (~37–52o). However, the thrusts imaged at Kongsvegen lack the dense layering 

associated with reflectors present within the Austre Lovénbreen moraines. Due to the 

dissimilarity of the buried-ice structures to features documented at other high-Arctic sites, 

an englacial thrust origin of these features is unlikely. 

In light of the available evidence, Midgley et al. (2013) considered buried-ice structures to 

originate as debris-laden basal ice. Regelation, supercooling and freeze-on were cited as 

potential processes permitting the development of stacked debris-rich layers within 

buried-ice. Furthermore, Midgley et al. (2013) highlighted that physical conditions such 

as the subglacial topography (e.g. the overdeepening identified by Midgley et al. (2013) 

from the glacier radar profile of Saintainoy et al. (2013)), potential surge-type behaviour 

(e.g. the surface ‘bulge’ seen in the 1936 imagery), and the glacier margin could all have 

acted to promote high longitudinal compression within the glacier (Midgley et al., 2013). 

The sedimentary signature of basal ice has previously been investigated (e.g. Adam and 

Knight, 2003; Cook et al., 2011). Basal ice facies have been associated with high 

proportions of sub-angular clasts and a tendency for more equidimensional shape 

characteristics (e.g. low C40 indices) (Adam and Knight, 2003). Specifically, the 

sedimentology from basal ice (and of melted out ice-marginal sediments) formed by both 

glaciohydraulic supercooling and regelation were investigated by Cook et al. (2011). Here, 
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regardless of the basal ice origin, entrained clasts exhibited low RA and C40 indices. This 

is of stark contrast to the highly angular and blocky parameters of clasts extracted from 

the Austre Lovénbreen ice sample.  

Evans (2009) highlighted that englacial debris transport is important for the development 

of controlled moraine formation. Passive debris transport from the transfer of debris in 

primary stratification and the entrainment of basal debris at thermal boundaries 

represent important inputs for controlling the presence of englacial debris within a glacier, 

and therefore the formation of controlled moraine (Evans, 2009). Since the publication of 

Midgley et al. (2013) field sampling has provided new data which may allow for basal-ice 

hypothesis to be discounted (Table 6.7). However, it should be acknowledged that 

rejecting the favoured hypothesis of Midgley et al. (2013) would rest on the analysis of 

one ice-sample taken from WP002. Clasts from this sample were mostly angular or very 

angular in character (RA = 95%), which can be interpreted as evidence of passive 

supraglacial or englacial debris transport rather than basal debris transport and 

subsequent entrainment. Due to logistical constraints (e.g. limited time available for 

excavation and sampling) and safety concerns (polar bears and pit collapse), only one ice-

sample was obtained. The ice from this sample was taken from a limited exposure (>50 

cm2) at the bottom of a ~160 cm deep excavation. Further sampling may reveal ice-facies 

exhibiting evidence of basal-ice formation.  Limited ice-sampling was primarily a result 

of misleading geophysical data. For example, discrepancies were found to exist between 

the depth of the buried-ice as documented by the 100 MHz GPR profiles (~50 cm), and 

the actual depth of the buried-ice (>160 cm). Ground-penetrating radar used at 100 MHz 

may underestimate the depth of surface debris when surveying buried ice. Further-work 

investigating may be warranted. 
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Table 6.7 Summary table of evidence used to deduce the likely origin of buried-ice 
structures within the Austre Lovénbreen left-lateral-frontal moraine 

Evidence 
Potential Origin 
Englacial 
thrusts Basal-ice 

Primary-
stratification 

GPR Dipping structures ✓ ✓ ✓ 

GPR Thinly banded layering  ✓ ✓ 

Ice-sampling 

Angular and very 
angular clasts indicative 
of passive debris 
transport 

  ✓ 

Ice-sampling 
Blocky clast-shape 
indicative of passive 
debris transport 

  ✓ 

Aerial 
Imagery 
(1936) 

Primary stratification 
visible in proximity to 
the terminus 

  ✓ 

Aerial 
Imagery 
(1936) 

Debris-bearing fractures 
visible in proximity to 
the terminus 

✓   

 

6.4.2 Lateral-zone formation and evolution 

Conceptual models have been developed to account for moraine development (Fig. 6.22) 

and potential changes to landform stability over time (Fig. 6.23). Fig. 6.22A depicts the 

status of the lateral moraine during (or close to) the Neoglacial Maximum (c. 1900), in 

1936 and under present day conditions. During the Neoglacial Maximum, high 

percentages of angular clasts organised within primary foliation are concentrated at the 

glacier terminus. Increased top-melt releases debris into the overlying substrate. Once at 

a sufficient thickness, debris shields buried glacier-ice at the terminus from further 

ablation (e.g. Østrem, 1959) and reduces the climatic sensitivity of the moraine (Fig. 

6.22A). Differential ablation permits the isolation of buried-glacier ice as the glacier thins. 

Folding of buried-ice occurs as the embryonic ice-cored moraine acts as a topographic 

barrier for a minor glacier fluctuation (e.g. the down-glacier propagation of a surge-front) 

resulting in the development of a syncline on ice-proximal sections of the lateral-frontal 

moraine (Fig. 6.22B). Glacier recession results in the complete isolation of the ice-cored 

lateral-frontal moraine, which is subject to degradation via down wastage. Debris 
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released from the buried glacier-ice forms a thick layer of clast-rich diamicton (e.g. Kjær 

and Krüger, 2001). 

This development of the moraine can also be visualised schematically (Fig. 6.23). Three 

phases of secondary deglaciation (e.g. Everest and Bradwell, 2003) are defined. The first 

phase refers to initial increased ablation under thin debris coverage. Here, a thin covering 

of debris serves to increase initial melt rates through re-radiating incoming solar 

insolation. Once sufficient thickness is achieved, overlying debris serve to protect the 

buried-ice, allowing for its preservation. At this stage ice-melt proceeds, but climatic and 

debris related controls may serve to increase or decrease the rate of melt. For example, 

increasing temperatures may increase moraine degradation, whereas debris release may 

limit the rate of top-melt. The Austre Lovénbreen moraine complex is inferred to be at 

this stage (Fig. 6.24C) in its development at present, principally due to observations of 

increasing mean summer air temperature experienced by Svalbard over the study period. 

