Wavy cracks in drying colloidal films

Goehring, L. ORCID: 0000-0002-3858-7295, Clegg, W.J. and Routh, A.F., 2011. Wavy cracks in drying colloidal films. Soft Matter, 7 (18), pp. 7984-7987. ISSN 1744-683X

5913_Goehring.pdf - Published version

Download (252kB) | Preview


Fracture mechanics successfully predicts when cracks will grow. Describing the path that cracks follow, however, has remained difficult. The study of crack paths has recently focused on a single experimental system, that of thermally quenched glass, where straight, wavy, helical, and branched cracks appear under different conditions. Several models of crack path prediction have been developed but none is generally accepted. Here we show that slowly oscillating wavy cracks can form during the drying of a colloidal dispersion. These drying films are subject to large stress gradients perpendicular to the mean direction of crack growth. Under these conditions existing models do not predict periodic paths. We show, instead, how to model crack paths by allowing a growing crack to curve towards the direction of maximum energy release rate. Not only does this explain wavy cracks in drying films, and correctly describe the wavelength dependence of our experiments, but it is generally applicable to predicting crack paths in spatially varying stress fields.

Item Type: Journal article
Publication Title: Soft Matter
Creators: Goehring, L., Clegg, W.J. and Routh, A.F.
Publisher: Royal Society of Chemistry
Date: 21 September 2011
Volume: 7
Number: 18
ISSN: 1744-683X
Divisions: Schools > School of Science and Technology
Record created by: Jonathan Gallacher
Date Added: 05 Sep 2016 08:53
Last Modified: 16 Oct 2017 15:18
URI: https://irep.ntu.ac.uk/id/eprint/28371

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year