During the final stage of moraine development, two end-forms are envisaged: (1) a fully 

stabilised ice-cored moraine, which is in equilibrium with its environment; or (2) an ice-

free lateral-frontal moraine complex. It is unclear whether the first scenario is plausible.  

6.4.3 Frontal-zone formation 

An alternative model for the development of frontal zone is presented in Fig. 6.24. This 

model differs from the lateral zone as buried-ice is not included within the structure of 

the moraine. The model is developed from interpretation of a fluvially cut exposure 

located at WP027. Slumping of debris from the steepened ice-margin was observed in 

historical photos of Midtre Lovénbreen in 1892 (Hamberg, 1894). Given the similarity 

between the two glaciers, this moraine forming process is inferred to also occur here (Fig. 

6.24). The basal origin of this sediment is interpreted from the clast-form parameters of 

sediment sampled from WP027 which overlap from subglacial control samples (section 

6.3.5). Recession or minor oscillation of the ice-margin forms an additional deposit of 

diamicton also derived from dumping basally transported debris, leaving an inclined 

stacked diamicton structure which represents the former moraine ice-proximal slope (Fig. 

6.24). 
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Fig. 6.22 A process-form model for the development of the ice-cored lateral moraine 
complex at Austre Lovénbreen. Glacier flow occurs obliquely to the cross-section. (A) 
Supraglacial debris transport and concentration at the Neoglacial Maximum. (B) 
Thinning of the terminus. (C) Present day downwastage following extensive glacier 
recession. For illustrative purposes the bed is depicted as horizontal. In reality it is 
gently sloping down-glacier.  
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Fig. 6.23 Conceptual flow diagram showing pertinent feedbacks controlling the 
deglaciation process of ice-cored ‘controlled’ moraine. (A) Positive and negative 
feedbacks involved in the degradation of ice-cored moraine and (B) the rate of ice loss 
over time in relation to two hypothetical warming scenarios.  
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Fig. 6.24 A potential process-form model for the development of ice-free frontal 
sections of the moraine complex related to the oscillation of the glacier terminus and 
the supply of basally derived material via debris-rich thrust propagation at the 
terminus (e.g. Hamberg, 1894). Material is dumped from the steepened ice-cliff. T1 and 
T2 indicate the chronology of the two moraine deposits, with T1 formed first. 
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6.4.4 Influences on rates of moraine disintegration 

Here, rates of landform degradation appear to be limited in comparison to other sites. For 

example, Irvine-Fynn et al. (2011) reported a moraine surface lowering rate of −0.65 ± 0.2 

ma-1 at neighbouring Midtre Lovénbreen between 2003 and 2005. Longer-term changes 

(1984-2004) at Holmstrombreen are reported to have occurred at a rate of -0.9 ma-1 

(Schomacker and Kjær, 2008). Rates of surface lowering in temperature Icelandic glacial 

environments are variable (0.015-1.4 ma-1; e.g. Krüger and Kjær, 2000; Schomacker and 

Kjær, 2007; Bennett and Evans, 2012). Whilst the maximum rate of surface lowering was 

calculated at -0.47 ma-1, on average, surface lowering for the entire study area was 

considerably lower (-0.16 ma-1) than reported at other sites. Even in areas with high levels 

of surface lowering (e.g. Z1), only modest rates of surface lowering per year were detected 

(-0.23 ma-1). A proportion of the study area (52%) was below the minimum level of 

detection implying no or exceptionally limited geomorphological change between 2003 

and 2014. 

Moraines in the high-Arctic glacial environment are understood to be highly vulnerable 

to thermo-erosion and mass movement facilitated by fluvial undercutting. This can result 

in high rates of landform transformation (Ewertowski and Tomczyk, 2015). Such surface 

processes are suggested to be less important with regard to the transformation of the 

lateral frontal moraine at Austre Lovénbreen. A surface excavation in proximity to Z1 

showed that the debris mantle was surprisingly thick at 1.6 m. At this site, and potentially 

others, whilst rates of moraine degradation may be high, a relatively thick and evenly 

distributed debris-layer can permit the meta-stabilisation of ice-cored moraine where the 

coupling of slope and fluvial process (e.g. Etzelmüller, 2000) exert less influence on 

moraine transformation. This is largely due to the less topographically confined setting 

of the lateral-frontal complex at Austre Lovénbreen. The result is a low level of 

transformational activity, which principally occurs via down-wasting (e.g. Ewertowski 

and Tomczyk, 2015). An implication of this study is that the ice-cored moraines formed 

at Austre Lovénbreen, and potentially other valley glaciers in Svalbard, may have higher 

preservation potential than previously thought possible as insulating debris is not 

reworked and remains in situ. Two scenarios (or a combination of the two) related to de-

icing progression at Austre Lovénbreen are envisaged. The moraines may stabilise in 

relation to recent climatic amelioration. This scenario requires a thick debris mantle to 
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develop that exceeds the permafrost active layer allowing buried-ice to be a persistent 

landscape feature over decadal-centurial timescales. Alternatively, the active layer may 

continue to exceed the depth of the debris mantle for the duration of the secondary 

deglaciation process, resulting in continued and complete melting of buried-ice despite 

an increasing debris thickness. 

During the final stage of moraine development, two end-forms are envisaged: (1) a fully 

stabilised ice-cored moraine, which is in equilibrium with its environment; or (2) an ice-

free lateral-frontal moraine complex. It is unclear whether the first scenario is plausible. 

Currently, ice-cored ‘controlled’ moraines are understood to be poorly preserved in the 

geomorphological record (Evans, 2009). Buried-ice up to 200 years of age has been 

documented in moraines at the margins of temperate Icelandic glaciers (e.g. Everest and 

Bradwell, 2003). Examples where the preservation of buried-ice has been permitted on 

longer timescales include formally glaciated continental settings (e.g. Ingólfsson and 

Lokrantz, 2003; Murton et al., 2005), and cold deserts where buried-ice is suggested to 

have existed several millennia under permafrost conditions (Sugden, 1995; Schäfer et al., 

2000). Waller et al. (2012) highlighted that the preservation of buried-ice may be permitted 

on geological timescales if it is located at depths unaffected by seasonal thaw. However, 

the high-Arctic glacial environment in Svalbard is known for its highly unstable ice-cored 

moraine, and rapidly progressing mass wasting processes (Bennett et al., 2000; 

Schomacker, 2008; Irvine-Fynn et al. 2011; Ewertowski and Tomczyk, 2015). Schomacker 

(2008) showed that climatic variables are only weakly correlated with rates of ice-cored 

back wastage occurring at 14 different glaciers; the implication being that surface 

processes and topography are more important determinates of moraine disintegration. 

However, it should be noted that as Schomacker (2008) only investigated rates of back 

wasting, it may not be directly applicable to Austre Lovénbreen. Very limited field 

evidence of ice-cored moraine disintegration via back wastage was found at Austre 

Lovénbreen in 2014, 2009 and 1999 (Midgley pers. Comms).  

The physical properties of the insulating debris layer such as its thickness, water content 

and thermal conductivity influence rates of moraine down-wastage (Schomacker, 2008). 

Highly permeable substrates allow rain to advect heat down to buried-ice and facilitate 

top-melt (Reznichenko et al., 2010). Conversely, block-rich material with high surface 

roughness has low thermal conductivity and can obstruct the development of winter 
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snow-cover depressing the lower limit of permafrost in mountain terrain (Etzelmüller 

and Frauenfelder, 2009). Whilst block-gravel is not recorded on the Austre Lovénbreen 

moraines, the substrate typically consists of clast-rich diamictons (e.g. Graham, 2002) 

which are typically overlain by gravels with a variable fine component. Diamictons are 

associated with variable porosity values (e.g. Parriaux and Nicoud, 1990; Kilfeather and 

Van der Meer, 2008; Burki et al., 2010; Worni et al., 2012). Diamicton with silt and clay 

components and frozen horizons will lower the permeability of the debris, and serve to 

impede heat advection by water during summer months, thus limiting ice-ablation (e.g. 

Reznichenko et al., 2010).  

Local topographic controls also influence air temperature and subsequently permafrost 

distribution (Harris et al., 2009). Strong topographic shading has been reported as an 

influence on de-icing at other sites in Svalbard (e.g. Lønne and Lyså, 2001). Given the 

proximity of the landform to Slattofljettet (582 m), rates of moraine down-wastage in up-

glacier sections of the landform maybe influenced. Modelling of these shading effects is 

likely to be an interesting avenue of research in relation to moraine disintegration and 

more generally, permafrost distribution and properties in mountainous terrain. 

A further confounding factor is snow-cover, which is known to limit the influence of 

atmospheric heat on ground temperature (Stieglitz et al., 2003). At the time of the 2014 

survey, late lying snow covered a c. 11% of the study area. Values reported here are 

therefore considered a minimum estimation of moraine down-wastage. Whilst in winter, 

snow may permit higher ground temperature in relation to mean air temperatures 

(Stieglitz et al., 2003), late lying snow is likely to play an additional role limiting the 

susceptibility of buried-ice to surface warming. Further work investigating the influence 

of snow cover and snow-depth in relation to moraine down-wastage could elucidate how 

significant a role it plays in reducing down wastage. 

An additional aspect of interest is the spatial component of landform transformation. 

Diminishing rates of landform disintegration from Z1 to Z3 correspond with an increase 

in the moraines debris component from lateral to frontal positions (Section 6.4.1 and 

Section 6.4.2; Midgley et al., 2013). Spatially variable amounts of buried-ice imply that the 

mode of moraine formation is not consistent across the moraine complex (e.g. Hambrey 

and Glasser, 2012). Lateral sections conform to the ‘controlled’ ice-cored model of 

moraine formation where the release of material from debris-rich folia result in surface 
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linearity and form an insulating surface layer for underlying glacier-ice. The limited rates 

of ice melt in the frontal sections, and the presence of surface irregularities indicate that 

separate glaciological and geomorphological processes are responsible for the 

emplacement of moraine at different locations along the lateral-frontal complex. Here, 

structural glaciology and the preferential entrainment of basal debris in frontal locations 

is likely to be important. For example, studies have investigated the development of belts 

of moraine mounds (‘hummocky moraine’) in relation to the stacking of englacial 

material along thrusts planes (e.g. Hambrey et al., 1996; 1997; Bennett et al., 1998; Glasser 

and Hambrey, 2001; Graham, 2002; Midgley et al., 2007; Cook et al., 2015). The processes 

described in these papers may, in part, be responsible for areas of surface irregularity on 

the moraine complex and lower levels of ice incorporation. Additional processes such as 

pushing and permafrost deformation are documented to operate in ice-marginal 

environments in Svalbard (Etzelmüller et al., 1996; Boulton, 1999). It is unclear whether 

such processes are important at this site.  

6.4.5 Limitations and issues related to the application of UAV topographic surveys and SfM 

Photogrammetry 

This research highlights the potential of UAV and SfM technologies and their application 

in relation to a range of geoscientific enquiries. Here, the use of the UAVs combined with 

SfM was limited to data acquisition of the 2014 DEM. The resulting SfM DEM derived 

from this field campaign appears to show excellent levels of both accuracy and precision. 

The integration with corrected dGPS ground-control has enabled the geo-registration of 

exceptionally high-resolution orthorectified aerial imagery, and associated DEM that can 

be used to assess future geomorphological change. If a future aerial survey is undertaken 

at a similar level of both accuracy and precision as obtained in 2014, it will enable a much 

lower error threshold than was obtained between 2003 and 2014. Total RMSE reported 

following application of dGPS derived checkpoints fell within the sub-decimetre range 

(minimum and maximum errors of 0.014-0.144 m). Elevation differences between the SfM 

DEM and the checkpoints yielded excellent vertical agreement. The achievable levels of 

precision flying at c. 100 m above ground level using a consumer-grade digital camera 

make the repeated deployment of an UAV a highly suitable piece of equipment for 

geomorphological investigations of this kind.  
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The use of a SfM photogrammetric approach to extract topographic data from the 2003 

aerial image appears to be less straight-forward. The main issue encountered here was 

the achievable levels of accuracy from the 2003 images, which in turn, reflect high 

minimum levels of detection when applying error thresholds for DEM differencing. Two 

interrelated issues are likely to account for higher levels of error in these datasets: (1) the 

use of lower resolution imagery for reproducing the former geometry of the landforms 

and (2) the use of existing ‘stable’ features for ground-control.  

The first issue mainly relates to the fact that the 2003 imagery was at a coarser resolution 

(contact prints scanned to give an approximate ground resolution of 0.2 m per pixel) than 

the sub-decimetre resolution imagery obtained by the UAV survey. Thus, minimum 

levels of detection can be expected to be at, or around the resolution of existing images. 

This may also have been problematic when using the dGPS to survey ‘stable’ boulders to 

use as ground-control. For example if a boulder is smaller than the resolution of the raw 

uncorrected imagery, then it is likely to be unidentifiable on the imagery. This limits GCP 

selection to only large boulders. Finding suitable spots on such boulders which both aid 

their identification during the SfM point cloud creation process, and limits discrepancy 

between the actual dGPS survey point location maybe problematic. The second issue 

relates to the limited selection of ground-control points in geomorphologically unstable 

terrain, an issue encountered in similar studies that use photogrammetry to produce 

DEMs of changing geomorphological systems (e.g. Staines et al., 2014). In this study, areas 

on the lateral-frontal moraine complex are avoided, as the landform is 

geomorphologically active. In such circumstances, the resulting optimal distribution of 

GCPs is not possible. Furthermore, sub-optimal GCP placement are suggested to weaken 

reproducibility and introduce error (Clapuyt et al., 2015). Given the range of issues 

involved, extracting topographic data from standard aerial imagery is still demonstrated 

to be useful for studies investigating the response of geomorphological systems to de-

icing. The techniques described here are also applicable to other research areas that would 

benefit from high spatial resolution and potentially high temporal resolution imagery 

and associated DEMs. 

6.5 Summary 

A multidisciplinary approach is used to characterise a lateral-frontal moraine developed 

at the margin of a high-Arctic valley glacier in Svalbard. Semblance analysis of GPR 
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common-midpoint surveys reveals high rates of radar-wave propagation in lateral 

sections, and low rates of radar wave propagation in frontal sections. This demonstrates 

an ice-dominated lateral composition, which grades through to a debris-dominated 

frontal section. Up-glacier dipping reflectors and syncline structures are documented to 

occur in areas of buried-ice. The initial favoured origin of this ice, as discussed in Midgley 

et al. (2013), is reinterpreted in light of a sampled-ice and potential melt-out tills which 

carry high quantity of angular clasts implying high-level glacier transport. A conceptual 

model related to the deformation and burial of primary stratification is developed in this 

chapter. Formation processes across the moraine complex may not be consistent, with 

frontal sections dominated by addition structural glaciological processes (e.g. thrusting), 

and subaerial dumping and lateral sections forming due to ablation and release of buried 

glacier-ice (‘controlled moraine’). This is reflected by the occurrence of basally 

transported clasts in frontal areas of the moraine.  

SfM photogrammetry is used to produce repeat DEMs of the landform and report on 

rates of moraine evolution over an 11-year period. The maximum average rate of surface 

lowering observed was -0.47 ma-1. Average surface lowering over the entire study area is 

reported at -0.16 ma-1. Landform evolution occurs more rapidly on lateral sections than 

frontal sections of the landform which typically fall below the minimum level of detection. 

Unlike other sites in Svalbard, the moraine appears to be de-icing predominately by down 

wastage, affording the landform high levels of stability. Atypical of de-icing moraines in 

the high-Arctic, slope and fluvial driven change appears to be less significant. There is 

potential for the buried-ice to be stabilised and preserved as a palaeo-glaciological archive 

of former Neoglacial ice dynamics. The high-resolution UAV derived dataset serves as a 

benchmark for future ultra-high resolution and accurate surveys of the lateral-frontal 

moraine at Austre Lovénbreen. The use of SfM photogrammetry for extracting 

topographic data from a range of aerial imagery is demonstrated to be beneficial for 

monitoring environmental change and is likely to have wider applications in other 

geoscientific sub-disciplines.  

192 



 

7. Discussion and conclusions 
 

7.1 Introduction 

Whilst findings are discussed within their respective chapters, aspects of this study are 

synthesised here. This section highlights disparities between the glacier processes and 

products within each of the landsystems and the potential diagnoses of specific forms in 

the geomorphological record. In this thesis the structure, morphology and significance of 

three lateral-frontal landforms have been investigated. Findings contribute current 

understanding of the glaciological and geomorphological significance of these landforms 

providing data on the sedimentary character of contemporary glacial environments. 

Furthermore, to my knowledge, this study is amongst the first to integrate SfM and UAV 

technologies for the purpose of investigating moraine degradation within high-Arctic 

glacial environments.  

7.2 Discussion of study objectives 

Objective 1: To investigate the novel integrated use of UAV and SfM technologies for 

geomorphological research and apply the technique to contemporary glacial environments. 

This thesis has investigated the use of UAVs for novel small-format low-level image 

acquisition in relict and contemporary glacial environments. As a result of this study, a 

greater understanding of the potential of this technique is now known including logistical 

considerations and the potential spatial resolutions of derivative data products (e.g. 

DEMs and orthophotos) (Chapter 3; Tonkin et al. 2014). This study is the first to integrate 

UAV derived imagery and SfM photogrammetry to investigate the degradation of ice-

cored moraine Chapter 6; Tonkin et al., 2016). Furthermore, some of the technical 

challenges related to the extraction of topographic data from conventional imagery for 

the purpose of assessing geomorphological change were appraised. For example, there 

are challenges related to the application of ground-control on historical imagery, where 

much of the terrain is undergoing post-glacial modification. Given the low number (n = 

3) of ground control points available, SfM is still shown to enable the extraction of 

topographic data with validation datasets showing acceptable levels of error (RMSE = 

0.888 m), allowing for surface change under 1 m to be assessed. 
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Objective 2: To assess the internal structure of lateral-frontal moraine using ground-penetrating 

radar (GPR) or direct observations 

The internal structure of lateral-frontal moraine has been assessed at three sites 

(Schwarzberggletscher, Isfallsglaciären and Austre Lovénbreen). Field surveys show that 

the internal structure is dissimilar at all three sites. Alpine moraine are structurally 

organised into stacked inclined units of diamicton deposited in particular sequence, 

dependant on whether the glacier overrode or was obstructed by a pre-existing moraine 

rampart. The Alpine sites investigated appear to be largely devoid of buried-ice despite 

an abundance of supraglacial debris, with buried ice spatially restricted to ice-proximal 

locations, and short lived with regard to their preservation. Moraine building episodes, 

thus advances in the glaciers lateral extent, are indicated by units of diamicton overlaying 

palaeosols. This is of stark contrast to both Arctic sites. At Isfallsglaciären, structurally, 

the moraines appear to be dominated by large bouldery debris (e.g. hyperbolic reflectors 

in the GPR radar-grams), although bounding surface layers can be identified in frontal 

deposits, and indicate the deposition of sedimentary units on both the ice-distal and ice-

proximal slopes. The stratigraphy of diamicton units is largely topographically 

determined, and relate to the former position of the glacial surface and whether material 

is superimposed on pre-existing ice-proximal slopes or accreted onto the ice-distal slope. 

Given the mountainous setting, with sparse or absent vegetation it is unclear whether 

such bounding layers could be a potential source of organic material which could be used 

to constrain glacier activity over the Holocene. Organic layers are common in Alpine 

moraine (Ivy-Ochs et al., 2009), reflecting long formational histories over several glacier 

advance stages, but are infrequently identified in Arctic lateral-frontal moraine located in 

continental Scandinavia (e.g. Hormes et al., 2004). Furthermore, higher radar velocities 

are identified in lateral zones of the Isfallsglaciären lateral-frontal moraines, and are 

interpreted to indicate the presence of ice within the internal structure, although the 

origin of the ice in terms of its depositional history may be different to high-Arctic 

landforms (e.g. Østrem, 1964).  

Austre Lovénbreen offers an example of where, volumetrically, glacier ice represents a 

significant proportion of the landform. The findings reveal that glacier structures are 

exceptionally well-preserved, as demonstrated by 100 MHz GPR surveys. Whilst the GPR 

data show a limited surficial debris layer, the actual debris layer exceeds 1.5 m. The 
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findings also show that GPR may be ineffective at estimating the debris layer thickness 

on glaciers and ice-cored moraine when deployed using a 100 MHz antenna setup. 

Similar to Isfallsglaciären, ice within the landform appears to be limited to lateral zones 

of the landform. The dominance of debris in supraglacial transport at these positions 

promotes the isolation of ice at the terminus, and explains the spatial extent of buried ice 

as detected by the GPR.  

This research highlights that based on structural configuration, 'controlled' ice-cored 

moraine as a term cannot be applied to the ice-cored moraine investigated at 

Isfallsglaciären. Additional descriptors such as ‘Østrem’ type moraine are likely to be 

useful in distinguishing these structurally diverse landforms, which are formed by 

glaciers with both dissimilar (e.g. non-surge type, continental climate, moderate relief 

setting, variable permafrost presence) and similar (e.g. polythermal structure) attributes. 

Objective 3: To use sedimentological techniques to assess the debris transport histories and origin 

of material contained within moraine and to allow important moraine forming processes to be 

identified.  

The relative importance of specific ice-marginal processes (glaciotectonism, dumping, 

and ablation) also vary across the three sites. At Austre Lovénbreen the ablation and the 

release of debris from glacier ice and transfer of supraglacial debris on to moraine via 

dumping are important processes controlling the development of the landform, although 

the importance of ablation as a process is more significant for the formation of the ice-

cored lateral zones, rather than the frontal zones.  

In contrast, Isfallsglaciären may represent a complex situation related to the relative 

importance of dumping, glaciotectonism (e.g. related to overriding of pre-existing 

moraine), and the formation of ice-contact fans (e.g. distal deposits on the outer-frontal 

ridge). Silt deposits on ice-proximal slopes also indicate how existing landforms act as a 

topographic barrier promoting the development of a low-energy depositional 

environment (e.g. ice-marginal lake development). The dumping and flowage from the 

lateral ice-margin are significant ice-marginal processes at Schwarzberggletscher which 

result in the production of crudely stratified diamictons, with strong-moderate 

macrofabrics dipping away from the former glacier surface. This is in accordance with 

previous models of moraine formation (e.g. Humlum, 1978; Small, 198). However, the 
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strength of the principle eigenvalue of clasts diminishes down-glacier, which may reflect 

glaciotectonic disturbance of initially dumped sediment units.  

Common to all sites is the presence of diamicton and gravel facies as products of glacial 

transport and deposition. It is clear that the clast-form parameters vary across sites (Table 

7.1). This in part represents lithological controls (e.g. Lukas et al., 2014), but also debris 

transport pathways and potential re-working related to past glacier activity at different 

sites. Clast-form gradients are best observed at Austre Lovénbreen, but are also present 

at Isfallsglaciären and Schwarzberggletscher.  Schwarzberggletscher has the least well 

developed clast-form gradient. Material appears to show distinguishable shape (C40) and 

roundness (RA) indices but exhibits a reduction in the amount of VA clasts, and a 

surprising increase in clasts carrying striae within the lower-lateral complex. Various 

hypotheses were discussed regarding the origin and significance of the striae. The 

favoured hypothesis is the elevation of debris as the former glacier flowed over a steep 

bedrock slope, and initiation of debris transfer from the glacier bed (e.g. Swift et al. 2006). 

The transfer of basal material into lateral moraine has been suggested at other sites (Benn 

and Owen, 2002; Lukas and Sass, 2011; Lukas et al. 2012) and may be widely applicable 

to lateral moraine formed in high-mountain glacial environments. The RA and C40 indices 

decrease from lateral to frontal position at the high-Arctic glacier, Austre Lovénbreen, as 

does the occurrence of striated clasts. At Isfallsglaciären, material on the frontal moraine 

exhibits evidence of active transport in the form of sub angular and striated clasts, which 

are rare or absent on the lateral zones. The clast-form gradient, in part, highlights a 

disparity in occurrence of the glaciological processes responsible for the elevation of basal 

material to a supraglacial position for dumping at the ice-margin within each of the 

parent glaciers investigated, but also variation in terms of the quantity of debris input 

from extraglacial sources within each of the glacial landsystems. As debris transport, the 

transfer of basal material, and moraine construction are linked, the sedimentary signature 

of relict lateral-frontal moraine in the geomorphological record have the potential to be 

used to infer former debris transport pathways and character of former glaciers. 

Objective 4: To develop models of moraine formation to account for subsets of lateral-frontal 

moraine formation in Arctic and Alpine environments  

Whilst all the landforms investigated can be classified as lateral-frontal moraine, each site 

highlights how local conditions (topography, glacier thermal regime, dynamic status of 
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the parent glacier) are important with regard to the character and form of the resulting 

feature. These lateral-frontal moraines should therefore be considered as subsets of the 

typical ‘valley glacier landsystem’ model, exhibiting site specific nuances related to 

glaciological and environmental conditions (e.g. Boulton and Eyles, 1979; Benn et al., 

2003). Divergent models of moraine formation applicable to each site are presented 

within the previous chapters and are compared here. 

For temperate high-mountain glacial landsystems, the findings presented in this thesis 

aid the verification of new models of landform development. Whilst aspects of these 

models satisfactorily explain the formations investigated here, debris supply and 

topography are demonstrated to be important controls on the character of Alpine lateral-

frontal moraines. Predictive models of landform development that account for lateral-

frontal ridges as a primary product of passive glacier transport do not necessarily fully 

account for all findings presented here. Passive glacier transport contributes significantly 

to moraine formation, however the structural glaciology of the parent ice is suggested to 

be important with regard to the provision of actively transported debris for moraine 

formation. 

For the continental Arctic site (Isfallsglaciären), despite historically being amongst the 

first sites identified with ‘ice-cored moraine’, the results presented here show that they 

are structurally divergent from their high-Arctic counterparts. However, models of 

landform development for the glaciers of continental Scandinavia remain poorly 

developed, with uncertainty over the origin of the incorporated ice, the age of the 

incorporated ice, and the interaction of the parent glacier with permafrost in the 

proglacial area. At present, due to the overriding of pre-existing moraine, the chronology 

of the landforms is poorly constrained, and should be subject to future study to see 

whether they are in agreement with interpretations of Østrem type ridges from other sites 

(Matthews et al., 2014). A range of ice-marginal processes are likely to have operated at 

the time of moraine genesis. The reoccupation of the moraine rampart of the late 

Holocene introduces additional complexities, for example, the ineffective self-censoring 

of pre-existing moraine within the forefield by later glacier advances. Given the 

importance of the glaciers of Tarfala valley in relation to long-term monitoring, future 

investigations seeking to understand their sedimentological record may help aid 

understanding of glacier response over the late Holocene. 
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Moraines developed by the Arctic polythermal glacier, Austre Lovénbreen, were formed 

following the isolation of buried ice from solar insolation by a debris cover of passively 

transported debris sourced from valley sides and the ablation of relatively debris-rich 

primary stratification contained within the ice. Whilst the initial formation of the ice-

cored moraine may conform to existing models for the development of ice-cored moraine 

relating to the isolation of a body of glacier ice (Schomacker, 2008; Evans, 2009), the 

coupling of slope and fluvial processes in high-Arctic settings appear to be acting at a 

slower rate at this site, permitting a relatively stable secondary deglaciation processes 

with limited backwastage of exposed ice and debris flow activity. It is unclear whether 

the moraine has switched from an active to stable state (e.g. Ewertowski and Tomczyk, 

2015), but given the lack of relict mass movement deposits, this may be unlikely. This has 

implications for the long-term persistence of ice-cored moraine in high-Arctic glacial 

environments.  

Objective 5: To assess how the morphology and internal composition of lateral moraine may 

change following climatic amelioration or deglaciation and identify any implications this may have 

on interpretations of the Quaternary landform record. 

Contemporary glacial landsystems can be seen as useful analogues for formerly glaciated 

areas (Benn and Lukas, 2006). There is therefore potential for landforms to inform 

researchers on past environmental and glaciological conditions. Alpine sites may be more 

readily identified due to their distinctive asymmetric morphology. The persistence of 

these landforms in the geomorphological record is beginning to be recognised, with 

moraine chronologies spanning the entire Holocene (e.g. Schimmelpfennig et al., 2013). 

However, it is noted that topography may play a significant role in relation to the external 

censoring of these features (Barr and Lovell, 2014; Fig. 7.1) and also their resulting 

topographic expression. In chapter 4 lateral moraine at Schwarzberggletscher appears to 

be stabilising, with vegetated ice-proximal slopes and the infrequent occurrence of ice-

proximal gullies.  

In the high-Arctic environment, whilst external censoring has resulted in low 

preservation potential at some sites, results from Austre Lovénbreen highlight that 

topography is an important control on landform disintegration. Here, the coupling of 

fluvial and slope processes are less pronounced due to the topographic configuration of 

the terminal zone (topographically unconfined) (Fig. 7.1). Neoglacial ice within the 
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moraines appears to be degrading in a relatively stable manner, preserving glacier 

structures originating from the Neoglacial advance. The excellent preservation of glacier 

structures within lateral-frontal moraine provides a potential record of former glacier 

behaviour. Structures preserved within buried-ice may help elucidate subglacial 

processes including basal-ice formation and sediment entrainment, and subsequently the 

thermal composition of these glaciers during the Neoglacial. Given the modest rates of 

landform degradation and limited back wastage, reworking of debris is limited as it 

remains in situ. The western lateral-frontal moraine at Austre Lovénbreen is likely to be 

preserved, albeit as a less topographically prominent landform over centurial or 

potentially greater timescales if not subject to glacier self-censoring (e.g. a future advance 

removing moraines from the geomorphological record). Variability in terms of the extent 

of external censoring in high-Arctic settings imply that similar moraines in relict 

geomorphological environments may represent a fragmented palaeoenvironmental 

record of glaciation. Studies using moraine chronologies are recommended to evaluate 

the topographic controls on both the formation of moraines and the role it has on self and 

external censoring (e.g. Barr and Lovell, 2014). 

A key finding of this research is the presence of buried ice within lateral zones, but not 

within frontal zones of Arctic lateral-frontal moraines.  A clear implication is that the 

frontal zones of ice-cored moraine are likely to be better preserved in the 

geomorphological record following complete de-icing, whereas lateral zones, which are 

subject to de-icing and potentially external censoring from slope processes, may be poorly 

preserved (e.g. Bennett, 1999), or completely removed from the geomorphological record. 

This may have implications for where the lateral reconstruction of former glaciers is 

attempted (e.g. glacier reconstruction for the British Younger Dryas; e.g. Carr et al., 2010; 

Bendle and Glasser, 2012), especially if polythermal conditions, thus potential for ice-

cored moraine generation, were widespread. The recognition of lateral ice-cored moraine 

in the geomorphological record is unclear, however, the volumetric content of the buried 

ice, and the role of topographic censoring is likely to be important with regard to the 

topographic prominence of deglaciated features. In some cases, where little debris is 

contained within buried ice, a thin veneer of angular and very angular debris may remain, 

which is similar to the sedimentary products and the proglacial morphology produced 

by the backwasting supraglacial lateral moraine on the true left of Schwarzberggletscher.  
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Table 7.1 Contrasting characteristics at the three sites investigated. 

Topographic 
setting 

Morphology Structure Moraine 
lithofacies 

Debris 
transport 

Stability 

Schwarzberggletscher (Temperate) 

Valley-side 
and partially 
unconfined 

Asymmetric 
cross profile; 
anastomoses 
into multi-
crested feature 
in lower sections 

Spatially 
limited to a 
supraglacial 
lateral-
moraine; 
moraine 
complex 
devoid of ice 

Predominately 
clast-rich 
diamicton 
 

Weak 
roundness 
gradient; 
actively 
transported 
sediment 
found 
down-
moraine 

Landform 
undergoing 
limited 
gullying; 
down-
glacier zones 
vegetated 

Isfallsglaciären (Polythermal) 

Valley-side 
and partially 
unconfined 

Complex: multi-
and single 
crested zones. 
Landform 
partially 
topographically 
subdued 

Potential ice-
debris mix 
within lateral 
zones 

Boulder-
gravel, gravel, 
mud and clast-
rich diamicton 
 

Largely 
passively 
transported 
debris. 
Frontal 
zones show 
evidence of 
active glacier 
transport. 

Limited 
evidence of 
structure 
failure on 
ice-proximal 
slopes 

Austre Lovénbreen (Polythermal) 

Valley side 
and 
unconfined 

Variable: Linear 
ridges in lateral 
zones. Surface 
irregularities in 
frontal zones 

Ice-core 
comprises a 
significant 
component 
of the 
landform but 
is spatially 
restricted to 
lateral zones 

Gravel and 
clast-rich 
diamicton 

Largely 
passively 
transported 
debris. 
Frontal 
zones show 
evidence of 
active glacier 
transport. 

Actively 
degrading. 
Moraine 
subject to 
spatially 
variable 
amounts of 
down-
wastage 
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Fig. 7.1 Summary figure illustrating confounding topographic factors influencing 
moraine characteristics and morphostratigraphy at the three investigated sites. (A) 
Schwarzberggletscher, (B) Isfallsglaciären and (C) Austre Lovénbreen.  

A High-mountain (‘Alpine’) 
 
• Topographically confined terminus 

• Moraine impedes subsequent advance(s).  
• Strong moraine asymmetry driven by differential supply 

of debris on the true left of the basin 
• Topography influences external censoring of moraine 

chronologies 

B Partially confined terminus  
 
• Moraine formation partially controlled by topography  

• Moraine impedes subsequent advance(s).  
• Overriding of pre-existing moraines indicate ineffective 

glacier self-censoring of moraine chronologies.  

C Unconfined with piedmont 
 zone  
 
• Moraine formation in unconfined topographic zone. 

• Terminus sensitive to change 
• Limited topographically driven external moraine cen-

soring 

T2 T1 

T3 

T1 -T3 

T3 Confined topography 

Unconfined topography 

Legend  

Moraine 

Moraine (overridden) 

Moraine chronology 

Stream 

Indicative scale:  
1km 
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7.3 Limitations 

A fundamental limitation of this research is the paucity of observations of active moraine 

formation at the margins of contemporary glaciers. The negative mass balance of glaciers 

globally (e.g. WGMS, 2012) limit the opportunity to observe active moraine formation, as 

such, observations of active moraine formation are rarely reported (e.g. Whalley, 1973; 

Matthews et al., 1995). In this thesis, the processes of moraine formation have been 

interpreted from the form and sedimentary character of lateral-frontal moraine, or via 

historical imagery. Consequently, uncertainty over the modes of moraine development 

still exist. Specifically the coarse, and often massive sedimentary structure of the 

Isfallsglaciären moraines impede precise understanding of how these glaciers interacted 

with proglacial permafrost, and how stress was transferred from the glacier terminus into 

the lateral-frontal ridges. Understanding of moraine formation and the glaciological and 

geomorphology significance of these moraines remains uncertain. At other sites (e.g. 

Schwarzberggletscher) findings appear to generally conform to existing predictive 

models of moraine formation, albeit with site specific nuances.  

Site selection also presents a key limitation: in reality, due the practicalities of studying 

Arctic and Alpine glaciers such as cost, time, access and safety, large sample sizes are 

difficult to obtain for any given glacial environmental. Choosing a small number of 

glaciers to test existing models of landform development or basing generalisations 

regarding landform development on a few sites may result in an incomplete 

understanding of glacial processes and landform development. Models of landform 

development may be uniform in applicability or site specific. Generalisations based on a 

small number of sites may generate contention or disagreement regarding the validity of 

certain processes and their role in landform development (Lukas, 2005; Graham et al., 

2007). In this thesis, although site selection may limit a complete understanding of the 

complexity involved in moraine construction and modification, it still has merit in that it 

adds additional case studies for the respective glacial environments to the existing body 

of knowledge. 

The use of mixed lithologies could be considered a further limitation of this study (e.g. 

Lukas et al., 2013). Whilst the use of a single lithology is suggested to strengthen 

discrimination of debris transport pathways, the findings presented here show that 

moraine samples can show good discrimination between active and passive transport 
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pathways where lithologies are mixed. Given that the analysis of clast-form data is often 

semi-quantitate, and samples presented are readily discriminated, the value added from 

single lithology sampling is unclear. Lukas et al. (2013) suggested that similar lithologies 

in different basins do not respond uniformly to transport processes. Thus, the comparison 

of a single lithology across a range of basins may not yield meaningful comparisons. It is 

acknowledged that assessment of the lithology of each clasts within a sample was not 

conducted. An abundance of certain lithologies within a facies may aid interpretation of 

source areas for material and the mode of subsequent glacier transport (e.g. Brugger, 

1996).  

7.4 Future research 

Several research avenues merit investigation following on from the findings presented 

here. 

• The application of dating controls on Østrem type moraines: Despite the application of 

GPR for documenting the structural configuration of these landforms, their 

genesis remains poorly understood. Potential issues with lichenometric dates, 

and a paucity of other datasets represent a significant gap in our knowledge of 

these landforms. Potential dating controls such as Schmidt rebound hammer 

exposure-age dating (e.g. Winkler, 2014; Matthews et al., 2015) or cosmogenic 

dating would shed light on the significance of these landforms. Given the 

potential for reworking, glacier censoring, and para and periglacial processes at 

the margins of these glaciers, dating studies should be integrated with 

geomorphological interpretations. Specifically the interaction of advancing 

glaciers with permafrost in this region requires further investigation in relation 

to the censoring of lateral-frontal moraines. 

• Structure-from-Motion photogrammetry for measuring historical and contemporary 

glaciological and geomorphological change: Research using this iterative automated 

approach presents a potential research frontier. The potential for the extraction of 

historical topographic surfaces from archived aerial photography has previously 

been realised. Where integrated with historical imagery, precise and accurate 

topographic information can be obtained. A key challenge here will be the 

collection of robust ground-control and check points for data validation on stable 

terrain. Through the appropriate use of error thresholding (e.g. Chapter 6; 
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Wheaton et al., 2010; Tonkin et al., 2016), reasonable estimates for past change are 

possible.  

• Ice-cored moraine degradation dynamics: Studies investigating the dynamics of 

degrading of buried ice are of important for understanding debris covered 

glaciers, and relevant beyond glacier geomorphology, with vast quantities of 

buried ice present permafrost terrain in the Northern Hemisphere. A number of 

additional factors preclude understanding of the dynamics of de-icing. Future 

work using the high-resolution topography presented here as a baseline could 

investigate small scale processes which could be observed from sub-decimetre 

resolution datasets, for example on an intra-annual time scale. Additional work 

understanding the role shading, sedimentology and snow cover has on 

controlling the rates of down-wastage is required. Understanding of these 

variables will facilitate the production of numerical models; such models may 

allow for the prediction of geomorphological change over time in response to 

changing environmental conditions. 

• The use of UAVs and SfM for monitoring small-scale earth surface processes:  Where 

UAVs are integrated with SfM, ultra-high spatial resolutions are possible (e.g. 

Chapter 3; Tonkin et al., 2014). Given how rapidly UAVs can be deployed, 

monitoring small-scale changes at both high temporal and spatial scales is now 

possible. Research applying these technologies to new problems is on-going. 

These technologies have the potential to revolutionise our understanding of the 

short-term dynamics of geomorphological and glaciological environments, 

affording geoscientists with low-cost but exceptionally high resolution (sub-

decimetre) surface data. A wide range of geoscientific disciplines may also benefit 

from integrating these technologies into their research. 

7.6 Conclusions 

To conclude, the findings of this research demonstrate the value and potential of 

unmanned aerial vehicles and structure-from-motion photogrammetry for geoscientific 

studies. Validation of topographic data derived from small format, low-level aerial 

imagery is presented (e.g. Tonkin et al., 2014), demonstrating excellent levels of accuracy 

and precision. SfM is shown to be suitable for monitoring changing environments (e.g. 

Tonkin et al., 2016). Where archived aerial photography is used, there is future potential 
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to reconstruct evolving earth surface features in four dimensions. This is an exciting 

research avenue that has the potential to aid understanding of environmental change 

over the 20th and 21st Centuries. 

This study presents valuable observations on the character of lateral-frontal moraine 

developed in a range of glaciological settings. Alpine type lateral-frontal moraine ridges 

investigated here are shown to develop as supraglacial dumped debris of mixed transport 

origin, implying that actively transported material was made available for moraine 

formation on the former lower terminus of the glacier. The potential origin of active 

debris is unclear, but may relate to the elevation of material via debris-bearing englacial 

septa. Further work is required (e.g. structural glaciological mapping from archive aerial 

imagery) before the significance of this mechanism of debris transfer in temperate alpine 

glaciers can be fully determined.  

The Alpine landsystem differs from findings at continental Arctic and high-Arctic 

polythermal glaciers which contain ice within the moraine structure. Buried ice is, 

however, located in lateral zones of the moraines, implying a lower preservation potential 

for lateral moraine in the geomorphological record. This has implications where lateral 

moraine are identified and used for reconstructing the geometry of former glaciers. 

Furthermore, a disparity is evident at Arctic sites with buried-ice structures being 

exceptionally well-preserved in the high-Arctic environment, but not at the continental 

Arctic site investigated. Relict ice within high-Arctic moraine may provide a valuable 

insight into the former Neoglacial dynamics of these glaciers. Bounding structures were 

observed within landforms developed within the continental Arctic setting 

demonstrating multiple periods of moraine development, which may have longer 

formational histories than high-Arctic sites, and provide a rich Late Holocene record of 

glacier change. 

In summary, the characteristics of moraines investigated are shown to be divergent, 

highlighting how earth surface and glaciological processes control moraine structure, 

form and sedimentology. However, the topographic setting is an important control on 

moraine development and external censoring (preservation). By documenting the 

character of various lateral-frontal moraine subsets, this study facilitates the use of 

moraines as indicators of past glacier response and aids studies seeking to use moraines 

for determining the geochronology of past glacier change.   
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